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Introduction

The main goal of this book is to introduce system programming using the C language. 

The topics covered in this book teach you how to programmatically manipulate Linux 

and POSIX-based operating systems. The wide variety of topics include

•	 The basics of the Linux operating system

•	 Multithreaded programming in C

•	 Deadlocks

•	 An introduction to POSIX standards

•	 The need for processes and signals

•	 Various IPC techniques

•	 Developing client-server architecture using TCP and UDP protocols

The prerequisites for learning the concepts discussed in this book are

•	 A basic knowledge of the C programming language

•	 A basic knowledge of operating systems
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CHAPTER 1

Introduction to the  
Linux Environment
Linux is an open source, Unix-like operating system based on the Linux kernel. It was 

developed by Linus Torvalds in 1991. It is used in personal computers, mainframe 

computers, supercomputers, Android mobile devices, routers, and embedded systems. 

Linux is a very lightweight and powerful kernel that effectively communicates with 

software programs through any kind of hardware.

The growth of Linux is increasing with the relative growth of technology. IoT devices 

like Raspberry PI use the Linux kernel with a variety of Linux distributions. Since Linux 

is open source, you can modify the source code as you require. There are more than 500 

active Linux distributions (a.k.a. distros) available on the market; most of them are free. 

Some distributions require payment for advanced features. The best examples of Linux 

kernel-based distros are Ubuntu, Linux Mint, Fedora, Debian, and Arch Linux.

This chapter discusses the following topics.

•	 The Linux architecture

•	 Kernel types

•	 Linux kernel vs. other OS kernels

•	 File handling utilities

•	 Process utilities

•	 Backup utilities

https://doi.org/10.1007/978-1-4842-6321-1_1#DOI
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�Getting Familiar with the Linux Architecture
The Linux architecture consists of four layers (see Figure 1-1).

•	 Hardware layer

•	 Kernel

•	 Shell

•	 System library

Figure 1-1.  Linux architecture
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�Hardware Layer
This layer consists of drivers that are required to handle peripheral devices like the 

mouse, keyboards, hard disks, SSD, printers, and so forth.

�Kernel
The kernel is the heart of the operating system; without kernels, you are not able 

to communicate with application programs and the operating system on hardware 

devices. The kernel acts as an interface between hardware components and application 

programs. A kernel has the following functionalities.

•	 I/O management

•	 Process management

•	 Resource management

•	 Device management

�I/O Management

A kernel has several I/O management advantages that make a system more intelligent.

•	 It provides I/O scheduling with standard scheduling algorithms.

•	 It effectively buffers the data transfer between two devices.

•	 It caches data, which improves the performance of the system.

•	 It handles errors and issues when a user performs an illegal 

operation.

�Process Management

On an operating system, process management is important in performing a certain task 

or activity requested by the user; for example, executing a program, playing music, or 

editing a video or photo using a software application. These activities are represented 

by tasks that need to be executed by the CPU with the help of the processor. The kernel 

properly manages the threads without any conflicts.

Chapter 1  Introduction to the Linux Environment 



4

�Resource Management

When a task is performed in an operating system, it requires system resources. The CPU 

allocates the required resources to perform the task. The kernel optimizes the resources 

during process synchronization.

�Device Management

A peripheral device requires a specific driver to connect to the operating system. The 

kernel maintains the device drivers so that they properly connect when needed.

�Types of Kernels

There are five types of kernels. Each type has advantages and disadvantages.

•	 Monolithic kernel

•	 Microkernel

•	 Hybrid kernel

•	 Nanokernel

•	 Exokernel

Monolithic Kernels

In a monolithic kernel, the memory space between the user and the kernel services is 

not shared. The advantage of this kernel is that memory management, CPU scheduling, 

and file management is done through system calls only. A monolithic kernel works faster 

because it acts under a single memory space. The disadvantage is that creating new 

services is a difficult task.

Chapter 1  Introduction to the Linux Environment 
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Microkernels

Before discussing microkernels, let’s talk about kernel space and user space.

Kernel Space

The space that is allocated to run the core part of an operating system is called 

kernel space. This space has access to the system hardware and provides all the core 

functionalities to the system applications. A user can access this space only with the help 

of system calls. Kernel space contains the kernel code, which are data structures that are 

identical to all the processes that are running on the system. In kernel space, memory is 

directly mapped to the physical memory.

User Space

The space that is allocated to the running applications is called user space. User space 

consists of data, process data, and memory-mapped files. In user space, memory 

mapping differs from one address space to another address space. The kernel supervises 

the activities that a process needs to perform on the user space.

Figure 1-2.  Monolithic kernel architecture
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A kernel which has a different memory space for user services and kernel services is 

called a microkernel. In microkernels, users use the user space while the kernel uses the 

kernel space to perform system activities. The advantage of a microkernel is that a new 

service is easily created. The disadvantage is that it increases the execution time of the 

activity due to different address spaces.

Hybrid Kernels

A hybrid kernel is the combination of a monolithic kernel and a microkernel to improve 

the performance of the operating system. It takes the advantages of both kernels to 

improve the performance of the operating system.

Figure 1-3.  Microkernel architecture
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Nanokernels

A nanokernel works on a nanosecond clock resolution. It is a very small and minimalistic 

kernel that performs an activity. It provides good hardware abstraction, but there 

is a lack of system services. The functionality of the kernel does not depend on IPC 

(interprocess communication).

Exokernels

An exokernel provides direct application-level management of the hardware resources. 

This kernel has limited functionality because of its small size. It allows you to perform 

application-level customization very easily. It is very interactive and efficient, but the 

disadvantage is its complex architecture and design.

Figure 1-4.  Exokernel architecture
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�Shell
A shell is a software program that executes other commands in a Unix-based operating 

system. The task of the shell is that it takes input from the user and performs the action 

based on the given input. By default, all Unix/Linux-based operating systems contain a 

bash shell. This shell hides the complexity of the kernel functionality from the users.

There are six types of shells.

•	 Z shell (zsh)

•	 POSIX shell (sh)

•	 Bash shell (bash)

•	 Korn shell (ksh)

•	 CShell (csh)

•	 TENEX C shell (tcsh)

�System Library
The system library contains special functions that effectively access the kernel’s 

features. It contains all the utilities and applications that are available in a common 

operating system.

Figure 1-5.  Different types of shell paths in the system
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�Linux Kernels vs. Other OS Kernels
Linux uses the monolithic kernel, whereas operating systems like Windows and macOS 

use the hybrid kernel. The performance of the Linux operating system is faster because it 

does not have the same address space for the applications and kernel. Since Linux uses the 

monolithic kernel, which is a core kernel that does not have any hybrid features, it makes 

Linux more advantageous than other operating systems. These monolithic kernel activities 

allow Linux to perform out-of-the-box system activities that other operating systems cannot.

Linux has a good package manager that downloads and sets up software very easily. 

This is not available on other operating systems. Homebrew is the “missing” package 

manager available for macOS that resolves this issue to some extent. There is no such 

kind of package manager to install software and set up easily on Windows.

In Linux, you can set up device drivers more easily other than on other operating 

systems. In Linux, the system calls are very fast and interactive.

The following are some simple reasons why using Linux is preferable to using 

Windows or macOS.

•	 Open source

•	 Flexibility

•	 Reliability

•	 Customization

•	 Security

•	 Good hardware support

Linux is open source so that developers can perform reverse engineering on the 

operating system’s code, which helps developers build custom modules and modify the 

operating system. Operating systems like macOS X and Windows don’t have an open 

source feature, which is why Linux is so popular among developers.

�Introduction to Files
Files are commonly used to store data. The data in a file determines the file type. In 

general, there are five types of files available on any operating system.

•	 Text files

•	 Program files

Chapter 1  Introduction to the Linux Environment 
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•	 Binary files

•	 Special files

•	 General files

A file type is revealed by its extension. An image is a file that contains the most 

common extensions (.png, .jpg, .jpeg, .tiff, .gif, etc.). Files are maintained and managed 

by the file system, which is a hierarchical structure that stores the content in a structured 

format. These file structures are discussed in upcoming chapters. For now, let’s discuss 

each file type.

�Text File
A text file contains data that the reader can easily read. These files are created by the user 

or system-generated log files. There are many types of text files. Log files usually have the 

.log extension. The README.md file is a normal text file that uses markup language.

�Program File
A program file contains a set of instructions written by the software developer to produce 

the software or application. There is no common extension for program files because 

there are multiple programming languages. The program file extension is based on the 

programming language in which the file content is written. The rules and syntax differ 

by programming language. The most common extensions are .c, .cpp, .java, .sh, and .bat. 

These program files become executable based on the requirements and usage. You can 

use any type of extension to perform the same task, but it is recommended to use the 

standard extension given by the ISO.

�Binary File
A binary file contains information that is a combination of 0s and 1s. The information 

in a binary file is not human-readable or understandable. It is only understood by 

computers. Binary files are generally executable files. These files are generated by 

compiling a program file. You can convert a program file into an executable file; for 

example, when you compile a C program, it will generate an executable file.

Chapter 1  Introduction to the Linux Environment 
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�Special File
A special file is implicitly created by a system process, or it is explicitly created by a 

programmer for a specific purpose. Examples of a special file include pipes and message 

queue files. Special files are explained in upcoming chapters.

�Regular File
A regular file contains information on a photo, song, or video that is downloaded from 

the Internet or created by the user. The most common examples are images, audio, and 

videos.

�File Handling Utilities
There are various built-in commands in Unix-like operating systems to handle the files 

on the operating system. These commands and utilities are executed from the terminal 

and are described next.

�mkdir
Syntax ➔ mkdir <dirname_with_Location>

Explanation ➔ mkdir stands for make directory. It creates a directory on an operating 

system. A directory is like a box that stores various types of files and other directories.

Example ➔ mkdir Linux

Figure 1-6.  mkdir command
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�cd
Syntax ➔ cd <dirname>

Explanation ➔ cd stands for change directory. It changes the directory from the 

current directory to a specified directory with the help of a destination directory location.

Example ➔ cd Linux

�rmdir
Syntax ➔ rmdir <dirname>

Explanation ➔ rmdir deletes an empty directory. If you try to delete a non-empty 

directory with rmdir, an error is generated.

Example ➔ rmdir Linux

Figure 1-7.  cd command

Figure 1-8.  rmdir command
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In Figure 1-9, a directory named MyFolder contains another directory named 

MyTemp; so, MyFolder is not empty. When the rmdir command is entered, the operating 

system simply throws an error saying that the directory is not empty.

�rm
Syntax ➔ rm <filename/Directory Name>

Explanation ➔ rm deletes the file directories in an operating system. Files are easily 

deleted with the rm command, but to delete directories, you need to add extra flags.

Example ➔ rm filename

Figure 1-9.  rmdir command when trying to delete non-empty directory

Figure 1-10.  rm command
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The following are options for the rm command.

Option ➔ -r

Syntax ➔ rm -r <dirname>

Explanation ➔ The command deletes a directory that is not empty.

Example ➔ $rm -r Linux

Option ➔ -f

Syntax ➔ rm -f <filename>

Explanation ➔ The command forcibly deletes a file.

Example ➔ rm -f Linux

Note  If you want to forcibly delete a directory, use -f with the -r flag.

Figure 1-11.  rm command with -r option

Figure 1-12.  rm command with -f option
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�touch
Syntax ➔ touch <filename1> <filename2> ------ <filenamen>

Explanation ➔ The touch command creates several empty files with 0 bytes each. 

This command is helpful when the user wants to create an empty file to use later.

Example ➔ $touch file1 file2 file3

�ls
Syntax ➔ ls

Explanation ➔ The ls command displays a list of files and directories.

Figure 1-13.  rm command with -rf option

Figure 1-14.  touch command
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The following are some of the options for ls.

Option ➔ -l

Syntax ➔ ls -l

Explanation ➔ This command displays a long list of files and directories.

Option ➔ -t

Syntax ➔ ls -t

Explanation ➔ This command sorts the files and directories according to the time of 

modification.

Figure 1-15.  ls command

Figure 1-16.  ls command with -l option

Figure 1-17.  ls command with -t option
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Option ➔ -a

Syntax ➔ ls -a

Explanation ➔ This command lists all the hidden files and directories. A hidden file 

is easily created with the . operator. A file or directory name that starts with . is a hidden 

directory or file.

�cat
Syntax ➔ cat > <filename>

Explanation ➔ The cat command creates a file with specified content. You can write 

content as required with this command. After the content is written, you exit from the 

command by pressing Ctrl+D.

Example ➔ cat > file1

Hello World…! This is Sri Manikanta. Happy Learning

^d

�head
Syntax ➔ head <filename>

Explanation ➔ The head command displays the lines at the beginning of the file.

Example 1 ➔ head myContent.txt

Explanation ➔ The default command displays the first ten lines of the file.

Figure 1-18.  ls command with -a option

Figure 1-19.  cat command
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Example 2 head -5 file2

Explanation ➔ The flag number that is added before the file name displays the first 

n lines of the file.

Example3 ➔ head -c42 file3

Explanation ➔ The -c flag displays up to n number of the first characters in a file.

Figure 1-20.  head command

Figure 1-21.  head command with -number option
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�tail
Syntax ➔ tail <filename>

Explanation ➔ The tail command displays the content at the end of a file.

Example1 ➔ tail myContent.txt

Explanation ➔ The default command displays the last ten lines of the file.

Example2 ➔ tail -5 myContent.txt

Explanation ➔ The flag number before the file name displays the last n lines of a file.

Figure 1-22.  head command with -number of characters option

Figure 1-23.  tail command
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Example3 ➔ $tail -c42 file3

Explanation ➔ The -c flag displays up to n number of characters in a file.

�nl
Syntax ➔ nl <filename>

Explanation ➔ The nl command displays the content of a file along with the line 

numbers.

Example ➔ nl myContent.txt

Figure 1-24.  tail command with -number option

Figure 1-25.  tail command with -number of characters option
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�wc
Syntax ➔ wc [options] filenames

Explanation ➔ The wc command displays the newline count, word count, bytes, and 

the number of characters in a file, as specified by the file arguments.

Options

•	 wc -l: Prints the number of lines in a file.

•	 wc -w: Prints the number of words in a file.

•	 wc -c: Displays the number of bytes in a file.

•	 wc -m: Prints the number of characters in a file.

Examples

•	 wc myContent.txt

14 16 98 myContent.txt

•	 wc -l myContent.txt

14 myContent.txt

Figure 1-26.  nl command
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•	 wc -w myContent.txt

16 myContent.txt

•	 wc -c myContent.txt

98 myContent.txt

•	 wc -m myContent.txt

98 myContent.txt

�copy
Syntax ➔ cp <source_file> <destination_file>

Explanation ➔ The cp command copies data from one file to another or to a directory. 

To copy content from directories, you need to use the recursive flag, which is -r.

Example1 ➔ cp file1 file2

Explanation: This command copies the contents of file1 to file2. If file2 does not 

exist, it is created.

Example2 ➔ cp file1 file2 Files/

Explanation: This command copies multiple files into a single directory. The 

directory must exist.

�ulimit
Syntax ➔ ulimit

Explanation ➔ ulimit stands for user limit. It signifies the largest file that can be 

created by the user in the file system.

�File Permission Commands
File permission commands are very useful for changing the permissions of a file or 

directory. These commands grant or revoke access rights, such as read, write, or execute 

to a particular file.

Chapter 1  Introduction to the Linux Environment 
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�chmod
Syntax ➔ chmod [who] [+/-/=] [permissions] <filename>

Explanation ➔ Unix grants permissions for files and directories. You can change 

permissions using the chmod command.

In the syntax, who can be any four of the following items.

•	 u stands for user. The user is the owner of the file or directory. The 

person who creates the file or directory is considered the user or 

owner.

•	 g stands for group. A group consists of multiple users who have the 

same access permission for a file.

•	 o stands for others. This is any user who has access to a file but did 

not create the file and does not belong in a user group. It is generally 

considered setting the permissions for the world to use the data.

•	 a stands for all. It includes all types of users (i.e., owner, groups, and 

others to use the file data.

[+/-/=] can be classified as

•	 + adds the permissions to a file or directory

•	 - removes the permissions to a file or directory

•	 = instructs chmod to add the specified permissions and take away all 

others, if present

Permissions include any of the following three categories in a Linux/Unix file system.

�Read

Read access allows you to view the content of a file or list the files in a directory. With this 

permission, you are not able to edit or modify any content in the file. You are not able to 

add or remove any file from the directory with this access.

�Write

Write permission allows you to modify the content in a file. Write permissions allow you 

to add, remove, delete, and rename a file or directory.
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�Execute

To execute a program in Linux, you need to set the execute permissions to the file. The 

following are examples.

•	 chmod +rw myContents.txt gives read and write permissions to all.

•	 chmod go-x myContents.txt takes away execute permission from 

groups and others.

•	 chmod ug+r, go-w myContents.txt gives read permission to users 

and groups and takes away write permission to groups and others.

•	 chmod go=w, u=rwx myContents.txt removes all existing 

permissions and replaces them with write permission for groups 

and others and read, write, and execute permissions for the owner of 

myContents.txt.

You can change the permissions of certain files and directories in an operating 

system. This method is a little tricky for beginners in the Linux environment. There is 

a better and easier way to change the permissions for a file or directory. It is done with 

weights.

�Changing Permissions with Weights

Instead of using u/g/o and +/–/=, you can use weights. It is an octal representation.

•	 Read: (4)

•	 Write: (2)

•	 Execute: (1).

The weight for read access is 4.

The weight for write access is 2.

The weight for execute access is 1.
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Here are some examples.

•	 chmod 754 myContents.txt assigns permissions as follows:  

rwxr-xr--

•	 chmod 777 myContents.txt assigns permissions as follows: 

rwxrwxrwx

•	 chmod 654 myContents.txt assigns permissions as follows:  

rw-r-xr--

•	 chmod 557 myContents.txt assigns permissions as follows:  

r-xr-xrwx

This octal representation based on weights is very easy to understand. These 

commands are mainly used by system administrators and Linux power users to change 

permissions.

To get file types and the access permission, you can use the ls -l command, which 

is a long list command in Linux/Unix.

Table 1-1.  File Permission Modes

Octal Binary File Mode

0 000 ---

1 001 --x

2 010 -w-

3 011 -wx

4 100 r--

5 101 r-x

6 110 rw-

7 111 rwx

Chapter 1  Introduction to the Linux Environment 



26

�Process Utilities
�Process
A process is a program under execution. You can call it as an instance of a program. 

To get a clear view of a process, let’s look at an example. Suppose that when you open 

your terminal to create a file with data in it, you use the cat command, which creates, 

writes, concatenates file content, and prints to the standard output. In this case, you are 

creating a normal text file and writing content in it. When a user performs this action 

automatically, a process is created. Whenever you assign tasks to the operating system, 

the OS automatically creates a process for it.

Every process has unique properties.

•	 The process has a unique process ID that is generated by the 

operating system.

•	 The task of each process independent.

•	 A process can have multiple threads.

There are two types of processes: foreground and background.

�Foreground Process

A process that depends on input from the user is called a foreground process. Initially, 

every process created by the user is a foreground process.

The creation of a file and entering data into it is a good example of the foreground 

process.

�Background Process

A background process runs independently of the shell. The biggest advantage of a 

background process is that you can multitask. If the background process requires user 

input, it waits until the input is provided.

The following are two examples.

•	 Listing all the files in a directory with extensions.

•	 Executing a program that does not depend on user input. The best 

example of these kinds of programs is stress tests in Competitive 

programming.
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�Process Commands
The types of processes are discussed in the upcoming chapters. Let’s dive into the 

process utilities that monitor the processing activity in a system.

�ps

Syntax ➔ ps

Explanation ➔ The ps (process) command reports information on current running 

processes, outputting to standard output.

Example

	 1)	 ps

The result contains four columns of information.

•	 PID: A unique process number that is generated by the  

operating system

•	 TTY: The name of the console that the user is logged into

•	 TIME: The amount of CPU time (in minutes and seconds) that the 

process has been running

•	 CMD: The name of the command that launched the process

�Options

Option ➔ -e

Syntax ➔ ps -e

Explanation ➔ The -e flag lists all the processes that are running on the system.

Figure 1-27.  ps command
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�top

Syntax ➔ top

Explanation ➔ The top command displays all the top processes in the system. This 

command also periodically updates the process information.

Figure 1-28.  ps command with -e option
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�kill

Syntax ➔

       kill -s [signal_name] pid

       kill -l [exit_status]

       kill -signal_name pid

       kill -signal_number pid

Explanation ➔ The kill command manually terminates a signal or process.

Exit status ➔ The kill utility exits at 0 on success and >0 if an error occurs.

This command and its exit status are discussed in upcoming chapters.

�Network Utilities
Network tools are needed to communicate with the network systems. Network utilities 

directly communicate through a connection with remote systems and servers via the 

IP address. These network commands also analyze the overall network data. Network 

Figure 1-29.  top command
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utilities are very powerful. The minimalistic commands run and execute programs to 

analyze the network traffic locally. These commands analyze the whole network from the 

working system.

�ifconfig
Syntax ➔ ifconfig

Explanation ➔ The ifconfig command obtains network configuration information 

and lets you view network configuration information. It displays the current network 

adapter configuration. It determines if you are getting transmit (TX) or receive (RX) 

errors as well.

�hostname
Syntax ➔ hostname

Explanation ➔ It finds the hostname of the computer. You can change this 

hostname by making modifications to the system configuration files.

�netstat
Syntax ➔ netstat

Explanation ➔ The netstat command identifies the open and closed ports in a 

network. It determines all the active network connections, routing tables information, 

interface statistics, and so forth. This command is very useful and versatile in finding a 

connection to and from the host.

Figure 1-30.  hostname command
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Syntax ➔ netstat -g

Explanation ➔ The -g flag determines all the multicast groups subscribed to the 

current working host machine.

Figure 1-31.  netstat command

Figure 1-32.  netstat command with -g option
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Syntax ➔ netstat -a

Explanation ➔ The -a flag displays all the active TCP and UDP connections, 

including servers.

�nslookup
Syntax ➔ nslookup netflix.com

Explanation ➔ nslookup stands for name server lookup. It troubleshoots DNS 

servers. It finds all the IP addresses for a given domain name.

Figure 1-33.  netstat command with -a option
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�traceroute
Syntax ➔ traceroute netflix.com

Explanation ➔ traceroute shows the number of hops and response times to make 

a connection with a remote system or website. This command simply traces all the 

activities between the remote server and the local system.

Figure 1-34.  nslookup command

Figure 1-35.  traceroute command
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�host
Syntax ➔ host netflix.com

Explanation ➔ The host command identifies network address information about 

the remote servers connected to a network. The information includes IPv4 and IPv6 

addresses and mail server information.

�ping
Syntax ➔ ping sriindugroup.org

Explanation ➔ The ping command determines the status of the remote system 

or server. If the remote server is up and running, you receive packets of data from it; 

otherwise, you get a Request Timeout message. In some cases, the server is up but 

configured to not respond to ping requests (this is actually very common, to avoid ICMP 

DDOS attacks).

Figure 1-36.  host command
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�dig
Syntax ➔ dig netflix.com

Explanation ➔ dig stands for domain information groper. It queries DNS-related 

information to obtain all types of record information.

Figure 1-37.  ping command

Figure 1-38.  dig command
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�Summary
•	 In this chapter, you were introduced to the Linux environment and 

architecture.

•	 You learned about the different types of kernels and their pros and 

cons. File handling utilities in the Linux OS were also discussed.

•	 Processes and the different types of built-in utilities that are available 

were explained. There was a discussion on how network utilities 

identify and extract various kinds of information.

•	 By the end of this chapter, you should be able to work with the Linux 

environment.
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CHAPTER 2

Multithreading in C
Multithreading is a program’s ability to execute multiple threads simultaneously 

to maximize the utilization of the CPU. Multithreading helps achieve concurrency. 

Concurrenscy is parallelly executing multiple threads at the same time. In this chapter, 

you learn about the following topics with practical coding.

•	 Introduction to threads and thread behavior

•	 The difference between threads and processes

•	 Concurrency

•	 Parallelism

•	 Introduction to multithreading

•	 Importance of multithreading

•	 Multithreading API in C

•	 Creating multithreading programs in C

•	 Practical examples of multithreading

•	 Multithreading use cases

�Introduction to Threads
A thread is a lightweight process that shares a common address space with the 

owner process. Threads are very helpful in performing parallel programming tasks to 

achieve concurrency. Applications such as video editing software, web servers, online 

conferencing software, and text editors use multiple threads to do their jobs more 

efficiently. A thread is a small segment in a process, as shown in Figure 2-1.

https://doi.org/10.1007/978-1-4842-6321-1_2#DOI
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Every thread has a program counter and stack space for storing an activity. The usage 

of threads greater benefits than processes. The following are the main advantages of 

using threads.

•	 They are easy to create and handle.

•	 They achieve concurrency in parallel programming.

•	 They reduce context switching time in an operating system.

•	 They can effectively utilize multiprocessor architecture.

Figure 2-1.  Multithreaded process
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•	 Thread communication is much faster than process communication 

because threads share common address space.

•	 They increase the overall performance of a system.

�Thread Classification
Threads are classified into two types: user-level threads and kernel-level threads.

�User-Level Threads
The user creates user-level threads with thread libraries rather than system calls. These 

threads are independent of the kernel. The user does thread management according 

to his needs and requirements. For example, creating a thread is done by the user. The 

thread library performs thread management in the user space. It doesn’t depend on the 

operating system’s system calls.

The creation of user-level threads is much faster than kernel-level threads. User-level 

threads don’t depend on hardware utility. Context switching is easier with user-level 

threads because it is done in the user space with a thread library. But, when it comes to 

kernel-level threads, context switching is done in a kernel space. In a kernel space, there 

might be a situation where more than one thread is in an active state at a particular time. 

If the multiple threads are in a kernel space, then it takes some extra time for context 

switching.

In general, context switching in user-level threads is faster than in kernel-level 

threads, but this may change based on the situation. User-level threads are represented 

by a program counter. Some good examples of user-level threads are POSIX threads and 

Java threads.
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The following are the advantages of user-level threads.

•	 They are easy to create.

•	 They are platform-independent, which means they can run on any 

operating system.

•	 Kernel-mode privileges are not required for thread switching.

•	 Context switching is very easy for an operating system.

•	 They don’t depend upon the system hardware.

Figure 2-2.  User-level threads working mechanism
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The following are the disadvantages of user-level threads.

•	 Multiprocessing is very difficult because it is independent of the 

kernel. When you want to perform a multiprocessing task in an 

operating system, kernel support is required to execute the task. This 

is impossible with these threads.

•	 They require nonblocking I/O calls; otherwise, the entire process 

may be blocked in the kernel.

�Kernel-Level Threads
Kernel-level threads are created by the operating system directly. The kernel does thread 

management with a thread table that helps the kernel monitor all the activities done by a 

thread in the system. Some good examples of kernel-level threads are Win32 and Solaris.

Figure 2-3.  Kernel-level threads working mechanism
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The following are the advantages of kernel-level threads.

•	 Multiprocessing is done very easily.

•	 They work on the blocking I/O protocol.

The following are the disadvantages of kernel-level threads.

•	 They are slow and inefficient compared to user-level threads.

•	 They are very hard to create and manage.

•	 Multiple switching is required to transfer control from one thread to 

another thread.

�Threads vs. Processes
Even though threads are small segments inside a process, there are differences between 

threads and processes in terms of parameters. A thread can do all the tasks that a process 

can do, but the major difference between these two is that a process is a program or 

software that is executing. Threads are a lightweight segment of a process. A process 

can have multiple child processes. A process and a thread have a similar life cycle that 

consists of five stages.

	 1.	 New

	 2.	 Ready

	 3.	 Wait

	 4.	 Running

	 5.	 Terminated
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The diagram highlights the five stages of the thread and process life cycle. Now let’s 

discuss each stage.

�New State
In the new state, a new process or thread is created and added to the queue. If it is 

a process, it is created by a system call based on user input and then added to the 

queue. Generally, a process is created with fork(). Threads are created based on the 

programmer’s code and added to the queue explicitly. In a new state, the thread or 

process has been created, but it is not running.

Figure 2-4.  Process and thread life cycle
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�Ready State
In the ready state, a process or a thread is ready for execution.

�Wait State
In the wait state, a process or thread has been blocked for some reason and for some 

amount of time. When it resumes, it goes to the ready state; otherwise, the thread/

process is terminated.

�Running State
The running state describes the execution of the process/thread. In this state, if the sleep 

method is called on a thread/process, it goes to the wait state.

�Terminated
When the execution of a process or thread has been completed, it moves to the 

termination state.

The differences between threads and processes are based on certain characteristics, 

as shown in Table 2-1.

Table 2-1.  Relationship Between Threads and Processes

Characteristics Threads Processes

Definition A thread is a lightweight segment that 

is a part of a process.

A process is any program or software that 

is executing.

Creation Time Threads usually take very little time to 

create since they are lightweight.

A process requires more time to create 

because the process is heavier than a 

thread.

Termination 
Time

A thread requires little time to 

terminate because of its simple nature.

A process requires more time to 

terminate because of its complex 

structure.

(continued)
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�Introduction to Multithreading
In your operating system, generally, you can perform multiple tasks at the same 

time. For example, listening to music on iTunes while writing code in a text editor is 

considered multitasking. In multitasking, computer applications execute different tasks 

simultaneously. Multithreading is very similar to multitasking, but the key difference is 

that multitasking works on the process, whereas multithreading works on threads.

�Multitasking Architecture
When the CPU executes multiple tasks with the process by switching between activities 

in a minimal amount of time, multitasking enables users to interact with several 

applications at the same time. In multitasking architecture, the execution of a task is 

done by the processor by sharing memory space and allocation for each task.

Characteristics Threads Processes

Resource 
Usage

A thread needs a minimal number of 

resources to do its task.

A process uses more resources than 

threads.

Memory 
Sharing

Threads share memory with other 

threads based on the task to perform.

All the processes created in an operating 

system are isolated. They don’t 

communicate with any other processes.

Communication Threads can communicate with other 

threads within the same process more 

effectively than a process.

Processes are less efficient than threads.

Context 
Switching

A thread requires less time for 

context switching in an OS. It is less 

expensive.

A process requires more time for context 

switching because of its heaviness. It is 

more expensive in processes.

Management Threads do not depend on any OS 

system calls.

A process depends on system calls.

Table 2-1.  (continued)
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In the architecture shown in Figure 2-5, an operating system is running four different 

applications (i.e., a text editor, iTunes, Google Chrome, and Keynote software). Consider 

a situation where the user is writing code using a text editor while listening to music 

on iTunes. He has a list of features that need to be implemented, which is available in 

a Keynote file, so he opens the Keynote application. In the middle of development, he 

wants to refer to official documentation regarding the application, so he opens Google 

Chrome. Four applications are running parallel on his operating system. This situation is 

called multitasking.

�Multithreading Architecture
In a multithreading architecture, a single process creates multiple threads to execute 

a task. In this architecture, common memory space and allocation is shared by all 

the threads. A multithreading architecture occurs within a process based on multiple 

threads.

Figure 2-5.  Multitasking architecture
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Let’s consider a situation in which a user is writing code in Visual Studio Code (a.k.a. 

VS Code). To develop code in VS Code, the operating system creates a single process for 

that task. A process creates multiple threads to effectively execute a task. A new thread is 

created for each of the following: when you open an integrated terminal in VS Code, when 

you open IntelliSense to write code, and when you format the code. In multithreading, 

some threads communicate with each other based on the situation. So, a thread is created 

to perform a task more effectively and without any lags during its execution.

�Importance of Multithreading
A program executing a task with a single thread is not always effective, especially for 

video editing software, code editors, and so forth. To use powerful applications that 

have many tasks to do simultaneously within an application, then multithreading is very 

helpful.

Figure 2-6.  Multithreading architecture
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High-level programming languages like C, C++, Java, and Python have a single 

thread by default—without creating anything. In the C language, the main function 

creates a single thread in the background by default; it works as a background thread, 

and it does its job as assigned by the compiler. Executing higher-order tasks with a single 

thread is not efficient, which leads to the need for multithreading.

The importance of multithreading in modern application development is due to its 

advantages over a single-threaded architecture. Multithreading architecture has many 

benefits, which are discussed next.

�Efficient Resource Sharing

An application that executes a task may require common resources to share among 

multiple threads. This is done with standard techniques, such as message passing and 

shared memory (which are covered in upcoming chapters), which are very efficient in 

multithreading because of the common memory address space.

�Application Scalability

Multithreading increases the scalability of the application because the application’s 

subactivities are easily performed with multiple threads. For instance, a single-threaded 

application runs only on a single processor regardless of the number of processors. But a 

multithreaded application utilizes the multiple cores that are available in a machine. So, 

a multithreaded application can increase the parallelism in an operating system that has 

multiple core CPUs.

�Responsiveness

Multithreading operations are performed in an application. All the internal threads 

work together to provide efficiency and a good user experience by increasing the 

responsiveness of the application.

�Efficient Memory Utilization

In a multithreading environment, there is no need to create a separate memory for each 

thread. All threads share the same address space, so they use the memory effectively 

without creating new allocation spaces.
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�Efficient CPU Utilization

The creation of multiple threads within a process to execute a single application task 

increases speed and performance. Threads within a process utilize the improved CPU 

resources to perform the assigned task. Because threads use resources that are allocated 

by the process, indirectly, they are using better CPU resources, which results in efficient 

CPU utilization.

�Concurrency
Concurrency is a mechanism that decreases the response time of the system by using a 

single processing unit. In concurrency, a major task is divided into subtasks that execute 

simultaneously but not at the same time. A good example of concurrency is having 

multiple applications, like a Chrome browser, a video editor, and iTunes running at the 

same time in an operating system.

In Figure 2-7, five processes are executing simultaneously but not at the same time. 

You can observe the gap between the process executions. Concurrency creates an 

illusion that all processes are running simultaneously at the same time, but concurrency 

hides the latency time between process executions.

Figure 2-7.  Concurrency mechanism process execution time
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�Parallelism
Parallelism is a mechanism that increases computational speed by using multiple processors. 

In parallelism, tasks execute simultaneously and at the same time. A good example of 

parallelism is running a video editor that has many tasks to perform simultaneously.

In Figure 2-8, all the processes are executing simultaneously and at the same time. 

This simultaneous execution results in an increase in the system’s speed.

�Support of Multithreading in C
The C programming language does not have built-in library support for multithreaded 

programming. Even though C is a general-purpose programming language that is 

widely used in embedded systems, system programming, and so forth, some vendors 

have developed libraries that deal with multithreading to achieve parallelism and 

concurrency.

The library to develop portable multithreaded applications is pthread.h; that is, 

the POSIX thread library. POSIX stands for portable operating system interface. POSIX 

threads are lightweight and designed to be very easy to implement. The pthread.h library 

is an external third-party library that helps you effectively do tasks.

Figure 2-8.  Parallelism mechanism process execution time
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Note  You can develop multithreaded programs with the pthread.h library in all 
Unix-based operating systems but not for Windows. If you want to develop an 
application that works on Windows, the windows.h library is very effective for 
multithreading-supported Windows operating systems.

The following are the functions in the pthread.h library that create, manipulate, and 

exit the threads.

•	 pthread_create

•	 pthread_join

•	 pthread_self

•	 pthread_equal

•	 pthread_exit

•	 pthread_cancel

•	 pthread_detach

�pthread_create
pthread_create creates a new thread with a thread descriptor. A descriptor is an 

information container of the thread state, execution status, the process that it belongs to, 

related threads, stack reference information, and thread-specific resource information 

allocated by the process. This function takes four arguments as parameters. The return 

type of this function is an integer.

The following shows the syntax.

int pthread_create(pthread_t *thread,

                   const pthread_attr_t *attr,

                   void * (*start_routine)(void *),

                   void *arg);
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The following describes the parameters.

•	 pthread_t is a thread descriptor variable that takes the thread 

descriptor, has an argument, and returns the thread ID, which is an 

unsigned long integer.

•	 pthread_attr_t is an argument that determines all the properties 

assigned to a thread. If it is a normal default thread, then you set the 

attribute value to NULL; otherwise, the argument is changed based 

on the programmer’s requirements.

•	 start_routine is an argument that points to the subroutines that 

execute by thread. The return type for this parameter is an void type 

because it typecasts return types explicitly. This argument takes a 

single value as a parameter. If you want to pass multiple arguments, a 

heterogeneous datatype should be passed that might be a struct.

•	 args is a parameter that depends on the previous parameter; it takes 

multiple parameters as an argument.

�pthread_join
This function waits for the termination of another thread. It takes two parameters as 

arguments and returns the integer type. It returns 0 on successful termination and –1 if 

any failure occurs.

The following shows the syntax.

int pthread_join(pthread_t, *thread,

                 void **thread_return)

The following describes the parameters.

•	 thread takes the ID of the thread that is currently waiting for 

termination

•	 thread_return is an argument that points to the exit status of the 

termination thread, which is a NULL value.
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�pthread_self
This function returns the thread ID of the currently running thread. The return type of 

this thread is an integer or the thread_t descriptor. It takes zero parameters as arguments.

The following shows the syntax.

pthread_t pthread_self()

or

int pthread_self()

�pthread_equal
This function checks whether two threads are equal or not. If the two threads are equal, 

then the function returns a nonzero value. If the threads are not equal, then it is zero. It 

takes two parameters as arguments and returns the integer as output.

The following shows the syntax.

int pthread_equal(pthread_t thread1,

                  pthread_t thread2);

The following describes the parameters.

thread1 and thread2 are the IDs for the first and second thread, 

respectively.

�pthread_exit
This function terminates a calling thread. It takes one argument as a parameter and 

returns nothing.

The following shows the syntax.

void pthread_exit(void *retval);

The following describes the parameters.

retval is the return value of a thread that you want to detach it.
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�pthread_cancel
This function is used for thread cancellation. It takes one parameter as an argument and 

returns an integer value.

The following shows the syntax.

int pthread_cancel(pthread_t thread);

The following describes the parameter.

pthread is the thread ID of the thread that you want to cancel.

�pthread_detach
This function detaches a thread in a detached state. It takes a thread descriptor as an 

argument and returns the integer value as output.

The following shows the syntax.

int pthread_detach(pthread_t thread);

The following describes the parameter.

thread is a descriptor variable that is passed as an ID, which you 

want to detach it.

These functions are the most common functions in multithreading operations.

�Creating Threads
As discussed earlier, the pthread_create function creates threads. This section deals 

with thread creation and how to execute multithreaded programs. It examines the weird 

behavior of multithreaded programs and how to overcome ambiguous output during the 

development process. A simple multithreaded program can be created in simple three steps.

	 1.	 Import the required libraries. Our program includes the headers 

that are necessary for the operation.

#include<stdio.h>   // Standard I/O Routines Library

#include<unistd.h>  // Unix Standard Library

#include<pthread.h> // POSIX Thread Creation Library
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	 2.	 Develop the thread function to make it multithreaded. The thread 

function must have a return type as a pointer.

void *customThreadFunction(){

   for(int i = 0; i < 15; i++){

       �printf("I am a Custom Thread Function Created By 

Programmer.\n");

       sleep(1);

   }

   return NULL;

}

In this custom thread function, a for loop is written, which iterates 15 times 

[0–14] and prints the statement using the printf function. It sleeps for one 

second after the iteration of every print statement. sleep() is available in the 

unistd.h library.

	 3.	 In this step, the main function comes into the picture. In the 

main function, you need to create a thread descriptor variable 

and method. The following program tells you whether a thread is 

created successfully or not. The pthread_create function returns 

the status codes 0 and 1 for success or failure. If the thread is 

successful, the thread function executes; otherwise, you exit out of 

the program.

In the pthread_create function, the first argument is the address 

of the thread descriptor variable. Since this deals with the custom 

default threads, don’t bother with the second argument; take it as 

a NULL value. The third value is a custom thread function that is 

executed in the thread. The last argument is also NULL because, 

in this custom thread function, there aren’t any arguments to pass.

int main(){

       pthread_t thread;   // Thread Descriptor
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       int status;         // �Status Variable to store the Status of the 

thread.

       status = pthread_create(&thread, NULL, customThreadFunction, NULL);

       /*  status = 0 ==> If thread is created Sucessfully.

           status = 1 ==> If thread is unable to create.   */

       if(!status){

           printf("Custom Created Successfully.\n");

       }else{

           printf("Unable to create the Custom Thread.\n");

           return 0;

       }

       // Main Function For loop

       for(int i = 0; i < 15; i++){

           �printf("I am the process thread created by compiler By 

default.\n");

           sleep(1);

       }

       return 0;

    }

After the compilation is done, run the ./a.out command, which gives the output for 

your program.
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The output of my program may differ from yours. This is the ambiguity that is hidden 

inside multithreaded programs.

Next, let’s learn how to overcome this ambiguity by using different functions in our 

program.

Figure 2-9.  The output of the thread creation program
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�Practical Examples of Multithreading
�Thread Termination
Termination of a thread is mandatory in certain situations. In our program, let’s 

terminate the thread after the three iterations. It is done using the pthread_exit function, 

which takes a single argument. Let’s pass that argument as NULL since this deals with 

the default threads. You can see the difference in the thread termination in the output.

#include<stdio.h>   // Standard I/O Routines Library
#include<unistd.h>  // Unix Standard Library
#include<pthread.h> // POSIX Thread Creation Library

void *customThreadFunction(){

   for(int i = 0; i < 5; i++){
       printf("I am a Custom Thread Function Created By Programmer.\n");
       sleep(1);
       if(i == 3){
           �printf("My JOB is Done. I am now being terminated by 

programmer.\n");
           pthread_exit(NULL);
       }
   }

   return NULL;
}

int main(){

   pthread_t thread;   // Thread Descriptor
   pthread_create(&thread, NULL, customThreadFunction, NULL);

   for(int i = 0; i < 5; i++){
       printf("I am the process thread created by compiler By default.\n");
       sleep(1);
   }

   return 0;

}
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The output of the program is shown in Figure 2-10.

�Thread Equal Property
If you want to check whether two threads are equal or not, use the thread_equal 

function, which checks the equality condition.

#include<stdio.h>   // Standard I/O Routines Library

#include<unistd.h>  // Unix Standard Library

#include<pthread.h> // POSIX Thread Creation Library

void *customThreadFunction(){

   printf("This is my custom thread\n");

   return NULL;

}

int main(){

   pthread_t thread1, thread2;

   pthread_create(&thread1, NULL, customThreadFunction, NULL);

   pthread_create(&thread2, NULL, customThreadFunction, NULL);

   if(pthread_equal(thread1, thread2)){

       printf("Two threads are Equal..!\n");

   }else{

       printf("Two threads are not equal\n");

Figure 2-10.  The output of the thread termination program
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   }

   return 0;

}

The output is shown in Figure 2-11.

�Passing a Single Argument to a Thread Function
Passing arguments to the thread function is done with a few changes to the pthread_

create function arguments, as shown in the following code.

#include <stdio.h>

#include <pthread.h>

void *sayGreetings(void *input) {

   printf("Hello %s\n", (char *)input);

   pthread_exit(NULL);

}

int main() {

   char name[50];

   printf("Enter your name: \n");

   fgets(name,50, stdin);

   pthread_t thread;

   pthread_create(&thread, NULL, sayGreetings, name);

   pthread_join(thread, NULL);

   return 0;

}

Figure 2-11.  The output of the thread equal program
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The pthread_create function takes four arguments as parameters. In general, if a 

custom thread does not take any arguments, then you should pass fourth parameter as  

a NULL value. If your custom thread function requires a single parameter as an 

argument, then you pass that variable to the fourth variable. Passing multiple arguments 

is discussed in the next example.

Figure 2-12 shows the output.

�Passing Multiple Arguments as Parameters
If you want to pass multiple arguments for a custom thread function, then you use 

heterogeneous data types (i.e., structures that collect all your required data into one 

variable, which pass as a fourth argument in the pthread_create function).

#include <stdio.h>

#include<stdlib.h>

#include <pthread.h>

// Data Collector.

struct arguments {

   char* name;

   int age;

   char *bloodGroup;

};

// Thread Function

void *sayGreetings(void *data) {

   printf("Name: %s", ((struct arguments*)data)->name);

   printf("Age: %d\n", ((struct arguments*)data)->age);

   printf("Blood Group: %s\n", ((struct arguments*)data)->bloodGroup);

   return NULL;

}

Figure 2-12.  Thread argument program output
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int main() {

   �struct arguments *person = (struct arguments *)malloc(sizeof(struct 

arguments));

   printf("This is a Simple Data Collection Application\n");

   char bloodGroup[5], name[50];

   int age;

   printf("Enter the name of the person: ");

   fgets(name, 50, stdin);

   printf("Enter the age of the person: ");

   scanf("%d",&age);

   printf("Enter the person's Blood Group: ");

   scanf("%s", bloodGroup);

   person->name = name;

   person->age = age;

   person->bloodGroup = bloodGroup;

   pthread_t thread;

   pthread_create(&thread, NULL, sayGreetings, (void *)person);

   pthread_join(thread, NULL);

   return 0;

}

This example creates a pointer that points to a struct, which is cast to a void pointer 

as (void *) and passes to the pthread_thread function.

Figure 2-13 shows the output.

Figure 2-13.  Thread multiple argument output
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�The Relationship Between Threads and the CPU
Table 2-2 defines the relationship between threads and the CPU.

Table 2-2.  Relationship Between Thread and CPU

Parameters Thread CPU

Definition A thread is a small segment 

in a process. It is a virtual 

component that manages tasks 

in an operating system.

The CPU is a hardware component that contains 

multiple cores. A core is a single computing 

component that helps the CPU execute and read 

program instructions. The number of cores is directly 

proportional to the processing speed.

Work The process assigns a thread’s 

work.

The tasks are assigned by the threads to process.

Task The task of the threads is to 

achieve concurrency.

The task of the CPU is to multitask and 

multiprogram.

Dependent It is dependent on the CPU. It is dependent on the core (i.e., internal component).

Processing 
Units

It requires multiple processing 

units.

It requires a single processing unit.

Benefits Threads improve the 

throughput and computation 

speed.

It performs arithmetical and logical operations in a 

system.

Example Running a visual code editor 

application is a multithreaded-

based process

Running multiple applications, like a browser, code 

editor, and iTunes, at the same time.

�Multithreading Use Cases
There are a lot of practical use cases that implement multithreading. All the topics in this 

chapter used socket programming, which is discussed in Chapter 8. But briefly, in socket 

programming, multithreading is helpful for listening to requests from various clients. 

This section looks at things that use multithreading. Here are some of the applications 

that use it.
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•	 Web crawler applications

•	 Online booking applications, which runs on PHP or Java

•	 3D games

•	 Integrated development environments

•	 Video editing software

•	 Text editors

•	 Word processors

And the list goes on, but here are a few types of applications that internally use 

multithreading. There are certain issues that programmers face during the usage of 

multithreading, but handling these issues is done with synchronization. All these topics 

are covered in the upcoming chapters.

�Summary
In this chapter, you were introduced to threads on an operating system. The chapter also 

discussed the following.

•	 The life cycle of a process and thread

•	 The importance of multithreading and its support in C

•	 Creating a thread in C and examples in the pthread.h library

•	 The differences between a CPU and threads

•	 Multithreading use cases
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CHAPTER 3

Introduction to POSIX 
Standards and System-
Level APIs
POSIX standards help maintain compatibility between operating systems. System-level 

APIs help to efficiently develop applications very within a short development period. In 

this chapter, you learn about the following introductory topics.

•	 The POSIX standard

•	 POSIX support

•	 Introduction to APIs

•	 Importance of APIs

•	 Built-in C Standard APIs

�Understanding POSIX Standards
POSIX is the acronym for Portable Operating System Interface on Unix-based operating 

systems. They are IEEE standards to formalize certain common standards in all 

operating systems in the enterprise market.
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In the olden days, programmers struggled to develop an application for computer 

systems. Before POSIX standards, there were no common standards for developing a 

computer operating system model, so developers needed to develop their applications 

for every model—from scratch—to be compatible with all systems. This increased 

development time and the cost of an application. Debugging was also very difficult 

because of new bugs and issues in every new computer model, which caused a lot of 

problems for developers.

To avoid these issues, IEEE introduced standard rules to practice when developing 

new computer models. These standards helped develop all kinds of applications. 

Developers no longer need to develop new code for new system models. These standard 

rules are classified into four main categories.

•	 POSIX.1

•	 POSIX.1b

•	 POSIX.1c

•	 POSIX.2

�POSIX.1 Standards
POSIX.1 standards deal with the core services of all operating system models. The 

following are features included in this standard.

•	 Process creation and control

•	 Process triggers

•	 Files and directory operations

•	 Segmentation faults

•	 Memory faults

•	 Floating-point exceptions

•	 Pipes

•	 Signals

•	 Standard C library implementation

•	 Standard I/O interface and control
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These are some of the core features that the IEEE addressed to improve the interface 
of all operating systems.

�POSIX.1b Standards
Along with the POSIX.1 standards, there are additional core features specifically related 
to real-time application development. These POSIX.1b rules include the following 
topics.

•	 CPU scheduling algorithms

•	 Message passing

•	 Shared memory

•	 Semaphore

•	 Memory-locking interfaces

•	 Synchronous and asynchronous data transfer interfaces

All the core features are covered in upcoming chapters.

�POSIX.1c Standards
This standard category includes core features related to multithreading.

•	 Thread creation

•	 Thread control

•	 Thread deletion

•	 Thread synchronization

•	 Thread scheduling

�POSIX.2 Standards
POSIX.2 standards address the core functionality features of an operating system.

•	 uname

•	 tty

•	 cd

•	 ls
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•	 mkdir

•	 echo

•	 cp

•	 rm

•	 mv

This standard list includes all common utilities and the tools that are commonly 

used by the users.

�POSIX Support
All OS models do not use POSIX standards. macOS uses the complete POSIX standards 

for its operating system, but most Linux distros use the Linux Standard Base (LSB), 

which includes more powerful features than POSIX. It is a superset of POSIX standards 

but also independent of POSIX standards. The Windows 10 operating system uses POSIX 

as a subsystem with the same standard features.

�Introduction to APIs
API stands for application programming interface. It is a collection of protocols and 

subroutines that communicate between various systems and subsystems. APIs make 

developers’ lives a lot easier. There are several types of APIs.

•	 Public API or open API

•	 Private API

•	 Partner API

•	 Composite API

All the APIs are normal web services standard APIs, but this book concentrates on 

system-level APIs. System-level APIs are normal programs written by developers to 

improve the core functionality of a programming language. A system-level API has two 

different modes: user mode and supervisor mode (see Figure 3-1).
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�User Mode
In user mode, developers typically develop programs to incorporate or manipulate 

custom activities in the system. The activities performed at the user level is done with 

the help of System-level API. The activities include file creation, directory creation, and 

similar basic activities.

�Supervisor Mode
In supervisor mode, system calls perform the actions written by the developers. These 

built-in functions and libraries are very helpful when it comes to performing system-

level tasks. The system call in supervisor mode executes the calls that are made from the 

user mode. Programs are written to perform some action(s).

Figure 3-1.  Working API
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�The Importance of System-Level APIs
Built-in system APIs improve the performance of the developed system. There is no 

need to write the code from scratch. Built-in functions and libraries are not required 

to perform testing because there are tested rigorously before release. The following are 

some of the benefits of using these functions.

•	 Performance: These libraries are under active development, and 

developers continuously try to improve the performance of existing 

functions. Also, they use standard algorithms, such as standard 

sorting and searching algorithms, to get the best performance.

•	 Reliable code: There are fewer errors because most of the activities 

are done with built-in functions, and because the libraries are under 

active development.

•	 Reduces development time: Most of the code is written by 

developers to perform a particular activity, which reduces 

development time because there is no need to write code from 

scratch.

•	 System-independent: C-program compiled binaries are system-

dependent, but these built-in libraries are system-independent, 

which means that they don’t depend on the system. All the built-in 

functions work the same on all operating systems.

�Built-in APIs in C
Standard libraries are used in the rest of this book. To perform certain system core 

activities with a specific programming language, you need to check whether the 

language has a standard library that allows you to interact with your OS or not. Luckily, 

the C language provides support for a system’s core functionality. Table 3-1 lists the most 

commonly used libraries.
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�Summary
This chapter discussed topics related to the POSIX environment and the various C built-

in libraries. You were also introduced to system-level APIs.

Table 3-1.  Most Common Libraries

Library Functionality

<stdio.h> This library contains all the standard input and output operation functions: 10 

macros and 41 functions. The most popular functions are printf and scanf.

<stdlib.h> This is a standard library in C that is mainly used for general-purpose 

programming. It contains the memory allocation and deallocation functions that 

perform dynamic activities.

<unistd.h> This library provides the standard interface for the POSIX API.

<sys/types.h> This library contains standard derived data types, which are helpful in system-

level programming.

<signal.h> This library handles the signal activities in an operating system.

<time.h> This library provides support for time and date activities in a standard manner.

<sys/stat.h> This library determines the file system status and activity.

<fcntl.h> This library is a part of the POSIX API that manipulates files, such as changing 

permissions.

<sys/ipc.h> This library deals with three major core tasks that include interprocess 

communication activity (i.e., message queues, semaphores, and shared memory).

<sys/msg.h> This library works with the <sys/ipc.h> library to deal with IPC activity.

<semaphore.h> This library performs the semaphore activity in an operating system. It is also a 

part of the POSIX library.

<sys/shm.h> This library performs shared memory activities.

<sys/wait.h> This library places a process into a waiting state.

<stdargs.h> This library handles the variable argument activity that takes input directly from 

the command-line.
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CHAPTER 4

Files and Directories
You have learned about command-line topics in Linux. You were introduced to 

multithreading and the practical implementation of multithreading in C. You saw 

API support in C to develop efficient applications. This chapter discusses files and 

directories. By the end of this chapter, you should have a deep knowledge of the core 

concepts regarding Linux files, directories, and storage mechanisms. The chapter’s code 

examples and discussions cover the following topics.

•	 File system

•	 Inodes and file metadata

•	 Inode storage mechanisms

•	 System calls and I/O operations for files

•	 Systems calls for file permissions

•	 File permission checks

•	 Soft links

•	 Hard links

•	 System calls for directories

�File Systems
Storage is one of the most essential components of an OS. The storage system must 

have a well-organized structure, and it must be easy to access the content. In Linux/

Unix-based systems, everything is a file, which maintains the consistency that makes the 

files easy to access. The file system in Unix is groups files into folders based on purpose 

and use in a well-organized way. For most beginners, this seems intimidating. But once 

you understand the purpose of each directory that is part of the Unix file system, then it 

becomes easy to use and work with it.

https://doi.org/10.1007/978-1-4842-6321-1_4#DOI


74

The Unix file system looks like a tree structure. It consists of several directories, 

and each directory consists of several specific files and subdirectories. In Unix, all 

the directories are in the root directory (/). The entire Unix file system structure is 

represented in Figure 4-1.

•	 / (the root directory)

•	 This directory is called the root directory.

•	 All the files and directories in your Linux or Unix system are 

grouped into this root directory.

•	 In this directory, only root users have permission to write.

•	 /bin (binaries)

•	 This directory contains all the essential binaries in the operating 

system.

•	 The most frequently used Linux commands in a single-user mode 

are located in this directory.

•	 Examples of available commands are cd, mkdir, ls, mv, and cp.

•	 Shells like bash, ksh, csh, zsh are located in this directory only. 

(i.e., (/bin/bash, /bin/sh, etc.).

•	 /sbin (system binaries)

•	 This directory is similar to the /bin directory, but it contains the 

system administration binaries, which are executed by the root user.

Figure 4-1.  Linux file structure
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•	 The commands and programs available in this directory are only 

executed by the superuser.

•	 The most common programs available in /sbin are ifconfig, 

iptables, and reboot.

•	 /boot (boot files)

•	 This directory contains all boot loader–related files, which are 

very important for booting an operating system.

•	 All the files in this directory are static boot files. This directory 

does not contain any boot configuration files.

•	 An example of a boot loader file is a GRUB loader file, which 

boots an operating system when you power-on your laptop or 

desktop.

•	 /opt (optional packages)

•	 This directory consists of all the files that are not part of the 

default installation.

•	 Third-party software installed on your system that did not come 

as a default installation on Unix/Linux. Proprietary software 

installation files are placed in this directory.

•	 Examples of software installed on Unix/Linux from third-party 

sources include Apache server and Apache Tomcat server.

•	 /dev (device files)

•	 The files in this directory represent the hardware device files.

•	 As with everything in Linux, devices are represented by a 

directory or a file; so, all device-supported files for the system are 

placed here.

•	 This directory consists of special device files that come with the 

installation of the operating system. They help the operating 

system to support all types of devices detected while running the 

operating system.
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•	 /home (home directory)

•	 This is the home directory, which contains each user’s files.

•	 This directory consists of the user’s personal data and 

configuration files. The configuration files in this directory vary 

from user to user.

•	 If your system user name is Alex, then you have a home folder 

located at /home/Alex. The number of user accounts on your 

system equals the number of subdirectories present.

•	 /media (removable media)

•	 This directory consists of all the removable device directories.

•	 When an external removable device is mounted in a Linux 

system, then automatically, a new directory is created under this 

directory.

•	 When a USB is inserted to a laptop/PC that is running on a Linux/

Unix-based operating system, then the /media directory creates 

a directory for the removable USB. This directory contains all 

the removable media files that are automatically created by the 

operating system.

•	 /mnt (mount directory)

•	 This directory consists of all the mounted files in a system.

•	 Suppose that your PC is dual booted (dual boot means you 

can have two operating systems on one PC). The number is 

not restricted. You can have any number, but hard disk space 

is limited. In a dual boot PC, all the other operating system 

mounted files are placed in this directory.

•	 System administrators use this directory to unmount a mounted 

file system. Normal users can’t mount a filesystem without root 

privileges.

•	 /etc (configuration files)

•	 This directory consists of all the configuration files that are used 

by all the programs in a Linux operating system.
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•	 System-level configuration files are placed in this directory. The 

user-level configuration files are placed in the user-level home 

directory.

•	 Startup and shutdown scripts are located in this directory.

•	 You can configure it with editors for your own use; for instance, 

the configuration of a LAMP server.

•	 /lib (system libraries)

•	 This directory contains the essential libraries needed by the 

binaries that are in the /bin and /sbin directories.

•	 /usr (user programs and data)

•	 This directory contains all the binary files and applications that 

are used by the user.

•	 /usr/lib contains the binaries for /bin and /sbin.

•	 Applications installed from the source are placed in the /usr/local 

directory.

•	 /usr/sbin contains the binary files for system administrators. If 

you are unable to find the required files in this directory, go to the 

root level /sbin directory.

•	 This directory contains the source code for second-level 

programs, which do not come from the default installation.

•	 All the files in this folder have read-only access because they are 

system-related binary files.

•	 /root (root home directory)

•	 This is the home directory for the root user; it is not a system root 

directory.

•	 Most people confuse / and /root. The major difference is that / 

is a system-level root directory. And /root is the user-level root 

directory.
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•	 /var (variable data files)

•	 This directory consists of all the user data files in a system. This 

data refers to the system data.

•	 This directory contains log files under /var/log; packages and 

database files under /var/lib; and temporary files under /var/tmp.

•	 /srv (service data files)

All the internal operating system service data files are located in 

this directory; for instance, files that are related to local servers are 

found under this directory.

•	 /tmp (temporary files)

•	 All the temporary files created by the system or user are placed in 

this directory. If the user has root privileges, then he/she can put 

the temporary files in any location, but /tmp is the recommended 

and system-assigned one.

•	 All the system-level temporary files are stored in this directory.

•	 The files in this directory are deleted when the system is 

rebooted. The deletion of temporary files is dependent on the 

Linux distribution, however, because some Linux distros do not 

delete the temporary files in the system after every reboot.

•	 Users can manually delete the files in the tmp directory.

It seems a bit hard to remember everything, but once you start using these 

directories, it becomes easier. Each directory stores specific programs and utility 

applications. Unlike Windows, Unix-based systems don’t have drive letters, like C: drive 

and D: drive. You can create partitions in Linux, but all the partitioned disk space is 

packed into a tree-like structure that has a root (/) directory.

�File Metadata and Inodes
Everything is a file descriptor in Linux. A file descriptor is a number that uniquely 

identifies a file that is open on an operating system. The file descriptor contains 

information about the opened file. Every file has certain key attributes to identify its 

properties. Regular files include images, audio, video, and other raw files that usually 

have metadata associated with them. All the file attributes are stores in an inode.
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An inode is a data structure that tracks all the information about a file. An inode 

plays a very crucial role in Unix-based operating systems. When a user wants to access 

a file, the operating system first searches for the inode number in an associated inode 

table. The storage of inode numbers in an operating system and finding a particular file 

using the path is explained in Figure 4-3. Every inode has a unique number. An inode 

number is the index number that is associated with each inode. OS searches for an inode 

number come from an inode table. The Unix storage system is a bit different from the 

Windows storage system, but it is more efficient. The structure of an inode is represented 

in Figure 4-2.

•	 Size stores the file size.

•	 Mode stores information on the file’s permissions and the type (i.e., 

directory, file, device directory, etc.).

Figure 4-2.  Inode structure
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•	 Owner information points to the person who created the file.

•	 Permissions contain all the permissions levels for a file (i.e., user, 

group, other users).

•	 Location describes the exact location of the file on the operating 

system.

•	 UID is short for user ID. It stores the user ID of the currently working 

user and represents the owner of the file.

•	 GID stands for group ID. It stores the group ID of the file that belongs 

to and represents the group owner.

•	 Timestamp stores the inode creation time and when the file was 

modified.

•	 Access control contains information on the special privileges given 

to groups and other users (the outside real-world users).

•	 Direct block

•	 Linux usually follows the file system ext2, et3, et4; but for now, 

we discuss the ext2 file system, which is popular. In the ext2 file 

system, an inode consists of 12 direct block pointers.

•	 The first 12 block pointers are direct.

•	 The direct block directly points to the file data, as shown in 

Figure 4-2.

•	 In the direct block system, 12 blocks are reserved for storing the 

file pointer’s address and directly pointing to the data/file.

•	 Each direct block points to a file that is 4 KB. In total, direct blocks 

can store 48 KB.

•	 Direct block storage is very limited (i.e., 48 KB). It can’t point to 

large data files or directories. Indirect blocks overcome this issue.

•	 Indirect block

•	 It points to the files or directories that are greater than 4 KB and 

less than or equal to 4 MB.
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•	 It is more advanced than the direct block method. It creates 1024 

different blocks internally. Each block stores 4 KB of data, which 

is very small. Data pointers point to the 1024 blocks. Since each 

block stores 4 KB of data, this results in a total 4 MB of data. This 

is called the indirect block mechanism.

•	 The Unix/Linux system is intelligent at detecting and effectively 

monitoring data. If the size of a file/directory is more than 4 MB, 

it automatically moves to the double indirect block method.

•	 Data pointers internally point to the 1024 block pointers that 

store the file data.

•	 Double indirect block

•	 It creates 1024 different blocks to point the data. Each block 

can store 4 MB of data. Internally, it points to the indirect block 

address, which can point up to 4 MB.

•	 It can point up to 4 GB of data. If the file or directory is greater 

than 4 GB, it automatically transfers the pointer data to the triple 

indirect block.

•	 It internally points to 1024 indirect block pointers.

•	 Triple indirect block

•	 It creates 1024 different blocks to point the data. Each block can 

store 4 GB of data. Internally, it points to the double indirect 

block address, which can point up to 4 GB.

•	 It can point to as much as 4 TB of data. It internally points to the 

1024 double indirect block pointers.

Figure 4-3.  Structure of inode for file storage mechanism in Linux
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Figure 4-3 shows an inode pointing mechanism structure that represents accessing a 

file named script.ts on the operating system. Suppose that a user wants to access a file on 

the operating system at /root/Desktop/WebDev/script.ts.

Initially, the root directory has a specific inode number that points to the root 

number. It consists of several files and folders. In our situation, the root directory has 

home, desktop, documents, and downloads directories. The desktop directory has an 

inode number that consists of several lists of files and folders (i.e., Python, Web Dev, 

Courses directories, and a helloworld.c program file).

Each directory and program file has its own inode number. When I navigate to the 

Web Dev directory, it has a separate inode number that points to another set of files and 

directories (that include index.html, style.css, script.js, script.ts), which have different 

inode numbers. The searched file is available in the Web Dev directory. If the given file 

name is not available in the specified location, an error is immediately thrown. All the 

inode numbers are internally connected to provide better and faster access to files and 

directories.

When you enter a directory and input the ls command in the command line, all 

the files and directories in that directory are displayed based on the inode number. This 

happens because of all the inode numbers of files and directories in that directory point 

to an array of inode numbers that point to the parent directory. This is represented in 

Figure 4-3; for example, the desktop inode is pointing to six different inode numbers. 

Those are the files and directories in the desktop directory.

�System Calls and I/O Operations for Files
The most common operations that you can perform on files are read, write, delete, 

and modify the content. This section explains dealing with file manipulation 

programmatically. Our program uses core system calls to manipulate the tasks. To get 

more information on a system call, you can use the man command. For example, man 

creat gives complete information on the creat system call (see Figure 4-4).
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These system calls set an error number if they fail to perform the operation. The 

error numbers analyze why the system call is unable to perform a particular activity and 

may quickly debug the application.

To get the error code for your application, you need to use the error function 

explicitly to print the message to the console. Table 4-1 describes some of the most 

useful error codes.

Figure 4-4.  Man command information on creat system call

Table 4-1.  Useful Error Codes

Error Number Error Code Description

1 EPERM Operation Not Permitted

2 ENOENT No Such File Or Directory

3 ESRCH No Such Process

4 EINTR System Call Interrupted

5 EIO I/O Error

6 ENXIO No such device or address

(continued)
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Table 4-1.  (continued)

Error Number Error Code Description

8 ENOEXEC Exec Format Error

9 EBADF Bad File Number

10 ECHILD No child processes available

11 EAGAIN Try again

12 ENOMEM Out of Memory

13 EACCES Permission Denied

14 EFAULT Bad Address

16 EBUSY Device or Resource Busy

17 EEXIST File Exist

20 ENOTDIR Not a Directory

21 EISDIR Is a Directory

22 EINVAL Invalid Argument

23 ENFILE File Table Overflow

24 EMFILE Too many open files

27 EFBIG File too large

28 ENOSPACE No Space Available on device

29 ESPIPE Illegal Seek

30 EROFS Read-Only File System

32 EPIPE Broken Pipe

33 EDOM Math argument out of the domain

34 ERANGE Math results not representable

39 ENOTEMPTY Directory Not Empty

40 ELOOP Too many symbolic links occurred

62 ETIME Timer Expired

64 ENONET The machine is not available in the network

(continued)
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The following are the system calls that are available for file operations.

•	 creat

•	 open

•	 close

•	 read

•	 write

�creat
This system call creates a new empty file with a system call. It is available in the fcntl.h 

library, which is a file handling library for Unix and Linux. The return type for this 

function is an integer. If file creation is successful, it returns a non-negative integer. If the 

creation of the file fails, it returns –1.

The following shows the syntax.

int creat(char *filename, mode_t mode);

•	 The first parameter in the creat function is the name of a file.

•	 The second parameter, mode, deals with the permissions of the file. 

The permission modes are different from normal Linux file system 

permissions. There are various modes available for this flag, but the 

following are the most common modes.

•	 O_RDONLY: If you set this flag mode to the creat function, the 

file has read-only permission.

Table 4-1.  (continued)

Error Number Error Code Description

65 ENOPKG Package is not available

71 EPROTO Protocol Error

86 ESTRPIPE Stream Pipe Error

87 EUSERS Too many users

91 EPROTOTYPE Protocol error for socket
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•	 O_WRONLY: This mode gives write permissions.

•	 O_RDWR: This mode gives both read and write permissions.

•	 O_EXCL: This flag mode prevents the creation of a file if it already 

exists.

•	 O_APPEND: This mode appends the content to existing file data 

without overriding it.

•	 O_CREAT: This flag mode creates a file if it does not exist.

If you want to use multiple modes at the same time, you can use the bitwise OR 

operator.

Here’s an example.

#include<stdio.h>

#include<fcntl.h>

int main(){

   int file_descriptor;

   char filename[255];

   printf("Enter the filename: ");

   scanf("%s", filename);

   // Setting Permission to Read and Write Access for the file.

   file_descriptor = creat(filename, O_RDWR | O_CREAT);

   if(file_descriptor != -1){

       printf("File Created Successfully!");

   }else{

       printf("Unable to Create the File.");

   }

   return 0;

}

A file descriptor is an integer value that identifies the open file in a process. This 

program creates a new file with the given permissions set.
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�open
The open system call function opens a file and can perform read and write operations 

based on the mode set to the function. An open system call can also create a file. If the 

specified filename is not available, then it automatically creates a new file with the given 

name. The return type of this function is an integer. If the file opens successfully, it 

returns a positive integer value; otherwise, it returns –1.

The following shows the syntax.

int open(const char *filepath, int flags, ...);

•	 The first parameter deals with the absolute path of a file that you 

want to open.

•	 The flags that are passed as a second argument are O_RDONLY, O_

WRONLY, O_RDWR, and so forth.

Here’s an example.

#include<stdio.h>

#include<fcntl.h>

int main(){

   int file_descriptor;

   char filename[255];

   printf("Enter the filename: ");

   scanf("%s", filename);

   // Setting Permission to Read Only for the file.

   file_descriptor = open(filename, O_RDONLY);

   /*

   On Success: It returns any value other than -1.

  */

   if(file_descriptor != -1){

       printf("%s Opened Successfully!",filename);

   }else{
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       printf("Unable to Open %s",filename);
   }

   return 0;
}

This program prints a statement on whether the given file is open or not.

�close
This system call closes the file descriptor that was created to open, create, or read the 

contents in a file. The return type of this function is an integer. If the file descriptor is 

closed successfully, it returns 0; otherwise, it returns –1.

The following shows the syntax.

int close(int file_descriptor);

file_descriptor is an integer value that identifies the open file in a process.

Here’s an example.

#include<stdio.h>
#include<fcntl.h>

int close(int file_descriptor);

int main(){

   int file_descriptor;
   char filename[255];

   printf("Enter the filename: ");
   scanf("%s", filename);
   // Setting Permission to Read Write for the file.
   file_descriptor = open(filename, O_RDWR, 0);

   if(file_descriptor != -1){
       printf("File Opened Successfully!\n");
   }else{
       printf("Unable to Open the File.\n");

   }
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   int close_status = close(file_descriptor);

   // Checks the condition and prints the appropriate statement.

   /*

    Success: 0

    Error: -1

    */

   if(close_status == 0){

       printf("File Descriptor is closed Successfully\n");

   }else{

       printf("File Descriptor is not closed\n");

   }

   return 0;

}

This program opens a file and closes the file descriptor after the task is done. After 

the file descriptor is opened and work is done, it is a good programming practice to close 

the descriptor.

�read
This function system call reads the content of a file that was indicated by a file descriptor. 

The return type of this function is an integer. It returns –1 if an error occurs or when any 

signal interrupt occurs during a read operation. A successful read of a file returns the 

number of bytes read during the operation.

The following shows the syntax.

size_t read (int file_descriptor,

             void* buffer,

             size_t size);

•	 file_descriptor is a unique integer value that identifies the open 

file in a process.

•	 The buffer argument reads the file data.

•	 size is the third argument indicates the size of the buffer that you 

want to read from the file.
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Here’s an example.

#include<stdio.h>

#include<stdlib.h>

#include<unistd.h>

#include <fcntl.h>

int main() {

  int file_descriptor, size;

 char filename[255];

 char *content = (char *) calloc(100, sizeof(char));

 printf("Enter the filename to read:");

 scanf("%[^\n]%*c",filename);

 file_descriptor = open(filename, O_RDONLY);

 // Program exit if the given file is not found.

 if (file_descriptor == -1) {

      perror("File Not found.");

      exit(1);

   }

 // read the Content from a given file descriptor.

 size = read(file_descriptor, content, 100);

 printf("Number of bytes returned are: %d\n", size);

 content[99] = '\0';

 printf("File Content: %s\n", content);

 // Closes the file descriptor.

 close(file_descriptor);

 return 0;

}

This program prints the number of bytes that were read and then prints the content.
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�write
This function writes content to a given file descriptor. The return type of this file is an 

integer. It returns –1 for an error or if any signal interrupt is raised; otherwise, it returns 

the number of bytes that are returned to a file.

The following shows the syntax.

size_t write (int file_descriptor,

              void* buffer,

              size_t size);

This function syntax is the same as the read function. But the key difference is that it 

writes the content to a file using the buffer. The read function reads the content from a 

file using a buffer.

Here’s an example.

#include<stdio.h>

#include<unistd.h>

#include<stdlib.h>

#include<string.h>

#include <fcntl.h>

int main() {

  char filename[255];

 // Asking the Input from a User.

 printf("Enter the filename to open:\n");

 scanf("%[^\n]%*c", filename);

 int file_descriptor = open(filename, O_WRONLY | O_CREAT, 0777);

 if (file_descriptor == -1) {

    perror("File not Found.!");

    exit(1);

 }

 char content[1024];

 printf("Enter the content to write on a given file: ");

 // User Input to write into a File.

 scanf("%[^\n]%*c", content);

Chapter 4  Files and Directories



92

 int size = write(file_descriptor, content, strlen(content));

 printf("%d", size);

 close(file_descriptor);

 return 0;

}

This code opens a given file and asks the user to enter the content that they want to write 

to it. The write function writes content and prints the number of bytes written to a file.

�Append Operations in Files Using System Calls
A write system call writes the content to the given file descriptor. But the O_RDWR flag 

mode overrides the content in an existing file. If you want to add more content to a file 

without overriding the existing content, the O_APPEND flag adds the new content at the 

end of the file without overriding any of the existing content.

Here’s an example.

#include<stdio.h>

#include<unistd.h>

#include<stdlib.h>

#include<string.h>

#include <fcntl.h>

int main() {

  char filename[255];

 printf("Enter the filename to open:");

 scanf("%[^\n]%*c", filename);

 int file_descriptor = open(filename, O_WRONLY | O_CREAT | O_APPEND, 0777);

 if (file_descriptor == -1) {

    perror("File not Found.!");

    exit(1);

 }

 char content[1024];

 printf("Enter the content to write on a given file: ");

 scanf("%[^\n]%*c", content);
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 int size = write(file_descriptor, content, strlen(content));
  printf("%d %lu %d\n", file_descriptor, strlen(content), size);
  close(file_descriptor);

 return 0;
}

This program appends content to an existing file without overwriting it.

�File Permissions
In Chapter 1, you saw how to change the permissions of a file using the Linux commands. 

This section deals with changing file permissions programmatically and identifying all 

the permissions given to a particular file by using built-in attributes. These attributes are 

properties that check the permissions using R_OK, W_OK, F_OK, and X_OK.

�chmod Function to Change Permissions
The chmod system call is available in the fcntl.h library. It changes the file permissions 

using the C program. The return type of this function is an integer. It returns 0 if it is 

successful and –1 if failure occurs.

The following shows the syntax.

int chmod(char *filepath, int mode);

•	 filepath is the first argument usually takes the complete file path 

with the respective file name as an argument.

•	 mode takes the new permission values as an argument. The value 

passed changes the file’s permissions.

Here’s an example.

#include<stdio.h>
#include<fcntl.h>
#include<stdlib.h>

int chmod(char *path, mode_t mode);

int main(){

Chapter 4  Files and Directories



94

   int permission_status;

   mode_ t new_permission_value;

   char filepath[100];

   // Taking the Input from the user

   printf("Enter the filename with path: ");

   scanf("%[^\n]%*c", filepath);

   printf("Enter the new permission set: ");

   // Permission Set value starts with 0.

   // �Eg: if i want to set 444 to a particular file then i need to give 

like 0444.

   scanf("%d", &new_permission_value);

   // Setting the Permissions

   permission_status = chmod(filepath, new_permission_value);

   // 0 ---> On Success || -1 ---> On Failure.

   if (permission_status == 0){

        printf("New permissions are Setted Successfully.!");

   }else{

       printf("Permissions Changed Successfully");

   }

   return 0;

}

This program changes the permissions of a file. It returns a success statement if 

successful and returns a failure message if it is unable to change the permissions.

�File Permissions Check
You can check a file’s permissions with the access function in C, which is available in the 

unistd.h library. This return type of this function is an integer. It returns 0 if successful 

and –1 if failed.

The following shows the syntax.

int access(const char *filepath, int amode);
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•	 filepath is the first argument that takes the complete file path (i.e., 

absolute path.

•	 The amode flag checks the permissions of a given file. The flags that 

pass for the second argument are any of the following.

•	 R_OK: This flag tests the read permissions of a file.

•	 W_OK: This flag tests the write permissions of a file.

•	 F_OK: This flag tests whether a file exists or not.

•	 X_OK: This flag tests the execute permissions of a file.

Now let’s look at a simple example program that determines the read and write 

access permissions of a file.

#include<stdio.h>

#include<unistd.h>

int main(){

   char filepath[100];

   // Taking the Input from the user

   printf("Enter the filename with path: ");

   scanf("%[^\n]%*c", filepath);

   int read_status, file_status, write_status;

   file_status = access(filepath, F_OK);

/*

   Returns

   -1 ----> If File Doesn't Exist

    0 ----> If File Exists

*/

   if(file_status == -1){

      printf("%s File does not exist in Location.\n", filepath);

      _exit(0);

   }

   read_status = access(filepath, R_OK);

   write_status = access(filepath, W_OK);

   // Checks for the both Read and Write Access

   if(read_status == 0 && write_status == 0){

Chapter 4  Files and Directories



96

       printf("%s File has both read and write permissions\n", filepath);

   }else if(read_status == 0 && write_status == -1){

       // If file has only read access then

       printf("%s File has only read permissions\n", filepath);

   }else if(read_status == -1 && write_status == 0){

       // If file has only write access then

       printf("%s File has only write permissions\n", filepath);

   }else{

       // If file does not have both read and write access then

  printf("%s File has no read and write permissions", filepath);

   }

   return 0;

}

This program tests the read and write access of a file and prints the output (i.e., read 

or write). You can modify the code to test execute permissions as well.

�Soft and Hard Links
A link is a pointer to a file in the Unix system. In Linux, everything is considered a file, 

which has an inode number. A link acts as a shortcut to quickly access it. This happens 

because the link either points to the original file or its inode number. This helps the link 

provide faster access to the content. There are two types of links available in Linux: soft 

links and hard links.

�Soft Links
A soft link links to a file, which contains data. There may be more than one soft link for a 

single file.

•	 It is also called a symbolic link.

•	 Different inode numbers and permissions are set for a link. A soft link 

offers easy access to the original file because it directly points to the 

original.

•	 Soft links can be created for files and directories in the system.
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•	 Permissions are not updated in a soft link. Permissions are updated 

in the main file, but the soft link permissions are not updated. This is 

one of the weird behaviors of soft links.

•	 The changes that are made to the original file are updated. All the 

changes made to the soft link file are updated to the main file.

A diagram of symbolic links is shown in Figure 4-5.

�Creating a Soft Link Using the Command Line

The creation of a soft link is done with the ln command and some extra flags. Let’s look 

at creating a soft link.

ln -s <file_name> <softlink_name>

Note T he soft link name is your choice; there are no restrictions on for user’s 
name.

Figure 4-5.  Soft link internal connection
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Figure 4-6 shows an example.

�Unlinking a Soft Link

When a soft link is created, a link file is too. There are two ways to remove these links 

from the file.

•	 Delete the link file

rm <soft_link_name>

•	 Unlink the file

unlink <soft_link_name>

After the unlinking action is done, the soft link is no longer available in the system. 

Let’s closely look at the example shown in Figure 4-7.

Figure 4-6.  Soft link creation using command line
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�Creating a Soft Link Using System Calls

You can programmatically create symbolic or soft links. In the unistd.h library, there is a 

system call named symlink that creates symbolic links effectively. The symlink function 

returns an integer value. It returns 0 on the successful creation of a symbolic link; it 

returns –1 if any failure occurs.

The following shows the syntax.

int symlink(const char *filepath,

            const char *linkname);

•	 filepath takes its name as an argument where the file is located in 

the system.

•	 linkname takes the link name as an argument. You can also use the 

path where you want to store it.

Now let’s programmatically create a symbolic link in a simple way.

#include<stdio.h>

#include<unistd.h>

int main(){

Figure 4-7.  Unlinking the soft link using a command line
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   int link_status;

   char filepath[50], linkname[50];

   // Taking User Input for file path

   printf("Enter the filepath: ");

   scanf("%[^\n]%*c", filepath);

   printf("Enter the linkname: ");

   scanf("%[^\n]%*c", linkname);

   link_status = symlink(filepath,linkname);

   // 0 ---> On Success || -1 ---> If Any Error Occurs

   if(link_status == 0){

       printf("Soft link is Created Successfully.!");

   }else{

       printf("Unable to Create the Link.");

   }

   return 0;

}

This program creates a soft link and returns a success statement if there is success 

and failure messages if any error occurs.

�Unlinking Using a System Call

The unlink function unlinks a link. It is available in the unistd.h library. It returns an 

integer value: 0 if successful and –1 if any failure occurs.

The following shows the syntax.

int unlink(const char *pathname);

pathname takes the link path as an argument and unlinks the 

pointer from the original file.

Let’s look at unlinking a pointer from a file in a simple way.

#include<stdio.h>

#include<unistd.h>

int main(){
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   int unlink_status;

   char linkname[100];

   // Taking the Link name as Input from the user to unlink

   printf("Enter the link name to unlink:");

   scanf("%[^\n]%*c", linkname);

   unlink_status = unlink(linkname);

   // 0 --->On Success || -1 ---> Failure.

   if(unlink_status == 0){

       printf("File is unlinked Successfully.!");

   }else{

       printf("Unable to unlink the file.");

   }

   return 0;

}

This program unlinks the file from the pointer. It does the same as the command rm, 

and unlink does. On successful unlinking of a pointer, it returns the successful message. 

On an unsuccessful unlink, it returns a failure message.

�Hard Links
A hard link is a mirror copy of the original file. If you accidentally delete the original file, 

the data remains in the hard link file, since it is a mirror copy of the original file. The 

following are some of the implications.

•	 The data updated on the original file is reflected on the hard link.

•	 It works only on a single file system, which means that it can’t create 

hard links for other operating system file systems.

•	 It can’t link to directories.

•	 It has the same inode number and permissions as the original file.

Figure 4-8 is a diagram of a hard link.
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�Creating a Hard Link Using the Command Line
The creation of a hard link is done with the ln command. The link and the original file 

have the same data, permissions, and inode number.

ln <filename> <hard_link_name>

Here’s an example.

Figure 4-8.  Hard link internal connection

Figure 4-9.  Hard link creation using command line
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�Creating a Hard Link Using a System Call
The creation of a hard link is done with a link system call. This system call function is 

available in the unistd.h library. It returns an integer value: 0 for a success and –1 for a 

failure.

The following shows the syntax.

int link(const char *filepath,
         const char *linkname);

•	 filepath takes its name as an argument where the file is located in 

the system.

•	 linkname takes the link name as an argument. You can also provide 

the path where you want to store it.

Here’s an example.

#include<stdio.h>

#include<unistd.h>

int main(){

   int link_status;

   char filepath[50], linkname[50];

   printf("Enter the filename: ");

   scanf("%[^\n]%*c", filepath);

   printf("Enter the linkname: ");

   scanf("%[^\n]%*c", linkname);

   link_status = link(filepath, linkname);

   // Hardlink be Created.

   // 0 ---> Successful || -1 ---> Failure.

   if(link_status == 0){

       printf("HardLink is Created Successfully.!");

   }else{

       printf("Unable to Create the Hard Link.");

   }

   return 0;

}
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This program creates a hard link and prints the success message if appropriate. If any 

error occurs, it prints a failure message.

Note T he unlinking of both the hard and soft links can be done in the 
same command (i.e., using either the rm command or the unlink command. 
Programmatically, the same unlink system call which is available in the unistd.h 
unlink the link that is created. Once the link is unlinked, it is deleted from the 
system.

�System Calls for Directories
So far, various file concepts and their respective system calls have been covered. 

Several activities were performed programmatically. Now it’s time to dig deeper into 

the directories and various system functions that are associated with it. Directories are 

frequently used in daily life to organize files in a well-structured manner. This section 

discussed the various system calls that are available in C programming. The following 

are the most common operations performed in a directory.

•	 Creating a directory

•	 Removing a directory

•	 Getting the current working directory

•	 Changing a directory

•	 Reading a directory

•	 Closing a directory

�Creating a Directory
The creation of a directory is done with the mkdir function, which is available in the sys/

stat.h library. The return type of this function is an integer. It returns 0 on the successful 

creation of a directory; it returns –1 for a failure.
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The following shows the syntax.

int mkdir(const char *path, mode_t mode);

•	 path is the first argument that describes the path and the new 

directory name to create in the system.

•	 mode represents the permissions to give to a new directory.

Let’s look at a simple example of creating a directory programmatically. The 

following code creates a new directory in the current program location.

#include<stdio.h>
#include<sys/stat.h>
#include<sys/types.h>
int main(){
   int isCreated;
   char *DIR_NAME;
   printf("Enter the Directory name you want to create: ");
   scanf("%[^\n]%*c", DIR_NAME);
 // You can Set your own permissions based on your Requirements.
   isCreated = mkdir(DIR_NAME, 0777);

   if(isCreated == 0){ // The value is 0 for Successful
       printf("Directory is Created Successfully\n");
   }else{  // Value is -1 if it is unsuccessful.
       printf("Unable to Create Directory\n");
   }

   return 0;
}

This creates a new directory and prints a success message if the creation operation is 

successful; otherwise, it prints an error message.

�Deleting a Directory
The deletion of a directory is done with the rmdir function, which is available in the sys/stat.h 

library. The return type of this function is an integer. It returns 0 on the successful deletion of 

a directory; it returns –1 if a failure.
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The following shows the syntax.

int rmdir(const char *pathname);

pathname determines the directory name with the absolute path to 

remove from the system.

Let’s look at an example of how to delete a directory from the system.

#include<stdio.h>

#include<sys/stat.h>

#include<sys/types.h>

int rmdir(char *dirname);

int main(){

   int isRemoved;

   char DIR_NAME[512];

   printf("Enter the Directory name you want to create: ");

   scanf("%[^\n]%*c", DIR_NAME);

   isRemoved = rmdir(DIR_NAME);

   if(isRemoved == 0){ // The value is 0 for Successful

       printf("Directory is Deleted Successfully\n");

   }else{  // Value is -1 if it is unsuccessful.

       printf("Unable to Delete Directory\n");

   }

   return 0;

}

This program deletes the directory from the system and prints a success message for 

a successful operation; otherwise, it returns a failure message.

�Getting the Current Working Directory
The getcwd function gets the current working directory. It is available in the unistd.h 

library. The return of this function is a character data type. It returns the program’s 

current working directory.
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The following shows the syntax.

char getcwd(char *buffer, size_t buffersize);

•	 buffer is the first argument; it describes the char array that stores the 

buffer content.

•	 buffersize is the second argument; it is the length of the buffer.

Let’s look at a program to print the current working directory using the C program.

#include<stdio.h>

#include<unistd.h>

int main(){

     char DIR[75];

     printf("Current Working Directory is: %s\n", getcwd(DIR, 75));

     return 0;

}

This program prints the current working directory when a success; otherwise, it 

prints NULL.

�Changing Directory
There is a chdir system call that changes directory in your operating system. It is 

available in the unistd.h library. The return type of this function is an integer. It returns 0 

on the successful change in a directory; it returns –1 for a failure.

The following shows the syntax.

int chdir(const char *path);

path describes the path to change.

Here is a C program that changes the directory in a system.

#include<stdio.h>

#include<unistd.h>

int main(){

char DIR[75];
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// Prints the Current Working Directory Before change
printf("Working Directory Before Operation:%s\n",
getcwd(DIR, 75));

   //The below chdir("..") change to the parent directory.
   int status = chdir("..");

   //Success ---> 0 & Failure ---> -1
   if(status == 0){
       printf("Directory Changed Successfully.!\n");
   }else{
       printf("Unable to change the Directory.\n");
   }
// Prints the Current Working Directory After change
printf("Working Directory After Operation: %s\n",
getcwd(DIR, 75));
   return 0;
}

This program changes the working directory of the calling process.

�Reading a Directory
Two types of functions read the content in directories: opendir and readdir. They are 

available in the dirent.h library. The return type of the opendir function is the directory 

stream.

A directory stream is an ordered sequence of all directory entries in a directory. A 

directory entry represents the files. This directory stream points to the start position.

The return type of readdir is a dirent structure, which returns NULL if the directory 

reaches its end. Dirent is a built-in structure that is implemented in the dirent.h library.

The following shows the syntax.

DIR *opendir(const char *path);

•	 The path argument indicates the value that you want to open.

struct dirent *readdir(DIR *directorypointer);

•	 The directorypointer argument should contain the directory 

stream pointer, which is a return value of the opendir function.
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The internal structure of dirent is as follows.

struct dirent{
   ino_t          d_ino;       // inode number
   off_t          d_off;       // offset to the next dirent
   unsigned short d_reclen;    // length of this record
   unsigned char  d_type;      // type of file;
   char           d_name[256]; // filename
};

Let’s create a program in C that reads all the files in a directory and prints them to the 

console.

#include <stdio.h>
#include<stdlib.h>
#include <dirent.h>
 int main() {
   // Directory Entry
   struct dirent *DIR_ENTRY;
    // opendir() returns a pointer of DIR type.
   DIR *DIR_READER = opendir(".");
    if (DIR_READER == NULL) {
       printf("Could not open current directory" );
       exit(1);
   }
    while ((DIR_ENTRY = readdir(DIR_READER)) != NULL)
           printf("%s\n", DIR_ENTRY->d_name);

    closedir(DIR_READER);
   return 0;
}

This program returns all the files and folders present in the given location.

�Closing a Directory
The closedir function closes the directory stream that is running in a process. The 

return type of this function is an integer. It returns 0 on the successful closing of a 

directory; it returns –1 for a failure.
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The following shows the syntax.

int closedir(DIR *directorypointer);

directorypointer is an argument that contains the directory 

stream pointer, which is simply a return value of the opendir 

function.

Here’s an example.

#include <stdio.h>

#include<stdlib.h>

#include <dirent.h>

 int main() {

   // Directory Entry

   struct dirent *DIR_ENTRY;

    // opendir() returns a pointer of DIR type.

   DIR *DIR_READER = opendir(".");

    if (DIR_READER == NULL) {

       printf("Could not open current directory" );

       exit(1);

   }

   int status = closedir(DIR_READER);

   if(status == 0){

       printf("Directory Closed Successfully.!");

   }else{

       printf("Unable to close the Directory.");

   }

   return 0;

}

This program prints the success statement if the directory is closed successfully; 

otherwise, it prints a failure message.
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�Summary
This chapter focused on the Unix file structure, including the following topics.

•	 A file’s metadata and inode structure and how the Unix system 

identifies a file in the system.

•	 The system calls that are available for file operations in the Unix 

system and various file I/O operations.

•	 How chmod() changes file permissions programmatically. The 

access function checks file permissions with attributes like R_OK, 

W_OK, F_OK, and X_OK.

•	 The various Linux commands to create soft and hard links, including 

the programmatic ways to create them. This included a discussion on 

unlinking a link in both command-based and programmatic ways.

•	 The various directory system calls that manipulate directory 

operations.
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CHAPTER 5

Process and Signals
Processes play a major role on an operating system. When you execute a computer 

program in your system, it is done with a process. Without processes, you aren’t able 

to do any activity on an OS. In this chapter, you look at processes and how to perform 

various tasks. You also see various types of processes that can occur during the execution 

of a program.

Signals are interrupts or traps (a trap is a fault) that raise an event when an exception 

occurs. It is very handy to be able to detect exceptions and interrupts caused by the 

system or a program. Signals are more helpful when working with core system-level 

applications. This chapter discusses the following topics.

•	 Introduction to process environments

•	 Linux subsystems

•	 Process creation

•	 A zombie process

•	 An orphan process

•	 System calls for process management

•	 Signals and their types

•	 System calls for signal management

https://doi.org/10.1007/978-1-4842-6321-1_5#DOI
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�Introduction to the Process Environment
An executing program is considered a process. To get a deeper understanding of a 

process, you need to be familiar with the process environment. Let’s consider the 

internal working mechanisms of a normal C program that is subjected to the kernel for 

execution. You are already know that every C program execution starts with the main() 

function; but behind the scenes, a special start-up routine is called by the kernel before 

calling the main() function.

When you compile C code, an executable is generated by the compiler. This 

executable program contains the starting address of the start-up routine set up by 

the linker when the program is executed. But when ASLR (address space layout 

randomization) is enabled, the startup routine address is unpredictable. ASLR is a 

memory protection mechanism that resolves buffer overflow issues by randomizing the 

location. This startup routine usually takes a kernel. That type of argument is called a 

command-line argument.

Let’s start with some basics and work toward a deeper understanding. A typical C 

program main function look likes the following.

int main(int argc, char *argv[]);

It contains two parameters that take command-line arguments.

•	 argc takes an integer type as an argument that contains the number 

of command-line arguments passed by the programmer. The 

parameters that are passing to the command line should be space 

separated. This means if you pass hello world, it is considered two 

different arguments, but hello_world is a single argument. If you 

want to pass a spaced single argument, it is advisable to pass it inside 

double quotes (i.e., “hello world”), which is also considered a single 

argument.

•	 argv takes a character array type as an argument. It deals with the 

array of pointers that point to the argument values.

Let’s look at a simple C program that prints all the command-line values that are 

passed by the programmer explicitly.

#include<stdio.h>

int main(int argc, char * argv[]){
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   printf("Number of Arguments Passed: %d\n", argc);

   // This loop prints the all the command line values

   // that are passed through the program.

   for(int i=0;i<argc;i++){

       printf("%s\n", argv[i]);

   }

   return 0;

}

The output of the program look like Figure 5-1.

The program is named “Command\ Line\ Arguments.c”. The gcc compiler compiles 

this program. After the compilation is done, the programmer run the program. This 

program was run with five types of command-line values. A loop to print all the 

command-line values was written. This program prints all the passed arguments and 

the number of arguments. There is an odd behavior that you can observe in the output: 

there were six arguments passed because it counted the executable file value as well.

�Environment List
Your operating system has an environment list of items stored in an array of character 

pointers. A process environment has an environment list. An environ is a character 

pointer variable that points to an environment list. You can access this variable data with 

the extern keyword. The syntax is as follows; also see Figure 5-2.

extern char **environ;

Figure 5-1.  Output of C program for command-line arguments
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•	 Environ is an environment pointer that points to the environment 

list, which consists of string data.

•	 The environment list consists of predefined variables and custom 

process variables. All the predefined values are in uppercase format.

•	 The format of an environment list is name=value.

•	 The executing program is also present under this environment list 

variable.

Here’s an example.

#include<stdio.h>

int main(){

   extern char **environ;

   char **environment_list = environ;

   /* This code Helps us to prints the all the

      Environments available in the operating system.

   */

Figure 5-2.  Environment variables list
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   while(*environment_list != NULL){

       printf("%s\n", *environment_list);

       environment_list++;

   }

   return 0;

}

This program prints all the environment variables in your operating system and the 

variables defined in your current session/program. The list of values that are printed by 

the program contain your program execution file as well.

This program shows the predefined and working process items listed in the 

environment list. Finally, you can see the program execution path, which is assigned to 

the _ variable. The running program’s instance is available in a running processes list. 

This proves every program under execution is considered a process.

�Memory Layout of a C Program
The memory layout of a C program typically consists of various block items. Each block 

has a specific task to do within the running program. To get a clear view of the memory 

layout in a C program, let’s look at memory layout in the pictorial representation shown 

in Figure 5-4.

Figure 5-3.  Output of the environment variable list using C program
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The entire memory layout is divided into several blocks. Each block has a separate 

functionality associated with it.

�Command-Line Arguments
The command-line argument block accepts all the values explicitly passed by the 

programmer. This block also contains environment variables.

Figure 5-4.  Memory layout
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�Stack

A stack is used for static allocation in a program. It stores all the automatic variables. 

The function call’s results are stored in the stack area, but you can’t estimate or predict 

exactly where a function call’s results will store. It depends on the hardware architecture. 

Function call results are ABI (application binary interface) dependent. The values stored 

in the stack are directly stored in RAM (random-access memory). Access time for items 

in the stack space is very fast.

�Heap

A heap is used for dynamic memory allocation. Allocation of memory is done at runtime 

and accessing the items present in a heap space is slower than in a stack space. The size 

of the heap is limited to the size of your virtual memory.

�Uninitialized Data

The kernel assigns the data present in this segmented block to an arithmetic zero or the 

NULL pointer before the program starts executing. This block is also called a BSS block, 

which is a block started by symbol. Global and static variables that don’t have any explicit 

initialization in the program are stored in this data block. This block contains only 

uninitialized data.

�Initialized Data

Global and static variables initialized by the programmer with predefined values in the 

program are stored in the initialized data block.

�Text

The text block contains the machine code/instructions the CPU needs to execute.

�Process Termination Methodologies
A process is terminated normally or abnormally based on the program flow or 

unexpected interrupts. The termination of a process is done in the following ways.
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•	 When a main() function returns the value, the process is terminated.

•	 When you call an exit() function, which is available in the stdlib.h 
library, to terminate a process.

•	 When you call the _Exit() or _exit() functions available in stdlib.h and 
unistd.h, respectively, to terminate a process.

•	 When you call pthread_exit to terminate the process.

•	 When you call an abort() function to abnormally terminate the 
process.

•	 When the programmer raises a signal, the process is terminated 
abnormally if the custom handler or built-in signal handler is not 
available. But you can handle the signals with a custom/built-in 
signal handler.

•	 Thread cancellation requests are also responsible for process 
termination. A thread cancellation request is the termination of a 
thread before its job is done in the process.

•	 Any I/O failure/interrupt leads to process termination. For example, 
if the process is waiting for input from a scanner but the scanner is 
not working, this leads to process termination. If there is any custom 
exception handler code available, this situation is handled easily 
without the process being terminated.

•	 In some situations, a child process is terminated because of a parent 
process request.

•	 A process is terminated when it is trying to access unallocated or 
unauthorized resources. For example, when a process tries to execute 
a program that doesn’t have execution permissions, it leads to 
process termination. When a program tries to access memory that it 
does not own, it leads to process termination.

The process environment consists of the environment List, memory layout, and 
process termination. Memory layout deals with how program data is organized in the 
system memory for better access. In contrast, an environment list deals with storing 
all the processes that are running on an operating system. Finally, process termination 
methodologies terminate a process normally or abnormally, based on the programmer’s 
requirements. Abnormally terminating a process is done when something unexpectedly 

happens to a program, so the programmer kills the process abnormally.
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�Environment Variables
Every process has an environment block that contains environment variables. An 

environment variable is a dynamic variable that deals with the processes and programs 

in an operating system.

Every operating system has an environment list and variables. These variables 

store the system process data/system-related path data. The operations that perform 

in environment variables are create, modify, delete, and save. There are two types of 

environment variables.

•	 User-level environment variables

•	 System-level environment variables

�User-Level Environment Variables
User-level environment variables belong to a specific user in an operating system.

�System-Level Environment Variable
The variables in a system-level environment can be accessed by every user in the system.

�Environment Variable Examples
Table 5-1 shows some of the predefined system-level variables available in every Linux/

Unix-based operating system.

Table 5-1.  List of Environment Variables

Variable Description

PWD It prints the present working directory.

HOME It prints the default path to the user’s home directory.

SHELL It prints the location of the shell used by the user.

UID It prints the user’s unique ID.

HOSTNAME It displays the computer’s hostname.
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�Accessing an Environment Variable
To read a value variable, you need to pass the command to the terminal as follows.

Syntax ➜ echo $VARIABLE_NAME

Example ➜ echo $HOME

Note  Variable names are case sensitive. You need to be very careful when 
accessing data from a variable. The name needs to match exactly to get data from 
the system.

�Setting a New Environment Variable
You can create your own environment variables with the following syntax.

Syntax ➜ VAR_NAME=VALUE

Example ➜ MY_VARIABLE=/Users/Home

Note T he key point to remember in declaring a variable is that there is no space 
between the variable name and the value, as shown in the syntax. If there is a 
space between the name and the value, an error is thrown.

Figure 5-6.  Creating environment variable using CLI

Figure 5-5.  Accessing environment variables using CLI (command-line 
interface )
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In bash, there is a built-in command named export. If you want to set the 
environment variable permanently, the export command is useful. This method 
sets the environment variable for temporary purposes only. It is not available once 
the terminal session is closed. The export command exports the variable to the 
permanent system environment variables list, which is not deleted until you delete 
it explicitly.

�Deleting Environment Variables
Deleting an environment variable is done with the unset command.

Syntax ➜ unset VARIABLE_NAME

Example ➜ unset MY_VARIABLE

Note I f you try to access an environment variable that was deleted, you get NULL 
as a result.

�Accessing Environment Variables in C
C provides a built-in getenv() function that retrieves system variable information in a  

C program. The return type of this function is a pointer to the value in the environment. 

It takes the character value as an argument and returns the results if there is a variable in 

the environment list; otherwise, it prints the NULL value. This function is available in the 

stdlib.h library.

char *getenv(const char *name);

Figure 5-7.  Deleting environment variable using CLI
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Here’s an example.

#include<stdio.h>

#include<stdlib.h>

int main(){

   char environment_name[50];

   printf("Enter the Environment name: ");

   scanf("%s", environment_name);

   printf("Environment Value: %s\n", getenv(environment_name));

   return 0;

}

Figure 5-8 shows the output.

�Setting a New Environment Variable Using C
C provides a built-in function named setenv() that creates a new environment variable. It 

is available in the stdlib.h library. The return type of this function is an integer. It returns 

0 for the successful creation of an environment variable; it returns –1 for any errors.

int setenv(const char *envname,

           const char *envval,

           int overwrite);

•	 envname takes the name of the variable that you want to create as an 

environment variable.

Figure 5-8.  Printing the environment variable using C
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•	 envval takes the environment variable value that you want to assign 

to the created value.

•	 overwrite takes the integer value as argument (i.e., either 0 or 1). A 0 

doesn’t overwrite an existing variable value; 1 overwrites the value. 

If the variable already exists in the environment, a non-zero value 

overwrites it.

Here’s an example.

#include<stdio.h>

#include<stdlib.h>

int main(){

   char variable_name[15];

   char variable_value[255];

   int overwrittenValue;

   printf("Enter your Variable name:");

   scanf("%s", variable_name);

   printf("Enter the Variable Value: ");

   scanf("%s", variable_value);

   // 1 ---> Represents the Overridden of Value.

   // 0 ---> Doesn't override the value

   printf("Enter the Overridden Value: ");

   scanf("%d", &overwrittenValue);

   // Returns 0 --> On Success || -1 on failure

   int status = setenv(variable_name, variable_value, overwrittenValue);

   if(status == 0){

       printf("Environment variable Created Successfully.!\n");

   }else if(status == -1){

       printf("Environment variable Created Successfully.!\n");

   }

   return 0;

}
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Figure 5-9 shows the output.

The successful creation of a variable prints a successful message; otherwise, an error 
message prints.

�Deleting an Environment Variable
C provides a built-in function named unsetenv() to clear the environment variable. It is 
available in the stdlib.h library. The return type of this function is an integer. It returns 0 
on the successful deletion of the variable; otherwise, it returns –1.

int unsetenv(const char *name);

The name variable takes the environment variable name, which you want to delete.
Here’s an example.

#include<stdio.h>
#include<stdlib.h>

int main(){

   char variable_name[50];
   printf("Enter the variable to Delete:");
   scanf("%s",variable_name);
   // Returns 0 --> On Success || -1 on failure
   int status = unsetenv(variable_name);

   if(status == 0){
       printf("Environment Variable is Deleted Successfully.!\n");
   }else{
       printf("Unable to Delete the Environment variable.\n");
   }

   return 0;

}

Figure 5-9.  Output of environment variable creation in C
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Figure 5-10 shows the output.

�Kernel Support for Processes
The kernel is the most important component. It manages all the operations in an 
operating system. The kernel handles process management and file management as 
well. In modern computers, multiple processes run simultaneously to execute user tasks 
and system tasks. These processes require several resources, which include memory, 
processor time, and hardware resources. The tasks and activities that are done through a 

kernel are depicted in Figure 5-11.

Figure 5-10.  Output of environment variable deletion using C

Figure 5-11.  Linux kernel-level subsystem
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�Process Scheduler
The process scheduler schedules programs that are constantly running in the OS and 

delivers resources within a minimum response time to all programs. This is done with 

scheduling algorithms. The process scheduler uses two types of algorithms.

•	 Preemptive scheduling algorithm

•	 Non-preemptive scheduling algorithm

�Preemptive Scheduling Algorithm

•	 In a preemptive scheduling algorithm, the process is interrupted 

before the completion of the process task.

•	 Starvation occurs after adding a high-priority process to the queue.

•	 CPU utilization is high in preemptive scheduling. In preemptive 

scheduling, you can keep the CPU as busy as possible with multiple 

processes.

•	 Resources are allocated for a limited time.

�Non-Preemptive Scheduling Algorithm

•	 In a non-preemptive scheduling algorithm, a process is not 

interrupted until its task are finished.

•	 CPU utilization is low. The CPU does not allow other processes to 

utilize resources.

•	 The process utilizes resources until the task is done.

�Memory Manager
The memory manager is responsible for managing memory in the operating system.

•	 It deals with the implementation of virtual memory, demand paging, 

and memory allocation for kernel-level space and user-level space 

programs.

•	 It maps the files required to run a process.

•	 It effectively manages interprocess communication tasks.
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�Virtual File System
A virtual file system is an abstract layer of a concrete file system.

•	 It acts as a bridge between various file systems, like Windows and 

macOS. This file system easily communicates with other OS file 

systems.

•	 It accesses different types of files from various file systems in a 

uniform way.

•	 It transparently handles data from network storage devices.

�Network Unit

A network unit handles all network activities in the system.

•	 It manages certain types of protocols used by network hardware to 

transfer data between systems.

•	 It manages all the network hardware drivers in a system to establish 

effective communication.

�Process Creation
Creating your own process within a program is done with a fork() system call. A newly 

created process is called a child process, and the process that is initiated to create the 

new process is considered a parent process. When a fork() system call creates a process, 

it creates two processes (i.e., parent and child). The diagram shown in Figure 5-12 

indicates that the parent process/main process calls the fork() system call to create a 

process. By default, two subprocesses are created (i.e., parent and child process). A 

process may create another process for specific work. The creation process is called a 

parent process, and the created processes are called child processes. A parent process can 

have many child processes, but a child process has only one parent process.
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The process created to perform particular operations does a specific job in its life 

cycle. Before the creation of the process done, it undergoes four steps.

	 1.	 Programmer requests the process be created by the program

	 2.	 System initialization

	 3.	 Batch job initialization

	 4.	 Execution of the fork() system call by the running process

The built-in fork() system call creates its own process. The return type of this system 

call is an integer. It returns the three types of values. If the child process is created 

successfully, it returns 0. The fork() system call internally creates a copy of the process that 

calls it. If the parent process is successfully created, it returns a positive value. If the process 

is unable to create it, a negative value is returned. The syntax of the fork() system call is

int fork(void)

The internal workings of the fork() system call is demonstrated in the diagram 

shown in Figure 5-13. The fork() system call returns one of three values: a negative 

value for an error, a zero for creating a child process, and a positive value for creating 

a parent process. When the process ID is zero, the child process is executed, and the 

parent process is in a waiting state. After the child process execution is completed, the 

parent resumes the execution. This doesn’t mean that the parent process always waits 

for the child process to complete its execution. You can make the parent process wait 

Figure 5-12.  Mechanism of process creation
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for the child process execution. The parent process terminates once its assigned work is 

completed. The hierarchy may vary from program to program. All the created processes 

share the same memory allocated to the program but have a different address space. 

Figure 5-13 is a simple example of creating a process using the fork() system call.

When a process is created with a fork() system call, two processes (i.e., child and 

copy of the parent processes) are created. When the main program creates parent and 

child processes, they try to execute simultaneously. This achieves concurrency in the 

program.

Here’s an example.

#include <stdio.h>

#include <unistd.h>

int main() {

Figure 5-13.  Internal mechanism of fork() system call
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  int pid = fork();

  if(pid > 0){

      printf("Parent Process is created\n");

  }else if(pid == 0){

      printf("Child Process is created\n");

   }

  return 0;

}

Figure 5-14 shows the output.

�Zombie Process
A zombie process is any process that has finished executing, but entry to the process 

is available in the process table for reporting to the parent process. A process table is a 

data structure that stores all the process-related information in an operating system. A 

process that is not removed from the process table is considered a zombie. The parent 

process removes the process entry with the exit status of the child process.

Here’s an example.

#include<stdio.h>

#include <unistd.h>

#include <stdlib.h>

#include <sys/types.h>

int main() {

   pid_t child_pid = fork();

Figure 5-14.  Output of the program on process creation using C
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   // Parent process

   if (child_pid > 0){

       printf("In Parent Process.!\n");

       // Making the Parent Process to Sleep for some time.

       sleep(10);

   }else{

       printf("In Child process.!\n");

       exit(0);

   }

    return 0;

}

In this program, the fork() function creates a new child process. If the child_process 

value is greater than zero, it is a parent process. If the child process ID is equal to zero, it 

is a child process. If it is a child process, the program is terminated; otherwise, the parent 

process is under execution in a sleep state. Meanwhile, the child process is terminated, 

but the process ID is in the process table, making the child process a zombie.

�Orphan Process
A process that does not have a parent process is an orphan process. A child process 

becomes an orphan when either of the following occurs.

•	 When the task of the parent process finishes and terminates without 

terminating the child process.

•	 When an abnormal termination occurs in the parent process.

Here’s an example.

#include<stdio.h>

#include <unistd.h>

#include <stdlib.h>

#include <sys/types.h>

int main() {

   pid_t child_pid = fork();
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   // Parent process

   if (child_pid > 0){

       printf("In Parent Process.!\n");

   }else{

       printf("In Child process.!\n");

       // Making the Child Process to Sleep for some time.

       sleep(10);

       printf("After Sleep Time");

   }

    return 0;

}

In this program, the parent process completes its execution and exits while the child 

process is in execution, so it is considered an orphan process. If there is no parent for a 

process, then that process is adopted by the init process.

�System Calls for Process Management
When you are working with a process for a task, it is good to know how to manage the 

processes effectively. Until now, you have seen fork() system calls create a process. This 

section looks at various types of system calls that manage process activities effectively. 

The following system calls manage processes.

•	 vfork

•	 exec

•	 wait

•	 waitpid

•	 kill

•	 exit

•	 _Exit
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�vfork System Call

A vfork system call creates a new process, but the behavior is undefined in certain 

circumstances. If the process is created using a vfork system call, the parent process 

is blocked until the child block is executed. In the vfork system call, the child process 

shares a common address space as the current calling process. Since they share the 

common address space, changes in the code are visible to other processes. The return 

type of this system call is an integer. When a child is successfully created, it returns 0 and 

the child process ID to the parent process. If any error occurs, it returns –1.

The following shows the syntax.

pid_t vfork(void)

It takes zero arguments but creates the child process and blocks the parent process.

Here’s an example.

#include<stdio.h>

#include<unistd.h>

#include<stdlib.h>

int main(){

   pid_t status;

   status = vfork();

   printf("Process is Executing: %d\n", getpid());

   if(status == 0){

       printf("Process is executing: %d\n", getpid());

       exit(0);

   }

   return 0;

}

This code explains the working mechanisms of the vfork system call. Initially, the 

child process is created and executes its task after the parent process is executed.
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Note T he vfork() system call is removed from POSIX standards due to its 
undefined behavior in certain circumstances.

�exec System Call Family

The exec system call family replaces the currently running process with a new process. 

But the original process identifier remains the same, and all the internal details, such as 

stack, data, and instructions. The new process replaces the executables. This function 

call family runs binary executables and shell scripts. Figure 5-16 shows the workings of 

the exec system call.

There are several system calls of the same family type available in the unistd.h 

library. They create a new process or execute another binary executable. The family of 

the exec system call functions include the following.

Figure 5-15.  Output of process creation using vfork() system call

Figure 5-16.  Working mechanism of exec system call
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•	 execl

•	 execlp

•	 execle

•	 execv

•	 execvp

•	 execve

execl( )

This system call takes the first and second parameter as a path of the binary executable. 

and the remaining parameters are the ones that you need to pass as based on your 

interest; that is, optional parameters or flags that are required for the executable program 

and purpose followed by a NULL value. This system call is available in the unistd.h 

library. The return type of this function is an integer. If the execution is unsuccessful, it 

returns –1; otherwise, it returns nothing.

The following shows the syntax.

int execl(const char *path, const char *arg, ..., NULL)

•	 path takes the binary executable with the complete path.

•	 arg also takes the binary executable path as an argument.

•	 [...] considers the variable number of arguments, which means you 

can pass any number of arguments.

•	 NULL is the default parameter, which the execl function’s last 

parameter should be.

Here’s an example.

#include <unistd.h>

int main() {

 char *binary_path = "/bin/ls";

 char *arg1 = "-l";

 char *arg2 = "-a";

 char *arg3 = ".";
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  // System call to perform the ls -la operation in the

  // CWD (Current Working Directory)

 execl(binary_path, binaryPath, arg1, arg2, arg3, NULL);

 return 0;

}

This program shows a long list of all the files and directories, including the hidden 

ones and the execl system call (see Figure 5-17). The advantage of this program is that 

with one process identifier, another process is also executed.

execlp( )

This system call is a bit more advanced than the execl() system call. It does not require 

the path for the binary built-in executable, but for custom executables, it does require 

the path to execute. The return type of this system call is an integer. It returns –1 if any 

error occurs and returns anything for successful execution.

Figure 5-17.  Output for the execl system call
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The following shows the syntax.

int execlp(const char *path, const char *arg, ..., NULL)

•	 path takes the binary executable with the complete path.

•	 arg also takes the binary executable path as an argument.

•	 [...] considers the variable number of arguments, which means you 

can pass any number of arguments.

•	 NULL is the default parameter, which the execl function’s last 

parameter should be.

Here’s an example.

#include <unistd.h>

int main() {

 char *binary_executable = "ls";

 char *arg1 = "-la";

 char *arg2 = ".";

  // System call to perform the ls -la operation in the

 // CWD (Current Working Directory)

 execlp(binary_executable, binary_executable, arg1, arg2, NULL);

 return 0;

}

The output of this program is the same as the execl() system call program that prints 

the long listing of the current working directory (see Figure 5-18).
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execle( )

This system call works similarly to the execl() system call. The major difference is 

that you can pass your own environment variables as an array. You can access the 

environment variables from the envp constant array pointer. The return type of this 

system call is an integer. It returns –1 on an error and returns anything for the successful 

execution of the executable.

The following shows the syntax.

int execle(const char *path,

           const char *arg,

           ..., NULL,

           char * const envp[])

•	 path takes the binary executable with the complete path.

•	 arg also takes the binary executable path as an argument.

•	 [...] considers the variable number of arguments, which means you 

can pass any number of arguments.

Figure 5-18.  Output for execlp() system call
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•	 NULL is the default parameter, which the execl function’s last 

parameter should be.

•	 envp is an environment pointer variable that lets you access the 

environment variables from the array. The last element of the array is 

a NULL value.

Here’s an example.

#include <unistd.h>

int main() {

 char *binary_path = "/bin/zsh";

 char *arg1 = "-c";

 char *arg2 = "echo \"Visit $HOSTNAME:$PORT from your browser.\"";

 char *const envp[] = {"HOSTNAME=www.netflix.com", "PORT=80", NULL};

    // execle() System call can able to access

   // the envp environment variables.

 execle(binary_path, binary_path, arg1, arg2, NULL, envp);

 return 0;

}

The output for this code is a statement to visit the URL in the browser. This is done by 

accessing the environment variables with the echo statement within a C program.

execv( )

This execv() system call is slightly different from this all three system calls. In this system 

call you can pass your parameters as an argv array that you want to execute. The last 

element of this array is a NULL value. The return type of this system call is an integer 

value. It returns –1 on an error and returns nothing on success.

Figure 5-19.  Output for execle() system call
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The following shows the syntax.

int execv(const char *path, char *const argv[])

•	 The path argument points to the path of the executable that is being 

executed.

•	 argv is the second argument. It is a NULL-terminated array of 

character pointers.

Here’s an example.

#include<stdio.h>

#include<unistd.h>

int main() {

       //A null terminated array of character pointers

       char *args[]={"./hello",NULL};

       execv(args[0],args);

   return 0;

}

In this code, when execv() system call is executed, it calls the ./hello binary 

executable, which contains the simple hello world program, and is executed.

execvp( )

This system call works the as same as the execv() system call. The major difference is that 

you don’t need to pass the path for system executables like an execlp() system call. The 

execvp() system call tries to find the path of the file in an operating system.

Figure 5-20.  Output for execv() system call
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In the following example, the ls command is a program name. The execvp() system 

call automatically finds its path in the system and performs the action.

The following shows the syntax.

int execvp (const char *file, char *const argv[])

•	 file points to the executable file name associated with the file being 

executed.

•	 argv is a NULL-terminated array of character pointers that contain 

the executables information.

Here’s an example.

#include<stdio.h>

#include<unistd.h>

int main() {

       char *program_name = "ls";

       //A null terminated array of character pointers

       char *args[]={program_name,"-la", ".", NULL};

       execvp(program_name,args);

   return 0;

}

In this code, the execvp() system call calls the built-in ls command, displaying all 

the contents in a directory. External parameters like -la with . means that it performs 

a long-list operation by displaying the hidden details of the current directory. This 

operation simply refers to the ls -la, where . is an external parameter that considers 

the current working directory of the program.
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execve( )

This system call works the same as the execle() system call. You can pass the 
environment variables, and those variables can access it from your program.

int execve(
            const char *file,
            char *const argv[],
            char *const envp[]
          )

Here’s an example.

#include <unistd.h>
int main() {

 char *binary_path = "/bin/bash";
 // Argument Array
 char *const args[] = {binary_path, "-c", "echo \"Visit $HOSTNAME:$PORT 
from your browser.\"", NULL};
// Environment Variable Array
 char *const env[] = {"HOSTNAME=www.netflix.com", "PORT=80", NULL};
 execve(binary_path, args, env);
 return 0;

}

Figure 5-21.  Output for execvp() system call
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This code is the same as the execle() system call output, as shown in Figure 5-22.

�wait System Call

In some situations, a process needs to wait for resources or for other processes to 

complete execution. A common situation that occurs during the creation of a child 

process is that the parent process needs to wait or suspend until the child process 

execution is completed. After the child process execution completes, the parent process 

resumes execution. The work of the wait system call is to suspend the parent system 

call until its child process terminates. This wait system call is available in the sys/wait.h 

header file. The process ID is the return type of the wait system call. On successful 

termination of the child process, it returns the child process ID to the parent process. 

If the process doesn’t have any child processes, the initiated wait call does not affect 

the parent activity. It returns –1 if there are no child processes. If the parent process has 

multiple child processes, the wait() call returns the appropriate result to the parent when 

the child processes have terminated.

The following shows the syntax.

pid_t wait(int *status)

This system call takes the child status as an argument and returns the terminated 

child process ID. If you don’t want to give the child status, you can use the NULL value. 

The workings of the wait function are shown in the Figure 5-23 diagram.

Figure 5-22.  Output for execve() system call
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Here’s an example.

#include<stdio.h>
#include<unistd.h>
#include<sys/wait.h>
 int main() {

   int status = fork();

   if (status == 0) {
       printf("Hello from child\n");
       printf("Child work is Completed and terminating.!\n");
   }else if(status > 0){
       printf("Hello from parent\n");
       wait(NULL);
       printf("Parent has terminated\n");
   }

   return 0;

}

Figure 5-23.  Working mechanism of wait() system call
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In this program, the parent process is executed first, and then it enters a wait state. 

When the parent process enters a wait state, the child process enters the action to 

execute its assigned task. Once the child task is completed and terminated, the parent 

completes the remaining tasks that are assigned to it.

�waitpid System Call

The waitpid() system call is an advanced version of the wait() system call. It takes three 

parameters as arguments. The first parameter takes the child process identifier. The 

second parameter deals with the status of the child process and stores the status code of 

the child process. The third parameter is an options parameter that takes several options 

to get the child process-related information. The values that are passed to this argument 

are built-in macros. The return type of the waitpid system call is a process ID. If an error 

occurs, it returns –1.

The following shows the syntax.

pid_t waitpid(pid_t pid, int *status, int options)

The following are options parameters.

•	 WIFEXITED(status): It checks if the child exits normally or not.

•	 WEXITSTATUS(status): It returns the status code when a child exits.

•	 WIFSIGNALED(status): It informs the child exit status if the child 

exits because a signal was not caught.

•	 WTERMSIG(status): It gives the number of terminating signals.

•	 WIFSTOPPED(status): It returns the status information when the 

child stops execution.

Figure 5-24.  Output of the C program for wait() system call
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•	 WSTOPSIG(status): It returns the number of stop signals in a 
program.

•	 WUNTRACED: It returns the child status that has stopped, but it 
doesn’t trace the child.

•	 WNOHANG: It returns the status immediately if the child exits.

•	 WCONTINUED: It returns the status code if a signal resumes the 
stopped child process.

Here’s an example.

#include <stdio.h>
#include <unistd.h>
#include <sys/wait.h>

int main(){

   int pid;
   int status;

   pid = fork();

   // Terminates the Child process.
   if(!pid){
       printf("My PID: %d\n",getpid());
       _exit(0);
   }

   waitpid(pid,&status,WUNTRACED);

   if(WIFEXITED(status)) {
       printf("Exit Normally\n");
       printf("Exit status: %d\n",WEXITSTATUS(status));
       _exit(0);
   }else {
       printf("Exit NOT Normal\n");
       _exit(1);
   }
   return 0;

}
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In this code, you get the status of the child process that is being terminated explicitly. 

WEXITSTATUS returns the status of the exited child process. WUNTRACED untraces the 

exited child process.

�kill System Call

A kill system call kills processes and signals. Killing a signal or process is the termination 

of a program/process/signal. The return type of this kill system call is an integer value. 

It returns 0 on the successful execution of the system call; otherwise, it returns –1 for an 

error.

The following shows the syntax.

int kill(pid_t pid, int sig);

•	 pid takes the process identifier of the process.

•	 sig takes the built-in signal parameter that needs to send to the 

process.

Here’s an example.

#include<stdio.h>

#include<unistd.h>

#include<signal.h>

int main(){

   int pid = fork();

   if(pid == 0){

       printf("Child PID: %d\n",getpid());

Figure 5-25.  Output of C program using waitpid() system call
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   }else{

       printf("Parent PID: %d\n", getppid());

   }

   sleep(2);

   kill(getpid(), SIGQUIT);

   return 0;

}

This code prints the process ID of the child and parent processes. The current 

process ID is set to the kill system call that kills the currently running program after 

sleeping for two seconds.

�exit System Call

An exit system call exits the calling process without executing the rest of the code that is 

present in the program. It is available in the stdlib.h library. The return of this system call 

is void. It doesn’t return anything on execution.

The following shows the syntax.

void exit(int status)

status takes the value that is returned to the parent process.

Here’s an example.

#include<stdio.h>

#include<stdlib.h>

#include<unistd.h>

int main(){

   int pid = fork();

Figure 5-26.  Output of the C program for kill() system call
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   if(pid == 0){

       // Prints the Child Process ID.

       printf("Child Process ID: %d\n", getpid());

       exit(0);

   }else{

       // Prints the Parent Process ID.

       printf("Parent Process Id: %d\n", getppid());

       exit(0);

   }

  printf("Processes are exited and this line will not print\n");

   return 0;

}

This code prints the parent and child process ID and exits the program without 

executing the last printf statement. This is because the exit() system call has exited 

the parent and child processes, and there is no process left to execute the last printf 

statement, so it doesn’t print to the console screen.

�_Exit System Call

_Exit terminates the process normally, but it doesn’t perform any cleanup activity. This 

system call is available in the unistd.h library. The return type of this system call is void. 

It doesn’t return anything. After the process is terminated, the control is given to the host 

environment (currently running) in this system call.

The following shows the syntax.

void _Exit(int status)

status takes the value, which is returned to the parent process.

Figure 5-27.  Output of the C program for exit() system call
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Here’s an example.

#include<stdio.h>

#include<stdlib.h>

#include<unistd.h>

int main(){

   printf("Current Running Process ID: %d\n", getpid());

   _Exit(0);

   printf("Nothing will execute\n");

   return 0;

}

This code does not give any results. It simply terminates the process and returns 

control to the host environment.

�Introduction to Signals
A signal is a software interrupt or an event generated by a Unix/Linux system in response 

to a condition or an action. There are several signals available in the Unix system. All 

signal mechanisms are implemented in the signals.h library. In this section, the signals.h 

library is used to create custom signals and to handle the signals that are created by the 

system. When a signal is raised, the kernel is guided as discussed next.

�Catch the Signal
When the kernel raises a signal, you can create a custom routine to handle the signal. But 

to use your custom handling routines, the process needs to register the custom routine 

before the processed signal is delivered to the user space.

�Ignore the Signal
When the program is raising a signal, and that signal has no effect, you go to the ignore 

case. This ignores the signal that does not affect the program, but you need to explicitly 
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mention it before the signal is delivered. All signals can’t be ignored. The signals that 

have no effect on raising a signal can be ignored.

�Default Action
When a program raises a signal, and that signal is neither caught nor ignored, it is 

handled by the default built-in signal handler that is defined by the system. It is an 

implicit system behavior meant for handling the signal. But a process can explicitly 

request to use the built-in signal handler in the program. Default handlers do not always 

terminate a process.

Every signal has certain attributes. The name and the signal number identify the 

signal very easily. Every signal has a certain functionality associated with it, which makes 

signals very handy. All the available built-in signals supported by the system can be 

printed with the kill command.

kill -l

The signals in Figure 5-28 are the signals that are supported by the Linux system.

The commonly used signals and the functionalities are described in Table 5-2.

Figure 5-28.  List of all the built-in signals
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The actual list of signals may vary between Solaris and Linux. All the signal lists are 

available in the signal.h library. By using signals, you can set traps and interrupts. In the 

C standard library, there is a signal() system call that creates the signals. The return type 

of the signal system call is a pointer to a function that takes the single integer parameter 

and returns nothing (i.e., void). If successful, this system call returns the previous action. 

If any error occurs, it returns SIG_ERR to indicate the error. This system call also has a 

typedef version that is easy to read and understand. But in this chapter, you are dealing 

with the syntax of the original signal system call.

Table 5-2.  Signals and Their Functionality

Signal Name Signal Number Signal Functionality

SIGHUP 1 Hang up a signal

SIGINT 2 Interrupt (Ctrl+C)

SIGQUIT 3 Quit (Ctrl+D)

SIGABRT 6 Process Abort

SIGKILL 9 Kills the process without cleanup activity

SIGUSR1 10 User-defined signal 1

SIGSEGV 11 Invalid Memory Segment Access

SIGUSR2 12 User-defined signal 2

SIGALRM 14 Alarm Signal

SIGTERM 15 Program/Software Termination Signal

SIGCHLD 17 Child process has stopped or exited

SIGCONT 18 Continue Execution

SIGSTOP 19 Stop Execution

SIGTSTP 20 Stop Signal

SIGTTIN 21 Background process trying to read

SIGTTOU 22 Background process trying to write
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The following shows the syntax.

void (*signal(int sig, void (*function)(int)))(int)

•	 sig takes the signal number. The signal number completely depends 

on the purpose and the type of signal you want to send.

•	 function is a pointer that points to either the function implemented 

by the programmer or the built-in ones. These are the built-in 

functions.

•	 SIG_DFL handles the signal by default. It is considered the 

default handling of signals, which means it sends the interrupt 

that is caused by the program.

•	 SIG_IGN ignores the signal that is caused by the program.

Here’s an example.

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

#include <signal.h>

void CUSTOM_HANDLER(int);

int main () {

   // SIGINT is used to intimate when any interrupt occurs to

  // the program.

  signal(SIGINT, CUSTOM_HANDLER);

  while(1) {

     printf("Hello World...!\n");

     sleep(1);

  }

  return 0;

}

// This function will call when any signal interrupt occurs.
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void CUSTOM_HANDLER(int signum) {

  printf("Caught signal %d, coming out from Program\n", signum);

  exit(1);

}

This code prints “Hello World...!” an infinite number of times. If an interrupt occurs 

in the program, SIGINT immediately catches that signal and sends it to the CUSTOM_

HANDLER function to handle it.

�Types of Signals
In Unix/Linux, signals are classified into two types based on functionality: unreliable and 

reliable.

�Unreliable Signals

Signals that doesn’t have any available installed signal handler and become lost means 

the process never knows about the signal that is being raised by the system. A process 

has very little control over unreliable signals. The process can catch a signal or ignore 

it, but blocking a signal is not possible with unreliable signals. A blocking operation 

means intimating the operating system explicitly to hold the signal for a certain time and 

releasing it when asked by the program.

�Reliable Signals

Signals that are not lost in the system are reliable. The process has complete control and 

can catch, ignore, and block signals using system calls. These signals are the enhanced 

version in Unix-based system.

Figure 5-29.  Signal generation output
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�System Calls for Signals
There are different system calls available in the signal.h library that manipulates the 

signals. Signal manipulation can be done with the following system calls.

•	 raise

•	 kill

•	 alarm

•	 pause

•	 abort

•	 sleep

�raise System Call

A raise system call raises a signal by the process itself. The return type of this system call 

is an integer. This system call returns zero on success and nonzero if a failure occurs.

The following shows the syntax.

int raise(int sig)

sig is the signal number that needs to be sent. This parameter depends on the type 

of signal you want to raise explicitly to the process itself. The signal numbers are from the 

built-in signals list.

Here’s an example.

#include <stdio.h>

#include<stdlib.h>

#include <signal.h>

void SIGNAL_HANDLER(int);

int main () {

   signal(SIGINT, SIGNAL_HANDLER);

   printf("Raising a new signal\n");

   int status = raise(SIGINT);
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   if(status != 0){

     printf("Something went wrong Unable to raise the new signal\n");

   }

  return 0;

}

void SIGNAL_HANDLER(int signal) {

  printf("signal caught and handled gracefully\n");

}

This code raises a signal for the running process, and that signal is handled by 

SIGNAL_HANDLER.

�kill System Call

A kill system call sends signals to other processes as well itself. A kill system call can 

also kill processes. The killing/terminating of a signal is similar to killing/terminating a 

process in an operating system.

�alarm System Call

In signals, there is an alarm clock facility that schedules the signal trap for the future. 

This system call is used by the process to schedule the SIG_ALARM signal. The return 

type of the alarm system call is an unsigned integer. It returns the number of seconds 

remaining in the set time that is to be delivered. If no alarm is set, it returns 0.

The following shows the syntax.

unsigned int alarm(unsigned int seconds)

seconds takes time in the form of seconds. The second’s value must be a positive 

number.

Figure 5-30.  Output of the raise system call
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Here’s an example.

#include<stdio.h>
#include<stdlib.h>
#include<unistd.h>
#include<signal.h>

void raisedAlarm(int sig);

int main(){

   alarm(5);

   signal(SIGALRM, raisedAlarm);

   while(1){
       printf("Hello World...!\n");
       sleep(1);
   }

   return 0;
}

void raisedAlarm(int sig){
   printf("The Alarm has Raised.\n");
   exit(0);
}

This code raises the alarm after seconds of code execution. It is very handy to set 
signal traps for time-dependent applications. Since the exit() function is used in the 

raisedAlarm function, it terminates the program.

Figure 5-31.  Output of the alarm system call
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�pause System Call

The pause system call suspends the execution of a program until a signal occurs. The 

return type of a pause system call is an integer. It takes 0 parameters. It returns –1 on 

failure; otherwise, it returns the respective signal catching function.

The following shows the syntax.

int pause(void)

Here’s an example.

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

#include <signal.h>

void SIGNAL_HANDLER(int);

int main(void){

   alarm(10);

   signal(SIGALRM, SIGNAL_HANDLER);

   if(alarm(7) > 0){

       printf("An alarm has been set already.\n");

   }

   pause();

   printf("You will not see this text.\n");

   return 1;

}

void SIGNAL_HANDLER(int signo){

   printf("Caught the signal with number: %d\n", signo);

   exit(0);

}
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This code catches the alarm signal interrupt. The remaining code below pause() 

does not work. This is because pause() suspends the current running program, but the 

alarm function and its handlers work parallelly. When SIGALRM is raised, the custom 

handler handles it.

�abort System Call

The abort system call terminates the program or process abnormally. This system call 

returns a void type. It takes zero parameters. This system call sends the SIGABRT signal 

to the process to terminate. This signal is not able to be overridden by other signals. This 

system call does not close all the files and pointers opened by the process since it causes 

an abnormal termination of the program.

The following shows the syntax.

void abort(void)

Here’s an example.

#include<stdio.h>

#include<unistd.h>

#include<stdlib.h>

#include<signal.h>

int main(){

   int status = fork();

   if(status == 0){

       printf("Child Process ID: %d\n", getpid());

   }else if(status > 0){

       printf("Parent Process ID: %d\n", getpid());

   }

Figure 5-32.  Output of pause system call
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   abort();

   printf("Due to abnormal termination this line will not execute.\n");

   return 0;

}

This program creates a child and parent process. After creating processes, the 

remaining lines of code that are present below abort() are not executed. This is because 

abort terminates the program abnormally. But the output of the program may differ.

�sleep System Call

This sleep system call sleeps the thread until the specified number of seconds have 

elapsed or a signal hits (which is not ignored). The return type of this system call is an 

unsigned integer. It returns 0 if the requested time has elapsed, or the number of seconds 

left to sleep if the call is interrupted by a signal handler.

The following shows the syntax.

unsigned int sleep(unsigned int seconds)

seconds takes the number of seconds that the process or thread wants to sleep as an 

argument.

Here’s an example.

#include<stdio.h>

#include<unistd.h>

#include<stdlib.h>

Figure 5-33.  Output of the abort system call
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int main(){

   for(int i=0; i<5; i++){

       printf("Hello World.\n");

       sleep(1);

   }

   return 0;

}

This code prints “Hello World” five times by sleeping for 1 second after every 

iteration of the loop.

�Summary
In this chapter, you were introduced to the process environment, including how to create 

and terminate a process.

•	 You looked at the environment variable and how to create it 

programmatically and by using commands.

•	 You explored the memory layout of the C program and how things 

are stored in a computer’s memory.

•	 Kernel support for the process teaches you about the Linux 

subsystem. In the Linux subsystem, you looked at various 

management schemes done by the Linux kernel internally.

•	 The creation of processes achieves concurrency. You learned a lot 

about how to create processes using built-in system calls in C.

Figure 5-34.  Output of sleep system call

Chapter 5  Process and Signals



164

•	 You learned that a process could become a zombie or an orphan.

•	 You learned about the various system calls that are available for 

process management. The system calls include vfork(), wait(), 

waitpid(), kill(), execv family system calls, and exit(), and _Exit() 

system calls.

•	 You saw signals and traps set in a program to create your custom 

interrupt in a program. You learned types of signals and system calls 

for signal management include abort(), sleep(), pause(), alarm(), 

raise(), and kill().

You now know the core concepts of process and signals in an operating system. You 

should be able to work with your custom applications and scripts in a very comfortable 

manner.
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CHAPTER 6

Interprocess 
Communication
Interprocess communication (IPC) is a mechanism that is widely used in an operating 

system to effectively access shared data. This mechanism is very important to the design 

process of microkernel and nanokernel development. An IPC mechanism is usually 

seen in a distributed computing environment, but it is also widely used in traditional 

computing environments. There are two types of IPC mechanisms: synchronous and 

asynchronous. In this chapter, you learn about the various techniques that achieve 

IPC. The following topics are covered.

•	 Introduction to IPC

•	 Benefits of IPC

•	 Modes of transmission

•	 Types of IPC

•	 Anonymous pipes

•	 APIs for anonymous pipes

•	 Implementation of anonymous pipes

•	 Named pipes, or FIFO

•	 Implementation of FIFO

•	 Introduction to message queues

•	 APIs for message queues

•	 Implementation of message queues

•	 Introduction to semaphores
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•	 Characteristics of semaphores

•	 Advantages and disadvantages of semaphores

•	 APIs for semaphores

•	 Race condition examples

•	 Solving the race condition by using semaphore and mutex 

mechanisms

�Introduction to IPC
Interprocess communication is a mechanism that lets processes communicate with 

other processes in an operating system. The process can be in the same system or 

a different system. IPC also involves synchronizing the actions of processes and 

managing data-sharing activity. The processes in an operating system are of two types: 

independent and cooperating.

�Independent Processes
A process that doesn’t share data with other processes is an independent process. It 

doesn’t affect other processes, and it is not affected by other processes. Independent 

processes are not involved in any interprocess communication activity.

�Cooperating Processes
A process that shares data with other processes is called a cooperating process. These 

processes achieve interprocess communication in an operating system. A cooperating 

process helps you achieve IPC in a system. Interprocess communication between 

processes are achieved in two ways: shared memory and message passing.

�Shared Memory

The IPC methodology simultaneously gives common memory access to multiple 

processes. It helps multiple processes communicate with each other. All POSIX-based 

and Windows operating systems use a shared memory mechanism to perform IPC.
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�Message Passing

Message passing is a model for performing IPC in an operating system. It is done by 

reading and writing data to the message queue created using the msgget() system call 

without being connected. Messages are stored in a queue until the receiver retrieves it.

Message passing helps you achieve different modes of communication.

•	 Communication between different threads within a process.

•	 Communication between different processes running on the same 

host machine.

•	 Communication between different processes running on different 

machines.

Figure 6-1.  Interprocess communication between processes
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In Figure 6-1, there are five processes. Let’s assume for now that all the processes 

belong to the same operating system, and some processes want to communicate with 

each other to share data and perform a system or user activity. IPC comes into the 

picture. It achieves communication between multiple processes. In this OS example, 

process A wants to share data with process C and process E. This is done with IPC.

�The Benefits of IPC
The following are some of the benefits of IPC.

•	 Information sharing: Sharing common information between 

processes is easy and offers better communication.

•	 Modularity: Modularity divides large code into smaller chunks. This 

modular code executes simultaneously on the system. Development 

is made easy with modularity. (But debugging becomes harder when 

several processes are communicating with each other.)

•	 Speed: A large task/activity is broken into smaller subtasks. Each 

subtask is assigned to separate threads within a process in the 

operating system. Processes use IPC to share data and improve 

computational speed by executing multiple tasks simultaneously.

�Modes of Communication
When transmission or communication is happening between two parties, it requires a 

medium and mode of transfer to communicate. There are three types of communication 

modes available for communication.

•	 Simplex

•	 Half Duplex

•	 Full Duplex
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�Simplex
In a simplex mode of data transmission, data is transferred in a unidirectional way, 

which means that only one process, one person, or one device can send data that others 

receive. Real examples of a simplex data mode transmission are radio and television 

broadcasting. The scope of this book focuses on unidirectional data transmission 

between processes.

Figure 6-2.  Simplex mode of data transmission

�Half Duplex
In a half-duplex mode of data transmission, data is transmitted bidirectionally but not 

at the same time. In this mechanism, a process, or a person, or a device has access 

to send and receive data but not at the same time. When one process is sending, the 

other processes must listen or receive. The best example of a half-duplex mode of data 

transmission is a walkie-talkie. This type of communication mechanism is used when 

there is no need for bidirectional communication at the same time.
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�Full Duplex
In a full-duplex mode of data transmission, data is transferred in a bidirectional way 

between two processes, or two persons, or two devices. This mode of transmission 

is used when bidirectional communication is needed between processes. The best 

example of a full-duplex mode of data transmission is a telephone, in which two people 

can speak simultaneously.

Figure 6-3.  Half-duplex mode of data transmission

Figure 6-4.  Full-duplex mode of data transmission

Chapter 6  Interprocess Communication



171

�Types of IPC
Interprocess communication establishes communication between different processes. 

This communication is done in two ways.

•	 Communication between two related processes (i.e., child and parent 

processes). Figure 6-5 represents IPC between different processes on 

a same machine using a single kernel.

•	 Communication between unrelated processes (i.e., two or more 

processes other than parent and child processes). Figure 6-6 

represents IPC between different processes on different systems.

Figure 6-5.  Communication between related processes

Figure 6-6.  Communication between unrelated processes
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The available mechanisms that achieve IPC in operating systems are  

discussed next.

�Pipes
A pipe establishes a connection between two related processes.

•	 Pipes are classified into two types.

•	 Named/FIFO pipes

•	 Unnamed/anonymous pipes

•	 Pipes follow a unidirectional (half-duplex) mechanism to establish 

communication between processes.

•	 A pipe has two file descriptors: one for reading and the other for 

writing.

•	 Figure 6-7 shows that a pipe can write/send data from one side and 

the other side can read/receive it.

•	 To achieve a full-duplex mechanism in pipes, you need to use two 

pipes: one pipe reads the data from the pipe, and the other one writes 

the data to the pipe.

•	 The operations that use pipes are write and read operations.

•	 A pipe creates using a pipe() system call.

Figure 6-7.  The architecture of an anonymous pipe
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�FIFO (Named Pipe)
FIFO (first in, first out) establishes a connection between two unrelated processes.

•	 FIFO is also called a named pipe.

•	 FIFO is an extension of the traditional pipe in the Unix system.

•	 FIFO uses the unidirectional (half-duplex) mechanism to establish 

communication between processes.

•	 A named pipe is created using the mkfifo() system call.

�Message Queues
Message queues establish communication between multiple processes using a full-

duplex mechanism.

•	 It uses the asynchronous mechanism to serve the processes.

•	 The operating system’s kernel manages message queues.

•	 It is an easy way to transfer the data between processes.

•	 A message queue is created using a msgget() system call that returns 

the queue identifier.

�Semaphores
A semaphore provides synchronization of the data to avoid race conditions.

•	 When two or more processes are accessing the same code/data block 

in a program, the block is called the critical section.

•	 A race condition is a situation that occurs inside a critical section 

when two or more threads are trying to access and change the same 

data at the same time. This leads to incorrect results. Synchronization 

is required to avoid this situation. It is done with semaphores and 

other locking mechanisms.

•	 A semaphore maintains data consistency and security. Data 

consistency refers to the maintenance of data without any loss, even 

when multiple threads and processes are using it.
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�Shared Memory
Shared memory communicates between multiple processes using common shared 

memory.

Shared memory needs to be protected from race conditions. This is done by using 

a semaphore technique. Race conditions can also be avoided using proper thread 

synchronization techniques and locking mechanisms.

�Sockets
Sockets establish communication over a network.

•	 IPC between different computers is achieved using the socket 

mechanism.

•	 It enables you to use channel-based communication over a network.

•	 Data is transferred based on protocol standards.

•	 In the TCP protocol standard, data is transferred in sequential order.

•	 There is no standard for data transfer in the UDP protocol.

�Anonymous Pipes
Anonymous pipes create a communication medium between interrelated processes. 

Anonymous pipes are also called unnamed pipes. Anonymous pipes establish a 

communication parent process and child process or a parent process and grandchild 

process. The working mechanism of a pipe is represented in Figure 6-8.
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When process1 writes data to the pipe, it is read by another process using a file 

descriptor. When data is written to the main memory, the pipe treats that data as 

a virtual file. Accessing that data is done with a file descriptor. The write and read 

operations in files are done with two standard file descriptors. The most common 

example of a pipe is a shell command using a pipe symbol.

�APIs for Anonymous Pipes
Anonymous pipes are created with the help of pipe() system call available in <unistd.h> 

library since they are part of the traditional Unix system. The system calls that perform 

IPC using traditional Unix pipes are pipe(), write(), read(), and close(). The syntax and 

working principles of these system calls are discussed next.

�pipe()

The pipe() system call opens the file descriptors that communicate with different Linux 

processes. This system call creates a pipe that transmits the data in a unidirectional way 

to establish an IPC between the related processes. It creates two file descriptors: one for 

reading and the for writing. The return type of this system call is an integer. It returns 0 if 

successful; if it fails, it returns –1 with a respective error code. The error code is obtained 

with the perror() system call.

The following shows the syntax.

int pipe(int pipefd[2])

Figure 6-8.  Anonymous pipe working mechanism
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pipefd takes an integer descriptor array of size 2, which performs the read and 

write operations. Pipefd[1] writes the content into the pipe, and pipefd[0] reads the 

content from the pipe. Since pipes follow a unidirectional flow of data transfer, the read 

operation needs to be done after the write action is performed.

�close()

The close() system call closes the opened descriptors. The return type of this system call 

is an integer. It returns 0 if successful and –1 if any failure occurs. When you want to get 

the error code, you need to use the perror() system call.

The following shows the syntax.

int close(int fd)

fd takes the file descriptor parameter and closes the given file descriptor. Once a file 

descriptor is closed, it is no longer available to use again.

�write()

The write() system call writes the content to a specific file with certain arguments of that 

file descriptor. This system call uses a buffer to write the content into the file descriptor. 

The return type of this system call is ssize_t. If successful, it returns the number of bytes 

written to the file; otherwise, it returns –1.

The following shows the syntax.

ssize_t write(int fd, const void *buf, size_t count)

•	 fd takes the file descriptor that is created with the pipe() system call 

to uniquely identify the file descriptor.

•	 buf takes the message that is written to the pipe or file descriptor.

•	 count takes the size of the buffer that is writing to the pipe/file 

descriptor.

�read()

The read() system call reads the content from the file descriptor or pipe. The return type 

of this system call is ssize_t. It returns the number of bytes read from the file descriptor 

and returns –1 if any failure occurs.
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The following shows the syntax.

ssize_t read(int fd, void *buf, size_t count)

•	 fd takes the file descriptor that is created using a pipe() system call to 

uniquely identify the descriptor.

•	 buf is the buffer value that reads the message from the file descriptor 

or pipe.

•	 count takes the size of the buffer that is reading from the descriptor/pipe.

�Creating Anonymous Pipes
This section deals with the creation of traditional Unix pipes to perform interprocess 

communication using file descriptors. A pipe’s flow of construction is represented using 

a flowchart shown in Figure 6-9. The following steps achieve IPC using pipes.

	 1.	 Create a pipe using the pipe() system call.

	 2.	 If the user quits, the program terminates; otherwise, go to step 3.

	 3.	 Write the data into the pipe using a write() system call.

	 4.	 Once the write operation is done, the read() system call reads the 

data from the pipe.

	 5.	 Steps 3 and 4 repeat until the user quits the program.
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The following is an example.

#include<stdio.h>

#include<string.h>

#include<unistd.h>

#define BUFFER_SIZE 1024

// Global Variables

int pipefds[2];

int status;

char writemessage[BUFFER_SIZE];

Figure 6-9.  Flowchart of an anonymous pipe
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char readmessage[BUFFER_SIZE];

// pipeOperation() to perform read and write Operations.

void pipeOperation(){

  printf("Writing to pipe - Message is %s", writemessage);

  write(pipefds[1], writemessage, sizeof(writemessage));

  read(pipefds[0], readmessage, sizeof(readmessage));

  printf("Reading from pipe – Message is %s", readmessage);

}

int main() {

  status = pipe(pipefds);

  if (status == -1) {

     printf("Unable to create pipe\n");

     return 1;

  }

  printf("Enter the message to write into Pipe\n");

  printf("To exit type \"quit\" \n");

  fgets(writemessage, BUFSIZ, stdin);

// This loop is used to take continuous Standard input.

  while (strcmp(writemessage, "quit\n") != 0) {

       pipeOperation();

       fgets(writemessage, BUFSIZ, stdin);

   }

  close(pipefds[0]);

  close(pipefds[1]);

  return 0;

}
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Figure 6-10 shows the output.

�Implementation of Pipes Using Child and Parent 
Processes
This section creates pipes and performs read and write operations using child and parent 

processes. The flow of pipe construction and the operations of a pipe are represented in a 

flowchart in Figure 6-11. The following steps handle the operation of a pipe.

	 1.	 Create a pipe using the pipe() system call.

	 2.	 If the user quits, the program terminates; otherwise, create a child 

process.

	 3.	 Write the data into the pipe using the parent process.

	 4.	 Read the data from the pipe using the child process.

	 5.	 Steps 3 and 4 repeat until the user quits.

Figure 6-10.  The output of the anonymous pipe program
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The following is an example.

#include<stdio.h>

#include<string.h>

#include<unistd.h>

#include<signal.h>

Figure 6-11.  Flow chart of anonymous pipes handling through child and  
parent processes
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#define BUFFER_SIZE 1024

// Global Variables

int pipefds[2];

int status, pid;

char writemessage[BUFFER_SIZE];

char readmessage[BUFFER_SIZE];

void pipeOperation(){

   pid = fork();

   // Child Process to Read the Data.

   if(pid == 0){

       read(pipefds[0], readmessage, sizeof(readmessage));

       �printf("Child Process: Reading from pipe – Message is %s", 

readmessage);

   }else{  // Parent Process to write the data.

       �printf("Parent Process: Writing to pipe - Message is %s", 

writemessage);

       write(pipefds[1], writemessage, sizeof(writemessage));

   }

}

int main() {

  status = pipe(pipefds);

  if (status == -1) {

     printf("Unable to create pipe\n");

     return 1;

  }

  printf("Enter the message to write into Pipe\n");

  printf("To exit type \"quit\" \n");

  fgets(writemessage, BUFSIZ, stdin);

  while (strcmp(writemessage, "quit\n") != 0) {

       pipeOperation();

       fgets(writemessage, BUFSIZ, stdin);
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       kill(pid, SIGKILL); // Killing

   }

  return 0;

}

Figure 6-12 shows the output.

�Working with Named Pipes
Named pipes (also called FIFO) communicate with two unrelated processes. Traditional 

Unix pipes achieve IPC between related processes. When you want to communicate 

with an unrelated/different process, then FIFO achieves it. A named pipe is used for 

bidirectional communication. In traditional Unix pipes, bidirectional communication is 

done with two different pipes: one for writing the data and the other for reading the data. 

A named pipe can be created with two different system calls: mknod() or mkfifo().

�mknod() System Call
The mknod system call creates a special file, device file, or FIFO file. This system call is 

available in a sys/stat.h header file. The return type of this system call is an integer. On 

the successful execution of a system call, it returns 0; if any error occurs, it returns –1.

Figure 6-12.  The output of the anonymous pipes handled by child and parent 
processes
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The following shows the syntax.

int mknod(const char *pathname, mode_t mode, dev_t dev)

•	 pathname takes the complete path of the creating FIFO, or device file, 

or ordinary file to where you want to place that file in your system 

memory. The pathname is relative; if you don’t specify the path, then 

it is created in the program execution current directory.

•	 mode represents the type of file. The available file types are shown in 

Table 6-1.

None of the file types are portable except S_IFIFO.

�Dev

Dev represents the permissions that you can assign to a newly created file. The available 

file permissions are described in Table 6-2.

Table 6-1.  Available File Types

File Type Description

S_IFIFO FIFO Special

S_IFCHR Character Special

S_IFREG Regular File

S_IFDIR Directory

S_IFLNK Symbolic Link

S_IFBLK Block Special File
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You can also give permissions to a file using the octal representation, as explained in 

Chapter 1.

�mkfifo() System Call
The mkfifo system call creates the FIFO special file. This system call is available in the 

sys/stat.h library. The return type of this system call is an integer. It returns 0 on the 

successful creation of a FIFO special file. If any error occurs, then it returns –1, and no 

FIFO is created.

The following shows the syntax.

int mkfifo(const char *pathname, mode_t mode)

•	 pathname takes the path of the special FIFO file. The path may be 

relative or absolute. If the path is not specified, it is created in the 

current program’s executing directory.

Table 6-2.  Available File Permissions

File Mode Description

S_IRWXU Read, write, and execute permissions by the owner

S_IRUSR Read permissions by the owner

S_IWUSR Write permissions by the owner

S_IXUSR Execute permissions by the owner

S_IRWXG Read, write, execute permissions by group

S_IRGRP Read permission by group

S_IWGRP Write permissions by group

S_IXGRP Execute permissions by group

S_IRWXO Read, write, execute permissions by others

S_IROTH Read permissions by others

S_IWOTH Write permissions by others

S_IXOTH Execute permissions by others
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•	 mode represents the permission that you want to keep for the newly 

created FIFO file. All the file mode permissions are the same as the 

mknod’s system call.

�mknod vs. mkfifo
Both system calls create a FIFO special file. The mkfifo system call can create a 

standard and portable FIFO, whereas mknod can’t create a standard and portable 

FIFO. The mknod system call creates not only FIFO but also different types of files. It 

is highly recommended that you use mkfifo to create a FIFO for IPC because it makes 

communication more reliable than mknod.

�Creating FIFO
This section creates a simple communication application that sends data from the client 

to the server using named pipes. The server reads the content that is sent by the client. 

The client sends the data to the server. The server has read permissions, whereas the 

client has write permissions.

Let’s look at the server and client working mechanisms.

�FIFO Server

A FIFO server reads the data sent by the client using the named pipe that establishes 

an IPC between the processes. The workflow of the FIFO server is represented as a 

flowchart in Figure 6-13. The following are the steps involved in a FIFO server.

	 1.	 Create a named pipe using mkfifo().

	 2.	 Open the named pipe with read-only permissions.

	 3.	 Accept the messages/data from the FIFO client.

	 4.	 If the client sends a quit message, it prints on the standard console 

and terminates the server program.

	 5.	 If the client sends a normal message, it prints it to the standard 

console and waits to receive messages from the client.

	 6.	 Step 5 repeats until the client quits the server program.
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#include <stdio.h>

#include <unistd.h>

#include <string.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <fcntl.h>

Figure 6-13.  FIFO server working mechanism architecture
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#define FIFO_FILE "FIFO"

int file_descriptor;

char message_buffer[1024];

int read_buffer_bytes;

void receiveData(){

  while(1) {

     file_descriptor = open(FIFO_FILE, O_RDONLY);

     �read_buffer_bytes = read(file_descriptor, message_buffer, 

sizeof(message_buffer));

     message_buffer[read_buffer_bytes] = '\0';

     if((int)strlen(message_buffer) == 0){

        close(file_descriptor);

        break;

     }

     printf("Received Message: %s\n", message_buffer);

  }

}

int main() {

  // Create the FIFO if it does not exist

  mknod(FIFO_FILE, S_IFIFO|0640, 0);

  // Function to receive the data from pipe.

  receiveData();

  return 0;

}

�FIFO Client

A FIFO client sends data to the server using named pipes. The overall workflow of a FIFO 

client is represented as a flowchart in Figure 6-14. The following steps are used by the 

FIFO client.

	 1.	 Create a named pipe using mkfifo().

	 2.	 Open the named pipe with write-only permissions.

	 3.	 Wait for the message from the client.
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	 4.	 If the message is to quit, then the client and server immediately 

quit and print the quit message.

	 5.	 If the client enters any other message, it is sent to the server. The 

server receives the message and prints it to the screen. During this 

process, IPC takes place between the processes.

	 6.	 Step 5 repeats until the client quits the program.

Figure 6-14.  FIFO client working mechanism architecture
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#include <stdio.h>

#include<stdlib.h>

#include <unistd.h>

#include <string.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <fcntl.h>

#define FIFO_FILE "FIFO"

// Global Variables Data

int file_descriptor;

int end_process;

int stringlen;

char message_buffer[1024];

char end_message_buffer[5];

void sendMessage(){

  while (1) {

        fgets(message_buffer, sizeof(message_buffer), stdin);

        stringlen = strlen(message_buffer);

        message_buffer[stringlen - 1] = '\0';

        end_process = strcmp(message_buffer, end_message_buffer);

        // FIFO Client Exist Condition

        if(strcmp(message_buffer, "end") == 0){

           printf("FIFO PIPE is done with sending the data.\n");

           close(file_descriptor);

           exit(1);

        }

        // Prinitng the Data to the Screen that is sent to the Server

        if (end_process != 0) {

           write(file_descriptor, message_buffer, strlen(message_buffer));

           printf("Sent Message: %s\n", message_buffer);
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        } else {

           write(file_descriptor, message_buffer, strlen(message_buffer));

           printf("Sent Message: %s\n", message_buffer);

           close(file_descriptor);

           break;

        }

  }

}

int main() {

  printf("FIFO CLIENT is ready to send the messages to server.\n");

  printf("Enter lines of text, enter \'end\' to quit:\n");

  file_descriptor = open(FIFO_FILE, O_CREAT|O_WRONLY);

  // Function call to send the data to the FIFO.

  sendMessage();

  return 0;

}

Figures 6-15 and 6-16 show the output.

Figure 6-15.  FIFO client program output
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�Using Message Queues
Named pipes send data between two processes in a byte-oriented format, which means 

all the data sent by the process is read character by character. This mechanism is also 

called a byte-oriented data transfer mechanism, which is achieved using the byte stream 

protocol. The byte-oriented mechanism is a slow process and follows a synchronous 

data transferring mechanism to achieve the IPC.

The problem with named pipes is that the message/data that is written to the pipe 

is deleted once the client performs the read operation. So more than one process can’t 

access the data using pipes. Message queues were introduced to avoid this issue. In 

message queues, the data is stored within the kernel, so you can access the data and 

process it based on your needs. The data is available for any number of processes until it 

is deleted explicitly.

A message queue is a linked list that stores the messages within the kernel. The 

message is identified with a message queue identifier. It follows a bidirectional 

mechanism of data transfer, which is not provided by the named and unnamed pipes. 

The message queue remains in the system until it is deleted explicitly. The general 

workflow of message queues is represented in Figure 6-17.

Figure 6-16.  FIFO server program output
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�APIs for Message Queues
Message queues are implemented with the <sys/ipc.h> and <sys/msg.h> libraries. The 

system calls that quietly perform the IPC using message queues are msgget(), msgsnd(), 

msgrcv(), and msgctl(). Each system call has a specific purpose in the life cycle of an IPC 

using message queues.

Figure 6-17.  Workflow of message queues
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�ftok()

The ftok() system call creates a unique key that is used by the message queues, 

semaphore, and shared memory. The ftok() system call is available in the <sys/ipc.

h> library. The return type of this system call is key_t type, which returns a key that is 

a positive value. Successful creation of this key returns a unique key value; otherwise, 

it returns –1 with an error code message. Some of the most common error codes are 

described in Table 6-3.

Table 6-3.  Common Error Codes

Error Code Description

EACCES Permissions are denied.

ENOTDIR The component of the path prefix is not a directory.

ENAMETOOLONG The length of the argument exceeds the size.

The following shows the syntax.

key_t ftok(const char *path, int id)

•	 path takes the absolute path of the special file as a parameter to the 

point with a special key.

•	 id takes the character value, which typecasts automatically into an 

integer type and assigns the key to the given file.

�msgget()

The msgget() system call creates a new message queue identifier or connects with the 

existing message queue identifier. The return type of this system call is an integer. A 

successful creation or connection of the message queue identifier returns the value of 

the message queue identifier, which is a positive value; otherwise, it returns –1 with any 

one of the error messages in Table 6-4.
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The following shows the syntax.

int msgget(key_t key, int msgflg)

•	 key takes the unique key that is created using the ftok() system call.

•	 The msgflag message flag sets the permissions and creates the IPC. If 

the message queue is ready, it gives an error message with EEXIST 

code.

�msgsnd()

The msgsnd() system call sends data to the message queue using the message buffer 

object to achieve the IPC. The msgsnd() system call has permissions to write the data 

to the buffer. The process that calls the msgsnd() system call also needs to have write 

permissions. The return type of this system call is an integer. It returns 0 if writing data to 

the buffer was successful; otherwise, it returns –1 with an error code (see Table 6-5).

Table 6-4.  Error Messages

Error Code Description

ENOMEM No sufficient memory for message queue creation

EEXIST Message queue already exists

ENOSPC System limit exceeded for message queue creation

EACCES Permissions issues with key and message queue identifier

Table 6-5.  Error Codes

Error Code Description

EACCES If the calling process doesn’t have write permissions

EIDRM Message queue is removed in the middle of the process

ENOMEM System doesn’t have enough memory

EINVAL Invalid Message Queue Identifier
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The following shows the syntax.

int msgsnd(int msqid,

           const void *msgp,

           size_t msgsz,

           int msgflg)

•	 msqid takes the message queue identifier, which is created using the 

msgget() system call.

•	 The msgp message pointer is the buffer pointer value that takes the 

message buffer/data that writes to the message queue.

•	 msqsz takes the size of the message that writes to the message queue. 

The size is usually represented in bytes.

•	 The msgflag message flag value is usually set to 0 or ignored; else, 

you can use IPC_NOWAIT. If the message queue is full, the message 

buffer does not write any data to the message queue and control 

returns to the same calling process; otherwise, the calling process 

suspends or blocks until the message buffer is written to the message 

queue. If the IPC_NOWAIT flag is not 0, the message does not send, 

and the calling process returns immediately. If the IPC_NOWAIT flag 

is 0, then the calling process is suspended until the message queue 

is removed from the system. For a 0 flag value, you can set custom 

conditions to make the calling process suspended.

Here is the message buffer structure.

struct messageBuffer {

   long messageType;

   char messageText[1];  // Message Data.

};
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Message Type

messageType is the message type that sends data from the message buffer. This message 

type communicates with other message types.

•	 If the message type value is 0, the first message in the queue is read.

•	 If the message type value is greater than 0, it reads the first message 

in the queue of type msgtype. For example, if the message type value 

is 7, it reads only this value, even though other types of messages are 

available in the message queue.

•	 If the message type value is less than 0, the first message in the queue 

with the lowest type less than or equal to the absolute value of the 

message type is read. For example, if the message type is –7, it reads the 

first message type that is less than 7 (i.e., a message type from 1 to 7).

Message Text

A message text is a character array that stores the data sent to the message queue.

�msgrcv()

The msgrcv() system call receives the data that is written to the message queue. A msgrcv() 

system call must have read permissions to read the data from the message queue, and 

the calling process needs to have read permissions. The return type of this system call is 

ssize_t. If reading data from the message queue is successful, it returns the number of bytes 

that have read from the queue; otherwise, it throws an error code by returning –1.

The following shows the syntax.

ssize_t msgrcv(int msqid,

               void *msgp,

               size_t msgsz,

               long msgtyp,

               int msgflg)
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•	 msqid takes the message queue identifier, which is created using the 

msgget() system call.

•	 The msgp message pointer points to the message buffer that is read 

from the message queue. The received message has a NULL value at 

the end of the string.

•	 msqsz is the size of the message received from the message queue.

•	 msqtyp indicates the type of message that you want to receive from 

the queue.

•	 The msgflag message flag value is usually set to 0 or ignored, or 

you can use IPC_NOWAIT. If this flag is specified when the message 

queue is full, the message buffer does not write any data to the 

message queue and control returns to the same calling process; 

otherwise, the calling process is suspended or blocked until the 

message buffer is written to the message queue. You can use the 

MSG_NOERROR flag that truncates the message if the size exceeds.

�msgctl()

The msgctl() system call performs the control operations on the message queue. In 

general, the msgctl() system call destroys the queue. The return type of this system call is 

an integer. It returns 0 for successful operations and returns –1 if any error/failure occurs. 

You can use the perror() to get the respective error code.

The following shows the syntax.

int msgctl(int msqid, int cmd, struct msqid_ds *buf)

•	 msqid takes the message queue identifier, which is created using the 

msgget() system call that identifies the message queue.

•	 The cmd flag performs certain operations on message queues using 

commands or flags. The following are the most common commands 

used for this parameter.

•	 IPC_SET sets the user ID and group ID of the owner and sets the 

permissions.

•	 IPC_INFO returns information about the message queue.
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•	 IPC_RMID immediately removes the message queue from the kernel.

•	 IPC_STAT provides information about the msqid_ds buffer, which 

is a part of the same system call.

•	 MSG_INFO returns information about the msginfo structure 

and the resources used by the message queue in the system. The 

structure of the message information is as follows.

struct msginfo {

     int msgpool; /* Size in kibibytes of the buffer pool

                    used to hold message data;

                    unused within kernel */

     int msgmap;  /* Maximum number of entries in the

                    Message map; unused within kernel*/

     int msgmax;  /* Maximum number of bytes that can be

                    written in a single message */

     int msgmnb;  /* Maximum number of bytes that can be

                     written to queue; used to initialize

                     msg_qbytes during queue creation

                     (msgget(2)) */

     int msgmni;  /* Maximum number of message queues */

     int msgssz;  /* Message segment size;

                     unused within kernel */

     int msgtql;  /* Maximum number of messages on all

                    �Messages in the system; unused within 

kernel */

     unsigned short int msgseg; /* Maximum number of;

                     segments unused within kernel */

};
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•	 The buf argument is a pointer variable that points to the message 

queue structure named struct msqid_ds. This buffer works based on 

the commands specified by the user. The msqid_ds data structure is 

available in <sys/msg.h> as follows.

struct msqid_ds {

  struct ipc_perm msg_perm;   // Ownership and permissions

  time_t msg_stime;           // Time of last msgsnd()

  time_t msg_rtime;           // Time of last msgrcv()

  time_t msg_ctime;           /* Creation time/time of last

                                 modification via msgctl() */

  unsigned long __msg_cbytes; /* Current number of bytes in

                                 queue (nonstandard) */

  msgqnum_t msg_qnum;         /* Current number of messages

                                 in queue */

  msglen_t msg_qbytes;        /* Maximum number of bytes

                                 allowed in queue */

  pid_t msg_lspid;            // PID of last msgsnd()

  pid_t msg_lrpid;            // PID of last msgrcv()

};

Let’s look at the terms that are used in msqid_ds.

•	 msg_perm is an ipc_perm structure that describes the permissions of 

the message queue. The structure of ipc_perm is as follows.

struct ipc_perm {

  key_t  __key;         // Key supplied to msgget()

  uid_t  uid;           // Effective UID of owner

  gid_t  gid;           // Effective GID of owner

  uid_t  cuid;          // Effective UID of creator

  gid_t  cgid;          // Effective GID of creator

  unsigned short mode;  // Permissions

  unsigned short __seq; // Sequence number

};
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•	 msg_qnum describes the number of messages that are currently 

available in the message queue. This property is very handy for 

checking the number of messages in a message queue while writing 

custom programs.

•	 msg_qbytes describes the maximum number of bytes that are 

allowed in a message queue for a single message.

•	 msg_lspid provides the ID of the process that calls the msgsnd() 

system call.

•	 msg_lrpid provides the ID of the process that calls the msgrcv() 

system call.

•	 msg_stime provides the time taken by the msgsnd() system call to 

perform the operation.

•	 msg_rtime provides the time taken by the msgrcv() system call to 

perform the operation.

•	 msg_ctime provides the creation time of the message queue or 

execution time of the msgctl() system call operation.

�Message Queue Implementation
This section looks at the implementation of IPC using message queues by developing 

sender and receiver applications. This is straightforward once you understand the 

concepts.

The following is a sender program.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <string.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

// Permissions for the Message Queue.
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#define PERMISSIONS 0777

// Definition of Message Buffer

struct messageBuffer {

  long messageType;

  char data[1024];

};

// Global Declaration of Message Buffer Object

struct messageBuffer object;

// Global Data for Variables

int msqid;

int len;

int string_status;

key_t key;

// Function to send the data to the message queue.

void sendMessage(){

  while(fgets(object.data, sizeof object.data, stdin) != NULL) {

     // Calculating the length of the data object.

     len = strlen(object.data);

     if (object.data[len-1] == '\n') object.data[len-1] = '\0';

     // If message queue unable to send the message then

     // below condition Checks and throws an error and exit the message queue.

     if (msgsnd(msqid, &object, len+1, 0) == -1){

        perror("msgsnd");

        exit(1);

     }

     // Checking for the sender exit status.

     string_status = strcmp(object.data, "end");

     if(string_status == 0)

        break;

  }
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  if (msgctl(msqid, IPC_RMID, NULL) == -1) {

     perror("msgctl");

     exit(1);

  }

  printf("Message Queue is done with sending messages.\n");

}

int main() {

  system("touch messagequeue.txt");

  if ((key = ftok("messagequeue.txt", 'B')) == -1) {

     perror("ftok");

     exit(1);

  }

  if ((msqid = msgget(key, PERMISSIONS | IPC_CREAT)) == -1) {

     perror("msgget");

     exit(1);

  }

  printf("Message Queue is ready to send messages.\n");

  printf("Enter lines of text, enter \'end\' to quit:\n");

  object.messageType = 1; // Setting the message type value to 1.

   // Calling the function to send the data to the message queue.

  sendMessage();

  // Deleting the created file

  system("rm messagequeue.txt");

  return 0;

}

The following is a receiver program.

#include <stdio.h>

#include <stdlib.h>

#include<string.h>

#include <errno.h>

#include <sys/types.h>

Chapter 6  Interprocess Communication



204

#include <sys/ipc.h>

#include <sys/msg.h>

#define PERMISSIONS 0777

// Definition of Message Buffer

struct messageBuffer {

  long mtype;

  char data[1024];

};

// Global Declaration of Message Buffer Object

struct messageBuffer object;

// Global Data for Variables

int msqid;

int string_status;

key_t key;

// Function to receive the data from message queue.

void receiveMessages(){

  while(1) {

     // Trying to retrieve the data from message queue by checking the condition.

     // If there is any error, while retrieving the data then

     // condition throw an error and exits the function.

     if (msgrcv(msqid, &object, sizeof(object.data), 0, 0) == -1) {

        perror("msgrcv");

        exit(1);

     }

     printf("received: \"%s\"\n", object.data);

     string_status = strcmp(object.data,"end");

     if (string_status == 0)

        break;

  }

}

int main() {
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  // Creating the unique Identifier for the message queue.

  if ((key = ftok("messagequeue.txt", 'B')) == -1) {

     perror("ftok");

     exit(1);

  }

  // Connecting the Message Queue.

  if ((msqid = msgget(key, PERMISSIONS)) == -1) {

     // connect to the queue

     printf("Unable to Create the Message Queue.\n");

     perror("msgget");

     exit(1);

  }

  printf("Message Queue is ready to receive messages.\n");

  // �Calling the receive message function to retrieve the data from the 

message queue.

  receiveMessages();

  printf("Message Queue is done with receiving messages.\n");

  return 0;

}

Figures 6-18 and 6-19 show the output.

Figure 6-18.  Message queue sender output
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�Introduction to Semaphores
A semaphore achieves process synchronization. When two or more processes are using 

the same resources to perform a task, it may result in improper output. To avoid that 

problem, a lock keeps the critical section. (A lock uses synchronization mechanisms 

to prevent multiple threads from accessing the same data at the same time. A critical 

section means the common resources shared by multiple processes.)

Dijkstra introduced semaphores to avoid a critical section problem and to achieve 

process synchronization. A semaphore is a positive integer variable that is shared 

between threads and processes. A semaphore allows or blocks the resources of a process 

or thread based on conditions. Semaphores are classified into two types: binary and 

counting.

�Binary Semaphores
Binary means two (i.e., either 0 or 1). A binary semaphore has two possible values (i.e., 

either 0 or 1) that solve the critical section problem for multiple processes. In a binary 

semaphore, there are two kinds of operations available (i.e., wait and signal operations). 

If the semaphore value is 1, a wait operation takes place. If the semaphore value is 0, a 

signaling operation takes place. In a wait operation, the process waits for the resources to 

be used. In a signal operation, the process is utilizing the available resources.

Figure 6-19.  Message queue receiver output
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�Counting Semaphores
Counting semaphores control the resources that have multiple instances. A counting 

semaphore has a value over a certain domain range, and it solves the critical section 

problem. If the counter value is 0, the resources are unavailable. If the resources are 

utilizing the process with multiple instances, the counter value is incremented based on 

the number of instances. If resources are unavailable for the new instance, the value is 

set to 0.

�Characteristics of Semaphores
Here are the characteristics of a semaphore.

•	 It is a low-level synchronization mechanism for processes.

•	 A semaphore has a nonnegative integer value.

•	 It can work with many processes at the same time.

•	 It synchronizes the global memory that is accessed by many 

processes/threads.

•	 Each critical section has a specific semaphore, but that is not 

mandatory. You can set the same semaphore for multiple critical 

sections as well.

�The Advantages of Using a Semaphore
Here are the advantages of using a semaphore.

•	 It allows only one thread/process at a time to use the critical section 

because it uses mutual exclusion.

•	 It is a machine-independent mechanism.

•	 It manages resources flexibly.

•	 It reduces process time and resources because the process, which 

is in a waiting state, doesn’t use processor time to check for the 

condition to enter the critical section. Semaphores handle everything 

related to the critical section.
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�The Disadvantages of Using a Semaphore
Here are the disadvantages of using a semaphore.

•	 The operating system needs to keep track of all changes done by 

wait() and signal() calls.

•	 It may lead to deadlock in certain situations. A deadlock is a situation 

that usually occurs in an operating system; that is, when a process or 

thread enters a waiting state because of the unavailability of system 

resources that are being used by other processes or threads in the 

system, this situation leads to a deadlock condition. But you can 

resolve or overcome a deadlock situation with deadlock detection and 

avoidance algorithms, which are usually called banker’s algorithms. (The 

explanation of a banker’s algorithm is beyond the scope of this book.)

•	 Semaphore programming is hard to do.

�Semaphore vs. Mutex
Table 6-6 compares a semaphore to a mutex.

Table 6-6.  Comparing a Semaphore to Mutex

Semaphore Mutex

It is a signaling mechanism. It is a locking mechanism.

It is an integer type. It is an object type.

The modification of a semaphore is done with the wait 

and signal operations.

The modification is done with the 

process only.

Resource management is done with the wait and signal 

operations.

Resource management is done with a 

locking mechanism.

The semaphore value is changed using wait() and  

signal() calls.

The mutex value is changed using the 

lock and unlock mechanisms.

There are two types of semaphores: binary and counting. A mutex has no subtypes.

You can have multiple program threads at the same time. You can have multiple program threads 

at the same time but not simultaneously.
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�APIs for a Semaphore
Semaphore programming is done with the <sys/sem.h> library. The system calls that are 

widely used to work with semaphore programming are semget(), semop(), semctl(). This 

section addresses system calls.

�semget()

The semget() system call creates a new semaphore or gets an existing semaphore. The 

return type of this system call is an integer. It returns the valid semaphore identifier if 

successful and returns –1 if any failure occurs. When you want to get the respective error 

code, you need to use the perror() system call.

The following shows the syntax.

int semget(key_t key, int nsems, int semflg)

•	 key is the first parameter that takes the key value as an argument that 

identifies the message queue identifier. The key is either set manually 

or created by ftok() system call.

•	 nsems takes the parameter of the number of semaphores. In a binary 

semaphore, 1 implies the need for one semaphore set. In a counting 

semaphore based on the count, the number of semaphores is added.

•	 The semflg parameter deals with the flags required to create the 

semaphore and the permissions that are set for the newly created 

semaphore.

�semop()

The semop() system call acquires or releases the semaphore. This system call deals with 

resource allocation and freeing the resources. The return type of this system call is an 

integer. It returns 0 if successful and returns –1 if any failure occurs.

The following shows the syntax.

int semop(int semid,

          struct sembuf *semops,

          size_t nsemops)
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•	 semid takes the semaphore identifier that is created using the 

semget() system call.

•	 semops is a pointer to an array of operations that must be performed 

on the semaphore. The structure variable is as follows.

struct sembuf {

  unsigned short sem_num; // Semaphore set num

  short sem_op;           // Semaphore operation

  short sem_flg;          // Operation flags, IPC_NOWAIT, SEM_UNDO

};

In this structure, sem_op represents the semaphore operation that 

needs to be performed.

•	 If the sem_op value is negative, then semaphore obtains or 

allocates the resources to the processes.

•	 If the sem_op value is positive, then the semaphore releases the 

resources.

•	 If the sem_op value is 0, then the calling process waits until the 

semaphore value reaches 0.

•	 nsemops represents the number of operations to perform on that array.

�semctl()

The semctl() system call performs various operations on the semaphore. The operations 

include getting and setting information about the semaphore. semctl() also removes the 

semaphore from the operating system. The return type of this system call is an integer. It 

returns a positive integer if successful and returns –1 if any error occurs.

The following shows the syntax.

int semctl(int semid, int semnum, int cmd, ...)

•	 semid is a semaphore identifier value that is created using a semget() 

system call, which uniquely identifies the semaphore on an operating 

system.
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•	 semnum deals with the number of semaphores counted; the value 

starts at 0.

•	 cmd takes the command that you want to perform on a semaphore.

�Accessing Global Data Without Semaphores
This section presents a simple example that accesses global data without a semaphore 

using multiple threads, and shows how this leads to inconsistency in data.

#include<stdio.h>

#include<stdlib.h>

#include<unistd.h>

#include<pthread.h>

// Global Data variables.

int a = 5, b = 7;

// Function that access the global data.

void* add_two_numbers(void* arg){

   a = a + 3;

   b = b - 1;

   printf("a value is: %d and ", a);

   printf("b value is: %d\n", b);

   sleep(1);

   exit(0);

}

int main(){

   // Creating the thread instances.

   pthread_t t1, t2, t3;

   pthread_create(&t1, NULL, add_two_numbers, NULL);

   pthread_create(&t2, NULL, add_two_numbers, NULL);

   pthread_create(&t3, NULL, add_two_numbers, NULL);

   pthread_join(t1, NULL);

   pthread_join(t2, NULL);

   pthread_join(t3, NULL);
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   //Destroying the threads.

   pthread_exit(t1);

   pthread_exit(t2);

   pthread_exit(t3);

   return 0;

}

In this code example, the add_two_numbers function acts like a critical section. Three 

threads are trying to access the global data of a and b. Since there is no proper locking 

mechanism for global data, this leads to race conditions and inconsistent results. The 

result of the program is shown in Figure 6-20.

�Implementing the Data Consistent Model Using 
a Semaphore and a Mutex
This section implements a semaphore and a mutex to achieve process and thread 

synchronization.

#include<stdio.h>

#include<stdlib.h>

#include<unistd.h>

#include<pthread.h>

#include<semaphore.h>

sem_t mutex;

int a = 5, b = 7;

// Function to access the global data

void* add_two_numbers(void* arg){

   sem_wait(&mutex);

Figure 6-20.  Race condition program output
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   a = a + 3;

   b = b - 1;

   printf("a value is: %d and ", a);

   printf("b value is: %d\n", b);

   sleep(1);

   sem_post(&mutex);

}

int main(){

   sem_init(&mutex, 0, 1);

   pthread_t t1, t2, t3;

   pthread_create(&t1, NULL, add_two_numbers, NULL);

   sleep(1);

   pthread_create(&t2, NULL, add_two_numbers, NULL);

   sleep(1);

   pthread_create(&t3, NULL, add_two_numbers, NULL);

   sleep(1);

   pthread_join(t1, NULL);

   pthread_join(t2, NULL);

   pthread_join(t3, NULL);

   sem_destroy(&mutex);

   return 0;

}

In this example, you used a semaphore to synchronize global data. The problem 

that occurred due to a race condition is solved with a semaphore. Since you are using a 

semaphore, there is no loss in data, as shown in Figure 6-21.

Figure 6-21.  Semaphore and mutex program output

Chapter 6  Interprocess Communication



214

�Summary
This chapter discussed various IPC techniques and how to achieve them using C 

programming. The code samples and topics covered in this chapter should help you 

better understand interprocess communication.

•	 Anonymous pipes share data in a unidirectional way.

•	 Named pipes build a client-server-based application.

•	 Message queues build a client-server architecture within an 

operating system.

•	 Semaphores better synchronize processes, especially in critical 

sections.

The upcoming chapters discuss other IPC techniques, including shared memory and 

sockets.
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CHAPTER 7

Shared Memory
Shared memory is a highly efficient way of sharing data between running processes 

or programs. It allows two or more unrelated processes to access the logical memory 

segment. Sharing a common piece of the memory segment is the fastest way that IPC 

can be achieved. This chapter covers the following topics, which include code samples.

•	 Introduction to shared memory

•	 The API for shared memory

•	 Kernel support for shared memory

•	 Implementation of shared memory

�Introduction to Shared Memory
Shared memory occurs among multiple processes. Communication between processes 

is done in a commonly shared memory region. All other processes can view any change 

made by a single process. It is one of the fastest forms of IPC available because, in a 

shared memory mechanism, data is not copied from one address space to another 

address space. Also, memory allocation happens only once in shared memory, which is 

the reason it’s is faster than other forms of IPC techniques. Processes accessing shared 

memory have a separate address space. All the processes are independent of each other, 

but they are dependent on the commonly shared memory region. The architecture of 

shared memory is represented in Figure 7-1.
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The problem with other IPC mechanisms is that when two or more processes want 

to exchange data, that data needs to be copied to the kernel. The data architecture of 

other IPC mechanism is explained in Figure 7-2. The process that occurs in other IPC 

techniques is explained as follows.

	 1.	 Initially, the server reads the data/input file. The kernel reads the 

data into memory and then copies it into the process.

	 2.	 After data is loaded into the buffer, the server writes it in a 

message using the IPC technique (i.e., pipes, FIFO, message 

queues).

	 3.	 The client reads the message with the IPC channel. It requires 

data to be copied from the kernel IPC buffer to the client buffer.

	 4.	 Finally, the data is copied from the client buffer.

Figure 7-1.  Architecture of shared memory
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Shared memory offers a better way by providing access to two or more processes—a 

common memory region. Synchronization is required for the shared memory segment 

when there is no synchronization of the data that is being accessed by multiple 

processes. This leads to inconsistency in data access, which leads to a race condition. 

The flow of data in a shared memory segment is represented in Figure 7-3.

•	 The server accesses the shared memory segment as a semaphore 

object.

•	 The server reads the data from the user/input file into the shared 

memory segment by performing the read operation.

•	 When the read operation is done, the server notifies the client using 

the semaphore object.

•	 The client writes the data from the memory segment to the output 

file.

Figure 7-2.  The flow of Data in other IPC Techniques
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�API for Shared Memory
Shared memory is implemented with the <sys/shm.h> library. The system calls that 

quietly perform the IPC through shared memory are shmget(), shmat(), shmdt(), and 

shmctl(). Each system call has a specific purpose in the IPC process life cycle.

�shmget()
The shmget() system call creates the shared memory segment in an operating system. 

It also obtains the previously created shared memory segment in the operating system. 

The return type is an integer type. This system call returns a valid shared memory 

identifier on success and returns –1 on failure. If you want to get the respective error 

code, you need to use the perror() system call.

The following shows the syntax.

int shmget(key_t key, size_t size, int shmflg)

•	 The key parameter identifies the shared memory segment in the 

operating system. The value of the key is arbitrary, or it is created 

using the ftok() system call.

Figure 7-3.  The flow of data in shared memory
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•	 The size parameter takes the size of the shared memory segment.

•	 The shmflg parameter takes the parameters to create the shared 
memory segment and the permissions set for the shared memory on 
the system.

�shmat()
The shmat() system call attaches the shared memory segment to the address space of the 
calling process. When you want to use the created shared memory, you need to attach 
the shared memory segment with the calling process address space. The return type is a 
void pointer return type. It returns the address of the shared memory segment attached 
segment and returns –1 if any failure occurs.

The following shows the syntax.

void * shmat(int shmid,
             const void *shmaddr,
             int shmflg)

•	 shmid takes the shared memory identifier as an argument created 
using the shmget() system call. This identifier value helps the shmat() 
system call properly attach the calling process.

•	 shmaddr takes the attaching address as an argument. If you set the 
address as NULL, then by default, the system assigns the suitable 
address for attaching the segment. If the address value is not NULL, 
then you can set the address value based on shmflg.

•	 shmflg takes certain parameters to manipulate the shared memory 

segment and the address space value.

Table 7-1.  Flags

Flag Value Description

SHM_

RDONLY

This flag attaches the shared memory segment for the read-only purpose only.

SHM_RND It rounds off the address space to the SHMLBA (shared memory lower boundary 

address).

SHM_EXEC It allows the shared memory segment to be executed.
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�shmdt()
The shmdt() system call detaches the shared memory segment from the address space 

of the calling process. The return type is an integer type. It returns 0 on the successful 

detachment of the address space and returns –1 if any failure occurs.

The following shows the syntax.

int shmdt(const void *shmaddr)

shmaddr takes the address of the shared memory that needs to be detached from the 

address space. The value must be the address that is returned by the shmat() system call.

�shmctl()
The shmctl() system call performs the various operations on the shared memory 

segment. It is also used to destroy the shared memory segment after the work is done. 

The return of this system call is an integer type. It returns 0 on successful operations and 

returns –1 if any error occurs.

The following shows the syntax.

int shmctl(int shmid, int cmd, struct shmid_ds *buf)

•	 shmid takes the identifier of the shared memory segment that is 

created using the shmget() system call. The operations and the 

destroying of shared memory activity be performed on the given 

shared memory identifier.

•	 cmd takes the command to perform the operations on the shared 

memory segment. The commands that can be passed to this 

argument are shown in Table 7-2.

•	 buf is a pointer to the shmid_ds data structure. It works as per the 

cmd argument.
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�Kernel Support for Shared Memory
POSIX-based systems support shared memory to achieve IPC. The kernel supports 

shared memory with a predefined data structure. There is a shared memory table 

available in the kernel address space. It keeps track of all the shared memory segments 

in the system. Each entry of the table stores the following data.

•	 Name of the shared memory segment

•	 User ID and group ID of the creator

•	 Assigned owner and group ID

•	 Permissions of the shared memory segment

•	 Information about the process attached to the region

•	 Information about the process detached from the region

•	 Information about the operations done to the region

•	 Size of the memory segment

The kernel structure for the shared memory data structure is as follows.

struct shmid_ds {

   struct ipc_perm shm_perm;   // Ownership and permissions

   size_t shm_segsz;           // Size of segment (bytes)

   time_t shm_atime;           // Last attach time

   time_t shm_dtime;           // Last detach time

Table 7-2.  Commands

Command Description

IPC_STAT It copies the information from the kernel data structure.

IPC_SET It sets the user ID and group ID for the owner. It also deals 

with permissions.

IPC_RMID It destroys the segment.

IPC_INFO It gets information about the shared memory segment.

SHM_INFO It gets information about system resource usage.
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   time_t shm_ctime;           /* Creation time/time of last

                                  modification via shmctl() */

   pid_t shm_cpid;             // PID of creator

   pid_t shm_lpid;             // PID of last shmat()/shmdt()

   shmatt_t shm_nattch;        // No. of current attaches

};

The structure of ipc_perm is as follows.

struct ipc_perm {

   key_t  __key;         // Key supplied to shmget()

   uid_t  uid;           // Effective UID of owner

   gid_t  gid;           // Effective GID of owner

   uid_t  cuid;          // Effective UID of creator

   gid_t  cgid;          // Effective GID of creator

   unsigned short mode;  /* Permissions + SHM_DEST and

                            SHM_LOCKED flags */

   unsigned short __seq; // Sequence number

};

�Implementation of Shared Memory
This section implements shared memory by using two separate programs. One program 

writes the data into the memory, and the other program reads the data from memory.

�Shared Memory Writers Program
In the shared memory writer program, a shared memory segment is created with a 

shmget() system call. Data is written to the memory segment by attaching it with the 

shmat() system call. The writer’s program writes the data into the memory segment, 

which is accessed by using the reader program.

#include<stdio.h>

#include<string.h>

#include <sys/ipc.h>

#include <sys/shm.h>
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 int main() {

   // ftok to generate unique key

   key_t key = ftok("memory",67);

    // shmget returns an identifier in shmid

   int shmid = shmget(key, 1024,0666|IPC_CREAT);

   if(shmid == -1){

       printf("Unable to create the Shared Memory Segment.\n");

   }

   // shmat to attach to shared memory

   char *str = (char*) shmat(shmid,(void*)0,0);

    printf("Enter Data to write into the Shared Memory Segment: ");

   scanf("%[^\n]s", str);

    printf("Data written in memory: %s\n",str);

   //detach from shared memory

   shmdt(str);

    return 0;

}

�Shared Memory Reader Program
In a shared memory reader program, the data that is written to the memory segment 

is read with the shmat() system call. Once the use of the shared memory segment is 

done, you can detach the memory segment and destroy it. Once the memory segment is 

detached and destroyed, it can’t access it again.

#include <stdio.h>

#include <sys/ipc.h>

#include <sys/shm.h>

 int main() {

   // ftok to generate unique key

   key_t key = ftok("memory",67);

    // shmget returns an identifier in shmid

   int shmid = shmget(key, 1024,0666|IPC_CREAT);
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   if(shmid == -1){

       printf("Unable to Connect with the shared memory segment.\n");

   }

   // shmat to attach to shared memory

   char *str = (char*) shmat(shmid,(void*)0,0);

    printf("Data read from memory: %s\n",str);

   //detach from shared memory

   shmdt(str);

   // destroy the shared memory

   shmctl(shmid,IPC_RMID,NULL);

   return 0;

}

Figure 7-4 shows the output.

�Summary
This chapter discussed shared memory, which shares a large amount of data through a 

common memory region. The problem with shared memory and IPC mechanisms like 

pipes, message queues, and semaphores is that the sharing of data is done only within 

the operating system. When you want to share the data outside the system, it is achieved 

with socket programming. Socket programming is discussed in the next chapter.

Figure 7-4.  The output of the Shared Memory Writers and Readers program
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CHAPTER 8

Socket Programming
Socket programming is a way of connecting two nodes on a network to communicate 

with each other. It achieves the IPC over a network. The following topics and code 

samples are covered in this chapter.

•	 Introduction to sockets

•	 IPC over network

•	 Generic API for socket programming

•	 OSI architectural model

•	 TCP/IP model

•	 Client-server architecture

•	 Implementation of client-server architecture using TCP protocol

•	 Implementation of client-server architecture using UDP protocol

�Introduction to Sockets
A socket is a bidirectional gateway that communicates with different processes on the 

same machine or different machines. In Unix/Linux, it is a file descriptor that establishes 

a network connection with real-world applications. Real-world applications like telnet, 

FTP, and other popular network services use sockets for establishing a connection and 

for sending and receiving data.

A socket is a combination of an IP address and a port number. A port number/port 

is a communication endpoint that connects with an external device. When you send a 

request to a website using the HTTP protocol, by default, you are trying to connect and 

establish a connection with that website through port 80.

https://doi.org/10.1007/978-1-4842-6321-1_8#DOI


226

Sockets build client-server architecture systems. The client-server architecture is 

discussed later in this chapter.

Sockets transfer data between systems using a remote IP address and the port 

number. Some application-level protocols like POP3, FTP, and popular mail services 

use sockets to establish a connection with remote systems/servers. The types of sockets 

available are differentiated based on data transfer mechanisms.

�Stream Sockets
Packet delivery flow follows the order of stream sockets. When a socket transfers 

data, it converts the data into packets to transfer to the remote system. In this stream 

socket mechanism, all the data packets deliver effectively without any loss. It uses a 

connection-oriented approach for data transfer. The underlying protocol used by this 

socket methodology is TCP (Transmission Control Protocol). Stream sockets guarantee 

data delivery in any case. If the packets are impossible to deliver, it generates an error 

message to the receiver with a negative acknowledgment.

�Datagram Sockets
The data delivery mechanism in a datagram socket is completely different from the 

stream socket mechanism. In a datagram socket mechanism, the data delivery does 

not follow the order the packets may arrive in any order to the receiver. The underlying 

protocol used by the datagram socket system is UDP (User Datagram Protocol). This 

system doesn’t guarantee that data gets to the receiver. It is a connectionless approach 

for data transfer.

�Raw Sockets
Raw sockets use a datagram sockets mechanism. But the characteristics of this protocol 

are completely dependent on the interface provided by the protocol. Raw sockets are 

intended for advanced users who want to take advantage of the protocol features that 

are not directly accessible from the general interface. These sockets also develop new 

protocols on top of the existing protocols.
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�Domain Sockets
Domain sockets provide a medium to communicate with the processes of the same host 

system. Stream and datagram sockets are the generic sockets that provide an abstract 

layer for communication. But you need domain sockets to use them in various domains. 

In this chapter, you are working with the Unix sockets because it supports the POSIX 

standards. To implement IPC in Unix-based systems, domain-level sockets are required.

�Internet Domain Sockets
Unix sockets are communicate only with other process in the same system. When you 

want to communicate with remote systems, advanced protocols that can establish a 

connection with remote systems are required. Internet domain sockets communicate 

with the other processes available in remote systems. The underlying protocol used 

by Internet domain sockets is the TCP/IP protocol (Transmission Control Protocol/

Internet Protocol). An Internet protocol is a low-level protocol that sends data through 

the Internet by splitting and joining data packets. A TCP protocol works on top of the IP 

protocol to guarantee that the data packets get to the receiver.

�IPC Over Network
Interprocess communication happens over a network with sockets. When you are 

designing your socket server to establish an IPC activity, it should follow certain 

guidelines.

•	 Communication style

•	 Namespaces

•	 Protocols

�Communication Style
Communication style deals with how data should transfer over the network. When data 

is transferring through the socket, it is divided into small packets during transmission. 

On the receiver side, the small packets are grouped to make the complete data. This is 

called a transferring mechanism. It is only applicable to connection-oriented protocols 

like TCP, whereas it doesn’t apply to connectionless protocols like UDP.
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�Namespaces
Namespaces deal with the type of connection system that transfers the data (i.e., stream 

socket, datagram socket, etc.). It determines the connection style of the data transfer. If 

you use a stream socket connection, it guarantees data delivery to the receiver through a 

connection-oriented approach.

A connection-oriented approach is a methodology that connects the communication 

devices before transferring data, and after that, it transfers data between systems. The 

data is delivered to the receiver in the same order that it was sent. It determines the 

approach of the data transfer and connection establishment between the systems.

�Protocol
Two or more entities in a network wanting to communicate requires a standard 

protocol. A protocol is a set of rules and procedures to follow when two entities want 

to communicate with each other in a network. A protocol consists of error recovery 

mechanisms and synchronization mechanisms. When IPC needs to occur over a 

network, protocols are mandatory. The protocols that are typically used are TCP and 

UDP.

�API for Socket Programming
To implement socket programming or achieve IPC over a network, you need to 

consider the various guidelines that you must follow. But when you want to implement 

those features and make use of their benefits, you need an appropriate API/library 

that reduces your development time. In C programming, the <sys/socket.h> library 

implements socket programming. Generic sockets are also called Berkeley sockets, which 

provide access to interprocess communication services. The workflow of applications 

that want to communicate over a network using sockets is diagrammatically represented 

in Figure 8-1.
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Let’s consider two hosts that want to communicate with each other over a network 

using sockets. The communication is established as follows.

•	 Host A (sender) creates a socket object with a destination/foreign 

address and destination/foreign ports that create a socket descriptor. 

This socket provides an interface to establish communication.

•	 A socket descriptor is a simple interface, but when you want to 

establish communication with a remote machine, a protocol is 

required. The protocol might be UDP/TCP. TCP is a connection-

oriented protocol, where UDP is a connectionless protocol.

•	 When all the protocol rules are assigned to the socket properly, it 

uses IP to transfer the data/message to a remote machine. The data 

transfer is done with a router/LAN.

This architectural model is the core model to establish a connection with the remote 

systems using sockets.

Figure 8-1.  Application connection architecture
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�OSI Architecture Model
When two computers want to communicate with each other a network medium is 

requried. In modern life, you usually use the Internet to communicate with other 

systems around the world.

When a computer wants to connect with the Internet to establish a connection, 

it requires a network adaptor or network interface controller, which are commonly 

known as network cards. The operating system provides drivers to work with network 

adaptors to support network communication. When two different kinds of devices are 

trying to communicate with each other through a network medium, there should be a 

common understanding between both parties. In earlier days, vendors created their own 

proprietary network models to provide communication between systems over a network.

Suppose that Microsoft creates a proprietary network model for communication 

over a network for their own devices. When a Microsoft device wants to communicate 

with another company’s device, it causes an issue because other companies use 

other network proprietary models for their communication purposes. This causes 

a incompatible communication issue. Another problem with this approach is that 

when a new network model is introduced at the same company, the older model is not 

compatible with the new model, which causes a huge communication gap.

To provide a good standard for communication between a wide range of software 

and hardware devices, OSI layered architecture was introduced. OSI stands for 

Open System Interconnect, which was developed by ISO in 1984. It is a seven-

layered architecture, as shown in the diagram in Figure 8-2. Each layer has a specific 

functionality and task associated with it. This architecture makes communication better 

because every system is using a common set of guidelines for communication. There is 

no need to bother about the hardware, software, or system the other person is using.

There are several different types of protocols available to perform communication 

over the network but OSI is the standard system model. Protocols like FTP and HTTP can 

be embedded into this model.
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�Physical Layer
The physical layer is the lowest layer of the OSI layered architecture.

•	 It is also called the hardware layer.

•	 It is responsible for making the physical connection between two 

parties over a network.

Figure 8-2.  OSI layered architecture
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•	 This layer transfers the information in the form of electrical signal 

bits (i.e., 0 and 1).

•	 When the physical layer receives data from the sender, it transfers 

that data to the data link layer in the form of binary data.

•	 The most common physical layer devices are cables, modems, hubs, 

and repeaters.

•	 The following are the physical layer’s functions.

•	 Bit synchronization:

The physical layer provides good synchronization for the data 

bits using clock synchronization. This synchronization helps 

the sender and receiver send data effectively without any loss 

in data between transmission.

•	 Transmission control:

The physical layer deals with the number of bits that are 

transmitting per second.

•	 Transmission mode:

The physical layer also deals with the type of transmission that 

is happening between two connected devices. The transmission 

mode might be simple duplex, half duplex, or full duplex.

�Data Link Layer
This data link layer is responsible from node to node to delivery.

•	 The data is converted into frames in the data link layer to make an 

error-free transmission. A frame is a data unit that consists of the 

MAC address of the sender and receiver associated with the data.

•	 Devices in the data link layer are switches and bridges.

•	 The data link layer is divided into two sublayers.

•	 Media access layer

•	 Logic link layer
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•	 The main functionality of the data link layer is to provide error-free 

data from one node to another node.

•	 The following are data link layer functionalities.

•	 Error control:

It provides the error control mechanism by using standard 

algorithms to transmit error-free data.

•	 Flow control:

The data link layer provides a flow control mechanism to 

transmit data between two nodes at a constant speed rate.

•	 Framing:

One of the core functionalities of the data link layer is framing. 

It provides a better way to transmit data between both parties. 

All data bits are converted into frames by adding extra bits at 

the beginning and end of the frame. This frame is transmitted 

at once to another node at a constant speed.

•	 Physical addressing:

The data present in this layer is converted into frames. While 

converting the data into frames, the layer adds a physical MAC 

address to the data’s header section at both the sender and 

receiver sides. Each data frame has a physical address.

�Network Layer
This layer transmits data between multiple hosts that are located on the same or 

different networks.

•	 Routers are the hardware devices used in this layer.

•	 Data is converted into packets in this layer.

•	 All the packets are sent to other host devices through the network 

using routing algorithms. Routing algorithms decide the best route 

for a data packet to reach the required destination station.
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•	 Routing algorithms help packets reach the destination host by using 

the shortest path. Sometimes this changes based on the algorithm 

and network traffic. Routing algorithms and its issues are beyond the 

scope of this book.

•	 The network layer adds a logical address at the header section of a 

packet.

•	 The following are the main functionalities of the network layer.

•	 Logical addressing:

Logical addressing uniquely identifies packets in the network 

with IP addresses.

•	 Routing:

Routing helps packets reach their destination by using the 

shortest path.

�Transport Layer
The main functionality of the transport layer is to provide services to the application 

layer.

•	 This layer converts data into segments.

•	 It is the heart of the OSI-layered architecture because of its end-to-

end delivery mechanism.

•	 It provides end-to-end delivery for the entire application.

•	 On the sender side, the transport layer receives data from the 

top layers and converts it into segments. It adds the source and 

destination port number in the header section and transmits to the 

network layer.

•	 On the receiver side, the data is collected from the network layer. 

It converts the data into segments, reads the port address from the 

header section, and sends it to the respective application.

•	 It provides the two kinds of services to the user.
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•	 Connection-oriented services:

In this service, data is transmitted based on the acknowledgment. 

It is a more secure way of transmitting data. There is no loss in 

data. It is a slow process for transferring data between devices. 

The connection has three different phases.

•	 Connection establishment

•	 Data transfer

•	 Connection termination

•	 Connectionless service:

In this service, data is transmitted without acknowledgment. 

There is a chance of losing data while transferring. Since there 

are no optimization techniques in connectionless mode, data is 

transferred much faster between devices. The data transferred 

through this mode is called a datagram. The frequently used 

protocols in a connectionless service are UDP and IP. These 

protocols are stateless.

•	 The following are the functionalities of the transport layer.

•	 Port addressing:

The transport layer adds the source and destination port address in 

the header section to successfully deliver the proper host machine.

�Session Layer
The session layer is responsible for connection establishment, sessions, and 

authentication.

•	 This layer provides security for the data that is transmitted by using 

standard authentication protocols for connection establishment. If 

you use a weak authentication protocol in the session layer, it may 

lead to malicious brute force attacks.

•	 It is a software layer.

•	 The session layer provides good session management. These sessions 

establish and terminate a connection between two devices.
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�Presentation Layer
The presentational layer is responsible for encryption and decryption of the data that is 

being transmitted.

•	 This layer is also called a translation layer.

•	 The following are the functionalities of the presentation layer.

•	 Encryption:

The transferred data is encrypted at the sender’s side to 

provide good security for the data. Encryption is the process of 

converting plain text into ciphertext.

•	 Decryption:

The received data needs to be decrypted at the receiver’s side to 

return it to normal data.

�Application Layer
The application layer acts as an interface for the end user. This layer is responsible for 

transferring and receiving the data through the network. All the data transferred to or 

received from the remote system display in this layer only.

•	 This layer usually has software-based or command-line based 

applications that interact with remote machines.

•	 The applications used in this layer for transmitting and receiving data 

include browsers, Skype, Messenger, mail delivery services, and so 

forth.

•	 The end-user applications must use proper application standards 

while in development to ensure proper security for the user.
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�Advantages of the OSI Model
•	 It provides common guidelines for transferring data between two 

parties.

•	 Network hardware does not need to be from the same vendor.

•	 It is considered a generic model for communication over a network.

•	 It allows you to communicate between various software and 
hardware parties with generic rules.

•	 It helps network administrators easily troubleshoot network issues.

•	 It adopts different types of protocols.

•	 It provides both connection-oriented and connectionless services.

�Disadvantages of the OSI Model
•	 It is a complex and theoretical model that doesn’t have any practical 

implementation.

•	 Addressing duplication of services (i.e., error control, flow control, 
and data) is done at various layers.

•	 It is very difficult to fit protocols into this model. Since it is a generic 
model, it is your responsibility to fit the protocol.

•	 The session and presentation layers have less functionality than other 
layers.

•	 The layers cannot work in parallel because each layer needs to wait to 
obtain data from another layer.

�TCP/IP Architecture Model
The OSI model is a theoretical model that does not have any practical implementation. 
This model is considered a reference model for developing networking applications. 
The OSI model divided a logical group of functionalities into simple components to 
make it more effective for network troubleshooting. Network administrators can easily 
troubleshoot issues in the OSI model. The problem with the OSI model is that it is just a 
reference model. Everything must be done from scratch, and some functionalities have 

duplicates in multiple layers.
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The US Department of Defense (DOD) designed TCP/IP in 1960. TCP and IP are 

different protocols. TCP is a connection-oriented transport protocol that ensures 

the data delivery of a packet. IP is a connectionless protocol that is responsible for 

transferring data packets to devices in a network.

TCP/IP was invented before the OSI model. TCP/IP uses the Internet for data 

transmission. This model consists of four layers. Each layer is logically grouped into 

units. The following are the layers that are included in this model.

•	 Network access layer

•	 Internet layer

•	 Transport layer

•	 Application layer

Figure 8-3.  TCP/IP model
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�Network Access Layer
The network access layer groups the data link and physical layers.

•	 It is the lowest layer of the TCP/IP model.

•	 This layer deals with the physical data transmission between two 

devices on the same network.

•	 The main functionalities of the network access layer are the mapping 

IP addresses into physical addresses. The physical address is the 

MAC address of your system.

�Internet Layer
The Internet layer is the second layer of the TCP/IP protocol. It transfers data over the 

same network.

•	 It is also called a network layer.

•	 The protocols that transfer the data over the network are as follows.

•	 ICMP: Internet Control Message Protocol

•	 ARP: Address Resolution Protocol

•	 RARP: Reverse Address Resolution Protocol

•	 IGMP: Internet Group Management Protocol

•	 These are the functionalities of this layer.

•	 Host-to-host communication:

It transfers the data to different hosts within a network. The data 

that is transferred through this layer requires a certain path to 

transfer. One of the key functionalities of the Internet layer is 

identifying the path to transfer the data.

•	 Routing:

When the data is transferred within the same network, direct 

data delivery is possible. But when the host is on a different 

network, direct delivery is not possible. Routing provides an 

efficient and reliable data transmission for different hosts.
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•	 Data formatting:

In the Internet layer, the data to be transferred needs to 

be formatted for lossless data transmission. Lossless data 

transmission means the data transferred from the sender to the 

receiver is not lost during transmission. To make lossless data 

transmission, data is encapsulated into units. Encapsulation of 

data is the binding of data into a single unit.

�Transport Layer
The transport layer is responsible for error-free data delivery to receivers.

•	 It determines how much data should transfer between the nodes.

•	 It also determines the number of bits that are transferring per second.

•	 This layer acknowledges that the data was transferred successfully. 

Acknowledgment is only available in connection-oriented protocols 

like TCP. When it comes to connectionless protocols like UDP, there 

is no acknowledgment.

•	 These are the protocols that are used in this layer.

•	 TCP: Transmission Control Protocol is a connection-oriented 

protocol. This protocol efficiently sends data without any errors. 

It is a reliable protocol for data transmission. It has a flow and 

error control mechanism.

•	 UDP: User Datagram Protocol is a connectionless protocol. It 

does not have the features provided by TCP, but it is more cost-

effective and transfers the data very fastly. It is not a reliable 

protocol.

•	 The functionalities offered by the transport layer are as follows.

•	 Flow control: It manages the rate of data transmission between 

the nodes.

•	 Error control: It uses the error control mechanism to transfer 

error-free data for the nodes.
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•	 Segmentation: It divides data into several segments before 

transferring it to the other nodes. It reduces the duplication of 

data.

•	 Desegmentation: After data is received from the sender, it 

is desegmented to make it original data. This makes the data 

transfer in sequence. It is not the same as encryption and 

decryption.

�Application Layer
The application layer interacts with application programs.

•	 It is the highest level of the TCP/IP model.

•	 This layer consists of application, session, and presentation layers.

•	 It is responsible for node-to-node data delivery.

•	 The protocols that are used in this layer are

•	 FTP: File Transfer Protocol

•	 SMTP: Simple Mail Transfer Protocol

•	 NTP: Network Time Protocol

•	 HTTP: Hypertext Transfer Protocol

•	 HTTPS: Hypertext Transfer Protocol with SSL Certificate

•	 DNS: domain name server

•	 The applications used in this layer are Skype, email services, remote 

logins, and so forth.

•	 The protocols in this layer are the most common, but there are many 

other types available. If you want, you can implement your own 

protocol.
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�Advantages of TCP/IP
The following are the advantages of TCP/IP.

•	 It is an open source protocol suite model.

•	 It establishes a connection between two systems.

•	 It supports different types of routing protocols.

•	 It does not depend on a device’s operating system or hardware.

•	 It is a scalable architecture for communication.

•	 It assigns a unique IP address for each device in the network.

•	 It uses flow control, error control, and congestion control 

mechanisms for better data transmission. These mechanisms are 

only applicable for connection-oriented protocols like TCP. They are 

not applicable for a connectionless protocol like UDP.

•	 It guarantees the data without any duplication and provides better 

throughput.

�Disadvantages of TCP/IP
The following are the disadvantages of TCP/IP.

•	 It is not a generic protocol like the OSI model.

•	 It is complex to set up and use.

•	 Adopting new protocols and new technologies is very difficult.

�Client-Server Architecture
Let’s look at client-server architecture.

�Client
An application that tries to access the resources from the server by sending the 

appropriate request to the server from his device is called a client. A client may be in any 
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location in the world. It sends a request to access data through a network/the Internet. 

Devices that run as a client include tablets, mobile devices, laptops, and desktops .

�Server
A server is a computer program or device that provides services to clients by rendering 

requests. Some common examples are web servers like Apache, Tomcat, and Jellyfish. 

Proxy servers, HTTP servers, file servers, and database servers are also examples.

�Examining the Client-Server Architecture
In client-server architecture, a client sends a request to the server through a network. 

Then, the server handles the client’s request and answers with a suitable response.

When the client sends a bad request to the server (i.e., the data is unavailable on the 

server), the server replies with an error message.

Figure 8-4.  Client-server architectural model
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In the diagram in Figure 8-4, various clients send requests to a server to access data. 
The server replies with appropriate responses. This is based on standard protocols.

�Advantages of the Client-Server Model
The following are some of the advantages of the client-server model.

•	 It is a centralized system. All the data is stored in one place (i.e., on 
the server-side).

•	 It is easy to maintain, upgrade, and integrate new services.

•	 Clients and servers may be located in any place in the world; they can 
access data.

•	 Data is secure because only authorized people have access to 
confidential data.

•	 Data recovery is possible with an advanced storage mechanism on 
the server side.

�Disadvantages of the Client-Server Model
The following are some of the disadvantages of the client-server model.

•	 If there is an issue on the server-side, then the client does not get any 
response from the server.

•	 Servers are prone to DoS (denial-of-service) and DDoS (distributed 
denial-of-service) attacks.

•	 It is not a cost-effective approach because setting up a server requires 
more space geographically, and maintenance requires manpower 
that ultimately increases the cost.

•	 Several kinds of attacks are possible on this architecture.

�System Calls for Socket Programming
IPC over a network is done with socket programming. The necessary system calls to 
develop programs make use of sockets. The<sys/socket.h> library contains all the system 
calls for socket programming. The most commonly used system calls are socket(), bind(), 

listen(), accept(), send(), receive(), write(), read(), sendto(), recvfrom(), and close().
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�socket()
A socket() system call creates an endpoint for the communication of certain socket 

types. This system call creates a socket that returns a socket file descriptor on successful 

creation. If any error occurs, it returns –1. The socket() system call creates a simple 

interface for communication, but it doesn’t have any information about the sender and 

receiver.

The following shows the syntax.

int socket(int domain, int type, int protocol)

domain deals with the type of communication domain for 

establishing communication. It describes the protocol family. The 

most common protocol families are AF_INET(IP v.4 Protocol) and 

AF_INET6 (IP v.6 Protocol).

The type argument describes the data transfer format between 

two communicating systems. Certain semantics are available 

to use a format to send and receive the data. The semantics that 

commonly are commonly used are described in Table 8-1.

Table 8-1.  Semantics

Semantic Description

SOCK_

STREAM

It provides connection-oriented, stable, and reliable communication between two 

systems.

SOCK_

DGRAM

It provides connectionless communication between two systems. Communication is 

unreliable and data should be in fixed length.

SOCK_RAW It establishes the communication system based on a raw network protocol.

SOCK_RDM It provides a reliable datagram layer for communication that doesn’t guarantee the 

order of messages transferred to the receiver.

•	 protocol takes the protocol value that is used for communication 

purposes. The value for an Internet Protocol is 0 by default.
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�bind()
A bind() system call binds the socket with a port number and address. The return type of 

this system call is an integer. It returns 0 if a success and –1 if any failure occurs.

The following shows the syntax.

int bind(int sockfd,

         const struct sockaddr *addr,

         socklen_t addrlen)

•	 sockfd takes the coket descriptor that is created using the socket() 

system call.

•	 addr describes the address structure for the socket that binds with 

the created socket interface/descriptor. The structure of the socket 

address structure is as follows.

struct sockaddr {

     sa_family_t sa_family; // Address Family

     char sa_data[14];      // Family Specific Address Info

}

•	 size takes the size (in bytes) for the socket address structure.

�listen()
A listen() system call listens for the connections on a socket. It is a nonblocking system 

call that waits continuously to make a connection with the client. This system call waits 

for the client to establish a connection. The socket is in passive mode until the client 

connects to it. The return type of this system call is an integer. It returns 0 if it is listening 

properly and returns –1 if any error occurs.

The following shows the syntax.

int listen(int sockfd, int backlog)

•	 sockfd takes the socket file descriptor as an argument created using 

the socket() system call.
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•	 backlog takes the parameter of the maximum length of the queue. 

This length determines the number of connections that are possible 

with that socket. Once the limit is reached and any new socket 

connection is trying to establish a connection, the connecting socket 

gets an error.

�accept()
An accept() system call is used only for connection-based socket types. It takes the first 

connection request from the queue and creates a new file descriptor referring to the 

request socket. The return type of this system call is an integer. It returns a file descriptor 

value for the accepted socket if a success and returns –1 if any failure occurs.

The following shows the syntax.

int accept(int sockfd,

           struct sockaddr *addr,

           socklen_t *addrlen)

•	 sockaddr takes the socket descriptor that is created using the socket() 

system call.

•	 addr takes the socket address structure of the peer socket to establish 

a connection. It is the client address of the connected socket.

•	 addrlen takes the length of the peer address (i.e., client address) 

length.

�send()
A send() system call sends data to another socket. This system call only works when 

the socket is in a connected state; otherwise, it throws an error. The return type of this 

system call is ssize_t. It returns the number of bytes sent to the peer if a success and 

returns –1 if any failure occurs.

The following shows the syntax.

ssize_t send(int sockfd,

             const void *buf,

             size_t len,

             int flags)
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•	 sockfd takes the socket descriptor that is created using the socket 

system call.

•	 The buf (buffer) parameter takes the message object that you want to 

transmit to the peer connection.

•	 len takes the length of the message (in bytes) to transmit to a peer 

connection.

•	 flags are external flags that handle certain exceptions while 

transmitting data. Usually, you set this value to 0.

�recv()
A recv() system call receives the message/data from a peer/connected socket. The return 

type of this system is ssize_t. It returns the length of the message (in bytes) that are 

received from the socket. It returns –1 if any failure occurs.

The following shows the syntax.

ssize_t recv(int sockfd,

             void *buf,

             size_t len,

             int flags)

•	 sockfd is the socket descriptor created using the socket() system call.

•	 buf is a message that is received from the connected socket.

•	 len is the length of the message/data that is being received.

•	 flags takes the external flags to handle the exceptions.

Note  send() and recv() system calls only work for the connection-oriented 
protocols (i.e., TCP). When you want to work with the UDP protocol, you need to use 
the sendto() and recvfrom() system calls to send and receive the data.
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�sendto()
A sendto() system call sends data to the connected socket. It returns the number of bytes 

that are being sent to the socket. It returns –1 if any failure occurs.

The following shows the syntax.

ssize_t sendto(int sockfd,

               const void *buf,

               size_t len,

               int flags,

               const struct sockaddr *dest_addr,

               socklen_t addrlen)

•	 sockfd is a socket descriptor that is created using a socket() system 

call.

•	 buf is message/data that is sent to the socket.

•	 len is the length of the data in bytes that is sent to the socket address.

•	 flags handles exceptions while transmitting the data.

•	 destaddr takes the address of the destination socket.

•	 addrlen takes the address length of the destination address.

�recvfrom()
A recvfrom() system call receives the message/data from the socket. It returns the 

number of bytes received from the socket. It returns –1 if any failures occur.

The following shows the syntax.

ssize_t recvfrom(int sockfd,

                 void *buf,

                 size_t len,

                 int flags,

                 struct sockaddr *src_addr,

                 socklen_t *addrlen)

•	 sockfd takes the socket descriptor using the socket() system call.

Chapter 8  Socket Programming



250

•	 buf is the message/data to send to the socket.

•	 len is the message length being transmitted.

•	 flags handles exceptions while transmitting data.

•	 srcaddr takes the address of the client.

•	 addrlen takes the length of the client address.

Note  write() and read() system calls also send and receive data.

�close()
A close() system call closes the connection once usage is completed. It also frees up the 

port that is used by the socket. It returns 0 if a success and –1 if any failure occurs.

The following shows the syntax.

int close(int sockfd)

sockfd takes the socket descriptor that you want to close.

�Implementation of Client Server Architecture
This section discusses the implementation of client-server architecture using the TCP 

and UDP protocols. TCP guarantees data delivery to the client, whereas UDP does not 

guarantee data delivery. The mechanisms of data transfer differ from TCP to UDP. This 

section discusses the TCP and UDP mechanisms and uses practical examples.

�TCP Client-Server Architecture
TCP is a connection-oriented protocol. There are certain steps to follow to build your 

own TCP network connection. This connection is built with the socket API. A client-

server architecture has clients and servers.

In a single client-server architecture, you build a single client and server on your 

machine to communicate with each other. The advantage of using a TCP connection for 

developing a socket connection is that it guarantees data delivery. It also maintains the 
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order of the data that is being transmitted. This connection is reliable and uses the three-

way handshake principle for data transfer. SOCK_STREM is used while creating the 

socket. The entire process can be divided into two major parts: the server and the client.

The task of the server is to provide services to a client based on his request.

�TCP Server

Using the socket function, a socket will create on the system, which acts as a 

bidirectional device.

	 1.	 The connection takes the IP address and the port number to bind 

together, making the socket ready for use.

	 2.	 The socket listens to the client’s request by making the socket 

connection open. Once the request hits the server, it accepts the 

invitation from the client.

Figure 8-5.  TCP Client-server implementation architecture
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	 3.	 The accepted invitation establishes the client-server connection. 

The data delivery in TCP is done with three-way handshaking, in 

which there is an acknowledgment between the client and server 

after data is transferred.

	 4.	 When a client sends a request to the server after the connection is 

reestablished, the server takes the request and processes it.

	 5.	 The server sends the data to the client after the request is 

processed.

	 6.	 When a client sends the close connection request, the server 

closes the connection between the client device and the server 

device.

	 7.	 Once the connection is established, a connection loop 

communicates with the server and client continuously until the 

client makes a closing request to the server. Once the client sends 

a close request, the connection is closed by the server.

�TCP Client

The client uses the socket function to create a socket object to establish a connection 

with a remote or local server.

	 1.	 Once the socket object is being created, it tries to connect with a 

server IP address and port number.

	 2.	 Once a connection is established, the client sends the request to 

the server for processing.

	 3.	 The server processes the request and responds to the client.  

Then the client, accepts/receives the response that is being sent 

by the server.

	 4.	 When the client sends the close request to the server, the server 

closes the request that is created between the client and the 

server.
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�TCP Client-Server Code
Now let’s look at the implementation of the client and server separately in C. First, let’s 

build the server code to provide services to the client using socket programming. After 

that, let’s build the client code using the same socket programming.

�Server Code

Here is the server code.

#include<stdio.h>

#include<stdlib.h>

#include<unistd.h>

#include<string.h>

#include<sys/socket.h>

#include<sys/types.h>

#include<netdb.h>

#include<netinet/in.h>

#define MESSAGE_LENGTH 1024 // Maximum number of data that can transfer

#define PORT 8888 // port number to connect

#define SA struct sockaddr // Creating Macro for the socketaddr as SA

struct sockaddr_in serveraddress, client;

socklen_t length;

Int sockert_file_descriptor, connection, bind_status, connection_status;

char message[MESSAGE_LENGTH];

int main(){

   // Creating the Socket

   sockert_file_descriptor = socket(AF_INET, SOCK_STREAM, 0);

   if(sockert_file_descriptor == -1){

       printf("Scoket creation failed.!\n");

       exit(1);

   }
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   // Erases the memory

   bzero(&serveraddress, sizeof(serveraddress));

   // Server Properties

   serveraddress.sin_addr.s_addr = htonl(INADDR_ANY);

   // Setting the port number

   serveraddress.sin_port = htons(PORT);

   // Protocol family

   serveraddress.sin_family = AF_INET;

   // Binding the newly created socket with the given Ip Address

   �bind_status = bind(sockert_file_descriptor, (SA*)&serveraddress, 

sizeof(serveraddress));

   if(bind_status == -1){

       printf("Socket binding failed.!\n");

       exit(1);

   }

   // Server is listening for new creation

   connection_status = listen(sockert_file_descriptor, 5);

   if(connection_status == -1){

       printf("Socket is unable to listen for new connections.!\n");

       exit(1);

   }else{

       printf("Server is listening for new connection: \n");

   }

   length =  sizeof(client);

   connection = accept(sockert_file_descriptor, (SA*)&client, &length);

   if(connection == -1){

       printf("Server is unable to accept the data from client.!\n");

       exit(1);

   }

// Communication Establishment

   while(1){
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       bzero(message, MESSAGE_LENGTH);

       read(connection, message, sizeof(message));

       if (strncmp("end", message, 3) == 0) {

           printf("Client Exited.\n");

           printf("Server is Exiting..!\n");

           break;

       }

       printf("Data received from client: %s\n", message);

       bzero(message, MESSAGE_LENGTH);

       printf("Enter the message you want to send to the client: ");

       scanf("%[^\n]%*c", message);

        // �Sending the data to the server by storing the number of bytes 

transferred in bytes variable

       ssize_t bytes = write(connection, message, sizeof(message));

       // If the number of bytes is >= 0 then the data is sent successfully

       if(bytes >= 0){

           printf("Data successfully sent to the client.!\n");

       }

   }

   // Closing the Socket Connection

   close(sockert_file_descriptor);

   return 0;

}

This code is responsible for the entire server functionality. Initially, the socket 

function creates the socket object. If the socket is unable to be created, the program 

immediately throws an error. Once the socket is created, the bzero() function erases the 

data of the object being created. The data might be in a string format.

After the socket object is created, it binds the client IP address and port number. The 

server sets the type of Internet family and the data transfer mode. In any case, if binding 

the IP and port fails, it throws an error.
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Now the server is listening to establish a connection. If the server is unable to listen, 

the server exits the connection loop. If the client sends the data, the server accepts the 

data. If any error occurs, the server exists. An infinite while loop receives data from the 

client and sends the appropriate response to the client. If the client sends the message 

as 'end', both the client and server are terminated. You can customize the code for your 

own purposes.

�Client Code

Here is the client code.

#include<stdio.h>

#include<stdlib.h>

#include<unistd.h>

#include<string.h>

#include<sys/socket.h>

#include<netdb.h>

#include<arpa/inet.h>

// Maximum number of data that can transfer

#define MESSAGE_LENGTH 1024

#define PORT 8888 // port number to connect

// Creating Macro for the socketaddr as SA

#define SA struct sockaddr

// Global Data

int socket_file_descriptor, connection;

struct sockaddr_in serveraddress, client;

char message[MESSAGE_LENGTH];

int main(){

   // Socket Creation

   socket_file_descriptor = socket(AF_INET, SOCK_STREAM, 0);

   if(socket_file_descriptor == -1){

       printf("Creation of Socket failed.!\n");

       exit(1);

   }
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   // Erases the memory

   bzero(&serveraddress, sizeof(serveraddress));

   // Setting the Server Properties

   serveraddress.sin_addr.s_addr = inet_addr("127.0.0.1");

   // Setting the port number

   serveraddress.sin_port = htons(PORT);

   // Protocol family

   serveraddress.sin_family = AF_INET;

   // Establishing the Connection with server

   �connection = connect(socket_file_descriptor, (SA*)&serveraddress, 

sizeof(serveraddress));

   if(connection == -1){

       printf("Connection with the server failed.!\n");

       exit(1);

   }

   // Interacting with the server

   while(1){

       bzero(message, sizeof(message));

       printf("Enter the message you want to send to the server: ");

       scanf("%[^\n]%*c", message);

        if ((strncmp(message, "end", 3)) == 0) {

           write(socket_file_descriptor, message, sizeof(message));

           printf("Client Exit.\n");

           break;

       }

       // �Sending the data to the server by storing the number of bytes 

transferred in bytes variable

       �ssize_t bytes = write(socket_file_descriptor, message, sizeof(message));
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       // If the number of bytes is >= 0 then the data is sent successfully

       if(bytes >= 0){

           printf("Data send to the server successfully.!\n");

       }

       bzero(message, sizeof(message));

       // Reading the response from the server.

       read(socket_file_descriptor, message, sizeof(message));

       printf("Data received from server: %s\n", message);

   }

   // Closing the Socket Connection

   close(socket_file_descriptor);

   return 0;

}

This code is for the client who initially creates the socket using the socket function. 

It binds the server IP address and port number by using the bind function. The client 

connects to the server using the connect() function. If the connection is successful, 

the client can send the message; otherwise, it throws an error. An infinite loop sends 

the request to the server using the write() system call. It receives the response from the 

server through the read() system call. If the client sends the close request, as shown in 

Figure 8-5, the server closes the connection.

Here is the output.

Figure 8-6.  Output of TCP server
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�UDP Client Server Architecture
UDP is different from a TCP connection. It is a connectionless protocol, whereas TCP 

is a connection-oriented protocol. In this architecture data, packets do not guarantee 

delivery to the client. It is not a reliable protocol. Unlike TCP, it doesn’t connect with the 

server; instead, the connection client sends the datagram packets to the server. When the 

server receives datagram packets from the client, it accepts the them. A datagram packet 

contains the address of the sender, which helps the server send it to the client. The working 

mechanism of the UDP client-server architecture are represented in Figure 8-8.

Figure 8-8.  UDP client-server implementation architecture

Figure 8-7.  Output of the client connected to TCP server
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�UDP Server

On the server-side, the socket function creates the socket. It uses the SOCK_DGRAM and 

IF_NET for the socket creation. It creates the datagram socket.

•	 The bind() function binds the IP address and port number together 

for the connection.

•	 The recvfrom() function waits for the datagram from the client. If the 

datagram arrives, it accepts the data and works on it.

•	 The sendto() function sends the processed data to the client using 

the client address present in the datagram header.

�UDP Client

On the client-side, the same socket function creates the socket, and it uses the SOCK_

DGRAM to create the UDP-based client system.

•	 After the socket is created, there is no connection required, like 

TCP. In this architecture, a datagram is sent to the server using the 

address of the server.

•	 The sendto() function sends datagram packets to the server as a 

request.

•	 The recvfrom() function receives the data from the server.

•	 The close() function closes the connection. The client closes the 

connection once the packet is received. If the packet is not received, 

the client waits. This is the drawback of the UDP protocol.

�UDP Client-Server Code
This section builds the client-server architecture using the UDP protocol. First, let’s build 

server architecture, and then build the client architecture.

�Server Code

Here is the server code.
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#include <stdio.h>

#include<stdlib.h>

#include<unistd.h>

#include <strings.h>

#include <sys/types.h>

#include <arpa/inet.h>

#include <sys/socket.h>

#include<netinet/in.h>

// Maximum number of bytes that can transfer and receive.

#define MESSAGE_BUFFER 4096

#define PORT 8888 // port number to connect

// Creating Macro for the socketaddr as SA

#define SA struct sockaddr

// Global Data

char buffer[MESSAGE_BUFFER];

char message[MESSAGE_BUFFER];

int socket_file_descriptor, message_size;

socklen_t length;

const char *end_string = "end";

int quit_status;

struct sockaddr_in serveraddress, client;

void processRequest(){

   // Server Properties

   bzero(&serveraddress, sizeof(serveraddress));

   // Create a UDP Socket via PORT 8888

   socket_file_descriptor = socket(AF_INET, SOCK_DGRAM, 0);

   serveraddress.sin_addr.s_addr = htonl(INADDR_ANY);

   // Connecting via port 8888

   serveraddress.sin_port = htons(PORT);

   // Protocol Family

   serveraddress.sin_family = AF_INET;

   // bind server address to socket descriptor

   �bind(socket_file_descriptor, (SA*)&serveraddress, sizeof(serveraddress));
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   while(1){

       // Calculating the Client Datagram length

       length = sizeof(client);

       �message_size = recvfrom(socket_file_descriptor, buffer, 

sizeof(buffer), 0, (SA*)&client,&length);

       buffer[message_size] = '\0';

       quit_status = strcmp(buffer, end_string);

       if(quit_status == 0){

           printf("Server is Quitting\n");

           close(socket_file_descriptor);

           exit(0);

       }

       printf("Message Received from Client: %s\n",buffer);

       // sending the response to the client

       printf("Enter reply message to the client: ");

       scanf("%[^\n]%*c", message);

       �sendto(socket_file_descriptor, message, MESSAGE_BUFFER, 0, 

(SA*)&client, sizeof(client));

       printf("Message Sent Successfully to the client: %s\n", message);

       printf("Waiting for the Reply from Client..!\n");

   }

   // Closing the Socket File Descriptor.

   close(socket_file_descriptor);

}

int main() {

   �printf("SERVER IS LISTENING THROUGH THE PORT: %d WITHIN A LOCAL 

SYSTEM\n", PORT);

   // �Calling the process request function to process the client request 

and give the response.

   processRequest();

   return 0;

}
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In this code, the socket function creates the socket and binds the IP address and 

the port number. The recvfrom function receives the datagram from the client, and the 

sendto function sends the data packet to the client. The processRequest function does all 

the activities of the server, like receiving the data, processing the data, and sending the 

data/response to the client. The output of the server architecture is shown in Figure 8-9.

�Client Code

Finally, the client.

#include<stdio.h>

#include<unistd.h>

#include<stdlib.h>

#include<strings.h>

#include<sys/socket.h> // To work with socket programming

#include<sys/types.h>

#include<arpa/inet.h>

#include<netinet/in.h>

// Maximum number of bytes that can transfer and receive.

#define MESSAGE_BUFFER 4096

#define PORT 8888 // port number to connect

// Creating Macro for the socketaddr as SA

#define SA struct sockaddr

// Global Data

char buffer[MESSAGE_BUFFER];

char message[MESSAGE_BUFFER];

int socket_file_descriptor, n;

int size = 0;

int quit_status;

const char *end_string = "end";

struct sockaddr_in serveraddress;

void sendRequest(){

   // Setting the properties to connect with Server

   bzero(&serveraddress, sizeof(serveraddress));
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   // Working with Localhost Address

   serveraddress.sin_addr.s_addr = inet_addr("127.0.0.1");

   // Connecting via port 8888

   serveraddress.sin_port = htons(PORT);

   // Protocol Family

   serveraddress.sin_family = AF_INET;

   // creating the datagram socket

   socket_file_descriptor = socket(AF_INET, SOCK_DGRAM, 0);

   // Establishing a connection with the server.

   �if(connect(socket_file_descriptor, (SA *)&serveraddress, 

sizeof(serveraddress)) < 0) {

       printf("\n Something went wrong Connection Failed \n");

       exit(1);

   }

   while(1){

   printf("Enter a message you want to send to the server: ");

   scanf("%[^\n]%*c", message);

   quit_status = strcmp(message, end_string);

   if(quit_status == 0){

       �sendto(socket_file_descriptor, message, MESSAGE_BUFFER, 0, (SA*)

NULL, sizeof(serveraddress));

       printf("Client work is done.!\n");

       close(socket_file_descriptor);

       exit(0);

   }else{

       �sendto(socket_file_descriptor, message, MESSAGE_BUFFER, 0, (SA*)

NULL, sizeof(serveraddress));

       printf("Message sent successfully to the server: %s\n", message);

       printf("Waiting for the Response from Server..!\n");

   }
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       printf("Message Received From Server: ");

       �recvfrom(socket_file_descriptor, buffer, sizeof(buffer), 0, (SA*)

NULL, NULL);

       printf("%s\n", buffer);

    }

   // closing the Socket File Descriptor

   close(socket_file_descriptor);

}

int main() {

   �printf("CLIENT IS ESTABLISHING A CONNECTION WITH SERVER THROUGH PORT: 

%d\n", PORT);

   // Calling the Send Request to send a request to the server.

   sendRequest();

   return 0;

}

In the client code, the socket function creates the socket and binds the IP address 

and the port number. The sendto function sends the request to the server (i.e., datagram 

packets). The recvfrom function receives a datagram from the server. The close function 

closes the connection. The sendRequest function connects with the remote/local server, 

sends the data/request to the server, and accepts the response from the server if the 

server sends any response.

Figure 8-9 is the output.

Figure 8-9.  UDP server output
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The workings of the client application are shown in Figure 8-10.

�Summary
This chapter discussed socket programming with C and how to achieve IPC over a 

network. The chapter covered various topics, like the OSI architectural model and the 

TCP/IP model. You saw implementations of client-server architecture using TCP and 

UDP protocols as well. You also completed various IPC techniques between processes.

Figure 8-10.  Output of the client connected to UDP server
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