
Pro
React 16

—
Adam Freeman

www.allitebooks.com

http://www.allitebooks.org

Pro React 16

Adam Freeman

www.allitebooks.com

http://www.allitebooks.org

Pro React 16

Adam Freeman				
London, UK			

ISBN-13 (pbk): 978-1-4842-4450-0		 ISBN-13 (electronic): 978-1-4842-4451-7
https://doi.org/10.1007/978-1-4842-4451-7

Copyright © 2019 by Adam Freeman

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com, for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers
on GitHub via the book’s product page, located at www.apress.com/9781484244500. For more detailed
information, please visit www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4451-7
www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
http://editorial@apress.com
http://bookpermissions@springernature.com
www.apress.com/bulk-sales
www.apress.com/9781484244500
www.apress.com/source-code/
http://www.allitebooks.org

Dedicated to my lovely wife, Jacqui Griffyth.
(And also to Peanut.)

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Author���xxi

About the Technical Reviewer���xxiii

■■Part I: Getting Started with React�� 1

■■Chapter 1: Your First React Application��� 3

Preparing the Development Environment�� 3

Installing Node.js��� 3

Installing the create-react-app Package��� 4

Installing Git��� 4

Installing an Editor��� 5

Installing a Browser��� 5

Creating the Project��� 6

Understanding the Project Structure��� 6

Adding the Bootstrap CSS Framework�� 8

Starting the Development Tools��� 8

Replacing the Placeholder Content��� 10

Displaying Dynamic Content��� 11

Understanding State Data Changes��� 13

Adding the To-Do Application Features��� 15

Displaying the To-Do Items�� 18

Introducing Additional Components�� 21

Using the Child Components��� 23

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vi

Adding the Finishing Touches�� 24

Managing the Visibility of Completed Tasks�� 24

Persistently Storing Data��� 27

Summary��� 30

■■Chapter 2: Understanding React��� 31

Should I Use React?�� 31

Understanding Round-Trip Applications�� 32

Understanding Single-Page Applications�� 32

Understanding Application Complexity�� 33

What Do I Need to Know?�� 33

How Do I Set Up My Development Environment?�� 33

What Is the Structure of This Book?�� 33

Part 1: Getting Started with React��� 34

Part 2: Working with React�� 34

Part 3: Creating Complete React Applications��� 34

Are There Lots of Examples?��� 34

Where Can You Get the Example Code?�� 36

Where Can You Get Corrections for This Book?��� 36

How Can You Contact Me?�� 36

Summary��� 36

■■Chapter 3: HTML, JSX, and CSS Primer�� 37

Preparing for This Chapter�� 37

Preparing the HTML File and the Component�� 38

Running the Example Application�� 39

Understanding HTML and DOM Elements��� 39

Understanding Element Content�� 41

Understanding Attributes��� 43

Creating HTML Elements Dynamically��� 43

Creating Elements Dynamically Using a React Component��� 45

■ Contents

vii

Using Expressions in React Elements��� 46

Mixing Expressions and Static Content��� 47

Performing Computation in Expressions��� 48

Accessing Component Properties and Methods�� 49

Using Expressions to Set Prop Values��� 50

Using Expressions to Handle Events�� 51

Understanding Bootstrap��� 52

Applying Basic Bootstrap Classes��� 52

Using Bootstrap to Create Grids�� 54

Using Bootstrap to Style Tables��� 56

Using Bootstrap to Style Forms��� 58

Summary��� 59

■■Chapter 4: JavaScript Primer��� 61

Preparing for This Chapter�� 62

Using Statements�� 64

Defining and Using Functions��� 64

Defining Functions with Parameters��� 65

Defining Functions That Return Results�� 67

Using Functions as Arguments to Other Functions�� 68

Using Variables and Types��� 69

Using the Primitive Types�� 71

Using JavaScript Operators��� 74

Using Conditional Statements��� 74

The Equality Operator vs. the Identity Operator��� 75

Explicitly Converting Types�� 76

Working with Arrays�� 78

Using an Array Literal�� 78

Reading and Modifying the Contents of an Array�� 78

Enumerating the Contents of an Array��� 79

Using the Spread Operator�� 80

Using the Built-in Array Methods��� 81

■ Contents

viii

Working with Objects�� 82

Using Object Literals�� 83

Using Functions as Methods��� 84

Using Classes�� 85

Copying Properties from One Object to Another�� 87

Capturing Parameter Names from Objects�� 88

Understanding JavaScript Modules��� 89

Creating and Using a JavaScript Module��� 89

Exporting Named Features from a Module�� 92

Defining Multiple Named Features in a Module�� 93

Understanding JavaScript Promises��� 95

Understanding the Asynchronous Operation Problem��� 95

Using a JavaScript Promise��� 96

Simplifying the Asynchronous Code�� 97

Summary��� 97

■■Chapter 5: SportsStore: A Real Application�� 99

Preparing the Project�� 100

Installing Additional NPM Packages�� 100

Adding the CSS Stylesheets to the Project�� 102

Preparing the Web Service�� 103

Running the Example Application�� 105

Creating the Data Store��� 106

Creating the Data Store Actions and Action Creators�� 106

Creating the Shopping Features�� 108

Creating the Product and Category Components�� 109

Connecting to the Data Store and the URL Router��� 111

Adding the Shop to the Application��� 114

Improving the Category Selection Buttons�� 115

Adding the Shopping Cart��� 117

Extending the Data Store��� 117

Creating the Cart Summary Component�� 120

■ Contents

ix

Adding the Cart Detail Component�� 124

Adding the Cart URL to the Routing Configuration��� 126

Summary��� 129

■■Chapter 6: SportsStore: REST and Checkout�� 131

Preparing for This Chapter�� 131

Consuming the RESTful Web Service�� 132

Creating a Configuration File��� 133

Creating a Data Source�� 133

Extending the Data Store��� 134

Updating the Action Creator��� 135

Paginating Data��� 136

Understanding the Web Service Pagination Support��� 138

Changing the HTTP Request and Action�� 139

Creating the Data Loading Component�� 140

Updating the Store Connector Component�� 141

Updating the All Category Button��� 143

Creating the Pagination Controls��� 144

Adding the Checkout Process��� 150

Extending the REST Data Source and the Data Store�� 151

Creating the Checkout Form�� 153

Simplifying the Shop Connector Component��� 162

Summary��� 163

■■Chapter 7: SportsStore: Administration��� 165

Preparing for This Chapter�� 165

Running the Example Application�� 166

Creating a GraphQL Service�� 167

Defining the GraphQL Schema��� 167

Defining the GraphQL Resolvers�� 168

Updating the Server��� 170

■ Contents

x

Creating the Order Administration Features�� 173

Defining the Order Table Component��� 174

Defining the Connector Component��� 175

Configuring the GraphQL Client��� 178

Configuring the Mutation��� 180

Creating the Product Administration Features�� 182

Connecting the Product Table Component��� 184

Creating the Editor Components�� 187

Updating the Routing Configuration�� 190

Summary��� 192

■■Chapter 8: SportsStore: Authentication and Deployment����������������������������������� 193

Preparing for This Chapter�� 193

Adding Authentication for GraphQL Requests��� 197

Understanding the Authentication System�� 197

Creating the Authentication Context�� 198

Creating the Authentication Form�� 201

Guarding the Authentication Features��� 202

Adding a Navigation Link for the Administration Features�� 204

Preparing the Application for Deployment��� 205

Enabling Lazy Loading for the Administration Features�� 205

Creating the Data File�� 207

Configuring the Request URLs��� 207

Building the Application��� 208

Creating the Application Server��� 208

Testing the Production Build and Server��� 209

Containerizing the SportsStore Application��� 210

Installing Docker�� 210

Preparing the Application�� 211

Creating the Docker Container�� 211

Running the Application��� 212

Summary��� 214

■ Contents

xi

■■Part II: Working with React��� 215

■■Chapter 9: Understanding React Projects�� 217

Preparing for This Chapter�� 218

Understanding the React Project Structure��� 220

Understanding the Source Code Folder��� 222

Understanding the Packages Folder�� 223

Using the React Development Tools�� 226

Understanding the Compilation and Transformation Process�� 227

Understanding the Development HTTP Server�� 231

Understanding Static Content�� 232

Understanding the Error Display�� 237

Understanding the Linter��� 238

Configuring the Development Tools��� 242

Debugging React Applications�� 243

Exploring the Application State�� 245

Using the Browser Debugger��� 246

Summary��� 248

■■Chapter 10: Components and Props��� 249

Preparing for This Chapter�� 250

Understanding Components�� 252

Rendering HTML Content��� 253

Rendering Other Components��� 255

Understanding Props��� 259

Defining Props in the Parent Component��� 259

Receiving Props in the Child Component��� 260

Combining JavaScript and Props to Render Content�� 261

Selectively Rendering Content��� 262

Rendering Arrays��� 264

Rendering Multiple Elements�� 268

■ Contents

xii

Rendering No Content��� 271

Attempting to Change Props�� 272

Using Function Props�� 273

Invoking Prop Functions with Arguments�� 275

Passing on Props to Child Components��� 279

Passing On All Props to Child Components�� 280

Providing Default Prop Values��� 281

Type Checking Prop Values��� 283

Summary��� 286

■■Chapter 11: Stateful Components��� 287

Preparing for This Chapter�� 288

Understanding the Different Component Types��� 289

Understanding Stateless Components�� 289

Understanding Stateful Components��� 290

Creating a Stateful Component��� 291

Understanding the Component Class�� 291

Understanding the Import Statement�� 292

Understanding the render Method��� 292

Understanding Stateful Component Props�� 292

Adding State Data��� 293

Reading State Data�� 294

Modifying State Data��� 295

Avoiding the State Data Modification Pitfalls�� 297

Defining Stateful Components Using Hooks�� 303

Lifting Up State Data��� 305

Lifting Up State Data Further��� 308

Defining Prop Types and Default Values�� 311

Summary��� 313

■ Contents

xiii

■■Chapter 12: Working with Events��� 315

Preparing for This Chapter�� 316

Understanding Events��� 318

Invoking a Method to Handle an Event�� 319

Receiving an Event Object��� 324

Invoking Event Handlers with a Custom Argument��� 329

Preventing Default Behavior�� 331

Managing Event Propagation�� 333

Understanding the Target and Bubble Phases��� 333

Understanding the Capture Phase��� 337

Determining the Event Phase�� 339

Stopping Event Propagation�� 342

Summary��� 343

■■Chapter 13: Reconciliation and Lifecycles��� 345

Preparing for This Chapter�� 346

Creating the Example Components��� 347

Understanding How Content Is Rendered��� 350

Understanding the Update Process��� 353

Understanding the Reconciliation Process�� 354

Understanding List Reconciliation��� 357

Explicitly Triggering Reconciliation�� 359

Understanding the Component Lifecycle�� 361

Understanding the Mounting Phase�� 362

Understanding the Update Phase�� 365

Understanding the Unmounting Phase�� 366

Using the Effect Hook�� 367

Using the Advanced Lifecycle Methods��� 371

Preventing Unnecessary Component Updates��� 371

Setting State Data from Prop Values��� 374

Summary��� 377

■ Contents

xiv

■■Chapter 14: Composing Applications��� 379

Preparing for This Chapter�� 380

Creating the Example Components��� 381

Understanding the Basic Component Relationship��� 383

Using the Children Prop��� 384

Manipulating Prop Children��� 385

Creating a Specialized Component��� 390

Creating Higher-Order Components�� 393

Creating Stateful Higher-Order Components��� 396

Combining Higher-Order Components��� 399

Using Render Props��� 400

Using a Render Prop with an Argument��� 403

Using Contexts for Global Data�� 405

Defining the Context�� 409

Creating the Context Consumer��� 409

Creating the Context Provider�� 410

Changing Context Data Values in a Consumer��� 412

Using the Simplified Context Consumer APIs�� 416

Defining Error Boundaries��� 418

Creating the Error Boundary Component��� 419

Summary��� 422

■■Chapter 15: Forms and Validation�� 423

Preparing for This Chapter�� 424

Defining the Example Components�� 425

Starting the Development Tools��� 427

Using Form Elements�� 427

Using Select Elements��� 429

Using Radio Buttons�� 432

Using Checkboxes��� 434

Using Checkboxes to Populate an Array�� 436

Using Text Areas�� 438

■ Contents

xv

Validating Form Data��� 439

Defining the Validation Rules��� 440

Creating the Container Component��� 441

Displaying Validation Messages�� 443

Applying the Form Validation��� 444

Validating Other Element and Data Types�� 446

Performing Whole-Form Validation�� 452

Summary��� 456

■■Chapter 16: Using Refs and Portals�� 457

Preparing for This Chapter�� 458

Creating Refs��� 462

Using Refs to Create Uncontrolled Form Components�� 465

Creating Refs Using a Callback Function��� 467

Validating Uncontrolled Form Components��� 470

Understanding Refs and the Lifecycle��� 475

Using Refs with Other Libraries or Frameworks��� 481

Accessing a Child Component’s Content��� 484

Using Ref Forwarding�� 485

Using Portals��� 487

Summary��� 490

■■Chapter 17: Unit Testing��� 491

Preparing for This Chapter�� 492

Creating Components�� 493

Running the Example Application�� 496

Running the Placeholder Unit Test�� 496

Testing a Component Using Shallow Rendering�� 499

Testing a Component with Full Rendering��� 503

■ Contents

xvi

Testing with Props, State, Methods, and Events�� 504

Testing the Effect of Methods�� 506

Testing the Effects of an Event�� 506

Testing the Interaction Between Components��� 508

Summary��� 509

■■Part III: Creating Complete Applications��� 511

■■Chapter 18: Creating Complete Applications�� 513

Creating the Project��� 514

Starting the Development Tools��� 515

Creating the Example Application��� 515

Creating the Product Features��� 516

Creating the Supplier Functionality��� 520

Completing the Application�� 525

Understanding the Limitations of the Example Application��� 528

Summary��� 529

■■Chapter 19: Using a Redux Data Store�� 531

Preparing for This Chapter�� 532

Creating a Data Store�� 533

Defining the Data Types��� 534

Defining the Initial Data��� 535

Defining the Model Data Action Types��� 535

Defining the Model Action Creators��� 536

Defining the Reducer��� 537

Creating the Data Store��� 539

Using the Data Store in the React Application��� 539

Applying the Data Store to the Top-Level Component��� 539

Connecting the Product Data��� 540

Connecting the Supplier Data�� 543

■ Contents

xvii

Expanding the Data Store�� 546

Adding State Data to the Store�� 546

Defining the Action Types and Creators for State Data�� 547

Defining the State Data Reducer��� 547

Incorporating the State Data Features into the Store�� 548

Connecting the React Components to the Stored State Data�� 550

Dispatching Multiple Actions��� 554

Understanding the Need for References��� 557

Summary��� 559

■■Chapter 20: Using the Data Store APIs��� 561

Preparing for This Chapter�� 562

Using the Redux Data Store API�� 563

Obtaining the Data Store State�� 564

Observing Data Store Changes�� 567

Dispatching Actions��� 569

Creating a Connector Component�� 570

Enhancing Reducers��� 574

Using Data Store Middleware�� 577

Enhancing the Data Store�� 580

Applying the Enhancer��� 582

Using the React-Redux API�� 584

Advanced Connect Features�� 584

Summary��� 589

■■Chapter 21: Using URL Routing��� 591

Preparing for This Chapter�� 592

Getting Started with URL Routing�� 594

Getting Started with the Link Component��� 595

Getting Started with the Route Component��� 595

■ Contents

xviii

Responding to Navigation��� 596

Selecting Components and Content�� 597

Matching URLs��� 599

Making a Single Route Match�� 604

Using Redirection as the Fallback Route��� 605

Rendering Navigation Links�� 608

Indicating the Active Route�� 610

Selecting and Configuring the Router��� 612

Using the HashRouter Component��� 613

Summary��� 614

■■Chapter 22: Advanced URL Routing�� 615

Preparing for This Chapter�� 616

Creating Routing-Aware Components��� 617

Understanding the Match Prop�� 618

Understanding the Location Prop�� 620

Using URL Parameters��� 622

Accessing Routing Data in Other Components�� 628

Accessing Routing Data Directly in a Component��� 628

Accessing Routing Data Using a Higher-Order Component��� 630

Navigating Programmatically�� 632

Navigating Programmatically Using Components��� 633

Prompting the User Before Navigation�� 634

Generating Routes Programmatically�� 639

Using Routing with Connected Data Store Components��� 641

Replacing the Display Components��� 642

Updating the Connected Editor Component��� 643

Updating the Connected Table Component�� 644

Completing the Routing Configuration��� 645

Summary��� 647

■ Contents

xix

■■Chapter 23: Consuming a RESTful Web Service��� 649

Preparing for This Chapter�� 650

Adding Packages to the Project��� 650

Preparing the Web Service�� 651

Adding a Component and a Route��� 652

Running the Web Service and the Example Application�� 654

Understanding RESTful Web Services��� 655

Consuming a Web Service��� 657

Creating the Data Source Component��� 657

Getting Data in the Component�� 659

Saving, Updating, and Deleting Data��� 661

Dealing with Errors�� 667

Consuming a Web Service with a Data Store�� 673

Creating the New Middleware��� 673

Adding the Middleware to the Data Store�� 674

Completing the Application Changes��� 675

Summary��� 677

■■Chapter 24: Understanding GraphQL�� 679

Preparing for This Chapter�� 680

Understanding GraphQL�� 682

Creating the GraphQL Server��� 683

Creating the Schema��� 683

Creating the Resolvers�� 685

Creating the Server�� 686

Making GraphQL Queries��� 687

Querying for Related Data��� 688

Creating Queries with Arguments�� 691

Making GraphQL Mutations��� 697

■ Contents

xx

Other GraphQL Features�� 701

Using Request Variables�� 701

Making Multiple Requests��� 703

Using Query Fragments for Field Selection��� 704

Summary��� 705

■■Chapter 25: Consuming GraphQL�� 707

Preparing for This Chapter�� 707

Adding Packages to the Project��� 707

Changing the Data for the GraphQL Server��� 708

Updating the Schema and Resolvers��� 708

Integrating the GraphQL Server with the Development Tools�� 711

Consuming a GraphQL Service�� 713

Defining the Queries and Mutations�� 713

Defining the Data Source��� 715

Configuring the Isolated Components��� 716

Using GraphQL with a Data Store�� 718

Adjusting to the GraphQL Data Format�� 720

Using a GraphQL Client Framework�� 725

Configuring the Client�� 725

Creating a GraphQL Component�� 726

Using Mutations��� 730

Adding Support for Supplier Data and Editing��� 735

Summary��� 740

Index�� 741

xxi

About the Author

Adam Freeman is an experienced IT professional who has held senior
positions in a range of companies, most recently serving as chief
technology officer and chief operating officer of a global bank. Now retired,
he spends his time writing and long-distance running.

xxiii

About the Technical Reviewer

Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer using Microsoft
technologies. He works for BluArancio (www.bluarancio.com). He is a Microsoft Certified Solution
Developer for .NET, a Microsoft Certified Application Developer for .NET, a Microsoft Certified Professional,
and a prolific author and technical reviewer. Over the past ten years, he’s written articles for Italian and
international magazines and coauthored more than ten books on a variety of computer topics.

http://www.bluarancio.com/

PART I

Getting Started with React

3© Adam Freeman 2019
A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_1

CHAPTER 1

Your First React Application

The best way to get started with React is to dive in. In this chapter, I take you through a simple development
process to create an application to keep track of to-do items. In Chapters 5–8, I show you how to create
a more complex and realistic application, but, for now, a simple example will be enough to demonstrate
how React applications are created and how the basic features work. Don’t worry if you don’t understand
everything in this chapter—the idea is to get an overall sense of how React works. I explain everything in
detail in later chapters.

■■ Note  If you want a conventional description of React features, you can jump to Part 2 of this book,
where I start the process of describing individual features in depth. Before you go, make sure you install the
development tools and packages described in this chapter.

Preparing the Development Environment
There is some preparation required for React development. In the sections that follow, I explain how to get
set up and ready to create your first project.

Installing Node.js
The tools used for React development rely on Node.js—also known as Node—which was created in 2009
as a simple and efficient runtime for server-side applications written in JavaScript. Node.js is based on the
JavaScript engine used in the Chrome browser and provides an API for executing JavaScript code outside of
the browser environment.

Node.js has enjoyed success as an application server, but for this book it is interesting because it has
provided the foundation for a new generation of cross-platform development and build tools.

It is important that you download the same version of Node.js that I use throughout this book. Although
Node.js is relatively stable, there are still breaking API changes from time to time that may stop the examples
I include in the chapters from working. The version I have used is 10.14.1, which is the current Long-Term
Support release at the time of writing. There may be a later version available by the time you read this, but you
should stick to the 10.14.1 release for the examples in this book. A complete set of 10.14.1 releases, with installers
for Windows and macOS and binary packages for other platforms, is available at https://nodejs.org/
dist/v10.14.1.

When you install Node.js, make sure you select the option to add the Node.js executables to the path.
When the installation is complete, run the command shown in Listing 1-1.

https://nodejs.org/dist/v10.14.1
https://nodejs.org/dist/v10.14.1

Chapter 1 ■ Your First React Application

4

Listing 1-1.  Checking the Node Version

node -v

If the installation has gone as it should, then you will see the following version number displayed:

v10.14.1

The Node.js installer includes the Node Package Manager (NPM), which is used to manage the
packages in a project. Run the command shown in Listing 1-2 to ensure that NPM is working.

Listing 1-2.  Checking NPM Works

npm -v

If everything is working as it should, then you will see the following version number:

6.4.1

Installing the create-react-app Package
The create-react-app package is the standard way to create and manage complex React packages and
provides developers with a complete toolchain. There are other ways to get started with React, but this is the
approach that best suits most projects and is the one that I use throughout this book.

To install the package, open a new command prompt and run the command shown in Listing 1-3. If you
are using Linux or macOS, you may need to use sudo.

Listing 1-3.  Installing the create-react-app Package

npm install --global create-react-app@2.1.2

Installing Git
The Git revision control tool is required to manage some of the packages required for React development.
If you are using Windows or macOS, then download and run the installer from https://git-scm.com/
downloads. (On macOS, you may have to change your security settings to open the installer, which has not
been signed by the developers.)

Git is already included in most Linux distributions. If you want to install the latest version, then consult
the installation instructions for your distribution at https://git-scm.com/download/linux. As an example,
for Ubuntu, which is the Linux distribution I use, I used the command shown in Listing 1-4.

Listing 1-4.  Installing Git

sudo apt-get install git

https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/download/linux

Chapter 1 ■ Your First React Application

5

Once you have completed the installation, open a new command prompt and run the command shown
in Listing 1-5 to check that Git is installed and available.

Listing 1-5.  Checking Git

git --version

This command prints out the version of the Git package that has been installed. At the time of writing,
the latest version of Git for Windows and Linux is 2.20.1, and the latest version of Git for macOS is 2.19.2.

Installing an Editor
React development can be done with any programmer’s editor, from which there is an endless number to
choose. Some editors have enhanced support for working with React, including highlighting keywords and
expressions. If you don’t already have a preferred editor for web application development, then you can
consider some of the popular options in Table 1-1. I don’t rely on any specific editor for this book, and you
should use whichever editor you are comfortable working with.

Table 1-1.  Popular Programming Editors

Name Description

Sublime Text Sublime Text is a commercial cross-platform editor that has packages to support
most programming languages, frameworks, and platforms. See www.sublimetext.com
for details.

Atom Atom is an open-source, cross-platform editor that has a particular emphasis on
customization and extensibility. See atom.io for details.

Brackets Brackets is a free open-source editor developed by Adobe. See brackets.io for
details.

Visual Studio Code Visual Studio Code is an open-source, cross-platform editor from Microsoft, with an
emphasis on extensibility. See code.visualstudio.com for details.

Visual Studio Visual Studio is Microsoft’s flagship developer tool. There are free and commercial
editions available, and it comes with a wide range of additional tools that integrate
into the Microsoft ecosystem.

Installing a Browser
The final choice to make is the browser that you will use to check your work during development. All the
current-generation browsers have good developer support and work well with React, but there is a useful
extension for Chrome and Firefox called react-devtools that provides insights into the state of a React
application and that is especially useful in complex projects. See https://github.com/facebook/react-
devtools for details of installing the extension. I used Google Chrome throughout this book, and this is the
browser I recommend you use to follow the examples.

http://www.sublimetext.com
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools

Chapter 1 ■ Your First React Application

6

Creating the Project
Projects are created and managed from the command line. Open a new command prompt, navigate to a
convenient location, and run the command shown in Listing 1-6 to create the project for this chapter.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this book—
from https://github.com/Apress/pro-react-16.

Listing 1-6.  Creating the Project

npx create-react-app todo

The npx command was installed as part of the Node.js/NPM package in the previous section and is used
to run Node.js packages. The create-react-app argument tells npx to run the create-react-app package
that is used to create new React projects and was installed in Listing 1-3. The final argument is todo, which
is the name of the project to create. When you run this command, the project will be created, and all of the
packages required for developing and running a React project will be downloaded and installed. The setup
process can take a while because there are a large number of packages to download.

■■ Note  When you create a new project, you may see warnings about security vulnerabilities. React
development relies on a large number of packages, each of which has its own dependencies, and security
issues will inevitably be discovered. For the examples in this book, it is important to use the package versions
specified to ensure you get the expected results. For your own projects, you should review the warnings and
update to versions that resolve the problems.

Understanding the Project Structure
Open the todo folder using your preferred editor, and you will see the project structure shown in Figure 1-1.
The figure shows the layout in my preferred editor—Visual Studio—and you may see the project content
presented slightly differently if you have chosen a different editor.

https://github.com/Apress/pro-react-16

Chapter 1 ■ Your First React Application

7

This is the starting point for all projects, and while the purpose of each file may not be obvious at the
moment, you will know what each file and folder is for by the end of the book. For the moment, Table 1-2
briefly describes the files that are important for this chapter, and I provide a detailed explanation of React
projects in Chapter 9.

Figure 1-1.  The project structure

Table 1-2.  The Important Files in the Project for This Chapter

Name Description

public/index.html This is the HTML file that is loaded by the browser. It contains an element
in which the application is displayed and a script element that loads the
application’s JavaScript files.

src/index.js This is the JavaScript file that is responsible for configuring and starting the React
application. I use this file to add the Bootstrap CSS framework to the application
in the next section.

src/App.js This is the React component, which contains the HTML content that will
be displayed to the user and the JavaScript code required by the HTML.
Components are the main building blocks in a React application, and you will
see them used throughout this book.

Chapter 1 ■ Your First React Application

8

Adding the Bootstrap CSS Framework
I use the excellent Bootstrap CSS framework to style the HTML presented by the examples in this book. I
describe the basic use of Bootstrap in Chapter 3, but to get started in this chapter, run the commands shown
in Listing 1-7 to navigate to the todo folder and add the Bootstrap package to the project.

■■ Tip T he command used to manage the packages in a project is npm, which is confusingly similar to npx,
which is used only when creating a new project. It is important not to confuse the two commands.

Listing 1-7.  Adding the Bootstrap CSS Framework

cd todo
npm install bootstrap@4.1.2

To include Bootstrap in the application, add the statement shown in Listing 1-8 to the index.js file.

Listing 1-8.  Including Bootstrap in the index.js File in the src Folder

import React from 'react';
import ReactDOM from 'react-dom';
import './index.css';
import App from './App';
import * as serviceWorker from './serviceWorker';
import 'bootstrap/dist/css/bootstrap.css';

ReactDOM.render(<App />, document.getElementById('root'));

// If you want your app to work offline and load faster, you can change
// unregister() to register() below. Note this comes with some pitfalls.
// Learn more about service workers: http://bit.ly/CRA-PWA
serviceWorker.unregister();

As I explain in Chapter 4, the import statement is used to declare a dependency so that it becomes part
of the application. The import keyword is most often used to declare dependencies on JavaScript code, but it
can also be used for CSS stylesheets.

Starting the Development Tools
When you create a project using the create-react-app package, a complete set of development tools
is installed so that the project can be compiled, packaged up, and delivered to the browser. Using the
command prompt, run the commands shown in Listing 1-9 in the todo folder to start the development tools.

Listing 1-9.  Starting the Development Tools

npm start

Chapter 1 ■ Your First React Application

9

There is an initial preparation process when the development tools start, which can take a moment to
complete. Don’t be put off by the amount of time the preparation takes because this process is required only
when you start a development session. When the startup process is complete, you will see a message like this
one, which confirms that the application is running and tells you which HTTP port to connect to:

Compiled successfully!
You can now view todo in the browser.
 Local: http://localhost:3000/
 On Your Network: http://192.168.0.77:3000/
Note that the development build is not optimized.
To create a production build, use npm run build.

The default port used to listen for HTTP requests is 3000, although a different port will be selected if
3000 is in use. Once the initial preparation for the project is complete, a new browser window will open and
display the URL http://localhost:3000 and the placeholder content shown in Figure 1-2.

Figure 1-2.  Running the example application

Chapter 1 ■ Your First React Application

10

Replacing the Placeholder Content
The content that is displayed in Figure 1-2 is a placeholder that is used to ensure that the development tools
are working. To replace the default content, I changed the App.js file, as shown in Listing 1-10.

Listing 1-10.  Removing the Placeholder in the App.js File in the src Folder

import React, { Component } from 'react';
//import logo from './logo.svg';
//import './App.css';

export default class App extends Component {

 render() {
 return (
 <div>
 <h4 className="bg-primary text-white text-center p-2">
 To Do List
 </h4>
 </div>
)
 };
}

The App.js file contains a React component, which is named App. Components are the main building
block for React applications, and they are written using JSX, which is a superset of JavaScript that allows
HTML to be included in code files without requiring any special quoting. I describe JSX in more detail in
Chapter 3, but in this listing, the App component defines a render method that React calls to get the content
to display to the user.

■■ Tip  React supports recent additions to the JavaScript language, such as the class keyword, which is used
in Listing 1-10. I provide a primer for the most useful JavaScript features in Chapter 4.

When you save the App.js file, the React development tools automatically detect the changes, rebuild
the application, and instruct the browser to reload, showing the content in Figure 1-3.

Figure 1-3.  Replacing the placeholder content

Chapter 1 ■ Your First React Application

11

The JSX files used in React development make it easy to mix HTML and JavaScript, but there are
some important differences from regular HTML files. You can see a common example in the h4 element in
Listing 1-10, shown here:

...
<h4 className="bg-primary text-white text-center p-2">
 To Do List
</h4>
...

In regular HTML, the class attribute is used to assign elements to classes, which is how elements are
styled when using the Bootstrap CSS framework. Even though it might not appear so, JSX files are JavaScript
files, and JavaScript configures classes through the className property. The differences between pure HTML
and JSX can be jarring when you first begin React development, but they soon will become second nature.

■■ Tip  I provide a brief overview of working with the Bootstrap CSS framework in Chapter 3, where I explain
the meaning of the classes to which the h4 element has been assigned in Listing 1-10, such as bg-primary,
text-white, and p-2. You can ignore these classes for the moment, however, and just focus on the basic
structure of the application.

React will write a warning message to the browser’s JavaScript console if you forget you are working with
JSX and use standard HTML instead. If you use the class attribute instead of className, for example, you
will see the Invalid DOM property 'class'. Did you mean 'className'? warning. To see the browser’s
JavaScript console, press the F12 key and select the Console or JavaScript Console tab.

Displaying Dynamic Content
All web applications need to display dynamic content to the user, and React makes this easy by supporting
the expressions feature. An expression is a fragment of JavaScript that is evaluated when a component’s
render method is called and provides the means to display data to the user. Many expressions are used to
display data values defined by the component to keep track of the state of the application, known as state
data. State data and expressions are easier to understand when you see an example, and Listing 1-11 adds
both to the App component.

Listing 1-11.  Adding State Data and Data Bindings in the App.js File in the src Folder

import React, { Component } from 'react';
export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 userName: "Adam"
 }
 }

Chapter 1 ■ Your First React Application

12

 render() {
 return (
 <div>
 <h4 className="bg-primary text-white text-center p-2">
 { this.state.userName }'s To Do List
 </h4>
 </div>
)
 };
}

The constructor is a special method that is invoked when the component is initialized, and calling
the super method within the constructor is required to ensure that the component is set up properly, as I
explain in Chapter 11. The props parameter defined by the constructor is important in React development
because it allows one component to configure another, which you will see shortly.

■■ Tip T he term props is short for properties, and it reflects the way React creates the HTML content that is
displayed in the browser, as I explain in Chapter 3.

React components have a special property named state, which is used to define state data, like this:

...
this.state = {
 userName: "Adam"
}
...

The this keyword refers to the current object and is used to access its properties and methods. The
highlighted statement assigns an object with a userName property to this.state, which is all that is required
to set up state data. Once state data has been defined, it can be included in the content generated by the
component in an expression, like this:

...
<h4 className="bg-primary text-white text-center p-2">
 { this.state.userName }'s To Do List
</h4>
...

Expressions are denoted with curly braces (the { and } characters). When the render method is
invoked, the expression is evaluated, and its result is included in the content presented to the user. The
expression in Listing 1-11 reads the value of the userName state data property, producing the result shown in
Figure 1-4.

Chapter 1 ■ Your First React Application

13

Understanding State Data Changes
The dynamic nature of a React application is based on changes to state data, which React responds to by
invoking the component’s render method again, which causes the expressions to be re-evaluated using the
new state data values. In Listing 1-12, I have updated the App component so that the value of the userName
state data property is changed.

Listing 1-12.  Changing State Data in the App.js File in the src Folder

import React, { Component } from 'react';
export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 userName: "Adam"
 }
 }

 changeStateData = () => {
 this.setState({
 userName: this.state.userName === "Adam" ? "Bob" : "Adam"
 })
 }

 render() {
 return (
 <div>
 <h4 className="bg-primary text-white text-center p-2">
 { this.state.userName }'s To Do List
 </h4>
 <button className="btn btn-primary m-2"
 onClick={ this.changeStateData }>
 Change
 </button>
 </div>
)
 };
}

Figure 1-4.  Using state data and expressions in the App.js file in the src Folder

Chapter 1 ■ Your First React Application

14

Save the changes to the App.js file, and you will see a button in the browser window. Clicking the
button changes the username, as shown in Figure 1-5.

This example contains several important React features working together. The first is the onClick
attribute on the button element.

...
<button className="btn btn-primary m-2" onClick={ this.changeStateData }>
 Change
</button>
...

The onClick attribute is assigned an expression that React evaluates when the button is clicked.
Clicking a button triggers an event, and onClick is an example of an event-handler prop. The function or
method that is specified by onClick will be invoked each time the button is clicked. The expression in
Listing 1-12 specifies the changeStateData method, which is defined using the fat arrow syntax, which
allows functions to be expressed concisely, as shown here:

...
changeStateData = () => {
 this.setState({ userName: this.state.userName === "Adam" ? "Bob" : "Adam" })
}
...

As I explain in Chapter 4, fat arrow functions are used to simplify responding to events, but they be
used more widely and help keep the mix of HTML and JavaScript readable in a React application. The
changeStateData method uses the setState method to set a new value for the userName property. When the
setState method is called, React updates the component’s state data with the new values and then invokes
the render method so that the expressions will generate updated content. This is why clicking the button
changes the name shown in the browser window from Adam to Bob. I didn’t have to explicitly tell React that
the value used by the expression changed—I just called the setState method to set the new value and left
React to update the content in the browser.

■■ Tip T he this keyword is required whenever you use the properties and methods defined by a component,
including the setState method. Forgetting to use this is a common error in React development, and it is the
first thing to check if you don’t get the behavior you expect.

Figure 1-5.  Changing the username

Chapter 1 ■ Your First React Application

15

Functions defined using the fat arrow syntax don’t use the return keyword or require curly braces around
the function body, which can result in simpler and clearer render methods, for example, as shown in Listing 1-13.

Listing 1-13.  Redefining a Method Using a Fat Arrow Function in the App.js File in the src Folder

import React, { Component } from 'react';

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 userName: "Adam"
 }
 }

 changeStateData = () => {
 this.setState({
 userName: this.state.userName === "Adam" ? "Bob" : "Adam"
 })
 }

 render = () =>
 <div>
 <h4 className="bg-primary text-white text-center p-2">
 { this.state.userName }'s To Do List
 </h4>
 <button className="btn btn-primary m-2"
 onClick={ this.changeStateData }>
 Change
 </button>
 </div>
}

I use both styles to define functions and methods in this book. For the most part, you can choose
between conventional JavaScript functions and fat arrow functions, although there are some important
considerations explained in Chapter 12.

Adding the To-Do Application Features
Now that you have seen how React can display dynamic content, it is time to start adding the features
required by the application, starting with additional state data and expressions, as shown in Listing 1-14.

Listing 1-14.  Adding Application Features in the App.js File in the src Folder

import React, { Component } from 'react';

export default class App extends Component {

 constructor(props) {
 super(props);

Chapter 1 ■ Your First React Application

16

 this.state = {
 userName: "Adam",
 todoItems: [{ action: "Buy Flowers", done: false },
 { action: "Get Shoes", done: false },
 { action: "Collect Tickets", done: true },
 { action: "Call Joe", done: false }],
 newItemText: ""
 }
 }

 updateNewTextValue = (event) => {
 this.setState({ newItemText: event.target.value });
 }

 createNewTodo = () => {
 if (!this.state.todoItems
 .find(item => item.action === this.state.newItemText)) {
 this.setState({
 todoItems: [...this.state.todoItems,
 { action: this.state.newItemText, done: false }],
 newItemText: ""
 });
 }
 }

 render = () =>
 <div>
 <h4 className="bg-primary text-white text-center p-2">
 {this.state.userName}'s To Do List
 ({ this.state.todoItems.filter(t => !t.done).length} items to do)
 </h4>
 <div className="container-fluid">
 <div className="my-1">
 <input className="form-control"
 value={ this.state.newItemText }
 onChange={ this.updateNewTextValue } />
 <button className="btn btn-primary mt-1"
 onClick={ this.createNewTodo }>Add</button>
 </div>
 </div>
 </div>
}

Because React expressions are JavaScript, they can be used to inspect data values and generate results
dynamically, like this expression:

...
<h4 className="bg-primary text-white text-center p-2">
 {this.state.userName}'s To Do List
 ({ this.state.todoItems.filter(t => !t.done).length} items to do)
</h4>
...

Chapter 1 ■ Your First React Application

17

This expression filters the objects in the todoItems state data array so that only incomplete items are
selected and then reads the value of the length property, which is the value that the binding will display
to the user. The JSX format makes it easy to mix HTML elements and code like this, although complex
expressions can be difficult to read and are often defined in a property or method to keep the HTML as
simple as possible.

The changes in Listing 1-14 introduce an input element, which allows the user to enter the text for a
new to-do item. The input element has two props, which are used to manage the content of the element and
respond to changes, shown here:

...
<input className="form-control"
 value={ this.state.newItemText } onChange={ this.updateNewTextValue } />
...

The value prop is used to set the contents of the input element. In this case, the expression that the
value prop contains will return the value of the newItemText state data property, which means that any
change to the state data property will update the contents of the input element. The onChange prop tells
React what to do when the change event is triggered, which will happen when the user types into the input
element. This expression tells React to invoke the component’s updateNewTextValue method, which
uses the setState method to update the newItemText state data property. This may seem like a circular
approach, but it ensures that React knows how to deal with changes performed by code and by the user.

The button element uses the onClick prop to tell React to invoke the createNewTodo method in
response to the click event. The createNewTodo method checks that there an existing item with the same
text and, if there is not, uses the setState method to add a new item to the todoItems array and resets the
newItemText property, which has the effect of clearing the input element. The statement that adds the new
item to the array does so with the JavaScript spread operator, which is a recent addition to the JavaScript
language.

...
todoItems: [...this.state.todoItems,
 { action: this.state.newItemText, done: false }],
...

The spread operator is three periods, and it expands an array. The tools used for React development
allow recent JavaScript features to be used and translates them into compatible code that can be understood
by older web browsers. I describe the spread operator and other useful JavaScript features in Chapter 4.

To see the effect of the changes in Listing 1-14, enter a description of a task into the text field and click
the Add button. React responds to the event by invoking the method specified by the button’s onClick prop,
which uses the value of the input element to create a new to-do item. You can’t see the description of the
task yet, but you will see that the number of incomplete tasks increases, as shown in Figure 1-6.

Chapter 1 ■ Your First React Application

18

Displaying the To-Do Items
The next step is to display each to-do item to the user so they can see details of the task and mark them
complete when they are done, as shown in Listing 1-15.

Listing 1-15.  Displaying To-Do Items in the App.js File in the src Folder

import React, { Component } from 'react';

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 userName: "Adam",
 todoItems: [{ action: "Buy Flowers", done: false },
 { action: "Get Shoes", done: false },
 { action: "Collect Tickets", done: true },
 { action: "Call Joe", done: false }],
 newItemText: ""
 }
 }

 updateNewTextValue = (event) => {
 this.setState({ newItemText: event.target.value });
 }

 createNewTodo = () => {
 if (!this.state.todoItems
 .find(item => item.action === this.state.newItemText)) {
 this.setState({
 todoItems: [...this.state.todoItems,
 { action: this.state.newItemText, done: false }],
 newItemText: ""
 });
 }
 }

Figure 1-6.  Adding a new task

Chapter 1 ■ Your First React Application

19

 toggleTodo = (todo) => this.setState({ todoItems:
 this.state.todoItems.map(item => item.action === todo.action
 ? { ...item, done: !item.done } : item) });

 todoTableRows = () => this.state.todoItems.map(item =>
 <tr key={ item.action }>
 <td>{ item.action}</td>
 <td>
 <input type="checkbox" checked={ item.done }
 onChange={ () => this.toggleTodo(item) } />
 </td>
 </tr>);

 render = () =>
 <div>
 <h4 className="bg-primary text-white text-center p-2">
 {this.state.userName}'s To Do List
 ({ this.state.todoItems.filter(t => !t.done).length} items to do)
 </h4>
 <div className="container-fluid">
 <div className="my-1">
 <input className="form-control"
 value={ this.state.newItemText }
 onChange={ this.updateNewTextValue } />
 <button className="btn btn-primary mt-1"
 onClick={ this.createNewTodo }>Add</button>
 </div>
 <table className="table table-striped table-bordered">
 <thead>
 <tr><th>Description</th><th>Done</th></tr>
 </thead>
 <tbody>{ this.todoTableRows() }</tbody>
 </table>
 </div>
 </div>
}

So far, the emphasis in the App.js file has been embedding a JavaScript expression in fragments of HTML.
But the JSX format allows HTML and JavaScript to be mixed freely, which means that JavaScript methods can
return HTML content. You can see an example in Listing 1-15, where the todoTableRows method uses the
JavaScript map method to produce a sequence of HTML elements for each object in the todoItems array, like this:

...
todoTableRows = () => this.state.todoItems.map(item =>
 <tr key={ item.action }>
 <td>{ item.action}</td>
 <td>
 <input type="checkbox" checked={ item.done }
 onChange={ () => this.toggleTodo(item) } />
 </td>
 </tr>);
...

Chapter 1 ■ Your First React Application

20

Each item in the array is mapped to a tr element, which is the HTML element for a table row. Within
the tr element is a set of td elements that define HTML table cells. The HTML content produced by the
map method contains further JavaScript expressions that populate the td elements with state data values or
functions that will be invoked to handle an event.

React does enforce some restrictions on the content it handles, such as the key prop added to each tr
element by the todoTableRows method, shown here:

...
<tr key={ item.action }>
...

As you will learn in detail in Chapter 13, React invokes a component’s render method when there is a
change and compares the result with the HTML that is displayed in the browser so that only the differences
are applied. React requires the key prop so that it can correlate the content is displayed with the data that
produced it and manage changes efficiently.

The result of the changes in Listing 1-15 is that each to-do item is displayed with a checkbox that the
user toggles to indicate that the task is complete. Each table row generated by the todoTableRows method
contains an input element configured as a checkbox.

The result of the changes in Listing 1-15 is that the list of to-do items is displayed in a table and that
checking an item as complete reduces the number displayed in the header, as shown in Figure 1-7.

Figure 1-7.  Displaying the to-do items

Chapter 1 ■ Your First React Application

21

Introducing Additional Components
At the moment, all of the example application’s functionality is contained in a single component, which can
become difficult to manage as new features are added. To help keep components manageable, functionality
is delegated up into separate components that are responsible for specific features. These are known as child
components, while the component that delegated the functionality is known as the parent.

In this section, I am going to introduce several child components, each of which will be responsible for
a single feature. I started by adding a file called TodoBanner.js to the src folder and using it to define the
component shown in Listing 1-16.

Listing 1-16.  The Contents of the TodoBanner.js File in the src Folder

import React, { Component } from 'react';

export class TodoBanner extends Component {

 render = () =>
 <h4 className="bg-primary text-white text-center p-2">
 { this.props.name }'s To Do List
 ({ this.props.tasks.filter(t => !t.done).length } items to do)
 </h4>
}

This component is responsible for displaying the banner. Parent components provide their children
with data using props, and the data values are accessed through the props property, accessed via the this
keyword. This component, which is called TodoBanner, expects to receive two props: a name prop, which
contains the user’s name, and a tasks prop, which contains the set of tasks and which is filtered to display
the number that are incomplete. To display the value of the name prop, for example, the component uses an
expression that contains this.props.name, like this:

...
{ this.props.name }'s To Do List
...

When React invokes the TodoBanner component’s render method, the value of the name prop provided
by the parent component will be included in the result. The other expression in the TodoBanner component’s
render method uses the JavaScript filter method to select the incomplete items and determine how many
there are, showing that props can be used in expressions that do more than just display their value.

Next, I created a file called TodoRow.js in the src folder and used it to define the component shown in
Listing 1-17.

Listing 1-17.  The Contents of the TodoRow.js File in the src Folder

import React, { Component } from 'react';
export class TodoRow extends Component {

 render = () =>
 <tr>
 <td>{ this.props.item.action}</td>
 <td>
 <input type="checkbox" checked={ this.props.item.done }

Chapter 1 ■ Your First React Application

22

 onChange={ () => this.props.callback(this.props.item) }
 />
 </td>
 </tr>
}

This component will be responsible for displaying a single row in the table, showing details of a to-do
item. The data that is received by a child component through its props is read-only and must not be altered.
To make changes, parent components can use function props to provide children with callback functions
that are invoked when something important happens. This combination allows collaboration between
components: data props allow a parent to provide data to a child, and function props allow a child to
communicate with this parent.

The component in Listing 1-17 defines a data prop named item that is used to receive the to-do item to
be displayed, and it defines a function prop named callback that provides a function that is invoked when
the user toggles the checkbox. For the final child component, I added a file called TodoCreator.js to the src
folder and added the code shown in Listing 1-18.

Listing 1-18.  The Contents of the TodoCreator.js File in the src Folder

import React, { Component } from 'react';

export class TodoCreator extends Component {

 constructor(props) {
 super(props);
 this.state = { newItemText: "" }
 }

 updateNewTextValue = (event) => {
 this.setState({ newItemText: event.target.value});
 }

 createNewTodo = () => {
 this.props.callback(this.state.newItemText);
 this.setState({ newItemText: ""});
 }

 render = () =>
 <div className="my-1">
 <input className="form-control" value={ this.state.newItemText }
 onChange={ this.updateNewTextValue } />
 <button className="btn btn-primary mt-1"
 onClick={ this.createNewTodo }>Add</button>
 </div>
}

Child components can have their own state data, which is what this component uses to handle the
content of its input element. The component invokes a function prop to notify its parent when the user
clicks the Add button.

Chapter 1 ■ Your First React Application

23

Using the Child Components
The components I defined in the previous section take responsibility for specific features of the to-do
application. In Listing 1-19, I have updated the App component to use the three new components, each of
which is configured using props to provide them with the data and callback functions they require.

Listing 1-19.  Applying Child Components in the App.js File in the src Folder

import React, { Component } from 'react';
import { TodoBanner } from "./TodoBanner";
import { TodoCreator } from "./TodoCreator";
import { TodoRow } from "./TodoRow";

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 userName: "Adam",
 todoItems: [{ action: "Buy Flowers", done: false },
 { action: "Get Shoes", done: false },
 { action: "Collect Tickets", done: true },
 { action: "Call Joe", done: false }],
 //newItemText: ""
 }
 }

 updateNewTextValue = (event) => {
 this.setState({ newItemText: event.target.value });
 }

 createNewTodo = (task) => {
 if (!this.state.todoItems.find(item => item.action === task)) {
 this.setState({
 todoItems: [...this.state.todoItems, { action: task, done: false }]
 });
 }
 }

 toggleTodo = (todo) => this.setState({ todoItems:
 this.state.todoItems.map(item => item.action === todo.action
 ? { ...item, done: !item.done } : item) });

 todoTableRows = () => this.state.todoItems.map(item =>
 <TodoRow key={ item.action } item={ item } callback={ this.toggleTodo } />)

 render = () =>
 <div>
 <TodoBanner name={ this.state.userName } tasks={this.state.todoItems } />
 <div className="container-fluid">
 <TodoCreator callback={ this.createNewTodo } />
 <table className="table table-striped table-bordered">

Chapter 1 ■ Your First React Application

24

 <thead>
 <tr><th>Description</th><th>Done</th></tr>
 </thead>
 <tbody>{ this.todoTableRows() }</tbody>
 </table>
 </div>
 </div>
}

The new import statements declare dependencies on the child components, which ensures they are
included in the application during the build process. Child components are used as custom HTML elements,
with attributes and expressions defining the props that the component will receive, like this:

...
<TodoBanner name={ this.state.userName } tasks={this.state.todoItems } />
...

The expressions used to set the prop values provide a child component with access to specific data and
methods defined by its parent. In this case, the name and tasks props are used to provide the TodoBanner
component with the values of the userName and todoItems state data properties.

Adding the Finishing Touches
The basic features of the application are in place, and the set of components that provide those features are
all working together. In this section, I add some finishing touches to complete the to-do application.

Managing the Visibility of Completed Tasks
At the moment, tasks always remain visible to the user even when they have been completed. To address
this, I will present the user with separate lists of complete and incomplete tasks and allow the incomplete
tasks to be hidden. I added a file called VisibilityControl.js to the src folder and used it to define the
component shown in Listing 1-20.

Listing 1-20.  The Contents of the VisibilityControl.js File in the src Folder

import React, { Component } from 'react';

export class VisibilityControl extends Component {

 render = () =>
 <div className="form-check">
 <input className="form-check-input" type="checkbox"
 checked={ this.props.isChecked }
 onChange={ (e) => this.props.callback(e.target.checked) } />
 <label className="form-check-label">
 Show { this.props.description }
 </label>
 </div>
}

Chapter 1 ■ Your First React Application

25

Using props to receive data and callback functions from a parent makes it easy to add new features to
an application. The component defined in Listing 1-20 is a general-purpose feature that has no knowledge
of the content that it is being used to manage, and it works entirely through its props: the description prop
provides the label text it displays, the isChecked prop provides the initial state for the checkbox, and the
callback prop provides the function that is invoked when the user toggles the checkbox and triggers the
change event.

In Listing 1-21, I have updated the App component to apply the VisibilityControl component as a
child, along with the changes required to display the completed and incomplete tasks separately.

Listing 1-21.  Managing Completed Tasks in the App.js File in the src Folder

import React, { Component } from 'react';
import { TodoBanner } from "./TodoBanner";
import { TodoCreator } from "./TodoCreator";
import { TodoRow } from "./TodoRow";
import { VisibilityControl } from "./VisibilityControl";

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 userName: "Adam",
 todoItems: [{ action: "Buy Flowers", done: false },
 { action: "Get Shoes", done: false },
 { action: "Collect Tickets", done: true },
 { action: "Call Joe", done: false }],
 showCompleted: true
 }
 }

 updateNewTextValue = (event) => {
 this.setState({ newItemText: event.target.value });
 }

 createNewTodo = (task) => {
 if (!this.state.todoItems.find(item => item.action === task)) {
 this.setState({
 todoItems: [...this.state.todoItems, { action: task, done: false }]
 });
 }
 }

 toggleTodo = (todo) => this.setState({ todoItems:
 this.state.todoItems.map(item => item.action === todo.action
 ? { ...item, done: !item.done } : item) });

 todoTableRows = (doneValue) => this.state.todoItems
 .filter(item => item.done === doneValue).map(item =>
 <TodoRow key={ item.action } item={ item }
 callback={ this.toggleTodo } />)

Chapter 1 ■ Your First React Application

26

 render = () =>
 <div>
 <TodoBanner name={ this.state.userName }
 tasks={this.state.todoItems } />
 <div className="container-fluid">
 <TodoCreator callback={ this.createNewTodo } />
 <table className="table table-striped table-bordered">
 <thead>
 <tr><th>Description</th><th>Done</th></tr>
 </thead>
 <tbody>{ this.todoTableRows(false) }</tbody>
 </table>
 <div className="bg-secondary text-white text-center p-2">
 <VisibilityControl description="Completed Tasks"
 isChecked={this.state.showCompleted}
 callback={ (checked) =>
 this.setState({ showCompleted: checked })} />
 </div>

 { this.state.showCompleted &&
 <table className="table table-striped table-bordered">
 <thead>
 <tr><th>Description</th><th>Done</th></tr>
 </thead>
 <tbody>{ this.todoTableRows(true) }</tbody>
 </table>
 }
 </div>
 </div>
}

The VisibilityControl component is configured so it changes the value of the App component’s state
data property named showCompleted when the user toggles the checkbox. To separate the complete and
incomplete tasks, I added a parameter to the todoTableRows method and used the filter method to select
objects from the state data array based on the value of the done property.

To display the completed tasks, I added a second table element. The table will be displayed only when
the showCompleted property is true, so I placed the table and its content inside a data binding expression
and used the && operator, like this:

...
{ this.state.showCompleted && <table className="table table-striped table-bordered">
...

When the expression is evaluated, the table element will be included in the component’s content only
if the showCompleted property is true. This is another example of how JSX mixes content and code. For the
most part, JSX does a good job at blending elements and code statements, but it doesn’t excel at everything,
and the syntax required for conditional statements is awkward, as this example shows.

When you save the changes to the App.js file, you will see the separate sets of tasks. When you toggle
the checkbox for a task, it will be moved to the other table, as shown in Figure 1-8. When you toggle the Show
Completed Tasks checkbox, the second table will be hidden.

Chapter 1 ■ Your First React Application

27

Persistently Storing Data
The final change is to store the data so that the user’s list is preserved when navigating away from the
application. Later in the book, I demonstrate different ways of working with data stored on a server, but for
this chapter I am going to keep the application simple and ask the browser to store the data using the Local
Storage API, as shown in Listing 1-22.

■■ Tip T he Local Storage API is a standard browser feature and isn’t specific to React development.
See https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage for a good description
of how local storage works.

Listing 1-22.  Persistently Storing Data in the App.js File in the src Folder

import React, { Component } from 'react';
import { TodoBanner } from "./TodoBanner";
import { TodoCreator } from "./TodoCreator";
import { TodoRow } from "./TodoRow";
import { VisibilityControl } from "./VisibilityControl";

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 userName: "Adam",
 todoItems: [{ action: "Buy Flowers", done: false },
 { action: "Get Shoes", done: false },
 { action: "Collect Tickets", done: true },

Figure 1-8.  Changing the task display

https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

Chapter 1 ■ Your First React Application

28

 { action: "Call Joe", done: false }],
 showCompleted: true
 }
 }

 updateNewTextValue = (event) => {
 this.setState({ newItemText: event.target.value });
 }

 createNewTodo = (task) => {
 if (!this.state.todoItems.find(item => item.action === task)) {
 this.setState({
 todoItems: [...this.state.todoItems, { action: task, done: false }]
 }, () => localStorage.setItem("todos", JSON.stringify(this.state)));
 }
 }

 toggleTodo = (todo) => this.setState({ todoItems:
 this.state.todoItems.map(item => item.action === todo.action
 ? { ...item, done: !item.done } : item) });

 todoTableRows = (doneValue) => this.state.todoItems
 .filter(item => item.done === doneValue).map(item =>
 <TodoRow key={ item.action } item={ item }
 callback={ this.toggleTodo } />)

 componentDidMount = () => {
 let data = localStorage.getItem("todos");
 this.setState(data != null
 ? JSON.parse(data)
 : {
 userName: "Adam",
 todoItems: [{ action: "Buy Flowers", done: false },
 { action: "Get Shoes", done: false },
 { action: "Collect Tickets", done: true },
 { action: "Call Joe", done: false }],
 showCompleted: true
 });
 }

 render = () =>
 <div>
 <TodoBanner name={ this.state.userName }
 tasks={this.state.todoItems } />
 <div className="container-fluid">
 <TodoCreator callback={ this.createNewTodo } />
 <table className="table table-striped table-bordered">
 <thead>
 <tr><th>Description</th><th>Done</th></tr>
 </thead>
 <tbody>{ this.todoTableRows(false) }</tbody>
 </table>

Chapter 1 ■ Your First React Application

29

 <div className="bg-secondary text-white text-center p-2">
 <VisibilityControl description="Completed Tasks"
 isChecked={this.state.showCompleted}
 callback={ (checked) =>
 this.setState({ showCompleted: checked })} />
 </div>

 { this.state.showCompleted &&
 <table className="table table-striped table-bordered">
 <thead>
 <tr><th>Description</th><th>Done</th></tr>
 </thead>
 <tbody>{ this.todoTableRows(true) }</tbody>
 </table>
 }
 </div>
 </div>
}

The Local Storage API is accessed through the localStorage object, and the component uses the
setItem method to store the to-do items when a new to-do item is created. The local storage feature is only
able to store string values, so I serialize the data objects as JSON before they can be stored. The setState
method can accept a function that will be updated once the state data has been updated, as described in
Chapter 11, and that ensures that the most recent data is stored.

Components have a well-defined lifecycle, which is described in Chapter 13, and can implement
methods to receive notifications about important events. The component in the listing implements the
componentDidMount method, which is invoked early in the component’s life and provides a good opportunity
to perform tasks such as loading data.

To retrieve the stored data, I have used the Local Storage API’s getItem method. I use the setState
method to update the component with the stored data or with some default data if there is no stored data
available.

There is no visual change, but the application will persistently store any to-do items you create, which
means they will still be available when you reload the browser window or navigate away to a different URL,
such as the Apress home page, and then back to http://localhost:3000, as shown in Figure 1-9.

Chapter 1 ■ Your First React Application

30

Summary
In this chapter, I created a simple example application to introduce you to the React development process
and to demonstrate some important React concepts. You saw that React development is focused on
components, which are defined in JSX files that combine JavaScript code and HTML content. When you
create a project, everything that is required to work with JSX files, build the application, and deliver it to the
browser for testing is included so that you can get started quickly and easily.

You also learned that React applications can contain multiple components, each of which is responsible
for a specific feature and which receive the data and callback functions they require using props.

Many more React features are available, as you can tell from the size of this book, but the basic
application I created in this chapter has shown you the most essential characteristics of React development
and will provide a foundation for later chapters. In the next chapter, I put React in context and describe the
structure and content of this book.

Figure 1-9.  Storing data

31© Adam Freeman 2019
A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_2

CHAPTER 2

Understanding React

React is a flexible and powerful open-source framework for developing client-side applications; it takes cues
from the world of server-side development and applies them to HTML elements, and it creates a foundation
that makes building rich web applications easier. In this book, I explain how React works and demonstrate
the different features it provides.

THIS BOOK AND THE REACT RELEASE SCHEDULE

The React team makes frequent releases, which means there is an ongoing stream of fixes and
features. Minor releases tend not to break existing features and largely contain bug fixes. The major
releases can contain substantial changes and may not offer backward compatibility.

It doesn’t seem fair or reasonable to ask readers to buy a new edition of this book every few months,
especially since the majority of React features are unlikely to change even in a major release. Instead,
I am going to post updates following the major releases to the GitHub repository for this book,
https://github.com/Apress/pro-react-16.

This is an ongoing experiment for me (and for Apress), and I don’t yet know what form those updates
may take—not least because I don’t know what the major releases of React will contain—but the goal
is to extend the life of this book by supplementing the examples it contains.

I am not making any promises about what the updates will be like, what form they will take, or how long
I will produce them before folding them into a new edition of this book. Please keep an open mind and
check the repository for this book when new React versions are released. If you have ideas about how
the updates could be improved, then e-mail me at adam@adam-freeman.com and let me know.

Should I Use React?
React isn’t the solution to every problem, and it is important to know when you should use React and when
you should seek an alternative. React delivers the kind of functionality that used to be available only to
server-side developers but is delivered entirely in the browser. The browser has to do a lot of work each time
an HTML document to which React has been applied is loaded: data has to be loaded, components have
to be created and composed, expressions have to be evaluated, and so on, creating the foundation for the
features that I described in Chapter 1 and those that I explain throughout the rest of this book.

This kind of work takes time to perform, and the amount of time depends on the complexity of the
React application and—critically—on the quality of the browser and the processing capability of the device.

https://github.com/Apress/pro-react-16

Chapter 2 ■ Understanding React

32

You won’t notice any performance issues when using the latest browsers on a capable desktop machine, but
old browsers on underpowered smartphones can really slow down the initial setup of a React application.

The goal, therefore, is to perform this setup as infrequently as possible and deliver as much of the app as
possible to the user when it is performed. This means giving careful thought to the kind of web application
you build. In broad terms, there are two basic kinds of web application: round-trip and single-page.

Understanding Round-Trip Applications
For a long time, web apps were developed to follow a round-trip model. The browser requests an initial
HTML document from the server. User interactions—such as clicking a link or submitting a form—leads the
browser to request and receive a completely new HTML document. In this kind of application, the browser
is essentially a rending engine for HTML content, and all of the application logic and data resides on the
server. The browser makes a series of stateless HTTP requests that the server handles by generating HTML
documents dynamically.

A lot of current web development is still for round-trip applications, especially for line-of-business
projects, not least because they put few demands on the browser and have the widest possible client
support. But there are some serious drawbacks to round-trip applications: they make the user wait while
the next HTML document is requested and loaded, they require a large server-side infrastructure to process
all the requests and manage all the application state, and they can require more bandwidth because each
HTML document has to be self-contained, which can lead to the same content being included in each
response from the server. React is not well-suited to round-trip applications because the browser has to
perform the initial setup process for each new HTML document that is received from the server.

Understanding Single-Page Applications
Single-page applications (SPAs) take a different approach. An initial HTML document is sent to the browser,
but user interactions lead to HTTP requests for small fragments of HTML or data inserted into the existing
set of elements being displayed to the user. The initial HTML document is never reloaded or replaced, and
the user can continue to interact with the existing HTML while the HTTP requests are being performed
asynchronously, even if that just means seeing a “data loading” message.

React is well-suited to single-page applications because the work that the browser has to perform to
initialize the application has to be performed only once, after which the application runs in the browser,
responding to user interaction and requesting the data or content that is required in the background.

COMPARING REACT TO VUE.JS AND ANGULAR

There are two main competitors to React: Angular and Vue.js. There are differences between them, but,
for the most part, all of these frameworks are excellent, all of them work in similar ways, and all of them
can be used to create rich and fluid client-side applications.

The real difference between these frameworks is the developer experience. Angular requires you to use
TypeScript to be effective, for example, whereas it is just an option with React and Vue.js projects. React
and Vue.js mix HTML and JavaScript together in a single file, which not everyone likes, although the way
this is done differs for each framework.

My advice is simple: pick the framework that you like the look of the most and switch to one of the
others if you don’t get on with it. That may seem like an unscientific approach, but there isn’t a bad
choice to make, and you will find that many of the core concepts carry over between frameworks even
if you change the one you use.

Chapter 2 ■ Understanding React

33

Understanding Application Complexity
The type of application isn’t the only consideration when deciding whether React would be well-suited to
a project. The complexity of a project is also important, and I often from readers who have embarked on
a project using a client-side framework such as React, Angular, or Vue.js, when something much simpler
would have been sufficient. A framework such as React requires a substantial time commitment to master
(as the size of this book illustrates), and this effort isn’t justified if you just need to validate a form or
populate a select element programmatically.

In the excitement that surrounds client-side frameworks, it is easy to forget that browsers provide a rich
set of APIs that can be used directly and that these are the same APIs that React relies on for all of its features.
If you have a problem that is simple and self-contained, then you should consider using the browser APIs
directly, starting with the Document Object Model (DOM) API. You will see that some of the examples in
this book use the browser APIs directly, but a good place to start if you are new to browser development is
https://developer.mozilla.org, which contains good documentation for all of the APIs that browsers
support.

The drawback of the browser APIs, especially the DOM API, is that they can be awkward to work with
and older browsers tend to implement features differently. A good alternative to working directly with the
browser APIs, especially if you have to support older browsers, is jQuery (https://jquery.org). jQuery
simplifies working with HTML elements and has excellent support for handling events, animations, and
asynchronous HTTP requests.

React comes into its own in large applications, where there are complex workflows to implement,
different types of users to deal with, and substantial volumes of data to be processed. In these situations, you
can work directly with the browser APIs, but it becomes difficult to manage the code and hard to scale up the
application. The features provided by React make it easier to build large and complex applications and to
do so without getting bogged down in reams of unreadable code, which is often the fate of complex projects
that don’t adopt a framework.

What Do I Need to Know?
If you decide that React is the right choice for your project, then you should be familiar with the basics of
web development, have an understanding of how HTML and CSS work, and have a working knowledge of
JavaScript. If you are a little hazy on some of these details, I provide primers for the features I use in this book
in Chapters 3 and 4. https://developer.mozilla.org is a good place to brush up on the fundamentals of
HTML, CSS, and JavaScript.

How Do I Set Up My Development Environment?
The only development tools needed for React development are the ones you installed in Chapter 1 when
you created your first application. Some later chapters require additional packages, but full instructions are
provided. If you successfully built the application in Chapter 1, then you are set for React development and
for the rest of the chapters in this book.

What Is the Structure of This Book?
This book is split into three parts, each of which covers a set of related topics.

https://developer.mozilla.org
https://jquery.org
https://developer.mozilla.org

Chapter 2 ■ Understanding React

34

Part 1: Getting Started with React
Part 1 of this book provides the information you need to get started with React development. It includes
this chapter and primer/refresher chapters for the key technologies used in React development, including
HTML, CSS, and JavaScript. Chapter 1 showed you how to create a simple React application, and
Chapters 5–8 take you through the process of building a more realistic application, called SportsStore.

Part 2: Working with React
Part 2 of this book covers the core React features that are required in most projects. React provides a lot of
built-in functionality, which I describe in depth, along with the way that custom code and content is added
to a project to create bespoke features.

Part 3: Creating Complete React Applications
React relies on additional packages to provide the advanced features that are required by most complex
applications. In Part 3 of this book, I introduce the most important of these packages, show you how they
work, and explain how they add to the core React features.

Are There Lots of Examples?
There are loads of examples. The best way to learn React is by example, and I have packed as many of them
into this book as I can, along with screenshots so you can see the effects of each feature. To maximize the
number of examples in this book, I have adopted a simple convention to avoid listing the same code or
content over and over. When I create a file, I will show its full contents, just as I have in Listing 2-1. I include
the name of the file and its folder in the listing’s header, and I show the changes that I have made in bold.

Listing 2-1.  Using a Callback in the SimpleButton.js File in the src Folder

import React, { Component } from "react";

export class SimpleButton extends Component {

 constructor(props) {
 super(props);
 this.state = {
 counter: 0,
 hasButtonBeenClicked: false
 }
 }

 render = () =>
 <button onClick={ this.handleClick }
 className={ this.props.className }
 disabled={ this.props.disabled === "true"
 || this.props.disabled === true }>
 { this.props.text} { this.state.counter }
 { this.state.hasButtonBeenClicked &&
 <div>Button Clicked!</div>
 }

Chapter 2 ■ Understanding React

35

 </button>
 }

 handleClick = () => {
 this.setState({ counter: this.state.counter + 1 },
 () => this.setState({ hasButtonBeenClicked: this.state.counter > 0 }));
 this.props.callback();
 }
}

This is a listing from Chapter 11, which shows the contents of a file called SimpleButton.js that can be
found in the src folder. Don’t worry about the content of the listing or the purpose of the file; just be aware
that this type of listing contains the complete contents of a file and that the changes you need to make to
follow the example are shown in bold.

Some files in a React application can be long, but the feature that I am describing requires only a small
change. Rather than list the complete file, I use an ellipsis (three periods in series) to indicate a partial
listing, which shows just part of the file, as shown in Listing 2-2.

Listing 2-2.  Making Multiple Updates in the SimpleButton.js File in the src Folder

...
handleClick = () => {
 for (let i = 0; i < 5; i++) {
 this.setState({ counter: this.state.counter + 1});
 }
 this.setState({ hasButtonBeenClicked: true });
 this.props.callback();
}
...

This is a later listing from Chapter 11, and it shows a set of changes that are applied to only one part of a
much larger file. When you see a partial listing, you will know that the rest of the file does not have to change
and that only the sections marked in bold are different.

In some cases, changes are required in different parts of a file, which makes it difficult to show as a
partial listing. In this situation, I omit part of the file’s contents, as shown in Listing 2-3.

Listing 2-3.  Implementing a Lifecycle Method in the Message.js File in the src Folder

import React, { Component } from "react";
import { ActionButton } from "./ActionButton";

export class Message extends Component {

 // ...other methods omitted for brevity...

 componentDidMount() {
 console.log("componentDidMount Message Component");
 }

 componentDidUpdate() {
 console.log("componentDidUpdate Message Component");
 }
}

Chapter 2 ■ Understanding React

36

The changes are still marked in bold, and the parts of the file that are omitted from the listing are not
affected by this example.

Where Can You Get the Example Code?
You can download the example projects for all the chapters in this book from https://github.com/Apress/
pro-react-16. The download is available without charge and contains everything that you need to follow
the examples without having to type in all of the code.

Where Can You Get Corrections for This Book?
You can find errata for this book at https://github.com/Apress/pro-react-16.

How Can You Contact Me?
If you have problems making the examples in this chapter work or if you find a problem in the book, then
you can e-mail me at adam@adam-freeman.com, and I will try my best to help. Please check the errata for
this book to see whether it contains a solution to your problem before contacting me.

Summary
In this chapter, I explained when React is a good choice for projects and outlined the alternatives and
competitors. I also outlined the content and structure of this book, explained where to get updates, and
explained how to contact me if you have problems with the examples in this book. In the next chapter,
I provide a primer for the HTML and CSS features that I use in this book to explain React development.

https://github.com/Apress/pro-react-16
https://github.com/Apress/pro-react-16
https://github.com/Apress/pro-react-16

37© Adam Freeman 2019
A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_3

CHAPTER 3

HTML, JSX, and CSS Primer

In this chapter, I provide a brief overview of HTML and explain how HTML content can be mixed with
JavaScript code when using JSX, which is the superset of JavaScript supported by the React development
tools that allows HTML to be mixed with code. I also introduce the Bootstrap CSS framework, which I use to
style the content in the examples throughout this book.

■■ Note  Don’t worry if not all the features described in this chapter make immediate sense. Some rely on
recent additions to the JavaScript language that you may not have encountered before, which are described in
Chapter 4 or explained in detail in other chapters.

Preparing for This Chapter
To create the project for this chapter, open a new command prompt, navigate to a convenient location, and
run the command shown in Listing 3-1.

■■ Tip  You can download the example project for this chapter—and for all of the other chapters in this
book—from https://github.com/Apress/pro-react-16.

Listing 3-1.  Creating the Example Project

npx create-react-app primer

Once the project has been created, run the commands shown in Listing 3-2 to navigate to the project
folder and install the Bootstrap CSS framework.

https://github.com/Apress/pro-react-16

Chapter 3 ■ HTML, JSX, and CSS Primer

38

■■ Note  When you create a new project, you may see warnings about security vulnerabilities. React
development relies on a large number of packages, each of which has its own dependencies, and security
issues will inevitably be discovered. For the examples in this book, it is important to use the package versions
specified to ensure you get the expected results. For your own projects, you should review the warnings and
update to versions that resolve the problems.

Listing 3-2.  Adding the Bootstrap Package to the Project

cd primer
npm install bootstrap@4.1.2

To include Bootstrap in the application, add the statement shown in Listing 3-3 to the index.js file.

Listing 3-3.  Including Bootstrap in the index.js File in the src Folder

import React from 'react';
import ReactDOM from 'react-dom';
import './index.css';
import App from './App';
import * as serviceWorker from './serviceWorker';
import 'bootstrap/dist/css/bootstrap.css';

ReactDOM.render(<App />, document.getElementById('root'));

// If you want your app to work offline and load faster, you can change
// unregister() to register() below. Note this comes with some pitfalls.
// Learn more about service workers: http://bit.ly/CRA-PWA
serviceWorker.unregister();

Preparing the HTML File and the Component
To prepare for the examples in the chapter, replace the contents of the index.html file in the public folder
with the content shown in Listing 3-4.

Listing 3-4.  Replacing the Contents of the index.html File in the public Folder

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Primer</title>
 </head>
 <body>
 <h4 class="bg-primary text-white text-center p-2 m-1">
 Static HTML Element
 </h4>

Chapter 3 ■ HTML, JSX, and CSS Primer

39

 <div id="domParent"></div>
 <div id="root"></div>
 </body>
</html>

Replace the contents of the App.js file in the src folder with the code shown in Listing 3-5.

Listing 3-5.  Replacing the Contents of the App.js File in the src folder

import React, { Component } from "react";

export default class App extends Component {
 render = () =>
 <h4 className="bg-primary text-white text-center p-2 m-1">
 Component Element
 </h4>
}

Running the Example Application
Ensure that all the changes are saved and use the command prompt to run the command shown in
Listing 3-6 in the primer folder.

Listing 3-6.  Starting the Development Tools

npm start

The React development tools will start, and once the initial preparations are complete, a new browser
window will open and display the content shown in Figure 3-1.

Understanding HTML and DOM Elements
At the heart of all React web applications are HTML elements, which are used to describe the content that
will be presented to the user. In a React application, the contents of the static index.html file in the public
folder are combined with the HTML elements created dynamically by React to produce an HTML document
that the browser displays to the user.

Figure 3-1.  Running the example application

Chapter 3 ■ HTML, JSX, and CSS Primer

40

An HTML element tells the browser what kind of content each part of an HTML document represents.
Here is an HTML element from the index.html file in the public folder:

...
<h4 class="bg-primary text-white text-center p-2 m-1">
 Static HTML Element
</h4>
...

As illustrated in Figure 3-2, this element has several parts: the start tag, the end tag, the attributes, and
the content.

The name of this element (also referred to as the tag name or just the tag) is h4, and it tells the browser
that the content between the tags should be treated as a header. There are a range of header elements,
ranging from h1 to h6, where h1 is conventionally used for the most important content, h2 for slightly less
important content, and so on.

When you define an HTML element, you start by placing the tag name in angle brackets (the < and >
characters) and end an element by using the tag in a similar way, except that you also add a / character after
the left-angle bracket (<), to create the start tag and end tag.

The tag indicates the purpose of the element, and there is a wide range of element types defined by the
HTML specification. In Table 3-1, I have described the elements that I used most commonly in this book. For
a complete list of tag types, you should consult the HTML specification.

Figure 3-2.  The anatomy of an HTML element

Chapter 3 ■ HTML, JSX, and CSS Primer

41

Understanding Element Content
Whatever appears between the start and end tags is the element’s content. An element can contain text
(such as Static HTML Element in this case) or other HTML elements. In Listing 3-7, I have added a new
HTML element that contains another element.

Listing 3-7.  Adding a New Element in the index.html File in the public Folder

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Primer</title>
 </head>
 <body>
 <h4 class="bg-primary text-white text-center p-2 m-1">
 Static HTML Element
 </h4>
 <div class="text-center m-2">
 <div>This is a span element</div>
 <div>This is another span element</div>
 </div>
 <div id="domParent"></div>
 <div id="root"></div>
 </body>
</html>

The outer element is known as the parent, while the elements it contains are known as children. The
additions in Listing 3-7 define a parent div element that has two children, also div elements. The content
of each child div element is a text message, producing the result shown in Figure 3-3. Being able to create a

Table 3-1.  Common HTML Elements Used in the Examples

Element Description

a A link (more formally known as an anchor), which the user clicks to navigate to a new URL or
a new location within the current document

button A button, which can be clicked by the user to initiate an action

div A generic element; often used to add structure to a document for presentation purposes

h1 to h6 A header

input A field used to gather a single data item from the user

table A table, used to organize content into rows and columns

tbody The body of the table (as opposed to the header or footer)

td A content cell in a table row

th A header cell in a table row

thead The header of a table

tr A row in a table

Chapter 3 ■ HTML, JSX, and CSS Primer

42

hierarchy of elements is an essential HTML feature. It is one of the key building blocks for React applications,
and it allows complex content to be created.

Understanding Element Content Restrictions
Some elements have restrictions on the types of elements that can be their children. The div elements in
the example can contain any other element and are used to add structure to an HTML document, often
so that content can be easily styled. Other elements have more specific roles that require specific types of
elements to be used as children. For example, a tbody element, which you will see in later chapters and
which represents the body of a table, can contain only one or more tr elements, each of which represents a
table row.

■■ Tip  Don’t worry about learning all of the HTML elements and their relationships. You will pick up everything
you need to know as you follow the examples in later chapters, and most code editors will display a warning if
you try to create invalid HTML.

Understanding Void Elements
Some elements are not allowed to contain anything at all. These are called void or self-closing elements, and
they are written without a separate end tag, like this:

...
<input />
...

A void element is defined in a single tag, and you add a / character before the last angle bracket (the >
character). The element shown here is the most common example of a void element, and it is used to gather
data from the user in HTML forms. You will see many examples of void elements in later chapters.

Figure 3-3.  Adding parent and child elements

Chapter 3 ■ HTML, JSX, and CSS Primer

43

Understanding Attributes
You can provide additional information to the browser by adding attributes to your elements. Here is the
attribute that was applied to the h4 element illustrated in Figure 3-2:

...
<h4 class="bg-primary text-white text-center p-2 m-1">
 Static HTML Element
</h4>
...

Attributes are always defined as part of the start tag, and most attributes have a name and a value,
separated by an equal sign, as illustrated in Figure 3-4.

The name of this attribute is class, which is used to group related elements, typically so that their
appearance can be managed consistently. This is why the class attribute has been used in this example, and
the attribute value associates the h4 element with a number of classes that relate to styles provided by the
Bootstrap CSS package, which I describe later in the chapter.

Creating HTML Elements Dynamically
The HTML elements defined in the index.html file are static. These elements are received and displayed
by the browser just as they are defined, which you can see by right-clicking in the browser window and
selecting Inspect or Inspect Element from the pop-up menu. The F12 developer tools will open and display
the contents of the HTML document, which will include this element:

...
<h4 class="bg-primary text-white text-center p-2 m-1">
 Static HTML Element
</h4>
...

HTML elements can also be dynamically created using JavaScript and the Domain Object Model
(DOM) API that all modern browsers support. In Listing 3-8, I have added some JavaScript to the index.html
file that uses the DOM API to add a new element to the HTML document.

Figure 3-4.  The name and value of an attribute

Chapter 3 ■ HTML, JSX, and CSS Primer

44

Listing 3-8.  Creating an Element Dynamically in the index.html File in the public Folder

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Primer</title>
 </head>
 <body>
 <h4 class="bg-primary text-white text-center p-2 m-1">
 Static HTML Element
 </h4>
 <div class="text-center m-2">
 <div>This is a span element</div>
 <div>This is another span element</div>
 </div>
 <div id="domParent"></div>
 <div id="root"></div>
 <script>
 let element = document.createElement("h4")
 element.className = "bg-primary text-white text-center p-2 m-1";
 element.textContent = "DOM API HTML Element";
 document.getElementById("domParent").appendChild(element);
 </script>
 </body>
</html>

The script element denotes a section of JavaScript code, which the browser will execute when it
processes the contents of the index.html file and which creates a new HTML element, as shown in
Figure 3-5.

The first JavaScript statement in Listing 3-8 creates a new h4 element.

...
let element = document.createElement("h4")
...

Figure 3-5.  Creating an element using the DOM API

Chapter 3 ■ HTML, JSX, and CSS Primer

45

The document object represents the HTML document that the browser is displaying, and the
createElement method returns an object that represents a new HTML element. The object that the DOM
API provides to represent the new HTML element has properties that correspond to the attributes that are
used when defining static HTML. The second JavaScript statement in Listing 3-8 uses the property that
corresponds to the class attribute.

...
element.className = "bg-primary text-white text-center p-2 m-1";
...

Most of the properties defined by element objects have the same name as the attributes they
correspond to. There are some exceptions, including className, which is used because the class keyword is
reserved in many programming languages, including JavaScript.

The remaining JavaScript statements set the text content of the HTML element and add it to the HTML
document so it is displayed by the browser. If you examine the new element by right-clicking in the browser
window and selecting Inspect from the pop-up menu, you will see that the object created by the JavaScript
statements in Listing 3-8 has been represented just like the static element from the index.html file.

...
<h4 class="bg-primary text-white text-center p-2 m-1">DOM API HTML Element</h4>
...

It is worth emphasizing that the index.html file does not contain this HTML element. Instead, it
contains a series of JavaScript statements that instructed the browser to create the element and add it to the
content presented to the user.

Creating Elements Dynamically Using a React Component
If you examine the contents of the App.js file, you will see that the render method of the App component
combines aspects of the static and dynamic HTML elements from earlier sections:

...
import React, { Component } from "react";

export default class App extends Component {
 render = () =>
 <h4 className="bg-primary text-white text-center p-2 m-1">
 Component Element
 </h4>
}
...

React uses the DOM API to create the HTML elements specified by the render method, which it does
by creating an object that is configured through its properties. The JSX format used for React development
allows HTML elements to be defined declaratively, but the result is still JavaScript when the file is processed
by the development tools, which is why the h4 element is configured using className and not class in
the App render method. JSX lets elements appear to be configured using attributes, but they are just the
means by which values are specified for properties, and this is why the term prop is used so much in React
development.

Chapter 3 ■ HTML, JSX, and CSS Primer

46

■■ Note N o special steps are required to use JSX, which is supported by the tools added to the project by
the create-react-app package. I explain how elements defined using JSX are transformed into JavaScript in
Chapter 9.

Using Expressions in React Elements
The ability to use expressions to configure elements is one of the key features of React and JSX. Expressions
are denoted by curly braces (the { and } characters), and the result is inserted into the content generated by
a component. In Listing 3-9, I have used an expression to set the content of the h4 element rendered by the
App component.

Listing 3-9.  Using an Expression in the App.js File in the src Folder

import React, { Component } from "react";

const message = "This is a constant"

export default class App extends Component {

 render = () =>
 <h4 className="bg-primary text-white text-center p-2 m-1">
 { message }
 </h4>
}

I have defined a constant named message and used an expression to use the message value as the
content for the h4 element. To simplify the example, I commented out the static HTML element and the
DOM API code from the index.html file, as shown in Listing 3-10.

Listing 3-10.  Removing Elements in the index.html File in the public Folder

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Primer</title>
 </head>
 <body>
 <!-- <h4 class="bg-primary text-white text-center p-2 m-1">
 Static HTML Element
 </h4>
 <div class="text-center m-2">
 <div>This is a span element</div>
 <div>This is another span element</div>
 </div>
 <div id="domParent"></div> -->
 <div id="root"></div>

Chapter 3 ■ HTML, JSX, and CSS Primer

47

 <!-- <script>
 let element = document.createElement("h4")
 element.className = "bg-primary text-white text-center p-2 m-1";
 element.textContent = "DOM API HTML Element";
 document.getElementById("domParent").appendChild(element);
 </script> -->
 </body>
</html>

Save the changes, and you will see the value of the constant defined in Listing 3-9 displayed in the h4
element produced by the App component, as shown in Figure 3-6.

Figure 3-6.  Using an expression to set the content of an element

Mixing Expressions and Static Content
Expressions can be combined with static values to create more complex results, as shown in Listing 3-11,
which uses an expression to set part of the content for the h4 element.

Listing 3-11.  Mixing an Expression with Static Content in the App.js File in the src Folder

import React, { Component } from "react";

const count = 4

export default class App extends Component {

 render = () =>
 <h4 className="bg-primary text-white text-center p-2 m-1">
 Number of things: { count }
 </h4>
}

The expression includes the count value in the content of the h4 element, which is combined with the
static content, producing the result shown in Figure 3-7.

Chapter 3 ■ HTML, JSX, and CSS Primer

48

Performing Computation in Expressions
Expressions can do more than inject values into the content rendered by a component and can be used for
any computation, as shown in Listing 3-12.

Listing 3-12.  Performing a Computation in the App.js File in the src Folder

import React, { Component } from "react";

const count = 4

export default class App extends Component {

 render = () =>
 <h4 className="bg-primary text-white text-center p-2 m-1">
 Number of things: { count % 2 === 0 ? "Even" : "Odd" }
 </h4>
}

This example uses the ternary operator to determine whether the count value is odd or even and
produces the result shown in Figure 3-8.

Expressions are well-suited to simple operations, but trying to include too much code in an expression
results in a confusing component. For more complex operations, a function should be defined and invoked
by the expression so that the function result is incorporated into the content produced by the component, as
shown in Listing 3-13.

Figure 3-8.  Performing computation in an expression

Figure 3-7.  Mixing an expression and static content

Chapter 3 ■ HTML, JSX, and CSS Primer

49

Listing 3-13.  Defining a Function in the App.js File in the src Folder

import React, { Component } from "react";

const count = 4

function isEven() {
 return count % 2 === 0 ? "Even" : "Odd";
}

export default class App extends Component {

 render = () =>
 <h4 className="bg-primary text-white text-center p-2 m-1">
 Number of things: { isEven() }
 </h4>
}

When you use a function in an expression, you must invoke it with parentheses (the (and) characters),
as shown in the listing, so that the result of the function is included in the content generated by the
component.

Accessing Component Properties and Methods
The this keyword is required to specify properties and method defined by the component, as shown in
Listing 3-14. As I explain in Part 2, there are different ways to create components, but the technique I use
throughout this book is the one shown in the listing, which provides the widest range of features and is
suitable for most projects.

 Listing 3-14.  Using the this Keyword in an Expression in the App.js File in the src Folder

import React, { Component } from "react";

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 count: 4
 }
 }

 isEven() {
 return this.state.count % 2 === 0 ? "Even" : "Odd";
 }

 render = () =>
 <h4 className="bg-primary text-white text-center p-2 m-1">
 Number of things: { this.isEven() }
 </h4>
}

Chapter 3 ■ HTML, JSX, and CSS Primer

50

The component in this listing defines a constructor, which is how the initial state of the component is
configured, as I explain in Chapter 4. The constructor assigns an object to the state property, with a count value
of 4. The component also defines a method called isEven, which accesses the count value as this.state.count.
The this keyword refers to the component instance, as explained in Chapter 4; state refers to the state property
created in the constructor; and count selects the value to use in the computation. This this keyword is also used
invoke the isEven method in the expression. The result is the same as the previous listing. Some methods require
arguments, which can be specified as part of the expression, as shown in Listing 3-15.

Listing 3-15.  Passing an Argument to a Method in the App.js File in the src Folder

import React, { Component } from "react";

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 count: 4
 }
 }

 isEven(val) {
 return val % 2 === 0 ? "Even" : "Odd";
 }

 render = () =>
 <h4 className="bg-primary text-white text-center p-2 m-1">
 Number of things: { this.isEven(this.state.count) }
 </h4>
}

The expression in this example invokes the isEven method, using the count value as the argument. The
result is the same as the previous listing.

Using Expressions to Set Prop Values
Expressions can also be used to set the value of props, which allows HTML elements and child components
to be configured. In Listing 3-16, I have added a method to the App component whose result is used to set the
className prop of the h4 element.

Listing 3-16.  Setting a Prop Value in the App.js File in the src Folder

import React, { Component } from "react";

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 count: 4
 }
 }

Chapter 3 ■ HTML, JSX, and CSS Primer

51

 isEven(val) {
 return val % 2 === 0 ? "Even" : "Odd";
 }

 getClassName(val) {
 return val % 2 === 0
 ? "bg-primary text-white text-center p-2 m-1"
 : "bg-secondary text-white text-center p-2 m-1"
 }

 render = () =>
 <h4 className={this.getClassName(this.state.count)}>
 Number of things: { this.isEven(this.state.count) }
 </h4>
}

The result is the same as the previous listing.

Using Expressions to Handle Events
Expressions are used to tell React how to respond to events when they are triggered by an element.
In Listing 3-17, I have added a button to the content returned by the App component and used the onClick
prop to tell React how to respond when the click event is triggered.

Listing 3-17.  Handling an Event in the App.js File in the src Folder

import React, { Component } from "react";

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 count: 4
 }
 }

 isEven(val) {
 return val % 2 === 0 ? "Even" : "Odd";
 }

 getClassName(val) {
 return val % 2 === 0
 ? "bg-primary text-white text-center p-2 m-1"
 : "bg-secondary text-white text-center p-2 m-1"
 }

 handleClick = () => this.setState({ count: this.state.count + 1});

 render = () =>
 <h4 className={this.getClassName(this.state.count)}>
 <button className="btn btn-info m-2" onClick={ this.handleClick }>

Chapter 3 ■ HTML, JSX, and CSS Primer

52

 Click Me
 </button>
 Number of things: { this.isEven(this.state.count) }
 </h4>
}

The button element is configured using the onClick prop, which tells React to invoke the handleClick
method in response to the click event. Note that the method isn’t specified using parentheses. Also, note
that the handleClick method is defined using the fat arrow syntax; handling events is one of the few times
where the way that a method is defined is important, as I explain in Chapter 12. Clicking the button updates
the value of the count property, which changes the outcome of the other expressions in the render method,
producing the effect shown in Figure 3-9.

Figure 3-9.  Handling an event

Understanding Bootstrap
HTML elements tell the browser what kind of content they represent, but they don’t provide any information
about how that content should be displayed. The information about how to display elements is provided using
Cascading Style Sheets (CSS). CSS consists of a comprehensive set of properties that can be used to configure
every aspect of an element’s appearance and a set of selectors that allow those properties to be applied.

One of the main problems with CSS is that some browsers interpret properties slightly differently, which
can lead to variations in the way that HTML content is displayed on different devices. It can be difficult to
track down and correct these problems, and CSS frameworks have emerged to help web app developers style
their HTML content in a simple and consistent way.

The most popular CSS framework is Bootstrap, which was originally developed at Twitter but has
become a widely used open source project. Bootstrap consists of a set of CSS classes that can be applied
to elements to style them consistently and some optional JavaScript code that performs additional
enhancement (but that I do not use in this book). I use Bootstrap in my own projects; it works well across
browsers, and it is simple to use. I use the Bootstrap CSS styles in this book because they let me style my
examples without having to define and then list my own custom CSS in each chapter. Bootstrap provides a
lot more features than the ones I use in this book; see http://getbootstrap.com for full details.

I don’t want to get into too much detail about Bootstrap because it isn’t the topic of this book, but I do
want to give you enough information so you can tell which parts of an example are React features and which
are related to Bootstrap.

Applying Basic Bootstrap Classes
Bootstrap styles are applied via the className prop, which is the counterpart to the class attribute, and
is used to group related elements. The className prop isn’t just used to apply CSS styles, but it is the most

http://getbootstrap.com

Chapter 3 ■ HTML, JSX, and CSS Primer

53

common use, and it underpins the way that Bootstrap and similar frameworks operate. Here is an HTML
element with a classNae prop, taken from Listing 3-9:

...
<h4 className="bg-primary text-white text-center p-2 m-1">
 { message }
</h4>
...

The className prop assigns the h4 element to five classes, whose names are separated by spaces:
bg-primary, text-white, text-center, p-2, and m-1. These classes correspond to collections of styles
defined by Bootstrap, as described in Table 3-2.

Table 3-2.  The h4 Element Classes

Name Description

bg-primary This class applies a style context to provide a visual cue about the purpose of the element.
See the “Using Contextual Classes” section.

text-white This class applies a style that sets the text color for the element’s content to white.

text-center This class applies a style that horizontally centers the element’s content.

p-2 This class applies a style that adds spacing around the element’s content, as described in
the “Using Margin and Padding” section.

m-1 This class applies a style that adds spacing around the element, as described in the “Using
Margin and Padding” section.

Table 3-3.  The Bootstrap Style Contexts

Name Description

primary Indicates the main action or area of content

secondary Indicates the supporting areas of content

success Indicates a successful outcome

info Presents additional information

warning Presents warnings

danger Presents serious warnings

muted De-emphasizes content

dark Increases contrast by using a dark color

white Increases contrast by using white

Using Contextual Classes
One of the main advantages of using a CSS framework like Bootstrap is to simplify the process of creating a
consistent theme throughout an application. Bootstrap defines a set of style contexts that are used to style
related elements consistently. These contexts, which are described in Table 3-3, are used in the names of the
classes that apply Bootstrap styles to elements.

Chapter 3 ■ HTML, JSX, and CSS Primer

54

Bootstrap provides classes that allow the style contexts to be applied to different types of elements.
The h4 element with which I started this section has been added to the bg-primary class, which sets the
background color of an element to indicate that it is related to the main purpose of the application. Other
classes are specific to a certain set of elements, such as btn-primary, which is used to configure button
and a elements so they appear as buttons whose colors are consistent with other elements in the primary
context. Some of these context classes must be applied in conjunction with other classes that configure the
basic style of an element, such as the btn class, which is combined with the btn-primary class.

Using Margin and Padding
Bootstrap includes a set of utility classes that are used to add padding, which is space between an element’s
edge and its content, and margin, which is space between an element’s edge and the surrounding elements.
The benefit of using these classes is that they apply a consistent amount of spacing throughout the
application.

The names of these classes follow a well-defined pattern. Here is the h4 element from Listing 3-9 again:

...
<h4 className="bg-primary text-white text-center p-2 m-1">
 { message }
...

The classes that apply margin and padding to elements follow a well-defined naming schema: first, the
letter m (for margin) or p (for padding), followed by an optional letter selecting specific edges (t for top, b for
bottom, l for left, or r for right), then a hyphen, and, finally, a number indicating how much space should be
applied (0 for no spacing, or 1, 2, 3, 4 or 5 for increasing amounts). If there is no letter to specify edges, then
the margin or padding will be applied to all edges. To help put this schema in context, the p-2 class to which
the h4 element has been added applies padding level 2 to all of the element’s edges.

Using Bootstrap to Create Grids
Bootstrap provides style classes that can be used to create different kinds of grid layout, ranging from one to
twelve columns. I use the grid layout for many of the examples in this book, and I have created a simple grid
layout in Listing 3-18.

Listing 3-18.  Creating a Grid in the App.js File in the src Folder

import React, { Component } from "react";

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 count: 4
 }
 }

 isEven(val) {
 return val % 2 === 0 ? "Even" : "Odd";
 }

Chapter 3 ■ HTML, JSX, and CSS Primer

55

 getClassName(val) {
 return val % 2 === 0
 ? "bg-primary text-white text-center p-2 m-1"
 : "bg-secondary text-white text-center p-2 m-1"
 }

 handleClick = () => this.setState({ count: this.state.count + 1});

 render = () =>
 <div className="container-fluid p-4">
 <div className="row bg-info text-white p-2">
 <div className="col font-weight-bold">Value</div>
 <div className="col-6 font-weight-bold">Even?</div>
 </div>
 <div className="row bg-light p-2 border">
 <div className="col">{ this.state.count }</div>
 <div className="col-6">{ this.isEven(this.state.count) }</div>
 </div>
 <div className="row">
 <div className="col">
 <button className="btn btn-info m-2"
 onClick={ this.handleClick }>
 Click Me
 </button>
 </div>
 </div>
 </div>
}

The Bootstrap grid layout system is simple to use. A top-level div element is assigned to the container
class (or the container-fluid class if you want it to span the available space). You specify a column by
applying the row class to a div element, which has the effect of setting up the grid layout for the content that
the div element contains.

Each row defines 12 columns, and you specify how many columns each child element will occupy by
assigning a class whose name is col- followed by the number of columns. For example, the class col-1
specifies that an element occupies one column, col-2 specifies two columns, and so on, right through to
col-12, which specifies that an element fills the entire row. If you omit the number of columns and just
assign an element to the col class, then Bootstrap will allocate an equal amount of the remaining columns.
The grid in Listing 3-18 produces the layout shown in Figure 3-10.

Chapter 3 ■ HTML, JSX, and CSS Primer

56

Using Bootstrap to Style Tables
Bootstrap includes support for styling table elements and their contents, which is a feature I use in some of
the examples in later chapters. Table 3-4 lists the key Bootstrap classes for working with tables.

Figure 3-10.  Using a grid layout

Table 3-4.  The Bootstrap CSS Classes for Tables

Name Description

table Applies general styling to a table element and its rows

table-striped Applies alternate-row striping to the rows in the table body

table-bordered Applies borders to all rows and columns

table-sm Reduces the spacing in the table to create a more compact layout

All these classes are applied directly to the table element, as shown in Listing 3-19, where I have
replaced the grid layout with a table.

Listing 3-19.  Using a Table Layout in the App.js File in the src Folder

import React, { Component } from "react";

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 count: 4
 }
 }

Chapter 3 ■ HTML, JSX, and CSS Primer

57

 isEven(val) {
 return val % 2 === 0 ? "Even" : "Odd";
 }

 getClassName(val) {
 return val % 2 === 0
 ? "bg-primary text-white text-center p-2 m-1"
 : "bg-secondary text-white text-center p-2 m-1"
 }

 handleClick = () => this.setState({ count: this.state.count + 1});

 render = () =>
 <table className="table table-striped table-bordered table-sm">
 <thead className="bg-info text-white">
 <tr><th>Value</th><th>Even?</th></tr>
 </thead>
 <tbody>
 <tr>
 <td>{ this.state.count }</td>
 <td>{ this.isEven(this.state.count) } </td>
 </tr>
 </tbody>
 <tfoot className="text-center">
 <tr>
 <td colSpan="2">
 <button className="btn btn-info m-2"
 onClick={ this.handleClick }>
 Click Me
 </button>
 </td>
 </tr>
 </tfoot>
 </table>
}

■■ Tip N otice that I have used the thead element when defining the tables in Listing 3-19. Browsers will
automatically add any tr elements that are direct descendants of table elements to a tbody element if one
has not been used. You will get odd results if you rely on this behavior when working with Bootstrap, and it is
always a good idea to use the full set of elements when defining a table.

Chapter 3 ■ HTML, JSX, and CSS Primer

58

Figure 3-11 shows the result of using a table instead of a grid.

Using Bootstrap to Style Forms
Bootstrap includes styling for form elements, allowing them to be styled consistently with other elements in
the application. In Listing 3-20, I have added form elements to the content produced by the App component.

Listing 3-20.  Adding Form Elements in the App.js File in the src Folder

import React, { Component } from "react";

export default class App extends Component {

 render = () =>
 <div className="m-2">
 <div className="form-group">
 <label>Name:</label>
 <input className="form-control" />
 </div>
 <div className="form-group">
 <label>City:</label>
 <input className="form-control" />
 </div>
 </div>
}

The basic styling for forms is achieved by applying the form-group class to a div element that contains
a label and an input element, where the input element is assigned to the form-control class. Bootstrap
styles the elements so that the label is shown above the input element and the input element occupies 100
percent of the available horizontal space, as shown in Figure 3-12.

Figure 3-11.  Styling a table

Chapter 3 ■ HTML, JSX, and CSS Primer

59

Summary
In this chapter, I provided a brief overview of HTML and explained how it can be mixed with JavaScript
code in React development, albeit with some changes and restrictions. I also introduced the Bootstrap CSS
framework, which I use throughout this book but which is not directly related to React. You need to have
a good grasp of HTML and CSS to be truly effective in web application development, but the best way to
learn is by firsthand experience, and the descriptions and examples in this chapter will be enough to get you
started and provide just enough background information for the examples ahead. In the next chapter,
I continue the primer theme and introduce the most important JavaScript features used in this book.

Figure 3-12.  Styling form elements

61© Adam Freeman 2019
A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_4

CHAPTER 4

JavaScript Primer

In this chapter, I provide a quick tour of the most important features of the JavaScript language as they apply
to React development. I don’t have the space to describe JavaScript completely, so I have focused on the
essentials that you’ll need to get up to speed and follow the examples in this book.

JavaScript has been modernized in recent years with the addition of convenient language features and
a substantial expansion of the utility functions available for common tasks such as array handling. Not all
browsers support the latest features, and so the React development tools include the Babel package, which
is responsible for transforming JavaScript written using the latest features into code that can be relied on to
work in most mainstream browsers. This is means you are able to enjoy a modern development experience
without needing to pay attention to dealing with the differences between browsers and keeping track of the
features each supports. Table 4-1 summarizes the chapter.

Table 4-1.  Chapter Summary

Problem Solution Listing

Provide instructions that will be
executed by the browser

Use JavaScript statement 4

Delay execution of statements until they
are required

Use JavaScript functions 5–7, 10–12

Define functions with variable numbers
of parameters

Use default and rest parameters 8, 9

Express functions concisely Use fat arrow functions 13

Define variables and constants Use the let and const keywords 14, 15

Use the JavaScript primitive types Use the string, number, or boolean keywords 16, 17, 19

Define strings that include other values Use template strings 18

Execute statements conditionally Use the if and else and switch keywords 20

Compare values and identities Use the equality and identity operators 21, 22

Convert types Use the type conversion keywords 23–25

Group related items Define an array 26, 27

Read or change a value in an array Use the index accessor notation 28, 29

Enumerate the contents of an array Use a for loop or the forEach method 30

(continued)

Chapter 4 ■ JavaScript Primer

62

Preparing for This Chapter
In this chapter, I continue working with the primer project created in Chapter 3. To prepare for this chapter,
I added a file called example.js to the src folder and added the code shown in Listing 4-1.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/pro-react-16.

Listing 4-1.  The Contents of the example.js File in the src Folder

console.log("Hello");

To incorporate the example.js file into the application, I added the statement shown in Listing 4-2 to
the index.js file in the src folder.

Listing 4-2.  Importing a File in the index.js File in the src Folder

import React from 'react';
import ReactDOM from 'react-dom';
import './index.css';
import App from './App';
import * as serviceWorker from './serviceWorker';
import 'bootstrap/dist/css/bootstrap.css';

import "./example";

ReactDOM.render(<App />, document.getElementById('root'));

// If you want your app to work offline and load faster, you can change
// unregister() to register() below. Note this comes with some pitfalls.
// Learn more about service workers: http://bit.ly/CRA-PWA
serviceWorker.unregister();

Problem Solution Listing

Expand the contents of an array Use the spread operator 31, 32

Process the contents of an array Use the built-in array method 33

Gather related values into a single unit Define an object using a literal or a class 34–36, 40

Define an operation that can be
performed on the values of an object

Define a method 37, 39, 43, 44

Copy properties and value from one
object to another

Use the Object.assign method or use the
spread operator

41, 42

Group related features Define a JavaScript module 45–54

Observe an asynchronous operation Define a Promise and use the async and
await keywords

55–58

Table 4-1.  (continued)

https://github.com/Apress/pro-react-16

Chapter 4 ■ JavaScript Primer

63

Open a command prompt, navigate to the primer folder, and run the command shown in Listing 4-3 to
start the React development tools.

Listing 4-3.  Starting the Development Tools

npm start

The initial preparation of the project will take a moment, after which a new browser window or tab will
open and navigate to http://localhost:3000, displaying the content shown in Figure 4-1.

Figure 4-1.  Running the example application

Open the browser’s F12 development tools, which can usually be done by pressing F12 on the keyboard
or right-clicking in the browser window and selecting Inspect from the pop-up menu. Inspect the Console
tab, and you will see that the statement in the example.js file from Listing 4-1 has produced a simple result,
as shown in Figure 4-2.

Figure 4-2.  A result in the browser’s console

Chapter 4 ■ JavaScript Primer

64

All of the examples in this chapter produce text output and so rather than show screenshots of the
Console tab, I will use just the text, like this:

Hello

Using Statements
The basic JavaScript building block is the statement. Each statement represents a single command, and
statements are usually terminated by a semicolon (;). The semicolon is optional, but using them makes
your code easier to read and allows for multiple statements on a single line. In Listing 4-4, I have added
statements to the JavaScript file.

Listing 4-4.  Adding JavaScript Statements in the example.js File in the src Folder

console.log("Hello");
console.log("Apples");
console.log("This is a statement");
console.log("This is also a statement");

The browser executes each statement in turn. In this example, all the statements simply write messages
to the console. The results are as follows:

Hello
Apples
This is a statement
This is also a statement

Defining and Using Functions
When the browser receives JavaScript code, it executes the statements it contains in the order in which they
are defined. This is what happened in the previous example. The statements in the example.js file were
executed one by one, all of which wrote a message to the console, all in the order in which they were defined
in example.js. You can also package statements into a function, which won’t be executed until the browser
encounters a statement that invokes that function, as shown in Listing 4-5.

Listing 4-5.  Defining a JavaScript Function in the example.js File in the src Folder

const myFunc = function () {
 console.log("This statement is inside the function");
};

console.log("This statement is outside the function");

myFunc();

Defining a function simple: use the const keyword followed by the name you want to give the function,
followed by the equal sign (=) and the function keyword, followed by parentheses (the (and) characters).
The statements you want the function to contain are enclosed between braces (the { and } characters).

Chapter 4 ■ JavaScript Primer

65

In the listing, I used the name myFunc, and the function contains a single statement that writes a
message to the JavaScript console. The statement in the function won’t be executed until the browser
reaches another statement that calls the myFunc function, like this:

...
myFunc();
...

When you save the changes to the example.js file, the updated JavaScript code will be sent to the
browser, where it is executed and produces the following output:

This statement is outside the function
This statement is inside the function

You can see that the statement inside the function isn’t executed immediately, but other than
demonstrating how functions are defined, this example isn’t especially useful because the function is
invoked immediately after it has been defined. Functions are much more useful when they are invoked in
response to some kind of change or event, such as user interaction.

You can also define functions so you don’t have to explicitly create and assign a variable, as shown in
Listing 4-6.

Listing 4-6.  Defining a Function in the example.js File in the src Folder

function myFunc() {
 console.log("This statement is inside the function");
}

console.log("This statement is outside the function");

myFunc();

The code works in the same way as Listing 4-5 but is more familiar for most developers. This example
produces the same result as Listing 4-5.

Defining Functions with Parameters
JavaScript allows you to define parameters for functions, as shown in Listing 4-7.

Listing 4-7.  Defining Functions with Parameters in the example.js File in the src Folder

function myFunc(name, weather) {
 console.log("Hello " + name + ".");
 console.log("It is " + weather + " today.");
}

myFunc("Adam", "sunny");

Chapter 4 ■ JavaScript Primer

66

I added two parameters to the myFunc function, called name and weather. JavaScript is a dynamically
typed language, which means you don’t have to declare the data type of the parameters when you define the
function. I’ll come back to dynamic typing later in the chapter when I cover JavaScript variables. To invoke a
function with parameters, you provide values as arguments when you invoke the function, like this:

...
myFunc("Adam", "sunny");
...

The results from this listing are as follows:

Hello Adam.
It is sunny today.

Using Default and Rest Parameters
The number of arguments you provide when you invoke a function doesn’t need to match the number of
parameters in the function. If you call the function with fewer arguments than it has parameters, then the
value of any parameters you have not supplied values for is undefined, which is a special JavaScript value.
If you call the function with more arguments than there are parameters, then the additional arguments are
ignored.

The consequence of this is that you can’t create two functions with the same name and different
parameters and expect JavaScript to differentiate between them based on the arguments you provide when
invoking the function. This is called polymorphism, and although it is supported in languages such as Java
and C#, it isn’t available in JavaScript. Instead, if you define two functions with the same name, then the
second definition replaces the first.

There are two ways that you can modify a function to respond to a mismatch between the number
of parameters it defines and the number of arguments used to invoke it. Default parameters deal with the
situation where there are fewer arguments than parameters and allow you to provide a default value for the
parameters for which there are no arguments, as shown in Listing 4-8.

Listing 4-8.  Using a Default Parameter in the example.js File in the src Folder

function myFunc(name, weather = "raining") {
 console.log("Hello " + name + ".");
 console.log("It is " + weather + " today.");
}

myFunc("Adam");

The weather parameter in the function has been assigned a default value of raining, which will be used
if the function is invoked with only one argument, producing the following results:

Hello Adam.
It is raining today.

Rest parameters are used to capture any additional arguments when a function is invoked with
additional arguments, as shown in Listing 4-9.

Chapter 4 ■ JavaScript Primer

67

Listing 4-9.  Using a Rest Parameter in the example.js File in the src Folder

function myFunc(name, weather, ...extraArgs) {
 console.log("Hello " + name + ".");
 console.log("It is " + weather + " today.");
 for (let i = 0; i < extraArgs.length; i++) {
 console.log("Extra Arg: " + extraArgs[i]);
 }
}

myFunc("Adam", "sunny", "one", "two", "three");

The rest parameter must be the last parameter defined by the function, and its name is prefixed with
an ellipsis (three periods, ...). The rest parameter is an array to which any extra arguments will be assigned.
In the listing, the function prints out each extra argument to the console, producing the following results:

Hello Adam.
It is sunny today.
Extra Arg: one
Extra Arg: two
Extra Arg: three

Defining Functions That Return Results
You can return results from functions using the return keyword. Listing 4-10 shows a function that returns a
result.

Listing 4-10.  Returning a Result from a Function in the example.js File in the src Folder

function myFunc(name) {
 return ("Hello " + name + ".");
}

console.log(myFunc("Adam"));

This function defines one parameter and uses it to produce a result. I invoke the function and pass the
result as the argument to the console.log function, like this:

...
console.log(myFunc("Adam"));
...

Notice that you don’t have to declare that the function will return a result or denote the data type of the
result. The result from this listing is as follows:

Hello Adam.

Chapter 4 ■ JavaScript Primer

68

Using Functions as Arguments to Other Functions
JavaScript functions can be treated as objects, which means you can use one function as the argument to
another, as demonstrated in Listing 4-11.

Listing 4-11.  Using a Function as an Arguments in the example.js File in the src Folder

function myFunc(nameFunction) {
 return ("Hello " + nameFunction() + ".");
}

console.log(myFunc(function () {
 return "Adam";
}));

The myFunc function defines a parameter called nameFunction that it invokes to get the value to insert
into the string it returns. I pass a function that returns Adam as the argument to myFunc, which produces the
following output:

Hello Adam.

Functions can be chained together, building up more complex functionality from small and easily
tested pieces of code, as shown in Listing 4-12.

Listing 4-12.  Chaining Functions Calls in the example.js File in the src Folder

function myFunc(nameFunction) {
 return ("Hello " + nameFunction() + ".");
}

function printName(nameFunction, printFunction) {
 printFunction(myFunc(nameFunction));
}

printName(function () { return "Adam" }, console.log);

This example produces the following output:

Hello Adam.

Using Arrow Functions
Arrow functions—also known as fat arrow functions or lambda expressions—are an alternative way of
defining functions and are often used to define functions that are used only as arguments to other functions.
Listing 4-13 replaces the functions from the previous example with arrow functions.

Chapter 4 ■ JavaScript Primer

69

 Listing 4-13.  Using Arrow Functions in the example.js File in the src Folder

const myFunc = (nameFunction) => ("Hello " + nameFunction() + ".");

const printName = (nameFunction, printFunction) =>
 printFunction(myFunc(nameFunction));

printName(function () { return "Adam" }, console.log);

These functions perform the same work as the ones in Listing 4-12. There are three parts to an arrow
function: the input parameters, then an equal sign and a greater-than sign (the “arrow”), and finally the
function result. The return keyword and curly braces are required only if the arrow function needs to
execute more than one statement. There are more examples of arrow functions later in this chapter, and you
will see them used throughout the book.

■■ Note I n React development, you can decide which style of function you prefer to use, and you will see that
I use both in the examples in this book. Care must be taken when defining functions that respond to events,
however, as explained in Chapter 12.

Using Variables and Types
The let keyword is used to declare variables and, optionally, assign a value to the variable in a single
statement—as opposed to the const keyword I used in earlier examples, which creates a constant value that
cannot be modified.

When you use let or const, the variable or constant that you create can be accessed only in the
region of code in which they are defined, which is known as the variable or constant’s scope and which is
demonstrated in Listing 4-14.

Listing 4-14.  Using let to Declare Variables in the example.js File in the src Folder

function messageFunction(name, weather) {
 let message = "Hello, Adam";
 if (weather === "sunny") {
 let message = "It is a nice day";
 console.log(message);
 } else {
 let message = "It is " + weather + " today";
 console.log(message);
 }
 console.log(message);
}

messageFunction("Adam", "raining");

Chapter 4 ■ JavaScript Primer

70

In this example, there are three statements that use the let keyword to define a variable called message.
The scope of each variable is limited to the region of code that it is defined in, producing the following
results:

It is raining today
Hello, Adam

This may seem like an odd example, but there is another keyword that can be used to declare variables:
var. The let and const keywords are relatively new additions to the JavaScript specification that is intended
to address some oddities in the way var behaves. Listing 4-15 takes the example from Listing 4-14 and
replaces let with var.

USING LET AND CONST

It is good practice to use the const keyword for any value that you don’t expect to change so that you
receive an error if any modifications are attempted. This is a practice that I rarely follow, however—in
part because I am still struggling to adapt to not using the var keyword and in part because I write
code in a range of languages and there are some features that I avoid because they trip me up when I
switch from one to another. If you are new to JavaScript, then I recommend trying to use const and let
correctly and avoiding following my poor behavior.

Listing 4-15.  Using var to Declare Variables in the example.js File in the src Folder

function messageFunction(name, weather) {
 var message = "Hello, Adam";
 if (weather === "sunny") {
 var message = "It is a nice day";
 console.log(message);
 } else {
 var message = "It is " + weather + " today";
 console.log(message);
 }
 console.log(message);
}

messageFunction("Adam", "raining");

When you save the changes in the listing, you will see the following results:

It is raining today
It is raining today

Some browsers will show repeated statements as a single line with a number next to them indicating
how many times that output has occurred. This means you may see one statement with the number 2 next to
it, indicating that it occurred twice.

The problem is that the var keyword creates variables whose scope is the containing function, which
means that all the references to message are referring to the same variable. This can cause unexpected
results for even experienced JavaScript developers and is the reason that the more conventional let keyword

Chapter 4 ■ JavaScript Primer

71

was introduced. The React development tools include warnings for common problems, which is why you
will also see the following messages in the JavaScript console:

Line 4: 'message' is already defined no-redeclare
Line 7: 'message' is already defined no-redeclare

These messages can be cryptic until you get used to them, and the easiest way to learn more about them
is to consult the documentation for the ESLint package, which applies a set of rules to JavaScript code and is
used by the React development tools to create the warnings. The name of the rule is included in the warning,
and the name of the rule that produced the warnings for Listing 4-15 is no-redeclare, which is described at
https://eslint.org/docs/rules/no-redeclare.

USING VARIABLE CLOSURE

If you define a function inside another function—creating inner and outer functions—then the inner
function is able to access the outer function’s variables, using a feature called closure, like this:

function myFunc(name) {
 let myLocalVar = "sunny";
 let innerFunction = function () {
 return ("Hello " + name + ". Today is " + myLocalVar + ".");
 }
 return innerFunction();

}

console.log(myFunc("Adam"));

The inner function in this example is able to access the local variables of the outer function, including its
parameter. This is a powerful feature that means you don’t have to define parameters on inner functions
to pass around data values, but caution is required because it is easy to get unexpected results when
using common variable names like counter or index, where you may not realize that you are reusing a
variable name from the outer function.

Using the Primitive Types
JavaScript defines a basic set of primitive types: string, number, boolean. This may seem like a short list, but
JavaScript manages to fit a lot of flexibility into these types.

■■ Tip I am simplifying here. There are three other primitives that you may encounter. Variables that have been
declared but not assigned a value are undefined, while the null value is used to indicate that a variable has no
value, just as in other languages. The final primitive type is Symbol, which is an immutable value that represents
a unique ID but which is not widely used at the time of writing.

https://eslint.org/docs/rules/no-redeclare

Chapter 4 ■ JavaScript Primer

72

Working with Booleans
The boolean type has two values: true and false. Listing 4-16 shows both values being used, but this type is
most useful when used in conditional statements, such as an if statement. There is no console output from
this listing, although you will see warnings because the variables have been defined and not used.

Listing 4-16.  Defining boolean Values in the example.js File in the src Folder

let firstBool = true;
let secondBool = false;

Working with Strings
You define string values using either the double quote or single quote characters, as shown in Listing 4-17.

Listing 4-17.  Defining string Variables in the example.js File in the src Folder

let firstString = "This is a string";
let secondString = 'And so is this';

The quote characters you use must match. You can’t start a string with a single quote and finish with
a double quote, for example. There is no console output for this listing. JavaScript provides string objects
with a basic set of properties and methods, the most useful of which are described in Table 4-2.

Table 4-2.  Useful string Properties and Methods

Name Description

length This property returns the number of characters in the string.

charAt(index) This method returns a string containing the character at the specified index.

concat(string) This method returns a new string that concatenates the string on which the
method is called and the string provided as an argument.

indexOf(term, start) This method returns the first index at which term appears in the string or -1 if
there is no match. The optional start argument specifies the start index for the
search.

replace(term, newTerm) This method returns a new string in which all instances of term are replaced
with newTerm.

slice(start, end) This method returns a substring containing the characters between the start
and end indices.

split(term) This method splits up a string into an array of values that were separated by term.

toUpperCase()
toLowerCase()

These methods return new strings in which all the characters are uppercase or
lowercase.

trim() This method returns a new string from which all the leading and trailing
whitespace characters have been removed.

Chapter 4 ■ JavaScript Primer

73

Using Template Strings

A common programming task is to combine static content with data values to produce a string that can be
presented to the user. The traditional way to do this is through string concatenation, which is the approach I
have been using in the examples so far in this chapter, as follows:

...
let message = "It is " + weather + " today";
...

JavaScript also supports template strings, which allow data values to be specified inline, which can
help reduce errors and result in a more natural development experience. Listing 4-18 shows the use of a
template string.

Listing 4-18.  Using a Template String in the example.js File in the src Folder

function messageFunction(weather) {
 let message = `It is ${weather} today`;
 console.log(message);
}

messageFunction("raining");

Template strings begin and end with backticks (the ` character), and data values are denoted by curly
braces preceded by a dollar sign. This string, for example, incorporates the value of the weather variable into
the template string:

...
let message = `It is ${weather} today`;
...

This example produces the following output:

It is raining today

Working with Numbers
The number type is used to represent both integer and floating-point numbers (also known as real numbers).
Listing 4-19 provides a demonstration.

Listing 4-19.  Defining number Values in the example.js File in the src Folder

let daysInWeek = 7;
let pi = 3.14;
let hexValue = 0xFFFF;

You don’t have to specify which kind of number you are using. You just express the value you require,
and JavaScript will act accordingly. In the listing, I have defined an integer value, defined a floating-point
value, and prefixed a value with 0x to denote a hexadecimal value.

Chapter 4 ■ JavaScript Primer

74

Using JavaScript Operators
JavaScript defines a largely standard set of operators. I’ve summarized the most useful in Table 4-3.

Table 4-3.  Useful JavaScript Operators

Operator Description

++, -- Pre- or post-increment and decrement

+, -, *, /, % Addition, subtraction, multiplication, division, remainder

<, <=, >, >= Less than, less than or equal to, more than, more than or equal to

==, != Equality and inequality tests

===, !== Identity and nonidentity tests

&&, || Logical AND and OR (|| is used to coalesce null values)

= Assignment

+ String concatenation

?: Three-operand conditional statement

Using Conditional Statements
Many of the JavaScript operators are used in conjunction with conditional statements. In this book, I tend
to use the if/else and switch statements. Listing 4-20 shows the use of both, which will be familiar to most
developers.

Listing 4-20.  Using Conditional Statements in the example.js File in the src Folder

let name = "Adam";

if (name === "Adam") {
 console.log("Name is Adam");
} else if (name === "Jacqui") {
 console.log("Name is Jacqui");
} else {
 console.log("Name is neither Adam or Jacqui");
}

switch (name) {
 case "Adam":
 console.log("Name is Adam");
 break;
 case "Jacqui":
 console.log("Name is Jacqui");
 break;
 default:
 console.log("Name is neither Adam or Jacqui");
 break;
}

Chapter 4 ■ JavaScript Primer

75

This example produces the following results:

Name is Adam
Name is Adam

The Equality Operator vs. the Identity Operator
The equality and identity operators are of particular note. The equality operator will attempt to coerce
(convert) operands to the same type to assess equality. This is a handy feature, as long as you are aware it is
happening. Listing 4-21 shows the equality operator in action.

Listing 4-21.  Using the Equality Operator in the example.js File in the src Folder

let firstVal = 5;
let secondVal = "5";

if (firstVal == secondVal) {
 console.log("They are the same");
} else {
 console.log("They are NOT the same");
}

The output from this example is as follows:

They are the same

JavaScript is converting the two operands into the same type and comparing them. In essence, the
equality operator tests that values are the same irrespective of their type. This causes sufficient confusion
that you will also see a warning in the JavaScript console:

Line 4: Expected '===' and instead saw '==' eqeqeq

A more predictable way of making comparisons is to use the identity operator (===, three equal signs,
rather than the two of the equality operator), as shown in Listing 4-22.

Listing 4-22.  Using the Identity Operator in the example.js File in the src Folder

let firstVal = 5;
let secondVal = "5";

if (firstVal === secondVal) {
 console.log("They are the same");
} else {
 console.log("They are NOT the same");
}

Chapter 4 ■ JavaScript Primer

76

In this example, the identity operator will consider the two variables to be different. This operator
doesn’t coerce types. The result is as follows:

They are NOT the same

Explicitly Converting Types
The string concatenation operator (+) has precedence over the addition operator (also +), which means that
JavaScript will concatenate variables in preference to adding. This can cause confusion because JavaScript
will also convert types freely to produce a result—and not always the result that is expected, as shown in
Listing 4-23.

Listing 4-23.  String Concatenation Operator Precedence in the example.js File in the src Folder

let myData1 = 5 + 5;
let myData2 = 5 + "5";

console.log("Result 1: " + myData1);
console.log("Result 2: " + myData2);

These statements produce the following result:

Result 1: 10
Result 2: 55

The second result is the kind that causes confusion. What might be intended to be an addition
operation is interpreted as string concatenation through a combination of operator precedence and over-
eager type conversion. To avoid this, you can explicitly convert the types of values to ensure you perform the
right kind of operation, as described in the following sections.

Converting Numbers to Strings
If you are working with multiple number variables and want to concatenate them as strings, then you can
convert the numbers to strings with the toString method, as shown in Listing 4-24.

Listing 4-24.  Using the number.toString Method in the example.js File in the src Folder

let myData1 = (5).toString() + String(5);

console.log("Result: " + myData1);

Notice that I placed the numeric value in parentheses, and then I called the toString method. This
is because you have to allow JavaScript to convert the literal value into a number before you can call the
methods that the number type defines. I have also shown an alternative approach to achieve the same effect,
which is to call the String function and pass in the numeric value as an argument. Both of these techniques
have the same effect, which is to convert a number to a string, meaning that the + operator is used for string
concatenation and not addition. The output from this script is as follows:

Result: 55

Chapter 4 ■ JavaScript Primer

77

There are some other methods that allow you to exert more control over how a number is represented
as a string. I briefly describe these methods in Table 4-4. All of the methods shown in the table are defined by
the number type.

Table 4-4.  Useful Number-to-String Methods

Method Description

toString() This method returns a string that represents a number in base 10.

toString(2)
toString(8)
toString(16)

This method returns a string that represents a number in binary, octal, or
hexadecimal notation.

toFixed(n) This method returns a string representing a real number with n digits after the
decimal point.

toExponential(n) This method returns a string that represents a number using exponential notation
with one digit before the decimal point and n digits after.

toPrecision(n) This method returns a string that represents a number with n significant digits,
using exponential notation if required.

Table 4-5.  Useful String to Number Methods

Method Description

Number(str) This method parses the specified string to create an integer or real value.

parseInt(str) This method parses the specified string to create an integer value.

parseFloat(str) This method parses the specified string to create an integer or real value.

Converting Strings to Numbers
The complementary technique is to convert strings to numbers so that you can perform addition rather

than concatenation. You can do this with the Number function, as shown in Listing 4-25.

Listing 4-25.  Converting Strings to Numbers in the example.js File in the src Folder

let firstVal = "5";
let secondVal = "5";

let result = Number(firstVal) + Number(secondVal);
console.log("Result: " + result);

The output from this script is as follows:

Result: 10

The Number function is strict in the way that is parses string values, but there are two other functions you
can use that are more flexible and will ignore trailing non-number characters. These functions are parseInt
and parseFloat. I have described all three methods in Table 4-5.

Chapter 4 ■ JavaScript Primer

78

Working with Arrays
JavaScript arrays work like arrays in most other programming languages. Listing 4-26 shows how you can
create and populate an array.

Listing 4-26.  Creating and Populating an Array in the example.js File in the src Folder

let myArray = new Array();
myArray[0] = 100;
myArray[1] = "Adam";
myArray[2] = true;

I have created a new array by calling new Array(). This creates an empty array, which I assign to the
variable myArray. In the subsequent statements, I assign values to various index positions in the array.
(There is no output from this listing.)

There are a couple of things to note in this example. First, I didn’t need to declare the number of items in
the array when I created it. JavaScript arrays will resize themselves to hold any number of items. The second
point is that I didn’t have to declare the data types that the array will hold. Any JavaScript array can hold any
mix of data types. In the example, I have assigned three items to the array: a number, a string, and a boolean.

Using an Array Literal
The example in Listing 4-26 produces a warning because using new Array() isn’t the standard way to create
an array. Instead, the array literal style lets you create and populate an array in a single statement, as shown
in Listing 4-27.

Listing 4-27.  Using the Array Literal Style in the example.js File in the src Folder

let myArray = [100, "Adam", true];

In this example, I specified that the myArray variable should be assigned a new array by specifying the
items I wanted in the array between square brackets ([and]). (There is no console output from this listing,
although there will be a warning because the array is defined but not used.)

Reading and Modifying the Contents of an Array
You read the value at a given index using square braces ([and]), placing the index you require between the
braces, as shown in Listing 4-28.

Listing 4-28.  Reading the Data from an Array Index in the example.js File in the src Folder

let myArray = [100, "Adam", true];

console.log(`Index 0: ${myArray[0]}`);

You can modify the data held in any position in a JavaScript array simply by assigning a new value to
the index. Just as with regular variables, you can switch the data type at an index without any problems. The
output from the listing is as follows:

Index 0: 100

Chapter 4 ■ JavaScript Primer

79

Listing 4-29 demonstrates how to modify the contents of an array.

Listing 4-29.  Modifying the Contents of an Array in the example.js File in the src Folder

let myArray = [100, "Adam", true];
myArray[0] = "Tuesday";

console.log(`Index 0: ${myArray[0]}`);

In this example, I have assigned a string to position 0 in the array, a position that was previously held
by a number and produces this output:

Index 0: Tuesday

Enumerating the Contents of an Array
You enumerate the content of an array using a for loop or using the forEach method, which receives a
function that is called to process each element in the array. Both approaches are shown in Listing 4-30.

Listing 4-30.  Enumerating the Contents of an Array in the example.js File in the src Folder

let myArray = [100, "Adam", true];

for (let i = 0; i < myArray.length; i++) {
 console.log(`Index ${i}: ${myArray[i]}`);
}

console.log("---");

myArray.forEach((value, index) => console.log(`Index ${index}: ${value}`));

The JavaScript for loop works just the same way as loops in many other languages. You determine how
many elements there are in the array by using the length property.

The function passed to the forEach method is given two arguments: the value of the current item
to be processed and the position of that item in the array. In this listing, I have used an arrow function as
the argument to the forEach method, which is the kind of use for which they excel (and you will see used
throughout this book). The output from the listing is as follows:

Index 0: 100
Index 1: Adam
Index 2: true

Index 0: 100
Index 1: Adam
Index 2: true

Chapter 4 ■ JavaScript Primer

80

Using the Spread Operator
The spread operator is used to expand an array so that its contents can be used as function arguments.
Listing 4-31 defines a function that accepts multiple arguments and invokes it using the values in an array
with and without the spread operator.

Listing 4-31.  Using the Spread Operator in the example.js File in the src Folder

function printItems(numValue, stringValue, boolValue) {
 console.log(`Number: ${numValue}`);
 console.log(`String: ${stringValue}`);
 console.log(`Boolean: ${boolValue}`);
}

let myArray = [100, "Adam", true];

printItems(myArray[0], myArray[1], myArray[2]);

printItems(...myArray);

The spread operator is an ellipsis (a sequence of three periods), and it causes the array to be unpacked
and passed to the printItems function as individual arguments.

...
printItems(...myArray);
...

The spread operator also makes it easy to concatenate arrays, as shown in Listing 4-32.

Listing 4-32.  Concatenating Arrays in the example.js File in the src Folder

let myArray = [100, "Adam", true];
let myOtherArray = [200, "Bob", false, ...myArray];

myOtherArray.forEach((value, index) => console.log(`Index ${index}: ${value}`));

Using the spread operator, I am able to specify myArray as an item when I define myOtherArray, with
the result that the contents of the first array will be unpacked and added as items to the second array. This
example produces the following results:

Index 0: 200
Index 1: Bob
Index 2: false
Index 3: 100
Index 4: Adam
Index 5: true

■■ Note A rrays can also be de-structured, whereby the individual elements of an array are assigned to
different variables, so that [var1, var2] = [3, 4] assigns a value of 3 to var1 and 4 to var2. Array de-
structuring is used by the hooks feature, which is described in Chapter 11.

Chapter 4 ■ JavaScript Primer

81

Using the Built-in Array Methods
The JavaScript Array object defines a number of methods that you can use to work with arrays, the most
useful of which are described in Table 4-6.

Table 4-6.  Useful Array Methods

Method Description

concat(otherArray) This method returns a new array that concatenates the array on which it has
been called with the array specified as the argument. Multiple arrays can be
specified.

join(separator) This method joins all the elements in the array to form a string. The argument
specifies the character used to delimit the items.

pop() This method removes and returns the last item in the array.

shift() This method removes and returns the first element in the array.

push(item) This method appends the specified item to the end of the array.

unshift(item) This method inserts a new item at the start of the array.

reverse() This method returns a new array that contains the items in reverse order.

slice(start,end) This method returns a section of the array.

sort() This method sorts the array. An optional comparison function can be used to
perform custom comparisons.

splice(index, count) This method removes count items from the array, starting at the specified index.
The removed items are returned as the result of the method.

unshift(item) This method inserts a new item at the start of the array.

every(test) This method calls the test function for each item in the array and returns true
if the function returns true for all of them and false otherwise.

some(test) This method returns true if calling the test function for each item in the array
returns true at least once.

filter(test) This method returns a new array containing the items for which the test
function returns true.

find(test) This method returns the first item in the array for which the test function
returns true.

findIndex(test) This method returns the index of the first item in the array for which the test
function returns true.

forEach(callback) This method invokes the callback function for each item in the array, as
described in the previous section.

includes(value) This method returns true if the array contains the specified value.

map(callback) This method returns a new array containing the result of invoking the callback
function for every item in the array.

reduce(callback) This method returns the accumulated value produced by invoking the callback
function for every item in the array.

Chapter 4 ■ JavaScript Primer

82

Since many of the methods in Table 4-6 return a new array, these methods can be chained together to
process data, as shown in Listing 4-33.

Listing 4-33.  Processing an Array in the example.js File in the src Folder

let products = [
 { name: "Hat", price: 24.5, stock: 10 },
 { name: "Kayak", price: 289.99, stock: 1 },
 { name: "Soccer Ball", price: 10, stock: 0 },
 { name: "Running Shoes", price: 116.50, stock: 20 }
];

let totalValue = products
 .filter(item => item.stock > 0)
 .reduce((prev, item) => prev + (item.price * item.stock), 0);

console.log(`Total value: $${totalValue.toFixed(2)}`);

I use the filter method to select the items in the array whose stock value is greater than zero and use
the reduce method to determine the total value of those items, producing the following output:

Total value: $2864.99

Working with Objects
There are several ways to create objects in JavaScript. Listing 4-34 gives a simple example to get started.

Listing 4-34.  Creating an Object in the example.js File in the src Folder

let myData = new Object();
myData.name = "Adam";
myData.weather = "sunny";

console.log(`Hello ${myData.name}.`);
console.log(`Today is ${myData.weather}.`);

I create an object by calling new Object(), and I assign the result (the newly created object) to a variable
called myData. Once the object is created, I can define properties on the object just by assigning values, like this:

...
myData.name = "Adam";
...

Prior to this statement, my object doesn’t have a property called name. When the statement has
executed, the property does exist, and it has been assigned the value Adam. You can read the value of a
property by combining the variable name and the property name with a period, like this:

...
console.log(`Hello ${myData.name}.`);
...

Chapter 4 ■ JavaScript Primer

83

The result from the listing is as follows:

Hello Adam.
Today is sunny.

Using Object Literals
The previous example produces a warning because the standard way to define objects is to do so using the
object literal format, which also allows properties to be defined in a single step, as shown in Listing 4-35.

Listing 4-35.  Using the Object Literal Format in the example.js File in the src Folder

let myData = {
 name: "Adam",
 weather: "sunny"
};

console.log(`Hello ${myData.name}.`);
console.log(`Today is ${myData.weather}.`);

Each property that you want to define is separated from its value using a colon (:), and properties are
separated using a comma (,). The effect is the same as in the previous example, and the result from the
listing is as follows:

Hello Adam.
Today is sunny.

Using Variables as Object Properties
If you use a variable as an object property, JavaScript will use the variable name as the property name and
the variable value as the property value, as shown in Listing 4-36.

Listing 4-36.  Using a Variable in an Object Literal in the example.js File in the src Folder

let name = "Adam"

let myData = {
 name,
 weather: "sunny"
};

console.log(`Hello ${myData.name}.`);
console.log(`Today is ${myData.weather}.`);

Chapter 4 ■ JavaScript Primer

84

The name variable is used to add a property to the myData object, such that the property is taken from
the variable, name in this case, as its value, Adam. This is a useful technique when you want to combine a set
of data values into an object, and you will see it used in examples in later chapters. The code in Listing 4-37
produces the following output:

Hello Adam.
Today is sunny.

Using Functions as Methods
One of the features that I like most about JavaScript is the way you can add functions to objects. A function
defined on an object is called a method. Listing 4-37 shows how you can add methods in this manner.

Listing 4-37.  Adding Methods to an Object in the example.js File in the src Folder

let myData = {
 name: "Adam",
 weather: "sunny",
 printMessages: function () {
 console.log(`Hello ${myData.name}.`);
 console.log(`Today is ${myData.weather}.`);
 }
};

myData.printMessages();

In this example, I have used a function to create a method called printMessages. Notice that to refer to
the properties defined by the object, I have to use the this keyword. When a function is used as a method,
the function is implicitly passed the object on which the method has been called as an argument through the
special variable this. The output from the listing is as follows:

Hello Adam.
Today is sunny.

You can also define methods without using the function keyword, as shown in Listing 4-38.

Listing 4-38.  Defining a Method in the example.js File in the src Folder

let myData = {
 name: "Adam",
 weather: "sunny",
 printMessages() {
 console.log(`Hello ${myData.name}.`);
 console.log(`Today is ${myData.weather}.`);
 }
};

myData.printMessages();

Chapter 4 ■ JavaScript Primer

85

The output from this listing is as follows:

Hello Adam.
Today is sunny.

The fat arrow syntax can also be used to define methods, as shown in Listing 4-39.

Listing 4-39.  Defining a Fat Arrow Method in the example.js File in the src Folder

let myData = {
 name: "Adam",
 weather: "sunny",
 printMessages: () => {
 console.log(`Hello ${myData.name}.`);
 console.log(`Today is ${myData.weather}.`);
 }
};

myData.printMessages();

■■ Tip I f you are returning an object literal as the result from a fat arrow function, then you must enclose the
object in parentheses, e.g., myFunc = () => ({ data: "hello"}). You will receive an error if you omit the
parentheses because the build tools will assume that the curly braces of the object literal are the start and end
of a function body.

Using Classes
Classes are templates for objects, defining the properties and methods that new instances will possess. Classes
are a recent addition to the JavaScript language, and they are used in React development to define components
that have state data, as explained in Chapter 11. In Listing 4-40, I have replaced the object literal with a class.

Listing 4-40.  Using a Class in the example.js File in the src Folder

class MyData {

 constructor() {
 this.name = "Adam";
 this.weather = "sunny";
 }

 printMessages = () => {
 console.log(`Hello ${this.name}.`);
 console.log(`Today is ${this.weather}.`);
 }
}

let myData = new MyData();
myData.printMessages();

Chapter 4 ■ JavaScript Primer

86

Classes are defined using the class keyword. The constructor is a special method that is automatically
invoked when an object is created from the class, which is known as instantiating the class. An object created
from a class is said to be an instance of that class.

In JavaScript, the constructor is used to define the properties that instances will have, and the current
object is referred to using the this keyword. The constructor in Listing 4-40 defines name and weather
properties by assigning values to this.name and this.weather. Classes define methods by assigning
functions to names, and in Listing 4-40, the class defines a printMessages method that is defined using the
fat arrow syntax and that prints out messages to the console. Notice that the this keyword is required to
access the values of the name and weather variables.

■■ Tip T here are other ways to use JavaScript classes, but I have focused on the way they are used in React
development and in the examples throughout this book. See https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Classes for full details.

A new instance of the class is created using the new keyword, and a class can be used to create multiple
objects, each of which has its own data values that are separate from the other instances. In the listing, the
new keyword is used to create an object from the MyData class, which is then assigned to a variable named
myData. The object’s printMessages method is invoked, producing the following output:

Hello Adam.
Today is sunny.

In other languages and frameworks, classes are used for inheritance, where one class builds on the
methods and properties defined by another. React development does not use class inheritance directly and
uses an alternative approach, known as composition, to create complex features, as described in Chapter 14.
The exception is when a React component is defined using a class, where the extends keyword must be used
to ensure that the class inherits the core features required for a component. If you examine the contents of
the App.js file, you will see that the component is defined using the class and extends keywords, like this:

...
import React, { Component } from "react";

export default class App extends Component {

 render = () =>
 <div className="m-2">
 <div className="form-group">
 <label>Name:</label>
 <input className="form-control" />
 </div>
 <div className="form-group">
 <label>City:</label>
 <input className="form-control" />
 </div>
 </div>
}
...

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

Chapter 4 ■ JavaScript Primer

87

Copying Properties from One Object to Another
Some important features provided by React and the packages I describe in Part 3 rely on copying the
properties from one object to another. JavaScript provides the Object.assign method for this purpose, as
demonstrated in Listing 4-41.

Listing 4-41.  Copying Object Properties in the example.js File in the src Folder

class MyData {

 constructor() {
 this.name = "Adam";
 this.weather = "sunny";
 }

 printMessages = () => {
 console.log(`Hello ${this.name}.`);
 console.log(`Today is ${this.weather}.`);
 }
}

let myData = new MyData();

let secondObject = {};

Object.assign(secondObject, myData);

secondObject.printMessages();

This example uses the literal form to create a new object that has no properties and uses the
Object.assign method to copy the properties—and their values—from the myData object. This example
produces the following output:

Hello Adam.
Today is sunny.

The destructuring operator—which is the same as the spread operator—can be used to copy properties
from one object to another, and a technique I use in later chapters is to copy all of the existing properties
using the destructuring operator and then define a new value for some of them, as shown in Listing 4-42.

Listing 4-42.  Copying Using a Spread in the example.js File in the src Folder

class MyData {

 constructor() {
 this.name = "Adam";
 this.weather = "sunny";
 }

 printMessages = () => {
 console.log(`Hello ${this.name}.`);

Chapter 4 ■ JavaScript Primer

88

 console.log(`Today is ${this.weather}.`);
 }
}

let myData = new MyData();

let secondObject = { ...myData, weather: "cloudy"};

console.log(`myData: ${ myData.weather}, secondObject: ${secondObject.weather}`);

This example copies the properties from the myData object and provides a new value for the weather
property, producing the following output:

myData: sunny, secondObject: cloudy

Capturing Parameter Names from Objects
When an object is received as a function or method parameter, it can be awkward to navigate through the
properties to get the data required. As a simple example, Listing 4-43 defines a structure of objects that are
navigated to get data values.

Listing 4-43.  Navigating Object Properties in the example.js File in the src Folder

const myData = {
 name: "Bob",
 location: {
 city: "Paris",
 country: "France"
 },
 employment: {
 title: "Manager",
 dept: "Sales"
 }
}

function printDetails(data) {
 console.log(`Name: ${data.name}, City: ${data.location.city},
 Role: ${data.employment.title}`);
}

printDetails(myData);

The printDetails function has to navigate through the object to get the name, city, and title
properties it requires. The same outcome can be achieved more elegantly by capturing specific properties as
named parameters, as shown in Listing 4-44.

Chapter 4 ■ JavaScript Primer

89

Listing 4-44.  Capturing Named Parameters in the example.js File in the src Folder

const myData = {
 name: "Bob",
 location: {
 city: "Paris",
 country: "France"
 },
 employment: {
 title: "Manager",
 dept: "Sales"
 }
}

function printDetails({ name, location: { city }, employment: { title }}) {
 console.log(`Name: ${name}, City: ${city}, Role: ${title}`);
}

printDetails(myData);

This example applies the technique described in Listing 4-36 to select specific properties from the
object. This listing and Listing 4-43 produce the same output.

Name: Bob, City: Paris, Role: Manager

Understanding JavaScript Modules
React applications are too complex to define in a single JavaScript file. To break up an application into more
manageable chunks, JavaScript supports modules, which contain JavaScript code that other parts of the
application depend on. In the sections that follow, I explain the different ways that modules can be defined
and used.

Creating and Using a JavaScript Module
There are already JavaScript modules in the example project, but the best way to understand how they work
is to create and use a new module. I added a file called sum.js in the src folder and added the code shown in
Listing 4-45.

Listing 4-45.  The Contents of the sum.js File in the src Folder

export default function(values) {
 return values.reduce((total, val) => total + val, 0);
}

The sum.js file contains a function that accepts an array of values and uses the JavaScript array reduce
method to sum them and return the result. What’s important about this example is not what it does but the
fact that the function is defined in its own file, which is the basic building block for a module.

There are two keywords used in Listing 4-45 that you will often encounter when defining modules:
export and default. The export keyword is used to denote the features that will be available outside the

Chapter 4 ■ JavaScript Primer

90

module. By default, the contents of the JavaScript file are private and must be explicitly shared using the
export keyword before they can be used in the rest of the application. The default keyword is used when
the module contains a single feature, such as the function defined in Listing 4-45. Together, the export and
default keywords are used to specify that the only function in the sum.js file is available for use in the rest of
the application.

Using the JavaScript Module
Another keyword is required to use a module: the import keyword. In Listing 4-46, I used the import
keyword to access the function defined in the previous section so that it can be used in the example.js file.

Listing 4-46.  Using a JavaScript Module in the example.js File in the src Folder

import additionFunction from "./sum";

let values = [10, 20, 30, 40, 50];

let total = additionFunction(values);

console.log(`Total: ${total}`);

The import keyword is used to declare a dependency on the module. The import keyword can be used
in a number of different ways, but this is the format you will use most often when working with modules you
have created yourself, and the key parts are illustrated in Figure 4-3.

Figure 4-3.  Declaring a dependency on a module

The import keyword is followed by an identifier, which is the name by which the function will be known
when it is used, and the identifier in this example is additionFunction.

■■ Tip  Notice that it is the import statement in which the identifier is applied, which means that the code
that consumes the function from the module chooses the name by which it will be known and that multiple
import statements for the same module in different parts of the application can use different names to refer to
the same function. See the next section for details of how the module can specify the names of the features it
contains.

Chapter 4 ■ JavaScript Primer

91

The from keyword follows the identifier, which is then followed by the location of the module. It is
important to pay close attention to the location because different behaviors are created by different location
formats, as described in the sidebar.

During the build process, the React tools will detect the import statement and include the function
from the sum.js file in the JavaScript file that is sent to the browser so that it can execute the application. The
identifier used in the import statement can be used to access the function in the module, in just the same
way that locally defined functions are used.

...
let total = additionFunction(values);
...

If you examine the browser’s JavaScript console, you will see that the code in Listing 4-42 uses the
module’s function to produce the following result:

Total: 150

UNDERSTANDING MODULE LOCATIONS

The location of a module changes the way that the build tools will look for the module when creating
the JavaScript file that is sent to the browser. For modules you have defined yourself, the location is
specified as a relative path; it starts with one or two periods, which indicates that the path is relative to
the current file or to the current file’s parent directory. In Listing 4-46, the location starts with a period.

...
import additionFunction from "./sum";
...

This location tells the build tools that there is a dependency on the sum module, which can be found
in the same folder as the file that contains the import statement. Notice that the file extension is not
included in the location.

If you omit the initial period, then the import statement declares a dependency on a module in the
node_modules folder, which is where packages are installed during the project setup. This kind of
location is used to access features provided by third-party packages, including the React packages,
which is why you will see statements like this in React projects:

...
import React, { Component } from "react";
...

The location for this import statement doesn’t start with a period and will be interpreted as a
dependency on the react module in the project’s node_modules folder, which is the package that
provides the core React application features.

Chapter 4 ■ JavaScript Primer

92

Exporting Named Features from a Module
A module can assign names to the features it exports, which is the approach I have taken for most of the
examples in this book. In Listing 4-47, I have given a name to the function that is exported by the sum
module.

Listing 4-47.  Exporting a Named Feature in the sum.js File in the src Folder

export function sumValues (values) {
 return values.reduce((total, val) => total + val, 0);
}

The function provides the same feature but is exported using the name sumValues and no longer uses
the default keyword. In Listing 4-48, I have imported the feature using its new name in the example.js file.

Listing 4-48.  Importing a Named Feature in the example.js File in the src Folder

import { sumValues } from "./sum";

let values = [10, 20, 30, 40, 50];

let total = sumValues(values);

console.log(`Total: ${total}`);

The name of the feature to be imported is specified in curly braces (the { and } characters) and is used
by this name in the code. A module can export default and named features, as shown in Listing 4-49.

Listing 4-49.  Exporting Named and Default Features in the sum.js File in the src Folder

export function sumValues (values) {
 return values.reduce((total, val) => total + val, 0);
}

export default function sumOdd(values) {
 return sumValues(values.filter((item, index) => index % 2 === 0));
}

The new feature is exported using the default keyword. In Listing 4-50, I have imported the new feature
as the default export from the module.

Listing 4-50.  Importing a Default Feature in the example.js File in the src Folder

import oddOnly, { sumValues } from "./sum";

let values = [10, 20, 30, 40, 50];

let total = sumValues(values);
let odds = oddOnly(values);

console.log(`Total: ${total}, Odd Total: ${odds}`);

Chapter 4 ■ JavaScript Primer

93

This is the pattern you will see at the start of the React components in the examples throughout this
book because the core React features required for JSX are the default export from the react module and the
Component class is a named feature:

...
import React, { Component } from "react";
...

The example in Listing 4-50 produces the following output:

Total: 150, Odd Total: 90

Defining Multiple Named Features in a Module
Modules can contain more than one named function or value, which is useful for grouping related
features. To demonstrate, I created a file called operations.js to the src folder and added the code shown
in Listing 4-51.

Listing 4-51.  The Contents of the operations.js File in the src Folder

export function multiply(values) {
 return values.reduce((total, val) => total * val, 1);
}

export function subtract(amount, values) {
 return values.reduce((total, val) => total - val, amount);
}

export function divide(first, second) {
 return first / second;
}

This module defines three functions to which the export keyword has been applied. Unlike the
previous example, the default keyword is not used, and each function has its own name. When importing
from a module that contains multiple features, the names of the required features are specified as a comma-
separated list between the braces, as shown in Listing 4-52.

Listing 4-52.  Importing Named Features in the example.js File in the src Folder

import oddOnly, { sumValues } from "./sum";
import { multiply, subtract } from "./operations";

let values = [10, 20, 30, 40, 50];

let total = sumValues(values);
let odds = oddOnly(values);

console.log(`Total: ${total}, Odd Total: ${odds}`);
console.log(`Multiply: ${multiply(values)}`);
console.log(`Subtract: ${subtract(1000, values)}`);

Chapter 4 ■ JavaScript Primer

94

The braces that follow the import keyword surround the list of functions that I want to use, which is the
multiply and subtract functions in this case, separated by commas. I only declare dependencies on the
functions that I require, and there is no dependency on the divide function, which is defined in the module
but not used. This example produces the following output:

Total: 150, Odd Total: 90
Multiply: 12000000
Subtract: 850

Changing Module Feature Names
When importing named features from modules, you may find that there are two modules that use the same
name or that the name used by the module doesn’t produce readable code when it is imported. You can
select a new name using the as keyword, as shown in Listing 4-53.

Listing 4-53.  Assigning a Name to a Feature in the example.js File in the src Folder

import oddOnly, { sumValues } from "./sum";
import { multiply, subtract as deduct } from "./operations";

let values = [10, 20, 30, 40, 50];

let total = sumValues(values);
let odds = oddOnly(values);

console.log(`Total: ${total}, Odd Total: ${odds}`);
console.log(`Multiply: ${multiply(values)}`);
console.log(`Subtract: ${deduct(1000, values)}`);

I used the as keyword to specify that the subtract function should be given the name deduct when
imported into the example.js file. This listing produces the same output as Listing 4-53.

Importing an Entire Module
Listing the names of all the functions in a module gets out of hand for complex modules. A more elegant
approach is to import all the features provided by a module and just use the features you require, as shown
in Listing 4-54.

Listing 4-54.  Importing an Entire Module in the example.js File in the src Folder

import oddOnly, { sumValues } from "./sum";
import * as ops from "./operations";

let values = [10, 20, 30, 40, 50];

let total = sumValues(values);
let odds = oddOnly(values);

console.log(`Total: ${total}, Odd Total: ${odds}`);
console.log(`Multiply: ${ops.multiply(values)}`);
console.log(`Subtract: ${ops.subtract(1000, values)}`);

Chapter 4 ■ JavaScript Primer

95

An asterisk is used to import everything in a module, followed by the as keyword and an identifier
through which the module functions and values will be accessed. In this case, the identifier is ops, which
means that the multiply, subtract, and divide functions can be accessed as ops.multiply, ops.subtract,
and ops.divide. This listing produces the same output as Listing 4-53.

Understanding JavaScript Promises
A promise is a background activity that will be completed at some point in the future. The most common use
for promises in this book is requesting data using an HTTP request, which is performed asynchronously and
produces a result when a response is received from the web server.

Understanding the Asynchronous Operation Problem
The classic asynchronous operation for a web application is an HTTP request, which is typically used to get
the data and content that a user requires. I explain how to make HTTP requests in Part 3 of this book, but
I need something simpler for this chapter, so I added a file called async.js to the src folder with the code
shown in Listing 4-55.

Listing 4-55.  The Contents of the async.js File in the src Folder

import { sumValues } from "./sum";

export function asyncAdd(values) {
 setTimeout(() => {
 let total = sumValues(values);
 console.log(`Async Total: ${total}`);
 return total;
 }, 500);
}

The setTimeout function invokes a function asynchronously after a specified delay. In the listing, the
asyncAdd function receives a parameter that is passed to the sumValues function defined in the sum module
after a delay of 500 milliseconds, creating a background operation that doesn’t complete immediately for the
examples in this chapter and acting as a placeholder for more useful operations, such as making an HTTP
request. In Listing 4-56, I have updated the example.js file to use the asyncAdd function.

Listing 4-56.  Performing Background Work in the example.js File in the src Folder

import { asyncAdd } from "./async";

let values = [10, 20, 30, 40, 50];

let total = asyncAdd(values);

console.log(`Main Total: ${total}`);

Chapter 4 ■ JavaScript Primer

96

The problem this example demonstrates is that the result from the asyncAdd function isn’t produced
until after the statements in the example.js file have been executed, which you can see in the output shown
in the browser’s JavaScript console:

Main Total: undefined
Async Total: 150

The browser executes the statements in the example.js file and invokes the asyncAdd function as
instructed. The browser moves on to the next statement in the example.js file, which writes a message to
the console using the result provided by asyncAdd—but this happens before the asynchronous task has been
completed, which is why the output is undefined. The asynchronous task subsequently completes, but it is
too late for the result to be used by the example.js file.

Using a JavaScript Promise
To solve the problem in the previous section, I need a mechanism that allows me to observe the
asynchronous task so that I can wait for it to complete and then write out the result. This is the role of the
JavaScript Promise, which I have applied to the asyncAdd function in Listing 4-57.

Listing 4-57.  Using a Promise in the async.js File in the src Folder

import { sumValues } from "./sum";

export function asyncAdd(values) {
 return new Promise(callback =>
 setTimeout(() => {
 let total = sumValues(values);
 console.log(`Async Total: ${total}`);
 callback(total);
 }, 500));
}

It can be difficult to unpack the functions in this example. The new keyword is used to create a Promise,
which accepts the function that is to be observed. The observed function is provided with a callback that is
invoked when the asynchronous task has completed and that accepts the result of the task as an argument.
Invoking the callback function is known as resolving the promise.

The Promise object that has become the result of the asyncAdd function allows the asynchronous task to
be observed so that follow-up work can be performed when the task completes, as shown in Listing 4-58.

Listing 4-58.  Observing a Promise in the example.js File in the src Folder

import { asyncAdd } from "./async";

let values = [10, 20, 30, 40, 50];

asyncAdd(values).then(total => console.log(`Main Total: ${total}`));

Chapter 4 ■ JavaScript Primer

97

The then method accepts a function that will be invoked when the callback is used. The result passed to
the callback is provided to the then function. In this case, that means the total isn’t written to the browser’s
JavaScript console until the asynchronous task has completed and produces the following output:

Async Total: 150
Main Total: 150

Simplifying the Asynchronous Code
JavaScript provides two keywords—async and await—that support asynchronous operations without having
to work directly with promises. In Listing 4-59, I have applied these keywords in the example.js file.

■■ Caution I t is important to understand that using async/await doesn’t change the way that an application
behaves. The operation is still performed asynchronously, and the result will not be available until the operation
completes. These keywords are just a convenience to simplify working with asynchronous code so that you
don’t have to use the then method.

Listing 4-59.  Using async and await in the example.js File in the src Folder

import { asyncAdd } from "./async";

let values = [10, 20, 30, 40, 50];

async function doTask() {
 let total = await asyncAdd(values);
 console.log(`Main Total: ${total}`);
}

doTask();

These keywords can be applied only to functions, which is why I added the doTask function in this
listing. The async keyword tells JavaScript that this function relies on functionality that requires a promise.
The await keyword is used when calling a function that returns a Promise and has the effect of assigning the
result provided to the Promise object’s callback and then executing the statements that follow, producing the
following result:

Async Total: 150
Main Total: 150

Summary
In this chapter, I provided a brief primer on JavaScript, focusing on the core functionality that will get you
started for React development. In the next chapter, I start the process of building a more complex and
realistic project, called SportsStore.

99© Adam Freeman 2019
A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_5

CHAPTER 5

SportsStore: A Real Application

In Chapter 2, I built a quick and simple React application. Small and focused examples allow me to
demonstrate specific features, but they can lack context. To help overcome this problem, I am going to create
a simple but realistic e-commerce application.

My application, called SportsStore, will follow the classic approach taken by online stores everywhere. I
will create an online product catalog that customers can browse by category and page, a shopping cart where
users can add and remove products, and a checkout where customers can enter their details and place
their orders. I will also create an administration area that includes create, read, update, and delete (CRUD)
facilities for managing products and orders—and I will protect it so that only logged-in administrators can
make changes. Finally, I show you how to prepare a React application for deployment.

My goal in this chapter and those that follow is to give you a sense of what real React development is
like by creating as realistic an example as possible. I want to focus on React and the related packages that are
used in most projects, of course, and so I have simplified the integration with external systems, such as the
database, and omitted others entirely, such as payment processing.

The SportsStore example is one that I use in all of my books, not least because it demonstrates the ways
in which different frameworks, languages, and development styles can be used to achieve the same result.
You don’t need to have read any of my other books to follow this chapter, but you will find the contrasts
interesting if you already own my Pro ASP.NET Core MVC 2 or Pro Angular 6 book, for example.

The React features that I use in the SportsStore application are covered in-depth in later chapters.
Rather than duplicate everything here, I tell you just enough to make sense of the example application and
refer you to other chapters for in-depth information. You can either read the SportsStore chapters from end
to end to get a sense of how React works or jump to and from the detail chapters to get into the depth.

Either way, don’t expect to understand everything right away—React applications have a lot of moving
parts and depend on a lot of packages, and the SportsStore application is intended to show you how they fit
together without diving too deeply into the details that the rest of the book describes.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/pro-react-16.

https://github.com/Apress/pro-react-16

Chapter 5 ■ SportsStore: A Real Application

100

Preparing the Project
To create the project, open a new command prompt, navigate to a convenient location, and run the
command shown in Listing 5-1.

Listing 5-1.  Creating the SportsStore Project

npx create-react-app sportsstore

The create-react-app tool will create a new React project named sportsstore with the packages,
configuration files, and placeholder content required to start development. The project setup process may
take some time to complete because there is a large number of NPM packages to download and install.

■■ Note  When you create a new project, you may see warnings about security vulnerabilities. React
development relies on a large number of packages, each of which has its own dependencies, and security
issues will inevitably be discovered. For the examples in this book, it is important to use the package versions
specified to ensure you get the expected results. For your own projects, you should review the warnings and
update to versions that resolve the problems.

Installing Additional NPM Packages
Additional packages are required for the SportsStore project, in addition to the core React libraries and
development tools installed by the create-react-app package. Run the commands shown in Listing 5-2 to
navigate to the sportsstore folder and add the packages. (The npm install command can be used to add
multiple packages in one go, but the result is a long command where it is easy to omit a package. To avoid
errors, I add packages individually throughout this book.)

■■ Note I t is important to use the version numbers shown in the listing. You may see warnings about unmet
peer dependencies as you add the packages, but these can be ignored.

Listing 5-2.  Installing Additional Packages

cd sportsstore
npm install bootstrap@4.1.2
npm install @fortawesome/fontawesome-free@5.6.1
npm install redux@4.0.1
npm install react-redux@6.0.0
npm install react-router-dom@4.3.1
npm install axios@0.18.0
npm install graphql@14.0.2
npm install apollo-boost@0.1.22
npm install react-apollo@2.3.2

Chapter 5 ■ SportsStore: A Real Application

101

Don’t be put off by the number of additional packages that are required. React focuses on a core set
of the features that are required by web applications and relies on supporting packages to create complete
applications. To provide some context, the packages added in Listing 5-2 are described in Table 5-1, and I
cover them in depth in Part 3 of this book.

Table 5-1.  The Packages Required for the SportsStore Project

Name Description

bootstrap This package provides the CSS styles that I used to present HTML content
throughout the book.

fontawesome-free This package provides icons that can be included in HTML content. I have used the
free package, but there is a more comprehensive paid-for option available, too.

redux This package provides a data store, which simplifies the process of coordinating the
different parts of the application. See Chapter 19 for details.

react-redux This package integrates a Redux data store into a React application, as described in
Chapters 19 and 20.

react-router-dom This package provides URL routing, which allows the content presented to the user to
be selected based on the browser’s current URL, as described in Chapters 21 and 22.

axios This package is used to make HTTP requests and will be used to access RESTful and
GraphQL services, as described in Chapters 23–25.

graphql This package contains the reference implementation of the GraphQL specification.

apollo-boost This package contains a client used to consume a GraphQL service, as described in
Chapter 25.

react-apollo This package is used to integrate the GraphQL client into a React application, as
described in Chapter 25.

Further packages are required to create the back-end services that the SportsStore application will
consume. Using the command prompt, run the commands shown in Listing 5-3 in the sportsstore
folder. These packages are installed using the --save-dev argument, which indicates they are used during
development and will not be part of the SportsStore application when it is deployed.

Listing 5-3.  Adding Further Packages

npm install --save-dev json-server@0.14.2
npm install --save-dev jsonwebtoken@8.1.1
npm install --save-dev express@4.16.4
npm install --save-dev express-graphql@0.7.1
npm install --save-dev cors@2.8.5
npm install --save-dev faker@4.1.0
npm install --save-dev chokidar@2.0.4
npm install --save-dev npm-run-all@4.1.3
npm install --save-dev connect-history-api-fallback@1.5.0

Chapter 5 ■ SportsStore: A Real Application

102

You won’t need these packages for applications that consume data from existing services, but I need to
create a complete infrastructure for the SportsStore application. Table 5-2 briefly describes the purpose of
each package installed in Listing 5-3.

Table 5-2.  The Additional Packages Required by the SportsStore Project

Name Description

json-server This package will be used to provide a RESTful web service in Chapter 6.

jsonwebtoken This package will be used to authenticate users in Chapter 8.

graphql This package will be used to define the schema for the GraphQL server
in Chapter 7.

express This package will be used to host the back-end servers.

express-graphql This package will be used to create a GraphQL server.

cors This package is used to enable cross-origin request sharing (CORS)
requests.

faker This package generates fake data for testing and is used in Chapter 6.

chokidar This package monitors files for changes.

npm-run-all This package is used to run multiple NPM scripts in a single command.

connect-history-api-fallback This package is used to respond to HTTP requests with the index.html
file and is used in the production server in Chapter 8.

Adding the CSS Stylesheets to the Project
To use the Bootstrap and Font Awesome packages, I need to add import statements to the application’s
index.js file. The purpose of the index.js file is to start the application, as described in Chapter 9, and
adding the import statements shown in Listing 5-4 ensures that the styles I require can be applied to the
HTML content presented by the SportsStore application.

Listing 5-4.  Adding CSS Stylesheets in the index.js File in the src Folder

import React from 'react';
import ReactDOM from 'react-dom';
import './index.css';
import App from './App';
import * as serviceWorker from './serviceWorker';
import "bootstrap/dist/css/bootstrap.css";
import "@fortawesome/fontawesome-free/css/all.min.css";

ReactDOM.render(<App />, document.getElementById('root'));

// If you want your app to work offline and load faster, you can change
// unregister() to register() below. Note this comes with some pitfalls.
// Learn more about service workers: http://bit.ly/CRA-PWA
serviceWorker.unregister();

Chapter 5 ■ SportsStore: A Real Application

103

Preparing the Web Service
Once the basic structure of the application is in place, I will add support for consuming data from a web
service. In preparation, I added a file called data.js to the sportsstore folder with the content shown in
Listing 5-5.

Listing 5-5.  The Contents of the data.js File in the sportsstore Folder

module.exports = function () {
 return {
 categories: ["Watersports", "Soccer", "Chess"],
 products: [
 { id: 1, name: "Kayak", category: "Watersports",
 description: "A boat for one person", price: 275 },
 { id: 2, name: "Lifejacket", category: "Watersports",
 description: "Protective and fashionable", price: 48.95 },
 { id: 3, name: "Soccer Ball", category: "Soccer",
 description: "FIFA-approved size and weight", price: 19.50 },
 { id: 4, name: "Corner Flags", category: "Soccer",
 description: "Give your playing field a professional touch",
 price: 34.95 },
 { id: 5, name: "Stadium", category: "Soccer",
 description: "Flat-packed 35,000-seat stadium", price: 79500 },
 { id: 6, name: "Thinking Cap", category: "Chess",
 description: "Improve brain efficiency by 75%", price: 16 },
 { id: 7, name: "Unsteady Chair", category: "Chess",
 description: "Secretly give your opponent a disadvantage",
 price: 29.95 },
 { id: 8, name: "Human Chess Board", category: "Chess",
 description: "A fun game for the family", price: 75 },
 { id: 9, name: "Bling Bling King", category: "Chess",
 description: "Gold-plated, diamond-studded King", price: 1200 }
],
 orders: []
 }
}

The code in Listing 5-5 creates three data collections that will be used by the application. The products
collection contains the products for sale to the customer, the categories collection contains the set of
categories into which the products are organized, and the orders collection contains the orders that
customers have placed (but is currently empty).

I added a file called server.js to the sportsstore folder with the code shown in Listing 5-6. This is the
code that creates the web service that will provide the application with data. I add features to the back-end
server, such as authentication and support for GraphQL, in later chapters.

Listing 5-6.  The Contents of the server.js File in the sportsstore Folder

const express = require("express");
const jsonServer = require("json-server");
const chokidar = require("chokidar");
const cors = require("cors");

Chapter 5 ■ SportsStore: A Real Application

104

const fileName = process.argv[2] || "./data.js"
const port = process.argv[3] || 3500;

let router = undefined;

const app = express();

const createServer = () => {
 delete require.cache[require.resolve(fileName)];
 setTimeout(() => {
 router = jsonServer.router(fileName.endsWith(".js")
 ? require(fileName)() : fileName);
 }, 100)
}

createServer();

app.use(cors());
app.use(jsonServer.bodyParser)
app.use("/api", (req, resp, next) => router(req, resp, next));

chokidar.watch(fileName).on("change", () => {
 console.log("Reloading web service data...");
 createServer();
 console.log("Reloading web service data complete.");
});

app.listen(port, () => console.log(`Web service running on port ${port}`));

To ensure that the web service is started alongside the React development tools, I changed the scripts
section of the package.json file, as shown in Listing 5-7.

Listing 5-7.  Enabling the Web Service in the package.json File in the sportsstore Folder

...
"scripts": {
 "start": "npm-run-all --parallel reactstart webservice",
 "reactstart": "react-scripts start",
 "webservice": "node server.js",
 "build": "react-scripts build",
 "test": "react-scripts test",
 "eject": "react-scripts eject"
},
...

This change uses the npm-run-all package to run the React development server and the web service at
the same time.

Chapter 5 ■ SportsStore: A Real Application

105

Running the Example Application
To start the application and the web service, use the command prompt to run the command shown in
Listing 5-8 in the sportsstore folder.

Listing 5-8.  Starting the Application

npm start

There will be a pause while the initial compilation is completed, and then a new browser window will
open displaying the placeholder content shown in Figure 5-1.

To make sure that the web service is running, open a new browser window and request the URL
http://localhost:3500/api/products/1. The browser will display a JSON representation of one of the
products defined in Listing 5-5, as follows:

{ "id":1, "name":"Kayak", "category":"Watersports",
 "description":"A boat for one person","price":275 }

Figure 5-1.  Running the example application

Chapter 5 ■ SportsStore: A Real Application

106

Creating the Data Store
The starting point for SportsStore is the data store, which will be the repository for the data presented to the
user and the supporting details required to coordinate application features, such as pagination.

I am going to start with a data store that uses local placeholder data. Later, I will add support for getting
the data from a web service, but static data is a good place to start because it keeps the focus on the React
application. The SportsStore data store will be created using the Redux package, which is the most
popular data store for React projects and which I describe in Chapters 19 and 20. To get started, I created the
src/data folder and added to it a file called placeholderData.js, with the content shown in Listing 5-9.

Listing 5-9.  The Contents of the placeholderData.js File in the src/data Folder

export const data = {
 categories: ["Watersports", "Soccer", "Chess", "Running"],
 products: [
 { id: 1, name: "P1", category: "Watersports",
 description: "P1 (Watersports)", price: 3 },
 { id: 2, name: "P2", category: "Watersports",
 description: "P2 (Watersports)", price: 4 },
 { id: 3, name: "P3", category: "Running",
 description: "P3 (Running)", price: 5 },
 { id: 4, name: "P4", category: "Chess",
 description: "P4 (Chess)", price: 6 },
 { id: 5, name: "P5", category: "Chess",
 description: "P6 (Chess)", price: 7 },
]
}

Creating the Data Store Actions and Action Creators
Redux data stores separate reading data from the operations that change it. This can feel awkward at first,
but it is similar to other parts of React development, such as component state data and using GraphQL, and
it quickly becomes second nature.

Actions are objects that are sent to the data store to make changes to the data it contains. Actions have
types, and action objects are created using action creators. The only action I need at the moment will load
the data into the store, initially using the placeholder data defined in Listing 5-9 but eventually from a web
service. There are different ways you can structure the actions for a data store, but it is worth identifying the
common themes that are shared between different types of data to avoid code duplication later. I added a file
called Types.js in the src/data folder and used it to list the data types in the store and the set of actions that
can be performed on them, as shown in Listing 5-10.

Listing 5-10.  The Contents of the Types.js File in the src/data Folder

export const DataTypes = {
 PRODUCTS: "products",
 CATEGORIES: "categories"
}

export const ActionTypes = {
 DATA_LOAD: "data_load"
}

Chapter 5 ■ SportsStore: A Real Application

107

There are two data types—PRODUCTS and CATEGORIES—and a single action, DATA_LOAD, which will
populate the data store. There is no requirement to defined action types this way, but using constant values
avoids typos when specifying action types elsewhere in the application.

Next, I need to define an action creator function, which will create an action object that can be
processed by the data store to alter the data it contains. I added a file called ActionCreators.js to the src/
data folder, with the code shown in Listing 5-11.

Listing 5-11.  The Contents of the ActionCreators.js File in the src/data Folder

import { ActionTypes} from "./Types";
import { data as phData} from "./placeholderData";

export const loadData = (dataType) => ({
 type: ActionTypes.DATA_LOAD,
 payload: {
 dataType: dataType,
 data: phData[dataType]
 }
});

The use of action creators is described in Chapter 19, but the only requirement for the objects produced
by action creators is they must have a type property whose value specifies the type of change required to the
data store. It is a good idea to use a common set of properties in action objects so that they can be handled
consistently, and the action creator defined in Listing 5-11 returns an action object that has a payload
property, which is the convention I will use for all of the SportsStore data store actions.

The payload property for the action object in Listing 5-11 has a dataType property that indicates the
type of data that the action relates to and a data property that provides the data to be added to the data store.
The value for the data property is obtained from the placeholder data at the moment, but I replace this with
data obtained from a web service in Chapter 6.

Actions are processed by data store reducers, which are functions that receive the current contents of
the data store and an action object and use them to make changes. I added a file called ShopReducer.js to
the src/data folder and defined the reducer shown in Listing 5-12.

Listing 5-12.  The Contents of the ShopReducer.js File in the src/data Folder

import { ActionTypes } from "./Types";
export const ShopReducer = (storeData, action) => {
 switch(action.type) {
 case ActionTypes.DATA_LOAD:
 return {
 ...storeData,
 [action.payload.dataType]: action.payload.data
 };
 default:
 return storeData || {};
 }
}

Reducers are required to create and return new objects that incorporate any required changes. If the
action type isn’t recognized, the reducer must return the data store object it received unchanged. The
reducer in Listing 5-12 handles the DATA_LOAD action by creating a new object with all the properties of the
old store plus the new data received in the action. Reducers are described in more detail in Chapter 19.

Chapter 5 ■ SportsStore: A Real Application

108

As the final step for creating the data store, I added a file called DataStore.js to the src/data folder
and added the code shown in Listing 5-13.

Listing 5-13.  The Contents of the DataStore.js File in the src/data Folder

import { createStore } from "redux";
import { ShopReducer } from "./ShopReducer";

export const SportsStoreDataStore = createStore(ShopReducer);

The Redux package provides the createStore function, which sets up a new data store using a reducer.
This is enough to create a data store to get started with, but I will add additional features later so that further
operations can be performed and so that data can be loaded from a web service.

Creating the Shopping Features
The first part of the application that will be seen by users is the storefront, which will present the available
products in a two-column layout that allows filtering by category, as shown in Figure 5-2.

I am going to structure the application so that the browser’s URL is used to select the content presented
to the user. To get started, the application will support the URLs described in Table 5-3, which will allow the
user to see the products for sale and filter them by category.

Figure 5-2.  The basic structure of the application

Table 5-3.  The SportsStore URLs

Name Description

/shop/products This URL will display all of the products to the user, regardless of category.

/shop/products/chess This URL will display the products in a specific category. In this case, the
URL will select the Chess category.

Chapter 5 ■ SportsStore: A Real Application

109

■■ Note I have adopted the British term shop for the part of the application that offers products for sale to
customers. I want to avoid confusion between the data store, in which the application’s data is kept, and the
product store, from which the user makes purchases.

Responding to the browser’s URL in the application is known as URL routing, which is provided by the
React Router package added in Listing 5-2, and which is described in detail in Chapters 21 and 22.

Creating the Product and Category Components
Components are the building blocks for React applications and are responsible for the content presented to
the user. I created the src/shop folder and added to it a file called ProductList.js with the contents shown
in Listing 5-14.

Listing 5-14.  The Contents of the ProductList.js File in the src/shop Folder

import React, { Component } from "react";

export class ProductList extends Component {

 render() {
 if (this.props.products == null || this.props.products.length === 0) {
 return <h5 className="p-2">No Products</h5>
 }
 return this.props.products.map(p =>
 <div className="card m-1 p-1 bg-light" key={ p.id }>
 <h4>
 { p.name }

 ${ p.price.toFixed(2) }

 </h4>
 <div className="card-text bg-white p-1">
 { p.description }
 </div>
 </div>
)
 }
}

Components are created to perform small tasks or display small amounts of content and are combined
to create more complex features. The ProductList component defined in Listing 5-14 is responsible for
displaying details of a list of products, whose details are received through a prop named product. Props
are used to configure components and allow them to do their work—such as display details of a product—
without getting involved in where the data comes from. The ProductList component generates HTML
content that includes the value of each product’s name, price, and description properties, but it doesn’t
have knowledge of how those products are defined in the application or whether they have been defined
locally or retrieved from a remote server.

Chapter 5 ■ SportsStore: A Real Application

110

Next, I added a file called CategoryNavigation.js to the src/shop folder and defined the component
shown in Listing 5-15.

Listing 5-15.  The Contents of the CategoryNavigation.js File in the src/shop Folder

import React, { Component } from "react";
import { Link } from "react-router-dom";

export class CategoryNavigation extends Component {

 render() {
 return <React.Fragment>
 <Link className="btn btn-secondary btn-block"
 to={ this.props.baseUrl }>All</Link>
 { this.props.categories && this.props.categories.map(cat =>
 <Link className="btn btn-secondary btn-block" key={ cat }
 to={ `${this.props.baseUrl}/${cat.toLowerCase()}`}>
 { cat }
 </Link>
)}
 </React.Fragment>
 }
}

The selection of a category will be handled by navigating to a new URL, which is done using the Link
component provided by the React Router package. When the user clicks a Link, the browser is asked to
navigate to a new URL without sending any HTTP requests or reloading the application. The details included
in the new URL, such as the selected category in this case, allow different parts of the application to work
together.

The CategoryNavigation component receives the array of categories through a prop named
categories. The component checks to ensure that the array has been defined and uses the map method to
generate the content for each array item. React requires a key prop to be applied to the elements generated
by the map method so that changes to the array can be handled efficiently, as explained in Chapter 10. The
result is a Link component for each category that is received in the array with an additional Link so that
the user can select all products, regardless of category. The Link components are styled so they appear as
buttons, and the URLs that the browser will navigate to are the combination of a prop called baseUrl and the
name of the category.

To bring together the product table and the category buttons, I added a file called Shop.js to the
src/shop folder and added the code shown in Listing 5-16.

Listing 5-16.  The Contents of the Shop.js File in the src/shop Folder

import React, { Component } from "react";
import { CategoryNavigation } from "./CategoryNavigation";
import { ProductList } from "./ProductList";

export class Shop extends Component {

 render() {
 return <div className="container-fluid">
 <div className="row">
 <div className="col bg-dark text-white">

Chapter 5 ■ SportsStore: A Real Application

111

 <div className="navbar-brand">SPORTS STORE</div>
 </div>
 </div>
 <div className="row">
 <div className="col-3 p-2">
 <CategoryNavigation baseUrl="/shop/products"
 categories={ this.props.categories } />
 </div>
 <div className="col-9 p-2">
 <ProductList products={ this.props.products } />
 </div>
 </div>
 </div>
 }
}

A component can delegate responsibility for part of its content to other components. In its render
method, the Shop component defined in Listing 5-16 contains HTML elements that set up a grid structure
using Bootstrap CSS classes but delegates responsibility for populating some of the grid cells to the
CategoryNavigation and ProductList components. These delegated components are expressed as custom
HTML elements in the render method, where the element tag matches the name of the component, like this:

...
<ProductList products={ this.props.products } />
...

A relationship is created between the two components: the Shop component is the parent of the
ProductList, and the ProductList component is the child of the Shop. Parents configure their child
components by providing props, and in Listing 5-16, the Shop component passes on the products prop
it received from its parent to its ProductList child component, which will be used to display the list of
products to the user. The relationships between components and the ways they can be used to create
complex features are described in Part 2 of this book.

Connecting to the Data Store and the URL Router
The Shop component and its CategoryNavigation and ProductList children need access to the data store.
To connect these components to the features they require, I added a file called ShopConnector.js to the
src/shop folder with the code shown in Listing 5-17.

Listing 5-17.  The Contents of the ShopConnector.js File in the src/shop Folder

import React, { Component } from "react";
import { Switch, Route, Redirect }
 from "react-router-dom"
import { connect } from "react-redux";
import { loadData } from "../data/ActionCreators";
import { DataTypes } from "../data/Types";
import { Shop } from "./Shop";

Chapter 5 ■ SportsStore: A Real Application

112

const mapStateToProps = (dataStore) => ({
 ...dataStore
})

const mapDispatchToProps = {
 loadData
}

const filterProducts = (products = [], category) =>
 (!category || category === "All")
 ? products
 : products.filter(p => p.category.toLowerCase() === category.toLowerCase());

export const ShopConnector = connect(mapStateToProps, mapDispatchToProps)(
 class extends Component {
 render() {
 return <Switch>
 <Route path="/shop/products/:category?"
 render={ (routeProps) =>
 <Shop { ...this.props } { ...routeProps }
 products={ filterProducts(this.props.products,
 routeProps.match.params.category) } />} />
 <Redirect to="/shop/products" />
 </Switch>
 }

 componentDidMount() {
 this.props.loadData(DataTypes.CATEGORIES);
 this.props.loadData(DataTypes.PRODUCTS);
 }
 }
)

Don’t worry if the code in Listing 5-17 seems impenetrable at the moment. The code is more complex
than earlier listings because this component brings together and consolidates several features so they can be
used more easily elsewhere in the project, as shown in Figure 5-3.

Figure 5-3.  Connecting an application to its services

Chapter 5 ■ SportsStore: A Real Application

113

The advantage of this approach is that it simplifies adding features or making changes to the application
because the components that present content to the user receive their data via props without the need to
obtain it directly from the data store or the URL routing system. The disadvantage is that the component that
connects the rest of the application to its services can be difficult to write and maintain, as it must combine
the features of different packages and present them to its children. The complexity of this component will
increase until the end of Chapter 6, when I consolidate the code around the final set of SportsStore shopping
features.

The component in Listing 5-17 connects the Redux data store and the URL router to the Shop
component. The Redux package provides the connect function, which is used to link a component to a data
store so that its props are either values from the data store or functions that dispatch data store actions when
they are invoked, as described in Chapter 20. It is the connect function that has led to much of the code in
Listing 5-17 because it requires mappings between the data store and the component’s props, which can be
verbose. The mappings in Listing 5-17 give the Shop component access to all of the properties defined in the
data store, which consists of the product and category data at present but will include other features later.

■■ Tip  You can be more specific in the data store properties you map to props, as demonstrated in Chapter 20,
but I have mapped all of the products, which is a useful approach when you start developing a new project
because it means you don’t have to remember to map new properties each time you enhance the data store.

The product data must be filtered using the selected category, which is accessed through the
features provided by the React Router package. A Route is used to select the component that will be
displayed to the user when the browser navigates to a specific URL. The Route in Listing 5-17 matches the
URLs from Table 5-3, like this:

...
<Route path="/shop/products/:category?" render={ (routeProps) =>
...

The path prop tells the Route to wait until the browser navigates to the /shop/products URL. If there is
an additional segment in the URL, such as /shop/products/running, then the contents of that segment will
be assigned to a parameter named category, which is how the user’s category selection will be determined.

When the browser navigates to a URL that matches the path prop, the Route displays the content
specified by the render prop, like this:

...
<Route path="/shop/products/:category?" render={ (routeProps) =>
 <Shop { ...this.props } { ...routeProps }
 products={ filterProducts(this.props.products,
 routeProps.match.params.category) } />} />
...

This is the point at which the data store and the URL routing features are combined. The Shop
component needs to know which category the user has selected, which is available through the argument
passed to the Route component’s render prop. The category is combined with the data from the data store
both of which are passed on to the Shop component. The order in which props are applied to a component
allows props to be overridden, which I have relied on to replace the products data obtained from the data
store with the result from the filterProduct function, which selects only the products in the category
chosen by the user.

Chapter 5 ■ SportsStore: A Real Application

114

The Route is used in conjunction with Switch and Redirect components, both of which are part of the
React Router package and which combine to redirect the browser to /shop/products if the browser’s current
URL isn’t matched by the Route.

The ShopConnector component uses the componentDidMount method to load the data into the data
store. The componentDidMount method is part of the React component lifecycle, which is described in detail
in Chapter 13.

Adding the Shop to the Application
In Listing 5-18, I have set up the data store and the URL routing features and incorporated the
ShopConnector component into the application.

Listing 5-18.  Adding Routing and a Data Store to the App.js File in the src Folder

import React, { Component } from "react";
import { SportsStoreDataStore } from "./data/DataStore";
import { Provider } from "react-redux";
import { BrowserRouter as Router, Route, Switch, Redirect }
 from "react-router-dom";
import { ShopConnector } from "./shop/ShopConnector";

export default class App extends Component {

 render() {
 return <Provider store={ SportsStoreDataStore }>
 <Router>
 <Switch>
 <Route path="/shop" component={ ShopConnector } />
 <Redirect to="/shop" />
 </Switch>
 </Router>
 </Provider>
 }
}

The data store is applied to the application using a Provider, with the store prop being assigned the
data store created in Listing 5-13. The URL routing features are applied to the application using the Router
component, which I have supplemented using the Switch, Route, and Redirect components. The Redirect
will navigate to the /shop URL, which matches the path prop of the Route and displays the ShopConnector
component, producing the result shown in Figure 5-4. Clicking a category button redirects the browser to
a new URL, such as /shop/products/watersports, which has the effect of filtering the products that are
displayed.

Chapter 5 ■ SportsStore: A Real Application

115

Improving the Category Selection Buttons
The category selection buttons work but don’t clearly reflect the current category to the user. To remedy this,
I added a file called ToggleLink.js to the src folder and used it to define the component shown in
Listing 5-19.

■■ Tip I added this component to the src folder because I will use it for other parts of the application once the
shop has been completed. There are no hard-and-fast rules about how a React project is organized, but I tend
to keep related files grouped together in folders.

Listing 5-19.  The Contents of the ToggleLink.js File in the src Folder

import React, { Component } from "react";
import { Route, Link } from "react-router-dom";

export class ToggleLink extends Component {

 render() {
 return <Route path={ this.props.to } exact={ this.props.exact }
 children={ routeProps => {

 const baseClasses = this.props.className || "m-2 btn btn-block";
 const activeClass = this.props.activeClass || "btn-primary";
 const inActiveClass = this.props.inActiveClass || "btn-secondary"

Figure 5-4.  Creating the basic shopping features

Chapter 5 ■ SportsStore: A Real Application

116

 const combinedClasses =
 `${baseClasses} ${routeProps.match ? activeClass : inActiveClass}`

 return <Link to={ this.props.to } className={ combinedClasses }>
 { this.props.children }
 </Link>
 }} />
 }
}

The React Router package provides a component that indicates when a specific URL has been matched,
but it doesn’t work well with the Bootstrap CSS classes, as I describe in Chapter 22, where I explain how the
ToggleLink component works in detail. For this chapter, it is enough to know that the Route component can
be used to provide access to the URL routing system in order to get details about the current route.
In Listing 5-20, I have updated the CategoryNavigation component to use the ToggleLink component.

Listing 5-20.  Using ToggleLinks in the CategoryNavigation.js File in the src/shop Folder

import React, { Component } from "react";
//import { Link } from "react-router-dom";
import { ToggleLink } from "../ToggleLink";

export class CategoryNavigation extends Component {

 render() {
 return <React.Fragment>
 <ToggleLink to={ this.props.baseUrl } exact={ true }>All</ToggleLink>
 { this.props.categories && this.props.categories.map(cat =>
 <ToggleLink key={ cat }
 to={ `${this.props.baseUrl}/${cat.toLowerCase()}`}>
 { cat }
 </ToggleLink>
)}
 </React.Fragment>
 }
}

Chapter 5 ■ SportsStore: A Real Application

117

The effect is to clearly indicate which category has been selected, as shown in Figure 5-5.

Adding the Shopping Cart
The shopping cart will allow the user to select several products in a single purchase before checking out. In
the sections that follow, I add extend the data store to keep track of the user’s product selections and create
components that provide detailed and summary cart views.

Extending the Data Store
To extend the data store to add support for tracking the user’s product selections, I added the action types
shown in Listing 5-21.

Listing 5-21.  Defining Action Types in the Types.js File in the src/data Folder

export const DataTypes = {
 PRODUCTS: "products",
 CATEGORIES: "categories"
}

export const ActionTypes = {
 DATA_LOAD: "data_load",
 CART_ADD: "cart_add",
 CART_UPDATE: "cart_update",
 CART_REMOVE: "cart_delete",
 CART_CLEAR: "cart_clear"
}

Figure 5-5.  Highlighting the selected component

Chapter 5 ■ SportsStore: A Real Application

118

The new actions will allow products to be added and removed from the cart and for the entire cart
content to be cleared.

You can define action creators and reducers for different parts of the application in the same file, but
breaking them into separate files can make development easier, especially in large projects. I added a file
called CartActionCreators.js to the src/data folder and used it to define action creators for the new
action types, as shown in Listing 5-22.

Listing 5-22.  The Contents of the CartActionCreators.js File in the src/data Folder

import { ActionTypes} from "./Types";

export const addToCart = (product, quantity) => ({
 type: ActionTypes.CART_ADD,
 payload: {
 product,
 quantity: quantity || 1
 }
});

export const updateCartQuantity = (product, quantity) => ({
 type: ActionTypes.CART_UPDATE,
 payload: { product, quantity }
})

export const removeFromCart = (product) => ({
 type: ActionTypes.CART_REMOVE,
 payload: product
})

export const clearCart = () => ({
 type: ActionTypes.CART_CLEAR
})

The action objects created by the functions in Listing 5-22 have a payload property that carries the data
required to execute the action. To define a reducer that will process cart-related actions, I added a file called
CartReducer.js in the src/data folder and defined the function shown in Listing 5-23.

Listing 5-23.  The Contents of the CartReducer.js File in the src/data Folder

import { ActionTypes } from "./Types";

export const CartReducer = (storeData, action) => {
 let newStore = { cart: [], cartItems: 0, cartPrice: 0, ...storeData }
 switch(action.type) {
 case ActionTypes.CART_ADD:
 const p = action.payload.product;
 const q = action.payload.quantity;

 let existing = newStore.cart.find(item => item.product.id === p.id);
 if (existing) {
 existing.quantity += q;
 } else {

Chapter 5 ■ SportsStore: A Real Application

119

 newStore.cart = [...newStore.cart, action.payload];
 }
 newStore.cartItems += q;
 newStore.cartPrice += p.price * q;
 return newStore;

 case ActionTypes.CART_UPDATE:
 newStore.cart = newStore.cart.map(item => {
 if (item.product.id === action.payload.product.id) {
 const diff = action.payload.quantity - item.quantity;
 newStore.cartItems += diff;
 newStore.cartPrice+= (item.product.price * diff);
 return action.payload;
 } else {
 return item;
 }
 });
 return newStore;

 case ActionTypes.CART_REMOVE:
 let selection = newStore.cart.find(item =>
 item.product.id === action.payload.id);
 newStore.cartItems -= selection.quantity;
 newStore.cartPrice -= selection.quantity * selection.product.price;
 newStore.cart = newStore.cart.filter(item => item !== selection);
 return newStore;

 case ActionTypes.CART_CLEAR:
 return { ...storeData, cart: [], cartItems: 0, cartPrice: 0}

 default:
 return storeData || {};
 }
}

The reducer for the cart actions keeps track of the user’s product selection by adding a cart property to
the data store and assigning it an array of objects that have product and quantity properties. There are also
cartItems and cartPrice properties that keep track of the number of items in the cart and their total price.

■■ Tip I t is important to keep the structure of your data store flat because changes deep in an object hierarchy
won’t be detected and displayed to the user. It is for this reason that the cart, cartItems, and cartPrice
properties are defined alongside the products and categories properties in the data store, rather than
grouped together into a single structure.

By default, the Redux data store uses only one reducer, but it is easy to combine multiple reducers to
suit your project. There is built-in support for dividing up responsibilities for the data store between multiple
reducers, as described in Chapter 19, but this splits up the data so each reducer can see only part of the
model. For the SportsStore application, I want each reducer to have access to the complete data store, so

Chapter 5 ■ SportsStore: A Real Application

120

I added a file called CommonReducer.js to the src/data folder and used it to define the function shown in
Listing 5-24.

Listing 5-24.  The Contents of the CommonReducer.js File in the src/data Folder

export const CommonReducer = (...reducers) => (storeData, action) => {
 for (let i = 0; i < reducers.length; i++) {
 let newStore = reducers[i](storeData, action);
 if (newStore !== storeData) {
 return newStore;
 }
 }
 return storeData;
}

The commonReducer function combines multiple reducers into a single function and asks each of them
to handle actions. Reducers return new objects when they modify the contents of the data store, which
makes it easy to detect when an action has been handled. The result is that the SportsStore data store can
support multiple reducers where the first to change the data store is considered to have processed the
action. In Listing 5-25, I have updated the data store configuration to use the commonReducer function to
combine the shop and cart reducers.

Listing 5-25.  Combining Reducers in the DataStore.js File in the src/data Folder

import { createStore } from "redux";
import { ShopReducer } from "./ShopReducer";
import { CartReducer } from "./CartReducer";
import { CommonReducer } from "./CommonReducer";

export const SportsStoreDataStore
 = createStore(CommonReducer(ShopReducer, CartReducer));

Creating the Cart Summary Component
To show the user a summary of their shopping cart, I added a file called CartSummary.js in the src/shop
folder and used it to define the component shown in Listing 5-26.

Listing 5-26.  The Contents of the CartSummary.js File in the src/shop Folder

import React, { Component } from "react";
import { Link } from "react-router-dom";

export class CartSummary extends Component {

 getSummary = () => {
 if (this.props.cartItems > 0) {
 return
 { this.props.cartItems } item(s),
 ${ this.props.cartPrice.toFixed(2)}

Chapter 5 ■ SportsStore: A Real Application

121

 } else {
 return Your cart: (empty)
 }
 }

 getLinkClasses = () => {
 return `btn btn-sm bg-dark text-white
 ${ this.props.cartItems === 0 ? "disabled": ""}`;
 }

 render() {
 return <div className="float-right">
 <small>
 { this.getSummary() }
 <Link className={ this.getLinkClasses() }
 to="/shop/cart">
 <i className="fa fa-shopping-cart"></i>
 </Link>
 </small>
 </div>
 }
}

The component defined in Listing 5-26 receives the data it requires through cartItems and cartPrice
props, which are used to create a summary of the component, along with a Link that will navigate to the /
shop/cart URL when clicked. The Link is disabled when the value of the items prop is zero to prevent the
user from progressing without selecting at least one product.

■■ Tip T he i element used as the content of the Link applies a cart icon from the Font Awesome package
added to the project in Listing 5-2. See https://fontawesome.com for more details and the full range of icons
available.

React handles many aspects of web application development well, but there are some common tasks
that are harder to achieve than you might be used to. One example is conditional rendering, where a data
value is used to select different content to present to the user or different values for props. The cleanest
approach in React is to define a method that uses JavaScript to return a result expressed as HTML, like the
getSummary and getLinkClasses methods in Listing 5-26, which are invoked in the component’s render
method. The other approach is to use the && operator inline, which works well for simple expressions.

In Listing 5-27, I connected the cart-related additions from the data store to the rest of the application,
along with the action creator functions.

Listing 5-27.  Connecting the Cart in the ShopConnector.js File in the src/shop Folder

import React, { Component } from "react";
import { Switch, Route, Redirect }
 from "react-router-dom"
import { connect } from "react-redux";
import { loadData } from "../data/ActionCreators";
import { DataTypes } from "../data/Types";

https://fontawesome.com

Chapter 5 ■ SportsStore: A Real Application

122

import { Shop } from "./Shop";
import { addToCart, updateCartQuantity, removeFromCart, clearCart }
 from "../data/CartActionCreators";

const mapStateToProps = (dataStore) => ({
 ...dataStore
})

const mapDispatchToProps = {
 loadData,addToCart, updateCartQuantity, removeFromCart, clearCart
}

const filterProducts = (products = [], category) =>
 (!category || category === "All")
 ? products
 : products.filter(p => p.category.toLowerCase() === category.toLowerCase());

export const ShopConnector = connect(mapStateToProps, mapDispatchToProps)(
 class extends Component {
 render() {
 return <Switch>
 <Route path="/shop/products/:category?"
 render={ (routeProps) =>
 <Shop { ...this.props } { ...routeProps }
 products={ filterProducts(this.props.products,
 routeProps.match.params.category) } />} />
 <Redirect to="/shop/products" />
 </Switch>
 }

 componentDidMount() {
 this.props.loadData(DataTypes.CATEGORIES);
 this.props.loadData(DataTypes.PRODUCTS);
 }
 }
)

In Listing 5-28, I added a CartSummary to the content rendered by the Shop component, which will
ensure that details of the user’s selections are shown above the list of products.

Listing 5-28.  Adding the Summary in the Shop.js File in the src/shop Folder

import React, { Component } from "react";
import { CategoryNavigation } from "./CategoryNavigation";
import { ProductList } from "./ProductList";
import { CartSummary } from "./CartSummary";

export class Shop extends Component {

 render() {
 return <div className="container-fluid">
 <div className="row">

Chapter 5 ■ SportsStore: A Real Application

123

 <div className="col bg-dark text-white">
 <div className="navbar-brand">SPORTS STORE</div>
 <CartSummary { ...this.props } />
 </div>
 </div>
 <div className="row">
 <div className="col-3 p-2">
 <CategoryNavigation baseUrl="/shop/products"
 categories={ this.props.categories } />
 </div>
 <div className="col-9 p-2">
 <ProductList products={ this.props.products }
 addToCart={ this.props.addToCart } />
 </div>
 </div>
 </div>
 }
}

To allow the user to add a product to the cart, I added a button alongside the description of each
product produced by the ProductList component, as shown in Listing 5-29.

Listing 5-29.  Adding a Button in the ProductList.js File in the src/shop Folder

import React, { Component } from "react";

export class ProductList extends Component {

 render() {
 if (this.props.products == null || this.props.products.length === 0) {
 return <h5 className="p-2">No Products</h5>
 }
 return this.props.products.map(p =>
 <div className="card m-1 p-1 bg-light" key={ p.id }>
 <h4>
 { p.name }

 ${ p.price.toFixed(2) }

 </h4>
 <div className="card-text bg-white p-1">
 { p.description }
 <button className="btn btn-success btn-sm float-right"
 onClick={ () => this.props.addToCart(p) } >
 Add To Cart
 </button>
 </div>
 </div>
)
 }
}

Chapter 5 ■ SportsStore: A Real Application

124

React provides props that are used to register handlers for events, as described in Chapter 12. The
handler for the click event, which is triggered when an element is clicked, is onClick, and the function that
is specified invokes the addToCart prop, which is mapped to the data store action creator of the same name.

The result is that each product is shown with an Add To Cart button. When the button is clicked, the
data store is updated, and the summary of the user’s selections reflects the additional item and the new total
price, as shown in Figure 5-6.

Adding the Cart Detail Component
To provide the user with a detailed view of their selections, I added a file called CartDetails.js
to the src/shop folder and used it to define the component shown in Listing 5-30.

Listing 5-30.  The Contents of the CartDetails.js File in the src/shop Folder

import React, { Component } from "react";
import { Link } from "react-router-dom";
import { CartDetailsRows } from "./CartDetailsRows";

export class CartDetails extends Component {

 getLinkClasses = () => `btn btn-secondary m-1
 ${this.props.cartItems === 0 ? "disabled": ""}`;

 render() {
 return <div className="m-3">
 <h2 className="text-center">Your Cart</h2>
 <table className="table table-bordered table-striped">
 <thead>
 <tr>
 <th>Quantity</th>
 <th>Product</th>
 <th className="text-right">Price</th>

Figure 5-6.  Adding a product to the cart

Chapter 5 ■ SportsStore: A Real Application

125

 <th className="text-right">Subtotal</th>
 <th/>
 </tr>
 </thead>
 <tbody>
 <CartDetailsRows cart={ this.props.cart}
 cartPrice={ this.props.cartPrice }
 updateQuantity={ this.props.updateCartQuantity }
 removeFromCart={ this.props.removeFromCart } />
 </tbody>
 </table>
 <div className="text-center">
 <Link className="btn btn-primary m-1" to="/shop">
 Continue Shopping
 </Link>
 <Link className={ this.getLinkClasses() } to="/shop/checkout">
 Checkout
 </Link>
 </div>
 </div>
 }
}

The CartDetails component presents a table to the user, along with Link components that return to
the product list or navigate to the /shop/checkout URL, which starts the checkout process.

The CartDetails component relies on a CartDetailsRows component to display details of the user’s
product selection. To create this component, I added a file called CartDetailsRows.js to the src/shop
folder and used it to define the component shown in Listing 5-31.

Listing 5-31.  The Contents of the CartDetailsRows.js File in the src/shop Folder

import React, { Component } from "react";

export class CartDetailsRows extends Component {

 handleChange = (product, event) => {
 this.props.updateQuantity(product, event.target.value);
 }

 render() {
 if (!this.props.cart || this.props.cart.length === 0) {
 return <tr>
 <td colSpan="5">Your cart is empty</td>
 </tr>
 } else {
 return <React.Fragment>
 { this.props.cart.map(item =>
 <tr key={ item.product.id }>
 <td>
 <input type="number" value={ item.quantity }
 onChange={ (ev) =>

Chapter 5 ■ SportsStore: A Real Application

126

 this.handleChange(item.product, ev) } />
 </td>
 <td>{ item.product.name }</td>
 <td>${ item.product.price.toFixed(2) }</td>
 <td>${ (item.quantity * item.product.price).toFixed(2) }</td>
 <td>
 <button className="btn btn-sm btn-danger"
 onClick={ () =>
 this.props.removeFromCart(item.product)}>
 Remove
 </button>
 </td>
 </tr>
)}
 <tr>
 <th colSpan="3" className="text-right">Total:</th>
 <th colSpan="2">${ this.props.cartPrice.toFixed(2) }</th>
 </tr>
 </React.Fragment>
 }
 }
}

The render method must return a single top-level element, which is inserted into the HTML in place of
the component’s element when the HTML document is produced, as explained in Chapter 9. It isn’t always
possible to return a single HTML element without disrupting the content layout, such as in this example,
where multiple table rows are required. For these situations, the React.Fragment element is used. This
element is discarded when the content is processed and the elements it contains are added to the HTML
document.

Adding the Cart URL to the Routing Configuration
In Listing 5-32, I have updated the routing configuration in the ShopConnector component to add support
for the /shop/cart URL.

Listing 5-32.  Adding a New URL in the ShopConnector.js File in the src/shop Folder

import React, { Component } from "react";
import { Switch, Route, Redirect }
 from "react-router-dom"
import { connect } from "react-redux";
import { loadData } from "../data/ActionCreators";
import { DataTypes } from "../data/Types";
import { Shop } from "./Shop";
import { addToCart, updateCartQuantity, removeFromCart, clearCart }
 from "../data/CartActionCreators";
import { CartDetails } from "./CartDetails";

const mapStateToProps = (dataStore) => ({
 ...dataStore
})

Chapter 5 ■ SportsStore: A Real Application

127

const mapDispatchToProps = {
 loadData,
 addToCart, updateCartQuantity, removeFromCart, clearCart
}

const filterProducts = (products = [], category) =>
 (!category || category === "All")
 ? products
 : products.filter(p => p.category.toLowerCase() === category.toLowerCase());

export const ShopConnector = connect(mapStateToProps, mapDispatchToProps)(
 class extends Component {
 render() {
 return <Switch>
 <Route path="/shop/products/:category?"
 render={ (routeProps) =>
 <Shop { ...this.props } { ...routeProps }
 products={ filterProducts(this.props.products,
 routeProps.match.params.category) } />} />
 <Route path="/shop/cart" render={ (routeProps) =>
 <CartDetails { ...this.props } { ...routeProps } />} />
 <Redirect to="/shop/products" />
 </Switch>
 }

 componentDidMount() {
 this.props.loadData(DataTypes.CATEGORIES);
 this.props.loadData(DataTypes.PRODUCTS);
 }
 }
)

The new Route handles the /shop/cart URL by displaying the CartDetails component, which receives
props from both the data store and the routing system. In Listing 5-33, I have updated the Shop component
to define a wrapper function around the addToCart action creator that also navigates to the new URL.

Listing 5-33.  Navigating to the Cart in the Shop.js File in the src/shop Folder

import React, { Component } from "react";
import { CategoryNavigation } from "./CategoryNavigation";
import { ProductList } from "./ProductList";
import { CartSummary } from "./CartSummary";

export class Shop extends Component {

 handleAddToCart = (...args) => {
 this.props.addToCart(...args);
 this.props.history.push("/shop/cart");
 }

Chapter 5 ■ SportsStore: A Real Application

128

 render() {
 return <div className="container-fluid">
 <div className="row">
 <div className="col bg-dark text-white">
 <div className="navbar-brand">SPORTS STORE</div>
 <CartSummary { ...this.props } />
 </div>
 </div>
 <div className="row">
 <div className="col-3 p-2">
 <CategoryNavigation baseUrl="/shop/products"
 categories={ this.props.categories } />
 </div>
 <div className="col-9 p-2">
 <ProductList products={ this.props.products }
 addToCart={ this.handleAddToCart } />
 </div>
 </div>
 </div>
 }
}

The result is that clicking the Add To Cart button for a product displays the updated cart, which provides
the user with the choice to return to the product list and make further selections, edit the contents of the
cart, or start the checkout process, as shown in Figure 5-7.

Chapter 5 ■ SportsStore: A Real Application

129

The Checkout button returns the user to the /store/products URL at the moment, but I add support
for checking out in Chapter 6.

Summary
In this chapter, I started development of a realistic React project. The first part of the chapter was spent
setting up the Redux data store, which introduces a range of terms—actions, action creators, reducers—that
you may not be familiar with but which will soon become second nature. I also set up the React Router
package so that the browser’s URL can be used to select the content and data that is presented to the user.
The foundation these features provides takes time to set up, but you will see that it starts to pay dividends as
I add further features to SportsStore. In the next chapter, I add further features to the SportsStore application.

Figure 5-7.  Integrating the cart into the SportsStore project

131© Adam Freeman 2019
A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_6

CHAPTER 6

SportsStore: REST and Checkout

In this chapter, I continue adding features to the SportsStore application I created in Chapter 5. I add support
for retrieving data from a web service, presenting larger amounts of data in pages and checking out and
placing orders.

Preparing for This Chapter
No preparation is required for this chapter, which uses the SportsStore project created in Chapter 5.
To start the React development tools and the RESTful web service, open a command prompt, navigate to the
sportsstore folder, and run the command shown in Listing 6-1.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/pro-react-16.

Listing 6-1.  Starting the Development Tools and Web Service

npm start

The initial build process will take a few seconds, after which a new browser window or tab will open and
display the SportsStore application, as shown in Figure 6-1.

https://github.com/Apress/pro-react-16

Chapter 6 ■ SportsStore: REST and Checkout

132

Consuming the RESTful Web Service
The basic structure of the SportsStore application is taking shape, and I have enough functionality in place
to remove the placeholder data and start using the RESTful web service. In Chapter 7, I use GraphQL, which
is a more flexible (and complex) alternative to REST web services, but regular web services are common,
and I am going to use a REST web service to provide the SportsStore application with its product data and to
submit orders at the end of the checkout process.

I describe REST in more detail in Chapter 23, but for this chapter, I need just one basic HTTP request to
get started. Open a new browser tab and request http://localhost:3500/api/products. The browser will
send an HTTP GET request to the web service that was created in Chapter 5 and started by the command
in Listing 6-1. The GET method combined with the URL tells the web service that a list of the products is
required and produces the following result:

...
[{"id":1,"name":"Kayak","category":"Watersports",
 "description":"A boat for one person","price":275},
 {"id":2,"name":"Lifejacket","category":"Watersports",
 "description":"Protective and fashionable","price":48.95},
 {"id":3,"name":"Soccer Ball","category":"Soccer",
 "description":"FIFA-approved size and weight","price":19.5},
 {"id":4,"name":"Corner Flags","category":"Soccer",
 "description":"Give your playing field a professional touch","price":34.95},
 {"id":5,"name":"Stadium","category":"Soccer",
 "description":"Flat-packed 35,000-seat stadium","price":79500},

Figure 6-1.  Running the SportsStore application

Chapter 6 ■ SportsStore: REST and Checkout

133

 {"id":6,"name":"Thinking Cap","category":"Chess",
 "description":"Improve brain efficiency by 75%","price":16},
 {"id":7,"name":"Unsteady Chair","category":"Chess",
 "description":"Secretly give your opponent a disadvantage","price":29.95},
 {"id":8,"name":"Human Chess Board","category":"Chess",
 "description":"A fun game for the family","price":75},
 {"id":9,"name":"Bling Bling King","category":"Chess",
 "description":"Gold-plated, diamond-studded King","price":1200}]
...

The web service responds to requests using the JSON data format, which is easy to deal with in a React
application since it is similar to the JavaScript object literal form described in Chapter 4. In the sections that
follow, I’ll create a foundation for working with the web service and use it to replace the static data that is
currently displayed by the SportsStore application.

Creating a Configuration File
Projects often require different URLs in production and development. To avoid hard-coding the URLs into
individual JavaScript files, I added a file called Urls.js to the src/data folder and used it to define the
configuration data shown in Listing 6-2.

Listing 6-2.  The Contents of the Urls.js File in the src/data Folder

import { DataTypes } from "./Types";

const protocol = "http";
const hostname = "localhost";
const port = 3500;

export const RestUrls = {
 [DataTypes.PRODUCTS]: `${protocol}://${hostname}:${port}/api/products`,
 [DataTypes.CATEGORIES]: `${protocol}://${hostname}:${port}/api/categories`
}

When I prepare the SportsStore application for deployment in Chapter 8, I will be able to configure the
URLs required to access the web service in one place. I have used the data types already defined for the data
store for consistency, which helps keeps references to the different types of data consistent and reduces the
risk of a typo.

Creating a Data Source
I added a file called RestDataSource.js to the src/data folder and added the code shown in
Listing 6-3. I want to consolidate the code that is responsible for sending HTTP requests to the web service
and processing the results, allowing me to keep it contained in one place in the project.

Chapter 6 ■ SportsStore: REST and Checkout

134

Listing 6-3.  The Contents of the RestDataSource.js File in the src/data Folder

import Axios from "axios";
import { RestUrls } from "./Urls";

export class RestDataSource {

 GetData = (dataType) =>
 this.SendRequest("get", RestUrls[dataType]);

 SendRequest = (method, url) => Axios.request({ method, url });
}

The RestDataSource class uses the Axios package to make HTTP requests to the web service. Axios
is described in Chapter 23 and is a popular package for handling HTTP because it provides a consistent
API and automatically processes responses to transform JSON into JavaScript objects. In Listing 6-3, the
GetData method uses Axios to send an HTTP request to the web service to get all of the available objects for
a specified data type. The result from the GetData method is a Promise that is resolved when the response is
received from the web service.

Extending the Data Store
HTTP requests sent by JavaScript code are performed asynchronously. This doesn’t fit well with the default
behavior of the Redux data store, which responds to changes only when an action is processed by a reducer.

Redux data stores can be extended to support asynchronous operations using a middleware function,
which inspects the actions that are sent to the data store and alters them before they are processed. In
Chapter 20, I create data store middleware that intercepts actions and delays them while it performs
asynchronous requests to get data.

For the SportsStore application, I am going to take a different approach and add support for actions
whose payload is a Promise, which I described briefly in Chapter 4. The middleware will wait until the
Promise is resolved and then pass on the action using the outcome of the Promise as the payload. I added a
file called AsyncMiddleware.js to the src/data folder and added the code shown in Listing 6-4.

Listing 6-4.  The Contents of the AsyncMiddleware.js File in the src/data Folder

const isPromise = (payload) =>
 (typeof(payload) === "object" || typeof(payload) === "function")
 && typeof(payload.then) === "function";

export const asyncActions = () => (next) => (action) => {
 if (isPromise(action.payload)) {
 action.payload.then(result => next({...action, payload: result}));
 } else {
 next(action)
 }
}

The code in Listing 6-4 contains a function that checks to see whether an action’s payload is a Promise,
which it does by looking for function or objects that have a then function. The asyncAction function will
be used as the data store middleware, and it calls then on the Promise to wait for it to be resolved, at which
point it uses the result to replace the payload and passes it on, using the next function, which continues the

Chapter 6 ■ SportsStore: REST and Checkout

135

normal path through the data store. Actions whose payloads are not a Promise are passed on immediately.
In Listing 6-5, I have added the middleware to the data store.

Listing 6-5.  Adding Middleware in the DataStore.js File in the src/data Folder

import { createStore, applyMiddleware } from "redux";
import { ShopReducer } from "./ShopReducer";
import { CartReducer } from "./CartReducer";
import { CommonReducer } from "./CommonReducer";
import { asyncActions } from "./AsyncMiddleware";

export const SportsStoreDataStore
 = createStore(CommonReducer(ShopReducer, CartReducer),
 applyMiddleware(asyncActions));

The applyMiddleware is used to wrap the middleware so that it receives the actions, and the result
is passed as an argument to the createStore function that creates the data store. The effect is that the
asyncActions function defined in Listing 6-4 will be able to inspect all of the actions sent to the data store
and seamlessly deal with those with a Promise payload.

Updating the Action Creator
In Listing 6-6, I removed the placeholder data from the store action creator and replaced it with a Promise
that sends a request using the data source.

Listing 6-6.  Using a Promise in the ActionCreators.js File in the src/data Folder

import { ActionTypes} from "./Types";
//import { data as phData} from "./placeholderData";
import { RestDataSource } from "./RestDataSource";

const dataSource = new RestDataSource();

export const loadData = (dataType) => ({
 type: ActionTypes.DATA_LOAD,
 payload: dataSource.GetData(dataType)
 .then(response => ({ dataType, data: response.data}))
});

When the action object created by the loadData function is received by the data store, the middleware
defined in Listing 6-5 will wait for the response to be received from the web service and then pass on
the action for normal processing, with the result that the SportsStore application displays data obtained
remotely, as shown in Figure 6-2.

Chapter 6 ■ SportsStore: REST and Checkout

136

Paginating Data
The SportsStore application is now receiving data from the web service, but most applications have to deal
with larger amounts of data, which must be presented to the user in pages. In Listing 6-7, I have used the
Faker.js package to generate a larger number of products to replace the data presented by the web service.

Listing 6-7.  Increasing the Amount of Data in the data.js File in the sportsstore Folder

var faker = require("faker");
var data = [];
var categories = ["Watersports", "Soccer", "Chess", "Running"];
faker.seed(100);
for (let i = 1; i <= 503; i++) {
 var category = faker.helpers.randomize(categories);
 data.push({
 id: i,
 name: faker.commerce.productName(),
 category: category,
 description: `${category}: ${faker.lorem.sentence(3)}`,
 price: Number(faker.commerce.price())
 })
}

Figure 6-2.  Using data from a web service

Chapter 6 ■ SportsStore: REST and Checkout

137

module.exports = function () {
 return {
 categories: categories,
 products: data,
 orders: []
 }
}

The Faker.js package is an excellent tool for easily generating data for development and testing,
providing contextual data through an API described at https://github.com/Marak/Faker.js. When you
save the data.js file, the change will be detected by the server code created in Chapter 5 and loaded into
the web service. Reload the SportsStore application in the browser window, and you will see all of the
new products shown in a single list, as shown in Figure 6-3. The user can still filter the products using the
category buttons, but there is still too much data presented in one go.

Figure 6-3.  Generating more data for testing pagination

https://github.com/Marak/Faker.js

Chapter 6 ■ SportsStore: REST and Checkout

138

■■ Tip T he code in Listing 6-7 creates 503 product objects. It is a good idea to use numbers of objects that
are not divisible by the size of the pages you intend to support so that you can be sure that your code deals with
a few stragglers on the last page.

Understanding the Web Service Pagination Support
Pagination requires support from the server so that it provides the client with the means to request a subset
of the available data and information about how much data is available. There is no standard approach to
providing pagination, and you should consult the documentation for the server or service you are using.

The json-server package that provides the RESTful web service for the SportsStore application
supports pagination through query strings. Open a new browser window and request the URL shown in
Listing 6-8 to see how pagination works.

Listing 6-8.  Requesting a Page of Data

http://localhost:3500/api/products?category_like=watersports&_page=2&_limit=3&_sort=name

The query string for this URL—the part that follows the ? character—asks the web service to return a
page of products from a specific category, using the fields described in Table 6-1.

Table 6-1.  The Query String Fields Required for Pagination

Name Description

category_like This field filters the results to include only those objects whose category property
matches the field value, which is Watersports in the example URL. If the category field
is omitted, then products from all categories will be included in the results.

_page This field selects the page number.

_limit This field selects the page size.

_sort This field specifies the property by which the objects will be sorted before being
paginated.

The URL in Listing 6-8 asks the web service to return the second page containing three products from
the set that have a category value of Watersports, sorted by the name property, producing the following
results:

...
[
 {"id":469,"name":"Awesome Fresh Pants","category":"Watersports",
 "description":"Watersports: Quia quam aut.","price":864},
 {"id":19,"name":"Awesome Frozen Car","category":"Watersports",
 "description":"Watersports: A rerum mollitia.","price":314},
 {"id":182,"name":"Awesome Granite Fish", "category":"Watersports",
 description":"Watersports: Hic omnis incidunt.","price":521}
]
...

Chapter 6 ■ SportsStore: REST and Checkout

139

The web service response contains headers that help the client make future requests. Use the browser
to request the URL shown in Listing 6-9.

Listing 6-9.  Making a Simpler Pagination Request

http://localhost:3500/api/products?_page=2&_limit=3

The simpler URL makes the result headers easier to understand. Use the browser’s F12 developer tools
to inspect the response, and you will see that it contains the following headers:

...
X-Total-Count: 503
Link: <http://localhost:3500/api/products?_page=1&_limit=3>; rel="first",
 <http://localhost:3500/api/products?_page=1&_limit=3>; rel="prev",
 <http://localhost:3500/api/products?_page=3&_limit=3>; rel="next",
 <http://localhost:3500/api/products?_page=168&_limit=3>; rel="last"
...

These are not the only headers in the response, but they have been added specifically to help the client
with future pagination requests. The X-Total-Count header provides the total number of objects that are
matched by the request URL, which is useful for determining the total number of pages. Since there is no
category field in the URL in Listing 6-9, the server has reported that 503 objects are available.

The Link header provides a set of URLs that can be used to query the first and last pages, and the pages
before and after the current pages, although clients are not required to use the Link header to formulate
subsequent requests.

Changing the HTTP Request and Action
In Listing 6-10, I changed the formulation of the URL for the request that obtains the product data to include
request parameters, which will be used to request pages and specify a category. The Axios package will use
the parameters to add query string to the request URL.

Listing 6-10.  Adding URL Parameters in the RestDataSource.js File in the src/data/rest Folder

import Axios from "axios";
import { RestUrls } from "./Urls";

export class RestDataSource {

 GetData = async(dataType, params) =>
 this.SendRequest("get", RestUrls[dataType], params);

 SendRequest = (method, url, params) => Axios.request({
 method, url, params
 });
}

In Listing 6-11, I have updated the action created by the loadData action creator so that it includes
parameters and adds additional information from the response to the data store.

Chapter 6 ■ SportsStore: REST and Checkout

140

Listing 6-11.  Changing the Action in the ActionCreators.js File in the src/data Folder

import { ActionTypes } from "./Types";
import { RestDataSource } from "./RestDataSource";

const dataSource = new RestDataSource();

export const loadData = (dataType, params) => (
 {
 type: ActionTypes.DATA_LOAD,
 payload: dataSource.GetData(dataType, params).then(response =>
 ({ dataType,
 data: response.data,
 total: Number(response.headers["x-total-count"]),
 params
 })
)
 })

When the Promise is resolved by the data store middleware, the action object that is sent to the reducer
will contain payload.total and payload.params properties. The total property will contain the value of the
X-Total-Count header, which I will use to create the pagination navigation controls. The params property
will contain the parameters used to make the request, which I will use to determine when the user has
made a change that requires an HTTP request for more data. In Listing 6-12, I have updated the reducer that
processes the DATA_LOAD action so that the new action properties are added to the data store.

Listing 6-12.  Adding Data Store Properties in the ShopReducer.js File in the src/data Folder

import { ActionTypes } from "./Types";

export const ShopReducer = (storeData, action) => {
 switch(action.type) {
 case ActionTypes.DATA_LOAD:
 return {
 ...storeData,
 [action.payload.dataType]: action.payload.data,
 [`${action.payload.dataType}_total`]: action.payload.total,
 [`${action.payload.dataType}_params`]: action.payload.params
 };
 default:
 return storeData || {};
 }
}

Creating the Data Loading Component
To create a component that takes care of obtaining the product data, I added a file called DataGetter.js to
the src/data folder and used it to define the component shown in Listing 6-13.

Chapter 6 ■ SportsStore: REST and Checkout

141

Listing 6-13.  The Contents of the DataGetter.js File in the src/data Folder

import React, { Component } from "react";
import { DataTypes } from "../data/Types";

export class DataGetter extends Component {

 render() {
 return <React.Fragment>{ this.props.children }</React.Fragment>
 }

 componentDidUpdate = () => this.getData();
 componentDidMount = () => this.getData();

 getData = () => {
 const dsData = this.props.products_params || {} ;
 const rtData = {
 _limit: this.props.pageSize || 5,
 _sort: this.props.sortKey || "name",
 _page: this.props.match.params.page || 1,
 category_like: (this.props.match.params.category || "") === "all"
 ? "" : this.props.match.params.category
 }

 if (Object.keys(rtData).find(key => dsData[key] !== rtData[key])) {
 this.props.loadData(DataTypes.PRODUCTS, rtData);
 }
 }
}

This component renders the content its parent provides between the start and end tags using the
children props. This is useful for defining components that provide services to the application but that
don’t present content to the user. In this case, I need a component that can receive details of the current
route and its parameters and also access the data store. The component’s componentDidMount and
componentDidUpdate methods, both part of the component lifecycle described in Chapter 13, call the
getData method, which gets the parameters from the URL and compares them with those in the data store
that were added after the last request. If there has been a change, a new action is dispatched that will load
the data the user requires.

In addition to the category and page number, which are taken from the URL, the action is created with
_sort and _limit parameters that order the results and set the data size. The values used for sorting and for
setting the page size will be obtained from the data store.

Updating the Store Connector Component
To introduce the pagination support into the application, I updated the ShopConnector component, which
is responsible for connecting the shop features in the application to the data store and the URL router. The
changes in Listing 6-14 add the DataGetter component and remove the category filter for product data
(since the products will already be filtered by the web service).

Chapter 6 ■ SportsStore: REST and Checkout

142

Listing 6-14.  Adding Pagination in the ShopConnector.js File in the src/shop Folder

import React, { Component } from "react";
import { Switch, Route, Redirect }
 from "react-router-dom"
import { connect } from "react-redux";
import { loadData } from "../data/ActionCreators";
import { DataTypes } from "../data/Types";
import { Shop } from "./Shop";
import { addToCart, updateCartQuantity, removeFromCart, clearCart }
 from "../data/CartActionCreators";
import { CartDetails } from "./CartDetails";
import { DataGetter } from "../data/DataGetter";

const mapStateToProps = (dataStore) => ({
 ...dataStore
})

const mapDispatchToProps = {
 loadData,
 addToCart, updateCartQuantity, removeFromCart, clearCart
}

// const filterProducts = (products = [], category) =>
// (!category || category === "All")
// ? products
// : products.filter(p =>
// p.category.toLowerCase() === category.toLowerCase());

export const ShopConnector = connect(mapStateToProps, mapDispatchToProps)(
 class extends Component {
 render() {
 return <Switch>
 <Redirect from="/shop/products/:category"
 to="/shop/products/:category/1" exact={ true } />
 <Route path={ "/shop/products/:category/:page" }
 render={ (routeProps) =>
 <DataGetter { ...this.props } { ...routeProps }>
 <Shop { ...this.props } { ...routeProps } />
 </DataGetter>
 } />
 <Route path="/shop/cart" render={ (routeProps) =>
 <CartDetails { ...this.props } { ...routeProps } />} />
 <Redirect to="/shop/products/all/1" />
 </Switch>
 }

 componentDidMount() {
 this.props.loadData(DataTypes.CATEGORIES);
 //this.props.loadData(DataTypes.PRODUCTS);
 }
 }
)

Chapter 6 ■ SportsStore: REST and Checkout

143

I have updated the routing configuration to support pagination. The first routing change is the addition
of a Redirect, which matches URLs that have a category but no page and redirects them to the URL for the
first page of the selected category. I also changed the existing Redirect so that it redirects any unmatched
URLs to /shop/products/all.

The result is a block of code that looks more complicated than it is. When the ShopConnector
component is asked to render its content, it uses a Route to match the URL and get category and
parameters, like this:

...
<Route path={ "/shop/products/:category/:page" }
...

Immediately before the Route is a Redirect that matches URLs that have one segment and redirects the
browser to a URL that will select the first page:

...
<Redirect from="/shop/products/:category"
 to="/shop/products/:category/1" exact={ true } />
...

This redirection ensures that there is always category and page values to work with. The other Redirect
matches any other URLs and redirects them to the URL for the first page of the products, unfiltered by
category.

...
<Redirect to="/shop/products/all/1" />
...

Updating the All Category Button
The routing components used in Listing 6-14 require a corresponding change to the All category button so
that it is highlighted when no category has been selected, as shown in Listing 6-15.

Listing 6-15.  Updating the All Button in the CategoryNavigation.js File in the src/shop Folder

import React, { Component } from "react";
import { ToggleLink } from "../ToggleLink";

export class CategoryNavigation extends Component {

 render() {
 return <React.Fragment>
 <ToggleLink to={ `${this.props.baseUrl}/all` } exact={ false }>
 All
 </ToggleLink>
 { this.props.categories && this.props.categories.map(cat =>
 <ToggleLink key={ cat }
 to={ `${this.props.baseUrl}/${cat.toLowerCase()}`}>
 { cat }
 </ToggleLink>
)}

Chapter 6 ■ SportsStore: REST and Checkout

144

 </React.Fragment>
 }
}

I have added /all to the URL matched by the ToggleLink component and set the exact prop to false so
that URLs such as /shop/products/all/1 will be matched. The effect is that the application requests individual
pages of data from the web service, which is also responsible for filtering based on category. Each time the user
clicks a category button, the DataGetter component requests new data, as shown in Figure 6-4.

Creating the Pagination Controls
The next step is to create a component that will allow the user to navigate to different pages and change
the page size. Listing 6-16 defines new data store action types that will be used to change the page size and
specify the property that will be used for sorting results.

Listing 6-16.  Adding New Action Types in the Types.js File in the src/data Folder

export const DataTypes = {
 PRODUCTS: "products",
 CATEGORIES: "categories"
}

export const ActionTypes = {
 DATA_LOAD: "data_load",
 DATA_SET_SORT_PROPERTY: "data_set_sort",
 DATA_SET_PAGESIZE: "data_set_pagesize",

Figure 6-4.  Requesting pages of data from the web service

Chapter 6 ■ SportsStore: REST and Checkout

145

 CART_ADD: "cart_add",
 CART_UPDATE: "cart_update",
 CART_REMOVE: "cart_delete",
 CART_CLEAR: "cart_clear"
}

In Listing 6-17, I added new action creators that create actions using the new types.

Listing 6-17.  Defining Creators in the ActionCreators.js File in the src/data Folder

import { ActionTypes } from "./Types";
import { RestDataSource } from "./RestDataSource";

const dataSource = new RestDataSource();

export const loadData = (dataType, params) => (
 {
 type: ActionTypes.DATA_LOAD,
 payload: dataSource.GetData(dataType, params).then(response =>
 ({ dataType,
 data: response.data,
 total: Number(response.headers["x-total-count"]),
 params
 })
)
 })

export const setPageSize = (newSize) =>
 ({ type: ActionTypes.DATA_SET_PAGESIZE, payload: newSize});

export const setSortProperty = (newProp) =>
 ({ type: ActionTypes.DATA_SET_SORT_PROPERTY, payload: newProp});

In Listing 6-18, I extended the reducer to support the new actions.

Listing 6-18.  Supporting New Actions in the ShopReducer.js File in the src/data Folder

import { ActionTypes } from "./Types";

export const ShopReducer = (storeData, action) => {
 switch(action.type) {
 case ActionTypes.DATA_LOAD:
 return {
 ...storeData,
 [action.payload.dataType]: action.payload.data,
 [`${action.payload.dataType}_total`]: action.payload.total,
 [`${action.payload.dataType}_params`]: action.payload.params
 };

Chapter 6 ■ SportsStore: REST and Checkout

146

 case ActionTypes.DATA_SET_PAGESIZE:
 return { ...storeData, pageSize: action.payload }
 case ActionTypes.DATA_SET_SORT_PROPERTY:
 return { ...storeData, sortKey: action.payload }
 default:
 return storeData || {};
 }
}

To produce the HTML elements that will allow the user to use the pagination features, I added a file
called PaginationControls.js to the src folder and used it to define the component shown in Listing 6-19.

Listing 6-19.  The Contents of the PaginationControls.js File in the src Folder

import React, { Component } from "react";
import { PaginationButtons } from "./PaginationButtons";

export class PaginationControls extends Component {

 constructor(props) {
 super(props);
 this.pageSizes = this.props.sizes || [5, 10, 25, 100];
 this.sortKeys = this.props.keys || ["Name", "Price"];
 }

 handlePageSizeChange = (ev) => {
 this.props.setPageSize(ev.target.value);
 }

 handleSortPropertyChange = (ev) => {
 this.props.setSortProperty(ev.target.value);
 }

 render() {
 return <div className="m-2">
 <div className="text-center m-1">
 <PaginationButtons currentPage={this.props.currentPage}
 pageCount={this.props.pageCount}
 navigate={ this.props.navigateToPage }/>
 </div>
 <div className="form-inline justify-content-center">
 <select className="form-control"
 onChange={ this.handlePageSizeChange }
 value={ this.props.pageSize|| this.pageSizes[0] }>
 { this.pageSizes.map(s =>
 <option value={s} key={s}>{s} per page</option>
)}
 </select>
 <select className="form-control"
 onChange={ this.handleSortPropertyChange }
 value={ this.props.sortKey || this.sortKeys[0] }>
 { this.sortKeys.map(k =>

Chapter 6 ■ SportsStore: REST and Checkout

147

 <option value={k.toLowerCase()} key={k}>
 Sort By { k }
 </option>
)}
 </select>
 </div>
 </div>
 }
}

The PaginationControls component uses select elements to allow the user to change the page size
and the property used to sort the results. The option elements that provide the individual values that can be
selected can be configured using props, which will allow me to reuse this component for the administration
features in Chapter 7. If no props are supplied, then default values suitable for paginating products are used.

The onChange prop is applied to the select elements to respond to user changes, which are handled by
methods that receive the event triggered by the change and invoke function props that are received from the
parent component.

The process of generating the buttons that will allow movement between pages has been delegated to a
component named PaginationButtons. To create this component, I added a file called PaginationButtons.js
to the src folder and added the code shown in Listing 6-20.

Listing 6-20.  The Contents of the PaginationButtons.js File in the src Folder

import React, { Component } from "react";

export class PaginationButtons extends Component {

 getPageNumbers = () => {
 if (this.props.pageCount < 4) {
 return [...Array(this.props.pageCount + 1).keys()].slice(1);
 } else if (this.props.currentPage <= 4) {
 return [1, 2, 3, 4, 5];
 } else if (this.props.currentPage > this.props.pageCount - 4) {
 return [...Array(5).keys()].reverse()
 .map(v => this.props.pageCount - v);
 } else {
 return [this.props.currentPage -1, this.props.currentPage,
 this.props.currentPage + 1];
 }
 }

 render() {
 const current = this.props.currentPage;
 const pageCount = this.props.pageCount;
 const navigate = this.props.navigate;
 return <React.Fragment>
 <button onClick={ () => navigate(current - 1) }
 disabled={ current === 1 } className="btn btn-secondary mx-1">
 Previous
 </button>

Chapter 6 ■ SportsStore: REST and Checkout

148

 { current > 4 &&
 <React.Fragment>
 <button className="btn btn-secondary mx-1"
 onClick={ () => navigate(1)}>1</button>
 ...
 </React.Fragment>
 }
 { this.getPageNumbers().map(num =>
 <button className={ `btn mx-1 ${num === current
 ? "btn-primary": "btn-secondary"}`}
 onClick={ () => navigate(num)} key={ num }>
 { num }
 </button>)}
 { current <= (pageCount - 4) &&
 <React.Fragment>
 ...
 <button className="btn btn-secondary mx-1"
 onClick={ () => navigate(pageCount)}>
 { pageCount }
 </button>
 </React.Fragment>
 }
 <button onClick={ () => navigate(current + 1) }
 disabled={ current === pageCount }
 className="btn btn-secondary mx-1">
 Next
 </button>
 </React.Fragment>
 }
}

Creating the pagination buttons is a complex process, and it is easy to get bogged down in the detail.
The approach I have taken in Listing 6-20 aims to strike a balance between simplicity and providing the user
with enough context to navigate through large amounts of data.

To connect the pagination controls to the product data in the store, I added a file called
ProductPageConnector.js to the src/shop folder and defined the component shown in Listing 6-21.

Listing 6-21.  The Contents of the ProductPageConnector.js File in the src/shop Folder

import { connect } from "react-redux";
import { withRouter } from "react-router-dom";
import { setPageSize, setSortProperty } from "../data/ActionCreators";

const mapStateToProps = dataStore => dataStore;
const mapDispatchToProps = { setPageSize, setSortProperty };

const mergeProps = (dataStore, actionCreators, router) => ({
 ...dataStore, ...router, ...actionCreators,
 currentPage: Number(router.match.params.page),

Chapter 6 ■ SportsStore: REST and Checkout

149

 pageCount: Math.ceil((dataStore.products_total
 | dataStore.pageSize || 5)/(dataStore.pageSize || 5)),
 navigateToPage: (page) => router.history
 .push(`/shop/products/${router.match.params.category}/${page}`),
})

export const ProductPageConnector = (PageComponent) =>
 withRouter(connect(mapStateToProps, mapDispatchToProps,
 mergeProps)(PageComponent))

As I explained earlier, the complexity in a React application often coalesces where different features
are combined, which is the connector components in the SportsStore application. The code in Listing 6-21
creates a higher-order component (known as a HOC and described in Chapter 14), which is a function that
provides features to another component through its props. The HOC is named ProductPageConnector, and
it combines data store properties, action creators, and route parameters to provide the pagination control
components with access to the features they require. The connect function is the same one I used in
Chapter 5 to connect a component to the data store, and it has been used in conjunction with the withRouter
function, which is its counterpart from the React Router package and which provides a component with
the route details from the closest Route. In Listing 6-22, I have applied the higher-order component to the
PaginationControls component and added the result to the content presented to the user.

Listing 6-22.  Adding Pagination Controls in the Shop.js File in the src/shop Folder

import React, { Component } from "react";
import { CategoryNavigation } from "./CategoryNavigation";
import { ProductList } from "./ProductList";
import { CartSummary } from "./CartSummary";
import { ProductPageConnector } from "./ProductPageConnector";
import { PaginationControls } from "../PaginationControls";

const ProductPages = ProductPageConnector(PaginationControls);

export class Shop extends Component {

 handleAddToCart = (...args) => {
 this.props.addToCart(...args);
 this.props.history.push("/shop/cart");
 }

 render() {
 return <div className="container-fluid">
 <div className="row">
 <div className="col bg-dark text-white">
 <div className="navbar-brand">SPORTS STORE</div>
 <CartSummary { ...this.props } />
 </div>
 </div>
 <div className="row">
 <div className="col-3 p-2">
 <CategoryNavigation baseUrl="/shop/products"
 categories={ this.props.categories } />
 </div>

Chapter 6 ■ SportsStore: REST and Checkout

150

 <div className="col-9 p-2">
 <ProductPages />
 <ProductList products={ this.props.products }
 addToCart={ this.handleAddToCart } />
 </div>
 </div>
 </div>
 }
}

The result is a series of buttons allowing the user to move between pages, alongside select elements
that change the sort property and the page size, as shown in Figure 6-5.

Adding the Checkout Process
The core features of the application are in place, allowing the user to filter and navigate through the product
data and add items to a basket that are displayed in summary and detailed views. Once the user completes
the checkout process, a new order must be sent to the web service, which will complete the shopping, reset
the user’s cart, and display a summary message. In the sections that follow, I add support for checking out
and placing an order.

Figure 6-5.  Adding support for paginating products

Chapter 6 ■ SportsStore: REST and Checkout

151

Extending the REST Data Source and the Data Store
As I explain in Chapter 23, when a RESTful web service receives an HTTP request, it uses a combination
of the request method (also known as the verb) and the URL to determine what operation should be
performed. To send an order to the web service, I am going to send a POST request to the web service’s
/orders URL. To keep the new features consistent with the existing application, I started by adding a
constant that identifies the data type for orders and a new action for storing the order, as shown in Listing 6-23.

Listing 6-23.  Adding Types in the Types.js File in the src/data Folder

export const DataTypes = {
 PRODUCTS: "products",
 CATEGORIES: "categories",
 ORDERS: "orders"
}

export const ActionTypes = {
 DATA_LOAD: "data_load",
 DATA_STORE: "data_store",
 DATA_SET_SORT_PROPERTY: "data_set_sort",
 DATA_SET_PAGESIZE: "data_set_pagesize",
 CART_ADD: "cart_add",
 CART_UPDATE: "cart_update",
 CART_REMOVE: "cart_delete",
 CART_CLEAR: "cart_clear"
}

The new data type allows me to define the URL for placing the order, as shown in Listing 6-24. I also use
it in Chapter 7 when I add support for administration features.

Listing 6-24.  Adding a New URL in the Urls.js File in the src/data Folder

import { DataTypes } from "./Types";

const protocol = "http";
const hostname = "localhost";
const port = 3500;

export const RestUrls = {
 [DataTypes.PRODUCTS]: `${protocol}://${hostname}:${port}/api/products`,
 [DataTypes.CATEGORIES]: `${protocol}://${hostname}:${port}/api/categories`,
 [DataTypes.ORDERS]: `${protocol}://${hostname}:${port}/api/orders`
}

In Listing 6-25, I added a method to the REST data source that receives the order object and sends it to
the web service.

Chapter 6 ■ SportsStore: REST and Checkout

152

Listing 6-25.  Adding a Method in the RestDataSource.js File in the src/data Folder

import Axios from "axios";
import { RestUrls } from "./Urls";

export class RestDataSource {

 constructor(err_handler) {
 this.error_handler = err_handler || (() => {});
 }

 GetData = (dataType, params) =>
 this.SendRequest("get", RestUrls[dataType], params);

 StoreData = (dataType, data) =>
 this.SendRequest("post", RestUrls[dataType], {}, data);

 SendRequest = (method, url, params, data) =>
 Axios.request({ method, url, params, data });
}

The Axios package will receive a data object and take care of formatting it so that it can be sent to the
web service. In Listing 6-26, I added a new action creator that uses a Promise to send an order to the web
service. The web service will return the stored data, which will include a unique identifier.

Listing 6-26.  Adding a Creator to the ActionCreators.js File in the src/data Folder

import { ActionTypes, DataTypes } from "./Types";
import { RestDataSource } from "./RestDataSource";

const dataSource = new RestDataSource();

export const loadData = (dataType, params) => (
 {
 type: ActionTypes.DATA_LOAD,
 payload: dataSource.GetData(dataType, params).then(response =>
 ({ dataType,
 data: response.data,
 total: Number(response.headers["x-total-count"]),
 params
 })
)
 })

export const setPageSize = (newSize) => {
 return ({ type: ActionTypes.DATA_SET_PAGESIZE, payload: newSize});
}

export const setSortProperty = (newProp) =>
 ({ type: ActionTypes.DATA_SET_SORT_PROPERTY, payload: newProp});

Chapter 6 ■ SportsStore: REST and Checkout

153

export const placeOrder = (order) => ({
 type: ActionTypes.DATA_STORE,
 payload: dataSource.StoreData(DataTypes.ORDERS, order).then(response => ({
 dataType: DataTypes.ORDERS, data: response.data
 }))
 })

To process the result and add the order to the data store, I added the reducer shown in Listing 6-27.

Listing 6-27.  Storing an Order in the ShopReducer.js File in the src/data Folder

import { ActionTypes, DataTypes } from "./Types";

export const ShopReducer = (storeData, action) => {
 switch(action.type) {
 case ActionTypes.DATA_LOAD:
 return {
 ...storeData,
 [action.payload.dataType]: action.payload.data,
 [`${action.payload.dataType}_total`]: action.payload.total,
 [`${action.payload.dataType}_params`]: action.payload.params
 };
 case ActionTypes.DATA_SET_PAGESIZE:
 return { ...storeData, pageSize: action.payload }
 case ActionTypes.DATA_SET_SORT_PROPERTY:
 return { ...storeData, sortKey: action.payload }
 case ActionTypes.DATA_STORE:
 if (action.payload.dataType === DataTypes.ORDERS) {
 return { ...storeData, order: action.payload.data }
 }
 break;
 default:
 return storeData || {};
 }
}

Creating the Checkout Form
To complete a SportsStore order, the user must complete a form with their personal details, which means
that I must present the user with a form. React supports two ways to use form elements: controlled and
uncontrolled. For a controlled element, React manages the element’s content and responds to its change
events. The select elements used for configuring pagination fall into this category. For the checkout form,
I am going to use uncontrolled elements, which are not closely managed by React and rely more on the
browser’s functionality. The key to using uncontrolled for elements is a feature called refs, described in
Chapter 16, which allow a React component to keep track of the HTML elements that are produced by its
render method after they have been displayed to the user. For the checkout form, the advantage of using refs
is that I can validate the form using the HTML5 validation API, which I describe in Chapter 15. The validation
API requires direct access to the form elements, which wouldn’t be possible without the use of refs.

Chapter 6 ■ SportsStore: REST and Checkout

154

■■ Note T here are packages available for creating and validating forms in React applications, but they can
be awkward to use and apply restrictions on the appearance of the form or the structure of the data that it
produces. It is easy to create custom forms and validation using the features described in Chapters 15 and 16,
which is the approach I have taken for the SportsStore chapter.

Creating the Validated Form
I am going to create a reusable form with validation that will generate the fields required programmatically.
I created the src/forms folder and added to it a file called ValidatedForm.js, which I used to define the
component shown in Listing 6-28.

Listing 6-28.  The Contents of the ValidatedForm.js File in the src/forms Folder

import React, { Component } from "react";
import { ValidationError } from "./ValidationError";
import { GetMessages } from "./ValidationMessages";

export class ValidatedForm extends Component {

 constructor(props) {
 super(props);
 this.state = {
 validationErrors: {}
 }
 this.formElements = {};
 }

 handleSubmit = () => {
 this.setState(state => {
 const newState = { ...state, validationErrors: {} }
 Object.values(this.formElements).forEach(elem => {
 if (!elem.checkValidity()) {
 newState.validationErrors[elem.name] = GetMessages(elem);
 }
 })
 return newState;
 }, () => {
 if (Object.keys(this.state.validationErrors).length === 0) {
 const data = Object.assign(...Object.entries(this.formElements)
 .map(e => ({[e[0]]: e[1].value})))
 this.props.submitCallback(data);
 }
 });
 }

Chapter 6 ■ SportsStore: REST and Checkout

155

 registerRef = (element) => {
 if (element !== null) {
 this.formElements[element.name] = element;
 }
 }

 renderElement = (modelItem) => {
 const name = modelItem.name || modelItem.label.toLowerCase();
 return <div className="form-group" key={ modelItem.label }>
 <label>{ modelItem.label }</label>
 <ValidationError errors={ this.state.validationErrors[name] } />
 <input className="form-control" name={ name } ref={ this.registerRef }
 { ...this.props.defaultAttrs } { ...modelItem.attrs } />
 </div>
 }

 render() {
 return <React.Fragment>
 { this.props.formModel.map(m => this.renderElement(m))}
 <div className="text-center">
 <button className="btn btn-secondary m-1"
 onClick={ this.props.cancelCallback }>
 { this.props.cancelText || "Cancel" }
 </button>
 <button className="btn btn-primary m-1"
 onClick={ this.handleSubmit }>
 { this.props.submitText || "Submit"}
 </button>
 </div>
 </React.Fragment>
 }
}

The ValidatedForm component receives a data model and uses it to create a form that is validated
using the HTML5 API. Each form element is rendered with a label and a ValidationError component
that displays validation messages to the user. The form is displayed with buttons that cancel or submit the
form using callback functions provided as props. The submit callback will not be invoked unless all of the
elements meet their validation constraints.

When the submit callback is invoked, it will receive an object whose properties are the name attribute
values for the form elements and whose values are the data entered into each field by the user.

Defining the Form
To create the component that is used to display error messages, I added a file called ValidationError.js to
the src/forms folder and added the code shown in Listing 6-29.

Chapter 6 ■ SportsStore: REST and Checkout

156

Listing 6-29.  The Contents of the ValidationError.js File in the src/forms Folder

import React, { Component } from "react";
export class ValidationError extends Component {

 render() {
 if (this.props.errors) {
 return this.props.errors.map(err =>
 <h6 className="text-danger" key={err}>
 { err }
 </h6>
)
 }
 return null;
 }
}

The validation API presents validation errors in an awkward way, as explained in Chapter 16. To create
messages that can be shown to the user, I added a file called ValidationMessages.js in the src/forms
folder and defined the function shown in Listing 6-30.

Listing 6-30.  The Contents of the ValidationMessages.js File in the src/forms Folder

export const GetMessages = (elem) => {
 const messages = [];
 if (elem.validity.valueMissing) {
 messages.push("Value required");
 }
 if (elem.validity.typeMismatch) {
 messages.push(`Invalid ${elem.type}`);
 }
 return messages;
}

To use the validated form for checking out, I added a file called Checkout.js to the src/shop folder and
defined the component shown in Listing 6-31.

Listing 6-31.  The Contents of the Checkout.js File in the src/shop Folder

import React, { Component } from "react";
import { ValidatedForm } from "../forms/ValidatedForm";

export class Checkout extends Component {

 constructor(props) {
 super(props);
 this.defaultAttrs = { type: "text", required: true };
 this.formModel = [
 { label: "Name"},
 { label: "Email", attrs: { type: "email" }},
 { label: "Address" },
 { label: "City"},

Chapter 6 ■ SportsStore: REST and Checkout

157

 { label: "Zip/Postal Code", name: "zip"},
 { label: "Country"}]
 }

 handleSubmit = (formData) => {
 const order = { ...formData, products: this.props.cart.map(item =>
 ({ quantity: item.quantity, product_id: item.product.id})) }
 this.props.placeOrder(order);
 this.props.clearCart();
 this.props.history.push("/shop/thanks");
 }

 handleCancel = () => {
 this.props.history.push("/shop/cart");
 }

 render() {
 return <div className="container-fluid">
 <div className="row">
 <div className="col bg-dark text-white">
 <div className="navbar-brand">SPORTS STORE</div>
 </div>
 </div>
 <div className="row">
 <div className="col m-2">
 <ValidatedForm formModel={ this.formModel }
 defaultAttrs={ this.defaultAttrs }
 submitCallback={ this.handleSubmit }
 cancelCallback={ this.handleCancel }
 submitText="Place Order"
 cancelText="Return to Cart" />
 </div>
 </div>
 </div>
 }
}

The Checkout component uses a ValidatedForm to present the user with fields for their name, email,
and address. Each form element will be created with the required attribute, and the type attribute of the
input element for the email address is set to email. These attributes are used by the HTML5 constraint
validation API and will prevent the user from placing an order unless they provide a value for all fields and
enter a valid email address into the email field (although it should be noted that only the format of the email
address is validated).

The handleSubmit method will be invoked when the user submits valid form data. This method receives
the form data and combines it with details of the user’s cart before calling the placeOrder and clearCart
action creators and then navigating to the /shop/thanks URL.

Chapter 6 ■ SportsStore: REST and Checkout

158

Creating the Thank You Component
To present the user with confirmation of their order and to complete the checkout process, I added a file
called Thanks.js to the src/shop folder and defined the component shown in Listing 6-32.

Listing 6-32.  The Contents of the Thanks.js File in the src/shop Folder

import React, { Component } from "react";
import { Link } from "react-router-dom";

export class Thanks extends Component {

 render() {
 return <div>
 <div className="col bg-dark text-white">
 <div className="navbar-brand">SPORTS STORE</div>
 </div>
 <div className="m-2 text-center">
 <h2>Thanks!</h2>
 <p>Thanks for placing your order.</p>
 <p>Your order is #{ this.props.order ? this.props.order.id : 0 }</p>
 <p>We'll ship your goods as soon as possible.</p>
 <Link to="/shop" className="btn btn-primary">
 Return to Store
 </Link>
 </div>
 </div>
 }
}

The Thanks component displays a simple message and includes the value of the id property from the
order object, which it obtains through its order prop. This component will be connected to the data store,
and the order object it contains will have an id value that is assigned by the RESTful web service.

Applying the New Components
To add the new components to the application, I altered the routing configuration in the ShopConnector
component, as shown in Listing 6-33.

Listing 6-33.  Adding New Routes in the ShopConnector.js File in the src/shop Folder

import React, { Component } from "react";
import { Switch, Route, Redirect }
 from "react-router-dom"
import { connect } from "react-redux";
import { loadData, placeOrder } from "../data/ActionCreators";
import { DataTypes } from "../data/Types";
import { Shop } from "./Shop";
import { addToCart, updateCartQuantity, removeFromCart, clearCart }
 from "../data/CartActionCreators";
import { CartDetails } from "./CartDetails";

Chapter 6 ■ SportsStore: REST and Checkout

159

import { DataGetter } from "../data/DataGetter";
import { Checkout } from "./Checkout";
import { Thanks } from "./Thanks";

const mapStateToProps = (dataStore) => ({
 ...dataStore
})

const mapDispatchToProps = {
 loadData,
 addToCart, updateCartQuantity, removeFromCart, clearCart,
 placeOrder
}

export const ShopConnector = connect(mapStateToProps, mapDispatchToProps)(
 class extends Component {
 render() {
 return <Switch>
 <Redirect from="/shop/products/:category"
 to="/shop/products/:category/1" exact={ true } />
 <Route path={ "/shop/products/:category/:page" }
 render={ (routeProps) =>
 <DataGetter { ...this.props } { ...routeProps }>
 <Shop { ...this.props } { ...routeProps } />
 </DataGetter>
 } />
 <Route path="/shop/cart" render={ (routeProps) =>
 <CartDetails { ...this.props } { ...routeProps } />} />
 <Route path="/shop/checkout" render={ routeProps =>
 <Checkout { ...this.props } { ...routeProps } /> } />
 <Route path="/shop/thanks" render={ routeProps =>
 <Thanks { ...this.props } { ...routeProps } /> } />
 <Redirect to="/shop/products/all/1" />
 </Switch>
 }

 componentDidMount() {
 this.props.loadData(DataTypes.CATEGORIES);
 }
 }
)

The result allows the user to check out. To test the new features, navigate to http://localhost:3000,
add one or more products to the cart, and click the Checkout button, which will present the form shown in
Figure 6-6. If you click the Place Order button before filling out the form, you will see validation warnings, as
shown in the figure.

Chapter 6 ■ SportsStore: REST and Checkout

160

■■ Note  Validation is performed only when the user clicks the button. See Chapters 15 and 16 for examples of
validating the contents of a form element after each keystroke.

If you have filled all the fields and entered a valid email address, your order will be placed when you
click the Place Order button, displaying the summary shown in Figure 6-7.

Figure 6-6.  Validation errors when checking out

Chapter 6 ■ SportsStore: REST and Checkout

161

Open a new browser tab and request http://localhost:3500/api/orders, and the response will show
the JSON representation of the order you place, like this:

...
[{
 "name":"Bob Smith","email":"bob@example.com",
 "address":"123 Main Street","city":"New York","zip":"NY 10036",
 "country":"USA","products":[{"quantity":1,"product_id":318}],"id":1
 }]
...

Each time you place an order, it will be assigned an id by the RESTful web service, which will then be
displayed in the order summary.

■■ Tip T he data used by the web service is regenerated each time that the development tools are started with
the npm start command, which makes it easy to reset the application. In Chapter 8, I switch the SportsStore
application to a persistent database as part of the preparations for deployment.

Figure 6-7.  Placing an order

Chapter 6 ■ SportsStore: REST and Checkout

162

Simplifying the Shop Connector Component
All of the features required by the shopping part of the SportsStore application are complete, but I am going
to make one more change in this chapter.

A React application is driven by its props, which provide components with the data and functions
they require. When features like URL routing and a data store are used, the point where their capabilities
are translated into props can become complex. For the SportsStore application, that is the ShopConnector
component, which incorporates data store properties, action creators, and URL routing for the shopping
part of the application. The advantage of consolidating these features is that the other shopping components
are simpler to write, maintain, and test. The disadvantage is that consolidation results in code that is hard to
read and where errors are likely to arise.

As I added features to the application, I added a new Route that selected a component and provided it
with access to props from the data store and the URL router. I could have been more specific about the props
each component received, which is the practice I have followed in many of the examples later in the book.
For the SportsStore project, however, I gave every component access to all of the props, which is an approach
that makes development easier and which allows the routing code to be tidied up once all of the features
have been added. In Listing 6-34, I have simplified the connector for the shopping features.

Listing 6-34.  Simplifying the Code in the ShopConnector.js File in the src/connectors Folder

import React, { Component } from "react";
import { Switch, Route, Redirect }
 from "react-router-dom"
import { connect } from "react-redux";
import * as ShopActions from "../data/ActionCreators";
import { DataTypes } from "../data/Types";
import { Shop } from "../shop/Shop";
import * as CartActions from "../data/CartActionCreators";
import { CartDetails } from "../shop/CartDetails";
import { DataGetter } from "../data/DataGetter";
import { Checkout } from "../shop/Checkout";
import { Thanks } from "../shop/Thanks";

const mapDispatchToProps = { ...ShopActions, ...CartActions};

export const ShopConnector = connect(ds => ds, mapDispatchToProps)(
 class extends Component {

 selectComponent = (routeProps) => {
 const wrap = (Component, Content) =>
 <Component { ...this.props} { ...routeProps}>
 { Content && wrap(Content)}
 </Component>
 switch (routeProps.match.params.section) {
 case "products":
 return wrap(DataGetter, Shop);
 case "cart":
 return wrap(CartDetails);
 case "checkout":
 return wrap(Checkout);

Chapter 6 ■ SportsStore: REST and Checkout

163

 case "thanks":
 return wrap(Thanks);
 default:
 return <Redirect to="/shop/products/all/1" />
 }
 }

 render() {
 return <Switch>
 <Redirect from="/shop/products/:category"
 to="/shop/products/:category/1" exact={ true } />
 <Route path={ "/shop/:section?/:category?/:page?"}
 render = { routeProps => this.selectComponent(routeProps) } />
 </Switch>
 }

 componentDidMount = () => this.props.loadData(DataTypes.CATEGORIES);
 }
)

In Chapter 9, I explain how JSX is translated into JavaScript, but it is easy to forget that all components
can be restructured to rely less on the declarative nature of HTML elements and more on pure JavaScript.
In Listing 6-34, I have collapsed the multiple Route components into one whose render function selects
the component that should be displayed to the user and provides it with props from the data store and URL
router. I have also changed the import statements for the action creators and used the spread operator when
mapping them to function props, which I didn’t do earlier because I wanted to show how I connected each
data store feature to the rest of the application.

Summary
In this chapter, I continued the development of the SportsStore folder, adding support for working with the
RESTful web server, scaling up the amount of data that the application can deal with, and adding support
for checking out and placing orders. In the next chapter, I add the administration features to the SportsStore
application.

165© Adam Freeman 2019
A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_7

CHAPTER 7

SportsStore: Administration

In this chapter, I add the administration features to the SportsStore application, providing the tools required
to manage orders and products. I use GraphQL in this chapter rather than expanding the RESTful web
service I used for the customer-facing part of SportsStore. GraphQL is an alternative to conventional web
services that puts the client in control of the data it receives, although it requires more initial setup and can
be more complex to use.

Preparing for This Chapter
This chapter builds on the SportsStore project created in Chapter 5 and modified in Chapter 6. To prepare
for this chapter, I am going to generate a number of fake orders so there is data to work with, as shown in
Listing 7-1.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/pro-react-16.

Listing 7-1.  Altering the Application Data in the data.js File in the sportsstore Folder

var faker = require("faker");
faker.seed(100);
var categories = ["Watersports", "Soccer", "Chess"];
var products = [];
for (let i = 1; i <= 503; i++) {
 var category = faker.helpers.randomize(categories);
 products.push({
 id: i,
 name: faker.commerce.productName(),
 category: category,
 description: `${category}: ${faker.lorem.sentence(3)}`,
 price: Number(faker.commerce.price())
 })
}
var orders = [];
for (let i = 1; i <= 103; i++) {
 var fname = faker.name.firstName(); var sname = faker.name.lastName();

https://github.com/Apress/pro-react-16

Chapter 7 ■ SportsStore: Administration

166

 var order = {
 id: i, name: `${fname} ${sname}`,
 email: faker.internet.email(fname, sname),
 address: faker.address.streetAddress(), city: faker.address.city(),
 zip: faker.address.zipCode(), country: faker.address.country(),
 shipped: faker.random.boolean(), products:[]
 }
 var productCount = faker.random.number({min: 1, max: 5});
 var product_ids = [];
 while (product_ids.length < productCount) {
 var candidateId = faker.random.number({ min: 1, max: products.length});
 if (product_ids.indexOf(candidateId) === -1) {
 product_ids.push(candidateId);
 }
 }
 for (let j = 0; j < productCount; j++) {
 order.products.push({
 quantity: faker.random.number({min: 1, max: 10}),
 product_id: product_ids[j]
 })
 }
 orders.push(order);
}

module.exports = () => ({ categories, products, orders })

Running the Example Application
Open a new command prompt, navigate to the sportsstore folder, and run the command shown in Listing 7-2.

Listing 7-2.  Running the Example Application

npm start

The React development tools and the RESTful web service will start. Once the development tools have
compiled the SportsStore application, a new browser window will open and display the content shown in
Figure 7-1.

Chapter 7 ■ SportsStore: Administration

167

Creating a GraphQL Service
The administration features that I add to the SportsStore application in this chapter will use GraphQL
instead of a RESTful web service. Few real applications would need to mix REST and GraphQL for the same
data, but I want to demonstrate both approaches to remote services.

GraphQL isn’t specific to React development, but it is so closely associated with React that I included
an introduction to GraphQL in Chapter 24 and demonstrated the different ways a GraphQL service can be
consumed by a React application in Chapter 25.

■■ Tip I am going to create a custom GraphQL server for the SportsStore application so that I can share data
with the RESTful web service provided by the excellent json-server package. As I explain in Chapter 24, there
are open source and commercial GraphQL servers available.

Defining the GraphQL Schema
GraphQL requires that all of its operations are defined in a schema. To define the schema for the queries the
service will support, I created a file called serverQueriesSchema.graphql in the sportsstore folder with the
content shown in Listing 7-3.

Listing 7-3.  The Contents of serverQueriesSchema.graphql in the sportsstore Folder

type product { id: ID!, name: String!, description: String! category: String!
 price: Float! }

type productPage { totalSize: Int!, products(sort: String, page: Int, pageSize: Int): [product]}

type orderPage { totalSize: Int, orders(sort: String, page: Int, pageSize: Int): [order]}

Figure 7-1.  Running the example application

Chapter 7 ■ SportsStore: Administration

168

type order {
 id: ID!, name: String!, email: String!, address: String!, city: String!,
 zip: String!, country: String!, shipped: Boolean, products: [productSelection]
}

type productSelection { quantity: Int!, product: product }

type Query {
 product(id: ID!): product
 products(category: String, sort: String, page: Int, pageSize: Int): productPage
 categories: [String]
 orders(onlyUnshipped: Boolean): orderPage
}

The GraphQL specification includes a schema language used to define the features that a service
provides. The schema in Listing 7-3 defines queries for products, categories, and orders. The product and
order queries support pagination and return results that include a totalSize property that reports the
number of items available so the client can present the user with pagination controls. The products can be
filtered by category, and the orders can be filtered so that only unshipped orders are shown.

In GraphQL, changes are performed using mutations, following the theme of separating
operations to read and write data that is common to much of React development. I added a file called
serverMutationsSchema.graphql to the sportsstore folder and used it to define the mutations shown in
Listing 7-4.

Listing 7-4.  The Contents of the serverMutationsSchema.graphql File in the sportsstore Folder

input productStore {
 name: String!, description: String!, category: String!, price: Float!
}

input productUpdate {
 id: ID!, name: String, description: String, category: String, price: Float
}

type Mutation {
 storeProduct(product: productStore): product
 updateProduct(product: productUpdate): product
 deleteProduct(id: ID!): product
 shipOrder(id: ID!, shipped: Boolean!): order
}

The schema in Listing 7-4 defines mutations for storing new products, updating and deleting existing
products, and marking orders as shipped or unshipped.

Defining the GraphQL Resolvers
The schema in a GraphQL service is implemented by a resolver. To provide the resolver for the queries,
I added a file called serverQueriesResolver.js in the sportsstore folder with the code shown in Listing 7-5.

Chapter 7 ■ SportsStore: Administration

169

Listing 7-5.  The Contents of the serverQueriesResolver.js File in the sportsstore Folder

const paginateQuery = (query, page = 1, pageSize = 5) =>
 query.drop((page - 1) * pageSize).take(pageSize);

const product = ({id}, {db}) => db.get("products").getById(id).value();

const products = ({ category }, { db}) => ({
 totalSize: () => db.get("products")
 .filter(p => category ? new RegExp(category, "i").test(p.category) : p)
 .size().value(),
 products: ({page, pageSize, sort}) => {
 let query = db.get("products");
 if (category) {
 query = query.filter(item =>
 new RegExp(category, "i").test(item.category))
 }
 if (sort) { query = query.orderBy(sort) }
 return paginateQuery(query, page, pageSize).value();
 }
})

const categories = (args, {db}) => db.get("categories").value();

const resolveProducts = (products, db) =>
 products.map(p => ({
 quantity: p.quantity,
 product: product({ id: p.product_id} , {db})
 }))

const resolveOrders = (onlyUnshipped, { page, pageSize, sort}, { db }) => {
 let query = db.get("orders");
 if (onlyUnshipped) { query = query.filter({ shipped: false}) }
 if (sort) { query = query.orderBy(sort) }
 return paginateQuery(query, page, pageSize).value()
 .map(order => ({ ...order, products: () =>
 resolveProducts(order.products, db) }));
}

const orders = ({onlyUnshipped = false}, {db}) => ({
 totalSize: () => db.get("orders")
 .filter(o => onlyUnshipped ? o.shipped === false : o).size().value(),
 orders: (...args) => resolveOrders(onlyUnshipped, ...args)
})

module.exports = { product, products, categories, orders }

The code in Listing 7-5 implements the queries defined in Listing 7-3. You can see an example of a
stand-alone custom GraphQL server in Chapter 24, but the code in Listing 7-5 relies on the Lowdb database
that the json-server package uses for data storage and that is described in detail at https://github.com/
typicode/lowdb.

https://github.com/typicode/lowdb
https://github.com/typicode/lowdb

Chapter 7 ■ SportsStore: Administration

170

Each query is resolved using a series of functions invoked when the client requests specific fields,
ensuring that the server has to load and process only the data that is needed. For the orders query, for
example, the chain of functions ensures that the server only has to query the database for the related
product objects if the client asks for them, avoiding retrieving data that is not required.

To implement the mutations, I added a file called serverMutationsResolver.js to the sportsstore
folder and added the code shown in Listing 7-6.

Listing 7-6.  The Contents of the serverMutationsResolver.js File in the sportsstore Folder

const storeProduct = ({ product}, {db }) =>
 db.get("products").insert(product).value();

const updateProduct = ({ product }, { db }) =>
 db.get("products").updateById(product.id, product).value();

const deleteProduct = ({ id }, { db }) => db.get("products").removeById(id).value();

const shipOrder = ({ id, shipped }, { db }) =>
 db.get("orders").updateById(id, { shipped: shipped}).value()

module.exports = {
 storeProduct, updateProduct, deleteProduct, shipOrder
}

Each of the functions defined in Listing 7-6 corresponds to a mutation defined in Listing 7-4. The code
required to implement the mutation is simpler than the queries because the queries required additional
statements to filter and page data.

Updating the Server
In Chapter 5, I added the packages required to create a GraphQL server to the SportsStore project.
In Listing 7-7, I have used these packages to add support for GraphQL to the back-end server that has been
providing the SportsStore application with its RESTful web service.

Listing 7-7.  Adding GraphQL in the server.js File in the sportsstore Folder

const express = require("express");
const jsonServer = require("json-server");
const chokidar = require('chokidar');
const cors = require("cors");
const fs = require("fs");
const { buildSchema } = require("graphql");
const graphqlHTTP = require("express-graphql");
const queryResolvers = require("./serverQueriesResolver");
const mutationResolvers = require("./serverMutationsResolver");

const fileName = process.argv[2] || "./data.js"
const port = process.argv[3] || 3500;

Chapter 7 ■ SportsStore: Administration

171

let router = undefined;
let graph = undefined;

const app = express();

const createServer = () => {
 delete require.cache[require.resolve(fileName)];
 setTimeout(() => {
 router = jsonServer.router(fileName.endsWith(".js")
 ? require(fileName)() : fileName);
 let schema = fs.readFileSync("./serverQueriesSchema.graphql", "utf-8")
 + fs.readFileSync("./serverMutationsSchema.graphql", "utf-8");
 let resolvers = { ...queryResolvers, ...mutationResolvers };
 graph = graphqlHTTP({
 schema: buildSchema(schema), rootValue: resolvers,
 graphiql: true, context: { db: router.db }
 })
 }, 100)
}

createServer();

app.use(cors());
app.use(jsonServer.bodyParser)
app.use("/api", (req, resp, next) => router(req, resp, next));
app.use("/graphql", (req, resp, next) => graph(req, resp, next));

chokidar.watch(fileName).on("change", () => {
 console.log("Reloading web service data...");
 createServer();
 console.log("Reloading web service data complete.");
});

app.listen(port, () => console.log(`Web service running on port ${port}`));

The additions load the schema and resolvers and use them to create a GraphQL service that shares a
database with the existing RESTful web service. Stop the development tools and run the command shown in
Listing 7-8 in the sportsstore folder to start them again, which will also start the GraphQL server.

Listing 7-8.  Starting the Development Tools and Services

npm start

Chapter 7 ■ SportsStore: Administration

172

To make sure that the GraphQL server is running, navigate to http://localhost:3500/graphql, which
will display the tool shown in Figure 7-2.

The package I used to create the GraphQL server includes the GraphiQL browser, which makes it easy
to explore a GraphQL service. Replace the welcome message in the left part of the window with the GraphQL
mutation shown in Listing 7-9.

■■ Note T he data used by the RESTful web service and GraphQL service is reset each time the npm start
command 2 is used, which means that the change made by the mutation in Listing 7-9 will be lost when you
next start the server. I convert the SportsStore application to a persistent database as part of the deployment
preparations in Chapter 8.

Listing 7-9.  A GraphQL Mutation

mutation {
 updateProduct(product: {
 id: 272, price: 100
 }) { id, name, category, price }
}

Figure 7-2.  The GraphiQL browser

Chapter 7 ■ SportsStore: Administration

173

Click the Execute Query button to send the mutation to the GraphQL server, which will update a
product in the database and produce the following result:

...
{
 "data": {
 "updateProduct": {
 "id": "272",
 "name": "Awesome Concrete Pizza",
 "category": "Soccer",
 "price": 100
 }
 }
}
...

Navigate back to http://localhost:3000 (or reload the browser tab if it is still open), and you will see
that the price of the first product shown in the list has changed, as shown in Figure 7-3.

Creating the Order Administration Features
GraphQL requires more work at the server to create the schema and write the resolvers, but the benefit is
that the client can be much simpler than one that uses a RESTful web service. In part, this is because of the
way that GraphQL uses well-defined but flexible queries, but it is also because the GraphQL client package
provides a lot of useful features that I had to create manually in Chapters 5 and 6.

Figure 7-3.  The effect of a GraphQL mutation

Chapter 7 ■ SportsStore: Administration

174

■■ Note T he way that I use GraphQL in the SportsStore chapter is the simplest approach, but it hides the
detail of how GraphQL works. In Chapter 25, I demonstrate how to use GraphQL directly over HTTP and also
how to integrate GraphQL into an application that uses a data store.

Defining the Order Table Component
I am going to start by creating a display of the orders. To define the component that displays the order data,
I added a file called OrdersTable.js in the src/admin folder and added the code shown in Listing 7-10.

Listing 7-10.  The Contents of the OrdersTable.js File in the src/admin Folder

import React, { Component } from "react";
import { OrdersRow } from "./OrdersRow";
import { PaginationControls } from "../PaginationControls";

export class OrdersTable extends Component {

 render = () =>
 <div>
 <h4 className="bg-info text-white text-center p-2">
 { this.props.totalSize } Orders
 </h4>

 <PaginationControls keys={["ID", "Name"]}
 { ...this.props } />

 <table className="table table-sm table-striped">
 <thead>
 <tr><th>ID</th>
 <th>Name</th><th>Email</th>
 <th className="text-right">Total</th>
 <th className="text-center">Shipped</th>
 </tr>
 </thead>
 <tbody>
 { this.props.orders.map(order =>
 <OrdersRow key={ order.id }
 order={ order} toggleShipped={ () =>
 this.props.toggleShipped(order.id, !order.shipped) }
 />
)}
 </tbody>
 </table>
 </div>
}

The OrdersTable component displays the total number of orders and renders a table where
responsibility for each row is delegated to the OrdersRow component, which I defined by adding a file called
OrdersRow.js to the src/admin folder with the code shown in Listing 7-11.

Chapter 7 ■ SportsStore: Administration

175

Listing 7-11.  The Contents of the OrdersRow.js File in the src/admin Folder

import React, { Component } from "react";

export class OrdersRow extends Component {

 calcTotal = (products) => products.reduce((total, p) =>
 total += p.quantity * p.product.price, 0).toFixed(2)

 getShipping = (order) => order.shipped
 ? <i className="fa fa-shipping-fast text-success" />
 : <i className="fa fa-exclamation-circle text-danger" />

 render = () =>
 <tr>
 <td>{ this.props.order.id }</td>
 <td>{this.props.order.name}</td>
 <td>{ this.props.order.email }</td>
 <td className="text-right">
 ${ this.calcTotal(this.props.order.products) }
 </td>
 <td className="text-center">
 <button className="btn btn-sm btn-block bg-muted"
 onClick={ this.props.toggleShipped }>
 { this.getShipping(this.props.order)}

 { this.props.order.shipped
 ? " Shipped" : " Pending"}

 </button>
 </td>
 </tr>
}

Defining the Connector Component
When a GraphQL client queries its server, it provides values for any parameters the query defines and
specifies the data fields that it wants to receive. This is the biggest difference from most RESTful web
services, and it means that GraphQL clients receive only the data values they require. It does mean, however,
that a client-side query has to be defined before data can be retrieved from the server. I like to define queries
separately from components, and I added a file called clientQueries.js to the src/admin folder with the
content shown in Listing 7-12.

Listing 7-12.  The Contents of the clientQueries.js File in the src/admin Folder

import gql from "graphql-tag";

export const ordersSummaryQuery = gql`
 query($onlyShipped: Boolean, $page:Int, $pageSize:Int, $sort:String) {
 orders(onlyUnshipped: $onlyShipped) {
 totalSize,

Chapter 7 ■ SportsStore: Administration

176

 orders(page: $page, pageSize: $pageSize, sort: $sort) {
 id, name, email, shipped
 products {
 quantity, product { price }
 }
 }
 }
 }`

GraphQL queries are defined as JavaScript string literals in the client application but must be processed
using the gql function from the graphql-tag package. The query in Listing 7-12 targets the server’s orders
query and will accept variables that are used for the query’s onlyShipped, page, pageSize, and sort
parameters. The client query selects only the fields it requires and incorporates details of the product data
related to each order, which is included in the query results generated by the server’s resolver for the orders
query.

The GraphQL client package, React-Apollo, provides the graphql function, which is the counterpart
to the connect and withRouter functions used earlier and which connects a component to the GraphQL
features by creating a higher-order component, which is a function that provides features to a component,
as described in Chapter 14. To create the connection between the OrdersTable component and the query
defined in Listing 7-12, I added a file called OrdersConnector.js to the src/admin folder and added the
code shown in Listing 7-13.

Listing 7-13.  The Contents of the OrdersConnector.js File in the src/admin Folder

import { graphql } from "react-apollo";
import { ordersSummaryQuery } from "./clientQueries";
import { OrdersTable } from "./OrdersTable";

const vars = {
 onlyShipped: false, page: 1, pageSize: 10, sort: "id"
}

export const OrdersConnector = graphql(ordersSummaryQuery,
 {
 options: (props) => ({ variables: vars }),
 props: ({data: { loading, orders, refetch }}) => ({
 totalSize: loading ? 0 : orders.totalSize,
 orders: loading ? []: orders.orders,
 currentPage: vars.page,
 pageCount: loading ? 0 : Math.ceil(orders.totalSize / vars.pageSize),
 navigateToPage: (page) => { vars.page = Number(page); refetch(vars)},
 pageSize: vars.pageSize,
 setPageSize: (size) => { vars.pageSize = Number(size); refetch(vars)},
 sortKey: vars.sort,
 setSortProperty: (key) => { vars.sort = key; refetch(vars)},
 })
 }
)(OrdersTable)

Chapter 7 ■ SportsStore: Administration

177

The graphql function accepts arguments for the query and a configuration object and returns a
function that is used to wrap a component and provide it access to the query features. There are many
properties supported by the configuration object, but I require only two. The first is the options property,
which is used to create the set of variables that will be applied to the GraphQL query, using a function that
receives the props applied by the parent component.

■■ Tip T he Apollo GraphQL client caches the results from queries so that it doesn’t send duplicate requests to
the server, which is useful when using components with routing, for example.

The second is the props property, which is used to create the props that will be passed to the display
component and is provided with a data object that combines details of the query progress, the response
from the server, and the functions used to refresh the query.

I selected three properties from the data object and used them to create the props for the OrdersTable
component. The loading property is true while the query is sent to the server and the response is awaited,
which allows me to use placeholder values until the GraphQL response is received. The results of the query
are assigned to a property given the query name, which is orders in this case. The response from a query is
structured like this:

...
{ "orders":
 { "totalSize":103,
 "orders":[
 {"id":"1","name":"Velva Dietrich","email":"Velva_Dietrich@yahoo.com",
 "shipped":false, "products":[{"quantity":8,"product":{"price":84 },
 {"quantity":7,"product":{"price":125}, {"quantity":3,"product":{"price":352}
 ...other data values omitted for brevity...
 }
}
...

To get the total number of available orders, for example, I read the value of the orders.totalSize
property, like this:

...
totalSize: loading ? 0 : orders.totalSize,
...

The value of the totalSize prop is zero until the result from the server has been received and is then
assigned the value of orders.totalSize.

The third property I selected from the data object is refetch, which is a function that resends the query
and which I use to respond to pagination changes.

...
navigateToPage: (page) => { vars.page = Number(page); refetch(vars)},
...

I pass all of the query variables to the refetch function for brevity, but any values the function receives
are merged with the original variables, which can be useful for more complex queries.

Chapter 7 ■ SportsStore: Administration

178

■■ Tip T here is also a fetchMore function available that can be used to retrieve data and merge it with existing
results, which is useful for components that gradually build up the data they present to the user. I have taken a
simpler approach for the SportsStore application, and each page of data replaces the previous query results.

Configuring the GraphQL Client
Access to the GraphQL client features is provided through the ApolloProvider component. To configure
the GraphQL client and to create a convenient placeholder for other administration features, I created the
src/admin folder and added to it a file called Admin.js, which I used to define the component shown in
Listing 7-14.

Listing 7-14.  The Contents of the Admin.js File in the src/admin Folder

import React, { Component } from "react";
import ApolloClient from "apollo-boost";
import { ApolloProvider} from "react-apollo";
import { GraphQlUrl } from "../data/Urls";
import { OrdersConnector } from "./OrdersConnector"

const graphQlClient = new ApolloClient({
 uri: GraphQlUrl
});

export class Admin extends Component {

 render() {
 return <ApolloProvider client={ graphQlClient }>
 <div className="container-fluid">
 <div className="row">
 <div className="col bg-info text-white">
 <div className="navbar-brand">SPORTS STORE</div>
 </div>
 </div>
 <div className="row">
 <div className="col p-2">
 <OrdersConnector />
 </div>
 </div>
 </div>
 </ApolloProvider>
 }
}

To get started with the administration features, I am going to display an OrdersTable component,
which I will create in the next section. I’ll return to Admin and use URL routing to display additional features.
To set the URL that will be used to communicate with the GraphQL server, I added the statement shown in
Listing 7-15 to the Urls.js file.

Chapter 7 ■ SportsStore: Administration

179

Listing 7-15.  Adding a URL in the Urls.js File in the src/data Folder

import { DataTypes } from "./Types";

const protocol = "http";
const hostname = "localhost";
const port = 3500;

export const RestUrls = {
 [DataTypes.PRODUCTS]: `${protocol}://${hostname}:${port}/api/products`,
 [DataTypes.CATEGORIES]: `${protocol}://${hostname}:${port}/api/categories`,
 [DataTypes.ORDERS]: `${protocol}://${hostname}:${port}/api/orders`
}

export const GraphQlUrl = `${protocol}://${hostname}:${port}/graphql`;

GraphQL requires only one URL because, unlike REST, it doesn’t use the URL or the HTTP method to
describe an operation. In Chapter 8, I will change the URLs used by the application as I prepare the project
for deployment.

To incorporate the new features into the application, I added the route shown in Listing 7-16 to the App
component.

Listing 7-16.  Adding a Route in the App.js File in the src Folder

import React, { Component } from "react";
import { SportsStoreDataStore } from "./data/DataStore";
import { Provider } from "react-redux";
import { BrowserRouter as Router, Route, Switch, Redirect }
 from "react-router-dom";
import { ShopConnector } from "./shop/ShopConnector";
import { Admin } from "./admin/Admin";

export default class App extends Component {

 render() {
 return <Provider store={ SportsStoreDataStore }>
 <Router>
 <Switch>
 <Route path="/shop" component={ ShopConnector } />
 <Route path="/admin" component={ Admin } />
 <Redirect to="/shop" />
 </Switch>
 </Router>
 </Provider>
 }
}

Save the changes to the files and navigate to http://localhost:3000/admin, and you will see the
results shown in Figure 7-4.

Chapter 7 ■ SportsStore: Administration

180

Configuring the Mutation
The same basic approach for queries can be applied to integrate mutations into a React application. To allow
the administrator to mark orders as shipped, I added a file called clientMutations.js to the src/admin
folder with the content shown in Listing 7-17.

Listing 7-17.  The Contents of the clientMutations.js File in the src/admin Folder

import gql from "graphql-tag";

export const shipOrder = gql`
 mutation($id: ID!, $shipped: Boolean!) {
 shipOrder(id: $id, shipped: $shipped) {
 id, shipped
 }
 }`

The GraphQL targets the shipOrder mutation, which updates the shipped property of an order
specified by the value of its id property. In Listing 7-18 I have used the graphql function to provide access to
the mutation and its results.

Figure 7-4.  Making a GraphQL query from a component

Chapter 7 ■ SportsStore: Administration

181

Listing 7-18.  Applying a Mutation in the OrdersConnector.js File in the src/admin Folder

import { graphql, compose } from "react-apollo";
import { ordersSummaryQuery } from "./clientQueries";
import { OrdersTable } from "./OrdersTable";
import { shipOrder } from "./clientMutations";

const vars = {
 onlyShipped: false, page: 1, pageSize: 10, sort: "id"
}

export const OrdersConnector = compose(
 graphql(ordersSummaryQuery,
 {
 options: (props) => ({ variables: vars }),
 props: ({data: { loading, orders, refetch }}) => ({
 totalSize: loading ? 0 : orders.totalSize,
 orders: loading ? []: orders.orders,
 currentPage: vars.page,
 pageCount: loading ? 0 : Math.ceil(orders.totalSize / vars.pageSize),
 navigateToPage: (page) => { vars.page = Number(page); refetch(vars)},
 pageSize: vars.pageSize,
 setPageSize: (size) =>
 { vars.pageSize = Number(size); refetch(vars)},
 sortKey: vars.sort,
 setSortProperty: (key) => { vars.sort = key; refetch(vars)},
 })
 }
),
 graphql(shipOrder, {
 props: ({ mutate }) => ({
 toggleShipped: (id, shipped) => mutate({ variables: { id, shipped }})
 })
 })
)(OrdersTable);

The React-Apollo package provides the compose function that simplifies combining queries and
mutations. The existing query is combined with another call to the graphql function, which is passed the
mutation from Listing 7-17. When using a mutation, the props property in the configuration object receives a
function named mutate, which I use to create a prop called toggleShipped, corresponding to the prop used
by the OrdersRow component to change the status of an order. To see the result, click the Shipped/Pending
indicator for an order in the table, and its status will be changed, as shown in Figure 7-5.

Chapter 7 ■ SportsStore: Administration

182

The Apollo client automatically updates its cache of data when there is a change, which means that
the change to the value of the shipped property is automatically reflected in the data displayed by the
OrdersTable component.

Creating the Product Administration Features
To provide administration of the products presented to the user, I added a file called ProductsTable.js to
the src/admin folder and used it to define the component shown in Listing 7-19.

Listing 7-19.  The Contents of the ProductsTable.js File in the src/admin Folder

import React, { Component } from "react";
import { Link } from "react-router-dom";
import { PaginationControls } from "../PaginationControls";
import { ProductsRow } from "./ProductsRow";

export class ProductsTable extends Component {

 render = () =>
 <div>
 <h4 className="bg-info text-white text-center p-2">
 { this.props.totalSize } Products
 </h4>

Figure 7-5.  Using a mutation

Chapter 7 ■ SportsStore: Administration

183

 <PaginationControls keys={["ID", "Name", "Category"]}
 { ...this.props } />

 <table className="table table-sm table-striped">
 <thead>
 <tr><th>ID</th>
 <th>Name</th><th>Category</th>
 <th className="text-right">Price</th>
 <th className="text-center"></th>
 </tr>
 </thead>
 <tbody>
 { this.props.products.map(prod =>
 <ProductsRow key={ prod.id} product={ prod }
 deleteProduct={ this.props.deleteProduct } />
)}
 </tbody>
 </table>
 <div className="text-center">
 <Link to="/admin/products/create" className="btn btn-primary">
 Create Product
 </Link>
 </div>
 </div>
}

The ProductsTable component receives an array of objects through its products prop and uses the
ProductsRow component to generate a table row for each of them. There is also a Link styled as a button that
will be used to navigate to the component that will allow new products to be created.

To create the ProductsRow component that is responsible for a single table row, I added a file called
ProductsRow.js to the src/admin folder and added the code shown in Listing 7-20.

Listing 7-20.  The Contents of the ProductsRow.js File in the src/admin Folder

import React, { Component } from "react";
import { Link } from "react-router-dom";

export class ProductsRow extends Component {

 render = () =>
 <tr>
 <td>{ this.props.product.id }</td>
 <td>{this.props.product.name}</td>
 <td>{ this.props.product.category }</td>
 <td className="text-right">
 ${ this.props.product.price.toFixed(2) }
 </td>
 <td className="text-center">
 <button className="btn btn-sm btn-danger mx-1"
 onClick={ () =>
 this.props.deleteProduct(this.props.product.id) }>
 Delete

Chapter 7 ■ SportsStore: Administration

184

 </button>
 <Link to={`/admin/products/${this.props.product.id}`}
 className="btn btn-sm btn-warning">
 Edit
 </Link>
 </td>
 </tr>
}

Table cells are rendered for the id, name, category, and price properties. There is a button that invokes
a function prop named deleteProduct that will remove a product from the database, and there is a Link that
will navigate to the component used to edit product details.

Connecting the Product Table Component
To connect the product table component to the GraphQL data, I added the queries shown in Listing 7-21 to
the clientQueries.js file, which also include the query I will require for editing a product. These queries
correspond to the server-side GraphQL defined at the start of the chapter.

Listing 7-21.  Adding Queries in the clientQueries.js File in the src/admin Folder

import gql from "graphql-tag";

export const ordersSummaryQuery = gql`
 query($onlyShipped: Boolean, $page:Int, $pageSize:Int, $sort:String) {
 orders(onlyUnshipped: $onlyShipped) {
 totalSize,
 orders(page: $page, pageSize: $pageSize, sort: $sort) {
 id, name, email, shipped
 products {
 quantity, product { price }
 }
 }
 }
 }`

export const productsList = gql`
 query($page: Int, $pageSize: Int, $sort: String) {
 products {
 totalSize,
 products(page: $page, pageSize: $pageSize, sort: $sort) {
 id, name, category, price
 }
 }
 }`

export const product = gql`
 query($id: ID!) {
 product(id: $id) {
 id, name, description, category, price
 }
 }`

Chapter 7 ■ SportsStore: Administration

185

The query assigned to the constant named productsList will retrieve the id, name, category, and price
properties for a page of products. The query assigned to the constant named product will retrieve the id,
name, description, category, and price properties of a single product object. To add support for deleting,
creating, and editing objects, I added the mutations shown in Listing 7-22 to the clientMutations.js file.

Listing 7-22.  Adding Mutations in the clientMutations.js File in the src/admin Folder

import gql from "graphql-tag";

export const shipOrder = gql`
 mutation($id: ID!, $shipped: Boolean!) {
 shipOrder(id: $id, shipped: $shipped) {
 id, shipped
 }
 }`

export const storeProduct = gql`
 mutation($product: productStore) {
 storeProduct(product: $product) {
 id, name, category, description, price
 }
 }`

export const updateProduct = gql`
 mutation($product: productUpdate) {
 updateProduct(product: $product) {
 id, name, category, description, price
 }
 }`

export const deleteProduct = gql`
 mutation($id: ID!) {
 deleteProduct(id: $id) {
 id
 }
 }`

The new mutations correspond to the server-side GraphQL defined at the start of the chapter and allow
the client to store a new product, edit an existing product, and delete a product.

Having defined the queries and mutations, I added a file called ProductsConnector.js to the src/admin
folder and defined the higher-order component shown in Listing 7-23.

Listing 7-23.  The Contents of the ProductsConnector.js File in the src/admin Folder

import { graphql, compose } from "react-apollo";
import { ProductsTable } from "./ProductsTable";
import { productsList } from "./clientQueries";
import { deleteProduct } from "./clientMutations";

const vars = {
 page: 1, pageSize: 10, sort: "id"
}

Chapter 7 ■ SportsStore: Administration

186

export const ConnectedProducts = compose(
 graphql(productsList,
 {
 options: (props) => ({ variables: vars }),
 props: ({data: { loading, products, refetch }}) => ({
 totalSize: loading ? 0 : products.totalSize,
 products: loading ? []: products.products,
 currentPage: vars.page,
 pageCount: loading ? 0
 : Math.ceil(products.totalSize / vars.pageSize),
 navigateToPage: (page) => { vars.page = Number(page); refetch(vars)},
 pageSize: vars.pageSize,
 setPageSize: (size) =>
 { vars.pageSize = Number(size); refetch(vars)},
 sortKey: vars.sort,
 setSortProperty: (key) => { vars.sort = key; refetch(vars)},
 })
 }
),
 graphql(deleteProduct,
 {
 options: {
 update: (cache, { data: { deleteProduct: { id }}}) => {
 const queryDetails = { query: productsList, variables: vars };
 const data = cache.readQuery(queryDetails)
 data.products.products =
 data.products.products.filter(p => p.id !== id);
 data.products.totalSize = data.products.totalSize - 1;
 cache.writeQuery({...queryDetails, data });
 }
 },
 props: ({ mutate }) => ({
 deleteProduct: (id) => mutate({ variables: { id }})
 })
 })
)(ProductsTable);

The code in Listing 7-23 is similar to the corresponding code for the orders administration features. One
key difference is that mutations that remove objects do not automatically update the local cached data. For
this type of mutation, an update function must be defined that modifies the cached data directly, like this:

...
update: (cache, { data: { deleteProduct: { id }}}) => {
 const queryDetails = { query: productsList, variables: vars };
 const data = cache.readQuery(queryDetails)
 data.products.products = data.products.products.filter(p => p.id !== id);
 data.products.totalSize = data.products.totalSize - 1;
 cache.writeQuery({...queryDetails, data });
}
...

Chapter 7 ■ SportsStore: Administration

187

This function reads the cached data, removes an object, reduces the totalSize to reflect the deletion,
and then writes the data back to the cache, which will have the effect of updating the product list without
needing to query the server.

■■ Tip T he downside of this approach is that it doesn’t repaginate the data to reflect the deletion, which
means that the page displays fewer items until the user navigates to another page. In the next section, I
demonstrate how to address this by clearing the cached data, which leads to an additional GraphQL query but
ensures that the application is consistent.

Creating the Editor Components
To allow the user to create a new product, I added a file called ProductEditor.js to the src/admin folder
and defined the component shown in Listing 7-24.

Listing 7-24.  The Contents of the ProductEditor.js File in the src/admin Folder

import React, { Component } from "react";
import { Query } from "react-apollo";
import { ProductCreator } from "./ProductCreator";
import { product } from "./clientQueries";

export class ProductEditor extends Component {

 render = () =>
 <Query query={ product } variables={ {id: this.props.match.params.id} } >
 { ({ loading, data }) => {
 if (!loading) {
 return <ProductCreator {...this.props } product={data.product}
 mode="edit" />
 }
 return null;
 }}
 </Query>
}

The Query component is provided as an alternative to the graphql function and allows GraphQL
queries to be performed declaratively, with the results and other client features presented through a render
prop function, which is described in Chapter 14. The ProductEditor component defined in Listing 7-24 will
obtain the id of the product that the administrator wants to edit and obtains it using the Query component,
which is configured using its query and variables props. The render prop function receives an object
with loading and data properties, which have the same purpose as for the graphql function I used earlier.
The ProductEditor component renders no content while the loading property is true and then displays a
ProductCreator component, passing the data received from the query through the prop named product.

The ProductCreator component will do double duty in the SportsStore application. When used on its
own, it will present the administrator with an empty form that will be sent to the storeProduct mutation.
When it is used by the ProductEditor component, it will show details of an existing product and send the
form data to the updateProduct mutation. To define the component, I added a file called ProductCreator.js
to the src/admin folder with the code shown in Listing 7-25.

Chapter 7 ■ SportsStore: Administration

188

Listing 7-25.  The Contents of the ProductCreator.js File in the src/admin Folder

import React, { Component } from "react";
import { ValidatedForm } from "../forms/ValidatedForm";
import { Mutation } from "react-apollo";
import { storeProduct, updateProduct } from "./clientMutations";

export class ProductCreator extends Component {

 constructor(props) {
 super(props);
 this.defaultAttrs = { type: "text", required: true };
 this.formModel = [
 { label: "Name" }, { label: "Description" },
 { label: "Category" },
 { label: "Price", attrs: { type: "number"}}
];
 this.mutation = storeProduct;
 if (this.props.mode === "edit") {
 this.mutation = updateProduct;
 this.formModel = [{ label: "Id", attrs: { disabled: true }},
 ...this.formModel]
 .map(item => ({ ...item, attrs: { ...item.attrs,
 defaultValue: this.props.product[item.label.toLowerCase()]} }));
 }
 }

 navigate = () => this.props.history.push("/admin/products");

 render = () => {
 return <div className="container-fluid">
 <div className="row">
 <div className="col bg-dark text-white">
 <div className="navbar-brand">SPORTS STORE</div>
 </div>
 </div>
 <div className="row">
 <div className="col m-2">
 <Mutation mutation={ this.mutation }>
 { (saveMutation, {client }) => {
 return <ValidatedForm formModel={ this.formModel }
 defaultAttrs={ this.defaultAttrs }
 submitCallback={ data => {
 saveMutation({variables: { product:
 { ...data, price: Number(data.price) }}});
 if (this.props.mode !== "edit") {
 client.resetStore();
 }
 this.navigate();
 }}

Chapter 7 ■ SportsStore: Administration

189

 cancelCallback={ this.navigate }
 submitText="Save" cancelText="Cancel" />
 }}
 </Mutation>
 </div>
 </div>
 </div>
 }
}

The ProductCreator component relies on the ValidatedForm that I created in Chapter 6 to handle
checkout from the shopping part of the application. The form is configured with the fields required to edit a
product, which will include the values obtained from the GraphQL query when they are provided through
the product prop.

The counterpart to the Query component is Mutation, which allows a mutation to be used within the
render function. The render prop function receives a function that is invoked to send the mutation to the
server and that accepts an object that provides the variables for the mutation, like this:

...
<Mutation mutation={ this.mutation }>
 { (saveMutation, {client }) => {
 return <ValidatedForm formModel={ this.formModel }
 defaultAttrs={ this.defaultAttrs }
 submitCallback={ data => {
 saveMutation({variables: { product:
 { ...data, price: Number(data.price) }}});
 if (this.props.mode !== "edit") {
 client.resetStore();
 }
 this.navigate();
 }}
 cancelCallback={ this.navigate }
 submitText="Save" cancelText="Cancel" />
 }
 }
</Mutation>
...

I have highlighted the section of code that sets up the function prop that is passed to the ValidatedForm
component and that sends the mutation when it is invoked. When an object is updated, the Apollo client
automatically updates its cached data to reflect the change, just as when I marked orders as shipped earlier
in the chapter. New objects are not automatically processed, which means that the application has to take
responsibility for managing the cache. The approach I took for deleting an object was to update the existing
cache, but that is a much more complex process for a new item because it means trying to work out whether
it should be displayed on the current page and, if so, where in the sort order it would appear. As a simpler
alternative, I have received a client parameter from the render prop function, which allows me to clear the
cached data through its resetStore method. When the navigate function sends the browser back to the
product list, a fresh GraphQL will be sent to the server, which ensures that the data is consistently paged and
sorted, albeit at the cost of an additional query.

Chapter 7 ■ SportsStore: Administration

190

Updating the Routing Configuration
The final step is to update the routing configuration to add navigation buttons that allow the order and
product administration features to be selected, as shown in Listing 7-26.

Listing 7-26.  Updating the Routing Configuration in the Admin.js File in the src/admin Folder

import React, { Component } from "react";
import ApolloClient from "apollo-boost";
import { ApolloProvider} from "react-apollo";
import { GraphQlUrl } from "../data/Urls";
import { OrdersConnector } from "./OrdersConnector"
import { Route, Redirect, Switch } from "react-router-dom";
import { ToggleLink } from "../ToggleLink";
import { ConnectedProducts } from "./ProductsConnector";
import { ProductEditor } from "./ProductEditor";
import { ProductCreator } from "./ProductCreator";

const graphQlClient = new ApolloClient({
 uri: GraphQlUrl
});

export class Admin extends Component {

 render() {
 return <ApolloProvider client={ graphQlClient }>
 <div className="container-fluid">
 <div className="row">
 <div className="col bg-info text-white">
 <div className="navbar-brand">SPORTS STORE</div>
 </div>
 </div>
 <div className="row">
 <div className="col-3 p-2">
 <ToggleLink to="/admin/orders">Orders</ToggleLink>
 <ToggleLink to="/admin/products">Products</ToggleLink>
 </div>
 <div className="col-9 p-2">
 <Switch>
 <Route path="/admin/orders" component={ OrdersConnector } />
 <Route path="/admin/products/create"
 component={ ProductCreator} />
 <Route path="/admin/products/:id"
 component={ ProductEditor} />
 <Route path="/admin/products"
 component={ ConnectedProducts } />
 <Redirect to="/admin/orders" />
 </Switch>

Chapter 7 ■ SportsStore: Administration

191

 </div>
 </div>
 </div>
 </ApolloProvider>
 }
}

Save the changes, and you will see the layout shown in Figure 7-6. Clicking the Products button will
display a paged table of products, which can be deleted and edited using the buttons in each table row.

Figure 7-6.  The product administration features

Chapter 7 ■ SportsStore: Administration

192

Clicking the Create Product button will display an editor that allows new products to be defined, as
shown in Figure 7-7.

Summary
In this chapter, I added the administration features to the SportsStore application. I started by creating a
GraphQL service with the queries and mutations required to manage the order and products data. I used the
GraphQL service to expand the application features, relying on the GraphQL client to manage the data in the
application so that I didn’t need to create and manage a data store. In the next chapter, I add authentication
for the administration features and prepare the application for deployment.

Figure 7-7.  Creating a new product

193© Adam Freeman 2019
A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_8

CHAPTER 8

SportsStore: Authentication and
Deployment

In this chapter, I add authentication to the SportsStore application to protect the administration features
from unauthorized use. I also prepare the SportsStore application for deployment into a Docker container,
which can be used on most hosting platforms.

Preparing for This Chapter
To prepare for this chapter, I am going to add support for authentication and authorization to the simple
server that provides the RESTful web service and GraphQL service. At the moment, any client can perform
any operation, which means that shoppers could change prices, create products, and perform other tasks
that should be restricted to administrators. Table 8-1 lists the combination of HTTP methods and URLs
that should be publicly accessible; everything else will be protected, including all GraphQL queries and
mutations.

Table 8-1.  The Publicly Accessible HTTP Methods and URL Combinations

HTTP Method URL Description

GET /api/products This combination is used to request pages of products for shoppers.

GET /api/categories This combination is used to request the set of categories and is used to
provide shoppers with navigation buttons.

POST /api/orders This combination is used to submit orders.

POST /login This combination will be used to submit a username and password for
authentication.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/pro-react-16.

https://github.com/Apress/pro-react-16

Chapter 8 ■ SportsStore: Authentication and Deployment

194

To implement the authentication and provide the means for authorization, I added a file called
authMiddleware.js to the sportsstore folder and added the code shown in Listing 8-1.

Listing 8-1.  The Contents of the authMiddleware.js File in the sportsstore Folder

const jwt = require("jsonwebtoken");

const APP_SECRET = "myappsecret", USERNAME = "admin", PASSWORD = "secret";

const anonOps = [{ method: "GET", urls: ["/api/products", "/api/categories"]},
 { method: "POST", urls: ["/api/orders"]}]

module.exports = function (req, res, next) {
 if (anonOps.find(op => op.method === req.method
 && op.urls.find(url => req.url.startsWith(url)))) {
 next();
 } else if (req.url === "/login" && req.method === "POST") {
 if (req.body.username === USERNAME && req.body.password === PASSWORD) {
 res.json({
 success: true,
 token: jwt.sign({ data: USERNAME, expiresIn: "1h" }, APP_SECRET)
 });
 } else {
 res.json({ success: false });
 }
 res.end();
 } else {
 let token = req.headers["authorization"];
 if (token != null && token.startsWith("Bearer<")) {
 token = token.substring(7, token.length - 1);
 jwt.verify(token, APP_SECRET);
 next();
 } else {
 res.statusCode = 401;
 res.end();
 }
 }
}

The code in Listing 8-1 will inspect each request received by the HTTP server that delivers the RESTful
web service and the GraphQL service. A 401 unauthorized response is returned if a request isn’t for one of
the unsecured combinations of HTTP method and URL. The /login URL is used for authentication, with the
hardwired credentials shown in Table 8-2.

Table 8-2.  The Credentials Used by the SportsStore Application

Name Description

name admin

password secret

Chapter 8 ■ SportsStore: Authentication and Deployment

195

■■ Caution A ll of the server-side code in the SportsStore project can be used for real projects except
Listing 8-1, which contains hard-coded credentials and is unsuitable for anything other than basic development
and testing.

To add the middleware to the server, I added the statements shown in Listing 8-2 to the server.js file.

Listing 8-2.  Adding Middleware in the server.js File in the sportsstore Folder

const express = require("express");
const jsonServer = require("json-server");
const chokidar = require('chokidar');
const cors = require("cors");
const fs = require("fs");
const { buildSchema } = require("graphql");
const graphqlHTTP = require("express-graphql");
const queryResolvers = require("./serverQueriesResolver");
const mutationResolvers = require("./serverMutationsResolver");
const auth = require("./authMiddleware");

const fileName = process.argv[2] || "./data.js"
const port = process.argv[3] || 3500;

let router = undefined;
let graph = undefined;

const app = express();

const createServer = () => {
 delete require.cache[require.resolve(fileName)];
 setTimeout(() => {
 router = jsonServer.router(fileName.endsWith(".js")
 ? require(fileName)() : fileName);
 let schema = fs.readFileSync("./serverQueriesSchema.graphql", "utf-8")
 + fs.readFileSync("./serverMutationsSchema.graphql", "utf-8");
 let resolvers = { ...queryResolvers, ...mutationResolvers };
 graph = graphqlHTTP({
 schema: buildSchema(schema), rootValue: resolvers,
 graphiql: true, context: { db: router.db }
 })
 }, 100)
}

createServer();

app.use(cors());
app.use(jsonServer.bodyParser)
app.use(auth);
app.use("/api", (req, resp, next) => router(req, resp, next));

Chapter 8 ■ SportsStore: Authentication and Deployment

196

app.use("/graphql", (req, resp, next) => graph(req, resp, next));

chokidar.watch(fileName).on("change", () => {
 console.log("Reloading web service data...");
 createServer();
 console.log("Reloading web service data complete.");
});

app.listen(port, () => console.log(`Web service running on port ${port}`));

Open a new command prompt, navigate to the sportsstore folder, and run the command shown in
Listing 8-3 to start the React development tools, the RESTful web service, and the GraphQL service.

Listing 8-3.  Starting the Development Tool and Web Services

npm start

Once the project has been compiled, a new browser window will open and show the SportsStore
shopping features, as shown in Figure 8-1.

Figure 8-1.  Running the example application

Chapter 8 ■ SportsStore: Authentication and Deployment

197

Adding Authentication for GraphQL Requests
The introduction of the authentication middleware has broken the administration features, which rely on
HTTP requests that are no longer publicly accessible. If you navigate to http://localhost:3000/admin, you
will see the effect of the 401 – Not Authorized response that the server makes to the GraphQL HTTP requests,
as shown in Figure 8-2.

In the sections that follow, I explain how the SportsStore application will authenticate users and
implement the required features to prevent the error shown in the figure and restore the administration
features for authenticated users.

Understanding the Authentication System
When the server authenticates a user, it will return a JSON Web Token (JWT) that the application must
include in subsequent HTTP requests to show that authentication has been successfully performed. You
can read the JWT specification at https://tools.ietf.org/html/rfc7519, but for the purposes of the
SportsStore project, it is enough to know that the application can authenticate the user by sending a
POST request to the /login URL, including a JSON-formatted object in the request body that contains name
and password properties. There is only one set of valid credentials in the authentication code defined in
Listing 8-1, which I have repeated in Table 8-3. You should not hard-code credentials in real projects, but this
is the username and password that you will need for the SportsStore application.

Figure 8-2.  Encountering an error

Table 8-3.  The Authentication Credentials Supported by the RESTful Web Service

Username Password

admin secret

https://tools.ietf.org/html/rfc7519

Chapter 8 ■ SportsStore: Authentication and Deployment

198

If the correct credentials are sent to the /login URL, then the response from the server will contain a
JSON object like this:

{
 "success": true,
 "token":"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJkYXRhIjoiYWRtaW4iLCJleHBpcmVz
 SW4iOiIxaCIsImlhdCI6MTQ3ODk1NjI1Mn0.lJaDDrSu-bHBtdWrz0312p_DG5tKypGv6cA
 NgOyzlg8"
}

The success property describes the outcome of the authentication operation, and the token property
contains the JWT, which should be included in subsequent requests using the Authorization HTTP header
in this format:

Authorization: Bearer<eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJkYXRhIjoiYWRtaW4iLC
 JleHBpcmVzSW4iOiIxaCIsImlhdCI6MTQ3ODk1NjI1Mn0.lJaDDrSu-bHBtd
 Wrz0312p_DG5tKypGv6cANgOyzlg8>

I configured the JWT tokens returned by the server so they expire after one hour.
If the wrong credentials are sent to the server, then the JSON object returned in the response will

contain just a success property set to false, like this:

{
 "success": false
}

Creating the Authentication Context
The SportsStore application needs to be able to determine whether the user has been authenticated and
keep track of the web token that must be included in HTTP requests, ensuring that the administration
features are shown only after successful authentication.

This is the type of information that is often required in multiple places in an application, to ensure that
components can easily collaborate. For the SportsStore application, I am going to use the React context
feature, which allows functionality to be easily shared between components in a simple and lightweight
way and which is described in Chapter 14. I created the src/auth folder and added to it a file called
AuthContext.js with the code shown in Listing 8-4.

Listing 8-4.  The Contents of the AuthContext.js File in the src/auth Folder

import React from "react";

export const AuthContext = React.createContext({
 isAuthenticated: false,
 webToken: null,
 authenticate: (username, password) => {},
 signout: () => {}
})

The React.createContext method is used to create a context, and the object it receives is used for
default values, which is why the authenticate and signout functions are empty. The real functionality for a

Chapter 8 ■ SportsStore: Authentication and Deployment

199

context is provided by a provider component, which I defined by creating a file called AuthProviderImpl.js
in the src/auth folder and adding the code shown in Listing 8-5.

Listing 8-5.  The Contents of the AuthProviderImpl.js File in the src/auth Folder

import React, { Component } from "react";
import Axios from "axios";
import { AuthContext } from "./AuthContext";
import { authUrl } from "../data/Urls";

export class AuthProviderImpl extends Component {

 constructor(props) {
 super(props);
 this.state = {
 isAuthenticated: false,
 webToken: null
 }
 }

 authenticate = (credentials) => {
 return Axios.post(authUrl, credentials).then(response => {
 if (response.data.success === true) {
 this.setState({
 isAuthenticated: true,
 webToken:response.data.token
 })
 return true;
 } else {
 throw new Error("Invalid Credentials");
 }
 })
 }

 signout = () => {
 this.setState({ isAuthenticated: false, webToken: null });
 }

 render = () =>
 <AuthContext.Provider value={ {...this.state,
 authenticate: this.authenticate, signout: this.signout}}>
 { this.props.children }
 </AuthContext.Provider>
}

This component uses the React context feature in its render method to provide an implementation of
the AuthContext properties and functions, which it does through the value prop of the special AuthContext.
Provider element. The effect is to share access to the state data and the authenticate and signout methods
directly to any descendant component that applies the corresponding AuthContext.Consumer element,
which I will use shortly.

The implementation of the authenticate method uses the Axios package to send a POST request
to validate credentials that will be obtained from the user. The result of the authenticate method is a

Chapter 8 ■ SportsStore: Authentication and Deployment

200

Promise that will be resolved when the server responds to confirm the credentials and will be rejected if the
credentials are incorrect.

To define the URL used to perform authentication, I added the URL shown in Listing 8-6.

Listing 8-6.  Adding a URL in the Urls.js File in the src/data Folder

import { DataTypes } from "./Types";

const protocol = "http";
const hostname = "localhost";
const port = 3500;

export const RestUrls = {
 [DataTypes.PRODUCTS]: `${protocol}://${hostname}:${port}/api/products`,
 [DataTypes.CATEGORIES]: `${protocol}://${hostname}:${port}/api/categories`,
 [DataTypes.ORDERS]: `${protocol}://${hostname}:${port}/api/orders`
}

export const GraphQlUrl = `${protocol}://${hostname}:${port}/graphql`;

export const authUrl = `${protocol}://${hostname}:${port}/login`;

To apply the context to the SportsStore application, I made the changes shown in Listing 8-7 to
the App.js file.

Listing 8-7.  Adding a Context Provider to the App.js File in the src Folder

import React, { Component } from "react";
import { SportsStoreDataStore } from "./data/DataStore";
import { Provider } from "react-redux";
import { BrowserRouter as Router, Route, Switch, Redirect }
 from "react-router-dom";
import { ShopConnector } from "./shop/ShopConnector";
import { Admin } from "./admin/Admin";
import { AuthProviderImpl } from "./auth/AuthProviderImpl";

export default class App extends Component {

 render() {
 return <Provider store={ SportsStoreDataStore }>
 <AuthProviderImpl>
 <Router>
 <Switch>
 <Route path="/shop" component={ ShopConnector } />
 <Route path="/admin" component={ Admin } />
 <Redirect to="/shop" />
 </Switch>
 </Router>
 </AuthProviderImpl>
 </Provider>
 }
}

Chapter 8 ■ SportsStore: Authentication and Deployment

201

To make it easier to consume the features defined by the AuthContext, I added a file called
AuthWrapper.js to the src/auth folder and defined the higher-order component shown in Listing 8-8.

Listing 8-8.  The Contents of the AuthWrapper.js File in the src/auth Folder

import React, { Component } from "react";
import { AuthContext } from "./AuthContext";

export const authWrapper = (WrappedComponent) =>
 class extends Component {
 render = () =>
 <AuthContext.Consumer>
 { context =>
 <WrappedComponent { ...this.props } { ...context } />
 }
 </AuthContext.Consumer>
 }

The context features rely on a render prop function, which can be difficult to integrate directly into
components. Using the authWrapper function will allow a component to receive the features defined by the
AuthContext as props. (Higher-order components and render prop functions are both described in Chapter 14.)

Creating the Authentication Form
To allow the user to provide their credentials, I added a file called AuthPrompt.js to the src/auth folder and
used it to define the component shown in Listing 8-9.

Listing 8-9.  The Contents of the AuthPrompt.js File in the src/auth Folder

import React, { Component } from "react";
import { withRouter } from "react-router-dom";
import { authWrapper } from "./AuthWrapper";
import { ValidatedForm } from "../forms/ValidatedForm";

export const AuthPrompt = withRouter(authWrapper(class extends Component {

 constructor(props) {
 super(props);
 this.state = {
 errorMessage: null
 }
 this.defaultAttrs = { required: true };
 this.formModel = [
 { label: "Username", attrs: { defaultValue: "admin"}},
 { label: "Password", attrs: { type: "password"} },
];
 }

 authenticate = (credentials) => {
 this.props.authenticate(credentials)
 .catch(err => this.setState({ errorMessage: err.message}))
 .then(this.props.history.push("/admin"));
 }

Chapter 8 ■ SportsStore: Authentication and Deployment

202

 render = () =>
 <div className="container-fluid">
 <div className="row">
 <div className="col bg-dark text-white">
 <div className="navbar-brand">SPORTS STORE</div>
 </div>
 </div>
 <div className="row">
 <div className="col m-2">
 { this.state.errorMessage != null &&
 <h4 className="bg-danger text-center text-white m-1 p-2">
 { this.state.errorMessage }
 </h4>
 }
 <ValidatedForm formModel={ this.formModel }
 defaultAttrs={ this.defaultAttrs }
 submitCallback={ this.authenticate }
 submitText="Login"
 cancelCallback={ () => this.props.history.push("/")}
 cancelText="Cancel"
 />
 </div>
 </div>
 </div>
}))

This component receives routing features from the withRouter function and authentication features
from the authWrapper function, both of which will be presented through the component’s props. The
ValidatedForm I defined in Chapter 6 is used to present the user with username and password fields, both
of which require values. When the form data is submitted, the authenticate method forwards the details
for authentication. If authentication is successful, then the history object provided by the URL routing
system (described in Chapters 21 and 22) is used to redirect the user to the /admin URL. An error message is
displayed if authentication fails.

Guarding the Authentication Features
To prevent access to the administration features until the user has been authenticated, I made the changes
shown in Listing 8-10 to the Admin component.

Listing 8-10.  Guarding Features in the Admin.js File in the src/admin Folder

import React, { Component } from "react";
import ApolloClient from "apollo-boost";
import { ApolloProvider} from "react-apollo";
import { GraphQlUrl } from "../data/Urls";
import { OrdersConnector } from "./OrdersConnector"
import { Route, Redirect, Switch } from "react-router-dom";
import { ToggleLink } from "../ToggleLink";
import { ConnectedProducts } from "./ProductsConnector";
import { ProductEditor } from "./ProductEditor";
import { ProductCreator } from "./ProductCreator";

Chapter 8 ■ SportsStore: Authentication and Deployment

203

import { AuthPrompt } from "../auth/AuthPrompt";
import { authWrapper } from "../auth/AuthWrapper";

// const graphQlClient = new ApolloClient({
// uri: GraphQlUrl
// });

export const Admin = authWrapper(class extends Component {

 constructor(props) {
 super(props);
 this.client = new ApolloClient({
 uri: GraphQlUrl,
 request: gqloperation => gqloperation.setContext({
 headers: {
 Authorization: `Bearer<${this.props.webToken}>`
 },
 })
 })
 }

 render() {
 return <ApolloProvider client={ this.client }>
 <div className="container-fluid">
 <div className="row">
 <div className="col bg-info text-white">
 <div className="navbar-brand">SPORTS STORE</div>
 </div>
 </div>
 <div className="row">
 <div className="col-3 p-2">
 <ToggleLink to="/admin/orders">Orders</ToggleLink>
 <ToggleLink to="/admin/products">Products</ToggleLink>
 { this.props.isAuthenticated &&
 <button onClick={ this.props.signout }
 className=
 "btn btn-block btn-secondary m-2 fixed-bottom col-3">
 Log Out
 </button>
 }
 </div>
 <div className="col-9 p-2">
 <Switch>
 {
 !this.props.isAuthenticated &&
 <Route component={ AuthPrompt } />
 }
 <Route path="/admin/orders" component={ OrdersConnector } />
 <Route path="/admin/products/create"
 component={ ProductCreator} />
 <Route path="/admin/products/:id"

Chapter 8 ■ SportsStore: Authentication and Deployment

204

 component={ ProductEditor} />
 <Route path="/admin/products"
 component={ ConnectedProducts } />
 <Redirect to="/admin/orders" />
 </Switch>
 </div>
 </div>
 </div>
 </ApolloProvider>
 }
})

The Admin component is wrapped with the authWrapper function so it has access to the authentication
features. The ApolloClient object is created in the constructor so that I can add a function that modifies
each request to add an Authorization header to each GraphQL HTTP request.

There are two new code fragments in the render method. The first displays a logout button if the user is
authenticated. The second fragment checks the authentication status and produces a Route component that
displays the AuthPrompt component, regardless of the URL. (A Route component without a path property
will always display its component and can be used with a Switch to prevent other Route components from
being evaluated.)

Adding a Navigation Link for the Administration Features
To make it easier to use the administration features, I added a Link to the CategoryNavigation component,
as shown in Listing 8-11.

Listing 8-11.  Adding a Link in the CategoryNavigation.js File in the src/shop Folder

import React, { Component } from "react";
import { ToggleLink } from "../ToggleLink";
import { Link } from "react-router-dom";

export class CategoryNavigation extends Component {

 render() {
 return <React.Fragment>
 <ToggleLink to={ `${this.props.baseUrl}/all` } exact={ false }>
 All
 </ToggleLink>
 { this.props.categories && this.props.categories.map(cat =>
 <ToggleLink key={ cat }
 to={ `${this.props.baseUrl}/${cat.toLowerCase()}`}>
 { cat }
 </ToggleLink>
)}
 <Link className="btn btn-block btn-secondary fixed-bottom m-2 col-3"
 to="/admin">
 Administration
 </Link>
 </React.Fragment>
 }
}

Chapter 8 ■ SportsStore: Authentication and Deployment

205

To see the authentication feature, navigate to http://localhost:3000 and click the new Administration
button. The guard will ensure that the authentication form is displayed. Enter secret into the password field
and click the Login button to perform authentication, which will then display the administration features, as
shown in Figure 8-3. Click the Log Out button to return to the unauthenticated state.

Figure 8-3.  Authenticating to use the administration features

Preparing the Application for Deployment
In the sections that follow, I prepare the SportsStore application so that it can be deployed.

Enabling Lazy Loading for the Administration Features
When the application is deployed, the individual JavaScript files will be combined into a single file that the
browser can download more efficiently. Most of the users will be shoppers, which means they are unlikely
to require the administration features. To prevent them from downloading code that is unlikely to be
used, I have enabled lazy loading on the import statement that incorporates the top-level administration
component into the rest of the application, as shown in Listing 8-12.

Listing 8-12.  Using Lazy Loading in the App.js File in the src Folder

import React, { Component, lazy, Suspense } from "react";
import { SportsStoreDataStore } from "./data/DataStore";
import { Provider } from "react-redux";
import { BrowserRouter as Router, Route, Switch, Redirect }
 from "react-router-dom";
import { ShopConnector } from "./shop/ShopConnector";
//import { Admin } from "./admin/Admin";
import { AuthProviderImpl } from "./auth/AuthProviderImpl";

const Admin = lazy(() => import("./admin/Admin"));

export default class App extends Component {

Chapter 8 ■ SportsStore: Authentication and Deployment

206

 render() {
 return <Provider store={ SportsStoreDataStore }>
 <AuthProviderImpl>
 <Router>
 <Switch>
 <Route path="/shop" component={ ShopConnector } />
 <Route path="/admin" render={
 routeProps =>
 <Suspense fallback={ <h3>Loading...</h3> }>
 <Admin { ...routeProps } />
 </Suspense>
 } />
 <Redirect to="/shop" />
 </Switch>
 </Router>
 </AuthProviderImpl>
 </Provider>
 }
}

The Suspense component is used to denote content that should be loaded only when it is required and
is combined with the lazy function. Together, these ensure that the Admin component will not be loaded
until it is required. The lazy loading feature is a recent addition to React and, at the time of writing, doesn’t
support lazily loading named exports from files. To accommodate this requirement, I changed the definition
of the Admin component as shown in Listing 8-13.

Listing 8-13.  Changing the Export in the Admin.js File in the src/admin Folder

import React, { Component } from "react";
import ApolloClient from "apollo-boost";
import { ApolloProvider} from "react-apollo";
import { GraphQlUrl } from "../data/Urls";
import { OrdersConnector } from "./OrdersConnector"
import { Route, Redirect, Switch } from "react-router-dom";
import { ToggleLink } from "../ToggleLink";
import { ConnectedProducts } from "./ProductsConnector";
import { ProductEditor } from "./ProductEditor";
import { ProductCreator } from "./ProductCreator";
import { AuthPrompt } from "../auth/AuthPrompt";
import { authWrapper } from "../auth/AuthWrapper";

export default authWrapper(class extends Component {

 // ...constructor and render method omitted for brevity...

})

Chapter 8 ■ SportsStore: Authentication and Deployment

207

Creating the Data File
The data file that is used by the RESTful and GraphQL services uses JavaScript to generate the same data
each time the server is started. This has been useful during development because it has made it easy to
return to a known state, but it isn’t suitable for a production application.

The json-server package will create a persistent database when it is provided with a JSON file,
so I added a file called productionData.json to the sportstore folder with the content shown in Listing 8-14.

Listing 8-14.  The Contents of the productionData.json File in the sportsstore Folder

{
 "products": [
 { "id": 1, "name": "Kayak", "category": "Watersports",
 "description": "A boat for one person", "price": 275 },
 { "id": 2, "name": "Lifejacket", "category": "Watersports",
 "description": "Protective and fashionable", "price": 48.95 },
 { "id": 3, "name": "Soccer Ball", "category": "Soccer",
 "description": "FIFA-approved size and weight", "price": 19.50 },
 { "id": 4, "name": "Corner Flags", "category": "Soccer",
 "description": "Give your playing field a professional touch",
 "price": 34.95 },
 { "id": 5, "name": "Stadium", "category": "Soccer",
 "description": "Flat-packed 35,000-seat stadium", "price": 79500 },
 { "id": 6, "name": "Thinking Cap", "category": "Chess",
 "description": "Improve brain efficiency by 75%", "price": 16 },
 { "id": 7, "name": "Unsteady Chair", "category": "Chess",
 "description": "Secretly give your opponent a disadvantage",
 "price": 29.95 },
 { "id": 8, "name": "Human Chess Board", "category": "Chess",
 "description": "A fun game for the family", "price": 75 },
 { "id": 9, "name": "Bling Bling King", "category": "Chess",
 "description": "Gold-plated, diamond-studded King", "price": 1200 }
],
 "categories": ["Watersports", "Soccer", "Chess"],
 "orders": []
}

Configuring the Request URLs
When I deploy the application, I will replace the React development HTTP server with one that combines
serving static HTML and JavaScript files, as well as providing the RESTful and GraphQL services. To prepare
for combining all the services on a single port, I changed the format of the URLs that the SportsStore uses, as
shown in Listing 8-15.

Listing 8-15.  Changing URLs in the Urls.js File in the src/data Folder

import { DataTypes } from "./Types";

// const protocol = "http";
// const hostname = "localhost";
// const port = 3500;

Chapter 8 ■ SportsStore: Authentication and Deployment

208

export const RestUrls = {
 [DataTypes.PRODUCTS]: `/api/products`,
 [DataTypes.CATEGORIES]: `/api/categories`,
 [DataTypes.ORDERS]: `/api/orders`
}

export const GraphQlUrl = `/graphql`;
export const authUrl = `/login`;

Building the Application
To create the optimized version of the application suitable for production use, open a new command
prompt, navigate to the sportsstore folder, and run the command shown in Listing 8-16.

Listing 8-16.  Building the Application for Deployment

npm run build

The build process can take a moment to complete, and the result is an optimized set of files in the
build folder.

Creating the Application Server
The React development HTTP server isn’t suitable for production. In Listing 8-17, I have extended the
server that has been providing the RESTful and GraphQL services so that it will also serve the files from the
build folder.

Listing 8-17.  Configuring the Server in the server.js File in the sportsstore Folder

const express = require("express");
const jsonServer = require("json-server");
const chokidar = require('chokidar');
const cors = require("cors");
const fs = require("fs");
const { buildSchema } = require("graphql");
const graphqlHTTP = require("express-graphql");
const queryResolvers = require("./serverQueriesResolver");
const mutationResolvers = require("./serverMutationsResolver");
const auth = require("./authMiddleware");
const history = require("connect-history-api-fallback");

const fileName = process.argv[2] || "./data.js"
const port = process.argv[3] || 3500;

let router = undefined;
let graph = undefined;

const app = express();

Chapter 8 ■ SportsStore: Authentication and Deployment

209

const createServer = () => {
 delete require.cache[require.resolve(fileName)];
 setTimeout(() => {
 router = jsonServer.router(fileName.endsWith(".js")
 ? require(fileName)() : fileName);
 let schema = fs.readFileSync("./serverQueriesSchema.graphql", "utf-8")
 + fs.readFileSync("./serverMutationsSchema.graphql", "utf-8");
 let resolvers = { ...queryResolvers, ...mutationResolvers };
 graph = graphqlHTTP({
 schema: buildSchema(schema), rootValue: resolvers,
 graphiql: true, context: { db: router.db }
 })
 }, 100)
}

createServer();

app.use(history());
app.use("/", express.static("./build"));
app.use(cors());
app.use(jsonServer.bodyParser)
app.use(auth);
app.use("/api", (req, resp, next) => router(req, resp, next));
app.use("/graphql", (req, resp, next) => graph(req, resp, next));

chokidar.watch(fileName).on("change", () => {
 console.log("Reloading web service data...");
 createServer();
 console.log("Reloading web service data complete.");
});

app.listen(port, () => console.log(`Web service running on port ${port}`));

The connect-history-api-fallback package responds to any HTTP request with the contents of the
index.html file. This is useful for applications that use URL routing because it means that users can navigate
directly to the URLs to which the application navigates using the HTML5 History API.

Testing the Production Build and Server
To ensure that the production build is working and that the server has been configured correctly, run the
command shown in Listing 8-18 in the sportsstore folder.

Listing 8-18.  Testing the Production Build

node server.js ./productionData.json 4000

Once the server has started, open a new browser window and navigate to http://localhost:4000; you
will see the familiar content shown in Figure 8-4.

Chapter 8 ■ SportsStore: Authentication and Deployment

210

Containerizing the SportsStore Application
To complete this chapter, I am going to create a container for the SportsStore application so that it can be
deployed into production. At the time of writing, Docker is the most popular way to create containers, which
is a pared-down version of Linux with just enough functionality to run the application. Most cloud platforms
or hosting engines have support for Docker, and its tools run on the most popular operating systems.

Installing Docker
The first step is to download and install the Docker tools on your development machine, which is available
from www.docker.com/products/docker. There are versions for macOS, Windows, and Linux, and there are
some specialized versions to work with the Amazon and Microsoft cloud platforms. The free Community
edition is sufficient for this chapter.

Figure 8-4.  Testing the application

http://www.docker.com/products/docker

Chapter 8 ■ SportsStore: Authentication and Deployment

211

■■ Caution O ne drawback of using Docker is that the company that produces the software has
gained a reputation for making breaking changes. This may mean that the example that follows may
not work as intended with later versions. If you have problems, check the repository for this book for updates
(https://github.com/Apress/pro-react-16) or contact me at adam@adam-freeman.com.

Preparing the Application
The first step is to create a configuration file for NPM that will be used to download the additional packages
required by the application for use in the container. I created a file called deploy-package.json in the
sportsstore folder with the content shown in Listing 8-19.

Listing 8-19.  The Contents of the deploy-package.json File in the sportsstore Folder

{
 "name": "sportsstore",
 "description": "SportsStore",
 "repository": "https://github.com/Apress/pro-react-16",
 "license": "0BSD",

 "devDependencies": {
 "graphql": "^14.0.2",
 "chokidar": "^2.0.4",
 "connect-history-api-fallback": "^1.5.0",
 "cors": "^2.8.5",
 "express": "^4.16.4",
 "express-graphql": "^0.7.1",
 "json-server": "^0.14.2",
 "jsonwebtoken": "^8.1.1"
 }
}

The devDependencies section species the packages required to run the application in the container.
All of the packages that are used in the browser have been included in the JavaScript files produced by the
build command. The other fields describe the application, and their main use is to prevent warning when
the container is created.

Creating the Docker Container
To define the container, I added a file called Dockerfile (with no extension) to the sportsstore folder and
added the content shown in Listing 8-20.

Listing 8-20.  The Contents of the Dockerfile File in the sportsstore Folder

FROM node:10.14.1

RUN mkdir -p /usr/src/sportsstore

COPY build /usr/src/sportsstore/build

https://github.com/Apress/pro-react-16

Chapter 8 ■ SportsStore: Authentication and Deployment

212

COPY authMiddleware.js /usr/src/sportsstore/
COPY productionData.json /usr/src/sportsstore/
COPY server.js /usr/src/sportsstore/
COPY deploy-package.json /usr/src/sportsstore/package.json

COPY serverQueriesSchema.graphql /usr/src/sportsstore/
COPY serverQueriesResolver.js /usr/src/sportsstore/
COPY serverMutationsSchema.graphql /usr/src/sportsstore/
COPY serverMutationsResolver.js /usr/src/sportsstore/

WORKDIR /usr/src/sportsstore

RUN echo 'package-lock=false' >> .npmrc

RUN npm install

EXPOSE 80

CMD ["node", "server.js", "./productionData.json", "80"]

The contents of the Dockerfile use a base image that has been configured with Node.js and copies the
files required to run the application, including the bundle file containing the application and the file that will
be used to install the NPM packages required to run the application in deployment.

To speed up the containerization process, I created a file called .dockerignore in the sportsstore
folder with the content shown in Listing 8-21. This tells Docker to ignore the node_modules folder, which is
not required in the container and takes a long time to process.

Listing 8-21.  The Contents of the .dockerignore File in the sportsstore Folder

node_modules

Run the command shown in Listing 8-22 in the sportsstore folder to create an image that will contain
the SportsStore application, along with all the packages it requires.

Listing 8-22.  Building the Docker Image

docker build . -t sportsstore -f Dockerfile

An image is a template for containers. As Docker processes the instructions in the Docker file, the NPM
packages will be downloaded and installed, and the configuration and code files will be copied into the image.

Running the Application
Once the image has been created, create and start a new container using the command shown in
Listing 8-23.

Chapter 8 ■ SportsStore: Authentication and Deployment

213

Listing 8-23.  Starting the Docker Container

docker run -p 80:80 sportsstore

You can test the application by opening http://localhost in the browser, which will display the
response provided by the web server running in the container, as shown in Figure 8-5.

Figure 8-5.  Running the containerized SportsStore application

To stop the container, run the command shown in Listing 8-24.

Listing 8-24.  Listing the Containers

docker ps

Chapter 8 ■ SportsStore: Authentication and Deployment

214

You will see a list of running containers, like this (I have omitted some fields for brevity):

CONTAINER ID IMAGE COMMAND CREATED
ecc84f7245d6 sportsstore "node server.js" 33 seconds ago

Using the value in the Container ID column, run the command shown in Listing 8-25.

Listing 8-25.  Stopping the Container

docker stop ecc84f7245d6

The application is ready to deploy to any platform that supports Docker.

Summary
This chapter completes the SportsStore application, showing how a React application can be prepared for
deployment and how easy it is to put a React application into a container such as Docker. That’s the end of
this part of the book. In Part 2, I begin the process of digging into the details and show you how the features
I used to create the SportsStore application work in depth.

PART II

Working with React

217© Adam Freeman 2019
A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_9

CHAPTER 9

Understanding React Projects

In Part 1 of this book, I created the SportsStore application to demonstrate how different React features can
be combined with other packages to create a realistic application. In this part of the book, I dig into the detail
of the built-in React features. In this chapter, I describe the structure of a React project and explain the tools
that are provided for developers and the process by which code and content is compiled, packaged, and sent
to the browser. Table 9-1 puts this chapter in context.

Table 9-1.  Putting React Projects in Context

Question Answer

What are they? The create-react-app package is used to create projects and set
up the tools that are required for effective React development.

Why are they useful? Projects created with the create-react-app package are designed
for the development of complex applications and provide a
complete set of tools for development, testing, and deployment.

How are they used? A project is created using the npx create-react-app package, and
the development tools are started using the npm start command.

Are there any pitfalls or limitations? The create-react-app package is “opiniated,” which means that it
provides a specific way of working with few configuration options.
This can be frustrating if you are used to a different workflow.

Are there any alternatives? You don’t have to use create-react-app to create projects. There
are alternative packages available as noted later in this chapter.

Chapter 9 ■ Understanding React Projects

218

Preparing for This Chapter
To create the example project for this chapter, open a new command prompt, navigate to a convenient
location, and run the command shown in Listing 9-1.

Listing 9-1.  Creating the Project

npx create-react-app projecttools

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/pro-react-16.

■■ Note  When you create a new project, you may see warnings about security vulnerabilities. React
development relies on a large number of packages, each of which has its own dependencies, and security
issues will inevitably be discovered. For the examples in this book, it is important to use the package versions
specified to ensure you get the expected results. For your own projects, you should review the warnings and
update to versions that resolve the problems.

Run the commands shown in Listing 9-2 to navigate to the project folder and add the Bootstrap package
to the project.

Table 9-2.  Chapter Summary

Problem Solution Listing

Create a new React project Use the create-react-app package and add optional packages 1–3

Transform HTML to JavaScript Use the JSX format to mix HTML and code statements 6

Include static content Add files to the src folder and incorporate them into the
application using the import keyword

9–10

Include static content outside
of the development tools

Add files to the public folder and define references using the
PUBLIC_URL property

11–13

Disabling linting messages Add comments to JavaScript files 15–19

Configure the React
development tools

Create an .env file and set configuration properties 20

Debug React applications Use the React Devtools browser extension or use the browser
debugger

22–26

Table 9-2 summarizes the chapter.

https://github.com/Apress/pro-react-16

Chapter 9 ■ Understanding React Projects

219

Listing 9-2.  Adding the Bootstrap CSS Framework

cd projecttools
npm install bootstrap@4.1.2

To include the Bootstrap CSS stylesheet in the application, add the statement shown in Listing 9-3 to the
index.js file, which can be found in the src folder.

Listing 9-3.  Including Bootstrap in the index.js File in the src Folder

import React from 'react';
import ReactDOM from 'react-dom';
import './index.css';
import App from './App';
import * as serviceWorker from './serviceWorker';
import 'bootstrap/dist/css/bootstrap.css';

ReactDOM.render(<App />, document.getElementById('root'));

// If you want your app to work offline and load faster, you can change
// unregister() to register() below. Note this comes with some pitfalls.
// Learn more about service workers: http://bit.ly/CRA-PWA
serviceWorker.unregister();

Using the command prompt, run the command shown in Listing 9-4 in the projecttools folder to start
the development tools.

■■ Caution N otice that the development tools are started using the npm command and not the npx command
that was used in Listing 9-1.

Listing 9-4.  Starting the Development Tools

npm start

Once the initial preparation for the project is complete, a new browser window will open and display
the URL http://localhost:3000 and display the placeholder content shown in Figure 9-1.

Chapter 9 ■ Understanding React Projects

220

Understanding the React Project Structure
When you create a new project, you will start with a basic set of React application files, some placeholder
content, and a complete set of development tools. Figure 9-2 shows the contents of the projecttools folder.

Figure 9-1.  Running the example application

Chapter 9 ■ Understanding React Projects

221

■■ Note  You don’t have to use the create-react-app package to create React projects, but it is the most
common approach, and it takes care of configuring the build tools that support the features described in this
chapter. You can create all of the files and configure the tools directly, if you prefer, or use one of the other
techniques available for creating a project, which are described at https://reactjs.org/docs/create-a-
new-react-app.html.

Table 9-3 describes each of the files in the project, and I provide more details about the most important
files in the sections that follow.

Figure 9-2.  The contents of a new project

https://reactjs.org/docs/create-a-new-react-app.html
https://reactjs.org/docs/create-a-new-react-app.html

Chapter 9 ■ Understanding React Projects

222

Understanding the Source Code Folder
The src folder is the most important in the project because it is where the application’s code and content
files are placed and where you will define the custom features required by your project. The create-react-
app package adds files to jump-start development, as described in Table 9-4.

Table 9-4.  The Files in the src Folder

Name Description

index.js This file is responsible for configuring and starting the application.

index.css This file contains the global CSS styles for the application. See the
“Understanding Static Content” section for details of using CSS files.

App.js This file contains the top-level React component. Components are
described in Chapters 10 and 11.

App.css This file contains the placeholder CSS styles for new projects. See the
“Understanding Static Content” section for details.

App.test.js This file contains unit tests for the top-level component. See Chapter 17
for details of unit testing.

registerServiceWorker.js This file is used by progressive web applications, which can work offline.
I do not describe progressive applications in this book, but you can find
details at https://facebook.github.io/create-react-app/docs/
making-a-progressive-web-app.

logo.svg This image file contains the React logo and is displayed by the
placeholder component added to the project when it is created. See the
“Understanding Static Content section.

Table 9-3.  The Project Files and Folders

Name Description

node_modules This folder contains the packages that the application and development tools
require, as described in the “Understanding the Packages Folder” section.

public This folder is used for static content and includes the index.html file that is used
to respond to HTTP requests, as described in the “Understanding Static Content”
section.

src This folder contains the application code and content, as described in the
“Understanding the Source Code Folder” section.

.gitignore This file is used to exclude files and folders from the Git revision control package.

package.json This folder contains the set of top-level package dependencies for the project, as
described in the “Understanding the Packages Folder” section.

package-lock.json This file contains a complete list of the package dependencies for the project, as
described in the “Understanding the Packages Folder” section.

README.md This file contains information about the project tools, and the same content can be
found at https://github.com/facebook/create-react-app.

https://facebook.github.io/create-react-app/docs/making-a-progressive-web-app
https://facebook.github.io/create-react-app/docs/making-a-progressive-web-app
https://github.com/facebook/create-react-app

Chapter 9 ■ Understanding React Projects

223

Understanding the Packages Folder
JavaScript application development depends on a rich ecosystem of packages, ranging from those that
contain the code that will be sent to the browser to small packages that are used behind the scenes during
development for a specific task. A lot of packages are required in a React project: the example project created
at the start of this chapter, for example, requires more than 900 packages.

There is a complex hierarchy of dependencies between these packages that is too difficult to manage
manually and that is handled using a package manager. React projects can be created using two different
package managers: NPM, which is the Node Package Manager and that was installed alongside Node.js in
Chapter 1, and Yarn, which is a recent competitor designed to improve package management. I use NPM
throughout this book for simplicity.

■■ Tip  You should use NPM to follow the examples in this book, but you can find details of Yarn
at https://yarnpkg.com if you want to use it in your own projects.

When a project is created, the package manager is given an initial list of packages required for React
development, each of which is inspected to get the set of packages it depends on. The process is performed
again to get the dependencies of those packages and repeated until a complete list of packages is built up.
The package manager downloads and installs all of the packages and installs them into the node_modules
folder.

The initial set of packages is defined in the package.json file using the dependencies and
devDependencies properties. The dependencies section is used to list the packages that the application will
require to run. The devDependencies section is used to list the packages that are required for development
but that are not deployed as part of the application.

You may see different details in your project, but here is the dependencies section from the package.
json file from my example project:

...
"dependencies": {
 "bootstrap": "^4.1.2",
 "react": "^16.7.0",
 "react-dom": "^16.7.0",
 "react-scripts": "2.1.2"
},
...

Only three packages are required in the dependencies section for a React project: the react package
contains the main features, the react-dom package contains the features required for web applications, and
the react-scripts package contains the development tool commands that I describe in this chapter. The
fourth package is the Bootstrap CSS framework, added to the project in Listing 9-2. For each package, the
package.json file includes details of the version numbers that are acceptable, using the format described in
Table 9-5.

https://yarnpkg.com

Chapter 9 ■ Understanding React Projects

224

The version numbers specified in the dependencies section of the package.json file will accept minor
updates and patches.

UNDERSTANDING GLOBAL AND LOCAL PACKAGES

Package managers can install packages so they are specific to a single project (known as a local install)
or so they can be accessed from anywhere (known as a global install). Few packages require global
installs, but one exception is the create-react-app package that I installed in Chapter 1 as part of the
preparations for this book. The create-react-app package requires a global install because it is used
to create new projects. The individual packages required for the project are installed locally, into the
node_modules folder.

All the packages required for development are automatically downloaded and installed into the node_
modules folder when you create a React project, but Table 9-6 lists some NPM commands that you may find
useful during development. All of these commands should be run inside the project folder, which is the one
that contains the package.json file.

Table 9-5.  The Package Version Numbering System

Format Description

16.7.0 Expressing a version number directly will accept only the package with the exact
matching version number, e.g., 16.7.0.

* Using an asterisk accepts any version of the package to be installed.

>16.7.0 >=16.7.0 Prefixing a version number with > or >= accepts any version of the package that is
greater than or greater than or equal to a given version.

<16.7.0 <=16.7.0 Prefixing a version number with < or <= accepts any version of the package that is
less than or less than or equal to a given version.

~16.7.0 Prefixing a version number with a tilde (the ~ character) accepts versions to be
installed even if the patch level number (the last of the three version numbers)
doesn’t match. For example, specifying ~16.7.0 will accept version 16.7.1 or 16.7.2
(which would contain patches to version 16.7.0) but not version 16.8.0 (which
would be a new minor release).

^16.7.0 Prefixing a version number with a caret (the ^ character) will accept versions even
if the minor release number (the second of the three version numbers) or the
patch number doesn’t match. For example, specifying ^16.7.0 will allow versions
16.8.0 and 16.9.0, for example, but not version 17.0.0.

Chapter 9 ■ Understanding React Projects

225

The last command described in Table 9-6 is an oddity, but package managers have traditionally
included support for running commands that are defined in the scripts section of the package.json file. In
a React project, this feature is used to provide access to the tools that are used during development and that
prepare the application for deployment. Here is the scripts section of the package.json file in the example
project:

...
"scripts": {
 "start": "react-scripts start",
 "build": "react-scripts build",
 "test": "react-scripts test",
 "eject": "react-scripts eject"
},
...

These commands are summarized in Table 9-7, and I demonstrate their use in later sections.

Table 9-6.  Useful NPM Commands

Command Description

npx create-react-app <name> This command creates a new React project.

npm install This command performs a local install of the packages specified in the
package.json file.

npm install package@version This command performs a local install of a specific version of a
package and updates the package.json file to add the package to the
dependencies section.

npm install --save-dev
package@version

This command performs a local install of a specific version of a
package and updates the package.json file to add the package to the
devDependencies section, which is used to add packages to the project
that are required for development but are not part of the application.

npm install --global
package@version

This command will perform a global install of a specific version of a
package.

npm list This command will list all of the local packages and their dependencies.

npm run This command will execute one of the scripts defined in the package.
json file, as described next.

Table 9-7.  The Commands in the Scripts Section of the package.json File

Name Description

start This command starts the development tools, as described in the “Using the React
Development Tools” section.

build This command performs the build process.

test This command runs the unit tests, as described in Chapter 17.

eject This command copies the configuration files for all the development tools into the project
folder. This is a one-way operation and should be used only when the default configuration
of the development tools is unsuitable for a project.

Chapter 9 ■ Understanding React Projects

226

The commands in Table 9-7 are executed by using npm run followed by the name of the command that
you require, and this must be done in the folder that contains the package.json file. So, if you want to run
the build command in the example project, you would navigate to the projecttools folder and type npm
run build. The exception is the start command, which is executed using npm start.

Using the React Development Tools
The development tools added to a project automatically detect changes in the src folder, compile the
application, and package the files ready to be used by the browser. These are tasks you could perform
manually, but having automatic updates makes for a more pleasant development experience. If they
are not already running, start the development tools by opening a command prompt, navigating to the
projecttools folder, and running the command shown in Listing 9-5.

Listing 9-5.  Starting the Development Tools

npm start

The key package used by the development tools is webpack, which is the backbone for many JavaScript
development tools and frameworks. Webpack is a module bundler, which means that it packages JavaScript
modules for use in a browser—although that’s a bland description for an important function, and it is one of
the key tools that you will rely on while developing a React application.

When you run the command in Listing 9-5, you will see a series of messages as webpack prepares the
bundles required to run the example application. Webpack starts with the index.js file and loads all of the
modules for which there are import statements to create a set of dependencies. This process is repeated for
each of the modules that index.js depends on, and webpack keeps working its way through the application
until it has a complete set of dependencies for the entire application, which is then combined into a single
file, known as the bundle.

The bundling process can take a moment, but it needs to be performed only when you start the
development tools. Once the initial preparation has been completed, you will see a message like this one,
which tells you that the application has been compiled and bundled:

...
Compiled successfully!

You can now view projecttools in the browser.

 Local: http://localhost:3000/
 On Your Network: http://192.168.0.77:3000/

Note that the development build is not optimized.
To create a production build, use npm run build.
...

As the initial process completes, a new browser window will be opened for http://localhost:3000,
showing the placeholder content in Figure 9-3.

Chapter 9 ■ Understanding React Projects

227

Understanding the Compilation and Transformation Process
Webpack is responsible for the build process, and one of the key steps is code transformation performed
by the Babel package. Babel has two important tasks in a React project: transforming JSX content and
transforming JavaScript code that uses the latest JavaScript features into code that can be executed by older
browsers.

Understanding the JSX Transformation
As I explained in Chapter 3, the JSX format is a superset of JavaScript that allows HTML to be mixed with
regular code statements. JSX doesn’t support entirely standard HTML, and the most obvious difference is
that attributes such as class in pure HTML are expressed as className in a JSX file. The reason for these
oddities is that the content of a JSX file is converted into calls to the React API by Babel during the build
process so that every HTML element is translated into a call to the React.createElement method.
In Listing 9-6, I have replaced the placeholder content in the App.js file with a component whose render
method returns some simple HTML elements.

Listing 9-6.  Replacing the Placeholder Content in the App.js File in the src Folder

import React, { Component } from "react";

export default class extends Component {

 render = () =>
 <h4 className="bg-primary text-white text-center p-3">
 This is an HTML element
 </h4>
}

Figure 9-3.  Using the development tools

Chapter 9 ■ Understanding React Projects

228

During the transformation process, the h4 element is replaced with a call to the React.createElement
method, producing a result that is entirely JavaScript and that requires no special understanding of JSX
by the browser. As a simple demonstration, Listing 9-7 uses the React.createElement method directly to
achieve the same result.

Listing 9-7.  Using the React API Directly in the App.js File in the src Folder

import React, { Component } from "react";

export default class extends Component {

 render = () => React.createElement("h4",
 { className: "bg-primary text-white text-center p-3" },
 "This is an HTML element")
}

Listing 9-6 and Listing 9-7 produce the same result, and when Babel processes the contents of
the App.js file from Listing 9-6, it produces the code from Listing 9-7. When React executes the
JavaScript code in the browser, it then uses the DOM API to create the HTML element, as demonstrated in
Chapter 3. This may seem like a circular approach, but the JSX transformation is performed only during the
build process and is intended to make writing React features easier.

Understanding the JavaScript Language Transformation
After years of stagnation, the JavaScript language has been revitalized and modernized with features that
simplify development and provide features that are common in other programming languages, such as those
features described in Chapter 4. Not all recent language features are supported by all browsers, especially
older browsers or those used in corporate environments where updates are often rolled out slowly (if at all).
Babel solves this problem by translating modern features into code that uses features that are supported by a
much wider range of browsers, including those that pre-date the JavaScript renaissance.

In Listing 9-8, I have returned the App.js file to use HTML elements and used recent JavaScript features
to set the content of the h4 element.

Listing 9-8.  Using Modern JavaScript Features in the App.js File in the src Folder

import React, { Component } from "react";

let name = "Adam";
const city = "London";

export default class extends Component {

 message = () => `Hello ${name} from ${city}`;

 render = () =>
 <h4 className="bg-primary text-white text-center p-3">
 { this.message() }
 </h4>
}

Chapter 9 ■ Understanding React Projects

229

This component relies on several recent JavaScript features: the class and extends keywords for
defining classes, the let and const keywords for defining variables and constants, and a lambda function
and template string in the message method. When you save the changes, the React development tools will
automatically compile and bundle the JavaScript code and send it to the browser, producing the content
shown in Figure 9-4.

Figure 9-5.  Locating the compiled source code

Figure 9-4.  Using modern language features

To see how Babel has handled the modern JavaScript features, open the F12 developer tools,
select the Sources tab, and locate the main.chunk.js item in the tree on the left side of the window, as
shown in Figure 9-5. For the version of Chrome that was current at the time of writing, the file is under the
localhost:3000 > static/js part of the tree.

■■ Tip T he Google Chrome developer tools change often, and you may have to hunt around to locate the code
produced by Babel. Using Ctrl+F and searching for London is a good way to locate the code you are looking for.
An alternative approach is to paste the code from Listing 9-8 into the interpreter at https://babeljs.io/repl,
which will produce a similar result.

https://babeljs.io/repl

Chapter 9 ■ Understanding React Projects

230

If you scroll down—or search for London, as noted earlier—then you will see the code that Babel has
produced. All the features that are not supported by older browsers are replaced with backward-compatible
code, like this:

...
var name = "Adam";
var city = "London";

var App = function (_Component) {
 _inherits(App, _Component);

 function App() {
 var _ref;

 var _temp, _this, _ret;

 _classCallCheck(this, App);

 for (var _len = arguments.length, args = Array(_len), _key = 0;
 _key < _len; _key++) {
 args[_key] = arguments[_key];
 }

 return _ret = (_temp = (_this = _possibleConstructorReturn(this,
 (_ref = App.__proto__ || Object.getPrototypeOf(App)).call.apply(_ref,
 [this].concat(args))), _this), _this.message = function () {
 return "Hello " + name + " from " + city;
 }, _temp), _possibleConstructorReturn(_this, _ret);
 }

 _createClass(App, [{
 key: "render",
 value: function render() {
 return __WEBPACK_IMPORTED_MODULE_0_react___default.a.createElement(
 "div",
 { className: "h1 bg-primary text-white text-center p-3", __source: {
 fileName: _jsxFileName,
 lineNumber: 12
 },
 __self: this
 },
 this.message()
);
 }
 }]);
 return App;
}
...

Chapter 9 ■ Understanding React Projects

231

You don’t have to understand how this code works in detail, not least because some of it is convoluted
and difficult to read. What’s important is how the features used in the App.js file are handled, such as the
let and const keywords, which are replaced with the traditional var keyword.

...
var name = "Adam";
var city = "London";
...

You can also see that the template string has been replaced with string concatenation, as shown here:

...
return "Hello " + name + " from " + city;
...

Some of the features, such as classes, are handled using functions that Babel adds to the bundle sent to
the browser. The JSX HTML fragment is translated into a call to the React.createElement method.

The translation of modern features is complex, but recent additions to the JavaScript language are
largely syntactic sugar intended to make coding more pleasant for the developer. Translating these features
robs the code of these leasing features and requires some contortions to create an equivalent effect that
older browsers can execute.

UNDERSTANDING THE LIMITS OF BABEL

Babel is an excellent tool, but it deals only with JavaScript language features. Babel is not able to add
support for recent JavaScript APIs to browsers that do not implement them. You can still use these
APIs—as I demonstrated in Part 1 when I used the Local Storage API—but doing so restricts the range
of browsers that can run the application.

Understanding the Development HTTP Server
To simplify the development process, the project incorporates the webpack-dev-server package, which is
an HTTP server that is integrated with webpack. The server is configured to start listening for HTTP requests
on port 3000 as soon as the initial bundling process is complete. When an HTTP request is received, the
development HTTP server returns the contents of the public/index.html file. When it processes the index.
html file, the development server makes some important additions, which you can see by right-clicking in
the browser window and selecting View Page Source from the pop-up menu.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width,
 initial-scale=1, shrink-to-fit=no">
 <meta name="theme-color" content="#000000">
 <link rel="manifest" href="/manifest.json">
 <link rel="shortcut icon" href="/favicon.ico">
 <title>React App</title>
 </head>

Chapter 9 ■ Understanding React Projects

232

 <body>
 <noscript>
 You need to enable JavaScript to run this app.
 </noscript>
 <div id="root"></div>
 <script src="/static/js/bundle.js"></script>
 <script src="/static/js/0.chunk.js"></script>
 <script src="/static/js/main.chunk.js"></script>
 <script src="/main.a5f0dcc648ccc4241725.hot-update.js"></script>
 </body>
</html>

The development server adds script elements that tell the browser to load the files that contain the
React framework, the application code, static content (such as CSS), and some additional features that
support the development tools and automatically reload the browser when a change has been detected.

Understanding Static Content
There are two ways to include static content, such as images or CSS stylesheets in a React application.
In most circumstances, the best approach is to add the files you need to the src folder and then declare
dependencies on them in your code files using import statements.

To demonstrate how static content in the src folder is handled, I replaced the contents of the App.css
file, which was added to the project when it was created, with the CSS style shown in Listing 9-9.

Listing 9-9.  Replacing the Styles in the App.css File in the src Folder

img {
 background-color: lightcyan;
 width: 50%;
}

The style I defined selects img elements and sets the background color and width. In Listing 9-10,
I added dependencies to two static files in the src folder to the App component, including the CSS file I
updated in the previous listing and the placeholder image added to the project when it is created.

■■ Tip T he index.css file is imported by the index.js file, which is the JavaScript file responsible for starting
the React application. You can define global styles in the CSS file, and they will be included in the content sent
to the browser.

Listing 9-10.  Declaring a Static Dependency in the App.js File in the src Folder

import React, { Component } from "react";
import "./App.css";
import reactLogo from "./logo.svg";

Chapter 9 ■ Understanding React Projects

233

let name = "Adam";
const city = "London";

export default class extends Component {

 message = () => `Hello ${name} from ${city}`;

 render = () =>
 <div className="text-center">
 <h4 className="bg-primary text-white text-center p-3">
 { this.message() }
 </h4>

 </div>
}

To import content that doesn’t need to be referred to in order to be used, such as a CSS stylesheet, the
import keyword is followed by the file name, which must include the file extension, like this:

...
import "./App.css";
...

To import content that will be referred to in an HTML element, such an image, then the form of the
import statement that assigns a name to the imported feature must be used, like this statement:

...
import reactLogo from "./logo.svg";
...

This statement imports the logo.svg file and assigns it the name reactLogo, which I can then use in an
expression in an img element, like this:

...

...

When you use the import keyword to declare a dependency on static content, the decision about
how to handle the content is left to the development tools. For files that are smaller than 10Kb, the
content will be included in the bundle.js file, along with the JavaScript code required to add the
content to the HTML document. This is what happens with the App.css file that was imported in
Listing 9-10: the contents of the CSS file will be included in the bundle.js file, along with the code
required to create a style element.

For larger files—and any SVG files of any size—the imported file is requested in a separate HTTP
request. The relative path specified by the import statement is automatically replaced by a URL that will
locate the file, and the file name is changed so that it includes a checksum, which ensures that stale data
won’t be cached by the browser.

Chapter 9 ■ Understanding React Projects

234

You can see the effect of the static content used in Listing 9-10 by saving the changes to the App.js file,
waiting for the browser to reload, and then using the F12 developer’s tools to examine the Elements tab,
which will show the following HTML (although I have omitted the large number of Bootstrap CSS styles for
brevity):

<html lang="en">
 <head>
 <meta charset="utf-8">
 <link rel="shortcut icon" href="/favicon.ico">
 <meta name="viewport" content="width=device-width,
 initial-scale=1, shrink-to-fit=no">
 <meta name="theme-color" content="#000000">
 <link rel="manifest" href="/manifest.json">
 <title>React App</title>
 <style type="text/css">
 img { background-color: lightcyan; width: 50% }
 </style>
 </head>
 <body>
 <noscript>You need to enable JavaScript to run this app.</noscript>
 <div id="root">
 <div class="text-center">
 <h4 class="bg-primary text-white text-center p-3">
 Hello Adam from London
 </h4>

 </div>
 </div>
 <script src="/static/js/bundle.js"></script>
 <script src="/static/js/1.chunk.js"></script>
 <script src="/static/js/main.chunk.js"></script>
 <script src="/main.00ec8a0c115561c18137.hot-update.js"></script>
 </body>
</html>

You can see that the CSS styles have been unpacked from the JavaScript bundle and added to
the HTML document through a style element, whereas the image file is accessed through the URL
/static/media/logo.5d5d9eef.svg. During the build process, large files are automatically copied into
the location specified by the URLs that are included in the application’s code, which means you don’t
have to worry about them being available. The changes in Listing 9-10 produce the result shown in
Figure 9-6.

Chapter 9 ■ Understanding React Projects

235

Using the Public Folder for Static Content
There are several advantages to using the src folder for static content, but you may find that it isn’t always
suitable for every project, especially where static content isn’t available at build time and cannot be
processed by the React development tools. In these situations, you can put static content in the public
folder, although this means you are responsible for ensuring the application has the files it requires. To
demonstrate the use of the public folder, I added to it a file called static.css, with the content shown in
Listing 9-11.

Listing 9-11.  The Contents of the static.css File in the public Folder

img {
 border: 8px solid black;
}

Open a new command prompt, navigate to the projecttools folder, and run the command shown in
Listing 9-12, which will copy the logo.svg file from the src folder into the public folder.

Listing 9-12.  Copying an Image File into the Public Folder

cp src/logo.svg public/

In Listing 9-13, I have added HTML elements to the content rendered by the App component for the
image and stylesheet in the public folder.

Figure 9-6.  Static content in the src folder

Chapter 9 ■ Understanding React Projects

236

Listing 9-13.  Accessing Static Files in the App.js File in the src Folder

import React, { Component } from "react";
import "./App.css";
import reactLogo from "./logo.svg";

let name = "Adam";
const city = "London";

export default class extends Component {

 message = () => `Hello ${name} from ${city}`;

 render = () =>
 <div className="text-center">
 <h4 className="bg-primary text-white text-center p-3">
 { this.message() }
 </h4>

 <link rel="stylesheet"
 href={ process.env.PUBLIC_URL + "/static.css"} />

 </div>
}

To specify the URL for the static files, the process.env.PUBLIC_URL property is combined with the file
name in an expression. Notice that I have added a link element for the stylesheet because I cannot rely
on the code in the bundle.js file to create the styles automatically. The result of the elements added to the
component is shown in Figure 9-7.

Figure 9-7.  Static content in the public folder

Chapter 9 ■ Understanding React Projects

237

Understanding the Error Display
One effect of the immediacy provided by the automatic-reload feature is that you will tend to stop watching
the console output during development because your focus will naturally gravitate to the browser window.
The risk is that the content displayed by the browser remains static when the code contains errors because
the compilation process can’t produce a new module to send to the browser through the HMR feature. To
address this, the bundle produced by webpack includes an integrated error display that shows details of
problems in the browser window. To demonstrate the way that an error is handled, I added the statement
shown in Listing 9-14 to the App.js file.

Listing 9-14.  Creating an Error in the App.js File in the src Folder

import React, { Component } from "react";
import "./App.css";
import reactLogo from "./logo.svg";

let name = "Adam";
const city = "London";

not a valid statement

export default class extends Component {

 message = () => `Hello ${name} from ${city}`;

 render = () =>
 <div className="text-center">
 <h4 className="bg-primary text-white text-center p-3">
 { this.message() }
 </h4>

 <link rel="stylesheet"
 href={ process.env.PUBLIC_URL + "/static.css"} />

 </div>
}

The addition isn’t a valid JavaScript statement. When the change to the file is saved, the build process
tries to compile the code and generates the following error message at the command prompt:

...
Failed to compile.

./src/App.js
 Line 8: Parsing error: Unexpected token, expected ";"

 6 | const city = "London";
 7 |
> 8 | not a valid statement
 | ^
 9 |
 10 | export default class extends Component {

Chapter 9 ■ Understanding React Projects

238

 11 |
...

The same error message is displayed in the browser window so you will realize there is a problem even
if you are not paying attention to the command-line messages. If you click the stack trace, then the browser
will send an HTTP request to the development server, which will try to figure out which code editor you are
using and highlight the problem, as shown in Figure 9-8.

■■ Tip  You may need to configure the React development tools to specify your editor, as described in the
“Configuring the Development Tools” section, and not all editors are supported. Figure 9-8 shows Visual Studio
Code, which is one of the editors for which support is provided.

Understanding the Linter
The React development tools include a linter, which is responsible for checking the code and content in a
project conform to a set of rules. When you create a project using the create-react-app package, the ESLint
package is used as the linter with a set of rules that are intended to help programmers avoid common errors.
As a demonstration, I added a variable to the App.js file, as shown in Listing 9-15. (This change also has the
effect of removing the statement that causes the compiler error in the previous section).

Listing 9-15.  Adding a Variable in the App.js File in the src Folder

import React, { Component } from "react";
import "./App.css";
import reactLogo from "./logo.svg";

Figure 9-8.  Following an error to the source code file

Chapter 9 ■ Understanding React Projects

239

let name = "Adam";
const city = "London";

let error = "not a valid statement";

export default class extends Component {

 message = () => `Hello ${name} from ${city}`;

 render = () =>
 <div className="text-center">
 <h4 className="bg-primary text-white text-center p-3">
 { this.message() }
 </h4>

 <link rel="stylesheet"
 href={ process.env.PUBLIC_URL + "/static.css"} />

 </div>
}

When you save the file, you will see the following warning displayed at the command line and also in
the browser’s JavaScript console:

...
Compiled with warnings.

./src/App.js
 Line 8: 'error' is assigned a value but never used no-unused-vars
...

The linter cannot be disabled or reconfigured, which means that you will receive linting warnings for
a fixed set of rules, including the no-unused-vars rule, which is the one broken by Listing 9-15. You can see
the set of rules that are applied in React projects at https://github.com/facebook/create-react-app/
tree/master/packages/eslint-config-react-app.

When you receive a warning, a search for the rule name will provide you with a description of the
problem. In this case, a search for no-unused-vars will lead you to https://eslint.org/docs/rules/
no-unused-vars, which explains that variables cannot be defined and not used.

Disabling Linting for Individual Statements and Files
Although the linter cannot be disabled, you can add comments to files to prevent warnings. In Listing 9-16, I
have disabled the no-unused-var rule for a single statement by adding a comment.

Listing 9-16.  Disabling a Single Linting Rule in the App.js File in the src Folder

import React, { Component } from "react";
import "./App.css";
import reactLogo from "./logo.svg";

https://github.com/facebook/create-react-app/tree/master/packages/eslint-config-react-app
https://github.com/facebook/create-react-app/tree/master/packages/eslint-config-react-app
https://eslint.org/docs/rules/no-unused-vars
https://eslint.org/docs/rules/no-unused-vars

Chapter 9 ■ Understanding React Projects

240

let name = "Adam";
const city = "London";

// eslint-disable-next-line no-unused-vars
let error = "not a valid statement";

export default class extends Component {

 message = () => `Hello ${name} from ${city}`;

 render = () =>
 <div className="text-center">
 <h4 className="bg-primary text-white text-center p-3">
 { this.message() }
 </h4>

 <link rel="stylesheet"
 href={ process.env.PUBLIC_URL + "/static.css"} />

 </div>
}

If you want to disable every rule for a next statement, then you can omit the rule name, as shown in
Listing 9-17.

Listing 9-17.  Disabling All Linting Rules in the App.js File in the src Folder

...
// eslint-disable-next-line
let error = "not a valid statement";
...

If you want to disable a rule for an entire file, then you can add a comment to the top of the file, as
shown in Listing 9-18.

Listing 9-18.  Disabling a Single Rule for a File in the App.js File in the src Folder

/* eslint-disable no-unused-vars */

import React, { Component } from "react";
import "./App.css";
import reactLogo from "./logo.svg";

let name = "Adam";
const city = "London";

let error = "not a valid statement";

export default class extends Component {

 message = () => `Hello ${name} from ${city}`;

Chapter 9 ■ Understanding React Projects

241

 render = () =>
 <div className="text-center">
 <h4 className="bg-primary text-white text-center p-3">
 { this.message() }
 </h4>

 <link rel="stylesheet"
 href={ process.env.PUBLIC_URL + "/static.css"} />

 </div>
}

If you want to disable linting for all rules for a single file, then you can omit the rule name from the
comment, as shown in Listing 9-19.

Listing 9-19.  Disabling All Rules for a File in the App.js File in the src Folder

...
/* eslint-disable */

import React, { Component } from 'react';
import "./App.css";
import reactLogo from "./logo.svg";

let name = "Adam";
const city = "London";
...

The linter will ignore the contents of the App.js file but will still check the contents of the other files in
the project.

USING TYPESCRIPT OR FLOW

Linting isn’t the only way to detect common errors and a good complementary technique is static type
checking, in which you add details of the data types for variables and function results to your code to
create a policy that is enforced by the compiler. For example, you might specify that a function always
returns a string or that its first parameter can only be a number. When the application is compiled, the
code that uses that function is checked to ensure that it only passes number values as arguments and
treats the result only as a string.

There are two common ways to add static type checking to a React project. The first is to use
TypeScript, which is a superset of JavaScript produced by Microsoft. TypeScript makes working with
JavaScript more like C# or Java and includes support for static type checking. If you want to use
TypeScript, then use the --scripts-version argument when you create the project, like this:

...
npx create-react-app projecttools --scripts-version=react-scripts-ts
...

Chapter 9 ■ Understanding React Projects

242

The react-scripts-ts value produces a project that is set up with the TypeScript tools and features.
You can learn more about TypeScript at https://www.typescriptlang.org.

An alternative is a package called Flow, which is focused solely on type checking and doesn’t have the
broader features of TypeScript. You can learn more about Flow at https://flow.org

Configuring the Development Tools
The React development tools provide a small number of configuration options, although these won’t be
required in most projects. The available options are described in Table 9-8.

These options are specified either by setting environment variables or by creating an .env file, which is
the approach that I find most reliable. To demonstrate the configuration process, I added a file called .env to
the projecttools folder and added the configuration statements shown in Listing 9-20.

Table 9-8.  The React Development Tools Configuration Options

Name Description

BROWSER This option is used to specify the browser that is opened when the
development tools complete the initial build process. You can specify a
browser by specifying its path or disable this feature by using none.

HOST This option is used to specify the hostname that the development HTTP
server binds to, which defaults to localhost.

PORT This option is used to specify the port that the development HTTP server
uses, which defaults to 3000.

HTTPS When set to true, this option enables SSL for the development HTTP server,
which generates a self-signed certificate. The default is false.

PUBLIC_URL This option is used to change the URL used to request content from the
public folder, as described in the Understanding Static Content section.

CI When set to true, this option treats all warnings as errors in the build
process. The default value is false.

REACT_EDITOR This option is used to specify the editor for the feature that opens the code
file when you click on a stack trace in the browser, as described in the
Understanding the Error Display section.

CHOKIDAR_USEPOLLING This option should be set to true when the development tools cannot detect
changes to the src folder, which may happen if you are working in a virtual
machine or a container.

GENERATE_SOURCEMAP Settings this option to false disables the generation of source maps, which
the browser uses to correlate the bundled JavaScript code with the source
files in the project during debugging. The default is true.

NODE_PATH This setting is used to specify the locations that will be searched for Node.js
modules.

https://www.typescriptlang.org
https://flow.org

Chapter 9 ■ Understanding React Projects

243

Listing 9-20.  The Contents of the .env File in the projecttools Folder

PORT=3500
HTTPS=true

I used the PORT option to specify port 3500 for receiving requests and the HTTPS option to enable SSL in
the development server. To see the effect of the changes, stop the development tools and run the command
shown in Listing 9-21 to start them again.

Listing 9-21.  Starting the React Development Tools

npm start

When the initial build process is complete, the browser window that is opened will navigate to https://
localhost:3500. Most browsers will display a warning about the self-signed certificate and then display
the web application once you have clicked on the Advanced link (or its equivalent) and told the browser to
proceed, as shown in Figure 9-9.

Debugging React Applications
Not all problems can be detected by the compiler or the linter, and code that compiles perfectly can behave
in unexpected ways. There are two ways to understand the behavior of your application, as described in the
sections that follow. To help demonstrate the debugging features, I added a file called Display.js to the src
folder and used it to define the component shown in Listing 9-22.

Listing 9-22.  The Contents of the Display.js File in the src Folder

import React, {Component } from "react";

export class Display extends Component {

Figure 9-9.  Configuring the Development Tools

Chapter 9 ■ Understanding React Projects

244

 constructor(props) {
 super(props);
 this.state = {
 counter: 1
 }
 }

 incrementCounter = () => {
 this.setState({ counter: this.state.counter + 1 });
 }

 render() {
 return (
 <div>
 <h2 className="bg-primary text-white text-center p-2">
 <div>Props Value: { this.props.value }</div>
 <div>Local Value: { this.state.counter } </div>
 </h2>
 <div className="text-center">
 <button className="btn btn-primary m-2"
 onClick={ this.props.callback }>
 Parent
 </button>
 <button className="btn btn-primary m-2"
 onClick={ this.incrementCounter }>
 Local
 </button>
 </div>
 </div>
)
 }
}

The component displays its own state property and a prop value it receives from its parents. It displays
two button elements, one of which changes the state property and one of which invokes a callback provided
as a prop. In Listing 9-23, I replaced the existing contents of the App component to prepare for the debugging
section.

Listing 9-23.  Replacing the Contents of the App.js File in the src Folder

import React, { Component } from "react";
import { Display } from "./Display";

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 city: "London"
 }
 }

Chapter 9 ■ Understanding React Projects

245

 changeCity = () => {
 this.setState({ city: this.state.city === "London" ? "New York" : "London"})
 }

 render() {
 return (
 <Display value={ this.state.city } callback={ this.changeCity } />
);
 }
}

When you save the changes to the JavaScript files, the application will be compiled, and you will see the
content shown in Figure 9-10.

■■ Note  You may find that the browser doesn’t update automatically when the HTTPS option is set to true in
the .env file. You can reload the browser manually to see the changes or disable this option and restart the
development tools.

Exploring the Application State
The React Devtools browser extension is an excellent tool for exploring the state of a React application.
There are versions available for Google Chrome and Mozilla Firefox, and details of the project—including
support for other platforms and details of a stand-alone version—can be found at https://github.com/
facebook/react-devtools. Once you have installed the extension, you will see an additional tab in the
browser’s developer tools window, which is accessed by pressing the F12 button (which is why these are also
known as the F12 tools).

The React tab in the F12 tools window allows you to explore and alter the application’s structure and
state. You can see the set of components that provide the application functionality, along with their state
data and their props.

Figure 9-10.  Adding functionality to the example application

https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools

Chapter 9 ■ Understanding React Projects

246

For the example application, if you open the React tab and expand the application structure in the left
pane, you will see the App and Display components in the left pane, displayed with the view of the HTML
elements presented by the application. When you select a component in the left page, its props and state
data are displayed in the right pane, as shown in Figure 9-11.

If you click the buttons in the browser window, you will see the values displayed by the React Devtools
change, reflecting the live state of the application. You can also click a state data value and change its values
through React Devtools, which allows the state of the application to be manipulated directly.

■■ Tip T here are also debugging tools for the Redux data store package, which I describe in Chapter 19 and
which is often used to manage the data for complex projects.

Using the Browser Debugger
Modern browsers include sophisticated debuggers that can be used to control the execution of an
application and examine its state. The React development tools include support for creating source maps,
which allow the browser to correlate the minified and bundled code that it is executing with the developer-
friendly source code required for productive debugging.

Some browsers let you navigate through the application’s source code using these source maps
and create breakpoints, which will halt the execution of the application when they are reached and pass
control to the debugger. As I write this, the ability to create breakpoints is a fragile feature that doesn’t
work on Chrome and has mixed reliability in other browsers. As a consequence, the most reliable way to
pass control of the application to the debugger is to use the JavaScript debugger keyword, as shown in
Listing 9-24.

Figure 9-11.  Exploring components using the React Devtools

Chapter 9 ■ Understanding React Projects

247

Listing 9-24.  Triggering the Debugger in the App.js File in the src Folder

import React, { Component } from "react";
import { Display } from "./Display";

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 city: "London"
 }
 }

 changeCity = () => {
 debugger
 this.setState({ city: this.state.city === "London" ? "New York" : "London"})
 }

 render() {
 return (
 <Display value={ this.state.city } callback={ this.changeCity } />
);
 }
}

To use the debugger effectively, disable the HTTPS option in the .env file, as shown in Listing 9-25.
If you do not disable this option, you will only see the code generated by Babel and not your original
source code.

Listing 9-25.  Disabling Secure Connections in the .env File in the projecttools Folder

PORT=3500
HTTPS=false

Stop the development tools and start them again by running the command shown in Listing 9-26 in the
projecttools folder.

Listing 9-26.  Starting the Development Tools

npx start

The application will be executed as normal, but when the Parent button is clicked and the changeCity
method is invoked, the browser will encounter the debugger keyword and halt the execution of the
application. You can then use the controls in the F12 tools window to inspect the variables and their values
at the point at which execution was stopped and manually control execution, as shown in Figure 9-12. The
browser is executing the minified and bundled code created by the development tools but displaying the
corresponding code from the source map.

Chapter 9 ■ Understanding React Projects

248

■■ Tip  Most browsers ignore the debugger keyword unless the F12 tools window is open, but it is good
practice to remove it at the end of a debugging session.

Summary
In this chapter, I described the structure of React projects created with the create-react-app package and
explained the purpose of the files and folders used in React development. I also explained how the React
development tools are used, how applications are bundled for use in the browser, how the error display and
linter help avoid common problems, and how you can debug applications when you don’t receive the results
you are expecting. In the next chapter, I introduce components, which are the key building block for React
applications.

Figure 9-12.  Using the browser debugger

249© Adam Freeman 2019
A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_10

CHAPTER 10

Components and Props

In this chapter, I describe the key building block in React applications: the component. I focus on the
simplest type of component in this chapter, which is the stateless component. I describe the more complex
alternative, stateful components, in Chapter 11. I also explain how the props feature works in this chapter,
which allows one component to provide another with the data it requires to render its content and the
functions it should invoke when something important happens. Table 10-1 puts stateless components and
props in context.

Table 10-1.  Putting Stateless Components and Props in Context

Question Answer

What are they? Components are the key building blocks in React applications. Stateless
components are JavaScript functions that render content that React can
present to the user. Props are the means by which one component provides
data to another so that it can adapt the content it renders.

Why are they useful? Components are useful because they provide access to the React support for
creating features by combining JavaScript, HTML, and other components.
Props are useful because they allow components to adapt the content they
produce.

How are they used? Stateless components are defined as JavaScript functions that return a React
element, which is usually defined using HTML in the JSX format. Props are
defined as properties on elements.

Are there any pitfalls or
limitations?

React requires components to behave in specific ways, such as returning a
single React element and always returning a result, and it can take time to
become used to these restrictions. The most common pitfall with props is
specifying literal values when a JavaScript expression was required.

Are there any alternatives? Components are the key building block in React applications, and there is
no way to avoid their use. There are alternative to props that can be useful in
larger and more complex projects, as described in Chapter 14 and in Part 3.

Chapter 10 ■ Components and Props

250

Table 10-2 summarizes the chapter.

Table 10-2.  Chapter Summary

Problem Solution Listing

Add content to a React application Define a function that returns HTML elements or
invokes the React.createElement method

1–9

Add additional features to a React
application

Define components and compose them in a
parent-child relationship using elements that
correspond to the component name

10–14

Configure a child component Define props when applying the component 15–19

Render HTML elements for each
object in a data array

Use the map method to create elements, ensuring
that they have a key prop

20–24

Render multiple elements from a
component

Use the React.Fragment element or use elements
without tags

25–28

Render no content Return null 29

Receive notifications from a child
component

Configure the component with a function prop 31–34

Pass on props to a child Use the prop values received from the parent or
use the destructuring operator

35–39

Define default prop values Use the defaultProps property 40, 41

Check prop types Use the propTypes property 42–44

Preparing for This Chapter
To create the example project for this chapter, open a new command prompt, navigate to a convenient
location, and run the command shown in Listing 10-1.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this book—
from https://github.com/Apress/pro-react-16.

Listing 10-1.  Creating the Example Project

npx create-react-app components

Run the commands shown in Listing 10-2 to navigate to the project folder and add the Bootstrap
package to the project.

https://github.com/Apress/pro-react-16

Chapter 10 ■ Components and Props

251

Listing 10-2.  Adding the Bootstrap CSS Framework

cd components
npm install bootstrap@4.1.2

To include the Bootstrap CSS stylesheet in the application, add the statement shown in Listing 10-3 to
the index.js file, which can be found in the src folder.

Listing 10-3.  Including Bootstrap in the index.js File in the src Folder

import React from 'react';
import ReactDOM from 'react-dom';
import './index.css';
import App from './App';
import * as serviceWorker from './serviceWorker';
import 'bootstrap/dist/css/bootstrap.css';

ReactDOM.render(<App />, document.getElementById('root'));

// If you want your app to work offline and load faster, you can change
// unregister() to register() below. Note this comes with some pitfalls.
// Learn more about service workers: http://bit.ly/CRA-PWA
serviceWorker.unregister();

Using the command prompt, run the command shown in Listing 10-4 in the components folder to start
the development tools.

Listing 10-4.  Starting the Development Tools

npm start

Once the initial preparation for the project is complete, a new browser window will open and display
the URL http://localhost:3000 and display the placeholder content shown in Figure 10-1.

Chapter 10 ■ Components and Props

252

Understanding Components
The best place to start with components is by defining one and seeing how it works. In Listing 10-5,
I replaced the contents of the App.js file with a simple component.

Listing 10-5.  Defining a Component in the App.js File in the src Folder

export default function App() {
 return "Hello Adam";
}

This is an example of a stateless component, and it is just about as simple as a component can
be: a function that returns content that React will display to the user, which is known as rendering.
When the application starts, the code in the index.js file is executed, including the statement that
renders the App component. React invokes the function and displays the result to the user, as shown
in Figure 10-2.

Figure 10-1.  Running the example application

Figure 10-2.  Defining and applying a component

Chapter 10 ■ Components and Props

253

As simple as the result might be, it reveals the key purpose of components, which is to provide React
with content to display to the user.

Rendering HTML Content
When a component renders a string value, it is included as text content in the parent element. Components
become more useful when they return HTML content, which is most easily done by taking advantage of JSX
and the way it allows HTML to be mixed with JavaScript code. In Listing 10-6, I changed the result of the
component so that it renders a fragment of HTML.

■■ Tip  You must declare a dependency on React from the react module when you use JSX, as shown in the
listing. You will receive a warning if you forget.

Listing 10-6.  Rendering HTML in the App.js File in the src Folder

import React from "react";

export default function App() {
 return <h1 className="bg-primary text-white text-center p-2">
 Hello Adam
 </h1>
}

You remember to use the return keyword inside the component’s function to render the result. This can
feel awkward, but remember that the HTML fragment in a JSX file is converted to a call to the createElement
method, which produces an object that React can display to the user.

The use of the return keyword makes sense when you consider what the code looks like once the
HTML fragment has been replaced with the createElement method during the build process.

...
import React from "react";

export default function App() {
 return React.createElement("h1",
 { className: "bg-primary text-white text-center p-2" },
 "Hello Adam");
}
...

The component function returns the result from the React.createElement method, which is an
element that React can use to add content to the Domain Object Model (DOM).

If you want to start the HTML on a separate line from the return keyword, then you can use
parentheses to enclose the result, as shown in Listing 10-7.

Chapter 10 ■ Components and Props

254

Listing 10-7.  Using Parentheses in the App.js File in the src Folder

import React from "react";

export default function App() {
 return (
 <h1 className="bg-primary text-white text-center p-2">
 Hello Adam
 </h1>
)
}

This allows the HTML elements to be consistently indented, although the dangling (and) characters
can strike some developers as awkward.

Functional components can also be defined using the fat arrow syntax, which omits the return
keyword, as shown in Listing 10-8.

Listing 10-8.  Using a Fat Arrow Function in the App.js File in the src Folder

import React from "react";

export default () =>
 <h1 className="bg-primary text-white text-center p-2">
 Hello Adam
 </h1>

The fat arrow function is exported without a name, which works in the example application because
the statement in the index.js file that imports the component from the App.js file uses the default
export, like this:

...
import App from './App';
...

Exporting a fat arrow function by name and as the default requires an additional statement, as shown in
Listing 10-9.

Listing 10-9.  Creating a Named and Default Export in the App.js File in the src Folder

import React from "react";

 export const App = () =>
 <h1 className="bg-primary text-white text-center p-2">
 Hello Adam
 </h1>

export default App;

The fat arrow function is assigned to a const that is exported by name, and a separate statement uses
the name to create the default export, which allows the component to be imported by name and as the
default.

Chapter 10 ■ Components and Props

255

■■ Note  I have included this example because module exports cause confusion, but in real projects they use
either named or default exports throughout and don’t have to accommodate both styles of working. I prefer
using named exports, and that is the approach I have taken in the examples in this book.

I use regular functions in this chapter and use parentheses where they help make the HTML content
more readable, but all of the examples in this section produce the same result, as shown in Figure 10-3.

Rendering Other Components
One of the most important React features is that the content rendered by a component can contain other
components, allowing features to be combined to create complex applications. I added a file called
Message.js to the src folder and used it to define the component shown in Listing 10-10.

Listing 10-10.  The Contents of the Message.js File in the src Folder

import React from "react";

export function Message() {
 return <h4 className="bg-success text-white text-center p-2">
 This is a message
 </h4>
}

The Message component renders an h4 element that contains a message. In Listing 10-11, I have
updated the App component so that it renders the Message content as part of its content.

Listing 10-11.  Rendering Another Component in the App.js File in the src Folder

import React from "react";
import { Message } from "./Message";

Figure 10-3.  Returning HTML content

Chapter 10 ■ Components and Props

256

export default function App() {
 return (
 <div>
 <h1 className="bg-primary text-white text-center p-2">
 Hello Adam
 </h1>
 <Message />
 </div>
)
}

The import statement declares a dependency on the Message component, which is rendered using
a Message element. When React receives the content rendered by the App component, it will contain the
Message element, which it will deal with by invoking the Message component’s function and replacing the
Message element with the content it renders, producing the result shown in Figure 10-4.

When one component uses another like this, a parent-child relationship is formed. In this example, the
App component is the parent to the Message component, and the Message component is the child of the App
component. A component can apply the same component more than once by defining multiple elements for
the child component, as shown in Listing 10-12.

Listing 10-12.  Applying a Child Component in the App.js File in the src Folder

import React from "react";
import { Message } from "./Message";

export default function App() {
 return (
 <div>
 <h1 className="bg-primary text-white text-center p-2">
 Hello Adam
 </h1>

Figure 10-4.  Rendering other content

Chapter 10 ■ Components and Props

257

 <Message />
 <Message />
 <Message />
 </div>
)
}

Each time that React encounters the Message element, it invokes the Message component and uses the
content it renders to replace the Message element, as shown in Figure 10-5.

A component can have children of different types, which means that one component can take
advantage of the features that multiple components offer. I created another simple component by adding a
file called Summary.js to the src folder with the code shown in Listing 10-13.

Listing 10-13.  The Contents of the Summary.js File in the src Folder

import React from "react";

export function Summary() {
 return <h4 className="bg-info text-white text-center p-2">
 This is a summary
 </h4>
}

In Listing 10-14, I have updated the App component to declare a dependency on the Summary
component and render its contents using a Summary element.

Figure 10-5.  Applying multiple children

Chapter 10 ■ Components and Props

258

Listing 10-14.  Adding a Child Component in the App.js File in the src Folder

import React from "react";
import { Message } from "./Message";
import { Summary } from "./Summary";

export default function App() {
 return (
 <div>
 <h1 className="bg-primary text-white text-center p-2">
 Hello Adam
 </h1>
 <Message />
 <Message />
 <Message />
 <Summary />
 </div>
)
}

When React processes the content rendered by the App component, it encounters the elements for the
child components, invokes their function, and replaces the Message and Summary elements with the content
they render. The result is shown in Figure 10-6.

Figure 10-6.  Using different child components

Chapter 10 ■ Components and Props

259

Understanding Props
Being able to render content from multiple children isn’t that useful when each component renders identical
content. Fortunately, React supports props—short for properties—which allows a parent component to
provide data to its children, which they can use to render their content. In the sections that follow, I explain
how props work and demonstrate the different ways they can be used.

Defining Props in the Parent Component
Props are defined by adding properties to the custom HTML elements that apply components. The name
of the property is the name of the prop, and the value can be a static value or an expression. In Listing 10-15,
I have added props to the Message elements used by the App component.

Listing 10-15.  Defining Props in the App.js File in the src Folder

import React from "react";
import { Message } from "./Message";
import { Summary } from "./Summary";

export default function App() {
 return (
 <div>
 <h1 className="bg-primary text-white text-center p-2">
 Hello Adam
 </h1>
 <Message greeting="Hello" name="Bob" />
 <Message greeting="Hola" name={ "Alice" + "Smith" } />
 <Message greeting="Hi there" name="Dora" />
 <Summary />
 </div>
)
}

I have provided two props, greeting and name, for each Message component. Most of the prop values
are static values, which are expressed as literal strings. The value for the greeting prop on the second
Message element is an expression, which concatenates two string values. (You will see a linter warning about
the expression in Listing 10-15 because concatenating string literal values is on the list of poor practices that
the linter is configured to detect. The linter warning can be ignored for this purposes of this chapter.)

DEFINING PROPS

Props can be used to pass static values or the results of dynamic expressions to child components.
Static values are quoted literally, like this:

...
<Message greeting="Hello" name="Bob" />
...

Chapter 10 ■ Components and Props

260

This prop provides the child component with the value Bob for its name prop. If you want to use the
result of a JavaScript expression as the value for the prop, then use a data binding expression, like this:

...
<Message greeting="Hola" name={ "Alice" + "Smith" } />
...

React will evaluate the expression and use the result, which is the concatenation of two strings in this
example, as the value for the prop. A common mistake is to put the JavaScript expression in quotes, like
this:

...
<Message greeting="Hola" name="{ "Alice" + "Smith" }" />
...

React will interpret this as a request to use the static value { "Alice" + "Smith" } as the value for
the prop. When using expressions for props, you must remember not to use quotes. If you prefer not
to use JSX and want to create React elements using pure JavaScript, then props are provided as the
second argument to the createElement method, like this:

...
React.createElement(Message, { greeting: "Hola", name: "Alice" + "Smith"})
...

If you don’t get the results you expect, in JSX or pure JavaScript, the React Devtools browser extension
(described in Chapter 9) can display the props that are received by each component in the application,
which makes it easy to see where things have gone wrong.

Receiving Props in the Child Component
Props are received in components by defining a parameter called props (although that is just a convention,
and you can give the parameter any legal JavaScript name). The props object has a property for each of the
props, which is assigned the prop value. As an example, these props from Listing 10-15:

...
<Message greeting="Hello" name="Bob" />
...

will be translated into an object like this:

...
{
 greeting: "Hello",
 name: "Bob"
}
...

Chapter 10 ■ Components and Props

261

In Listing 10-16, I have changed the Message component so that it defines a prop parameter and uses
the values provided by the parent component in the result it produces.

Listing 10-16.  Using Props in the Message.js File in the src Folder

import React from "react";

export function Message(props) {
 return <h4 className="bg-success text-white text-center p-2">
 {props.greeting}, {props.name}
 </h4>
}

The child component doesn’t need to worry about whether a prop value was specified statically or with
an expression and uses the props like any other JavaScript object. In the listing, I used the greeting and
name props in an expression to set the contents of the h4 element rendered by the component, producing the
result shown in Figure 10-7.

Combining JavaScript and Props to Render Content
The prop values provided to each Message element defined by the App component in Listing 10-16
results in different content, allowing the same functionality to be employed by the parent component in
different ways.

Figure 10-7.  Rendering content using props

Chapter 10 ■ Components and Props

262

Selectively Rendering Content
Components can use the JavaScript if keyword to inspect a prop and render different content based on its
value. In Listing 10-17, I used the if statement to alter the content rendered by the Message component.

Listing 10-17.  Selectively Rendering in the Message.js File in the src Folder

import React from "react";

export function Message(props) {
 if (props.name === "Bob") {
 return <h4 className="bg-warning p-2">{props.greeting}, {props.name}</h4>
 } else {
 return <h4 className="bg-success text-white text-center p-2">
 {props.greeting}, {props.name}
 </h4>
 }
}

If the value of the name prop is Bob, the component will render an h4 element with different class
memberships, as shown in Figure 10-8.

This type of selective rendering, where only the value of a prop changes, can be expressed with less
duplication by separating the value of the property from the rest of the HTML, as shown in Listing 10-18.

Figure 10-8.  Using an if statement to select content

Chapter 10 ■ Components and Props

263

Listing 10-18.  Selecting a Property Value in the Message.js File in the src Folder

import React from "react";

export function Message(props) {

 let classes = props.name === "Bob" ? "bg-warning p-2"
 : "bg-success text-white text-center p-2";

 return <h4 className={ classes }>
 {props.greeting}, {props.name}
 </h4>
}

I have used the JavaScript ternary conditional operator to select the classes that the h4 element will be
assigned to and applied those classes with an expression for the className property. The result is the same
as Listing 10-17 but without duplicating the unchanging parts of the HTML element.

A switch statement can be used when a component needs to select content from a more complex list,
as shown in Listing 10-19.

Listing 10-19.  Using a switch Statement in the Message.js File in the src Folder

import React from "react";

export function Message(props) {
 let classes;
 switch (props.name) {
 case "Bob":
 classes = "bg-warning p-2";
 break;
 case "Dora":
 classes = "bg-secondary text-white text-center p-2"
 break;
 default:
 classes = "bg-success text-white text-center p-2"
 }
 return <h4 className={ classes }>
 {props.greeting}, {props.name}
 </h4>
}

This example uses the switch statement on the props.name value to select the classes for the h4
element, producing the result shown in Figure 10-9.

Chapter 10 ■ Components and Props

264

Rendering Arrays
Components often have to create HTML elements for each element in an array, often to display items
in a list or as rows in a table. The technique required for dealing with arrays causes confusion and is
worth approaching carefully. To prepare, I updated the App component so that it configures the Summary
component with a prop, as shown in Listing 10-20. (I also removed elements to keep the example
simple.)

Listing 10-20.  Adding a Prop in the App.js File in the src Folder

import React from "react";
//import { Message } from "./Message";
import { Summary } from "./Summary";

export default function App() {
 return (
 <div>
 <h1 className="bg-primary text-white text-center p-2">
 Hello Adam
 </h1>
 <Summary names={ ["Bob", "Alice", "Dora"]} />
 </div>
)
}

Figure 10-9.  Using a switch statement to select content

Chapter 10 ■ Components and Props

265

The names prop provides the Summary component with an array of string values. In Listing 10-21, I have
changed the content rendered by the Summary component so that it produces elements for each of the values
in the array.

Listing 10-21.  Rendering an Array in the Summary.js File in the src Folder

import React from "react";

function createInnerElements(names) {
 let arrayElems = [];
 for (let i = 0; i < names.length; i++) {
 arrayElems.push(
 <div>
 {`${names[i]} contains ${names[i].length} letters`}
 </div>
)
 }
 return arrayElems;
}

export function Summary(props) {
 return <h4 className="bg-info text-white text-center p-2">
 { createInnerElements(props.names)}
 </h4>
}

The component function uses an expression to set the content of the h4 element, which it does by
invoking the createInnerElements function. The createInnerElements function uses a JavaScript for loop
to enumerate the contents of the names array and adds a div element to a result array.

...
arrayElems.push(<div>{`${names[i]} contains ${names[i].length} letters`}</div>)
...

The content of each div element is set with another expression, which uses a template string to create
a message specific to each element in the array. The array of div elements is returned as the result of the
createInnerElements function and used as the content for the h4 element, producing the result shown in
Figure 10-10.

Chapter 10 ■ Components and Props

266

Using the Map Method to Process Array Objects
Although the for loop is the way that most programmers are used to enumerating arrays, it isn’t the most
elegant way to deal with arrays in React. The map method, described in Chapter 4, can be used to transform
objects in an array into HTML elements, as shown in Listing 10-22.

Listing 10-22.  Transforming an Array in the Summary.js File in the src Folder

import React from "react";

function createInnerElements(names) {
 return names.map(name =>
 <div>
 {`${name} contains ${name.length} letters`}
 </div>
)
}

export function Summary(props) {
 return <h4 className="bg-info text-white text-center p-2">
 { createInnerElements(props.names)}
 </h4>
}

The argument to the map method is a function that is invoked for each object in the array. Each time
the function passed to the map method is invoked, the next item in the array is passed to the function,
which I use to create the element that represents that object. The result from each call to the function
is added to an array that is used as the map result. The code in Listing 10-22 produces the same result as
Listing 10-21.

Figure 10-10.  Creating React elements for the objects in an array

Chapter 10 ■ Components and Props

267

■■ Tip  You don’t have to use fat arrow functions with the map method, but it produces a more concise
component.

Now that the createInnerElement function contains a single line of code, I can further simplify the
component by moving the statement that creates the inner elements into the component function, as shown
in Listing 10-23.

Listing 10-23.  Simplifying the Code in the Summary.js File in the src Folder

import React from "react";

export function Summary(props) {
 return (
 <h4 className="bg-info text-white text-center p-2">
 { props.names.map(name =>
 <div>
 {`${name} contains ${name.length} letters`}
 </div>
)
 }
 </h4>
)
}

This change doesn’t alter the output and produces the same result as Listing 10-21 and Listing 10-22.

RECEIVING OTHER ARGUMENTS WHEN USING THE MAP METHOD

In Listing 10-23, the function I passed to the map method receives the current array object as its
argument. The map method also provides two additional arguments: the zero-based index of the current
object in the array and the complete array of objects. You can see an example of the array index in the
“Rendering Multiple Elements” section later in this chapter.

Adding the Key Prop
One final change is required to complete the example. React requires a key prop to be added to elements
that are generated for the objects in an array so that changes can be handled efficiently, as I explain in
Chapter 13. The value of the key prop should be an expression whose value identifies the object uniquely
within the array, as shown in Listing 10-24.

Chapter 10 ■ Components and Props

268

Listing 10-24.  Adding the Key Prop in the Summary.js File in the src Folder

import React from "react";

export function Summary(props) {
 return (
 <h4 className="bg-info text-white text-center p-2">
 { props.names.map(name =>
 <div key={ name }>
 {`${name} contains ${name.length} letters`}
 </div>
)
 }
 </h4>
)
}

I used the value of the name variable, to which each object in the array is assigned when the function
passed to the map method is invoked and which allows React to differentiate between the elements created
from the array objects.

React will display elements that do not have a key prop, as the earlier examples in this section
demonstrate, but a warning will be displayed in the browser’s JavaScript console.

Rendering Multiple Elements
React requires components to return a single top-level element, although that element is able to contain as
many other elements as the application requires. The Summary component, for example, returns a top-level
h4 element that contains a series of div elements that are generated for the elements in the names prop.

There are times when the requirement for a single top-level element causes a problem. The HTML
specification applies restrictions on how elements can be combined, which can conflict with the single
element React requirement. To demonstrate the problem, I have changed the content rendered by the
App component so that it contains a table, where the contents for each tr element are produced by a child
component, as shown in Listing 10-25.

Listing 10-25.  Rendering a Table in the App.js File in the src Folder

import React from "react";
import { Summary } from "./Summary";

let names = ["Bob", "Alice", "Dora"]

export default function App() {
 return (
 <table className="table table-sm table-striped">
 <thead>
 <tr><th>#</th><th>Name</th><th>Letters</th></tr>
 </thead>
 <tbody>

Chapter 10 ■ Components and Props

269

 { names.map((name, index) =>
 <tr key={ name }>
 <Summary index={index} name={name} />
 </tr>
)}
 </tbody>
 </table>
)
}

The Summary component is passed index and name props. In Listing 10-26, I have updated the Summary
component so that it generates a series of table cells using the prop values.

Listing 10-26.  Rendering Table Cells in the Summary.js File in the src Folder

import React from "react";

export function Summary(props) {
 return <td>{ props.index + 1} </td>
 <td>{ props.name } </td>
 <td>{ props.name.length } </td>
}

The Summary component renders a set of td elements because that’s what the HTML specification
requires as the children of td elements. But when you save the changes, you will see the following error:

...
Syntax error: src/Summary.js: Adjacent JSX elements must be wrapped
 in an enclosing tag (5:12)

 3 | export function Summary(props) {
 4 | return <td>{ props.index + 1} </td>
> 5 | <td>{ props.name } </td>
 | ^
 6 | <td>{ props.name.length } </td>
 7 | }
...

This error message indicates that the content rendered by the component doesn’t meet the React
requirement of a single top-level element. There isn’t an HTML element that can be used to wrap the td
elements and still be a legal addition to the table. For these situations, React provides a special element, as
shown in Listing 10-27.

Listing 10-27.  Wrapping Elements in the Summary.js File in the src Folder

import React from "react";

export function Summary(props) {
 return <React.Fragment>
 <td>{ props.index + 1} </td>

Chapter 10 ■ Components and Props

270

 <td>{ props.name } </td>
 <td>{ props.name.length } </td>
 </React.Fragment>
}

When React processes the elements rendered by the Summary component, it discards the React.
Fragment element and uses the remaining content to replace the Summary element that applied the
component, as shown in Figure 10-11.

React supports an alternative syntax for these situations, which is to use an enclosing element without a
tag name, as shown in Listing 10-28.

Listing 10-28.  Wrapping Elements in the Summary.js File in the src Folder

import React from "react";

export function Summary(props) {
 return <>
 <td>{ props.index + 1} </td>
 <td>{ props.name } </td>
 <td>{ props.name.length } </td>
 </>
}

This is equivalent to Listing 10-27 and produces the same result. I use the React.Fragment for the
examples in this book or wrap multiple elements in a div where that produces a legal combination of HTML
elements.

Figure 10-11.  Rendering multiple elements

Chapter 10 ■ Components and Props

271

Rendering No Content
A component must always return a result, even when it doesn’t produce any content for React to display.
In these situations, the component’s function should return null, and in Listing 10-29, I have modified the
Summary component so that it doesn’t produce any content when the length of its name prop is less than four
characters.

Listing 10-29.  Rendering No Content in the Summary.js File in the src Folder

import React from "react";

export function Summary(props) {
 if (props.name.length >= 4) {
 return <React.Fragment>
 <td>{ props.index + 1} </td>
 <td>{ props.name } </td>
 <td>{ props.name.length } </td>
 </React.Fragment>
 } else {
 return null;
 }
}

The parent component still applies the Summary element three times, each of which results in the
Summary component’s function being invoked, but only two of those invocations produce a result, as shown
in Figure 10-12.

Figure 10-12.  Rendering no content

Chapter 10 ■ Components and Props

272

Attempting to Change Props
Props are read-only and must not be changed by a component. When React creates the props object, it
configures its properties so that an error is displayed if any changes are made. In Listing 10-30, I have added
a statement to the Summary component that changes the value of the name prop.

Listing 10-30.  Changing a Prop Value in the Summary.js File in the src Folder

import React from "react";

export function Summary(props) {
 props.name = `Name: ${props.name}`;
 if (props.name.length >= 4) {
 return <React.Fragment>
 <td>{ props.index + 1} </td>
 <td>{ props.name } </td>
 <td>{ props.name.length } </td>
 </React.Fragment>
 } else {
 return null;
 }
}

When you save the changes and the browser reloads, you will see the error message shown in
Figure 10-13. This is a runtime error, which means that no warning is displayed by the compiler at the
command prompt.

■■ Tip T his error isn’t displayed when the application has been built for deployment using the process
described in Chapter 8, which means you should test thoroughly during development to ensure your
components don’t inadvertently try to change a prop.

Chapter 10 ■ Components and Props

273

Using Function Props
All of the props I have used so far in this chapter have been data props, which provide a child component
with a read-only data value. React also supports function props, where the parent component provides a
child with a function that it can invoke to notify the parent that something important has happened. The
parent component can respond by changing the value of the data props, which will trigger an update and
allow the child to present updated content to the user.

To show how this works, I have defined a function in the file that contains the App component that
changes the order of the values that are used for the name props for the Summary elements, as shown in
Listing 10-31.

Listing 10-31.  Defining a Change Function in the App.js File in the src Folder

import React from "react";
import { Summary } from "./Summary";
import ReactDOM from "react-dom";

let names = ["Bob", "Alice", "Dora"]

function reverseNames() {
 names.reverse();
 ReactDOM.render(<App />, document.getElementById('root'));
}

Figure 10-13.  Attempting to modify a prop

Chapter 10 ■ Components and Props

274

export default function App() {
 return (
 <table className="table table-sm table-striped">
 <thead>
 <tr><th>#</th><th>Name</th><th>Letters</th></tr>
 </thead>
 <tbody>
 { names.map((name, index) =>
 <tr key={ name }>
 <Summary index={index} name={name}
 reverseCallback={reverseNames} />
 </tr>
)}
 </tbody>
 </table>
)
}

The function I defined is called reverseNames, and it uses the JavaScript reverse method to reverse the
order of the values in the names array. The reverseNames function is provided to the Summary component as
the value for a prop named reverseCallback, like this:

...
<Summary index={index} name={name} reverseCallback={reverseNames} />
...

The Summary component will receive a prop object with three properties: the index prop provides the
index of the current object being processed by the map method, the name prop provides the current value
from the array, and the reverseCallback prop provides the function that will reverse the order of the array’s
contents. In Listing 10-32, I have updated the Summary component to make use of the function it receives
as a prop. (I have also removed the statement that attempts to change the prop value and removed the if
statement that prevents the component for rendering content for short names.)

Listing 10-32.  Using a Function Prop in the Summary.js File in the src Folder

import React from "react";

export function Summary(props) {
 return (
 <React.Fragment>
 <td>{ props.index + 1} </td>
 <td>{ props.name } </td>
 <td>{ props.name.length } </td>
 <td>
 <button className="btn btn-primary btn-sm"
 onClick={ props.reverseCallback }>
 Change
 </button>
 </td>
 </React.Fragment>
)
}

Chapter 10 ■ Components and Props

275

The component renders a button element whose onClick prop selects the function prop it receives
from its parent. I describe the onClick prop in Chapter 12, but, as you have seen in earlier chapters, this
property tells React how to respond when the user clicks an element, and, in this case, the expression tells
React to invoke the reverseCallback prop, which is the function that has been provided by the parent
component.

The result is that clicking a button element causes React to invoke the changeValues function defined
in the App.js file, which reverses the order of the values used for the name props, producing the result shown
in Figure 10-14.

UNDERSTANDING THE UPDATE STATEMENT

When the Summary component invokes the function prop, the reverseCallback function is called, and
this statement from Listing 10-31 is executed:

...
ReactDOM.render(<App />, document.getElementById('root'));
...

The render method is used to add a component’s content to the Document Object Model (DOM)
displayed by the browser and is used in the index.js file to start the application; it is described in
Chapter 13. This is not a feature that is normally used directly, but I needed to be able to perform an
update in response to the function prop being invoked. I describe the features that are normally used to
perform updates in Chapter 11. For the moment, it is enough to know that calling this method updates
the HTML elements displayed to the user, reflecting the change in the data values used for prop values.

Invoking Prop Functions with Arguments
In Listing 10-32, the expression for the onClick property specifies the function prop, like this:

...
<button className="btn btn-primary btn-sm" onClick={ props.reverseCallback } >
 Change
</button>
...

Figure 10-14.  Using a function received as a prop

Chapter 10 ■ Components and Props

276

When the function is selected by an expression, it will be passed an event object, which I describe in
Chapter 12 and which provides the function that is invoked with details of the HTML element that triggered
the event.

This isn’t always useful when invoking a function prop, because it requires the parent to have sufficient
knowledge of the child component to make sense of the event and act accordingly. Often, a more helpful
approach can be to provide a custom argument to the function that gives the parent component the detail it
needs directly. In Listing 10-33, I added a function to the App.js file that moves a specified name to the front
of the array and updated the App component so it passes the function to its children using a prop.

Listing 10-33.  Adding a Function in the App.js File in the src Folder

import React from "react";
import { Summary } from "./Summary";
import ReactDOM from "react-dom";

let names = ["Bob", "Alice", "Dora"]

function reverseNames() {
 names.reverse();
 ReactDOM.render(<App />, document.getElementById('root'));
}

function promoteName(name) {
 names = [name, ...names.filter(val => val !== name)];
 ReactDOM.render(<App />, document.getElementById('root'));
}

export default function App() {
 return (
 <table className="table table-sm table-striped">
 <thead>
 <tr><th>#</th><th>Name</th><th>Letters</th></tr>
 </thead>
 <tbody>
 { names.map((name, index) =>
 <tr key={ name }>
 <Summary index={index} name={name}
 reverseCallback={reverseNames}
 promoteCallback={promoteName} />
 </tr>
)}
 </tbody>
 </table>
)
}

The new function receives the name that should be moved to the start of the array as its parameter. In
Listing 10-34, I added another button element to the content rendered by the Summary component and used
the onClick property to invoke the new function prop.

Chapter 10 ■ Components and Props

277

Listing 10-34.  Invoking a Function Prop in the Summary.js File in the src Folder

import React from "react";

export function Summary(props) {
 return (
 <React.Fragment>
 <td>{ props.index + 1} </td>
 <td>{ props.name } </td>
 <td>{ props.name.length } </td>
 <td>
 <button className="btn btn-primary btn-sm"
 onClick={ props.reverseCallback }>
 Change
 </button>
 <button className="btn btn-info btn-sm m-1"
 onClick={ () => props.promoteCallback(props.name) }>
 Promote
 </button>
 </td>
 </React.Fragment>
)
}

Instead of making the App component work out which name has been selected, the function prop is
invoked with an argument.

...
<button className="btn btn-info btn-sm m-1"
 onClick={ () => props.promoteCallback(props.name) }>
 Promote
</button>
...

The onClick expression is a fat arrow function that calls the function prop when it is invoked. It
important that you define a function like this, and if you simply specify the function prop directly in the
expression, you won’t get the results you expect, as described in the sidebar. Clicking one of the Promote
buttons will move the corresponding name to the first position in the array so that it is displayed at the top of
the table, as shown in Figure 10-15.

Chapter 10 ■ Components and Props

278

AVOIDING THE PREMATURE INVOCATION PITFALL

When you need to invoke a function prop with an argument, you should always specify a fat arrow
function that invokes the prop, like this:

...
<button onClick={ () => props.promoteCallback(props.name) }>
 Promote
</button>
...

You will almost certainly forget to do this at least once and call the function prop directly in the
expression, like this:

...
<button onClick={ props.promoteCallback(props.name) }>
 Promote
</button>
...

React will evaluate the expression when the component renders its content, which will invoke the prop
even though the user hasn’t clicked the button element. This is rarely the intended effect and can cause
unexpected behaviors or produce an error, depending on what the prop does when it is invoked. In the
case of the component in Listing 10-34, for example, the effect is to create a “Maximum Update Depth
Exceeded” error, which occurs because the function prop asks React to re-render the components,
which causes the Summary component to render content, which invokes the prop again. This continues
until React halts execution and reports an error.

Figure 10-15.  Invoking a function prop with an argument

Chapter 10 ■ Components and Props

279

Passing on Props to Child Components
React applications are created by combining components, creating a series of parent-child relationships.
This arrangement often requires a component to receive a data value or callback function from its parent
and pass it on to its children. To demonstrate how a prop is passed on, I added a file called CallbackButton.
js to the src folder and used it to define the component shown in Listing 10-35.

Listing 10-35.  The Contents of the CallbackButton.js File in the src Folder

import React from "react";

export function CallbackButton(props) {
 return (
 <button className={`btn btn-${props.theme} btn-sm m-1`}
 onClick={ props.callback }>
 { props.text}
 </button>
)
}

This component renders a button element whose text content is set using a prop named text and that
invokes a function provided through the prop named callback when clicked. There is also a theme prop that
is used to select the Bootstrap CSS style for the button element.

In Listing 10-36, I have updated the Summary component to use the CallbackButton component, which it
configures by passing on props from its parent and adding additional props of its own.

Listing 10-36.  Adding a Component in the Summary.js File in the src Folder

import React from "react";
import { CallbackButton } from "./CallbackButton";

export function Summary(props) {
 return (
 <React.Fragment>
 <td>{ props.index + 1} </td>
 <td>{ props.name } </td>
 <td>{ props.name.length } </td>
 <td>
 <CallbackButton theme="primary"
 text="Reverse" callback={ props.reverseCallback } />
 <CallbackButton theme="info" text="Promote"
 callback={ () => props.promoteCallback(props.name)} />
 </td>
 </React.Fragment>
)
}

The component that receives the props doesn’t know—or care—where they originated, and they are
received through the same props argument, producing the result shown in Figure 10-16.

Chapter 10 ■ Components and Props

280

Passing On All Props to Child Components
The destructuring operator can be used if a component’s parent provides props that have the same names as
the props expected by the component’s child. To demonstrate, I added a file called SimpleButton.js to the
src folder and used it to define the component shown in Listing 10-37.

Listing 10-37.  The Contents of the SimpleButton.js File in the src Folder

import React from "react";

export function SimpleButton(props) {
 return (
 <button onClick={ props.callback } className={props.className}>
 { props.text}
 </button>
)
}

The SimpleButton component expects callback, className, and text props. When the
SimpleButton component is applied by the CallbackButton component, there is overlap between the
props provided by the parent, which means that the destructuring operator can be used to pass on props,
as shown in Listing 10-38.

Listing 10-38.  Passing on Props in the CallbackButton.js File in the src Folder

import React from "react";
import { SimpleButton } from "./SimpleButton";

Figure 10-16.  Passing on props

Chapter 10 ■ Components and Props

281

export function CallbackButton(props) {
 return (
 <SimpleButton {...props} className={`btn btn-${props.theme} btn-sm m-1`} />
)
}

The {...props} expression passes on all of the props received from the parent component, which are
supplemented by the className prop. If a component wants to withhold specific props from its children,
then a slightly different approach can be used, as shown in Listing 10-39.

Listing 10-39.  Selectively Passing on Props in the CallbackButton.js File in the src Folder

import React from "react";
import { SimpleButton } from "./SimpleButton";

export function CallbackButton(props) {
 let { theme, ...childProps} = props;
 return (
 <SimpleButton { ...childProps }
 className={`btn btn-${props.theme} btn-sm m-1`} />
)
}

The rest operator is used in a statement that creates a childProps object that contains all of the parent’s
props except theme. The destructuring operator is used to pass the props from the childProps object to the
child component.

Providing Default Prop Values
As the number of props used in an application grows, you may find yourself repeating the same set of prop
values, even though the values are the same each time. An alternative approach is to define a set of defaults
and override only them when you need to use a different value. In Listing 10-40, I defined a set of default
prop values for the CallbackButton component.

Listing 10-40.  Defining Default Values in the CallbackButton.js File in the src Folder

import React from "react";
import { SimpleButton } from "./SimpleButton";

export function CallbackButton(props) {
 let { theme, ...childProps} = props;
 return (
 <SimpleButton {...childProps}
 className={`btn btn-${props.theme} btn-sm m-1`} />
)
}

CallbackButton.defaultProps = {
 text: "Default Text",
 theme: "warning"
}

Chapter 10 ■ Components and Props

282

A property called defaultProps is added to the component and assigned an object that provides default
values for props that are used if the parent component doesn’t provide a value. In Listing 10-41, I changed
the Summary component so that it relies on the default props for one CallbackButton element but provides
values for the other.

Listing 10-41.  Relying on Prop Defaults in the Summary.js File in the src Folder

import React from "react";
import { CallbackButton } from "./CallbackButton";

export function Summary(props) {
 return (
 <React.Fragment>
 <td>{ props.index + 1} </td>
 <td>{ props.name } </td>
 <td>{ props.name.length } </td>
 <td>
 <CallbackButton callback={props.reverseCallback} />
 <CallbackButton theme="info" text="Promote"
 callback={ () => props.promoteCallback(props.name)} />
 </td>
 </React.Fragment>
)
}

The first CallbackButton element relies on the default values, producing the result shown in
Figure 10-17.

Figure 10-17.  Using default prop values

Chapter 10 ■ Components and Props

283

Type Checking Prop Values
Props are unable to indicate what data types they are expecting to receive and have no way to signal to their
ancestor components when they are unable to use a data value received as a prop. To help avoid these
problems, React allows a component to declare the types it expects for its props, as shown in Listing 10-42.

Listing 10-42.  Declaring Prop Types in the SimpleButton.js File in the src Folder

import React from "react";
import PropTypes from "prop-types";

export function SimpleButton(props) {
 return (
 <button onClick={ props.callback } className={props.className}>
 { props.text}
 </button>
)
}

SimpleButton.defaultProps = {
 disabled: false
}

SimpleButton.propTypes = {
 text: PropTypes.string,
 theme: PropTypes.string,
 callback: PropTypes.func,
 disabled: PropTypes.bool
}

A propTypes property is added to the component and assigned an object whose property names
correspond to prop names and whose values specify the type that the component expects. Types are
specified using PropTypes values, which are imported from the prop-types package, and the most useful
PropTypes values are described in Table 10-3.

■■ Tip  You can combine any of the types in Table 10-3 with isRequired to generate a warning if a value for
that prop isn’t supplied by the parent component: PropTypes.bool.isRequired.

Table 10-3.  Useful PropTypes Values

Name Description

array This value specifies that a prop should be an array.

bool This value specifies that a prop should be a bool.

func This value specifies that a prop should be a function.

number This value specifies that a prop should be a number value.

object This value specifies that a prop should be an object.

string This value specifies that a prop should be a string.

Chapter 10 ■ Components and Props

284

To demonstrate how types are checked, in Listing 10-43, I have added a value to the CallbackButton
element for the disabled prop, using a string value rather than the bool specified in Listing 10-42.

Listing 10-43.  Providing the Wrong Type in the Summary.js File in the src Folder

import React from "react";
import { CallbackButton } from "./CallbackButton";

export function Summary(props) {
 return (
 <React.Fragment>
 <td>{ props.index + 1} </td>
 <td>{ props.name } </td>
 <td>{ props.name.length } </td>
 <td>
 <CallbackButton callback={props.reverseCallback} />
 <CallbackButton theme="info" text="Promote"
 callback={ () => props.promoteCallback(props.name)}
 disabled="true" />
 </td>
 </React.Fragment>
)
}

This is a common error, where a string literal value is used where a bool or number is expected. It can be
hard to figure out where the problem is, especially since the prop is defined by an ancestor of the component
where the problem occurs. Using a prop type makes the problem obvious. When you save the changes, the
browser will reload, and you will see the following message displayed in the browser’s JavaScript console:

...
index.js:2178 Warning: Failed prop type: Invalid prop `disabled` of type `string` supplied
to `SimpleButton`, expected `boolean`.
...

To resolve the problem, I could change the prop value so that it sends the expected type to the
component. An alternative approach is to make the component more flexible so that it is able to deal with
both Boolean and string values for the disabled prop. Given how common it is to create string prop
values when Boolean values are required, this is a good idea, especially if you are writing components
that are going to be used by other development teams. In Listing 10-44, I have added support to the
SimpleButton component for dealing with both types and updated its propTypes configuration to reflect the
change.

■■ Note T he prop type checks are performed only during development and are disabled when the application
is prepared for deployment. See Chapter 8 for an example of preparing an application for deployment.

Listing 10-44.  Accepting Multiple Prop Types in the SimpleButton.js File in the src Folder

import React from "react";
import PropTypes from "prop-types";

Chapter 10 ■ Components and Props

285

export function SimpleButton(props) {
 return (
 <button onClick={ props.callback } className={props.className}
 disabled={ props.disabled === "true" || props.disabled === true }>
 { props.text}
 </button>
)
}

SimpleButton.defaultProps = {
 disabled: false
}

SimpleButton.propTypes = {
 text: PropTypes.string,
 theme: PropTypes.string,
 callback: PropTypes.func,
 disabled: PropTypes.oneOfType([PropTypes.bool, PropTypes.string])
}

There are two useful PropTypes methods that can be used to specify multiple types or specific values, as
described in Table 10-4.

In Listing 10-44, I used the oneOfType method to tell React that the disabled property can accept both
Boolean and string values. The component is able to process the value I provided for the disabled property
in Listing 10-43, which disables the button elements, as shown in Figure 10-18.

■■ Tip T he alternative approach would have been to change the prop value to a Boolean when applying the
component, which can be done using an expression for the disabled property: disabled={ true }.

Table 10-4.  Useful PropTypes Methods

Name Description

oneOfType This method accepts an array of PropTypes values that the component is willing to receive.

oneOf This method accepts an array of values that the component is willing to receive.

Chapter 10 ■ Components and Props

286

Summary
In this chapter, I introduced stateless components, which are the simplest version of the key building block
in React applications. I demonstrated how stateless components are defined, how they render content,
and how components can be combined to create more complex features. I also explained how a parent
component is able to pass on data to its children using props and showed you how props can also be used
for functions, which provides the basic features required for communication between components. I
finished this chapter by showing you the features that define default values and types for props. In the next
chapter, I explain how to create components that have state data.

Figure 10-18.  Accepting multiple prop types

287© Adam Freeman 2019
A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_11

CHAPTER 11

Stateful Components

In this chapter, I introduce the stateful component, which builds on the features described in Chapter 10
and adds state data that is unique to each component and that can be used to alter the rendered output.
Table 11-1 puts stateful components in context.

Table 11-2 summarizes the chapter.

Table 11-1.  Putting Stateful Components in Context

Question Answer

What are they? Components are the key building blocks in React applications. Stateful components
have their own data that can be used to alter the content the component renders.

Why are they useful? Stateful components make it easier to keep track of the application state provided
by each component and provide the means to alter the data values and reflect the
change in the content presented to the user.

How are they used? Stateful components are defined using a class or by adding hooks to a functional
component.

Are there any pitfalls
or limitations?

Care must be taken to ensure that state data is modified correctly, as described in
the “Modifying State Data” section of this chapter.

Are there any
alternatives?

Components are the key building block in React applications, and there is no way to
avoid their use. There are alternative to props that can be useful in larger and more
complex projects, as described in later chapters.

Table 11-2.  Chapter Summary

Problem Solution Listing

Add state data to a component Define a class whose constructor sets the state property
or call the useState function to create a property and
function for a single state property

4–5, 12, 13

Modify state data Call the setState function or call the function returned
by useState

6–11

Share data between components Lift the state data to an ancestor component and
distribute it using props

14–18

Define prop types and default values
in a class-based component

Apply the properties to the class or define static
properties within the class

19–20

Chapter 11 ■ Stateful Components

288

Preparing for This Chapter
In this chapter, I continue using the components project created in Chapter 10. To prepare for this chapter,
I changed the content rendered by the Summary component so that it uses the SimpleButton component
directly as shown in Listing 11-1, rather than the CallbackButton that I used to describe how props are
distributed.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this book—
from https://github.com/Apress/pro-react-16.

Listing 11-1.  Changing the Content in the Summary.js File in the src Folder

import React from "react";
//import { CallbackButton } from "./CallbackButton";
import { SimpleButton } from "./SimpleButton";

export function Summary(props) {
 return (
 <React.Fragment>
 <td>{ props.index + 1} </td>
 <td>{ props.name } </td>
 <td>{ props.name.length } </td>
 <td>
 <SimpleButton
 className="btn btn-warning btn-sm m-1"
 callback={ props.reverseCallback }
 text={ `Reverse (${ props.name })`}
 />
 <SimpleButton
 className="btn btn-info btn-sm m-1"
 callback={ () => props.promoteCallback(props.name)}
 text={ `Promote (${ props.name})`}
 />
 </td>
 </React.Fragment>
)
}

In Listing 11-2, I have removed the types and default values for the SimpleButton component’s props,
which I will restore at the end of the chapter.

Listing 11-2.  Removing Properties in the SimpleButton.js File in the src Folder

import React from "react";

export function SimpleButton(props) {
 return (

https://github.com/Apress/pro-react-16

Chapter 11 ■ Stateful Components

289

 <button onClick={ props.callback } className={props.className}
 disabled={ props.disabled === "true" || props.disabled === true }>
 { props.text}
 </button>
)
}

Open a command prompt, navigate to the components folder, and run the command shown in Listing 11-3
to start the React development tools.

Listing 11-3.  Starting the Development Tools

npm start

After the initial build process, a new browser window will open and display the contents shown in
Figure 11-1.

Understanding the Different Component Types
In the sections that follow, I explain the differences between the types of component that React supports.
Understanding how stateful components work will be easier when you see the key difference from the
stateless components described in Chapter 10.

Understanding Stateless Components
As you saw in Chapter 10, stateless components consist of a function that React invokes in response to
custom HTML elements, passing the prop values as an argument. The same set of prop values on the
custom HTML element will result in the same prop argument and produce the same result, as shown in
Figure 11-2.

Figure 11-1.  Running the example application

Chapter 11 ■ Stateful Components

290

A stateless component will always render the same HTML elements given the same set of prop values,
regardless of how often the function is invoked. It depends entirely on the prop values provided by the
parent component to render its content. This means that React can keep invoking the same function
regardless of how many SimpleButton elements there are in the application and just has to keep track of
which props are associated with each SimpleButton element.

Understanding Stateful Components
A stateful component has its own data that influences the content the component renders. This data, which is
known as state data, is separate from the parent component and the props it provides.

Imagine that the SimpleButton component has to keep track of how many times the user has clicks the
button element it renders and displays the current count as the element’s content. To provide this feature,
the component needs a counter that is incremented each time the button is clicked and must include the
current value of the counter when it renders its content.

Each SimpleButton element defined by the parent component will produce a button element for
which a separate counter is required since each button can be clicked independently of the others. Stateful
components are JavaScript objects, and there is a one-to-one relationship between the SimpleButton HTML
element that applies the component and the component object, each of which has its own state and may
render different output, as shown in Figure 11-3.

There is no longer any certainty that providing the same prop to a stateful component will render the
same result because each component object can have different values for its state data and use it to generate
different results.

Figure 11-2.  Predictable results from a stateless component

Figure 11-3.  Stateful components with a counter

Chapter 11 ■ Stateful Components

291

As you will learn, stateful components have many features that are not available in stateless
components, and you will find that these features are easier to understand if you remember that each
stateful component is a JavaScript object with its own state data and is associated with a single custom
HTML element.

Creating a Stateful Component
To get started, I am going to convert one the existing SimpleButton component in the example application
from a stateless to stateful component, which will let me explain the basics before moving on to more
complicated features.

Defining a stateful component is done using a class, which is a template that describes the functionality
that each component object will have, as described in Chapter 4. In Listing 11-4, I have replaced the
SimpleButton component’s function with a class.

■■ Note T his is a stateful component that doesn’t have any state data. I explain how to define the component
and then show you how to add state data in the “Adding State Data” section.

Listing 11-4.  Introducing a Class in the SimpleButton.js File in the src Folder

import React, { Component } from "react";

export class SimpleButton extends Component {

 render() {
 return (
 <button onClick={ this.props.callback }
 className={ this.props.className }
 disabled={ this.props.disabled === "true"
 || this.props.disabled === true }>
 { this.props.text}
 </button>
)
 }
}

In the sections that follow, I describe each of the changes made in Listing 11-4 and explain how they are
used to create a stateful component.

Understanding the Component Class
When you define a stateful component, you use the class and extends keywords to denote a class that
inherits the functionality provided by the Component class defined in the react package, like this:

...
export class SimpleButton extends Component {
...

Chapter 11 ■ Stateful Components

292

This combination of keywords defines a class called SimpleButton that extends the Component class
provided by React. The export keyword makes the SimpleButton class available for use outside of the
JavaScript file in which it is defined, just as it did when the component was defined as a function.

Understanding the Import Statement
To extend from the Component class, an import is used, as follows:

...
import React, { Component } from "react";
...

As I explained in Chapter 4, there are two types of import in this statement. The default export
from the react package is imported and assigned the name React, which allows JSX to work. The
react package also has an export named Component that is imported using curly braces (the { and
} characters). It is important that you use the import statement exactly as shown when you create a
stateful component.

Understanding the render Method
The main purpose of a stateful component is to render content for React to display. The difference is that this
is done in a method called render, which is invoked when React wants the component to render. The render
method must return a React element, which can be created using the React.createElement method or,
more typically, as a fragment of HTML.

...
render() {
 return (
 <button onClick={ this.props.callback }
 className={ this.props.className }
 disabled={ this.props.disabled === "true"
 || this.props.disabled === true }>
 { this.props.text}
 </button>
)
}
...

Understanding Stateful Component Props
One of the most noticeable differences when you start working with stateful components is that you must
use the this keyword to access prop values, as follows:

...
return (
 <button onClick={ this.props.callback }
 className={ this.props.className }
 disabled={ this.props.disabled === "true"
 || this.props.disabled === true }>

Chapter 11 ■ Stateful Components

293

 { this.props.text}
 </button>
)
...

The this keyword refers to the component’s JavaScript object. When using a stateful component, you
must use the this keyword to access the props property, and you will see an error like this one displayed on
the command line, the browser’s JavaScript console, and the browser window if you forget:

./src/SimpleButton.js Line 7: 'props' is not defined no-undef

Although I have redefined the component, I haven’t changed the content that it renders or changed the
way it behaves, and the result is just the same as when the component was defined as a function, as shown in
Figure 11-4.

Adding State Data
The most import feature of stateful components is that each instance of the component can have its own
data, known as state data. In Listing 11-5, I have added state data to the SimpleButton component.

Listing 11-5.  Adding State Data in the SimpleButton.js File in the src Folder

import React, { Component } from "react";

export class SimpleButton extends Component {

 constructor(props) {
 super(props);

Figure 11-4.  Introducing a stateful component

Chapter 11 ■ Stateful Components

294

 this.state = {
 counter: 0,
 hasButtonBeenClicked: false
 }
 }

 render() {
 return (
 <button onClick={ this.props.callback }
 className={ this.props.className }
 disabled={ this.props.disabled === "true"
 || this.props.disabled === true }>
 { this.props.text} { this.state.counter }
 { this.state.hasButtonBeenClicked &&
 <div>Button Clicked!</div>
 }
 </button>
)
 }
}

State data is defined using a constructor, which is a special method that is invoked when a new object
is created using the class and that must follow the form shown in the listing: the constructor should define a
props parameter, and the first statement should be a call to the special super method using the props object
as an argument, which invokes the constructor of the Component class and sets up the features available in a
stateful component.

Once you have called super, you can define the state data, which is done by assigning an object to this.
state.

...
constructor(props) {
 super(props);
 this.state = {
 counter: 0,
 hasButtonBeenClicked: false
 }
}
...

The state data is defined as properties on the object. There is one property in this example, and it creates
state data properties called counter, whose value is 0, and hasButtonBeenClicked, whose value is false.

Reading State Data
Accessing state data is done by reading the properties you have defined through this.state, similar to the
way that props are accessed.

...
render() {
 return (
 <button onClick={ this.props.callback }

Chapter 11 ■ Stateful Components

295

 className={ this.props.className }
 disabled={ this.props.disabled === "true"
 || this.props.disabled === true }>
 { this.props.text} { this.state.counter }
 { this.state.hasButtonBeenClicked &&
 <div>Button Clicked!</div>
 }
 </button>
)
}
...

The render method in Listing 11-5 sets the contents of the button element so that it contains a prop value
and the value of the counter state data property, producing the effect shown in Figure 11-5. The additional div
element I defined in Listing 11-5 won’t be shown until the value of the hasButtonBeenClicked property is true,
which I demonstrate in the next section.

Modifying State Data
The use of state data makes sense only when it can be modified because that’s what allows component
objects to render different content. React requires a specific technique for modifying state data, as shown in
Listing 11-6.

Listing 11-6.  Modifying State Data in the SimpleButton.js File in the src Folder

import React, { Component } from "react";

export class SimpleButton extends Component {

Figure 11-5.  Defining and reading state data

Chapter 11 ■ Stateful Components

296

 constructor(props) {
 super(props);
 this.state = {
 counter: 0,
 hasButtonBeenClicked: false
 }
 }

 render() {
 return (
 <button onClick={ this.handleClick }
 className={ this.props.className }
 disabled={ this.props.disabled === "true"
 || this.props.disabled === true }>
 { this.props.text} { this.state.counter }
 { this.state.hasButtonBeenClicked &&
 <div>Button Clicked!</div>
 }
 </button>
)
 }

 handleClick = () => {
 this.setState({
 counter: this.state.counter + 1,
 hasButtonBeenClicked: true
 });
 this.props.callback();
 }
}

React doesn’t allow state data to be modified directly and will report an error if you try to assign a new
value directly to a state property. Instead, modifications are made through the setState method, which is
inherited from the Component class. In the listing, I have added a method called handleClick that is selected
by the button element’s onClick expression and that uses the setState method to increment the counter
state property.

■■ Tip M ethods that are selected by the onClick property have to be defined in a specific way. I explain how
the onClick property is used and how its methods are defined in Chapter 12.

The argument to the setState method is an object whose properties specify the state data to be updated,
like this:

...
this.setState({
 counter: this.state.counter + 1,
 hasButtonBeenClicked: true
});
...

Chapter 11 ■ Stateful Components

297

This statement tells React that the counter property should be modified by incrementing the
current value and that the hasButtonBeenClicked property should be true. Notice that I have not used
the increment operator (++) for counter because that would assign a new value to the property and
result in an error.

■■ Tip  You only have to define properties for the values you want to change when using the setState method.
React will merge the changes you specify with the rest of the component’s state data and leave unchanged any
property for which a value has not been provided.

Although using the setState method can feel awkward, the advantage is that React takes care of re-
rendering the application to reflect the impact of the change, which means that I don’t have manually
invoke the ReactDOM.render method as I did in Chapter 11. The effect is that clicking the buttons
increments the associated component’s counter state data, as shown in Figure 11-6. (Clicking the
buttons reorders the rows in the table, which means that the button you have clicked may be moved to a
new position.)

Clicking a button changes the state of one of the component objects and leaves the other five
component objects unchanged.

Avoiding the State Data Modification Pitfalls
React performs changes to state data asynchronously and may choose to group together several updates to
improve performance, which means that the effect of a call to the setState may not take effect in the way
you expect. There are some common pitfalls when updating state data, which I describe in the sections that
follow, along with details of how to avoid them.

■■ Tip T he React Devtools browser extension shows you the state data for a stateful component, which can
be a useful way of seeing how the application responds to changes and tracking down problems when you
don’t get the behavior you expect.

Figure 11-6.  Modifying state data

Chapter 11 ■ Stateful Components

298

Avoiding the Dependent Value Pitfall
State data values are often related, and a common problem is to assume that the effect of each change is
applied individually, as shown in Listing 11-7.

Listing 11-7.  Performing Related State Changes in the SimpleButton.js File in the src Folder

import React, { Component } from "react";

export class SimpleButton extends Component {

 constructor(props) {
 super(props);
 this.state = {
 counter: 0,
 hasButtonBeenClicked: false
 }
 }

 render() {
 return (
 <button onClick={ this.handleClick }
 className={ this.props.className }
 disabled={ this.props.disabled === "true"
 || this.props.disabled === true }>
 { this.props.text} { this.state.counter }
 { this.state.hasButtonBeenClicked &&
 <div>Button Clicked!</div>
 }
 </button>
)
 }

 handleClick = () => {
 this.setState({
 counter: this.state.counter + 1,
 hasButtonBeenClicked: this.state.counter > 0
 });
 this.props.callback();
 }
}

The update to the hasButtonBeenClicked property assumes the counter property will have
been changed before its expression is evaluated. React doesn’t apply changes individually, and the
expression for the hasButtonBeenClicked property is evaluated using the current counter value. This
problem also arises when related updates are performed using separate calls to the setState method,
as shown in Listing 11-8.

Listing 11-8.  Making Dependent Updates in the SimpleButton.js File in the src Folder

import React, { Component } from "react";

export class SimpleButton extends Component {

Chapter 11 ■ Stateful Components

299

 constructor(props) {
 super(props);
 this.state = {
 counter: 0,
 hasButtonBeenClicked: false
 }
 }

 render() {
 return (
 <button onClick={ this.handleClick }
 className={ this.props.className }
 disabled={ this.props.disabled === "true"
 || this.props.disabled === true }>
 { this.props.text} { this.state.counter }
 { this.state.hasButtonBeenClicked &&
 <div>Button Clicked!</div>
 }
 </button>
)
 }

 handleClick = () => {
 this.setState({ counter: this.state.counter + 1 });
 this.setState({ hasButtonBeenClicked: this.state.counter > 0 });
 this.props.callback();
 }
}

React will batch these updates together for efficiency, which creates the same result as Listing 11-6 and
means that the hasButtonBeenClicked property won’t be true until the button has been clicked twice, as
shown in Figure 11-7.

When you have a series of dependent changes to make, you can pass a function to the setState method
that will be invoked when the state data has been updated and that can be used to perform tasks that rely on
the changed state values, as shown in Listing 11-9.

Figure 11-7.  The dependent value pitfall

Chapter 11 ■ Stateful Components

300

Listing 11-9.  Using a Callback in the SimpleButton.js File in the src Folder

import React, { Component } from "react";

export class SimpleButton extends Component {

 constructor(props) {
 super(props);
 this.state = {
 counter: 0,
 hasButtonBeenClicked: false
 }
 }

 render() {
 return (
 <button onClick={ this.handleClick }
 className={ this.props.className }
 disabled={ this.props.disabled === "true"
 || this.props.disabled === true }>
 { this.props.text} { this.state.counter }
 { this.state.hasButtonBeenClicked &&
 <div>Button Clicked!</div>
 }
 </button>
)
 }

 handleClick = () => {
 this.setState({ counter: this.state.counter + 1 },
 () => this.setState({ hasButtonBeenClicked: this.state.counter > 0 }));
 this.props.callback();
 }
}

Using the callback function ensures that the value of the hasButtonBeenClicked value won’t be
changed until the new counter property has been applied, ensuring that the values are in sync, as shown in
Figure 11-8.

Chapter 11 ■ Stateful Components

301

Avoiding the Missing Updates Pitfall
The way that React applies updates means that multiple changes to the same state data property are ignored
and only the most recent value is applied, as demonstrated in Listing 11-10.

Listing 11-10.  Making Multiple Updates in the SimpleButton.js File in the src Folder

...
handleClick = () => {
 for (let i = 0; i < 5; i++) {
 this.setState({ counter: this.state.counter + 1});
 }
 this.setState({ hasButtonBeenClicked: true });
 this.props.callback();
}
...

In real projects, multiple updates are usually done while processing data, rather than in a for loop,
so that a state change is performed for each object in an array, for example. This listing shows the effect of
repeatedly modifying the same property: rather than incrementing the counter value five times, clicking a
button increments the value by one, as shown in Figure 11-9.

Figure 11-8.  Forcing state changes to be performed in sequence

Chapter 11 ■ Stateful Components

302

If you need to perform multiple updates and have each take effect in sequence, then you can use the
version of the setState method that accepts a function as its first argument. The function is provided with
the current state data and a props object, as shown in Listing 11-11.

■■ Tip T his version of the setState method is also useful for updating nested state properties, which you can
see demonstrated in Chapter 14.

Listing 11-11.  Making Multiple Updates in the SimpleButton.js File in the src Folder

...
handleClick = () => {
 for (let i = 0; i < 5; i++) {
 this.setState((state, props) => { return { counter: state.counter + 1 }});
 }
 this.setState({ hasButtonBeenClicked: true });
 this.props.callback();
}
...

The function passed to the setState method returns an update object using the same format as earlier
examples. The difference is that the state data object reflects all of the previous changes that have been
grouped together and can be used for repeated updates, producing the effect shown in Figure 11-10.

Figure 11-9.  Applying multiple updates to a state property

Chapter 11 ■ Stateful Components

303

Defining Stateful Components Using Hooks
Not all developers like using classes to define stateful components and so React provides an alternative
approach, called hooks, which allow functional components to define state data. In Listing 11-12, I added a
file called HooksButton.js to the src folder and re-created the stateful component from Listing 11-11 as a
function that uses hooks.

Listing 11-12.  The Contents of the HooksButton.js File in the src Folder

import React, { useState } from "react";

export function HooksButton(props) {
 const [counter, setCounter] = useState(0);
 const [hasButtonBeenClicked, setHasButtonBeenClicked] = useState(false);

 const handleClick = () => {
 setCounter(counter + 5);
 setHasButtonBeenClicked(true);
 props.callback();
 }

 return (
 <button onClick={ handleClick }
 className={ props.className }
 disabled={ props.disabled === "true" || props.disabled === true }>
 { props.text} { counter }
 { hasButtonBeenClicked && <div>Button Clicked!</div>}
 </button>
)
}

Figure 11-10.  Applying multiple updates to a state property

Chapter 11 ■ Stateful Components

304

The useState function is used to create state data. Its argument is the initial value for the state data
property, and it returns a property that provides the current value and a function that changes the value
and triggers an update. The property and the function are returned in an array and are assigned meaningful
names using array destructuring, like this:

...
const [counter, setCounter] = useState(0);
...

This statement creates a state data property named counter whose initial value is zero and whose
value can be changed using a function named setCounter. The function used to change the value
of a state data property doesn’t have all of the features of the setState method, which is why I have
incremented the value by five in the handleClick function, rather than performing a series of individual
updates, as in Listing 11-11.

...
const handleClick = () => {
 setCounter(counter + 5);
 setHasButtonBeenClicked(true);
 props.callback();
}
...

In Listing 11-13, I have updated the Summary so it uses the HooksButton component.

Listing 11-13.  Using the Hooks Component in the Summary.js File in the src Folder

import React from "react";
import { SimpleButton } from "./SimpleButton";
import { HooksButton } from "./HooksButton";

export function Summary(props) {
 return (
 <React.Fragment>
 <td>{ props.index + 1} </td>
 <td>{ props.name } </td>
 <td>{ props.name.length } </td>
 <td>
 <SimpleButton
 className="btn btn-warning btn-sm m-1"
 callback={ props.reverseCallback }
 text={ `Reverse (${ props.name })`} />
 <HooksButton
 className="btn btn-info btn-sm m-1"
 callback={ () => props.promoteCallback(props.name)}
 text={ `Promote (${ props.name})`} />
 </td>
 </React.Fragment>
)
}

Chapter 11 ■ Stateful Components

305

The use of hooks is not visible to the Summary component, which provides data and functions via props
as normal. This example produces the same result, as shown in Figure 11-10.

SHOULD YOU USE HOOKS OR CLASSES?

Hooks offer an alternative approach to creating stateful components for developers who don’t like to
use classes. Depending on your personal preference, either this will be an important feature that suits
your coding style or you will carry on defining classes and forget about hooks entirely.

The hooks and classes features will both be supported in future versions of React and so you can use
whichever suits you best or mix and match freely if you prefer. I like the hooks features, but, aside from
describing some related hooks features in Chapter 13, all of the examples in this book use classes. In
part that is because the hooks feature is new—but it is also because I have been using class-based
programming languages for a long time and using classes to define components suits my way of
thinking about code, even for simple stateless components.

If you prefer using hooks but can’t work out how to express the book examples without using a class,
then e-mail me at adam@adam-freeman.com, and I will try to point you in the right direction.

Lifting Up State Data
At the moment, each SimpleButton and HooksButton component exists in isolation and has its own state
data, so clicking a button affects only the state value of a single component and leaves the others unchanged.

A different approach is needed when components need access to the same data. In this situation, the
state data is lifted up, which means it is moved to the first common ancestor component and distributed
back down to the components that require it using props.

■■ Tip T here are alternative approaches available for sharing data between React components. Chapter 13
describes the context feature, and more complex projects can benefit from using a data store (see Chapters 19
and 20) or URL routing (see Chapters 21 and 22).

If I want the SimpleButton and HooksButton components in the same table row to share a counter
value, for example, I need to define the state data property in the first common ancestor, which is the
Summary component. In Listing 11-14, I have converted Summary to be a class-based stateful component that
defines a counter value.

Listing 11-14.  Lifting Up State Data in the Summary.js File in the src Folder

import React, { Component } from "react";
import { SimpleButton } from "./SimpleButton";
import { HooksButton } from "./HooksButton";

Chapter 11 ■ Stateful Components

306

export class Summary extends Component {

 constructor(props) {
 super(props);
 this.state = {
 counter: 0
 }
 }

 incrementCounter = (increment) => {
 this.setState((state) => { return { counter: state.counter + increment}});
 }

 render() {
 const props = this.props;
 return (
 <React.Fragment>
 <td>{ props.index + 1} </td>
 <td>{ props.name } </td>
 <td>{ props.name.length } </td>
 <td>
 <SimpleButton
 className="btn btn-warning btn-sm m-1"
 callback={ props.reverseCallback }
 text={ `Reverse (${ props.name })`}
 counter={ this.state.counter }
 incrementCallback={this.incrementCounter }
 />
 <HooksButton
 className="btn btn-info btn-sm m-1"
 callback={ () => props.promoteCallback(props.name)}
 text={ `Promote (${ props.name})`}
 counter={ this.state.counter }
 incrementCallback={this.incrementCounter }
 />
 </td>
 </React.Fragment>
)
 }
}

The Summary component defines a counter property and passes it on to its child components as a prop.
The component also defines an incrementCounter method that child components will invoke to change
the counter property, which is passed on using a prop named incrementCallback. This is required not only
because state data is not modified directly but also because props are read-only. The incrementCounter
method uses the setState method with a function so that it can be invoked repeatedly by child components.

■■ Tip  I defined a props property in the render method so that I don’t have to change all the references to
use the this keyword, which is a useful shortcut when converting a function component to use a class.

Chapter 11 ■ Stateful Components

307

In Listing 11-15, I removed the counter state data property from the SimpleButton component and
used the counter and incrementCounter props instead.

Listing 11-15.  Replacing State Data with Props in the SimpleButton.js File in the src Folder

import React, { Component } from "react";

export class SimpleButton extends Component {

 constructor(props) {
 super(props);
 this.state = {
 // counter: 0,
 hasButtonBeenClicked: false
 }
 }

 render() {
 return (
 <button onClick={ this.handleClick }
 className={ this.props.className }
 disabled={ this.props.disabled === "true"
 || this.props.disabled === true }>
 { this.props.text} { this.props.counter }
 { this.state.hasButtonBeenClicked &&
 <div>Button Clicked!</div>
 }
 </button>
)
 }

 handleClick = () => {
 this.props.incrementCallback(5);
 this.setState({ hasButtonBeenClicked: true });
 this.props.callback();
 }
}

A corresponding set of changes is required to the HooksButton component, which will share the same
set of props, as shown in Listing 11-16.

Listing 11-16.  Replacing State Data with Props in the HooksButton.js File in the src Folder

import React, { useState } from "react";

export function HooksButton(props) {
 //const [counter, setCounter] = useState(0);
 const[hasButtonBeenClicked, setHasButtonBeenClicked] = useState(false);

Chapter 11 ■ Stateful Components

308

 const handleClick = () => {
 //setCounter(counter + 5);
 props.incrementCallback(5);
 setHasButtonBeenClicked(true);
 props.callback();
 }

 return (
 <button onClick={ handleClick }
 className={ props.className }
 disabled={ props.disabled === "true" || props.disabled === true }>
 { props.text} { props.counter }
 { hasButtonBeenClicked && <div>Button Clicked!</div>}
 </button>
)
}

Lifting the counter state property to the parent component means that the two buttons presented to the
user in each table row share their parent’s state data, such that clicking one of the button elements causes
both to be updated, as shown in Figure 11-11.

Not every item of state data has to be lifted, and the individual components still have their own local
state data, such that the hasButtonBeenClicked property remains local and independent from the other
components.

Lifting Up State Data Further
State data can be lifted up further than the parent component. If I want all the SimpleButton and
HooksButton components to share the same counter property, then I can lift it up to the App component, as
shown in Listing 11-17, in which I have made the stateful using the hooks feature.

Figure 11-11.  Lifting state data

Chapter 11 ■ Stateful Components

309

Listing 11-17.  Lifting State Data in the App.js File in the src Folder

import React, { useState } from "react";
import { Summary } from "./Summary";
import ReactDOM from "react-dom";

let names = ["Bob", "Alice", "Dora"]

function reverseNames() {
 names.reverse();
 ReactDOM.render(<App />, document.getElementById('root'));
}

function promoteName(name) {
 names = [name, ...names.filter(val => val !== name)];
 ReactDOM.render(<App />, document.getElementById('root'));
}

export default function App() {
 const [counter, setCounter] = useState(0);

 const incrementCounter = (increment) => setCounter(counter + increment);

 return (
 <table className="table table-sm table-striped">
 <thead>
 <tr><th>#</th><th>Name</th><th>Letters</th></tr>
 </thead>
 <tbody>
 { names.map((name, index) =>
 <tr key={ name }>
 <Summary index={index} name={name}
 reverseCallback={reverseNames}
 promoteCallback={promoteName}
 counter={ counter }
 incrementCallback={ incrementCounter }
 />
 </tr>
)}
 </tbody>
 </table>
)
}

The App component defines the counter state property and the incrementCounter method that
modifies it by calling the setCounter function. In Listing 11-18, I have removed the state data from
the Summary component and passed on the props that are received from the App component to the
children.

Chapter 11 ■ Stateful Components

310

Listing 11-18.  Removing State Data in the Summary.js File in the src Folder

import React, { Component } from "react";
import { SimpleButton } from "./SimpleButton";
import { HooksButton } from "./HooksButton";

export class Summary extends Component {

 // constructor(props) {
 // super(props);
 // this.state = {
 // counter: 0
 // }
 // }

 // incrementCounter = (increment) => {
 // this.setState((state) => { return { counter: state.counter + increment}});
 // }

 render() {
 const props = this.props;
 return (
 <React.Fragment>
 <td>{ props.index + 1} </td>
 <td>{ props.name } </td>
 <td>{ props.name.length } </td>
 <td>
 <SimpleButton
 className="btn btn-warning btn-sm m-1"
 callback={ props.reverseCallback }
 text={ `Reverse (${ props.name })`}
 { ...this.props }
 />
 <HooksButton
 className="btn btn-info btn-sm m-1"
 callback={ () => props.promoteCallback(props.name)}
 text={ `Promote (${ props.name})`}
 { ...this.props }
 />
 </td>
 </React.Fragment>
)
 }
}

No constructor is required when a stateful component doesn’t have state data, and you will receive a
warning if you define a constructor that doesn’t do anything except pass on props to the base class using
super. I used the destructuring operator to pass on the props received from the App component to the
SimpleButton and HooksButton components.

Now that the state data has been lifted up to the App component, all of the SimpleButton components
that are descendants of the App component share a counter value, as shown in Figure 11-12.

Chapter 11 ■ Stateful Components

311

No changes are required to the SimpleButton and HooksButton components, which are unaware of
where the state data is defined and receive the data values and the callback functions required to change it
as props.

Defining Prop Types and Default Values
At the start of the chapter, I removed the prop default values and types so I could focus on the transition
from stateless to stateful components. Class-based components support these features in the same way as
functional components, as shown in Listing 11-19.

Listing 11-19.  Adding Prop Types and Values in the SimpleButton.js File in the src Folder

import React, { Component } from "react";
import PropTypes from "prop-types";

export class SimpleButton extends Component {

 constructor(props) {
 super(props);
 this.state = {
 // counter: 0,
 hasButtonBeenClicked: false
 }
 }

 render() {
 return (
 <button onClick={ this.handleClick }
 className={ this.props.className }
 disabled={ this.props.disabled === "true"
 || this.props.disabled === true }>
 { this.props.text} { this.props.counter }
 { this.state.hasButtonBeenClicked &&
 <div>Button Clicked!</div>
 }

Figure 11-12.  Lifting state data to the top-level component

Chapter 11 ■ Stateful Components

312

 </button>
)
 }

 handleClick = () => {
 this.props.incrementCallback(5);
 this.setState({ hasButtonBeenClicked: true });
 this.props.callback();
 }

}

SimpleButton.defaultProps = {
 disabled: false
}

SimpleButton.propTypes = {
 text: PropTypes.string,
 theme: PropTypes.string,
 callback: PropTypes.func,
 disabled: PropTypes.oneOfType([PropTypes.bool, PropTypes.string])
}

You can also define types and default prop values using class properties that have been decorated with
the static keyword, as shown in Listing 11-20. The static keyword defines a property that applies to the
component’s class rather than objects created from that class and is transformed by the build process into
the same form used in Listing 11-19.

Listing 11-20.  Defining Static Properties in the SimpleButton.js File in the src Folder

import React, { Component } from "react";
import PropTypes from "prop-types";

export class SimpleButton extends Component {

 constructor(props) {
 super(props);
 this.state = {
 // counter: 0,
 hasButtonBeenClicked: false
 }
 }

 render() {
 return (
 <button onClick={ this.handleClick }
 className={ this.props.className }
 disabled={ this.props.disabled === "true"
 || this.props.disabled === true }>

Chapter 11 ■ Stateful Components

313

 { this.props.text} { this.props.counter }
 { this.state.hasButtonBeenClicked &&
 <div>Button Clicked!</div>
 }
 </button>
)
 }

 handleClick = () => {
 this.props.incrementCallback(5);
 this.setState({ hasButtonBeenClicked: true });
 this.props.callback();
 }

 static defaultProps = {
 disabled: false
 }

 static propTypes = {
 text: PropTypes.string,
 theme: PropTypes.string,
 callback: PropTypes.func,
 disabled: PropTypes.oneOfType([PropTypes.bool, PropTypes.string])
 }
}

These changes don’t alter the appearance of the example application, but they ensure that the
component will receive only the prop types it expects and that a default value for the disabled prop is
available.

Summary
In this chapter, I introduced the stateful component, which has its own data values that can be used to
alter the rendered output. I explained that stateful components are defined using classes and showed
you how to define state data in a constructor. I also showed you the different ways that state data can
be modified and how to avoid the most common pitfalls. In the next chapter, I explain how React deals
with events.

315© Adam Freeman 2019
A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_12

CHAPTER 12

Working with Events

In this chapter, I describe the React support for events, which are generated by HTML elements, typically in
response to user interaction. The React event features will be familiar if you have used the DOM event API
features, but there are some important differences that can confuse the unwary developer. Table 12-1 puts
the React event features in context.

Table 12-1.  Putting React Events in Context

Question Answer

What are they? React events are triggered by elements to report important occurrences,
most often user interaction.

Why are they useful? Events allow components to respond to interaction with the content they
render, which forms the foundation for interactive applications.

How are they used? Interest in an event is indicated by adding properties to the elements
rendered by a component. When an event in which a component is
interested is triggered, the function specified by the property is invoked,
allowing the component to update its state, invoke a function prop, or
otherwise reflect the effect of the event.

Are there any pitfalls or
limitations?

React events are similar to the events provided by the DOM API but
with some differences that can present pitfalls for the unwary, especially
when it comes to event phases, as described in the “Managing Event
Propagation” section. Not all of the events defined by the DOM API are
supported (see https://reactjs.org/docs/events.html for a list of
events that React supports).

Are there any alternatives? There is no alternative to using events, which provide an essential link
between user interaction and the content rendered by a component.

https://reactjs.org/docs/events.html

Chapter 12 ■ Working with Events

316

Table 12-2 summarizes the chapter.

Preparing for This Chapter
To create the example project for this chapter, open a new command prompt, navigate to a convenient
location, and run the command shown in Listing 12-1.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this book—
from https://github.com/Apress/pro-react-16.

Listing 12-1.  Creating the Example Project

npx create-react-app reactevents

Run the commands shown in Listing 12-2 to navigate to the reactevents folder and add the Bootstrap
package to the project.

Listing 12-2.  Adding the Bootstrap CSS Framework

cd reactevents
npm install bootstrap@4.1.2

To include the Bootstrap CSS stylesheet in the application, add the statement shown in Listing 12-3 to
the index.js file, which can be found in the src folder.

Table 12-2.  Chapter Summary

Problem Solution Listing

Handle an event Add the prop that corresponds to the event name and
use the expression to process the event

6–10

Determine the event type Use the event object’s type property 11

Prevent an event from being reset
before it is used

Use the event object’s persist method 12, 13

Invoke event handlers with a
custom argument

Define an inline function in the prop expression that
invokes the handler method with the required data

14, 15

Prevent an event’s default behavior Use the event object’s preventDefault method 16

Manage the propagation of an event Determine the event phase 17–23

Stop an event Use the event object’s stopPropagation method 24

https://github.com/Apress/pro-react-16

Chapter 12 ■ Working with Events

317

Listing 12-3.  Including Bootstrap in the index.js File in the src Folder

import React from 'react';
import ReactDOM from 'react-dom';
import './index.css';
import App from './App';
import * as serviceWorker from './serviceWorker';
import 'bootstrap/dist/css/bootstrap.css';

ReactDOM.render(<App />, document.getElementById('root'));

// If you want your app to work offline and load faster, you can change
// unregister() to register() below. Note this comes with some pitfalls.
// Learn more about service workers: http://bit.ly/CRA-PWA
serviceWorker.unregister();

Next, replace the contents of the App.js file with the code shown in Listing 12-4, which will provide the
starting point for the examples in this chapter. The listing replaces the existing functional component with
one that uses a class.

Listing 12-4.  The Contents of the App.js File in the src Folder

import React, { Component } from 'react';

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 message: "Ready"
 }
 }

 render() {
 return (
 <div className="m-2">
 <div className="h4 bg-primary text-white text-center p-2">
 { this.state.message }
 </div>
 <div className="text-center">
 <button className="btn btn-primary">Click Me</button>
 </div>
 </div>
)
 }
}

Using the command prompt, run the commands shown in Listing 12-5 in the reactevents folder to
start the development tools.

Chapter 12 ■ Working with Events

318

Listing 12-5.  Starting the Development Tools

npm start

Once the initial preparation for the project is complete, a new browser window will open and display
the URL http://localhost:3000, which will display the content shown in Figure 12-1.

Understanding Events
Events are triggered by HTML elements to signal important changes, such as when the user clicks a button
or types into a text field. Handling events in React is similar to using the Domain Object Model API, although
there are important differences. In Listing 12-6, I have added an event handler that is invoked when the
button element is clicked.

Listing 12-6.  Adding an Event Handler in the App.js File in the src Folder

import React, { Component } from 'react';

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 message: "Ready"
 }
 }

 render() {
 return (
 <div className="m-2">
 <div className="h4 bg-primary text-white text-center p-2">
 { this.state.message }
 </div>

Figure 12-1.  Running the example application

Chapter 12 ■ Working with Events

319

 <div className="text-center">
 <button className="btn btn-primary"
 onClick={ () => this.setState({ message: "Clicked!"})}>
 Click Me
 </button>
 </div>
 </div>
)
 }
}

Events are handled using properties that share the name of the corresponding DOM API property,
expressed in camel case. The DOM API onclick property is expressed as onClick in React applications
and specifies how to handle the click event, which is triggered when the user clicks an element. The
expression for an event handling property is a function that will be invoked when the specified event is
triggered, like this:

...
<button className="btn btn-primary"
 onClick={ () => this.setState({ message: "Clicked!"})}>
 Click Me
</button>
...

This is an example of an inline function, which calls the setState method to change the value of the
message state data property. When the button element is clicked, the click event is triggered, and React will
invoke the inline function, producing the result shown in Figure 12-2.

Invoking a Method to Handle an Event
Stateful components can define methods and use them to respond to events, which helps avoid duplicating
code in expressions when several elements handle the same event in the same way. For simple methods that
don’t change the state of the application or access other component features, the method can be specified as
shown in Listing 12-7.

Figure 12-2.  Handling an event

Chapter 12 ■ Working with Events

320

Listing 12-7.  Adding an Event Handling Method in the App.js File in the src Folder

import React, { Component } from 'react';

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 message: "Ready"
 }
 }

 handleEvent() {
 console.log("handleEvent method invoked");
 }

 render() {
 return <div className="m-2">
 <div className="h4 bg-primary text-white text-center p-2">
 { this.state.message }
 </div>
 <div className="text-center">
 <button className="btn btn-primary"
 onClick={ this.handleEvent }>
 Click Me
 </button>
 </div>
 </div>
 }
}

Notice that the onClick expression doesn’t include parentheses, which would cause React to
invoke the function when the render method is invoked, as explained in the sidebar. The handleEvent
method doesn’t change the state of the application and just writes out a message to the browser’s
JavaScript console. If you click the button in the browser window, you will see the following output
shown in the console:

handleEvent method invoked

Chapter 12 ■ Working with Events

321

AVOIDING THE EVENT FUNCTION INVOCATION PITFALLS

The value assigned to an event handling property, such as onClick, must be an expression that returns
a function that React can invoke to handle an event. There are two common mistakes when using an
event handling property. The first mistake is to enclose the function you require in quotes rather than
braces, like this:

...
<button className="btn btn-primary" onClick="this.handleEvent" >
...

This provides React with a string value instead of a function and produces an error in the
browser’s JavaScript console. The other common mistake is to use an expression that invokes the
function you require.

...
<button className="btn btn-primary" onClick={ this.handleEvent() } >
...

This expression results in React invoking the handleEvent method when the component object is
created and not when an event is triggered. You won’t receive an error or warning for this mistake,
which makes the problem harder to spot.

Accessing Component Features in an Event Handling Method
Additional work is required if you need to access the component’s features in a method that handles an
event. The value of the this keyword isn’t set by default when JavaScript class methods are invoked, which
means that there is no way for statements in the handleEvent method to access the component’s methods
and properties. In Listing 12-8, I have added a statement to the handleEvent method that invokes the
setState method, which is accessed using the this keyword.

Listing 12-8.  Accessing Component Features in the App.js File in the src Folder

import React, { Component } from 'react';

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 message: "Ready"
 }
 }

 handleEvent() {
 this.setState({ message: "Clicked!"});
 }

Chapter 12 ■ Working with Events

322

 render() {
 return <div className="m-2">
 <div className="h4 bg-primary text-white text-center p-2">
 { this.state.message }
 </div>
 <div className="text-center">
 <button className="btn btn-primary"
 onClick={ this.handleEvent }>
 Click Me
 </button>
 </div>
 </div>
 }
}

The handleEvent method will be invoked when the button is clicked, but the following error will be
produced because this is undefined:

Uncaught TypeError: Cannot read property 'setState' of undefined

To ensure that a value is assigned to this, event handling methods can be expressed using the
JavaScript public class fields syntax, as shown in Listing 12-9.

Listing 12-9.  Redefining an Event Handling Method in the App.js File in the src Folder

import React, { Component } from 'react';

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 message: "Ready"
 }
 }

 handleEvent = () => {
 this.setState({ message: "Clicked!"});
 }

 render() {
 return <div className="m-2">
 <div className="h4 bg-primary text-white text-center p-2">
 { this.state.message }
 </div>
 <div className="text-center">
 <button className="btn btn-primary"

Chapter 12 ■ Working with Events

323

 onClick={ this.handleEvent }>
 Click Me
 </button>
 </div>
 </div>
 }
}

The name of the method is followed by the equal sign, open and close parentheses, the fat arrow
symbol, and then the message body, as shown in the listing. This is an awkward syntax, but I prefer it to the
alternatives (described in the sidebar), and this is the approach I use throughout this chapter and the rest
of the book. When you click the button element, the handleEvent method is provided with a value for this,
producing the result shown in Figure 12-3.

ALTERNATIVE WAYS TO ACCESS COMPONENT FEATURES

There are two alternative ways to provide an event handling method with a value for this. The first is to
use an inline function in the expression for the event property.

...
<button className="btn btn-primary"
 onClick={ () => this.handleEvent() }>
 Click Me
</button>
...

Notice that the event handler method is invoked by the expression, which means that open and close
parentheses are required after the method name. The other approach is to add a statement to the
constructor for each of the component’s event handler methods.

...
constructor(props) {
 super(props);

Figure 12-3.  Binding for an event handler

Chapter 12 ■ Working with Events

324

 this.state = {
 message: "Ready"
 }
 this.handleEvent = this.handleEvent.bind(this);
}
...

All three approaches take a while to get used to—and all are a little inelegant—and you should follow
the approach that you find most comfortable.

Receiving an Event Object
When an event is triggered, React provides a SyntheticEvent object that describes the event to the handler
object. The SyntheticEvent is a wrapper around the Event object provided by the DOM API that defines the
same features but with additional code to ensure that events are described consistently in different browsers.
The SyntheticEvent object has the basic properties and methods described in Table 12-3. (There are further
methods and properties that I describe in later sections.)

REACT EVENTS VERSUS DOM EVENTS

React events provide an essential link between a component and the content it renders—but React
events are not DOM events, even though they appear the same most of the time. If you go beyond the
most commonly used features, you will encounter important differences that can produce unexpected
results.

First, React doesn’t support all events, which means that there some DOM API events that don’t have
corresponding React properties that components can use. You can see the set of events that React
supports at https://reactjs.org/docs/events.html. The most commonly used events are included
in the list, but not every event is available.

Second, React doesn’t allow components to create and publish custom events. The React model for
interaction between components is through function props, described in Chapter 10, and custom events
are not distributed when the Event.dispatchEvent method is used.

Third, React provides a custom object as a wrapper around the DOM event objects, which doesn’t
always behave in the same way as the DOM event. You can access the DOM event through the wrapper,
but this should be done with caution because it can cause unexpected side effects.

Finally, React intercepts DOM events in their bubble phase (described later in this chapter) and feeds
them through the hierarchy of components, providing components with the opportunity to respond to
events and update the content they render. This means some of the features provided by the event
wrapper object don’t work as expected, especially when it comes to propagation, as described in the
“Managing Event Propagation” section.

https://reactjs.org/docs/events.html

Chapter 12 ■ Working with Events

325

In Listing 12-10, I have updated the handleEvent method so that it uses the event object that React
provides to update the component’s state.

Listing 12-10.  Receiving an Event Object in the App.js File in the src Folder

import React, { Component } from 'react';

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 message: "Ready"
 }
 }

 handleEvent = (event) => {
 this.setState({ message: `Event: ${event.type} `});
 }

 render() {
 return <div className="m-2">
 <div className="h4 bg-primary text-white text-center p-2">
 { this.state.message }
 </div>
 <div className="text-center">
 <button className="btn btn-primary"
 onClick={ this.handleEvent }>
 Click Me
 </button>

Table 12-3.  The Basic Properties and Methods Defined by the SyntheticEvent Object

Name Description

nativeEvent This property returns the Event object provided by the DOM API.

target This property returns the object that represents the element that is the source of
the event.

timeStamp This property returns a timestamp that indicates when the event was triggered.

type This property returns a string that indicates the event type.

isTrusted This property returns true when the event has been initiated by the browser and
false when the event object has been created in code.

preventDefault() This method is called to prevent an events default behavior, as described in the
“Preventing Default Behavior” section.

defaultPrevented This property returns true if the preventDefault method has been called on the
event object and false otherwise.

persist() This method is called to present React from reusing the event object, which is
important for asynchronous operations, as described in the “Avoiding the Event
Reuse Pitfall” section.

Chapter 12 ■ Working with Events

326

 </div>
 </div>
 }
}

I have added an event parameter to the handleEvent method, which I use to include the value of the
type property in the message that is displayed to the user, as shown in Figure 12-4.

Differentiating Between Event Types
React always provides a SyntheticEvent object when it invokes an event handling function, which can
cause confusion if you are accustomed to using the instanceof keyword to differentiate between events
created by the DOM API. In Listing 12-11, I have changed the button element so the handleEvent method is
used to respond to MouseUp and MouseDown events.

Listing 12-11.  Differentiating Events in the App.js File in the src Folder

import React, { Component } from 'react';

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 message: "Ready"
 }
 }

 handleEvent = (event) => {
 if (event.type === "mousedown") {
 this.setState({ message: "Down"});
 } else {
 this.setState({ message: "Up"});
 }
 }

Figure 12-4.  Receiving an event object

Chapter 12 ■ Working with Events

327

 render() {
 return <div className="m-2">
 <div className="h4 bg-primary text-white text-center p-2">
 { this.state.message }
 </div>
 <div className="text-center">
 <button className="btn btn-primary"
 onMouseDown={ this.handleEvent }
 onMouseUp={ this.handleEvent } >
 Click Me
 </button>
 </div>
 </div>
 }
}

The handleEvent method uses the type property to determine which event is being handled and
updates the message value accordingly. When you press the mouse button down, a mousedown event is
triggered, and when you release, a mouseup event is triggered, as shown in Figure 12-5.

Avoiding the Event Reuse Pitfall
React reuses SyntheticEvent objects and resets all the properties to null once an event has been
handled. This can cause problems if you are relying on asynchronous updates to state data, as described
in Chapter 11. Listing 12-12 demonstrates the problem.

Listing 12-12.  Using an Event Object Asynchronously in the App.js File in the src Folder

import React, { Component } from 'react';

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 message: "Ready",
 counter: 0
 }
 }

Figure 12-5.  Differentiating event types

Chapter 12 ■ Working with Events

328

 handleEvent = (event) => {
 this.setState({ counter: this.state.counter + 1},
 () => this.setState({ message: `${event.type}: ${this.state.counter}`}));
 }

 render() {
 return <div className="m-2">
 <div className="h4 bg-primary text-white text-center p-2">
 { this.state.message }
 </div>
 <div className="text-center">
 <button className="btn btn-primary"
 onClick={ this.handleEvent } >
 Click Me
 </button>
 </div>
 </div>
 }
}

The handleEvent method uses the setState method’s callback feature to update the message
property after an update to the counter property has been applied. The value assigned to the message
property includes the event object’s type property, which is a problem because that property will be set to
null by the time the setState callback function is invoked, which you can see by clicking the button, as
shown in Figure 12-6.

The persist method is used to prevent React from resetting the event object, as shown in Listing 12-13.

Listing 12-13.  Persisting an Event Object in the App.js File in the src Folder

...
handleEvent = (event) => {
 event.persist();
 this.setState({ counter: this.state.counter + 1},
 () => this.setState({ message: `${event.type}: ${this.state.counter}`}));
}
...

Figure 12-6.  Asynchronously using event objects

Chapter 12 ■ Working with Events

329

The result is that the event’s properties can be read from the setState method’s callback function,
producing the result shown in Figure 12-7.

Invoking Event Handlers with a Custom Argument
Event handlers are often more useful if they are provided with a custom argument, instead of the
SythenticEvent object that React provides by default. To demonstrate why the event object isn’t always
useful, I added another button element to the content rendered by the App component and set up the event
handler so that it uses the event to determine which button has been clicked, as shown in Listing 12-14.

Listing 12-14.  Identifying the Source of an Event in the App.js File in the src Folder

import React, { Component } from 'react';

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 message: "Ready",
 counter: 0,
 theme: "secondary"
 }
 }

 handleEvent = (event) => {
 event.persist();
 this.setState({
 counter: this.state.counter + 1,
 theme: event.target.innerText === "Normal" ? "primary" : "danger"
 }, () => this.setState({ message: `${event.type}: ${this.state.counter}`}));
 }

Figure 12-7.  Persisting an event

Chapter 12 ■ Working with Events

330

 render() {
 return <div className="m-2">
 <div className={ `h4 bg-${this.state.theme}
 text-white text-center p-2`}>
 { this.state.message }
 </div>
 <div className="text-center">
 <button className="btn btn-primary"
 onClick={ this.handleEvent } >
 Normal
 </button>
 <button className="btn btn-danger m-1"
 onClick={ this.handleEvent } >
 Danger
 </button>
 </div>
 </div>
 }
}

The problem with this approach is that the event handler has to understand the significance of the
content rendered by the component. In this case, that means knowing that the value of the innerText
property can be used to work out the source of the event and determine the value for the theme state
data property. This can be difficult to manage if the content rendered by the component changes or if
there are multiple interactions that can produce the same result. A more elegant approach is to use an
inline expression for the event handler property that invokes the handler method and provides it with the
information it needs, as shown in Listing 12-15.

Listing 12-15.  Invoking a Handler with a Custom Argument in the App.js File in the src Folder

import React, { Component } from 'react';

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 message: "Ready",
 counter: 0,
 theme: "secondary"
 }
 }

 handleEvent = (event, newTheme) => {
 event.persist();
 this.setState({
 counter: this.state.counter + 1,
 theme: newTheme
 }, () => this.setState({ message: `${event.type}: ${this.state.counter}`}));
 }

Chapter 12 ■ Working with Events

331

 render() {
 return <div className="m-2">
 <div className={ `h4 bg-${this.state.theme}
 text-white text-center p-2`}>
 { this.state.message }
 </div>
 <div className="text-center">
 <button className="btn btn-primary"
 onClick={ (e) => this.handleEvent(e, "primary") } >
 Normal
 </button>
 <button className="btn btn-danger m-1"
 onClick={ (e) => this.handleEvent(e, "danger") } >
 Danger
 </button>
 </div>
 </div>
 }
}

The result is the same, but the handleEvent method doesn’t have to inspect the element that triggered
the event in order to set the theme property. To see the effect of setting the theme, click either of the button
elements, as shown in Figure 12-8.

■■ Tip I f your handler method doesn’t need the event object, then you can use the inline expression to call the
handler without it: () => handleEvent("primary").

Preventing Default Behavior
Some events have behavior that the browser performs by default. The default behavior for clicking a
checkbox, for example, is to toggle the status of that checkbox. The preventDefault method can be called on
event objects to prevent the default behavior, and to demonstrate, I added a checkbox element to the content
that will be toggled only after one of the button elements has been clicked, as shown in Listing 12-16.

Figure 12-8.  Using a custom argument

Chapter 12 ■ Working with Events

332

Listing 12-16.  Preventing Default Behavior in the App.js File in the src Folder

import React, { Component } from 'react';

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 message: "Ready",
 counter: 0,
 theme: "secondary"
 }
 }

 handleEvent = (event, newTheme) => {
 event.persist();
 this.setState({
 counter: this.state.counter + 1,
 theme: newTheme
 }, () => this.setState({ message: `${event.type}: ${this.state.counter}`}));
 }

 toggleCheckBox = (event) => {
 if (this.state.counter === 0) {
 event.preventDefault();
 }
 }

 render() {
 return <div className="m-2">
 <div className="form-check">
 <input className="form-check-input" type="checkbox"
 onClick={ this.toggleCheckBox }/>
 <label>This is a checkbox</label>
 </div>

 <div className={ `h4 bg-${this.state.theme}
 text-white text-center p-2`}>
 { this.state.message }
 </div>
 <div className="text-center">
 <button className="btn btn-primary"
 onClick={ (e) => this.handleEvent(e, "primary") } >
 Normal
 </button>
 <button className="btn btn-danger m-1"
 onClick={ (e) => this.handleEvent(e, "danger") } >
 Danger
 </button>
 </div>
 </div>
 }
}

Chapter 12 ■ Working with Events

333

The onClick property on the input element tells React to invoke the toggleCheckBox method when
the user clicks the checkbox. The preventDefault method is called on the event if the value of the counter
state data property is zero, with the result that the checkbox cannot be toggled until after a button has been
clicked, as shown in Figure 12-9.

Managing Event Propagation
Events have a lifecycle that allows an element’s ancestors to receive events triggered by their descendants
and also to intercept events before they reach an element. In the sections that follow, I describe how events
are propagated through HTML elements and explain the effect this has on React applications, using the
properties and methods defined by the SyntheticEvent that are described in Table 12-4.

Understanding the Target and Bubble Phases
When an event is first triggered, it enters the target phase, where event handlers applied to the element
that is the source of the event are invoked. Once those event handlers are complete, the event enters the
bubble phase, where the event works its way up the chain of ancestor elements and is used to invoke any
handlers that have been applied for that type of event. To help demonstrate these phases, I added a file
called ThemeButton.js to the src folder and used it to define the component shown in Listing 12-17.

Figure 12-9.  Preventing event default behavior

Table 12-4.  The SyntheticEvent Properties and Methods for Event Propagation

Name Description

eventPhase This property returns the propagation phase of an event. However, the way
that React handles events means this property is not useful, as described in
the “Determining the Event Phase” section.

bubbles This property returns true if the event will enter the bubble phase.

currentTarget This property returns an object that represents the element whose event
handler is processing the event.

stopPropagation() This method is called to stop event propagation, as described in the
“Stopping Event Propagation” section.

isPropagationStopped() This method returns true if stopPropagation has been called on an event.

Chapter 12 ■ Working with Events

334

Listing 12-17.  The Contents of the ThemeButton.js File in the src Folder

import React, { Component } from "react";

export class ThemeButton extends Component {

 handleClick = (event) => {
 console.log(`ThemeButton: Type: ${event.type} `
 + `Target: ${event.target.tagName} `
 + `CurrentTarget: ${event.currentTarget.tagName}`);
 this.props.callback(this.props.theme);
 }

 render() {
 return
 <button className={`btn btn-${this.props.theme}`}
 onClick={ this.handleClick }>
 Select {this.props.theme } Theme
 </button>

 }
}

This component renders a span element that contains a button and is provided with a theme prop,
which specifies a Bootstrap CSS theme name, and a callback prop that is invoked to select the prop.
The onClick property has been applied to both the span and button elements. In Listing 12-18,
I updated the App component to use the ThemeButton component and to remove some of the code used
in earlier examples.

Listing 12-18.  Applying a Component in the App.js File in the src Folder

import React, { Component } from 'react';
import { ThemeButton } from "./ThemeButton";

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 message: "Ready",
 counter: 0,
 theme: "secondary"
 }
 }

 selectTheme = (newTheme) => {
 this.setState({
 theme: newTheme,
 message: `Theme: ${newTheme}`
 });
 }

Chapter 12 ■ Working with Events

335

 render() {
 return (
 <div className="m-2">
 <div className={ `h4 bg-${this.state.theme}
 text-white text-center p-2`}>
 { this.state.message }
 </div>
 <div className="text-center">
 <ThemeButton theme="primary" callback={ this.selectTheme } />
 <ThemeButton theme="danger" callback={ this.selectTheme } />
 </div>
 </div>
)
 }
}

Click either of the button elements, and you will see the following output in the browser’s JavaScript
console:

...
ThemeButton: Type: click Target: BUTTON CurrentTarget: BUTTON
ThemeButton: Type: click Target: BUTTON CurrentTarget: SPAN
...

There are two messages in the console because there are two onClick properties in the content
rendered by the ThemeButton component. The first message is generated during the target phase when
the event is processed by the handlers of the element that triggered it, which is the button element in this
example. The event then enters the bubble phase, where it propagates up through the button element’s
ancestor and invokes any suitable event handlers. In the example, the span element that is the parent of
the button also has an onClick property, which results in two calls to the handleClick method and two
messages written to the console.

■■ Tip N ot all types of event have a bubble phase. As a rule of thumb, events that are specific to a single
element—such as gaining and losing focus—do not bubble. Events that apply to multiple elements—such
as clicking a region of the screen that is occupied by multiple elements—will bubble. You can check to see
whether a specific event is going to go through the bubble phase by reading the bubbles property of the event
object.

The bubble phase extends beyond the content rendered by the component and propagates throughout
the entire hierarchy of HTML elements. To demonstrate, I added onClick handlers to elements rendered by
the App component that will receive the click event when it bubbles up from the button element rendered
by the ThemeButton component, as shown in Listing 12-19.

Listing 12-19.  Adding Event Handlers in the App.js File in the src Folder

import React, { Component } from 'react';
import { ThemeButton } from "./ThemeButton";

Chapter 12 ■ Working with Events

336

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 message: "Ready",
 counter: 0,
 theme: "secondary"
 }
 }

 selectTheme = (newTheme) => {
 this.setState({
 theme: newTheme,
 message: `Theme: ${newTheme}`
 });
 }

 handleClick= (event) => {
 console.log(`App: Type: ${event.type} `
 + `Target: ${event.target.tagName} `
 + `CurrentTarget: ${event.currentTarget.tagName}`);
 }

 render() {
 return (
 <div className="m-2" onClick={ this.handleClick }>
 <div className={ `h4 bg-${this.state.theme}
 text-white text-center p-2`}>
 { this.state.message }
 </div>
 <div className="text-center" onClick={ this.handleClick }>
 <ThemeButton theme="primary" callback={ this.selectTheme } />
 <ThemeButton theme="danger" callback={ this.selectTheme } />
 </div>
 </div>
)
 }
}

I added the onClick property to two div elements, and when you click one of the buttons, you will see
the following series of messages displayed in the browser’s JavaScript console (some browsers group the last
two messages together since they are the same):

...
ThemeButton: Type: click Target: BUTTON CurrentTarget: BUTTON
ThemeButton: Type: click Target: BUTTON CurrentTarget: SPAN
App: Type: click Target: BUTTON CurrentTarget: DIV
App: Type: click Target: BUTTON CurrentTarget: DIV
...

Chapter 12 ■ Working with Events

337

The SyntheticEvent object provides the currentTarget property, which returns the element whose
event handler is being invoked, as opposed to the target property, which returns the element that triggered
the event.

...
console.log(`ThemeButton: Type: ${event.type} `
 + `Target: ${event.target.tagName} `
 + `CurrentTarget: ${event.currentTarget.tagName}`);
...

These messages show the target and bubble phases of the click event as it is propagated up the
hierarchy of HTML elements, as shown in Figure 12-10.

EVENTS AND ELEMENTS THAT APPLY COMPONENTS

Event handling is performed by the HTML elements that are rendered by components and excludes
the custom HTML elements that are used to apply components. Adding event handler properties,
such as onClick to the ThemeButton element, for example, has no effect. No error is reported, but
the custom element is excluded from the HTML that is displayed by the browser, and the handler will
never be invoked.

Understanding the Capture Phase
The capture phase provides an opportunity for elements to process events before the target phase. During
the capture phase, the browser starts with the body element and works its way down the hierarchy of
elements toward the target, following the opposite path to the bubble phase, and gives each element the
chance to process the event, as shown in Figure 12-11.

Figure 12-10.  The target and bubble phases of the event

Chapter 12 ■ Working with Events

338

A separate property is required to tell React that an event handler should be applied in the capture
phase, as shown in Listing 12-20.

Listing 12-20.  Capturing an Event in the ThemeButton.js File in the src Folder

import React, { Component } from "react";

export class ThemeButton extends Component {

 handleClick = (event) => {
 console.log(`ThemeButton: Type: ${event.type} `
 + `Target: ${event.target.tagName} `
 + `CurrentTarget: ${event.currentTarget.tagName}`);
 this.props.callback(this.props.theme);
 }

 render() {
 return <span className="m-1" onClick={ this.handleClick }
 onClickCapture={ this.handleClick }>
 <button className={`btn btn-${this.props.theme}`}
 onClick={ this.handleClick }>
 Select {this.props.theme } Theme
 </button>

 }
}

For each event handling property, such as onClick, there is a corresponding capture property,
onClickCapture, that receives events in the capture phase. In the listing, I applied the onClickCapture
property to the span element and specified the handleClick method in the expression. The result is that the

Figure 12-11.  The event capture phase

Chapter 12 ■ Working with Events

339

span element will receive click events in the capture and bubble phases as the event works its way down
the hierarchy of HTML elements and goes back up again. Clicking either of the button elements will produce
an additional message in the browser’s JavaScript console.

...
ThemeButton: Type: click Target: BUTTON CurrentTarget: SPAN
ThemeButton: Type: click Target: BUTTON CurrentTarget: BUTTON
ThemeButton: Type: click Target: BUTTON CurrentTarget: SPAN
App: Type: click Target: BUTTON CurrentTarget: DIV
App: Type: click Target: BUTTON CurrentTarget: DIV
...

Determining the Event Phase
The handleClick method defined by the ThemeButton component will handle events several times for
each click event, and it moves from the capture to the target and then the bubble phase. Each time
the handleClick method is called, it invokes the function prop provided by the parent component,
which has the effect of repeatedly changing the value of the App component’s theme state property. This
is a harmless effect, but in real projects, repeatedly invoking a callback can cause problems, and it is
bad practice for a child component to assume that props can be invoked without issue. To highlight
the problem, I added a statement to the ThemeButton component’s handleEvent method that writes a
message to the browser’s JavaScript console when the function prop is invoked, as shown in
Listing 12-21.

Listing 12-21.  Adding a Debugging Message in the ThemeButton.js File in the src Folder

import React, { Component } from "react";

export class ThemeButton extends Component {

 handleClick = (event) => {
 console.log(`ThemeButton: Type: ${event.type} `
 + `Target: ${event.target.tagName} `
 + `CurrentTarget: ${event.currentTarget.tagName}`);
 console.log("Invoked function prop");
 this.props.callback(this.props.theme);
 }

 render() {
 return <span className="m-1" onClick={ this.handleClick }
 onClickCapture={ this.handleClick }>
 <button className={`btn btn-${this.props.theme}`}
 onClick={ this.handleClick }>
 Select {this.props.theme } Theme
 </button>

 }
}

Chapter 12 ■ Working with Events

340

Click one of the button’s presented by the example application, and you will see that the function prop
is invoked for each of the three phases that the click event goes through.

...
ThemeButton: Type: click Target: BUTTON CurrentTarget: SPAN
Invoked function prop
ThemeButton: Type: click Target: BUTTON CurrentTarget: BUTTON
Invoked function prop
ThemeButton: Type: click Target: BUTTON CurrentTarget: SPAN
Invoked function prop
App: Type: click Target: BUTTON CurrentTarget: DIV
App: Type: click Target: BUTTON CurrentTarget: DIV
...

The SythenticEvent object that React uses defines an eventPhase property, which returns the value of
the corresponding property from the native DOM API event object. Unfortunately, the value of that property
always indicates that the event is in the bubble phase because React intercepts the native event and uses it
to simulate the three propagation phases. As a consequence, a little more work is required to identify event
phases.

The first step is to identify events in the capture phase, which can be done by using a different handler
method or providing an additional argument to the common handler, which is the approach that I have
taken in Listing 12-22.

Listing 12-22.  Identifying Capture Phase Events in the ThemeButton.js File in the src Folder

import React, { Component } from "react";

export class ThemeButton extends Component {

 handleClick = (event, capturePhase = false) => {
 console.log(`ThemeButton: Type: ${event.type} `
 + `Target: ${event.target.tagName} `
 + `CurrentTarget: ${event.currentTarget.tagName}`);
 if (capturePhase) {
 console.log("Skipped function prop: capture phase");
 } else {
 console.log("Invoked function prop");
 this.props.callback(this.props.theme);
 }
 }

 render() {
 return <span className="m-1" onClick={ this.handleClick }
 onClickCapture={ (e) => this.handleClick(e, true) }>
 <button className={`btn btn-${this.props.theme}`}
 onClick={ this.handleClick }>
 Select {this.props.theme } Theme
 </button>

 }
}

Chapter 12 ■ Working with Events

341

I used an inline expression for the onClickCapture property that receives the SythenticEvent object
and uses it to invoke the handleClick method, along with an additional argument that indicates the event is
in the capture phase. Within the handleClick method, I check the value of the capturePhase parameter to
identify events in their capture phase.

Separating the target and bubble phases is more difficult because events in both phases are handled
by the onClick property. The most reliable way to determine the phase is to see whether the values for the
target and currentTarget properties are different and to see whether the bubbles property is true. If the
object returned by the currentTarget is different from the target value and the event has a bubble phase,
then it is reasonable to assume that the event is bubbling, as shown in Listing 12-23.

Listing 12-23.  Identifying Bubble Phase Events in the ThemeButton.js File in the src Folder

import React, { Component } from "react";

export class ThemeButton extends Component {

 handleClick = (event, capturePhase = false) => {
 console.log(`ThemeButton: Type: ${event.type} `
 + `Target: ${event.target.tagName} `
 + `CurrentTarget: ${event.currentTarget.tagName}`);
 if (capturePhase) {
 console.log("Skipped function prop: capture phase");
 } else if (event.bubbles && event.currentTarget !== event.target) {
 console.log("Skipped function prop: bubble phase");
 } else {
 console.log("Invoked function prop");
 this.props.callback(this.props.theme);
 }
 }

 render() {
 return <span className="m-1" onClick={ this.handleClick }
 onClickCapture={ (e) => this.handleClick(e, true) }>
 <button className={`btn btn-${this.props.theme}`}
 onClick={ this.handleClick }>
 Select {this.props.theme } Theme
 </button>

 }
}

When you click a button, you will see the following sequence of messages in the browser’s JavaScript
console, indicating that each phase has been identified and that the function prop has been called only in
the target phase.

...
ThemeButton: Type: click Target: BUTTON CurrentTarget: SPAN
Skipped function prop: capture phase
ThemeButton: Type: click Target: BUTTON CurrentTarget: BUTTON
Invoked function prop
ThemeButton: Type: click Target: BUTTON CurrentTarget: SPAN
Skipped function prop: bubble phase

Chapter 12 ■ Working with Events

342

App: Type: click Target: BUTTON CurrentTarget: DIV
App: Type: click Target: BUTTON CurrentTarget: DIV
...

These messages also confirm the order of the event’s phases: capture, target, and then bubble.

Stopping Event Propagation
Understanding event phases can also be important if you want to disrupt the normal propagation sequence
and prevent elements from receiving events. In Listing 12-24, I have changed the ThemeButton component
so that it intercepts click events in the capture phase and stops them from reaching the target element.

Listing 12-24.  Stopping Event Propagation in the ThemeButton.js File in the src Folder

import React, { Component } from "react";

export class ThemeButton extends Component {

 handleClick = (event, capturePhase = false) => {
 console.log(`ThemeButton: Type: ${event.type} `
 + `Target: ${event.target.tagName} `
 + `CurrentTarget: ${event.currentTarget.tagName}`);
 if (capturePhase) {
 if (this.props.theme === "danger") {
 event.stopPropagation();
 console.log("Stopped event");
 } else {
 console.log("Skipped function prop: capture phase");
 }
 } else if (event.bubbles && event.currentTarget !== event.target) {
 console.log("Skipped function prop: bubble phase");
 } else {
 console.log("Invoked function prop");
 this.props.callback(this.props.theme);
 }
 }

 render() {
 return <span className="m-1" onClick={ this.handleClick }
 onClickCapture={ (e) => this.handleClick(e, true) }>
 <button className={`btn btn-${this.props.theme}`}
 onClick={ this.handleClick }>
 Select {this.props.theme } Theme
 </button>

 }
}

Chapter 12 ■ Working with Events

343

The onClickCapture property on the span element will invoke the handleClick method when it
receives a click event in the capture phase. The stopPropagation method is called when the value of the
theme prop is danger, which prevents the event from reaching the button element and has the effect of
preventing the user from selecting the danger theme, as illustrated in Figure 12-12.

Summary
In this chapter, I described the features that React provides for working with events. I demonstrated the
different ways that handler functions can be defined, showed you how to work with event objects, and
showed how to use custom arguments instead. I also explained how React events are not the same as DOM
API events, even though they are similar and closely related. I finished the chapter by introducing the event
lifecycle and showing you how events are propagated. In the next chapter, I describe the component lifecycle
and explain how state data changes are reconciled.

Figure 12-12.  Stopping an event

345© Adam Freeman 2019
A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_13

CHAPTER 13

Reconciliation and Lifecycles

In this chapter, I explain how React uses a process called reconciliation to efficiently deal with content
produced by components. The reconciliation process is part of a larger lifecycle that React provides
for components, and I describe the different lifecycle stages and show you how stateful components
can implement methods to become active lifecycle participants. Table 13-1 puts reconciliation and the
component lifecycle in context.

Table 13-1.  Putting Reconciliation and Lifecycle Text in Context

Question Answer

What is it? Reconciliation is the process of efficiently handling the content produced
by components to minimize changes to the Document Object Model
(DOM). Reconciliation is part of a larger lifecycle that is applied to stateful
components.

Why is it useful? The reconciliation process helps application performance, while the
broader component lifecycle provides a consistent model for application
development and provides useful features for advanced projects.

How is it used? The reconciliation process is performed automatically, and no explicit
action is required. All stateful components go through the same lifecycle
and can participate actively by implementing specific methods (for class-
based components) or the effect hook (for functional components).

Are there any pitfalls or
limitations?

Care must be taken to write components so they fit into the overall
lifecycle, which includes being able to render content even though it may
not be used to update the DOM.

Are there any alternatives? No, the lifecycle and the reconciliation process are fundamental React
features.

Chapter 13 ■ Reconciliation and Lifecycles

346

Table 13-2 summarizes the chapter.

Preparing for This Chapter
To create the example project for this chapter, open a new command prompt, navigate to a convenient
location, and run the command shown in Listing 13-1.

■■ Tip Y ou can download the example project for this chapter—and for all the other chapters in this book—
from https://github.com/Apress/pro-react-16.

Listing 13-1.  Creating the Example Project

npx create-react-app lifecycle

Run the commands shown in Listing 13-2 to navigate to the lifecycle folder and add the Bootstrap
package to the project.

Listing 13-2.  Adding the Bootstrap CSS Framework

cd lifecycle
npm install bootstrap@4.1.2

To include the Bootstrap CSS stylesheet in the application, add the statement shown in Listing 13-3 to
the index.js file, which can be found in the src folder.

Listing 13-3.  Including Bootstrap in the index.js File in the src Folder

import React from 'react';
import ReactDOM from 'react-dom';
import './index.css';

Table 13-2.  Chapter Summary

Problem Solution Listing

Trigger reconciliation Call the forceUpdate method 15, 16

Respond to lifecycle stages Implement the method that corresponds to the lifecycle stage 17–20

Receive notifications in a
functional component

Use the effect hook 21–23

Prevent updates Implement the shouldComponentUpdate method 24, 25

Set state data from props Implement the getDerivedStateFromProps method 26, 27

https://github.com/Apress/pro-react-16

Chapter 13 ■ Reconciliation and Lifecycles

347

import App from './App';
import * as serviceWorker from './serviceWorker';
import 'bootstrap/dist/css/bootstrap.css';

ReactDOM.render(<App />, document.getElementById('root'));

// If you want your app to work offline and load faster, you can change
// unregister() to register() below. Note this comes with some pitfalls.
// Learn more about service workers: http://bit.ly/CRA-PWA
serviceWorker.unregister();

Creating the Example Components
Some basic components are needed for the examples in this chapter. Add a file called ActionButton.js to
the src folder and add the content shown in Listing 13-4.

Listing 13-4.  The Contents of the ActionButton.js File in the src Folder

import React, { Component } from "react";

export class ActionButton extends Component {

 render() {
 console.log(`Render ActionButton (${this.props.text}) Component `);
 return <button className="btn btn-primary m-2"
 onClick={ this.props.callback }>
 { this.props.text }
 </button>
 }
}

This component renders a button that invokes a function prop in response to the click event. Next, add a
file called Message.js to the src folder and add the content shown in Listing 13-5.

Listing 13-5.  The Contents of the Message.js File in the src Folder

import React, { Component } from "react";
import { ActionButton } from "./ActionButton";

export class Message extends Component {

 render() {
 console.log(`Render Message Component `);
 return (
 <div>
 <ActionButton theme="primary" {...this.props} />
 <div className="h5 text-center p-2">
 { this.props.message }
 </div>

Chapter 13 ■ Reconciliation and Lifecycles

348

 </div>
)
 }
}

This component displays a message received as a prop and passes on a function prop as the callback for
an ActionButton, as defined in Listing 13-4. Next, add a file called List.js to the src folder and add the
content shown in Listing 13-6.

Listing 13-6.  The Contents of the List.js File in the src Folder

import React, { Component } from "react";
import { ActionButton } from "./ActionButton";

export class List extends Component {

 constructor(props) {
 super(props);
 this.state = {
 names: ["Bob", "Alice", "Dora"]
 }
 }

 reverseList = () => {
 this.setState({ names: this.state.names.reverse()});
 }

 render() {
 console.log("Render List Component");
 return (
 <div>
 <ActionButton callback={ this.reverseList }
 text="Reverse Names" />
 { this.state.names.map((name, index) => {
 return <h5 key={ name }>{ name }</h5>
 })}

 </div>
)
 }
}

This component has its own state data, which it uses to render a list. An ActionButton component
is provided with the reverseList method as its function prop, which reverses the order of the items in
the list.

The final change is to replace the contents of the App.js file with the code shown in Listing 13-7, which
renders content that uses the other components and defines the state data that the Message component
requires.

Chapter 13 ■ Reconciliation and Lifecycles

349

Listing 13-7.  The Contents of the App.js File in the src Folder

import React, { Component } from 'react';
import { Message } from "./Message";
import { List } from "./List";

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 counter: 0
 }
 }

 incrementCounter = () => {
 this.setState({ counter: this.state.counter + 1 });
 }

 render() {
 console.log("Render App Component");
 return <div className="container text-center">
 <div className="row p-2">
 <div className="col-6">
 <Message message={ `Counter: ${this.state.counter}`}
 callback={ this.incrementCounter }
 text="Increment Counter" />
 </div>
 <div className="col-6">
 <List />
 </div>
 </div>
 </div>

 }
}

The content rendered by the App component displays the Message and List components side by side using
the Bootstrap CSS grid features. The counter property is incremented by the incrementCounter method,
which is used as the function prop for the Message component. Using the command prompt, run the
command shown in Listing 13-8 in the lifecycle folder to start the development tools.

Listing 13-8.  Starting the Development Tools

npm start

Once the initial preparation for the project is complete, a new browser window will open and display
the URL http://localhost:3000, which will display the content shown in Figure 13-1.

Chapter 13 ■ Reconciliation and Lifecycles

350

Understanding How Content Is Rendered
The starting point for the rendering process is the statement in the index.js file that invokes the ReactDOM.
render method.

...
ReactDOM.render(<App />, document.getElementById('root'));
...

This method starts the initial rendering process. React creates a new instance of the App component,
which is specified by the first argument to the ReactDOM.render method, and invokes its render
method. The content rendered by the App component includes Message and List elements, and React
creates instances of these components and calls their render methods. The process continues to
the ActionButton elements in the content rendered by the Message and List elements, creating two
instances of the ActionButton component and calling the render method for each of them. The result
of calling the render method on each component is a hierarchy of HTML elements that are inserted into
the element selected by the second argument to the ReactDOM.render method, creating the content
shown in Figure 13-1. The result of the initial rendering process is a hierarchy of component objects and
HTML elements, as shown in Figure 13-2.

Figure 13-1.  Running the example application

Chapter 13 ■ Reconciliation and Lifecycles

351

React uses the browser’s API to add HTML elements to the Document Object Model (DOM) so they
can be presented to user, as shown in Figure 13-3, and creates a mapping between the components and the
content they render.

Figure 13-2.  Components and their content

Chapter 13 ■ Reconciliation and Lifecycles

352

The browser doesn’t know—or care—about the components, and its only job is to present the HTML
elements in the DOM. React is responsible for managing the components and dealing with the content that
is rendered.

Each of the components in the example application has a console.log statement in its render method,
and the messages displayed in the browser’s JavaScript console show that each of the five component
objects is asked to render its content.

...
Render App Component
Render Message Component
Render ActionButton (Increment Counter) Component

Figure 13-3.  Mapping components to the content they render

Chapter 13 ■ Reconciliation and Lifecycles

353

Render List Component
Render ActionButton (Reverse Names) Component
...

There are messages from one App component, one Message component, one List component, and two
ActionButton components, matching the structure illustrated in Figures 13-2 and 13-3.

Understanding the Update Process
When the application first starts, React asks all the components to render their content so that it can be
displayed to the user. Once the content is displayed, the application is in the reconciled state, where the
content displayed to the user is consistent with the state of the components.

When the application is reconciled, React waits for something to change. In most applications, changes
are caused by user interaction, which triggers an event and results in a call to the setState method. The
setState method updates a component’s state data, but it also marks the component as “stale,” meaning
that the HTML content displayed to the user may be out-of-date. A single event may result in multiple
state data changes, and once they have all been processed, React invokes the render method for each dirty
component and its children. To see the effect of a change, click the Increment Counter button in the browser
window, as shown in Figure 13-4.

The handler that responds to the click event updates App component’s counter state data property.
Since App is the top-level component, that means the render method is invoked on all of the application’s
components, which can be seen in the messages displayed in the browser’s JavaScript console.

...
Render App Component
Render Message Component
Render ActionButton (Increment Counter) Component
Render List Component
Render ActionButton (Reverse Names) Component
...

Figure 13-4.  Clicking a button to trigger a change

Chapter 13 ■ Reconciliation and Lifecycles

354

React only updates the components that are affected by a change, minimizing the amount of work that
the application has to do before it is reconciled again. You can see how this works by clicking the Reverse
Names button, as shown in Figure 13-5.

The click event from this button results in a state data change for the List component and produces
the following messages in the browser’s JavaScript console:

...
Render List Component
Render ActionButton (Reverse Names) Component
...

The List component and its child ActionButton are marked as stale, but the change hasn’t affected the
App and Message components or the other ActionButton. React assumes that the content rendered these
components is still current and doesn’t need to be updated.

Understanding the Reconciliation Process
Although React will invoke the render method of any component that has been marked as stale, it doesn’t
always use the content that is produced. Making changes to the HTML elements in the Domain Object
Model is an expensive operation and so React compares the content returned by the components with
the previous results so that it can ask the browser to perform the smallest number of operations, a process
known as reconciliation.

To demonstrate how React minimizes the changes it makes, I have made a change to the content
rendered by the Message component, as shown in Listing 13-9.

Listing 13-9.  Changing Content in the Message.js File in the src Folder

import React, { Component } from "react";
import { ActionButton } from "./ActionButton";

Figure 13-5.  Clicking a button to trigger a limited change

Chapter 13 ■ Reconciliation and Lifecycles

355

export class Message extends Component {

 render() {
 console.log(`Render Message Component `);
 return (
 <div>
 <ActionButton theme="primary" {...this.props} />
 <div id="messageDiv" className="h5 text-center p-2">
 { this.props.message }
 </div>
 </div>
)
 }
}

The addition of the id attribute makes it easier to manipulate the div element. Using the F12 developer
tools, switch to the Console tab, enter the statement shown in Listing 13-10, and press Enter. All browsers
allow JavaScript arbitrary statements to be executed, and in Google Chrome this is done by entering code
into the prompt at the bottom of the Console tab.

Listing 13-10.  Manipulating an HTML Element

document.getElementById("messageDiv").classList.add("bg-info")

This statement uses the DOM API to select the div element rendered by the Message component and
assign it to the bg-info class, which selects a background color defined by the Bootstrap CSS framework.
When you click the Increment Counter button, the content of the div element is updated, but the color
doesn’t change, because React has compared the content returned by the Message component’s render
method with the previous result and detected that only the content of the div element is different, as
illustrated in Figure 13-6.

React compares the content produced by components with its own cache of previous results, known as
the virtual DOM, which is defined in a format that allows for efficient comparisons. The effect is that React
doesn’t have to query the elements in the DOM to figure out the set of changes.

Figure 13-6.  The effect of reconciliation

Chapter 13 ■ Reconciliation and Lifecycles

356

■■ Tip D on’t confuse the term virtual DOM, which is specific to React, with shadow DOM, which is a recent
browser feature that allows content to be scoped to a specific part of the HTML document.

A second example is required to confirm the reconciliation behavior, demonstrating how React handles
a more complex change. In Listing 13-11, I have added state data to the Message component and used it to
alternate between two different element types.

Listing 13-11.  Alternating Elements in the Message.js File in the src Folder

import React, { Component } from "react";
import { ActionButton } from "./ActionButton";

export class Message extends Component {

 constructor(props) {
 super(props);
 this.state = {
 showSpan: false
 }
 }

 handleClick = (event) => {
 this.setState({ showSpan: !this.state.showSpan });
 this.props.callback(event);
 }

 getMessageElement() {
 let div = <div id="messageDiv" className="h5 text-center p-2">
 { this.props.message }
 </div>
 return this.state.showSpan ? { div } : div;
 }

 render() {
 console.log(`Render Message Component `);
 return (
 <div>
 <ActionButton theme="primary" {...this.props}
 callback={ this.handleClick } />
 { this.getMessageElement() }
 </div>
)
 }
}

The component alternates between displaying a div element directly or wrapping it in a span element.
Save the changes and execute the statement shown in Listing 13-12 in the browser’s JavaScript console to
set the background color of the div element. Notice that I have defined the callback property after passing
on props to the ActionButton component using the spread operator. The Message component receives a
callback property from its parent, so I have to define my replacement afterward to override it.

Chapter 13 ■ Reconciliation and Lifecycles

357

■■ Caution D on’t change the top-level element in components in real projects because it causes React to
replace elements in the DOM without performing a detailed comparison to detect changes.

Listing 13-12.  Manipulating an HTML Element

document.getElementById("messageDiv").classList.add("bg-info")

When you click the Increment Counter button, the Message component’s render method will return
content that includes the span element. Click the button a second time, and the render method will return
to the original content, but the background color will not be shown, as illustrated in Figure 13-7.

React compares the output from the render method with the previous results and detects the
introduction of the span element. React doesn’t investigate the content of the new span element to perform a
more detailed comparison and just uses it to replace the existing div element that the browser is displaying.

Understanding List Reconciliation
React has special support for handling elements that display arrays of data. Most operations on lists leave most of
the elements in the array, although they can often be in a different location, such as when the objects are sorted.
To ensure that React is able to minimize the number of changes it has to make to display a change, elements
generated from arrays are required to have a key prop, such as the one defined by the List component.

...
render() {
 console.log("Render List Component");
 return (
 <div>
 <ActionButton callback={ this.reverseList }
 text="Reverse Names" />
 { this.state.names.map((name, index) => {
 return <h5 key={ name }>{ name }</h5>
 })}
 </div>
)
}
...

Figure 13-7.  Reconciling different types of element

Chapter 13 ■ Reconciliation and Lifecycles

358

The value of the key prop must be unique within the set of elements so that React can identify each one.
To demonstrate how React minimizes the changes required to update lists, I added an attribute to the h5
elements rendered by the List component, as shown in Listing 13-13.

■■ Tip  Key values should be stable, such that they should continue to refer to the same object even after
operations that make changes to the array. A common mistake is to use the position of an object in the array as
its index, which is not stable because many operations on arrays affect the order of objects.

Listing 13-13.  Adding an Attribute in the List.js File in the src Folder

import React, { Component } from "react";
import { ActionButton } from "./ActionButton";

export class List extends Component {

 constructor(props) {
 super(props);
 this.state = {
 names: ["Bob", "Alice", "Dora"]
 }
 }

 reverseList = () => {
 this.setState({ names: this.state.names.reverse()});
 }

 render() {
 console.log("Render List Component");
 return (
 <div>
 <ActionButton callback={ this.reverseList }
 text="Reverse Names" />
 { this.state.names.map((name, index) => {
 return <h5 id={ name.toLowerCase() } key={ name }>{ name }</h5>
 })}
 </div>
)
 }
}

The addition of the id attribute makes it easy to manipulate the element using the browser’s JavaScript
console, using the same approach as earlier examples. Use the JavaScript console to execute the statements
shown in Listing 13-14, which assign the h5 elements to classes that apply Bootstrap background colors.

Listing 13-14.  Adding Classes to Elements

document.getElementById("bob").classList.add("bg-primary")
document.getElementById("alice").classList.add("bg-secondary")
document.getElementById("dora").classList.add("bg-info")

Chapter 13 ■ Reconciliation and Lifecycles

359

Click the Reverse Names button, and you will see that the order of the h5 elements is changed, but no
elements are destroyed and re-created, as shown in Figure 13-8.

Explicitly Triggering Reconciliation
The reconciliation process relies on React being notified of changes through the setState method, which
allows it to determine which data is stale. It isn’t always possible to call the setState method if you need to
respond to changes that have occurred outside of the application, such as when external data has arrived.
For these situations, React provides the forceUpdate method, which can be used to explicitly trigger an
update and ensures that any changes are reflected in the content presented to the user. To demonstrate
explicit reconciliation, I added a file called ExternalCounter.js to the src folder and used it to define the
component shown in Listing 13-15.

■■ Caution I t is worth considering the design of your application if you find yourself using the forceUpdate
method. The forceUpdate method is a blunt instrument and its use can often be avoided by extending the use
of state data or by applying one of the composition techniques described in Chapter 14.

Listing 13-15.  The Contents of the ExternalCounter.js File in the src Folder

import React, {Component } from "react";
import { ActionButton } from "./ActionButton";

let externalCounter = 0;

export class ExternalCounter extends Component {

 incrementCounter = () => {
 externalCounter++;
 this.forceUpdate();
 }

Figure 13-8.  Reordering elements in a list

Chapter 13 ■ Reconciliation and Lifecycles

360

 render() {
 return (
 <div>
 <ActionButton callback={ this.incrementCounter }
 text="External Counter" />
 <div className="h5 text-center p-2">
 External: { externalCounter }
 </div>
 </div>
)
 }
}

This is an obvious candidate for data that could readily be handled as state data, but not all real-world
situations are clear-cut. In this case, the component depends on a variable that is outside the control of
React, which means that changing the value of the variable won’t mark the component as state and start
the reconciliation process. Instead, the incrementCounter method calls the forceUpdate method, which
explicitly starts reconciliation and ensures that the new value is incorporated in the content displayed to the
user. To incorporate the new component into the applications, I made the changes shown in Listing 13-16 to
the App component.

Listing 13-16.  Adding a New Component in the App.js File in the src Folder

import React, { Component } from 'react';
import { Message } from "./Message";
import { List } from "./List";
import { ExternalCounter } from './ExternalCounter';

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 counter: 0
 }
 }

 incrementCounter = () => {
 this.setState({ counter: this.state.counter + 1 });
 }

 render() {
 console.log("Render App Component");
 return <div className="container text-center">
 <div className="row p-2">
 <div className="col-4">
 <Message message={ `Counter: ${this.state.counter}`}
 callback={ this.incrementCounter }
 text="Increment Counter" />
 </div>

Chapter 13 ■ Reconciliation and Lifecycles

361

 <div className="col-4">
 <List />
 </div>
 <div className="col-4">
 <ExternalCounter />
 </div>
 </div>
 </div>
 }
}

The new component is displayed on the right side of the application’s layout, and clicking the External
Counter button explicitly marks that component as stale and triggers the reconciliation process, as shown in
Figure 13-9.

Understanding the Component Lifecycle
Most class-based stateful components implement a constructor and the render method. The constructor
is used to receive props from the parent and to define state data. The render method is used to produce
content, both when the application starts and when React is responding to an update.

The constructor and render method are part of a larger component lifecycle that stateful components
can participate in by implementing methods that React invokes to signal changes in the lifecycle. In the
sections that follow, I explain the different stages of the component lifecycle and the methods for each
of them. For quick reference, Table 13-3 lists the commonly used lifecycle methods. There are also three
advanced methods that I describe in the “Using the Advanced Lifecycle Methods” section.

■■ Note S ee the “Using the Effect Hook” section for details of how the hooks feature provides access to the
lifecycle features for functional components.

Figure 13-9.  Explicitly starting reconciliation

Chapter 13 ■ Reconciliation and Lifecycles

362

Understanding the Mounting Phase
The process by which React creates a component and renders its content for the first time is called mounting,
and there are three commonly used methods that components implement to participate in the mounting
process, as illustrated in Figure 13-10.

The constructor is called when React needs to create a new instance of a component, which gives the
component an opportunity to receive the props from its parents, define its state data, and perform other
preparatory work.

Next, the render method is called so that the component provides React with the content that will be
added to the DOM. Finally, React calls the componentDidMount method, which tells the component that its
content has been added to the DOM.

The componentDidMount method is typically used to perform Ajax requests to get data from
web services, which I demonstrate in Part 3. For the purposes of this chapter, I implemented the
componentDidMount method in the Message component and used it to write a message to the browser’s
JavaScript console, as shown in Listing 13-17.

Listing 13-17.  Implementing a Lifecycle Method in the Message.js File in the src Folder

import React, { Component } from "react";
import { ActionButton } from "./ActionButton";

export class Message extends Component {

Figure 13-10.  The mounting phase

Table 13-3.  The Stateful Component Lifecycle Methods

Name Description

constructor This special method is called when a new instance of the component class
is created.

render This method is called when React requires content from the component.

componentDidMount This method is called after the initial content rendered by the component
has been processed.

componentDidUpdate This method is called after React has completed the reconciliation process
following an update.

componentWillUnmount This method is called before a component is destroyed.

componentDidCatch This method is used to handle errors, as described in Chapter 14.

Chapter 13 ■ Reconciliation and Lifecycles

363

 constructor(props) {
 super(props);
 this.state = {
 showSpan: false
 }
 }

 handleClick = (event) => {
 this.setState({ showSpan: !this.state.showSpan });
 this.props.callback(event);
 }

 getMessageElement() {
 let div = <div id="messageDiv" className="h5 text-center p-2">
 { this.props.message }
 </div>
 return this.state.showSpan ? { div } : div;
 }

 render() {
 console.log(`Render Message Component `);
 return (
 <div>
 <ActionButton theme="primary" {...this.props}
 callback={ this.handleClick } />
 { this.getMessageElement() }
 </div>
)
 }

 componentDidMount() {
 console.log("componentDidMount Message Component");
 }
}

Save the changes to the Message component and examine the messages displayed in the browser’s
JavaScript console as the application is updated, and you will see that the componentDidMount method was
invoked.

...
Render App Component
Render Message Component
Render ActionButton (Increment Counter) Component
Render List Component
Render ActionButton (Reverse Names) Component
Render ActionButton (External Counter) Component
componentDidMount Message Component
...

Chapter 13 ■ Reconciliation and Lifecycles

364

You can see that the componentDidMount method has been called after all the component’s render
methods have been invoked. The componentDidMount method is invoked when React needs a new instance
of the component, which includes application startup. But mounting will also occur when React creates an
instance of a component while the application is running, such as when content is conditionally rendered,
as shown in Listing 13-18.

Listing 13-18.  Conditionally Displaying a Component in the App.js File in the src Folder

import React, { Component } from 'react';
import { Message } from "./Message";
import { List } from "./List";
import { ExternalCounter } from './ExternalCounter';

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 counter: 0,
 showMessage: true
 }
 }

 incrementCounter = () => {
 this.setState({ counter: this.state.counter + 1 });
 }

 handleChange = () => {
 this.setState({ showMessage: !this.state.showMessage });
 }

 render() {
 console.log("Render App Component");
 return (
 <div className="container text-center">
 <div className="row p-2">
 <div className="col-4">
 <div className="form-check">
 <input type="checkbox" className="form-check-input"
 checked={ this.state.showMessage }
 onChange={ this.handleChange } />
 <label className="form-check-label">Show</label>
 </div>
 { this.state.showMessage &&
 <Message message={ `Counter: ${this.state.counter}`}
 callback={ this.incrementCounter }
 text="Increment Counter" />
 }
 </div>

Chapter 13 ■ Reconciliation and Lifecycles

365

 <div className="col-4">
 <List />
 </div>
 <div className="col-4">
 <ExternalCounter />
 </div>
 </div>
 </div>
)
 }
}

I added a checkbox and used the onChange property to register the handleChange method to receive
change events, which are triggered when the checkbox is toggled. The checkbox is used to control visibility of
the Message component, as shown in Figure 13-11.

Each time the checkbox is toggled on, React creates a new Message object and goes through the
mounting process, calling each of the methods in turn: constructor, render, and componentDidMount. This
can be seen in the messages displayed in the browser’s JavaScript console.

Understanding the Update Phase
The process by which React responds to changes and goes through reconciliation is known as the update
phase, which invokes calling the render method to get content from the component and then calling the
componentDidUpdate after the reconciliation process is complete, as shown in Figure 13-12.

Figure 13-12.  The update phase

Figure 13-11.  Controlling the visibility of a component

Chapter 13 ■ Reconciliation and Lifecycles

366

The main use of the componentDidUpdate method is to directly manipulate the HTML elements in the
DOM using the React refs feature, which I describe in Chapter 16. For this chapter, I have implemented the
method in the Message component and used it to write a message to the browser’s JavaScript console, as
shown in Listing 13-19.

■■ Tip T he componentDidUpdate method is called even if the reconciliation process determines that the
content generated by the component has not changed.

Listing 13-19.  Implementing a Lifecycle Method in the Message.js File in the src Folder

import React, { Component } from "react";
import { ActionButton } from "./ActionButton";

export class Message extends Component {

 // ...other methods omitted for brevity...

 componentDidMount() {
 console.log("componentDidMount Message Component");
 }

 componentDidUpdate() {
 console.log("componentDidUpdate Message Component");
 }
}

After the initial rendering that is performed during the mounting phase, any subsequent calls to the
render method will be followed by a call to the componentDidUpdate method once React has completed the
reconciliation process and updated the DOM. Clicking the Increment Counter button will start the update
phase and produce the following message in the browser’s JavaScript console:

...
Render App Component
Render Message Component
Render ActionButton (Increment Counter) Component
Render List Component
Render ActionButton (Reverse Names) Component
Render ActionButton (External Counter) Component
componentDidUpdate Message Component
...

Understanding the Unmounting Phase
When a component is about to be destroyed, React will call the componentWillUnmount method, which
provides components with the opportunity to release resources, close network connections, and stop
any asynchronous tasks. In Listing 13-20, I have implemented the componentWillUnmount method in the
Message component and used it to write a message to the browser’s JavaScript console.

Chapter 13 ■ Reconciliation and Lifecycles

367

Listing 13-20.  Implementing a Lifecycle Method in the Message.js File in the src Folder

import React, { Component } from "react";
import { ActionButton } from "./ActionButton";

export class Message extends Component {

 // ...other methods omitted for brevity...

 componentDidMount() {
 console.log("componentDidMount Message Component");
 }

 componentDidUpdate() {
 console.log("componentDidUpdate Message Component");
 }

 componentWillUnmount() {
 console.log("componentWillUnmount Message Component");
 }
}

You can trigger the unmounting phase by unchecking the checkbox that I added in Listing 13-20.
When React reconciles the new content rendered by the App component, it determines that the Message
component is no longer required and calls the componentWillUnmount method before destroying the object,
producing the following messages in the browser’s JavaScript console:

...
Render App Component
Render List Component
Render ActionButton (Reverse Names) Component
Render ActionButton (External Counter) Component
componentWillUnmount Message Component
...

React will not reuse components once they have been unmounted. React will create a new object and
perform the mounting sequence if another Message component is required, such as when the checkbox is
toggled again. This means you can always rely on the constructor and the componentDidMount methods to
initialize a component, and a component object will never be asked to recover from an unmounted state.

Using the Effect Hook
Components defined as functions are unable to implement methods and cannot participate in the lifecycle
in the same way. For this type of component, the hooks feature provides the effect hook, which is roughly
equivalent to the componentDidMount, componentDidUpdate, and componentWillUnmount methods. To show
the use of the effect hook, I added a file called HooksMessage.js to the src folder and added the code shown
in Listing 13-21.

Chapter 13 ■ Reconciliation and Lifecycles

368

Listing 13-21.  The Contents of the HooksMessage.js File in the src Folder

import React, { useState, useEffect} from "react";
import { ActionButton } from "./ActionButton";

export function HooksMessage(props) {
 const [showSpan, setShowSpan] = useState(false);

 useEffect(() => console.log("useEffect function invoked"));

 const handleClick = (event) => {
 setShowSpan(!showSpan);
 props.callback(event);
 }

 const getMessageElement = () => {
 let div = <div id="messageDiv" className="h5 text-center p-2">
 { props.message }
 </div>
 return showSpan ? { div } : div;
 }

 return (
 <div>
 <ActionButton theme="primary" {...props} callback={ handleClick } />
 { getMessageElement() }
 </div>
)
}

This component provides the same functionality as the Message component but is expressed as a
function that uses hooks. The useEffect function is used to register a function that will be invoked when
the component is mounted, updated, and unmounted. The same function is invoked in all three situations,
which reflects the nature of using a function for a component, as opposed to a class. In Listing 13-22, I have
added the new component to the content rendered by the App component.

Listing 13-22.  Rendering a New Component in the App.js File in the src Folder

import React, { Component } from 'react';
import { Message } from "./Message";
import { List } from "./List";
import { ExternalCounter } from './ExternalCounter';
import { HooksMessage } from './HooksMessage';

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 counter: 0,
 showMessage: true
 }
 }

Chapter 13 ■ Reconciliation and Lifecycles

369

 incrementCounter = () => {
 this.setState({ counter: this.state.counter + 1 });
 }

 handleChange = () => {
 this.setState({ showMessage: !this.state.showMessage });
 }

 render() {
 console.log("Render App Component");
 return (
 <div className="container text-center">
 <div className="row p-2">
 <div className="col-4">
 <div className="form-check">
 <input type="checkbox" className="form-check-input"
 checked={ this.state.showMessage }
 onChange={ this.handleChange } />
 <label className="form-check-label">Show</label>
 </div>
 { this.state.showMessage &&
 <div>
 <Message message={ `Counter: ${this.state.counter}`}
 callback={ this.incrementCounter }
 text="Increment Counter" />
 <HooksMessage
 message={ `Counter: ${this.state.counter}`}
 callback={ this.incrementCounter }
 text="Increment Counter" />
 </div>
 }
 </div>
 <div className="col-4">
 <List />
 </div>
 <div className="col-4">
 <ExternalCounter />
 </div>
 </div>
 </div>
)
 }
}

Save the changes to the components and examine the messages shown in the browser’s JavaScript
console to see the effect hook function being invoked when the component is mounted and updated, as
follows:

...
Render List Component
ActionButton.js:6 Render ActionButton (Reverse Names) Component
ActionButton.js:6 Render ActionButton (External Counter) Component

Chapter 13 ■ Reconciliation and Lifecycles

370

Message.js:37 componentDidMount Message Component
HooksMessage.js:7 useEffect function invoked
...

The function passed to useState can return a cleanup function that will be invoked when the
component is unmounted, providing a feature similar to the componentWillUnmount method, as shown in
Listing 13-23.

Listing 13-23.  Using a Cleanup Function in the HooksMessage.js File in the src Folder

import React, { useState, useEffect} from "react";
import { ActionButton } from "./ActionButton";

export function HooksMessage(props) {
 const [showSpan, setShowSpan] = useState(false);

 useEffect(() => {
 console.log("useEffect function invoked")
 return () => console.log("useEffect cleanup");
 });

 const handleClick = (event) => {
 setShowSpan(!showSpan);
 props.callback(event);
 }

 const getMessageElement = () => {
 let div = <div id="messageDiv" className="h5 text-center p-2">
 { props.message }
 </div>
 return showSpan ? { div } : div;
 }

 return (
 <div>
 <ActionButton theme="primary" {...props} callback={ handleClick } />
 { getMessageElement() }
 </div>
)
}

Toggle the checkbox to unmount the components, and you will see the following message in the
browser’s JavaScript console:

...
Render ActionButton (Reverse Names) Component
ActionButton.js:6 Render ActionButton (External Counter) Component
Message.js:45 componentWillUnmount Message Component
HooksMessage.js:9 useEffect cleanup
...

Chapter 13 ■ Reconciliation and Lifecycles

371

Using the Advanced Lifecycle Methods
The features described in the previous sections are useful in many projects, especially using the
componentDidMount method to request remote data, which I demonstrate in Part 3. React provides advanced
lifecycle methods for class-based components that are useful in specific situations I describe in the sections
that follow, although one of these methods is used in conjunction with the refs feature that I describe in
Chapter 16. For quick reference, Table 13-4 describes the advanced lifecycle methods.

Preventing Unnecessary Component Updates
React’s default behavior is to mark a component as stale and render its content whenever its state data
changes. And, since a component’s state can be passed on to its children as props, the descendant
components are rendered as well, as you have seen in earlier examples.

Components can override the default behavior by implementing the shouldComponentUpdate method.
This feature allows components to improve the application’s performance by avoiding calls to the render
method when they are not required.

The shouldComponentUpdate method is called in the update phase, and its result determines
whether React will call the render method to get fresh content from the component, as illustrated in
Figure 13-13. The arguments to the shouldComponentUpdate method are new props and state objects
that can be inspected and compared to the existing values. React will continue with the update phase
if the shouldComponentUpdate method returns true. If the shouldComponentUpdate method returns
false, React will abandon the update phase for the component and will not call the render and
componentDidUpdate methods.

In Listing 13-24, I have implemented the showComponentUpdate method in the Message component
and used it to prevent updates if the value of the message prop has not changed. (I have also removed the
lifecycle methods from earlier examples for the sake of brevity.)

Figure 13-13.  The advanced sequence of update methods

Table 13-4.  The Advanced Component Lifecycle Methods

Name Description

shouldComponentUpdate This method allows a component to indicate that it does not need to be
updated.

getDerivedStateFromProps This method allows a component to set its state data values based on the
props it receives.

getSnapshotBeforeUpdate This method allows a component to capture information about its state
before the reconciliation process updates the DOM. This method is used
in conjunction with the ref feature, described in Chapter 16.

Chapter 13 ■ Reconciliation and Lifecycles

372

Listing 13-24.  Preventing Updates in the Message.js File in the src Folder

import React, { Component } from "react";
import { ActionButton } from "./ActionButton";

export class Message extends Component {

 constructor(props) {
 super(props);
 this.state = {
 showSpan: false
 }
 }

 handleClick = (event) => {
 this.setState({ showSpan: !this.state.showSpan });
 this.props.callback(event);
 }

 getMessageElement() {
 let div = <div id="messageDiv" className="h5 text-center p-2">
 { this.props.message }
 </div>
 return this.state.showSpan ? { div } : div;
 }

 render() {
 console.log(`Render Message Component `);
 return (
 <div>
 <ActionButton theme="primary" {...this.props}
 callback={ this.handleClick } />
 { this.getMessageElement() }
 </div>
)
 }

 shouldComponentUpdate(newProps, newState) {
 let change = newProps.message !== this.props.message;
 if (change) {
 console.log(`shouldComponentUpdate ${this.props.text}: Update Allowed`)
 } else {
 console.log(`shouldComponentUpdate ${this.props.text}: Update Prevented`)
 }
 return change;
 }
}

In Listing 13-25, I have revised the App component so it renders two Message components, each of
which receives and modifies a state data value as a prop.

Chapter 13 ■ Reconciliation and Lifecycles

373

Listing 13-25.  Displaying Side-By-Side Components in the App.js File in the src Folder

import React, { Component } from 'react';
import { Message } from "./Message";
//import { List } from "./List";
//import { ExternalCounter } from './ExternalCounter';

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 counterLeft: 0,
 counterRight: 0
 }
 }

 incrementCounter = (counter) => {
 if (counter === "left") {
 this.setState({ counterLeft: this.state.counterLeft + 1});
 } else {
 this.setState({ counterRight: this.state.counterRight+ 1});
 }
 }

 render() {
 console.log("Render App Component");
 return (
 <div className="container text-center">
 <div className="row p-2">
 <div className="col-6">
 <Message
 message={ `Left: ${this.state.counterLeft}`}
 callback={ () => this.incrementCounter("left") }
 text="Increment Left Counter" />
 </div>
 <div className="col-6">
 <Message
 message={ `Right: ${this.state.counterRight}`}
 callback={ () => this.incrementCounter("right") }
 text="Increment Right Counter" />
 </div>
 </div>
 </div>
)
 }
}

The new content rendered by the App component displays the Message components side by side, as
shown in Figure 13-14. Clicking either of the button elements increments the counter for that component.

Chapter 13 ■ Reconciliation and Lifecycles

374

The default React behavior is to render both Message components when either of the counterLeft
or counterRight state data values changes, which results in one of the components rendering content
unnecessarily. The implementation of the shouldComponentUpdate method in Listing 13-25 overrides this
behavior and ensures that only the component affected by the change is updated. If you click either of the
buttons presented by the application, you will see a message in the browser’s JavaScript console noting that
shouldComponentUpdate prevented one of the components from being updated.

...
Render App Component
shouldComponentUpdate Increment Left Counter: Update Allowed
Render Message Component
Render ActionButton (Increment Left Counter) Component
shouldComponentUpdate Increment Right Counter: Update Prevented
...

Setting State Data from Prop Values
The getDerivedStateFromProps method is called before the render method in the mounting phase
and before the shouldComponentUpdate method in the update phase, as shown in Figure 13-15. The
getDerivedStateFromProps method provides components with the opportunity to inspect prop values and
use them to update its state data before its content is rendered and is intended for use by components whose
behavior is affected by changing prop values over time.

Figure 13-14.  Displaying components side by side

Figure 13-15.  Updating state data from props

Chapter 13 ■ Reconciliation and Lifecycles

375

The getDerivedStateFromProps method is static, which means that it is unable to access any of the
instance methods or properties via the this keyword. Instead, the method receives a props object, which
contains the props values provided by the parent component, and a state object, which represents the
current state data. The getDerivedStateFromProps method returns a new state data object that is derived
from the prop data.

To demonstrate this method, I added a file called DirectionDisplay.js to the src folder and used it to
define the component shown in Listing 13-26.

Listing 13-26.  The Contents of the DirectionDisplay.js File in the src Folder

import React, { Component } from "react";

export class DirectionDisplay extends Component {

 constructor(props) {
 super(props);
 this.state = {
 direction: "up",
 lastValue: 0
 }
 }

 getClasses() {
 return (this.state.direction === "up" ? "bg-success" : "bg-danger")
 + " text-white text-center p-2 m-2";
 }

 render() {
 return <h5 className={ this.getClasses() }>
 { this.props.value }
 </h5>
 }

 static getDerivedStateFromProps(props, state) {
 if (props.value !== state.lastValue) {
 return {
 lastValue: props.value,
 direction: state.lastValue > props.value ? "down" : "up"
 }
 }
 return state;
 }
}

This component displays a numeric value with a background color that indicates whether the current
value is larger or smaller than the last value. The getDerivedStateFromProps method receives the new prop
values and the component’s current state data and uses them to create a new state data object that includes
the direction in which the prop value has changed. In Listing 13-27, I have updated the App component so
that it renders the DirectionDisplay component and buttons that change its prop data value.

Chapter 13 ■ Reconciliation and Lifecycles

376

Listing 13-27.  Rendering a New Component in the App.js File in the src Folder

import React, { Component } from 'react';
//import { Message } from "./Message";
import { DirectionDisplay } from './DirectionDisplay';

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 counter: 100
 }
 }

 changeCounter = (val) => {
 this.setState({ counter: this.state.counter + val })
 }

 render() {
 console.log("Render App Component");
 return (
 <div className="container text-center">
 <DirectionDisplay value={ this.state.counter } />
 <div className="text-center">
 <button className="btn btn-primary m-1"
 onClick={ () => this.changeCounter(-1)}>Decrease</button>
 <button className="btn btn-primary m-1"
 onClick={ () => this.changeCounter(1)}>Increase</button>
 </div>
 </div>
)
 }
}

The result is that the background color selected by the DirectionDisplay component changes based on
the output from the getDerivedStateFromProps method, as shown in Figure 13-16.

■■ Tip N otice that I create a new state data object only if the value of the prop is different. Remember that
React will trigger a component’s update phase when an ancestor’s state has changed, which means that
the getDerivedStateFromProps method may be called even though none of the prop values on which the
component depends has changed.

Chapter 13 ■ Reconciliation and Lifecycles

377

Summary
In this chapter, I explained how React deals with the content rendered by components through the
reconciliation process. I also described the broader component lifecycle and showed you how to receive
notifications in stateful components by implementing methods. In the next chapter, I describe the different
ways that components can be combined to create complex features.

Figure 13-16.  Deriving state data from prop values

379© Adam Freeman 2019
A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_14

CHAPTER 14

Composing Applications

In this chapter, I describe the different ways that components can be combined to create complex features.
These composition patterns can be used together, and you will find that most problems can be tackled in
several ways, which leaves you free to apply the approach with which you are most comfortable. Table 14-1
puts the chapter in context.

Table 14-1.  Putting Application Composition in Context

Question Answer

What is it? Application composition is the combination of components to create
complex features.

Why is it useful? Composition makes development easier by allowing small and simple
components to be written and tested before being combined to work
together.

How is it used? There are different patterns available, but the basic approach is to
combine multiple components.

Are there any pitfalls or
limitations?

The composition patterns can feel awkward if you are used to deriving
functionality from classes, such as in C# or Java development. Many
problems can be solved equally well by multiple patterns, which can lead
to decision paralysis.

Are there any alternatives? You could write monolithic components that implement all the features
required by an application, although this results in a project that is
different to test and maintain.

Chapter 14 ■ Composing Applications

380

Table 14-2 summarizes the chapter.

Table 14-2.  Chapter Summary

Problem Solution Listing

Display content received from the
parent component

Use the children prop 8–9

Manipulate the components received
via the children prop

Use the React.children prop 10, 11

Enhance an existing component Create a specialized component or a higher-order
component

12–18

Combine higher-order components Chain the function calls together 19, 20

Provide a component with the
content it should render

Use a render prop 21–24

Distribute data and functions without
threading props

Use a context 25–34

Consume a context without using a
render prop

Use the simplified context API for class-based
components and the useContext hook for functional
components

35, 36

Prevent errors from unmounting the
application

Define an error boundary 37–39

Preparing for This Chapter
To create the example project for this chapter, open a new command prompt, navigate to a convenient
location, and run the command shown in Listing 14-1.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this book—
from https://github.com/Apress/pro-react-16.

Listing 14-1.  Creating the Example Project

npx create-react-app composition

Run the commands shown in Listing 14-2 to navigate to the composition folder and add the Bootstrap
package to the project.

Listing 14-2.  Adding the Bootstrap CSS Framework

cd composition
npm install bootstrap@4.1.2

https://github.com/Apress/pro-react-16

Chapter 14 ■ Composing Applications

381

To include the Bootstrap CSS stylesheet in the application, add the statement shown in Listing 14-3 to
the index.js file, which can be found in the src folder.

Listing 14-3.  Including Bootstrap in the index.js File in the src Folder

import React from 'react';
import ReactDOM from 'react-dom';
import './index.css';
import App from './App';
import * as serviceWorker from './serviceWorker';
import 'bootstrap/dist/css/bootstrap.css';

ReactDOM.render(<App />, document.getElementById('root'));

// If you want your app to work offline and load faster, you can change
// unregister() to register() below. Note this comes with some pitfalls.
// Learn more about service workers: http://bit.ly/CRA-PWA
serviceWorker.unregister();

Creating the Example Components
Add a file called ActionButton.js to the src folder and add the content shown in Listing 14-4.

Listing 14-4.  The Contents of the ActionButton.js File in the src Folder

import React, { Component } from "react";

export class ActionButton extends Component {

 render() {
 return (
 <button className={` btn btn-${this.props.theme} m-2` }
 onClick={ this.props.callback }>
 { this.props.text }
 </button>
)
 }
}

This is a similar button component to the one I used in Chapter 13, which accepts configuration
settings via its prop, including a function that is invoked in response to the click event. Next, add a file called
Message.js to the src folder and add the content shown in Listing 14-5.

Listing 14-5.  The Contents of the Message.js File in the src Folder

import React, { Component } from "react";

export class Message extends Component {

Chapter 14 ■ Composing Applications

382

 render() {
 return (
 <div className={`h5 bg-${this.props.theme } text-white p-2`}>
 { this.props.message }
 </div>
)
 }
}

This component displays a message received as a prop. The final change is to replace the contents of the
App.js file with the code shown in Listing 14-6, which renders content that uses the other components and
defines the state data that the Message component requires.

Listing 14-6.  The Contents of the App.js File in the src Folder

import React, { Component } from 'react';
import { Message } from "./Message";
import { ActionButton } from './ActionButton';

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 counter: 0
 }
 }

 incrementCounter = () => {
 this.setState({ counter: this.state.counter + 1 });
 }

 render() {
 return <div className="m-2 text-center">
 <Message theme="primary"
 message={ `Counter: ${this.state.counter}`} />
 <ActionButton theme="secondary"
 text="Increment" callback={ this.incrementCounter } />
 </div>
 }
}

The content rendered by the App component displays the Message and ActionButton components and
configures them so that clicking the button will update the counter state data value, which has been passed
as a prop to the Message component.

Using the command prompt, run the command shown in Listing 14-7 in the composition folder to start
the development tools.

Chapter 14 ■ Composing Applications

383

Listing 14-7.  Starting the Development Tools

npm start

Once the initial preparation for the project is complete, a new browser window will open and display
the URL http://localhost:3000 and display the content shown in Figure 14-1.

Understanding the Basic Component Relationship
The components in the example project are simple, but they illustrate the basic relationship that underpins
React development: parent components configure children with data props and receive notifications
through function props, which leads to state data changes and triggers the update process, as shown in
Figure 14-2.

This relationship is the foundation for React development and is the basic pattern used to arrange
features in applications. This pattern is easy to understand in a simple example, its use in more complex
situations can be less obvious, and it can be hard to know how to locate and distribute the state data, props,
and callbacks without duplicating code and data.

Figure 14-1.  Running the example application

Figure 14-2.  The basic component relationship

Chapter 14 ■ Composing Applications

384

Using the Children Prop
React provides a special children prop that is used when a component needs to display content provided by
its parent but doesn’t know what that content will be in advance. This is a useful way of reducing duplication
by standardizing features in a container that can be reused across an application. To demonstrate, I created a
file called ThemeSelector.js in the src folder and used it to define the component shown in Listing 14-8.

Listing 14-8.  The Contents of the ThemeSelector.js File in the src Folder

import React, { Component } from "react";

export class ThemeSelector extends Component {

 render() {
 return (
 <div className="bg-dark p-2">
 <div className="bg-info p-2">
 { this.props.children }
 </div>
 </div>
)
 }
}

This component renders two div elements that contain an expression whose value is the children
prop. To show how the content for the children prop is provided, Listing 14-9 applies the ThemeSelector in
the App component.

Listing 14-9.  Using a Container Component in the App.js File in the src Folder

import React, { Component } from 'react';
import { Message } from "./Message";
import { ActionButton } from './ActionButton';
import { ThemeSelector } from './ThemeSelector';

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 counter: 0
 }
 }

 incrementCounter = () => {
 this.setState({ counter: this.state.counter + 1 });
 }

Chapter 14 ■ Composing Applications

385

 render() {
 return <div className="m-2 text-center">
 <ThemeSelector>
 <Message theme="primary"
 message={ `Counter: ${this.state.counter}`} />
 <ActionButton theme="secondary"
 text="Increment" callback={ this.incrementCounter } />
 </ThemeSelector>
 </div>
 }
}

The App component provides content for the ThemeSelector component by defining elements between
its start and end tags. In this case, the elements apply the Message and ActionButton components. When
React processes the content rendered by the App component, the content between the ThemeSelector tags is
assigned to the props.children property, producing the result shown in Figure 14-3.

The ThemeSelector component doesn’t add a lot of value at present, but you can see how it acts as a
container for the content provided by the App component.

Manipulating Prop Children
Components that use the children prop are useful only when they are able to provide services to their
children, which can be difficult when there is no advanced knowledge of what those children will provide.
To help work around this limitation, React provides a number of methods that a container can use to
manipulate its children, as described in Table 14-3.

Figure 14-3.  A container component

Chapter 14 ■ Composing Applications

386

Adding Props to Container Children
A component can’t manipulate the content it receives from the parent directly, so to provide the
components received through the children prop with additional data or functions, the React.Children.
map method is used in conjunction with the React.cloneElement method to duplicate the child components
and assign additional props.

Listing 14-10 adds a select element to the content rendered by the ThemeSelector that updates a state
data property and allows a user to choose one of the theme colors provided by the Bootstrap CSS framework,
which is then passed on to the container’s children as a prop.

Listing 14-10.  Adding Theme Selection in the ThemeSelector.js File in the src Folder

import React, { Component } from "react";

export class ThemeSelector extends Component {

 constructor(props) {
 super(props);
 this.state = {
 theme: "primary"
 }
 this.themes = ["primary", "secondary", "success", "warning", "dark"];
 }

 setTheme = (event) => {
 this.setState({ theme : event.target.value });
 }

 render() {

 let modChildren = React.Children.map(this.props.children,
 (c => React.cloneElement(c, { theme: this.state.theme})));

Table 14-3.  The Container Children Methods

Name Description

React.Children.map This method invokes a function for each child and returns an array of the
function results.

React.Children.forEach This method invokes a function for each child without returning an array.

React.Children.count This method returns the number of children.

React.Children.only This method throws an array if the collection of children it receives
contains more than one child.

React.Children.toArray This method returns an array of children, which can be used to reorder or
remove elements.

React.cloneElement This method is used to duplicate a child element and allows new props to
be added by the container.

Chapter 14 ■ Composing Applications

387

 return (
 <div className="bg-dark p-2">
 <div className="form-group text-left">
 <label className="text-white">Theme:</label>
 <select className="form-control" value={ this.state.theme }
 onChange={ this.setTheme }>
 { this.themes.map(theme =>
 <option key={ theme } value={ theme }>{theme}</option>) }
 </select>
 </div>

 <div className="bg-info p-2">
 { modChildren }
 </div>
 </div>
)
 }
}

Because props are read-only, I can’t use the React.Children.forEach method to simply enumerate
the child components and assign a new property to their props object. Instead, I used the map method
to enumerate the children and used the React.cloneElement method to duplicate each child with an
additional prop.

...
let modChildren = React.Children.map(this.props.children,
 (c => React.cloneElement(c, { theme: this.state.theme})));
...

The cloneElement method accepts a child component and a props object, which is merged with the
child component’s existing props.

One consequence of using the map method to enumerate the child components into an array is that
React expects each component to have a key prop and will report a warning in the browser’s JavaScript
console.

The result is that the props passed to the Message and ActionButton components are a
combination of those defined by the App component and those added using the cloneElement method
by the ThemeSelector component. When you choose a theme from the select element, an update is
performed, and the selected theme is applied to the Message and ActionButton components, as shown
in Figure 14-4.

Chapter 14 ■ Composing Applications

388

Ordering or Omitting Components
Although a container doesn’t have any advanced knowledge of its children, the toArray method described
in Table 14-3 can be used to convert the children to an array that can be manipulated using the standard
JavaScript features, such as sorting or adding and removing items. This type of operation can also be
performed on the result from the React.Children.map method, also described in Table 14-3, which returns
an array as well.

In Listing 14-11, I have added a button to the ThemeSelector component that reverses the order of the
children when it is clicked, which I achieve by calling the reverse method on the array produced by the map
method.

Listing 14-11.  Reversing Children in the ThemeSelector.js File in the src Folder

import React, { Component } from "react";

export class ThemeSelector extends Component {

 constructor(props) {
 super(props);
 this.state = {
 theme: "primary",
 reverseChildren: false
 }
 this.themes = ["primary", "secondary", "success", "warning", "dark"];
 }

Figure 14-4.  Adding props to contained components

Chapter 14 ■ Composing Applications

389

 setTheme = (event) => {
 this.setState({ theme : event.target.value });
 }

 toggleReverse = () => {
 this.setState({ reverseChildren: !this.state.reverseChildren});
 }

 render() {

 let modChildren = React.Children.map(this.props.children,
 (c => React.cloneElement(c, { theme: this.state.theme})));

 if (this.state.reverseChildren) {
 modChildren.reverse();
 }

 return (
 <div className="bg-dark p-2">
 <button className="btn btn-primary" onClick={ this.toggleReverse }>
 Reverse
 </button>
 <div className="form-group text-left">
 <label className="text-white">Theme:</label>
 <select className="form-control" value={ this.state.theme }
 onChange={ this.setTheme }>
 { this.themes.map(theme =>
 <option key={ theme } value={ theme }>{theme}</option>) }
 </select>
 </div>

 <div className="bg-info p-2">
 { modChildren }
 </div>
 </div>
)
 }
}

This type of operation is more typically used with lists of similar objects, such as products in an online
store, but it can be applied to any children, as shown in Figure 14-5.

Chapter 14 ■ Composing Applications

390

Creating a Specialized Component
Some components provide specialized versions of the features provided by another, more general,
component. In some frameworks, specialization is handled by using features such as class inheritance,
but React relies on the specialized component rendering the more general component and managing its
behavior with props. To demonstrate, I added a file called GeneralList.js to the src folder and used it to
define the component shown in Listing 14-12.

■■ Note I f you are used to class-based languages, such as C# or Java, you might expect to create a subclass
using the same extends keyword that stateful components employ to inherit functionality from the React
Component class. This is not how React is intended to be used, and you should compose components even
though it can feel odd to do so at first.

Listing 14-12.  The Contents of the GeneralList.js File in the src Folder

import React, { Component } from "react";

export class GeneralList extends Component {

 render() {
 return (
 <div className={`bg-${this.props.theme} text-white p-2`}>
 { this.props.list.map((item, index) =>
 <div key={ item }>{ index + 1 }: { item }</div>
)}
 </div>

Figure 14-5.  Changing the order of child components in a container

Chapter 14 ■ Composing Applications

391

)
 }
}

This component receives a prop named list, which is processed using the array map method to render
a series of div elements. To create a component that receives a list and allows it to be sorted, I can create a
more specialized component that builds on the features provided by the GeneralList. I added a file called
SortedList.js to the src folder and used it to define the component shown in Listing 14-13.

Listing 14-13.  The Contents of the SortedList.js File in the src Folder

import React, { Component } from "react";
import { GeneralList } from "./GeneralList";
import { ActionButton } from "./ActionButton";

export class SortedList extends Component {

 constructor(props) {
 super(props);
 this.state = {
 sort: false
 }
 }

 getList() {
 return this.state.sort
 ? [...this.props.list].sort() : this.props.list;
 }

 toggleSort = () => {
 this.setState({ sort : !this.state.sort });
 }

 render() {
 return (
 <div>
 <GeneralList list={ this.getList() } theme="info" />
 <div className="text-center m-2">
 <ActionButton theme="primary" text="Sort"
 callback={this.toggleSort} />
 </div>
 </div>
)
 }
}

The SortedList renders a GeneralList as part of its output and uses the list prop to control
the presentation of the data, allowing the user to selected a sorted or unsorted list. In Listing 14-14,
I have changed the layout of the App component to show the general and more specific components
side by side.

Chapter 14 ■ Composing Applications

392

Listing 14-14.  Changing the Component Layout in the App.js File in the src Folder

import React, { Component } from 'react';
//import { Message } from "./Message";
//import { ActionButton } from './ActionButton';
//import { ThemeSelector } from './ThemeSelector';
import { GeneralList } from './GeneralList';
import { SortedList } from "./SortedList";

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 // counter: 0
 names: ["Zoe", "Bob", "Alice", "Dora", "Joe"]
 }
 }

 // incrementCounter = () => {
 // this.setState({ counter: this.state.counter + 1 });
 // }

 render() {
 return (
 <div className="container-fluid">
 <div className="row">
 <div className="col-6">
 <GeneralList list={ this.state.names } theme="primary" />
 </div>
 <div className="col-6">
 <SortedList list={ this.state.names } />
 </div>
 </div>
 </div>
)
 }
}

The result is that the general list and the sortable list are both presented to the user, as shown in
Figure 14-6.

Chapter 14 ■ Composing Applications

393

Creating Higher-Order Components
Higher-order components (HOCs) provide an alternative to specialized components and are useful
when components require common code but may not render related content. HOCs are often used for
cross-cutting concerns, a term that refers to tasks that span the entire application and would otherwise
lead to the same features being implemented in several places. The most commonly encountered
examples of cross-cutting concerns are authorization, logging, and data retrieval. To demonstrate the
use of HOCs, I added a file called ProFeature.js to the src folder and used it to define the component
shown in Listing 14-15.

Listing 14-15.  The Contents of the ProFeature.js File in the src Folder

import React from "react";

export function ProFeature(FeatureComponent) {
 return function(props) {

 if (props.pro) {
 let { pro, ...childProps} = props;
 return <FeatureComponent {...childProps} />
 } else {
 return (
 <h5 className="bg-warning text-white text-center">
 This is a Pro Feature
 </h5>
)
 }
 }
}

A HOC is a function that accepts a component and returns a new component that wraps around it
to provide additional features. In Listing 14-15, the HOC is a function called ProFeature, and it accepts a
component that should be presented to the user only when the value of the prop named pro is true, acting
as a simple authorization feature. To display the component, the render method uses the component
received as the function argument and passes on all of its props, except the one named pro.

Figure 14-6.  General and more specialized components

Chapter 14 ■ Composing Applications

394

...
let { pro, ...childProps} = props;
return <FeatureComponent {...childProps} />
...

When the pro prop is false, the ProFeature HOC function returns a header element that displays a
warning. Listing 14-16 updates the App component to use ProFeature to protect one of its child components.

Listing 14-16.  Using an HOC in the App.js File in the src Folder

import React, { Component } from 'react';
import { GeneralList } from './GeneralList';
import { SortedList } from "./SortedList";
import { ProFeature } from "./ProFeature";

const ProList = ProFeature(SortedList);

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 names: ["Zoe", "Bob", "Alice", "Dora", "Joe"],
 cities: ["London", "New York", "Paris", "Milan", "Boston"],
 proMode: false
 }
 }

 toggleProMode = () => {
 this.setState({ proMode: !this.state.proMode});
 }

 render() {
 return (
 <div className="container-fluid">
 <div className="row">
 <div className="col-12 text-center p-2">
 <div className="form-check">
 <input type="checkbox" className="form-check-input"
 value={ this.state.proMode }
 onChange={ this.toggleProMode } />
 <label className="form-check-label">Pro Mode</label>
 </div>
 </div>
 </div>
 <div className="row">
 <div className="col-3">
 <GeneralList list={ this.state.names } theme="primary" />
 </div>

Chapter 14 ■ Composing Applications

395

 <div className="col-3">
 <ProList list={ this.state.names }
 pro={ this.state.proMode } />
 </div>
 <div className="col-3">
 <GeneralList list={ this.state.cities } theme="secondary" />
 </div>
 <div className="col-3">
 <ProList list={ this.state.cities }
 pro={ this.state.proMode } />
 </div>
 </div>
 </div>
)
 }
}

HOCs are used to create new components by invoking the function, like this:

...
const ProList = ProFeature(SortedList);
...

Because HOCs are functions, you can define additional arguments to configure behavior, but in this
example, I pass the component that I want to wrap as the only argument. I assign the result from the function
to a constant named ProList, which I use like any other component in the render method.

...
<ProList list={ this.state.cities } pro={ this.state.proMode } />
...

I defined the pro prop for the HOC and the list prop for the SortedList component that it wraps.
The value of the pro prop is set by toggling a checkbox, with the effect shown in Figure 14-7.

Chapter 14 ■ Composing Applications

396

Creating Stateful Higher-Order Components
Higher-order components can be stateful, which allows for more complex features to be added to an
application. I added a file called ProController.js to the src folder and used it to define the HOC shown in
Listing 14-17.

Listing 14-17.  The Contents of the ProController.js File in the src Folder

import React, { Component } from "react";
import { ProFeature } from "./ProFeature";

export function ProController(FeatureComponent) {

 const ProtectedFeature = ProFeature(FeatureComponent);

 return class extends Component {

 constructor(props) {
 super(props);
 this.state = {
 proMode: false
 }
 }

 toggleProMode = () => {
 this.setState({ proMode: !this.state.proMode});
 }

Figure 14-7.  Using higher-order components

Chapter 14 ■ Composing Applications

397

 render() {
 return (
 <div className="container-fluid">
 <div className="row">
 <div className="col-12 text-center p-2">
 <div className="form-check">
 <input type="checkbox" className="form-check-input"
 value={ this.state.proMode }
 onChange={ this.toggleProMode } />
 <label className="form-check-label">Pro Mode</label>
 </div>
 </div>
 </div>
 <div className="row">
 <div className="col-12">
 <ProtectedFeature {...this.props}
 pro={ this.state.proMode } />
 </div>
 </div>
 </div>
)
 }
 }
}

The HOC function returns a class-based stateful component that presents the checkbox and uses the
ProFeature HOC to control visibility of the wrapped component. Listing 14-18 updates App component to
use the ProController component.

Listing 14-18.  Using a New HOC in the App.js File in the src Folder

import React, { Component } from 'react';
import { GeneralList } from './GeneralList';
import { SortedList } from "./SortedList";
//import { ProFeature } from "./ProFeature";
import { ProController } from "./ProController";

const ProList = ProController(SortedList);

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 names: ["Zoe", "Bob", "Alice", "Dora", "Joe"],
 cities: ["London", "New York", "Paris", "Milan", "Boston"],
 //proMode: false
 }
 }

Chapter 14 ■ Composing Applications

398

 render() {
 return (
 <div className="container-fluid">
 <div className="row">
 <div className="col-3">
 <GeneralList list={ this.state.names } theme="primary" />
 </div>
 <div className="col-3">
 <ProList list={ this.state.names } />
 </div>
 <div className="col-3">
 <GeneralList list={ this.state.cities } theme="secondary" />
 </div>
 <div className="col-3">
 <ProList list={ this.state.cities } />
 </div>
 </div>
 </div>
)
 }
}

Figure 14-8 shows the effect of HOC, which gives each protected component its own checkbox.

Figure 14-8.  A stateful higher-order component

Chapter 14 ■ Composing Applications

399

Combining Higher-Order Components
A useful feature of HOCs is they can be combined by changing only the function call that creates the
wrapped component class. To demonstrate, I added a file called LogToConsole.js to the src folder and used
it to define the HOC shown in Listing 14-19.

Listing 14-19.  The Contents of the LogToConsole.js File in the src Folder

import React, { Component } from "react";

export function LogToConsole(FeatureComponent, label, logMount, logRender, logUnmount) {
 return class extends Component {

 componentDidMount() {
 if (logMount) {
 console.log(`${label}: mount`);
 }
 }

 componentWillUnmount() {
 if (logUnmount) {
 console.log(`${label}: unmount`);
 }
 }

 render() {
 if (logRender) {
 console.log(`${label}: render`);
 }
 return <FeatureComponent { ...this.props } />
 }
 }
}

The HOC function receives the component that will be wrapped, along with a label argument that
is used to write messages to the browser’s JavaScript console. There are three further arguments that
specify whether log messages will be written when the component is mounted, rendered, and unmounted,
following the stateful component lifecycle described in Chapter 11. To apply the new HOC, I have changed
only the function that creates the wrapped component, as shown in Listing 14-20.

Listing 14-20.  Combining HOCs in the App.js File in the src Folder

import React, { Component } from 'react';
import { GeneralList } from './GeneralList';
import { SortedList } from "./SortedList";
//import { ProFeature } from "./ProFeature";
import { ProController } from "./ProController";
import { LogToConsole } from "./LogToConsole";

const ProList = ProController(LogToConsole(SortedList, "Sorted", true, true, true));

Chapter 14 ■ Composing Applications

400

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 names: ["Zoe", "Bob", "Alice", "Dora", "Joe"],
 cities: ["London", "New York", "Paris", "Milan", "Boston"],
 //proMode: false
 }
 }
 render() {
 return (
 <div className="container-fluid">
 <div className="row">
 <div className="col-3">
 <GeneralList list={ this.state.names }
 theme="primary" />
 </div>
 <div className="col-3">
 <ProList list={ this.state.names } />
 </div>
 <div className="col-3">
 <GeneralList list={ this.state.cities }
 theme="secondary" />
 </div>
 <div className="col-3">
 <ProList list={ this.state.cities } />
 </div>
 </div>
 </div>
)
 }
}

The effect is that the SortedList component is wrapped by the LogToConsole component, which is
in turn wrapped by the ProFeature component. As you toggle the Pro Mode checkbox, you will see the
following messages displayed in the browser’s JavaScript console:

...
Sorted: render
Sorted: mount
Sorted: unmount
...

Using Render Props
A render prop is a function prop that provides a component with the content it should render, providing an
alternative model of wrapping one component in another. In Listing 14-21, I have rewritten the ProFeature
component so it uses a render prop.

Chapter 14 ■ Composing Applications

401

Listing 14-21.  Using a Render Prop in the ProFeature.js File in the src Folder

import React from "react";

export function ProFeature(props) {
 if (props.pro) {
 return props.render();
 } else {
 return (
 <h5 className="bg-warning text-white text-center">
 This is a Pro Feature
 </h5>
)
 }
}

Components that use render props are defined in the normal way. The difference is in the render
method, where a function prop named render is invoked to display content provided by the parent.

...
return props.render();
...

The parent component provides the function for the render prop when it applies the component.
In Listing 14-22, I have changed the App component so it provides the ProFeature component with the
function it requires. (I have also removed some of the content for sake of brevity.)

■■ Tip T he name of the prop that the parent uses to provide the function doesn’t have to be render, although
that is the convention. You can use any name, just as long as it is applied consistently in both the parent and the
child components.

Listing 14-22.  Using a Render Prop in the App.js File in the src Folder

import React, { Component } from 'react';
import { GeneralList } from './GeneralList';
import { SortedList } from "./SortedList";
import { ProFeature } from "./ProFeature";
// import { ProController } from "./ProController";
// import { LogToConsole } from "./LogToConsole";

// const ProList = ProController(LogToConsole(SortedList, "Sorted", true, true));

export default class App extends Component {

 constructor(props) {
 super(props);

Chapter 14 ■ Composing Applications

402

 this.state = {
 names: ["Zoe", "Bob", "Alice", "Dora", "Joe"],
 cities: ["London", "New York", "Paris", "Milan", "Boston"],
 proMode: false
 }
 }

 toggleProMode = () => {
 this.setState({ proMode: !this.state.proMode});
 }

 render() {
 return (
 <div className="container-fluid">
 <div className="row">
 <div className="col-12 text-center p-2">
 <div className="form-check">
 <input type="checkbox" className="form-check-input"
 value={ this.state.proMode }
 onChange={ this.toggleProMode } />
 <label className="form-check-label">Pro Mode</label>
 </div>
 </div>
 </div>
 <div className="row">
 <div className="col-6">
 <GeneralList list={ this.state.names }
 theme="primary" />
 </div>
 <div className="col-6">
 <ProFeature pro={ this.state.proMode }
 render={ () => <SortedList list={ this.state.names } /> }
 />
 </div>
 </div>
 </div>
)
 }
}

The ProFeature component is provided with a pro prop that is used to determine whether a feature is
displayed and with a render prop that is set to a function that returns a SortedList element.

...
<ProFeature pro={ this.state.proMode }
 render={ () => <SortedList list={ this.state.names } /> } />
...

When React renders the application’s content, the ProFeature component’s render method is
invoked, which in turn invokes the render prop function, which leads to the creation of a new SortedList
component. Using a render prop achieves the same result as the HOC, as shown in Figure 14-9.

Chapter 14 ■ Composing Applications

403

Figure 14-9.  Using a render prop

Using a Render Prop with an Argument
Render props are regular JavaScript functions, which means they can be invoked with arguments. This
can be a useful feature in its own right, but it also helps understand how the context feature works, which I
describe in the next section.

Using an argument allows the component that invokes the render prop to provide props to the wrapper
content. This is a technique that is more readily understood with an example. In Listing 14-23, I changed the
ProFeature component so that it passes a string argument to the render prop function.

Listing 14-23.  Adding an Argument in the ProFeature.js File in the src Folder

import React from "react";

export function ProFeature(props) {
 if (props.pro) {
 return props.render("Pro Feature");
 } else {
 return (
 <h5 className="bg-warning text-white text-center">
 This is a Pro Feature
 </h5>
)
 }
}

The argument can be received by the component that defines the render prop function and used in the
content that it produces, as shown in Listing 14-24.

Listing 14-24.  Receiving a Render Prop Argument in the App.js File in the src Folder

import React, { Component } from 'react';
import { GeneralList } from './GeneralList';
import { SortedList } from "./SortedList";
import { ProFeature } from "./ProFeature";

Chapter 14 ■ Composing Applications

404

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 names: ["Zoe", "Bob", "Alice", "Dora", "Joe"],
 cities: ["London", "New York", "Paris", "Milan", "Boston"],
 proMode: false
 }
 }

 toggleProMode = () => {
 this.setState({ proMode: !this.state.proMode});
 }

 render() {
 return (
 <div className="container-fluid">
 <div className="row">
 <div className="col-12 text-center p-2">
 <div className="form-check">
 <input type="checkbox" className="form-check-input"
 value={ this.state.proMode }
 onChange={ this.toggleProMode } />
 <label className="form-check-label">Pro Mode</label>
 </div>
 </div>
 </div>

 <div className="row">
 <div className="col-6">
 <GeneralList list={ this.state.names }
 theme="primary" />
 </div>
 <div className="col-6">
 <ProFeature pro={ this.state.proMode }
 render={ text =>
 <React.Fragment>
 <h4 className="text-center">{ text }</h4>
 <SortedList list={ this.state.names } />
 </React.Fragment>
 } />
 </div>
 </div>
 </div>
)
 }
}

The content produced when the checkbox is selected shows how the ProFeature component is able to
influence the content produced by the render prop function, as shown in Figure 14-10.

Chapter 14 ■ Composing Applications

405

Using Contexts for Global Data
The management of props can become difficult, regardless of how you choose to compose your application.
As the complexity of the application increases, so does the number of components that need to cooperate.
As the hierarchy of components grows, the state data gets lifted up higher in the application, further away
from where that data is used, with the result that every component has to pass on props that it doesn’t use
directly but that its descendants rely on.

To help avoid this problem, React provides the context feature, which allows state data to be passed
from where it is defined to where it is needed without having to be relayed through the intermediate
components. To demonstrate, I am going to make the Pro Mode in the example application more granular so
that it disables the Sort button rather than hides the data list entirely.

In Listing 14-25, I have added a property to the button element rendered by the ActionButton
component that sets the disabled property based on a prop and changes the Bootstrap theme to make it
more obvious when the button is disabled.

■■ Tip T he Redux package is often used for more complex projects and can be easier to use in large
applications. See Chapters 19 and 20 for details.

Listing 14-25.  Disabling a Button in the ActionButton.js File in the src Folder

import React, { Component } from "react";

export class ActionButton extends Component {

Figure 14-10.  Using a render prop with an argument

Chapter 14 ■ Composing Applications

406

 render() {
 return (
 <button className={ this.getClasses(this.props.proMode)}
 disabled={ !this.props.proMode }
 onClick={ this.props.callback }>
 { this.props.text }
 </button>
)
 }

 getClasses(proMode) {
 let col = proMode ? this.props.theme : "danger";
 return `btn btn-${col} m-2`;
 }
}

The proMode property that the ActionButton depends on is part of the App component’s state, which
also defines the checkbox that is used to change its value. The result is a chain of components that have to
receive the proMode property from their parent and pass it on to their children. Even in the simple example
application, this means that the SortedList component has to pass on the proMode data value even though
it doesn’t use it directly, as shown in Figure 14-11.

This is known as prop drilling or prop threading, where data values are passed through the component
hierarchy to reach the point where they can be used. It is easy to forget to pass on a prop that is required
by a descendant, and it can be hard work to figure out where the threading of a prop has missed a step
in a complex application. In Listing 14-26, I have updated the App component to remove the ProFeature
component from the previous section and to pass on the value of the proMode state property to the
SortedList component as a prop, beginning the process of threading the prop.

Listing 14-26.  Threading a Prop in the App.js File in the src Folder

import React, { Component } from 'react';
import { GeneralList } from './GeneralList';
import { SortedList } from "./SortedList";
//import { ProFeature } from "./ProFeature";

export default class App extends Component {

Figure 14-11.  Passing on props in the example application

Chapter 14 ■ Composing Applications

407

 constructor(props) {
 super(props);
 this.state = {
 names: ["Zoe", "Bob", "Alice", "Dora", "Joe"],
 cities: ["London", "New York", "Paris", "Milan", "Boston"],
 proMode: false
 }
 }

 toggleProMode = () => {
 this.setState({ proMode: !this.state.proMode});
 }

 render() {
 return (
 <div className="container-fluid">
 <div className="row">
 <div className="col-12 text-center p-2">
 <div className="form-check">
 <input type="checkbox" className="form-check-input"
 value={ this.state.proMode }
 onChange={ this.toggleProMode } />
 <label className="form-check-label">Pro Mode</label>
 </div>
 </div>
 </div>

 <div className="row">
 <div className="col-6">
 <GeneralList list={ this.state.names }
 theme="primary" />
 </div>
 <div className="col-6">
 <SortedList proMode={this.state.proMode}
 list={ this.state.names } />
 </div>
 </div>
 </div>
)
 }
}

The SortedList component doesn’t use the proMode prop directly, but it must be passed on to the
ActionButton component, completing the prop threading, as shown in Listing 14-27.

Listing 14-27.  Threading a Prop in the SortedList.js File in the src Folder

import React, { Component } from "react";
import { GeneralList } from "./GeneralList";
import { ActionButton } from "./ActionButton";

export class SortedList extends Component {

Chapter 14 ■ Composing Applications

408

 constructor(props) {
 super(props);
 this.state = {
 sort: false
 }
 }

 getList() {
 return this.state.sort
 ? [...this.props.list].sort() : this.props.list;
 }

 toggleSort = () => {
 this.setState({ sort : !this.state.sort });
 }

 render() {
 return (
 <div>
 <GeneralList list={ this.getList() } theme="info" />
 <div className="text-center m-2">
 <ActionButton theme="primary" text="Sort"
 proMode={ this.props.proMode }
 callback={this.toggleSort} />
 </div>
 </div>
)
 }
}

The result is that the value of the proMode state value is passed from the App component, through the
SortedList component, and is received and used by the ActionButton component, as shown in Figure 14-12.

Figure 14-12.  Threading a prop through the application

Chapter 14 ■ Composing Applications

409

It is this problem that the context feature solves, allowing state data to be passed directly to the
component that uses it, without needing to be threaded through the intermediate components that separate
them in the hierarchy.

Defining the Context
The first step is to define the context, which is the mechanism by which the state data is distributed. Contexts
can be defined anywhere in the application. I added a file called ProModeContext.js in the src folder with
the code shown in Listing 14-28.

Listing 14-28.  The Contents of the ProModeContext.js in the src Folder

import React from "react";

export const ProModeContext = React.createContext({
 proMode: false
})

The React.createContext method is used to create a new context and is provided with a data object
that is used to specify the context’s default values, which are overridden when the context is used, which
I demonstrate shortly. In the listing, the context that I defined is called ProModeContext, and it defines a
proMode property, which will be false by default.

Creating the Context Consumer
The next step is to consume the context where the data value is required, as shown in Listing 14-29.

Listing 14-29.  Creating a Context Consumer in the ActionButton.js File in the src Folder

import React, { Component } from "react";
import { ProModeContext } from "./ProModeContext";

export class ActionButton extends Component {

 render() {
 return (
 <ProModeContext.Consumer>
 { contextData =>
 <button
 className={ this.getClasses(contextData.proMode)}
 disabled={ !contextData.proMode }
 onClick={ this.props.callback }>
 { this.props.text }
 </button>
 }
 </ProModeContext.Consumer>
)
 }

Chapter 14 ■ Composing Applications

410

 getClasses(proMode) {
 let col = proMode ? this.props.theme : "danger";
 return `btn btn-${col} m-2`;
 }
}

Consuming a context is similar to defining a render prop, with the addition of a custom HTML element
to select the context that is required. First comes the HTML element whose tag name is the context name,
followed by a period, followed by Consumer, like this:

...
return <ProModeContext.Consumer>

 // ...context can be consumed here...

</ProModeContext.Consumer>
...

Between the start and end tags of the HTML element is a function that receives the context object and
renders the content that depends on it.

...
<ProModeContext.Consumer>
 { contextData =>
 <button
 className={ this.getClasses(contextData.proMode)}
 disabled={ !contextData.proMode }
 onClick={ this.props.callback }>
 { this.props.text }
 </button>
 }
</ProModeContext.Consumer>
...

The component can still access the component’s state and prop data, which can be mixed freely with
the data provided by the context. In this example, the callback prop is still used to handle click events,
while the proMode context property is used to set the value of the className and disabled attributes.

Creating the Context Provider
The final step is to create a context provider, which associates the source state data with the context, as
shown in Listing 14-30.

Listing 14-30.  Creating a Context Provider in the App.js File in the src Folder

import React, { Component } from 'react';
import { GeneralList } from './GeneralList';
import { SortedList } from "./SortedList";
import { ProModeContext } from './ProModeContext';

Chapter 14 ■ Composing Applications

411

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 names: ["Zoe", "Bob", "Alice", "Dora", "Joe"],
 cities: ["London", "New York", "Paris", "Milan", "Boston"],
 //proMode: false,
 proContextData: {
 proMode: false
 }
 }
 }

 toggleProMode = () => {
 this.setState(state => state.proContextData.proMode
 = !state.proContextData.proMode);
 }

 render() {
 return (
 <div className="container-fluid">
 <div className="row">
 <div className="col-12 text-center p-2">
 <div className="form-check">
 <input type="checkbox" className="form-check-input"
 value={ this.state.proContextData.proMode }
 onChange={ this.toggleProMode } />
 <label className="form-check-label">Pro Mode</label>
 </div>
 </div>
 </div>
 <div className="row">
 <div className="col-6">
 <GeneralList list={ this.state.names }
 theme="primary" />
 </div>
 <div className="col-6">
 <ProModeContext.Provider value={ this.state.proContextData }>
 <SortedList list={ this.state.names } />
 </ProModeContext.Provider>
 </div>
 </div>
 </div>
)
 }
}

I don’t want to expose all the App component’s state data to the context consumers, so I have created
a nested proContextData state object that has a proMode property. To apply the context, another custom
HTML element is used, with the tag name of the context name, followed by a period, followed by Provider.

Chapter 14 ■ Composing Applications

412

...
<ProModeContext.Provider value={ this.state.proContextData }>
 <SortedList list={ this.state.names } />
</ProModeContext.Provider>
...

The value property is used to provide the context with data values that override the defaults defined in
Listing 14-28, which in this case is the proContextData state object.

■■ Tip  Use the version of the setState method that accepts a function if you need to update a nested
state property, as shown in Listing 14-28. See Chapter 11 for details of the different ways that setState
can be used.

The components that are defined between the start and end ProModeContext.Provider tags are
able to access the state data directly by using the ProModeContext.Consumer element. In the example
application, this means that the App component’s proMode state data property is available directly in the
ActionButton component without being threaded through the SortedList component, as illustrated in
Figure 14-13.

Changing Context Data Values in a Consumer
The data values in the context are read-only, but you can include a function in a context object that updates
the source state data, creating the equivalent of a function prop. In Listing 14-31, I added a placeholder for
the function that will be used if the provider applies the content without using the value property.

Listing 14-31.  Adding a Function in the ProModeContext.js file in the src Folder

import React from "react";

export const ProModeContext = React.createContext({
 proMode: false,
 toggleProMode: () => {}
})

Figure 14-13.  The effect of using a context to distribute a state data property

Chapter 14 ■ Composing Applications

413

The function has an empty body and is used to prevent errors only if the default data object is received
by a consumer. To demonstrate modifying a context data value, I am going to create a component that will
render the checkbox used to toggle the pro mode. I added a file called ProModeToggle.js to the src folder
and used it to define the component shown in Listing 14-32.

Listing 14-32.  The Contents of the ProModeToggle.js File in the src Folder

import React, { Component } from "react";
import { ProModeContext } from "./ProModeContext";

export class ProModeToggle extends Component {

 render() {
 return <ProModeContext.Consumer>
 { contextData => (
 <div className="form-check">
 <input type="checkbox" className="form-check-input"
 value={ contextData.proMode }
 onChange={ contextData.toggleProMode } />
 <label className="form-check-label">
 { this.props.label }
 </label>
 </div>
)
 }
 </ProModeContext.Consumer>
 }
}

This component is a context consumer and uses the proMode property to set the value of a checkbox and
invokes the toggleProMode function when it changes. The component also uses a prop to set the content of
a label element, just to show that a component that consumes a context is still able to receive props from
its parent. In Listing 14-33, I have updated the App component so that it uses the ProModeToggle component
and provides the context with a function.

■■ Caution A void the temptation to create the object for a context in the provider’s render method, which
can be appealing because it avoids the need to create nested state objects and to assign methods to state
properties. Creating a new object each time the render method is called undermines the change detection
process that React applies to contexts and can lead to additional updates.

Listing 14-33.  Expanding the Context in the App.js File in the src Folder

import React, { Component } from 'react';
import { GeneralList } from './GeneralList';
import { SortedList } from "./SortedList";
import { ProModeContext } from './ProModeContext';
import { ProModeToggle } from './ProModeToggle';

Chapter 14 ■ Composing Applications

414

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 names: ["Zoe", "Bob", "Alice", "Dora", "Joe"],
 cities: ["London", "New York", "Paris", "Milan", "Boston"],
 //proMode: false,
 proContextData: {
 proMode: false,
 toggleProMode: this.toggleProMode
 }
 }
 }

 toggleProMode = () => {
 this.setState(state => state.proContextData.proMode
 = !state.proContextData.proMode);
 }

 render() {
 return (
 <div className="container-fluid">
 <ProModeContext.Provider value={ this.state.proContextData }>
 <div className="row">
 <div className="col-12 text-center p-2">
 <ProModeToggle label="Pro Mode" />
 </div>
 </div>
 <div className="row">
 <div className="col-6">
 <GeneralList list={ this.state.names }
 theme="primary" />
 </div>
 <div className="col-6">
 <SortedList list={ this.state.names } />
 </div>
 </div>
 </ProModeContext.Provider>
 </div>
)
 }
}

To provide an object that has both the state data and a function, I have added a property whose value
is the toggleProMode method and that allows the context consumer to change the value of the state data
property and, in doing so, trigger an update. Notice that I have lifted up the ProModeContext.Provider
element so that the ProModeToggle and the SortedList component are both in scope. This is optional, and I
could have given each child component its own context element, just as long as the value attributes used the
same object. Using separate elements can be useful when you want to use multiple instances of the context
with different groups of components, as shown in Listing 14-34.

Chapter 14 ■ Composing Applications

415

Listing 14-34.  Using Multiple Contexts in the App.js File in the src Folder

import React, { Component } from 'react';
//import { GeneralList } from './GeneralList';
import { SortedList } from "./SortedList";
import { ProModeContext } from './ProModeContext';
import { ProModeToggle } from './ProModeToggle';

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 names: ["Zoe", "Bob", "Alice", "Dora", "Joe"],
 cities: ["London", "New York", "Paris", "Milan", "Boston"],
 proContextData: {
 proMode: false,
 toggleProMode: this.toggleProMode
 },
 superProContextData: {
 proMode: false,
 toggleProMode: this.toggleSuperMode
 }
 }
 }

 toggleProMode = () => {
 this.setState(state => state.proContextData.proMode
 = !state.proContextData.proMode);
 }

 toggleSuperMode = () => {
 this.setState(state => state.superProContextData.proMode
 = !state.superProContextData.proMode);
 }

 render() {
 return (
 <div className="container-fluid">
 <div className="row">
 <div className="col-6 text-center p-2">
 <ProModeContext.Provider value={ this.state.proContextData }>
 <ProModeToggle label="Pro Mode" />
 </ProModeContext.Provider>
 </div>
 <div className="col-6 text-center p-2">
 <ProModeContext.Provider
 value={ this.state.superProContextData }>
 <ProModeToggle label="Super Pro Mode" />
 </ProModeContext.Provider>
 </div>
 </div>

Chapter 14 ■ Composing Applications

416

 <div className="row">
 <div className="col-6">
 <ProModeContext.Provider value={ this.state.proContextData }>
 <SortedList list={ this.state.names } />
 </ProModeContext.Provider>
 </div>
 <div className="col-6">
 <ProModeContext.Provider
 value={ this.state.superProContextData }>
 <SortedList list={ this.state.cities } />
 </ProModeContext.Provider>
 </div>
 </div>
 </div>
)
 }
}

The App component uses different contexts to manage two pro levels, as shown in Figure 14-14. Each
context has its own data object, and React keeps track of the providers and consumers for each one.

Using the Simplified Context Consumer APIs
React offers an alternative means to access a context that can be easier to use than a render prop function, as
shown in Listing 14-35.

Figure 14-14.  Using multiple contexts

Chapter 14 ■ Composing Applications

417

Listing 14-35.  Using the Simpler Context API in the ProModeToggle.js File in the src Folder

import React, { Component } from "react";
import { ProModeContext } from "./ProModeContext";

export class ProModeToggle extends Component {
 static contextType = ProModeContext;

 render() {
 return (
 <div className="form-check">
 <input type="checkbox" className="form-check-input"
 value={ this.context.proMode }
 onChange={ this.context.toggleProMode } />
 <label className="form-check-label">
 { this.props.label }
 </label>
 </div>
)
 }
}

A static property named contextType is assigned the context, which is then available throughout the
component as this.context. This is a relatively recent addition to React, but it can be easier to use, with the
caveat that a component can consume only one context.

Consuming a Context Using Hooks
The useContext hook provides the counterpart to the contextType property for functional components. In
Listing 14-36, I have rewritten the ProModeToggle component to be defined as a function that relies on the
useContext hook.

Listing 14-36.  Using a Hook in the ProModeToggle.js File in the src Folder

import React, { useContext } from "react";
import { ProModeContext } from "./ProModeContext";

export function ProModeToggle(props) {

 const context = useContext(ProModeContext);

 return (
 <div className="form-check">
 <input type="checkbox" className="form-check-input"
 value={ context.proMode }
 onChange={ context.toggleProMode } />
 <label className="form-check-label">
 { props.label }
 </label>
 </div>
)
}

Chapter 14 ■ Composing Applications

418

The useContext function returns a context object through which the properties and functions can be
accessed.

Defining Error Boundaries
When a component generates an error in its render method or in a lifecycle method, it propagates up
the component hierarchy until it reaches the top of the application, at which point all of the application’s
components are unmounted. This means that any error can effectively terminate the application, which is
rarely ideal, especially if the error is one that the application can recover from. To demonstrate the default
error handling behavior, I changed the ActionButton component so it throws an error the second time the
button element is clicked, as shown in Listing 14-37.

Listing 14-37.  Throwing an Error in the ActionButton.js File in the src Folder

import React, { Component } from "react";
import { ProModeContext } from "./ProModeContext";

export class ActionButton extends Component {

 constructor(props) {
 super(props);
 this.state = {
 clickCount: 0
 }
 }

 handleClick = () => {
 this.setState({ clickCount: this.state.clickCount + 1});
 this.props.callback();
 }

 render() {
 return (
 <ProModeContext.Consumer>
 { contextData => {
 if (this.state.clickCount > 1) {
 throw new Error("Click Counter Error");
 }
 return <button
 className={ this.getClasses(contextData.proMode)}
 disabled={ !contextData.proMode }
 onClick={ this.handleClick }>
 { this.props.text }
 </button>
 }}
 </ProModeContext.Consumer>
)
 }

Chapter 14 ■ Composing Applications

419

Figure 14-15.  The default error handling

 getClasses(proMode) {
 let col = proMode ? this.props.theme : "danger";
 return `btn btn-${col} m-2`;
 }
}

To see the default behavior, enable one of the checkboxes and click the associated button. The order
of the list will be changed when you click the first time. When you click again, the error will be thrown,
and you will see the response shown in Figure 14-15. This message is shown during development but is
disabled when the application is built for deployment, as demonstrated in Chapter 8. Click the close icon
in the top right of the browser window, and you will see that all of the application’s components have been
unmounted, leaving an empty browser window.

The browser’s JavaScript console displays a stack trace for the error.

...
Uncaught Error: Click Counter Error
 at ActionButton.js:23
 at updateContextConsumer (react-dom.development.js:13799)
 at beginWork (react-dom.development.js:13987)
 at performUnitOfWork (react-dom.development.js:16249)
...

Creating the Error Boundary Component
Class-based components can implement the componentDidCatch lifecycle method, which is invoked when
a child component throws an error. The React convention is to use dedicated error-handling components,
known as error boundaries, that intercept errors and either recover the application so it can continue
execution or display a message to the user to indicate the nature of the problem. I added a file called
ErrorBoundary.js to the src folder and used it to define the error boundary shown in Listing 14-38.

■■ Caution E rror boundaries apply only to errors that are thrown in lifecycle methods and do not respond to
errors thrown in event handlers. Error boundaries also cannot be used for asynchronous HTTP requests and a
try/catch block must be used instead, as shown in Part 3.

Chapter 14 ■ Composing Applications

420

Listing 14-38.  The Contents of the ErrorBoundary.js File in the src Folder

import React, { Component } from "react";

export class ErrorBoundary extends Component {

 constructor(props) {
 super(props);
 this.state = {
 errorThrown: false
 }
 }

 componentDidCatch = (error, info) => this.setState({ errorThrown: true});

 render() {
 return (
 <React.Fragment>
 { this.state.errorThrown &&
 <h3 className="bg-danger text-white text-center m-2 p-2">
 Error Detected
 </h3>
 }
 { this.props.children }
 </React.Fragment>
)
 }
}

The componentDidCatch method receives the error object thrown by the problem component and an
additional information object that provides the component’s stack trace, which can be useful for logging.

When an error boundary is used, React will invoke the componentDidCatch method and then call the
render method. The content rendered by the error boundary is handled using the mounting phase of the
component lifecycle, as described in Chapter 13, so that new instances of all the components are created.
This sequence allows the error boundary to change the content that is rendered to avoid problems or change
the state of the application so that the error will not occur again. For this example, I have taken the third
option, which is to render the same content but with a message noting that the error has been detected.
This is an approach that can be used when the error has arisen because of a problem outside the scope of
the application, such as when data cannot be obtained from a web service. Error boundaries are applied as
container components, as shown in Listing 14-39.

Listing 14-39.  Applying an Error Boundary in the SortedList.js File in the src Folder

import React, { Component } from "react";
import { GeneralList } from "./GeneralList";
import { ActionButton } from "./ActionButton";
import { ErrorBoundary } from "./ErrorBoundary";

Chapter 14 ■ Composing Applications

421

export class SortedList extends Component {

 constructor(props) {
 super(props);
 this.state = {
 sort: false
 }
 }

 getList() {
 return this.state.sort
 ? [...this.props.list].sort() : this.props.list;
 }

 toggleSort = () => {
 this.setState({ sort : !this.state.sort });
 }

 render() {
 return (
 <div>
 <ErrorBoundary>
 <GeneralList list={ this.getList() } theme="info" />
 <div className="text-center m-2">
 <ActionButton theme="primary" text="Sort"
 proMode={ this.props.proMode }
 callback={this.toggleSort} />
 </div>
 </ErrorBoundary>
 </div>
)
 }
}

The error boundary will handle errors thrown by any of the components it contains and any of their
descendants. To see the effect, click one of the Sort buttons twice and close the error warning message to see
the message indicating the error has been detected, as shown in Figure 14-16.

Chapter 14 ■ Composing Applications

422

Summary
In this chapter, I described the different ways that components can be combined to compose applications,
including containers, higher-order components, and render props. I also showed you how contexts can be
used to distribute global data and avoid prop threading and how error boundaries can be used to handle
problems in component lifecycle methods. In the next chapter, I describe the features that React provides for
working with forms.

Figure 14-16.  The effect of an error boundary

423© Adam Freeman 2019
A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_15

CHAPTER 15

Forms and Validation

Forms allow applications to collect data from the user. In this chapter, I explain how React works with form
elements, using state properties to set their value and event handlers to respond to user interactions. I show
you how to work with different element types and show you how to validate the data that the user provides in
a form so that the application receives data it can use. Table 15-1 puts forms and validation in context.

Table 15-1.  Putting Forms and Validation in Context

Question Answer

What are they? Forms are the basic mechanism that allows applications to prompt the
user for data. Validation is the process of checking that data to ensure it
can be used by the application.

Why are they useful? Most applications require some degree of data entry from the user, such
as e-mail addresses, payment details, or shipping addresses. Forms allow
the user to enter that data, either in free-text form or by selecting from a
range of predefined choices. Validation is used to ensure that the data is
in a format that the application expects and can process.

How are they used? In this chapter, I describe controlled form elements, whose value is set
using the value or checked props and whose change events are handled
to process user editing or selection. These features are also used for
validation.

Are there any pitfalls or
limitations?

There are differences in the way that different form elements behave and
small deviations between React and the standard HTML form elements,
as described in later sections.

Are there any alternatives? Applications do not have to use form elements at all. In some
applications, uncontrolled form elements, where React is not responsible
for managing the element’s data, may be a more suitable choice, as
described in Chapter 16.

Chapter 15 ■ Forms and Validation

424

Table 15-2 summarizes the chapter.

Table 15-2.  Chapter Summary

Problem Solution Listing

Add a form element to a
component

Add the element to the content rendered by the component. Set
the initial value of the element using the value prop and respond
to changes using the onChange prop.

1–10, 12, 13

Determine the state of a
checkbox

Inspect the checked property of the target element when
handling the change event

11

Validate form data Define validation rules and apply them when the user edits a field
and triggers a change event

14–25

Preparing for This Chapter
To create the example project for this chapter, open a new command prompt, navigate to a convenient
location, and run the command shown in Listing 15-1.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this book—
from https://github.com/Apress/pro-react-16.

Listing 15-1.  Creating the Example Project

npx create-react-app forms

Run the commands shown in Listing 15-2 to navigate to the forms folder to add the Bootstrap package
and a validation package to the project. (I use the validation package in the “Validating Form Data” section.)

Listing 15-2.  Adding Packages to the Project

cd forms
npm install bootstrap@4.1.2
npm install validator@10.7.1

To include the Bootstrap CSS stylesheet in the application, add the statement shown in Listing 15-3 to
the index.js file, which can be found in the src folder.

Listing 15-3.  Including Bootstrap in the index.js File in the src Folder

import React from 'react';
import ReactDOM from 'react-dom';
import './index.css';
import App from './App';

https://github.com/Apress/pro-react-16

Chapter 15 ■ Forms and Validation

425

import * as serviceWorker from './serviceWorker';
import 'bootstrap/dist/css/bootstrap.css';

ReactDOM.render(<App />, document.getElementById('root'));

// If you want your app to work offline and load faster, you can change
// unregister() to register() below. Note this comes with some pitfalls.
// Learn more about service workers: http://bit.ly/CRA-PWA
serviceWorker.unregister();

Defining the Example Components
Add a file called Editor.js to the src folder and add the content shown in Listing 15-4.

Listing 15-4.  The Contents of the Editor.js File in the src Folder

import React, { Component } from "react";

export class Editor extends Component {

 render() {
 return <div className="h5 bg-info text-white p-2">
 Form Will Go Here
 </div>
 }
}

I will use this component to display a form to the user. To start, however, this component renders a
placeholder message. Next, add a file called Display.js to the src folder and add the content shown in
Listing 15-5.

Listing 15-5.  The Contents of the Display.js File in the src Folder

import React, { Component } from "react";

export class Display extends Component {

 formatValue = (data) => Array.isArray(data)
 ? data.join(", ") : data.toString();

 render() {
 let keys = Object.keys(this.props.data);
 if (keys.length === 0) {
 return <div className="h5 bg-secondary p-2 text-white">
 No Data
 </div>
 } else {
 return <div className="container-fluid bg-secondary p-2">
 { keys.map(key =>
 <div key={key} className="row h5 text-white">

Chapter 15 ■ Forms and Validation

426

 <div className="col">{ key }:</div>
 <div className="col">
 { this.formatValue(this.props.data[key]) }
 </div>
 </div>
)}
 </div>
 }
 }
}

This component receives a data prop and enumerates its properties and values in a grid. Finally,
change the content in the App.js file to replace the content added when the project was created with the
component shown in Listing 15-6.

Listing 15-6.  The Contents of the App.js File in the src Folder

import React, { Component } from "react";
import { Editor } from "./Editor";
import { Display } from "./Display";

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 formData: {}
 }
 }

 submitData = (newData) => {
 this.setState({ formData: newData});
 }

 render() {
 return <div className="container-fluid">
 <div className="row p-2">
 <div className="col-6">
 <Editor submit={ this.submitData } />
 </div>
 <div className="col-6">
 <Display data={ this.state.formData } />
 </div>
 </div>
 </div>
 }
}

Chapter 15 ■ Forms and Validation

427

Starting the Development Tools
Using the command prompt, run the command shown in Listing 15-7 in the forms folder to start the
development tools.

Listing 15-7.  Starting the Development Tools

npm start

Once the initial preparation for the project is complete, a new browser window will open and display
the URL http://localhost:3000, which displays the content shown in Figure 15-1.

Using Form Elements
The simplest way to use form elements is to build on the React capabilities described in earlier chapters,
using the state and event features. The result is known as a controlled component, and it will be familiar from
earlier examples. In Listing 15-8, I have added an input element whose content is managed by React to the
Editor component.

■■ Tip T here is also an approach called an uncontrolled component, which I describe in Chapter 16.

Listing 15-8.  Adding a Form Element in the Editor.js File in the src Folder

import React, { Component } from "react";

export class Editor extends Component {

 constructor(props) {
 super(props);
 this.state = {
 name: ""
 }
 }

Figure 15-1.  Running the example application

Chapter 15 ■ Forms and Validation

428

 updateFormValue = (event) => {
 this.setState({ [event.target.name]: event.target.value },
 () => this.props.submit(this.state));
 }

 render() {
 return <div className="h5 bg-info text-white p-2">
 <div className="form-group">
 <label>Name</label>
 <input className="form-control"
 name="name"
 value={ this.state.name }
 onChange={ this.updateFormValue } />
 </div>
 </div>
 }
}

The input element’s value attribute is set using the name state property, and changes are handled
using the updateFormValue method, which has been selected using the onChange prop. Most forms require
multiple fields and rather than define a different event handling method for each of them, it is a good idea
to use one method and ensure that the form element is configured to indicate with which state value it is
associated. In this example, I have used the name prop to specify the state property’s name, which I then read
from the event received by the handler method:

...
updateFormValue = (event) => {
 this.setState({ [event.target.name]: event.target.value },
 () => this.props.submit(this.state));
}
...

The contents of the square brackets (the [and] characters) are evaluated to get the property name for
the state update, which allows me to use the name property from the event.target object with the setState
method. Not all types of form element can be processed in the same way, as you will see in later examples,
but this approach reduces the number of event handling methods in a component.

■■ Tip S et the state property to the empty string ("") if you want to present an empty input element to the
user. You can see examples of empty elements in Listing 15-8. Don’t use null or undefined because these
values cause React to generate a warning in the browser’s JavaScript console.

Notice that I have used the callback option provided by the setState method to invoke the submit
function prop after the state data has been updated, which allows me to send the form data to the parent
component. This means that any change in the state data of the Editor component is also pushed to the App
component so that it can be shown by the Display component, with the result that typing into the input
element is immediately reflected in the content presented to the user, as shown in Figure 15-2. This may
seem like needless duplication of state data, but it will allow me to more easily implement validation features
later in this chapter.

Chapter 15 ■ Forms and Validation

429

Using Select Elements
Once the basic structure is in place, a controller component can easily support additional form elements.
In Listing 15-9, I have added two select elements to the Editor component.

Listing 15-9.  Adding Select Elements in the Editor.js File in the src Folder

import React, { Component } from "react";

export class Editor extends Component {

 constructor(props) {
 super(props);
 this.state = {
 name: "Bob",
 flavor: "Vanilla",
 toppings: ["Strawberries"]
 }

 this.flavors = ["Chocolate", "Double Chocolate",
 "Triple Chocolate", "Vanilla"];
 this.toppings = ["Sprinkles", "Fudge Sauce",
 "Strawberries", "Maple Syrup"]
 }

 updateFormValue = (event) => {
 this.setState({ [event.target.name]: event.target.value },
 () => this.props.submit(this.state));
 }

 updateFormValueOptions = (event) => {
 let options = [...event.target.options]
 .filter(o => o.selected).map(o => o.value);
 this.setState({ [event.target.name]: options },
 () => this.props.submit(this.state));
 }

Figure 15-2.  Using a controlled component

Chapter 15 ■ Forms and Validation

430

 render() {
 return <div className="h5 bg-info text-white p-2">
 <div className="form-group">
 <label>Name</label>
 <input className="form-control"
 name="name"
 value={ this.state.name }
 onChange={ this.updateFormValue } />
 </div>
 <div className="form-group">
 <label>Ice Cream Flavors</label>
 <select className="form-control"
 name="flavor" value={ this.state.flavor }
 onChange={ this.updateFormValue } >
 { this.flavors.map(flavor =>
 <option value={ flavor } key={ flavor }>
 { flavor }
 </option>
)}
 </select>
 </div>
 <div className="form-group">
 <label>Ice Cream Toppings</label>
 <select className="form-control" multiple={true}
 name="toppings" value={ this.state.toppings }
 onChange={ this.updateFormValueOptions }>
 { this.toppings.map(top =>
 <option value={ top } key={ top }>
 { top }
 </option>
)}
 </select>
 </div>
 </div>
 }
}

The select element is easy to work with, although care has to be taken for elements that display
multiple values. For a basic select element, the value property is used to set the selected value, and
selections are handled using the onChange property. The option elements presented by the select element
can be specified as regular HTML elements or generated programmatically, in which case they will require a
key property, like this:

...
<select className="form-control" name="flavor" value={ this.state.flavor }
 onChange={ this.updateFormValue } >
 { this.flavors.map(flavor =>
 <option value={ flavor } key={ flavor }>{ flavor }</option>
)}
</select>
...

Chapter 15 ■ Forms and Validation

431

Changes to the select element that presents a single item for selection can be handled using the
same method defined for the input element since the selected value is accessed through the event.
target.value property.

Using Select Elements That Present Multiple Items
Select elements that allow multiple selections require a little more work. When defining the element, the
multiple prop is set to true using an expression.

...
<select className="form-control" multiple={true} name="toppings"
 value={ this.state.toppings } onChange={ this.updateFormValueOptions }>
...

Using an expression avoids a common problem where assigning a string literal value to the multiple
prop enables multiple elements, even when the string is "false". Handling the user’s selection requires a
different handler method for the change event, as follows:

...
updateFormValueOptions = (event) => {
 let options = [...event.target.options]
 .filter(o => o.selected).map(o => o.value);
 this.setState({ [event.target.name]: options },
 () => this.props.submit(this.state));
}
...

The selections that the user has made are accessed through the event.target.options property, where
the chosen items have a selected property whose value is true. In the listing, I create an array from the
options, using the filter method to get the chosen items and the map method to get the value property,
which leaves an array that contains the values from the value attribute of each chosen option element. Both
select elements can be seen in Figure 15-3. (The data won’t be shown by the Display component until you
make a change.)

Chapter 15 ■ Forms and Validation

432

Using Radio Buttons
Working with radio buttons requires a similar process to text input elements, where the user’s selection can
be accessed through the target element’s value property, as shown in Listing 15-10.

Listing 15-10.  Using Radio Buttons in the Editor.js File in the src Folder

import React, { Component } from "react";

export class Editor extends Component {

 constructor(props) {
 super(props);
 this.state = {
 name: "Bob",
 flavor: "Vanilla"
 }

 this.flavors = ["Chocolate", "Double Chocolate",
 "Triple Chocolate", "Vanilla"];
 this.toppings = ["Sprinkles", "Fudge Sauce",
 "Strawberries", "Maple Syrup"]
 }

 updateFormValue = (event) => {
 this.setState({ [event.target.name]: event.target.value },
 () => this.props.submit(this.state));
 }

Figure 15-3.  Using select elements

Chapter 15 ■ Forms and Validation

433

 render() {
 return <div className="h5 bg-info text-white p-2">
 <div className="form-group">
 <label>Name</label>
 <input className="form-control"
 name="name"
 value={ this.state.name }
 onChange={ this.updateFormValue } />
 </div>

 <div className="form-group">
 <label>Ice Cream Flavors</label>
 { this.flavors.map(flavor =>
 <div className="form-check" key={ flavor }>
 <input className="form-check-input"
 type="radio" name="flavor"
 value={ flavor }
 checked={ this.state.flavor === flavor }
 onChange={ this.updateFormValue } />
 <label className="form-check-label">
 { flavor }
 </label>
 </div>
)}
 </div>
 </div>
 }
}

Radio buttons allow the user to select a single value from a list of options. The choice represented by
the radio button is specified by its value property, and its checked property is used to ensure the element is
selected correctly, as shown in Figure 15-4.

Figure 15-4.  Using radio buttons to present a choice

Chapter 15 ■ Forms and Validation

434

Using Checkboxes
Checkboxes require a different approach because the checked property of the target element has to be read
to determine whether the user has checked or unchecked the element, as shown in Listing 15-11.

Listing 15-11.  Using a Checkbox in the Editor.js File in the src Folder

import React, { Component } from "react";

export class Editor extends Component {

 constructor(props) {
 super(props);
 this.state = {
 name: "Bob",
 flavor: "Vanilla",
 twoScoops: false
 }

 this.flavors = ["Chocolate", "Double Chocolate",
 "Triple Chocolate", "Vanilla"];
 this.toppings = ["Sprinkles", "Fudge Sauce",
 "Strawberries", "Maple Syrup"]
 }

 updateFormValue = (event) => {
 this.setState({ [event.target.name]: event.target.value },
 () => this.props.submit(this.state));
 }

 updateFormValueCheck = (event) => {
 this.setState({ [event.target.name]: event.target.checked },
 () => this.props.submit(this.state));
 }

 render() {
 return <div className="h5 bg-info text-white p-2">
 <div className="form-group">
 <label>Name</label>
 <input className="form-control"
 name="name"
 value={ this.state.name }
 onChange={ this.updateFormValue } />
 </div>

 <div className="form-group">
 <label>Ice Cream Flavors</label>
 { this.flavors.map(flavor =>
 <div className="form-check" key={ flavor }>
 <input className="form-check-input"
 type="radio" name="flavor"

Chapter 15 ■ Forms and Validation

435

 value={ flavor }
 checked={ this.state.flavor === flavor }
 onChange={ this.updateFormValue } />
 <label className="form-check-label">
 { flavor }
 </label>
 </div>
)}
 </div>

 <div className="form-group">
 <div className="form-check">
 <input className="form-check-input"
 type="checkbox" name="twoScoops"
 checked={ this.state.twoScoops }
 onChange={ this.updateFormValueCheck } />
 <label className="form-check-label">Two Scoops</label>
 </div>
 </div>
 </div>
 }
}

The checked property is used to specify whether the checkbox should be checked when it is displayed,
and the checked property is used when handling the change event to determine whether the user has
checked or unchecked the element, as shown in Figure 15-5.

Figure 15-5.  Using a checkbox

Chapter 15 ■ Forms and Validation

436

Using Checkboxes to Populate an Array
Checkboxes can also be used to populate an array, allowing users to choose from related options in a way
that may be more familiar than a multi-option select element, as shown in Listing 15-12.

Listing 15-12.  Using Related Checkboxes in the Editor.js File in the src Folder

import React, { Component } from "react";

export class Editor extends Component {

 constructor(props) {
 super(props);
 this.state = {
 name: "",
 flavor: "Vanilla",
 toppings: ["Strawberries"]
 }

 this.flavors = ["Chocolate", "Double Chocolate",
 "Triple Chocolate", "Vanilla"];
 this.toppings = ["Sprinkles", "Fudge Sauce",
 "Strawberries", "Maple Syrup"]
 }

 updateFormValue = (event) => {
 this.setState({ [event.target.name]: event.target.value },
 () => this.props.submit(this.state));
 }

 updateFormValueCheck = (event) => {
 event.persist();
 this.setState(state => {
 if (event.target.checked) {
 state.toppings.push(event.target.name);
 } else {
 let index = state.toppings.indexOf(event.target.name);
 state.toppings.splice(index, 1);
 }
 }, () => this.props.submit(this.state));
 }

 render() {
 return <div className="h5 bg-info text-white p-2">
 <div className="form-group">
 <label>Name</label>
 <input className="form-control"
 name="name"
 value={ this.state.name }
 onChange={ this.updateFormValue } />
 </div>

Chapter 15 ■ Forms and Validation

437

 <div className="form-group">
 <label>Ice Cream Toppings</label>
 { this.toppings.map(top =>
 <div className="form-check" key={ top }>
 <input className="form-check-input"
 type="checkbox" name={ top }
 value={ this.state[top] }
 checked={ this.state.toppings.indexOf(top) > -1 }
 onChange={ this.updateFormValueCheck } />
 <label className="form-check-label">{ top }</label>
 </div>
)}
 </div>
 </div>
 }
}

The elements are generated in the same way, but changes are required to the updateFormValueCheck
method to manage the contents of the toppings array so that it contains only the user’s chosen values.
The standard JavaScript array features are used to remove a value from the array when the corresponding
checkbox is unchecked and to add a value when the checkbox is checked, producing the result shown in
Figure 15-6.

Figure 15-6.  Using checkboxes to populate an array

Chapter 15 ■ Forms and Validation

438

Using Text Areas
The content of a textarea element is set and read using the value property, unlike regular HTML. In Listing
15-13, I have added a textarea element to the example application and used the onChange handler to
respond to edits.

Listing 15-13.  Using a Text Area in the Editor.js File in the src Folder

import React, { Component } from "react";

export class Editor extends Component {

 constructor(props) {
 super(props);
 this.state = {
 name: "Bob",
 order: ""
 }
 }

 updateFormValue = (event) => {
 this.setState({ [event.target.name]: event.target.value },
 () => this.props.submit(this.state));
 }

 render() {
 return <div className="h5 bg-info text-white p-2">
 <div className="form-group">
 <label>Name</label>
 <input className="form-control"
 name="name"
 value={ this.state.name }
 onChange={ this.updateFormValue } />
 </div>

 <div className="form-group">
 <label>Order</label>
 <textarea className="form-control" name="order"
 value={ this.state.order }
 onChange={ this.updateFormValue } />
 </div>
 </div>
 }
}

Changes can be handled by the same method that I originally defined for text input elements, and the
listing produces the result shown in Figure 15-7.

Chapter 15 ■ Forms and Validation

439

Validating Form Data
Users will enter just about anything into form fields, either because they have made a mistake or because
they are trying to skip through the form without filling it in, as noted in the sidebar. Validation checks the
data that users provide to ensure that the application has data that it can work with. In the sections that
follow, I show you how to perform form validation in a React application.

MINIMIZING THE USE OF FORMS

One reason that users will enter bad data into forms is they don’t regard the result as valuable. This
can occur when the form interrupts a process that is important to the user with something that is
unimportant, such as an intrusive prompt to create an account when reading an article or when the
same form is presented at the start of a process that the user performs often.

Validation won’t help when the user doesn’t value the form because they will simply enter bad data that
passes the checks but that is still bad data. If you find that your intrusive prompt for an e-mail address
results in a lot of a@a.com responses, then you should consider that your users don’t think your weekly
newsletter is as interesting as you do.

Use forms sparingly and only for processes that the user will regard as useful, such as providing a
shipping address. For other forms, find an alternative way to solicit the data from the user that doesn’t
interrupt their workflow and doesn’t annoy them each time they try to perform a task.

When validating forms, the different parts of the validation process can be distributed in a complex
hierarchy of HTML and components. Instead of threading props to connect the different parts, I am going
to use a context to keep track of validation problems. I added a file called ValidationContext.js to the src
folder with the content shown in Listing 15-14. (Contexts are described in Chapter 14.)

Figure 15-7.  Using a text area element

Chapter 15 ■ Forms and Validation

440

■■ Note T he examples in this section rely on the validator package that was added to the project in
Listing 15-2. If you skipped over the installation, you should go back and add the package before proceeding
with the examples.

Listing 15-14.  The Contents of the ValidationContext.js File in the src Folder

import React from "react";

export const ValidationContext = React.createContext({
 getMessagesForField: (field) => []
})

I am going to store the validation issues for each form element as an array and display messages for
each of the issues alongside the element. The context provides access to a function that will return the
validation messages for a specific field.

Defining the Validation Rules
Next, I added a file called validation.js to the src folder and added the code shown in Listing 15-15. This
is the code that will validate the form data, using the validator package that was installed at the start of the
chapter.

Listing 15-15.  The Contents of the validation.js File in the src Folder

import validator from "validator";

export function ValidateData(data, rules) {
 let errors = {};
 Object.keys(data).forEach(field => {
 if (rules.hasOwnProperty(field)) {
 let fielderrors = [];
 let val = data[field];
 if (rules[field].required && validator.isEmpty(val)) {
 fielderrors.push("Value required");
 }
 if (!validator.isEmpty(data[field])) {
 if (rules[field].minlength
 && !validator.isLength(val, rules[field].minlength)) {
 fielderrors.push(`Enter at least ${rules[field].minlength}`
 + " characters");
 }
 if (rules[field].alpha && !validator.isAlpha(val)) {
 fielderrors.push("Enter only letters");
 }
 if (rules[field].email && !validator.isEmail(val)) {
 fielderrors.push("Enter a valid email address");
 }
 }

Chapter 15 ■ Forms and Validation

441

 if (fielderrors.length > 0) {
 errors[field] = fielderrors;
 }
 }
 })
 return errors;
}

The ValidateData function will receive an object whose properties are the form values and an object
that specifies the validation rules that are to be applied. The validation package provides methods that can
be used to perform a wide range of checks, but I have focused on four validation checks for this example:
ensuring that the user has supplied a value, ensuring a minimum length, ensuring a valid e-mail address,
and ensuring that only alphabetic characters are used. Table 15-3 describes the methods provided by the
validation package that I use in the examples that follow. See https://www.npmjs.com/package/validator
for the full range of features provided by the validator package.

Table 15-3.  The validator Methods

Name Description

isEmpty This method returns true if a value is an empty string.

isLength This method returns true if a value exceeds a minimum length.

isAlpha This method returns true if a value contains only letters.

isEmail This method returns true if a value is a valid e-mail address.

isEqual This method returns true if two values are the same.

Creating the Container Component
To create the validation component, I added a file called FormValidator.js to the src folder and used it to
define the component shown in Listing 15-16.

Listing 15-16.  The Contents of the FormValidator.js File in the src Folder

import React, { Component } from "react";
import { ValidateData } from "./validation";
import { ValidationContext } from "./ValidationContext";

export class FormValidator extends Component {

 constructor(props) {
 super(props);
 this.state = {
 errors: {},
 dirty: {},
 formSubmitted: false,
 getMessagesForField: this.getMessagesForField
 }
 }

https://www.npmjs.com/package/validator

Chapter 15 ■ Forms and Validation

442

 static getDerivedStateFromProps(props, state) {
 return {
 errors: ValidateData(props.data, props.rules)
 };
 }

 get formValid() {
 return Object.keys(this.state.errors).length === 0;
 }

 handleChange = (ev) => {
 let name = ev.target.name;
 this.setState(state => state.dirty[name] = true);
 }

 handleClick = (ev) => {
 this.setState({ formSubmitted: true }, () => {
 if (this.formValid) {
 this.props.submit(this.props.data)
 }
 });
 }

 getButtonClasses() {
 return this.state.formSubmitted && !this.formValid
 ? "btn-danger" : "btn-primary";
 }

 getMessagesForField = (field) => {
 return (this.state.formSubmitted || this.state.dirty[field]) ?
 this.state.errors[field] || [] : []
 }

 render() {
 return <React.Fragment>
 <ValidationContext.Provider value={ this.state }>
 <div onChange={ this.handleChange }>
 { this.props.children }
 </div>
 </ValidationContext.Provider>

 <div className="text-center">
 <button className={ `btn ${ this.getButtonClasses() }`}
 onClick={ this.handleClick }
 disabled={ this.state.formSubmitted && !this.formValid } >
 Submit
 </button>
 </div>
 </React.Fragment>
 }
}

Chapter 15 ■ Forms and Validation

443

The validation is performed in the getDerivedStateFromProps lifecycle method, which provides
a component with a change to make changes to its state based on the props it receives. The component
receives a data prop that contains the form data to be validated and a rules prop that defines the validation
checks that should be applied and passes these to the ValidateData function defined in Listing 15-15.
The result of the ValidateData function is assigned to the state.errors property and is an object with a
property for each form field that has validation issues and an array of messages that should be presented to
the user.

Form validation should not begin until the user has started to edit a field or has attempted to submit the
form. Individual edits are handled by listening for the change event as it bubbles up from the form elements
contained by the component, as described in Chapter 12.

...
<div onChange={ this.handleChange }>
 { this.props.children }
</div>
...

The handleChange method adds the value of the name prop of the change event’s target element to the
dirty state object (during validation, elements are regarded as pristine until the user starts editing, after
which they are considered dirty). The component presents the user with a button element with a handler
that changes the formSubmitted state property when it is clicked. If the button is clicked while there are
invalid form elements, then it is disabled until the problems have been resolved and its color is changed to
make it obvious that the data cannot be processed.

...
<button className={ `btn ${ this.getButtonClasses() }`}
 onClick={ this.handleClick }
 disabled={ this.state.formSubmitted && !this.formValid } >
 Submit
</button>
...

If the validation checks produce no errors, then the handleClick method invokes a function prop called
submit and uses the validated data as the argument.

Displaying Validation Messages
To display validation messages alongside the form elements, I added a file called ValidationMessage.js to
the src folder and used it to define the component shown in Listing 15-17.

Listing 15-17.  The Contents of the ValidationMessage.js File in the src Folder

import React, { Component } from "react";
import { ValidationContext } from "./ValidationContext";

export class ValidationMessage extends Component {
 static contextType = ValidationContext;

Chapter 15 ■ Forms and Validation

444

 render() {
 return this.context.getMessagesForField(this.props.field).map(err =>
 <div className="small bg-danger text-white mt-1 p-1"
 key={ err } >
 { err }
 </div>
)
 }
}

This component consumes the context provided by the FormValidator component and uses it to
get the validation messages for a single form field whose name is specified through the field prop. This
component doesn’t have any insight into the type of form element whose validation issues it reports or any
knowledge of the overall validity of the form—it just requests the messages and displays them. If there are no
messages to be displayed, then no content is rendered.

Applying the Form Validation
The final step is to apply the validation to the form, as shown in Listing 15-18. The FormValidator
component must be an ancestor to the form fields so it can receive change events from them as they bubble
up. It must also be an ancestor to the ValidationMessage components so that they have access to the
validation messages through the shared context.

Listing 15-18.  Applying Validation in the Editor.js File in the src Folder

import React, { Component } from "react";
import { FormValidator } from "./FormValidator";
import { ValidationMessage } from "./ValidationMessage";

export class Editor extends Component {

 constructor(props) {
 super(props);
 this.state = {
 name: "",
 email: "",
 order: ""
 }
 this.rules = {
 name: { required: true, minlength: 3, alpha: true },
 email: { required: true, email: true },
 order: { required: true }
 }
 }

 updateFormValue = (event) => {
 this.setState({ [event.target.name]: event.target.value });
 }

Chapter 15 ■ Forms and Validation

445

 render() {
 return <div className="h5 bg-info text-white p-2">
 <FormValidator data={ this.state } rules={ this.rules }
 submit={ this.props.submit }>
 <div className="form-group">
 <label>Name</label>
 <input className="form-control"
 name="name"
 value={ this.state.name }
 onChange={ this.updateFormValue } />
 <ValidationMessage field="name" />
 </div>

 <div className="form-group">
 <label>Email</label>
 <input className="form-control"
 name="email"
 value={ this.state.email }
 onChange={ this.updateFormValue } />
 <ValidationMessage field="email" />
 </div>

 <div className="form-group">
 <label>Order</label>
 <textarea className="form-control"
 name="order"
 value={ this.state.order }
 onChange={ this.updateFormValue } />
 <ValidationMessage field="order" />
 </div>
 </FormValidator>
 </div>
 }
}

In addition to applying the validation components, I added an email field and changed the
updateFormValue method so that it doesn’t automatically send the data for display. The result is shown in
Figure 15-8. No validation messages are shown until you start editing a field or click the button, and you
can’t submit the data until the data you entered meets all of the validation requirements.

Chapter 15 ■ Forms and Validation

446

Validating Other Element and Data Types
Notice that the validation features don’t deal directly with the input and textarea elements. Instead,
the standard state and event features are used to bring the data under React’s control, where it is
validated and dealt with by components that have no knowledge or interest in where the data came
from. This means that once the basic validation features are in place, they can be different types of form
element and different types of data. Each project has its own validation requirements, but the examples
in the sections that follow demonstrate some of the most commonly required approaches that you can
adapt to your own needs.

Ensuring That a Checkbox Is Selected
A common validation requirement is to ensure that the user checks a box to accept terms and conditions.
In Listing 15-19, I have added a check to the set of validations that ensures that a value is true, which will be
the case when a checkbox element is checked.

Listing 15-19.  Adding a Validation Option in the validation.js File in the src Folder

import validator from "validator";

export function ValidateData(data, rules) {
 let errors = {};
 Object.keys(data).forEach(field => {
 if (rules.hasOwnProperty(field)) {
 let fielderrors = [];
 let val = data[field];
 if (rules[field].true) {
 if (!val) {
 fielderrors.push("Must be checked");
 }

Figure 15-8.  Validating form data

Chapter 15 ■ Forms and Validation

447

 } else {
 if (rules[field].required && validator.isEmpty(val)) {
 fielderrors.push("Value required");
 }
 if (!validator.isEmpty(data[field])) {
 if (rules[field].minlength
 && !validator.isLength(val, rules[field].minlength)) {
 fielderrors.push(`Enter at least ${rules[field].minlength}`
 + " characters");
 }
 if (rules[field].alpha && !validator.isAlpha(val)) {
 fielderrors.push("Enter only letters");
 }
 if (rules[field].email && !validator.isEmail(val)) {
 fielderrors.push("Enter a valid email address");
 }
 }
 }
 if (fielderrors.length > 0) {
 errors[field] = fielderrors;
 }
 }
 })
 return errors;
}

The validator package that I am using to perform the validation checks operates only on string values
and reports an error if it is asked to check a Boolean. To avoid problems, I have treated the new validation
check as a special case that cannot be combined with other rules. In Listing 15-20, I have removed some of
the existing form elements and added a checkbox, along with a validation rule that ensures it is checked.

Listing 15-20.  Validating a Checkbox in the Editor.js File in the src Folder

import React, { Component } from "react";
import { FormValidator } from "./FormValidator";
import { ValidationMessage } from "./ValidationMessage";

export class Editor extends Component {

 constructor(props) {
 super(props);
 this.state = {
 name: "",
 terms: false
 }
 this.rules = {
 name: { required: true, minlength: 3, alpha: true },
 terms: { true: true}
 }
 }

Chapter 15 ■ Forms and Validation

448

 updateFormValue = (event) => {
 this.setState({ [event.target.name]: event.target.value });
 }

 updateFormValueCheck = (event) => {
 this.setState({ [event.target.name]: event.target.checked });
 }

 render() {
 return <div className="h5 bg-info text-white p-2">
 <FormValidator data={ this.state } rules={ this.rules }
 submit={ this.props.submit }>
 <div className="form-group">
 <label>Name</label>
 <input className="form-control"
 name="name"
 value={ this.state.name }
 onChange={ this.updateFormValue } />
 <ValidationMessage field="name" />
 </div>

 <div className="form-group">
 <div className="form-check">
 <input className="form-check-input"
 type="checkbox" name="terms"
 checked={ this.state.terms }
 onChange={ this.updateFormValueCheck } />
 <label className="form-check-label">
 Agree to terms
 </label>
 </div>
 <ValidationMessage field="terms" />
 </div>
 </FormValidator>
 </div>
 }
}

The user is presented with a checkbox that must be checked before the form can be submitted, as
shown in Figure 15-9.

Chapter 15 ■ Forms and Validation

449

Ensuring Matching Values
Some values require confirmation in two inputs, such as passwords and e-mail addresses for contact
purposes. In Listing 15-21, I have added a validation rule that checks that two values are the same.

Listing 15-21.  Ensuring Equal Values in the validation.js File in the src Folder

import validator from "validator";

export function ValidateData(data, rules) {
 let errors = {};
 Object.keys(data).forEach(field => {
 if (rules.hasOwnProperty(field)) {
 let fielderrors = [];
 let val = data[field];
 if (rules[field].true) {
 if (!val) {
 fielderrors.push("Must be checked");
 }
 } else {
 if (rules[field].required && validator.isEmpty(val)) {
 fielderrors.push("Value required");
 }
 if (!validator.isEmpty(data[field])) {
 if (rules[field].minlength
 && !validator.isLength(val, rules[field].minlength)) {
 fielderrors.push(`Enter at least ${rules[field].minlength}`
 + " characters");
 }
 if (rules[field].alpha && !validator.isAlpha(val)) {
 fielderrors.push("Enter only letters");
 }
 if (rules[field].email && !validator.isEmail(val)) {
 fielderrors.push("Enter a valid email address");
 }

Figure 15-9.  Validating a checkbox

Chapter 15 ■ Forms and Validation

450

 if (rules[field].equals
 && !validator.equals(val, data[rules[field].equals])) {
 fielderrors.push("Values don't match");
 }
 }
 }
 if (fielderrors.length > 0) {
 errors[field] = fielderrors;
 }
 }
 })
 return errors;
}

In Listing 15-22, I have added two input elements to the Editor component and added a validation check to
ensure that the user enters the same value in both fields.

Listing 15-22.  Adding Related Elements in the Editor.js File in the src Folder

import React, { Component } from "react";
import { FormValidator } from "./FormValidator";
import { ValidationMessage } from "./ValidationMessage";

export class Editor extends Component {

 constructor(props) {
 super(props);
 this.state = {
 name: "",
 email: "",
 emailConfirm: ""
 }
 this.rules = {
 name: { required: true, minlength: 3, alpha: true },
 email: { required: true, email: true, equals: "emailConfirm"},
 emailConfirm: { required: true, email: true, equals: "email"}
 }
 }

 updateFormValue = (event) => {
 this.setState({ [event.target.name]: event.target.value });
 }

Chapter 15 ■ Forms and Validation

451

 render() {
 return <div className="h5 bg-info text-white p-2">
 <FormValidator data={ this.state } rules={ this.rules }
 submit={ this.props.submit }>
 <div className="form-group">
 <label>Name</label>
 <input className="form-control"
 name="name"
 value={ this.state.name }
 onChange={ this.updateFormValue } />
 <ValidationMessage field="name" />
 </div>

 <div className="form-group">
 <label>Email</label>
 <input className="form-control"
 name="email"
 value={ this.state.email }
 onChange={ this.updateFormValue } />
 <ValidationMessage field="email" />
 </div>

 <div className="form-group">
 <label>Confirm Email</label>
 <input className="form-control"
 name="emailConfirm"
 value={ this.state.emailConfirm }
 onChange={ this.updateFormValue } />
 <ValidationMessage field="emailConfirm" />
 </div>
 </FormValidator>
 </div>
 }
}

The result is that the form is valid only when the contents of the email and emailConfirm fields are the
same, as shown in Figure 15-10.

Chapter 15 ■ Forms and Validation

452

Performing Whole-Form Validation
Some types of validation cannot be performed on individual values, such as ensuring that combinations
of choices are consistent. This sort of validation can be performed only when the user has entered valid
data into the form and submitted it, at which point an application can perform a final set of checks before
processing the data.

Validation for individual fields can be applied in multiple forms using the same code, while validation
on combinations of values tends to be specific to a single form. To avoid mixing general code with form-
specific features, I added a file called wholeFormValidation.js to the src folder and used it to define the
validation function shown in Listing 15-23.

Listing 15-23.  The Contents of the wholeFormValidation.js File in the src Folder

export function ValidateForm(data) {
 let errors = [];
 if (!data.email.endsWith("@example.com")) {
 errors.push("Only example.com users allowed");
 }
 if (!data.email.toLowerCase().startsWith(data.name.toLowerCase())) {
 errors.push("Email address must start with name");
 }

Figure 15-10.  Ensuring matching values

Chapter 15 ■ Forms and Validation

453

 if (data.name.toLowerCase() === "joe") {
 errors.push("Go away, Joe")
 }
 return errors;
}

The ValidateForm function receives the form data and checks that e-mail addresses end with
@example.com and that the name property isn’t joe and that the email value begins with the name value.
In Listing 15-24, I have extended the FormValidator component so that it receives a form validation
function as a prop and uses it before submitting the form data.

Listing 15-24.  Adding Support for Whole-Form Validation in the FormValidator.js File in the src Folder

import React, { Component } from "react";
import { ValidateData } from "./validation";
import { ValidationContext } from "./ValidationContext";

export class FormValidator extends Component {

 constructor(props) {
 super(props);
 this.state = {
 errors: {},
 dirty: {},
 formSubmitted: false,
 getMessagesForField: this.getMessagesForField
 }
 }

 static getDerivedStateFromProps(props, state) {
 state.errors = ValidateData(props.data, props.rules);
 if (state.formSubmitted && Object.keys(state.errors).length === 0) {
 let formErrors = props.validateForm(props.data);
 if (formErrors.length > 0) {
 state.errors.form = formErrors;
 }
 }
 return state;
 }

 get formValid() {
 return Object.keys(this.state.errors).length === 0;
 }

 handleChange = (ev) => {
 let name = ev.target.name;
 this.setState(state => state.dirty[name] = true);
 }

Chapter 15 ■ Forms and Validation

454

 handleClick = (ev) => {
 this.setState({ formSubmitted: true }, () => {
 if (this.formValid) {
 let formErrors = this.props.validateForm(this.props.data);
 if (formErrors.length === 0) {
 this.props.submit(this.props.data)
 }
 }
 });
 }

 getButtonClasses() {
 return this.state.formSubmitted && !this.formValid
 ? "btn-danger" : "btn-primary";
 }

 getMessagesForField = (field) => {
 return (this.state.formSubmitted || this.state.dirty[field]) ?
 this.state.errors[field] || [] : []
 }

 render() {
 return <React.Fragment>
 <ValidationContext.Provider value={ this.state }>
 <div onChange={ this.handleChange }>
 { this.props.children }
 </div>
 </ValidationContext.Provider>

 <div className="text-center">
 <button className={ `btn ${ this.getButtonClasses() }`}
 onClick={ this.handleClick }
 disabled={ this.state.formSubmitted && !this.formValid } >
 Submit
 </button>
 </div>
 </React.Fragment>
 }
}

The changes start validating the entire form as soon as the user clicks the Submit button.
In Listing 15-25, I have updated the Editor component so that it provides the FormValidator with
a whole-form validation function and defines a new ValidationMessage component to display errors
that are form-specific.

Listing 15-25.  Applying Whole-Form Validation in the Editor.js File in the src Folder

import React, { Component } from "react";
import { FormValidator } from "./FormValidator";
import { ValidationMessage } from "./ValidationMessage";
import { ValidateForm } from "./wholeFormValidation";

Chapter 15 ■ Forms and Validation

455

export class Editor extends Component {

 constructor(props) {
 super(props);
 this.state = {
 name: "",
 email: "",
 emailConfirm: ""
 }
 this.rules = {
 name: { required: true, minlength: 3, alpha: true },
 email: { required: true, email: true, equals: "emailConfirm"},
 emailConfirm: { required: true, email: true, equals: "email"}
 }
 }

 updateFormValue = (event) => {
 this.setState({ [event.target.name]: event.target.value });
 }

 render() {
 return <div className="h5 bg-info text-white p-2">
 <FormValidator data={ this.state } rules={ this.rules }
 submit={ this.props.submit }
 validateForm={ ValidateForm }>

 <ValidationMessage field="form" />

 <div className="form-group">
 <label>Name</label>
 <input className="form-control"
 name="name"
 value={ this.state.name }
 onChange={ this.updateFormValue } />
 <ValidationMessage field="name" />
 </div>

 <div className="form-group">
 <label>Email</label>
 <input className="form-control"
 name="email"
 value={ this.state.email }
 onChange={ this.updateFormValue } />
 <ValidationMessage field="email" />
 </div>

Chapter 15 ■ Forms and Validation

456

 <div className="form-group">
 <label>Confirm Email</label>
 <input className="form-control"
 name="emailConfirm"
 value={ this.state.emailConfirm }
 onChange={ this.updateFormValue } />
 <ValidationMessage field="emailConfirm" />
 </div>
 </FormValidator>
 </div>
 }
}

The user is presented with additional validation messages if they try to submit data that doesn’t meet
the conditions checked in Listing 15-23, as shown in Figure 15-11.

Summary
In this chapter, I showed you how to create controlled components, which are form elements whose
content is managed through a state property and whose editing is processed by an event handler. I showed
you different types of form element and demonstrated how form data can be validated. Controlled form
components are only one type that React supports, and in the next chapter, I introduce the refs feature and
explained how uncontrolled form elements can be used.

Figure 15-11.  Performing whole-form validation

457© Adam Freeman 2019
A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_16

CHAPTER 16

Using Refs and Portals

Under normal circumstances, a component doesn’t interact directly with the elements in the Document
Object Model (DOM). Normal interaction is through props and event handlers, which make it possible to
compose applications and for components to work together without knowledge of the content they deal with.

There are some situations where components need to interact with the elements in the DOM, and React
provides two features for this purpose. The refs feature—short for references—provides access to the HTML
elements rendered by a component after they have been added to the DOM. The portals feature provides
access to HTML elements outside of the application’s content.

These features should be used with caution because they undermine the isolation between components
in an application, which makes it harder to write, test, and maintain. These features lead to “rabbit holing,”
where they fix one problem but introduce another, which leads to another fix and another problem and so
on. If used injudiciously, these features produce components that duplicate the core functionality provided
by React, which is rarely a beneficial result. Table 16-1 puts refs and portals in context.

Table 16-1.  Putting Refs and Portals in Context

Question Answer

What are they? Refs are references to the elements in the DOM that have been
rendered by a component. A portal allows content to be rendered
outside of the application’s content.

Why are they useful? There are some features of HTML elements that cannot be easily
managed without accessing the DOM directly, such as focusing an
element. These features are also useful for integration with other
frameworks and libraries.

How are they used? Refs are created using the special ref attribute and can be created
using the React.createRef method or using a callback function.
Portals are created using the ReactDOM.createPortal method.

Are there any pitfalls or limitations? These features are prone to misuse, such that they undermine
component isolation and are used to duplicate features that are
provided by React.

Are there any alternatives? Refs and portals are advanced features that will not be required in
many projects.

Chapter 16 ■ Using Refs and Portals

458

Table 16-2 summarizes the chapter.

Preparing for This Chapter
To create the example project for this chapter, open a new command prompt, navigate to a convenient
location, and run the command shown in Listing 16-1.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/pro-react-16.

Listing 16-1.  Creating the Example Project

npx create-react-app refs

Run the commands shown in Listing 16-2 to navigate to the refs folder to add the Bootstrap package.

Listing 16-2.  Adding the Bootstrap CSS Framework

cd refs
npm install bootstrap@4.1.2

In this chapter, I create an example that relies on jQuery. Run the command shown in Listing 16-3 in the
refs folder to add the jQuery package to the project.

Listing 16-3.  Installing jQuery

npm install jquery@3.3.1

To include the Bootstrap CSS stylesheet in the application, add the statement shown in Listing 16-4 to
the index.js file, which can be found in the src folder.

Table 16-2.  Chapter Summary

Problem Solution Listing

Access the HTML element objects created
for a component

Use a ref 1–9, 11,
12, 18, 19

Use a form element without using state data
and an event handler

Use uncontrolled form components 10, 13–15

Prevent data loss during updates Use the getSnapshotBeforeUpdate method 16, 17

Access a child component’s content Use the refs prop or ref forwarding 20–23

Project content into a specific DOM element Use a portal 24–26

https://github.com/Apress/pro-react-16

Chapter 16 ■ Using Refs and Portals

459

Listing 16-4.  Including Bootstrap in the index.js File in the src Folder

import React from 'react';
import ReactDOM from 'react-dom';
import './index.css';
import App from './App';
import * as serviceWorker from './serviceWorker';
import 'bootstrap/dist/css/bootstrap.css';

ReactDOM.render(<App />, document.getElementById('root'));

// If you want your app to work offline and load faster, you can change
// unregister() to register() below. Note this comes with some pitfalls.
// Learn more about service workers: http://bit.ly/CRA-PWA
serviceWorker.unregister();

Add a file called Editor.js file in the src folder and add the code shown in Listing 16-5.

Listing 16-5.  The Contents of the Editor.js File in the src Folder

import React, { Component } from "react";

export class Editor extends Component {

 constructor(props) {
 super(props);
 this.state = {
 name: "",
 category: "",
 price: ""
 }
 }

 handleChange = (event) => {
 event.persist();
 this.setState(state => state[event.target.name] = event.target.value);
 }

 handleAdd = () => {
 this.props.callback(this.state);
 this.setState({ name: "", category:"", price:""});
 }

 render() {
 return <React.Fragment>
 <div className="form-group p-2">
 <label>Name</label>
 <input className="form-control" name="name"
 value={ this.state.name } onChange={ this.handleChange }
 autoFocus={ true } />
 </div>
 <div className="form-group p-2">

Chapter 16 ■ Using Refs and Portals

460

 <label>Category</label>
 <input className="form-control" name="category"
 value={ this.state.category } onChange={ this.handleChange } />
 </div>
 <div className="form-group p-2">
 <label>Price</label>
 <input className="form-control" name="price"
 value={ this.state.price } onChange={ this.handleChange } />
 </div>
 <div className="text-center">
 <button className="btn btn-primary" onClick={ this.handleAdd }>
 Add
 </button>
 </div>
 </React.Fragment>
 }

}

The Editor component renders a series of input elements whose value are set using state data
properties and whose change events are handled by the handleChange method. There is a button element
whose click event invokes the handleAdd method, which invokes a function prop using the state data, which
is then reset.

Next, add a file called ProductTable.js to the src folder and add the code shown in Listing 16-6.

Listing 16-6.  The Contents of the ProductTable.js File in the src Folder

import React, { Component } from "react";

export class ProductTable extends Component {

 render() {
 return <table className="table table-sm table-striped">
 <thead><tr><th>Name</th><th>Category</th><th>Price</th></tr></thead>
 <tbody>
 {
 this.props.products.map(p =>
 <tr key={ p.name }>
 <td>{ p.name }</td>
 <td>{ p.category }</td>
 <td>${ Number(p.price).toFixed(2) }</td>
 </tr>
)
 }
 </tbody>
 </table>
 }
}

The ProductTable component renders a table that contains a row for each object received in the
products prop. Next, replace the contents of the App.js file with the code shown in Listing 16-7.

Chapter 16 ■ Using Refs and Portals

461

Listing 16-7.  Replacing the Contents of the App.js File in the src Folder

import React, { Component } from "react";
import { Editor } from "./Editor"
import { ProductTable } from "./ProductTable";

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 products: []
 }
 }

 addProduct = (product) => {
 if (this.state.products.indexOf(product.name) === -1) {
 this.setState({ products: [...this.state.products, product]});
 }
 }

 render() {
 return <div>
 <Editor callback={ this.addProduct } />
 <h6 className="bg-secondary text-white m-2 p-2">Products</h6>
 <div className="m-2">
 {
 this.state.products.length === 0
 ? <div className="text-center">No Products</div>
 : <ProductTable products={ this.state.products } />
 }
 </div>
 </div>
 }
}

Using the command prompt, run the command shown in Listing 16-8 in the refs folder to start the
development tools.

Listing 16-8.  Starting the Development Tools

npm start

Once the initial preparation for the project is complete, a new browser window will open and display
the URL http://localhost:3000, which displays the content shown in Figure 16-1. Fill out the form and
click the Add button, and you will see a new entry displayed in the table.

Chapter 16 ■ Using Refs and Portals

462

Creating Refs
Refs can be used when a component needs to access the DOM in order to use features of a specific HTML
element. There are HTML features that cannot be achieved through the use of props, one of which is to ask an
element to gain focus. The autoFocus attribute can be used to focus an element when content is first rendered,
but the focus will switch to the button element once the user clicks it, which means that the user can’t start
typing to create another item until they refocus, either by clicking the input element or by using the Tab key.

A ref can be used to access the DOM and invoke the focus method on the input element when the
event triggered by clicking the Add button is handled, as shown in Listing 16-9.

DON’T RUSH TO USE REFS

Being able to access the DOM is a natural expectation for web developers, and refs can seem like a
feature that makes React development easier, especially if you are coming to React from a framework
like Angular.

It is easy to get carried away with refs and end up with a component that duplicates the content
handling features that should be performed by React. A component that makes excessive use of refs is
difficult to manage, can create dependencies on specific browser features, and can be difficult to run on
different platforms.

Figure 16-1.  Running the example application

Chapter 16 ■ Using Refs and Portals

463

Use refs only as a last resort, and always consider if you can achieve the same result using the state
and props features.

Listing 16-9.  Using a Ref in the Editor.js File in the src Folder

import React, { Component } from "react";

export class Editor extends Component {

 constructor(props) {
 super(props);
 this.state = {
 name: "",
 category: "",
 price: ""
 }
 this.nameRef = React.createRef();
 }

 handleChange = (event) => {
 event.persist();
 this.setState(state => state[event.target.name] = event.target.value);
 }

 handleAdd = () => {
 this.props.callback(this.state);
 this.setState({ name: "", category:"", price:""},
 () => this.nameRef.current.focus());
 }

 render() {
 return <React.Fragment>
 <div className="form-group p-2">
 <label>Name</label>
 <input className="form-control" name="name"
 value={ this.state.name } onChange={ this.handleChange }
 autoFocus={ true } ref={ this.nameRef } />
 </div>
 <div className="form-group p-2">
 <label>Category</label>
 <input className="form-control" name="category"
 value={ this.state.category } onChange={ this.handleChange } />
 </div>
 <div className="form-group p-2">
 <label>Price</label>
 <input className="form-control" name="price"
 value={ this.state.price } onChange={ this.handleChange } />
 </div>

Chapter 16 ■ Using Refs and Portals

464

 <div className="text-center">
 <button className="btn btn-primary" onClick={ this.handleAdd }>
 Add
 </button>
 </div>
 </React.Fragment>
 }
}

Refs are created using the React.createRef method, which is invoked in the constructor so that the
result can be used throughout the component. A ref is associated with an element using the special ref prop,
with an expression that selects the ref for the element.

...
<input className="form-control" name="name"
 value={ this.state.name } onChange={ this.handleChange }
 autoFocus={ true } ref={ this.nameRef } />
...

The ref object returned by the createRef method defines just one property, named current, that
returns the HTMLElement object that represents the element in the DOM. I use the current property in the
handleAdd method to invoke the focus method after the state data update has been completed, like this:

...
this.setState({ name: "", category:"", price:""},
 () => this.nameRef.current.focus());
...

The result is that the name input element will regain the focus when the update triggered by the Add
button is complete, allowing the user to start typing for the next new product without having to manually
select the element, as shown in Figure 16-2.

Chapter 16 ■ Using Refs and Portals

465

Using Refs to Create Uncontrolled Form Components
The example application uses the controlled form components technique that I introduced in Chapter 15,
where React is responsible for the contents of each form element, using a state data property to store its
value and an event handler to respond to changes.

Form elements already have the ability to store a value and respond to changes, but these features
are not used by a controlled form component. An alternative technique is to create an uncontrolled form
component, where a ref is used to access form elements and the browser is responsible for managing
the element’s value and responding to changes. In Listing 16-10, I have removed the state data used to
manage the input elements rendered by the Editor component and used refs to create uncontrolled form
components.

Listing 16-10.  Creating Uncontrolled Form Components in the Editor.js File in the src Folder

import React, { Component } from "react";

export class Editor extends Component {

 constructor(props) {
 super(props);
 // this.state = {

Figure 16-2.  Using a ref

Chapter 16 ■ Using Refs and Portals

466

 // name: "",
 // category: "",
 // price: ""
 // }
 this.nameRef = React.createRef();
 this.categoryRef = React.createRef();
 this.priceRef = React.createRef();
 }

 // handleChange = (event) => {
 // event.persist();
 // this.setState(state => state[event.target.name] = event.target.value);
 // }

 handleAdd = () => {
 this.props.callback({
 name: this.nameRef.current.value,
 category: this.categoryRef.current.value,
 price: this.priceRef.current.value
 });
 this.nameRef.current.value = "";
 this.categoryRef.current.value = "";
 this.priceRef.current.value = "";
 this.nameRef.current.focus();
 }

 render() {
 return <React.Fragment>
 <div className="form-group p-2">
 <label>Name</label>
 <input className="form-control" name="name"
 autoFocus={ true } ref={ this.nameRef } />
 </div>
 <div className="form-group p-2">
 <label>Category</label>
 <input className="form-control" name="category"
 ref={ this.categoryRef } />
 </div>
 <div className="form-group p-2">
 <label>Price</label>
 <input className="form-control" name="price" ref={ this.priceRef } />
 </div>
 <div className="text-center">
 <button className="btn btn-primary" onClick={ this.handleAdd }>
 Add
 </button>
 </div>
 </React.Fragment>
 }
}

Chapter 16 ■ Using Refs and Portals

467

The input elements values are not required until the user clicks the Add button. In the handleAdd
method, which is invoked when the button is clicked, the refs for each of the input elements is used to read
the value property. The result has the same appearance to the user as earlier examples, but behind the
scenes, React is no longer responsible for managing the element values or responding to change events.

SETTING AN INITIAL VALUE FOR AN UNCONTROLLED ELEMENT

React isn’t responsible for uncontrolled elements, but it can still provide an initial value, which is then
managed by the browser. To set the value, use the defaultValue or defaultChecked attribute, but bear
in mind that the value you specify will be used only when the element is first rendered and won’t update
the element when it is changed.

Creating Refs Using a Callback Function
The previous example shows how refs can be used in form elements, but the result isn’t that different from
the controlled form component with which I started the chapter. There is an alternative technique that can
be used to create refs and that can produce more concise components, as shown in Listing 16-11, known as
callback refs.

Listing 16-11.  Using Callback Refs in the Editor.js File in the src Folder

import React, { Component } from "react";

export class Editor extends Component {

 constructor(props) {
 super(props);
 this.formElements = {
 name: { },
 category: { },
 price: { }
 }
 }

 setElement = (element) => {
 if (element !== null) {
 this.formElements[element.name].element = element;
 }
 }

 handleAdd = () => {
 let data = {};
 Object.values(this.formElements)
 .forEach(v => {
 data[v.element.name] = v.element.value;
 v.element.value = "";
 });

Chapter 16 ■ Using Refs and Portals

468

 this.props.callback(data);
 this.formElements.name.element.focus();
 }

 render() {
 return <React.Fragment>
 <div className="form-group p-2">
 <label>Name</label>
 <input className="form-control" name="name"
 autoFocus={ true } ref={ this.setElement } />
 </div>
 <div className="form-group p-2">
 <label>Category</label>
 <input className="form-control" name="category"
 ref={ this.setElement } />
 </div>
 <div className="form-group p-2">
 <label>Price</label>
 <input className="form-control" name="price"
 ref={ this.setElement } />
 </div>
 <div className="text-center">
 <button className="btn btn-primary" onClick={ this.handleAdd }>
 Add
 </button>
 </div>
 </React.Fragment>
 }
}

The value of the ref property of the input elements is set to a method, which is invoked when the
content is rendered. Instead of dealing with a ref object, the specified method receives the HTMLElement
object directly, instead of a reference object with a current property. In the listing, the setElement method
receives the elements, which are added to the formElements object using the name value so that I can
differentiate between the elements.

The function you provide for a callback ref will also be invoked with null as the argument if the element
is unmounted. For this example, I don’t need to do any tidying up if the elements are removed, so I just
check for the null value in the setElement method.

...
setElement = (element) => {
 if (element !== null) {
 this.formElements[element.name].element = element;
 }
}
...

Once you have the function for the refs in place, forms can be easily generated programmatically, as
shown in Listing 16-12, because refs don’t have be created and assigned to elements individually.

Chapter 16 ■ Using Refs and Portals

469

Listing 16-12.  Generating a Form Programmatically in the Editor.js File in the src Folder

import React, { Component } from "react";

export class Editor extends Component {

 constructor(props) {
 super(props);
 this.formElements = {
 name: { label: "Name", name: "name" },
 category: { label: "Category", name: "category" },
 price: { label: "Price", name: "price" }
 }
 }

 setElement = (element) => {
 if (element !== null) {
 this.formElements[element.name].element = element;
 }
 }

 handleAdd = () => {
 let data = {};
 Object.values(this.formElements)
 .forEach(v => {
 data[v.element.name] = v.element.value;
 v.element.value = "";
 });
 this.props.callback(data);
 this.formElements.name.element.focus();
 }

 render() {
 return <React.Fragment>
 {
 Object.values(this.formElements).map(elem =>
 <div className="form-group p-2" key={ elem.name }>
 <label>{ elem.label }</label>
 <input className="form-control"
 name={ elem.name }
 autoFocus={ elem.name === "name" }
 ref={ this.setElement } />
 </div>)
 }
 <div className="text-center">
 <button className="btn btn-primary" onClick={ this.handleAdd }>
 Add
 </button>
 </div>
 </React.Fragment>
 }
}

Chapter 16 ■ Using Refs and Portals

470

The input elements are generated using the properties of the formElements object, where each
property is assigned an object with label and name properties that are used in the render method to
configure the element.

The code required to define and manage the form is more concise, but the effect is the same, and filling
the form and clicking the Add button displays a new object, as shown in Figure 16-3.

Figure 16-3.  Programmatically creating form elements and refs

Validating Uncontrolled Form Components
Form elements have built-in validation support through the HTML Constraint Validation API, which can be
accessed using refs. The validation API describes an element’s validation status using an object like this one:

...
{
 valueMissing: true, tooShort: false, rangeUnderflow: false
}
...

Chapter 16 ■ Using Refs and Portals

471

The valueMissing property will be true when I have specified that the element must have a value but
is empty. The tooShort property will be true when there are fewer characters in the element’s value than
specified by the validation rules. The rangeUnderflow property will be true for numeric values that are
smaller than a specified minimum value.

To process this type of validation object, I added a file called ValidationMessages.js to the src folder
and used it to define the function shown in Listing 16-13.

Listing 16-13.  The Contents of the ValidationMessages.js File in the src Folder

export function GetValidationMessages(elem) {
 let errors = [];
 if (!elem.checkValidity()) {
 if (elem.validity.valueMissing) {
 errors.push("Value required");
 }
 if (elem.validity.tooShort) {
 errors.push("Value is too short");
 }
 if (elem.validity.rangeUnderflow) {
 errors.push("Value is too small");
 }
 }
 return errors;
}

The GetValidationMessages function receives an HTML element object and asks the browser for data
validation by calling the element’s checkValidity method. The checkValidity method returns true if the
element’s value is valid and false otherwise. If the element’s value isn’t valid, then the element’s validity
property is checked for the valueMissing, tooShort, and rangeUnderflow properties with true values and
used to create an array of errors that can be shown to the user.

■■ Tip T he HTML validation features include a wider range of validation checks and validity properties
than I use in this chapter. See https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5/
Constraint_validation for a good description of the available features.

I added a file called ValidationDisplay.js in the src folder and used it to define a component that will
display the validation messages for a single element, as shown in Listing 16-14.

Listing 16-14.  The Contents of the ValidationDisplay.js File in the src Folder

import React, { Component } from "react";

export class ValidationDisplay extends Component {

 render() {
 return this.props.errors
 ? this.props.errors.map(err =>
 <div className="small bg-danger text-white mt-1 p-1"
 key={ err } >
 { err }

https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5/Constraint_validation
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5/Constraint_validation

Chapter 16 ■ Using Refs and Portals

472

 </div>)
 : null
 }
}

This component receives an array of error messages that it should display and returns null to indicate
no content if there are no error messages to show. In Listing 16-15, I have updated the Editor component so
that validation attributes are applied to the form elements and validation checks are performed before the
form data is used.

Listing 16-15.  Applying Validation in the Editor.js File in the src Folder

import React, { Component } from "react";
import { ValidationDisplay } from "./ValidationDisplay";
import { GetValidationMessages } from "./ValidationMessages";

export class Editor extends Component {

 constructor(props) {
 super(props);
 this.formElements = {
 name: { label: "Name", name: "name",
 validation: { required: true, minLength: 3 }},
 category: { label: "Category", name:"category",
 validation: { required: true, minLength: 5 }},
 price: { label: "Price", name: "price",
 validation: { type: "number", required: true, min: 5 }}
 }
 this.state = {
 errors: {}
 }
 }

 setElement = (element) => {
 if (element !== null) {
 this.formElements[element.name].element = element;
 }
 }

 handleAdd = () => {
 if (this.validateFormElements()) {
 let data = {};
 Object.values(this.formElements)
 .forEach(v => {
 data[v.element.name] = v.element.value;
 v.element.value = "";
 });
 this.props.callback(data);
 this.formElements.name.element.focus();
 }
 }

Chapter 16 ■ Using Refs and Portals

473

 validateFormElement = (name) => {
 let errors = GetValidationMessages(this.formElements[name].element);
 this.setState(state => state.errors[name] = errors);
 return errors.length === 0;
 }

 validateFormElements = () => {
 let valid = true;
 Object.keys(this.formElements).forEach(name => {
 if (!this.validateFormElement(name)) {
 valid = false;
 }
 })
 return valid;
 }

 render() {
 return <React.Fragment>
 {
 Object.values(this.formElements).map(elem =>
 <div className="form-group p-2" key={ elem.name }>
 <label>{ elem.label }</label>
 <input className="form-control"
 name={ elem.name }
 autoFocus={ elem.name === "name" }
 ref={ this.setElement }
 onChange={ () => this.validateFormElement(elem.name) }
 { ...elem.validation} />
 <ValidationDisplay
 errors={ this.state.errors[elem.name] } />
 </div>)
 }
 <div className="text-center">
 <button className="btn btn-primary" onClick={ this.handleAdd }>
 Add
 </button>
 </div>
 </React.Fragment>
 }
}

I included the validation attributes for each element in the objects that describes that element, like this:

...
name: { label: "Name", name: "name", validation: { required: true, minLength: 3 }},
...

The required attribute indicates that a value is required, and the minLength attribute specifies that the
value should contain at least three characters. These attributes are applied to the input elements when they
are created by the render method.

Chapter 16 ■ Using Refs and Portals

474

...
<input className="form-control" name={ elem.name }
 autoFocus={ elem.name === "name" } ref={ this.setElement }
 onChange={ () => this.validateFormElement(elem.name) }
 { ...elem.validation} />
...

I don’t have to worry about the pristine/dirty element issue I described in Chapter 15 because
validation isn’t performed until the checkValidity method is invoked, which will happen in response to the
change event, which I handle using the onChange event prop and the validateFormElement method, with
the effect that validation for an element begins only when the user starts to type, as shown in Figure 16-4.

Figure 16-4.  Validating an element

When the user clicks the Add button, the handleAdd method invokes the validateFormElements
button, which validates all the elements and ensures that the form data isn’t used until the problems are
resolved, as shown in Figure 16-5. The effects of changes are shown immediately because each edit triggers a
change event that causes the element’s value to validated again.

Chapter 16 ■ Using Refs and Portals

475

Understanding Refs and the Lifecycle
Refs are not assigned a value until React invokes a component’s render method. If you are using the
createRef method, the current property will not be assigned a value before the component has rendered its
content. Similarly, callback refs won’t invoke their method until the component has rendered.

The assignment of refs may seem late in the component lifecycle, but refs provide access to DOM
elements, which are not created until the rendering phase, which means that React hasn’t created the
elements that refs refer to until the render method is invoked. The element associated with a ref can be
accessed only in the componentDidMount and componentDidUpdate lifecycle methods because they occur
after rendering has been completed and the DOM has been populated or updated.

One consequence of using refs is that a component can’t rely on the state feature to preserve its context
when React replaces the elements it renders in the DOM. React tries to minimize DOM changes, but you
cannot rely on the same element being used throughout the life of an application. As noted in Chapter 13,
changing the top-level element rendered by a component causes React to replace its elements in the DOM,
as shown in Listing 16-16.

Listing 16-16.  Rendering a Different Top-Level Element in the Editor.js File in the src Folder

import React, { Component } from "react";
import { ValidationDisplay } from "./ValidationDisplay";
import { GetValidationMessages } from "./ValidationMessages";

export class Editor extends Component {

 constructor(props) {
 super(props);
 this.formElements = {
 name: { label: "Name", name: "name",

Figure 16-5.  Validating all elements

Chapter 16 ■ Using Refs and Portals

476

 validation: { required: true, minLength: 3 }},
 category: { label: "Category", name:"category",
 validation: { required: true, minLength: 5 }},
 price: { label: "Price", name: "price",
 validation: { type: "number", required: true, min: 5 }}
 }
 this.state = {
 errors: {},
 wrapContent: false
 }
 }

 setElement = (element) => {
 if (element !== null) {
 this.formElements[element.name].element = element;
 }
 }

 handleAdd = () => {
 if (this.validateFormElements()) {
 let data = {};
 Object.values(this.formElements)
 .forEach(v => {
 data[v.element.name] = v.element.value;
 v.element.value = "";
 });
 this.props.callback(data);
 this.formElements.name.element.focus();
 }
 }

 validateFormElement = (name) => {
 let errors = GetValidationMessages(this.formElements[name].element);
 this.setState(state => state.errors[name] = errors);
 return errors.length === 0;
 }

 validateFormElements = () => {
 let valid = true;
 Object.keys(this.formElements).forEach(name => {
 if (!this.validateFormElement(name)) {
 valid = false;
 }
 })
 return valid;
 }

 toggleWrap = () => {
 this.setState(state => state.wrapContent = !state.wrapContent);
 }

Chapter 16 ■ Using Refs and Portals

477

 wrapContent(content) {
 return this.state.wrapContent
 ? <div className="bg-secondary p-2">
 <div className="bg-light">{ content }</div>
 </div>
 : content;
 }

 render() {
 return this.wrapContent(
 <React.Fragment>
 <div className="form-group text-center p-2">
 <div className="form-check">
 <input className="form-check-input"
 type="checkbox"
 checked={ this.state.wrapContent }
 onChange={ this.toggleWrap } />
 <label className="form-check-label">Wrap Content</label>
 </div>
 </div>
 {
 Object.values(this.formElements).map(elem =>
 <div className="form-group p-2" key={ elem.name }>
 <label>{ elem.label }</label>
 <input className="form-control"
 name={ elem.name }
 autoFocus={ elem.name === "name" }
 ref={ this.setElement }
 onChange={ () => this.validateFormElement(elem.name) }
 { ...elem.validation} />
 <ValidationDisplay
 errors={ this.state.errors[elem.name] } />
 </div>)
 }
 <div className="text-center">
 <button className="btn btn-primary" onClick={ this.handleAdd }>
 Add
 </button>
 </div>
 </React.Fragment>)
 }
}

I have added a wrapContent state property that is set using a controlled checkbox and that wraps the
content rendered by the component and ensures that React replaces the component’s existing elements
in the DOM with new ones. To see the effect, enter text into the Name field and check the Wrap Context
checkbox, as shown in Figure 16-6.

Chapter 16 ■ Using Refs and Portals

478

The input element into which you entered text has been destroyed, and its content has been lost. To
make matters more confusing for the user, any validation errors that have been detected are part of the
component’s state data, which means they will be displayed alongside the new input element, even though
the data value they describe is no longer visible.

To help avoid this problem, the stateful component lifecycle includes the getSnapshotBeforeUpdate
method, which is called between the render and componentDidUpdate methods in the update phase, as
shown in Figure 16-7.

Figure 16-7.  The snapshot process

Figure 16-6.  Replacing elements

This getSnapshotBeforeUpdate method allows a component to inspect its current content and
generate a custom snapshot object before the render method is called. Once the update is complete, the
componentDidUpdate method is called and provided with the snapshot object so that the component can
modify the elements that are now in the DOM.

■■ Caution A snapshot doesn’t help preserve context if the component is unmounted and re-created, which
can happen when an ancestor’s content changes. In these situations, the componentWillUnmount method can
be used to access refs, and the data can be preserved via a context, as described in Chapter 15.

Chapter 16 ■ Using Refs and Portals

479

In Listing 16-17, I have used the snapshot feature to capture the values entered into the input element
before the update and restore those values after the update.

 Listing 16-17.  Taking a Snapshot in the Editor.js File in the src Folder

import React, { Component } from "react";
import { ValidationDisplay } from "./ValidationDisplay";
import { GetValidationMessages } from "./ValidationMessages";

export class Editor extends Component {

 constructor(props) {
 super(props);
 this.formElements = {
 name: { label: "Name", name: "name",
 validation: { required: true, minLength: 3 }},
 category: { label: "Category", name:"category",
 validation: { required: true, minLength: 5 }},
 price: { label: "Price", name: "price",
 validation: { type: "number", required: true, min: 5 }}
 }
 this.state = {
 errors: {},
 wrapContent: false
 }
 }

 // ...other methods omitted for brevity...

 getSnapshotBeforeUpdate(props, state) {
 return Object.values(this.formElements).map(item =>
 {return { name: [item.name], value: item.element.value }})
 }

 componentDidUpdate(oldProps, oldState, snapshot) {
 snapshot.forEach(item => {
 let element = this.formElements[item.name].element
 if (element.value !== item.value) {
 element.value = item.value;
 }
 });
 }
}

The getSnapshotBeforeUpdate method receives the component’s props and state as they were before
the update was triggered and returns an object that will be passed to the componentDidUpdate method
after the update. In the example, I don’t need to access props or state because the data I need to preserve is
contained in the input elements. React doesn’t mandate a specific format for the snapshot object, and the
getSnapshotBeforeUpdate method can return data in any format that will be useful. In the example, the
getSnapshotBeforeUpdate method returns an array of objects with name and value properties.

Once React has completed the update, it calls the componentDidUpdate and provides the snapshot as an
argument, along with the old props and state data. In the example, I process the array of objects and set the

Chapter 16 ■ Using Refs and Portals

480

values of the input elements. The result is that data entered into the input elements is preserved when the
checkbox is toggled, as shown in Figure 16-8.

The getSnapshotBeforeUpdate and componentDidUpdate methods are called for every update, even
when React hasn’t replaced the component’s elements in the DOM, which is why I apply a snapshot value
only when an element’s value differs from the snapshot value when the update has been completed.

UNDERSTANDING THE REFS RABBIT HOLE

There is an unintended consequence of using the HTML5 constraint validation API in the previous
example. Validation is performed only when the user edits the contents of the text field and not when
the value is set programmatically. When I use the snapshot data to set the value of a newly created
input element, it will pass validation, even if the value previously failed validation. The effect is that the
user can bypass validation by entering bad values into the name or category input elements, checking
the wrap content checkbox, and clicking the Add button.

This is a problem that can be worked around, but the underlying issue is that using refs to access the
DOM directly presents a series of small conflicts, each of which can be solved with the addition of a few
lines of code. But these fixes often present other issues or compromises that require additional work,
and the result is a fragile application made from complex components.

Working directly with the DOM can be essential in some projects, and there can be advantages to
avoiding duplicating data and features that are already in the DOM. But use refs only when they are
required because they can create as many problems as they solve.

Figure 16-8.  Using snapshot data

Chapter 16 ■ Using Refs and Portals

481

Using Refs with Other Libraries or Frameworks
Some projects are moved to React gradually so that components have to interoperate with existing features
that are written in another library or framework. The most common example is jQuery, which was the
most popular choice for web application development before the era of frameworks like React and Angular
and which is still widely used for simple projects. If you have an extensive set of features that are written
in jQuery, for example, then you can apply them to the HTML elements rendered by a component using
refs. To demonstrate, I am going to use jQuery to assign form elements with invalid elements to a class that
will apply a Bootstrap style. I added a file called jQueryColorizer.js to the src folder and added the code
shown in Listing 16-18.

■■ Note T his example requires the jQuery package that was added to the project in Listing 16-3. If you did not
install jQuery, you should do so before proceeding.

Listing 16-18.  The Contents of the jQueryColorizer.js in the src Folder

var $ = require('jquery');

export function ColorInvalidElements(rootElement) {
 $(rootElement)
 .find("input:invalid").addClass("border-danger")
 .removeClass("border-success")
 .end()
 .find("input:valid").removeClass("border-danger")
 .addClass("border-success");
}

The jQuery statement locates all the input elements that are assigned to the invalid pseudoclass and
adds them to the border-danger class and adds any input elements in the valid pseudoclass to the border-
success class. The valid and invalid classes are used by the HTML constraint validation API to indicate
an element’s validation status. In Listing 16-19, I have added a ref and used it to invoke the jQuery function
from the App component.

MIXING FRAMEWORKS

Using refs to incorporate other frameworks is difficult and prone to problems. Like any use of refs, it
should be done with caution and only when you are unable to rewrite the functionality in React. You
may feel that you will save time by building on your existing code, but my experience is that any time
saved will be spent trying to work around a long series of small problems that arise because the two
frameworks work in different ways.

If you have to use another library or framework alongside React, then you should pay close attention
to the way that the frameworks approach the DOM. You will find that React and the other framework
expect to have complete control of the content they create, and unexpected results can arise when
elements are added, removed, or changed in a way that the framework developers did not expect.

Chapter 16 ■ Using Refs and Portals

482

Listing 16-19.  Invoking a Function in the App.js File in the src Folder

import React, { Component } from "react";
import { Editor } from "./Editor"
import { ProductTable } from "./ProductTable";
import { ColorInvalidElements } from "./jQueryColorizer";

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 products: []
 }
 this.editorRef = React.createRef();
 }

 addProduct = (product) => {
 if (this.state.products.indexOf(product.name) === -1) {
 this.setState({ products: [...this.state.products, product]});
 }
 }

 colorFields = () => {
 ColorInvalidElements(this.editorRef.current);
 }

 render() {
 return <div>
 <div className="text-center m-2">
 <button className="btn btn-primary" onClick={ this.colorFields }>
 jQuery
 </button>
 </div>
 <div ref={ this.editorRef} >
 <Editor callback={ this.addProduct } />
 </div>
 <h6 className="bg-secondary text-white m-2 p-2">Products</h6>
 <div className="m-2">
 {
 this.state.products.length === 0
 ? <div className="text-center">No Products</div>
 : <ProductTable products={ this.state.products } />
 }
 </div>
 </div>
 }
}

The result is that clicking the jQuery button invokes the colorFields method, which uses the ref to
provide the jQuery function with the HTML element it requires. The jQuery function applies borders to the
input elements to indicate their validation status, as shown in Figure 16-9. (The difference in the border

Chapter 16 ■ Using Refs and Portals

483

colors will not be evident in the printed edition of this book, and this is an example that is best run in the
browser to see the effect.)

ACCESSING COMPONENTS WITH REFS

In Listing 16-19, I added a div element around the Editor element. When React renders the content
into the DOM, the Editor element won’t be part of the HTML document, and adding the div element
ensures that jQuery is able to access the application’s content.

Refs do work with components, and if I had applied the ref prop to the Editor element, the value of the
ref’s current property will be assigned to the Editor object that React created when rendering the App
component’s content.

A ref to a component allows access to that component’s state data and methods. It can be tempting to
use refs to invoke a child component’s methods because it produces a development experience that
more closely resembles the way that objects are conventionally used.

Manipulating a component via a ref is bad practice. It produces tightly coupled components that end up
working against React. The state data, props, and event features may feel less natural at first, but you
will become accustomed to them, and the result is an application that takes full advantage of React and
that is easier to write, test, and maintain.

Figure 16-9.  Providing jQuery with an element via a ref

Chapter 16 ■ Using Refs and Portals

484

Accessing a Child Component’s Content
The refs prop is given special handling by React, which means that care must be taken when a component
requires a ref to a DOM element rendered by one of its descendants. The simplest approach is to pass the
ref object or callback function using a different name, in which case React will pass along the ref as it would
any other prop. To demonstrate, I added a file called FormField.js to the src folder and used it to define the
component shown in Listing 16-20.

■■ Note A ccessing a child component’s content should be done with caution because it creates tightly
coupled components that are harder to write and test. Where possible, you should use props to communicate
between components.

Listing 16-20.  The Contents of the FormField.js File in the src Folder

import React, { Component } from "react";

export class FormField extends Component {

 constructor(props) {
 super(props);
 this.state = {
 fieldValue: ""
 }
 }

 handleChange = (ev) => {
 this.setState({ fieldValue: ev.target.value});
 }

 render() {
 return <div className="form-group">
 <label>{ this.props.label }</label>
 <input className="form-control" value={ this.state.fieldValue }
 onChange={ this.handleChange } ref={ this.props.fieldRef } />
 </div>
 }
}

This component renders a controlled input element and uses a prop called fieldRef to associate the
ref received from the parent with the element. In Listing 16-21, I have replaced the content rendered by the
App component to use the FormField component and provide it with a ref.

Listing 16-21.  Replacing the Contents of the App.js File in the src Folder

import React, { Component } from "react";
import { FormField } from "./FormField";

export default class App extends Component {

Chapter 16 ■ Using Refs and Portals

485

 constructor(props) {
 super(props);
 this.fieldRef = React.createRef();
 }

 handleClick = () => {
 this.fieldRef.current.focus();
 }

 render() {
 return <div className="m-2">
 <FormField label="Name" fieldRef={ this.fieldRef } />
 <div className="text-center m-2">
 <button className="btn btn-primary"
 onClick={ this.handleClick }>
 Focus
 </button>
 </div>
 </div>
 }
}

The App component creates a ref and passes it to the FormField component using the fieldRef prop,
which is then applied to the input element using ref. The result is that clicking the Focus button, rendered
by the App component, will focus the input element, rendered by its child, as shown in Figure 16-10.

Figure 16-10.  Accessing a child’s content

Using Ref Forwarding
React provides an alternative approach to passing refs to children, known as ref forwarding, which allows
ref to be used instead of a regular prop. In Listing 16-22, I have used ref forwarding for the FormField
component.

Chapter 16 ■ Using Refs and Portals

486

Listing 16-22.  Using Ref Forwarding in the FormField.js File in the src Folder

import React, { Component } from "react";

export const ForwardFormField = React.forwardRef((props, ref) =>
 <FormField { ...props } fieldRef={ ref } />
)

export class FormField extends Component {

 constructor(props) {
 super(props);
 this.state = {
 fieldValue: ""
 }
 }

 handleChange = (ev) => {
 this.setState({ fieldValue: ev.target.value});
 }

 render() {
 return <div className="form-group m-2">
 <label>{ this.props.label }</label>
 <input className="form-control" value={ this.state.fieldValue }
 onChange={ this.handleChange } ref={ this.props.fieldRef } />
 </div>
 }
}

The React.forwardRef method is passed a function that receives props and the ref value and renders
content. In this case, I receive the ref value and forward it to the fieldRef prop, which is the prop name
that the FormField component expects to receive. I exported the result from the forwardRef method as
ForwardFormField, which I have used in the App component, as shown in Listing 16-23.

Listing 16-23.  Using Ref Forwarding in the App.js File in the src Folder

import React, { Component } from "react";
import { ForwardFormField } from "./FormField";

export default class App extends Component {

 constructor(props) {
 super(props);
 this.fieldRef = React.createRef();
 }

 handleClick = () => {
 this.fieldRef.current.focus();
 }

Chapter 16 ■ Using Refs and Portals

487

 render() {
 return <div>
 <ForwardFormField label="Name" ref={ this.fieldRef } />
 <div className="text-center m-2">
 <button className="btn btn-primary"
 onClick={ this.handleClick }>
 Focus
 </button>
 </div>
 </div>
 }
}

This example produces the same effect as shown in Figure 16-10, with the advantage that the App
component doesn’t require any special knowledge of how the ref is handled inside the child component.

Using Portals
A portal allows a component to render its content into a specific DOM element, instead of being presented
as part of its parent’s content. This feature lets a component break out of the normal React component
model but requires the target element to be created and managed outside of the application, meaning that
you can’t use portals to render the content into a different component. As a consequence, this feature is
useful in a limited range of situations, such as when creating dialogs or model alerts to the user or when
integrating React into content created by another framework or library. In Listing 16-24, I have added new
HTML elements to the index.html file so that there is a DOM element outside of the content rendered by the
example application that I can target with a portal.

Listing 16-24.  Adding Elements in the index.html File in the public Folder

<!DOCTYPE html>
<html lang="en">

<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
 <meta name="theme-color" content="#000000">
 <link rel="manifest" href="%PUBLIC_URL%/manifest.json">
 <link rel="shortcut icon" href="%PUBLIC_URL%/favicon.ico">
 <title>React App</title>
</head>

<body>
 <noscript>
 You need to enable JavaScript to run this app.
 </noscript>

 <div class="container">
 <div class="row">
 <div class="col">
 <div id="root"></div>
 </div>

Chapter 16 ■ Using Refs and Portals

488

 <div class="col">
 <div id="portal" class="m-2">
 <h6 class="bg-info text-white text-center p-2">
 This is the portal target
 </h6>
 </div>
 </div>
 </div>
 </div>
</body>
</html>

The new elements are assigned to Bootstrap CSS grid classes so that the portal target element is shown
alongside the content rendered by the application, as shown in Figure 16-11.

I added a file called PortalWrapper.js in the src folder and used it to define the component shown in
Listing 16-25, which locates the target element in the DOM and uses it to create a portal.

Listing 16-25.  The Contents of the PortalWrapper.js File in the src Folder

import React, { Component } from "react";
import ReactDOM from "react-dom";

export class PortalWrapper extends Component {

 constructor(props) {
 super(props);
 this.portalElement = document.getElementById("portal");
 }

Figure 16-11.  Adding an Element to the HTML Document

Chapter 16 ■ Using Refs and Portals

489

 render() {
 return ReactDOM.createPortal(
 <div className="border p-3">{ this.props.children }</div>
 , this.portalElement);
 }
}

The PortalWrapper component is defined using the props.children property to create a container but
returns its content using the ReactDOM.createPortal method, whose arguments are the content to render
and the DOM target element. In this example, I use the DOM API’s getElementById method to locate the
target element added to the HTML file in Listing 16-24. In Listing 16-26, I have used the portal in the App
component.

USING REFS FOR PORTALS

You cannot use a portal to render content to an element using a ref. Portals are used during the
rendering process, and refs are not assigned elements until rendering is complete, which means
that you won’t be able to access an element via a ref early enough in the lifecycle for the ReactDOM.
createPortal method. Use contexts, as described in Chapter 14, if you need coordination between
components in different parts of the application or use one of the packages described in Part 3.

Listing 16-26.  Using a Portal in the App.js File in the src Folder

import React, { Component } from "react";
import { ForwardFormField } from "./FormField";
import { PortalWrapper } from "./PortalWrapper";

export default class App extends Component {

 constructor(props) {
 super(props);
 this.fieldRef = React.createRef();
 this.portalFieldRef = React.createRef();
 }

 focusLocal = () => {
 this.fieldRef.current.focus();
 }

 focusPortal = () => {
 this.portalFieldRef.current.focus();
 }

 render() {
 return <div>
 <PortalWrapper>
 <ForwardFormField label="Name" ref={ this.portalFieldRef } />
 </PortalWrapper>

Chapter 16 ■ Using Refs and Portals

490

 <ForwardFormField label="Name" ref={ this.fieldRef } />
 <div className="text-center m-2">
 <button className="btn btn-primary m-1"
 onClick={ this.focusLocal }>
 Focus Local
 </button>
 <button className="btn btn-primary m-1"
 onClick={ this.focusPortal }>
 Focus Portal
 </button>
 </div>
 </div>
 }
}

The PortalWrapper element is used to apply the new component as a container for a
ForwardFormField. The content displayed by the portal is treated as though it is part of the App components
content, such that events will bubble up as normal and refs can be assigned, even though the content of
the portal is being rendered outside the application. The App component is unaware that a portal is being
used, and clicking the Focus Local and Focus Portal buttons uses the same ref technique to focus the input
element presented by each ForwardFormField component, as shown in Figure 16-12.

Figure 16-12.  Using a portal

Summary
In this chapter, I described the React features for working directly with the DOM. I explained how refs
can provide access to content rendered by a component and how this makes uncontrolled form elements
possible. I also demonstrated a portal, which allows content to be rendered outside of the application’s
component hierarchy. These features can be invaluable but should be used sparingly because they
undermine the normal React development model and result in closely coupled components. In the next
chapter, I show you how to perform unit testing on React components.

491© Adam Freeman 2019
A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_17

CHAPTER 17

Unit Testing

In this chapter, I show you how to test React components. I introduce a package that makes testing easier
and demonstrate how it can be used to test components in isolation and test their interactions with their
children. Table 17-1 puts unit testing in context.

Table 17-1.  Putting Unit Testing in Context

Question Answer

What is it? React components require special support for testing so that their interactions
with other parts of the application can be isolated and inspected.

Why is it useful? Isolated unit tests are able to assess the basic logic provided by a component
without being influenced by the interactions with the rest of the application.

How is it used? Projects created with create-react-app are configured with basic test tools
that are supplemented with packages that simplify the process of working
with components.

Are there any pitfalls or
limitations?

Effective unit testing can be difficult, and it can take time and effort to get to
the point where unit tests are easily written and run and you are sure that you
have isolated the correct part of the application for testing.

Are there any alternatives? Unit testing is not a requirement and is not adopted in all projects.

DECIDING WHETHER TO UNIT TEST

Unit testing is a contentious topic. This chapter assumes you do want to do unit testing and shows you
how to set up the tools and apply them to a React application. It isn’t an introduction to unit testing,
and I make no effort to persuade skeptical readers that unit testing is worthwhile. If would like an
introduction to unit testing, then there is a good article here: https://en.wikipedia.org/wiki/
Unit_testing.

I like unit testing, and I use it in my own projects—but not all of them and not as consistently as you
might expect. I tend to focus on writing unit tests for features and functions that I know will be hard to
write and that are likely to be the source of bugs in deployment. In these situations, unit testing helps
structure my thoughts about how to best implement what I need. I find that just thinking about what I
need to test helps produce ideas about potential problems, and that’s before I start dealing with actual
bugs and defects.

https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/Unit_testing

Chapter 17 ■ Unit Testing

492

That said, unit testing is a tool and not a religion, and only you know how much testing you require.
If you don’t find unit testing useful or if you have a different methodology that suits you better, then
don’t feel you need to unit test just because it is fashionable. (However, if you don’t have a better
methodology and you are not testing at all, then you are probably letting users find your bugs, which is
rarely ideal.)

Table 17-2 summarizes the chapter.

Table 17-2.  Chapter Summary

Problem Solution Listing

Perform unit tests on React components Use Jest (or one of the other test frameworks
available) along with Enzyme to create the tests

9–11

Isolate a component for testing Test using shallow rendering 12

Test a component along with its descendants Test using full rendering 13

Test a component’s behavior Test using the Enzyme features for working
with props, state, methods, and events

14–17

Preparing for This Chapter
For this chapter, I am going to use a new project. Open a new command prompt, navigate to a convenient
location, and run the command shown in Listing 17-1 to create a project called testapp.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/pro-react-16.

Listing 17-1.  Creating the Example Project

npx create-react-app testapp

Run the commands shown in Listing 17-2 to navigate to the testapp folder to add the Bootstrap package.

Listing 17-2.  Adding the Bootstrap CSS Framework

cd testapp
npm install bootstrap@4.1.2

https://github.com/Apress/pro-react-16

Chapter 17 ■ Unit Testing

493

To include the Bootstrap CSS stylesheet in the application, add the statement shown in Listing 17-3 to
the index.js file, which can be found in the testapp/src folder.

Listing 17-3.  Including Bootstrap in the index.js File in the src Folder

import React from 'react';
import ReactDOM from 'react-dom';
import './index.css';
import App from './App';
import * as serviceWorker from './serviceWorker';
import 'bootstrap/dist/css/bootstrap.css';

ReactDOM.render(<App />, document.getElementById('root'));

// If you want your app to work offline and load faster, you can change
// unregister() to register() below. Note this comes with some pitfalls.
// Learn more about service workers: http://bit.ly/CRA-PWA
serviceWorker.unregister();

The create-react-app tool creates projects that contain basic test tools, but there are some useful
additions that make testing easier. Run the commands shown in Listing 17-4 in the testapp folder to add the
testing packages to the project.

Listing 17-4.  Adding Packages to the Example Project

npm install --save-dev enzyme@3.8.0
npm install --save-dev enzyme-adapter-react-16@1.7.1

Table 17-3 describes the packages that have been added to the project.

Table 17-3.  The Unit Testing Packages

Name Description

enzyme Enzyme is a test package created by Airbnb that makes it easy to test
components by exploring the content they render and examining their
props and state.

enzyme-adapter-react-16 Enzyme requires an adapter for the specific version of React being used.
This package is for the version of React used throughout this book.

Creating Components
I need some simple components to demonstrate how React applications can be unit tested. I added a file
called Result.js to the src folder and used it to define the component shown in Listing 17-5.

Chapter 17 ■ Unit Testing

494

Listing 17-5.  The Contents of the Result.js File in the src Folder

import React from "react";

export const Result = (props) => {
 return <div className="bg-light text-dark border border-dark p-2 ">
 { props.result || 0 }
 </div>
}

Result is a simple functional component that displays the result of a calculation, received through its
result prop. Next, I added a file called ValueInput.js to the src folder and used it to define the component
shown in Listing 17-6.

Listing 17-6.  The Contents of the ValueInput.js File in the src Folder

import React, { Component } from "react";

export class ValueInput extends Component {

 constructor(props) {
 super(props);
 this.state = {
 fieldValue: 0
 }
 }

 handleChange = (ev) => {
 this.setState({ fieldValue: ev.target.value },
 () => this.props.changeCallback(this.props.id, this.state.fieldValue));
 }

 render() {
 return <div className="form-group p-2">
 <label>Value #{this.props.id}</label>
 <input className="form-control"
 value={ this.state.fieldValue}
 onChange={ this.handleChange } />
 </div>
 }
}

This is a stateful component that renders an input element and invokes a callback function when there
is a change. Listing 17-7 shows the changes I made to the App component to remove the placeholder content
and use the new components.

Chapter 17 ■ Unit Testing

495

Listing 17-7.  Completing the Example Application in the App.js File in the src Folder

import React, { Component } from "react";
import { ValueInput } from "./ValueInput";
import { Result } from "./Result";

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 title: this.props.title || "Simple Addition" ,
 fieldValues: [],
 total: 0
 }
 }

 updateFieldValue = (id, value) => {
 this.setState(state => {
 state.fieldValues[id] = Number(value);
 return state;
 });
 }

 updateTotal = () => {
 this.setState(state => ({
 total: state.fieldValues.reduce((total, val) => total += val, 0)
 }))
 }

 render() {
 return <div className="m-2">
 <h5 className="bg-primary text-white text-center p-2">
 { this.state.title }
 </h5>
 <Result result={ this.state.total } />
 <ValueInput id="1" changeCallback={ this.updateFieldValue } />
 <ValueInput id="2" changeCallback={ this.updateFieldValue } />
 <ValueInput id="3" changeCallback={ this.updateFieldValue } />
 <div className="text-center">
 <button className="btn btn-primary" onClick={ this.updateTotal}>
 Total
 </button>
 </div>
 </div>
 }
}

App creates three ValueInput components and configures them so that the values the user enters are
stored in the fieldValues state array. A button is configured so that a click event invokes the updateTotal
method, which sums the values from the ValueInput components and updates a state data value that is
displayed by the Result component.

Chapter 17 ■ Unit Testing

496

Running the Example Application
Use the command prompt to navigate to the testapp folder and run the command shown in Listing 17-8 to
start the React developer tools.

Listing 17-8.  Starting the Development Tools

npm start

A new browser window will open, and you will see the example application, as shown in Figure 17-1.
Enter numeric values into the fields, and click the Total button to display a result.

Running the Placeholder Unit Test
Projects created with create-react-app contain the Jest test runner, which is a tool that executes unit tests
and reports the results. As part of the project setup process, a file called App.test.js is created, which
contains the following code:

import React from 'react';
import ReactDOM from 'react-dom';
import App from './App';

Figure 17-1.  Running the example application

Chapter 17 ■ Unit Testing

497

it('renders without crashing', () => {
 const div = document.createElement('div');
 ReactDOM.render(<App />, div);
 ReactDOM.unmountComponentAtNode(div);
});

This is a basic unit test, which is encapsulated in the it function. The first argument to the function is a
description of the test. The second argument is the test itself, which is a function that performs some work.
In this case, the unit test renders the App component into a div element and then unmounts it. Open a new
command prompt, navigate to the testapp folder, and run the command shown in Listing 17-9 to perform the
unit test. (The test tools are designed so that you can have them running alongside the development tools.)

Listing 17-9.  Running a Unit Test

npm run test

This command locates all the tests defined in the project and executes them. There is only one test at
the moment, which produces the following results:

...
PASS src/App.test.js
 √ renders without crashing (24ms)

Test Suites: 1 passed, 1 total
Tests: 1 passed, 1 total
Snapshots: 0 total
Time: 2.077s
Ran all test suites related to changed files.

Watch Usage
 › Press a to run all tests.
 › Press f to run only failed tests.
 › Press p to filter by a filename regex pattern.
 › Press t to filter by a test name regex pattern.
 › Press q to quit watch mode.
 › Press Enter to trigger a test run.
...

After the tests have been run, the testing tool enters watch mode. When a file changes, tests are located
and executed, and the results displayed again. To see what happens when a unit test fails, add the statement
shown in Listing 17-10 to the render method of the App component.

Listing 17-10.  Making a Test Fail in the App.js File in the src Folder

...
render() {
 throw new Error("something went wrong");
 return <div className="m-2">
 <h5 className="bg-primary text-white text-center p-2">
 { this.state.title }
 </h5>

Chapter 17 ■ Unit Testing

498

 <Result result={ this.state.total } />
 <ValueInput id="1" changeCallback={ this.updateFieldValue } />
 <ValueInput id="2" changeCallback={ this.updateFieldValue } />
 <ValueInput id="3" changeCallback={ this.updateFieldValue } />
 <div className="text-center">
 <button className="btn btn-primary" onClick={ this.updateTotal}>
 Total
 </button>
 </div>
 </div>
}
...

An error will be thrown when the render method is invoked, which is the behavior that the unit test is
looking out for. When you save the change, the unit test will be performed again, but this time it will fail,
giving you details of the problem that was detected.

...
renders without crashing

 something went wrong

 27 |
 28 | render() {
 > 29 | throw new Error("something went wrong");
 | ^
 30 | return <div className="m-2">
 31 | <h5 className="bg-primary text-white text-center p-2">
 32 | Simple Addition
...

The error that is thrown by the component bubbles up to the it function in the unit test and is treated
as a test failure. To restore the application to its working state, comment out the throw statement from the
App component, as shown in Listing 17-11.

Listing 17-11.  Removing the throw Statement in the App.js File in the src Folder

...
render() {
 //throw new Error("something went wrong");
 return <div className="m-2">
 <h5 className="bg-primary text-white text-center p-2">
 { this.state.title }
 </h5>
 <Result result={ this.state.total } />
 <ValueInput id="1" changeCallback={ this.updateFieldValue } />
 <ValueInput id="2" changeCallback={ this.updateFieldValue } />
 <ValueInput id="3" changeCallback={ this.updateFieldValue } />
 <div className="text-center">

Chapter 17 ■ Unit Testing

499

 <button className="btn btn-primary" onClick={ this.updateTotal}>
 Total
 </button>
 </div>
 </div>
}
...

When you save the change, the test will run again and will pass this time.

Testing a Component Using Shallow Rendering
Shallow rendering isolates a component from its children, allowing it to be tested on its own. It is an effective
technique for testing the basic functions of a component without the effects caused by interaction with its
content. To test the App component using shallow rendering, I added a file called appContent.test.js to
the src folder and added the code shown in Listing 17-12.

■■ Tip  Jest will find tests in files whose name ends with test.js or spec.js or any file in a folder named
__tests__ (two underscores before and after tests).

Listing 17-12.  The Contents of the appContent.test.js File in the src Folder

import React from "react";
import Adapter from 'enzyme-adapter-react-16';
import Enzyme, { shallow } from "enzyme";
import App from "./App";
import { ValueInput } from "./ValueInput";

Enzyme.configure({ adapter: new Adapter() });

it("Renders three ValueInputs", () => {
 const wrapper = shallow(<App />);
 const valCount = wrapper.find(ValueInput).length;
 expect(valCount).toBe(3)
});

This is the first real unit test in this chapter, so I will explain each part and show you how they fit together.
The first statement configures the Enzyme package and applies the adapter that allows Enzyme to work

with the correct version of React.

...
Enzyme.configure({ adapter: new Adapter() });
...

The Enzyme.configure method is passed a configuration object whose adapter property is assigned the
imported contents of the adapter package. If you need to test a different version of React, you can see the list
of adapters available at https://airbnb.io/enzyme.

https://airbnb.io/enzyme

Chapter 17 ■ Unit Testing

500

The next step is the definition of the unit test. The it method doesn’t need to be imported because it is
defined globally by the Jest test package.

...
it("Renders three ValueInputs", () => {
...

The first argument should be a meaningful description of what the test aims to establish. In this case,
the test checks that App renders three ValueInput components.

The next statement sets up the component, which is done using the shallow function imported from the
enzyme package.

...
const wrapper = shallow(<App />);
...

The shallow function accepts the component element. A component is instantiated and is put through
the lifecycle described in Chapter 13, and its contents are rendered. But, since this is shallow rendering,
the child components are not used to rendered, leaving their elements in place in the output from the
App component. That means that the App component’s props and state data are used when rendering the
content, but the child components are not processed, producing a result like this:

...
<div className="m-2">
 <h5 className="bg-primary text-white text-center p-2">
 Simple Addition
 </h5>
 <Result result={0} />
 <ValueInput id="1" changeCallback={[Function]} />
 <ValueInput id="2" changeCallback={[Function]} />
 <ValueInput id="3" changeCallback={[Function]} />
 <div className="text-center">
 <button className="btn btn-primary" onClick={[Function]}>
 Total
 </button>
 </div>
</div>
...

The output is presented in a wrapper object that can be inspected for testing. The Enzyme package
provides a set of methods that can be used to inspect the content rendered from the DOM, modeled on the
API provided by the popular jQuery DOM manipulation package. The most useful methods are described in
Table 17-4, and the full set of features is described at https://airbnb.io/enzyme.

https://airbnb.io/enzyme

Chapter 17 ■ Unit Testing

501

Table 17-4.  Useful Enzyme Methods for Inspecting Component Content

Name Description

find(selector) This method finds all elements matched by the CSS selector, which will match
element types, attributes, and classes.

findWhere(predicate) This method finds all elements that are matched by the specified predicate.

first(selector) Returns the first element that is matched by the selector. If the selector is
omitted, then the first element of any type will be returned.

children() Creates a new selection containing the children of the current element.

hasClass(class) This method returns true if an element is a member of a specified class.

text() This method returns the text content from an element.

html() This method returns the deep rendered content from the component so that all
of the descendant components are processed.

debug() This method returns the shallow rendered content from the component.

These methods can be used to navigate through the content rendered by a component and to inspect
the contents. The test in Listing 17-12 uses the find selector to select all the ValueInput elements rendered
by the App component and uses the length property on the result to determine how many elements have
been found.

...
const valCount = wrapper.find(ValueInput).length;
...

The final step in the test is to compare the result with the expected outcome, which is done using the
global expect function provided by Jest.

...
expect(valCount).toBe(3)
...

The result of a test is passed to the expect function, and then a matcher method is invoked on the
result. Jest supports an extensive array of matches, described at https://jestjs.io/docs/en/expect, and
the most useful are shown in Table 17-5.

https://jestjs.io/docs/en/expect

Chapter 17 ■ Unit Testing

502

Jest keeps track of which matches fail and reports the outcome when all the tests in the project have
been run. The matcher in Listing 17-12 checks that there are three ValueInput components in the content
rendered by App.

Jest runs the test in Listing 17-12 as soon as the file is saved, which produces the following results:

...
PASS src/App.test.js
 PASS src/App.shallow.test.js

Test Suites: 2 passed, 2 total
Tests: 2 passed, 2 total
Snapshots: 0 total
Time: 2.672s
Ran all test suites.

Watch Usage: Press w to show more.
...

There are now two tests in the project, and both of them are run. You can leave the tests to run
automatically, or you can run one or more tests on demand using the options that are shown when
the W key is pressed.

Table 17-5.  Useful Expect Matchers

Name Description

toBe(value) This method asserts that a result is the same as the specified value (but need
not be the same object).

toEqual(object) This method asserts that a result is the same object as the specified value.

toMatch(regexp) This method asserts that a result matches the specified regular expression.

toBeDefined() This method asserts that the result has been defined.

toBeUndefined() This method asserts that the result has not been defined.

toBeNull() This method asserts that the result is null.

toBeTruthy() This method asserts that the result is truthy.

toBeFalsy() This method asserts that the result is falsy.

toContain(substring) This method asserts that the result contains the specified substring.

toBeLessThan(value) This method asserts that the result is less than the specified value.

toBeGreaterThan(value) This method asserts that the result is more than the specified value.

Chapter 17 ■ Unit Testing

503

Testing a Component with Full Rendering
Full rendering processes all the descendent components. The descendent component elements are left in
the rendered content, which means that the App component will produce the following content when it is
fully rendered:

...
<App>
<div className="m-2">
 <h5 className="bg-primary text-white text-center p-2">
 Simple Addition
 </h5>
 <Result result={0}>
 <div className="bg-light text-dark border border-dark p-2 ">0</div>
 </Result>
 <ValueInput id="1" changeCallback={[Function]}>
 <div className="form-group p-2">
 <label>Value #1</label>
 <input className="form-control" value={0} onChange={[Function]} />
 </div>
 </ValueInput>
 <ValueInput id="2" changeCallback={[Function]}>
 <div className="form-group p-2">
 <label>Value #2</label>
 <input className="form-control" value={0} onChange={[Function]} />
 </div>
 </ValueInput>
 <ValueInput id="3" changeCallback={[Function]}>
 <div className="form-group p-2">
 <label>Value #3</label>
 <input className="form-control" value={0} onChange={[Function]} />
 </div>
 </ValueInput>
 <div className="text-center">
 <button className="btn btn-primary" onClick={[Function]}>Total</button>
 </div>
</div>
</App>
...

Full rendering is performed with the mount method, as shown in Listing 17-13.

Listing 17-13.  Fully Rendering a Component in the appContent.test.js File in the src Folder

import React from "react";
import Adapter from 'enzyme-adapter-react-16';
import Enzyme, { shallow, mount } from "enzyme";
import App from "./App";
import { ValueInput } from "./ValueInput";

Enzyme.configure({ adapter: new Adapter() });

Chapter 17 ■ Unit Testing

504

it("Renders three ValueInputs", () => {
 const wrapper = shallow(<App />);
 const valCount = wrapper.find(ValueInput).length;
 expect(valCount).toBe(3)
});

it("Fully renders three inputs", () => {
 const wrapper = mount(<App title="tester" />);
 const count = wrapper.find("input.form-control").length
 expect(count).toBe(3);
});

it("Shallow renders zero inputs", () => {
 const wrapper = shallow(<App />);
 const count = wrapper.find("input.form-control").length
 expect(count).toBe(0);
})

The first new test uses the Enzyme mount function to fully render App and its descendants. The wrapper
returned by mount supports the methods described in Table 17-5, and the full set of features is described at
https://airbnb.io/enzyme/docs/api/mount.html. I use the find method to locate input elements that
have been assigned to the form-control class and use expect to make sure that there are three of them.
The second new test locates the same elements but does so using shallow rendering and checks that there
are no input elements in the content.

When the changes to the file are saved, the tests will be run and produce the following results:

...
PASS src/App.test.js
PASS src/appContent.test.js

Test Suites: 2 passed, 2 total
Tests: 4 passed, 4 total
Snapshots: 0 total
Time: 3.109s
Ran all test suites.

Watch Usage: Press w to show more.
...

Testing with Props, State, Methods, and Events
The content that a component renders can change in response to user input or updates in the application
state. To help test the behavior of a component, Enzyme provides the methods described in Table 17-6.

https://airbnb.io/enzyme/docs/api/mount.html

Chapter 17 ■ Unit Testing

505

The simplest test of behavior is to ensure that a component reflects its props. I created a file called
appBehavior.test.js in the src folder and used it to define the test shown in Listing 17-14.

Listing 17-14.  Testing a Prop in the appBehavior.test.js File in the src Folder

import React from "react";
import Adapter from 'enzyme-adapter-react-16';
import Enzyme, { shallow } from "enzyme";
import App from "./App";

Enzyme.configure({ adapter: new Adapter() });

it("uses title prop", () => {

 const titleVal = "test title"
 const wrapper = shallow(<App title={ titleVal } />);

 const firstTitle = wrapper.find("h5").text();
 const stateValue = wrapper.state("title");

 expect(firstTitle).toBe(titleVal);
 expect(stateValue).toBe(titleVal);
});

The App component is configured with a title prop when it is passed to the shallow method.
The test checks that the prop is used to override the default value by locating the h5 element and getting
its text content and also by reading the value of the title state property. The test passes only if both the
contents of the h5 element and the state property are the same as the value of the title prop.

Table 17-6.  Enzyme Methods for Testing Behavior

Name Description

instance() This method returns the component object so that its methods can be invoked.

prop(key) This method returns the value of the specified prop.

props() This method returns all of the component’s props.

setProps(props) This method is used to specify new props, which are merged with the
component’s existing props before it is updated.

state(key) This method is used to get a specified state value. If no value is specified, then
all of the component’s state data is returned.

setState(state) This method changes the component’s state data and then re-renders the
component.

simulate(event, args) This method dispatches an event to the component.

update() This method forces the component to re-render its content.

Chapter 17 ■ Unit Testing

506

Testing the Effect of Methods
The instance method is used to obtain the component object, which can then be used to invoke its
methods. In Listing 17-15, I have defined a test that invokes the updateField and updateTotal methods and
checks the effect on the component’s state data.

Listing 17-15.  Invoking Methods in the appBehavior.test.js File in the src Folder

import React from "react";
import Adapter from 'enzyme-adapter-react-16';
import Enzyme, { shallow } from "enzyme";
import App from "./App";

Enzyme.configure({ adapter: new Adapter() });

it("uses title prop", () => {

 const titleVal = "test title"
 const wrapper = shallow(<App title={ titleVal } />);

 const firstTitle = wrapper.find("h5").text();
 const stateValue = wrapper.state("title");

 expect(firstTitle).toBe(titleVal);
 expect(stateValue).toBe(titleVal);
});

it("updates state data", () => {
 const wrapper = shallow(<App />);
 const values = [10, 20, 30];

 values.forEach((val, index) =>
 wrapper.instance().updateFieldValue(index + 1, val));
 wrapper.instance().updateTotal();

 expect(wrapper.state("total"))
 .toBe(values.reduce((total, val) => total + val), 0);
});

The new test shallow renders an App component and then calls the updateFieldValue method with an
array of values before then invoking the updateTotal method. The state method is used to get the value
of the total state property, which is compared to the sum of the values passed to the updateFieldValue
method.

Testing the Effects of an Event
The simulate method is used to send an event to the component’s event handlers. Care must be taken
with this type of test because it is easy to end up testing React’s ability to dispatch events rather than the
component’s ability to handle them. In most cases, it is more useful to invoke the methods that will be
executed in response to an event. Listing 17-16 locates the button element rendered by the App component
and triggers a click event in order to ensure that it leads to the total being calculated.

Chapter 17 ■ Unit Testing

507

Listing 17-16.  Simulating an Event in the appBehavior.test.js File in the src Folder

import React from "react";
import Adapter from 'enzyme-adapter-react-16';
import Enzyme, { shallow } from "enzyme";
import App from "./App";

Enzyme.configure({ adapter: new Adapter() });

it("uses title prop", () => {

 const titleVal = "test title"
 const wrapper = shallow(<App title={ titleVal } />);

 const firstTitle = wrapper.find("h5").text();
 const stateValue = wrapper.state("title");

 expect(firstTitle).toBe(titleVal);
 expect(stateValue).toBe(titleVal);
});

it("updates state data", () => {
 const wrapper = shallow(<App />);
 const values = [10, 20, 30];

 values.forEach((val, index) =>
 wrapper.instance().updateFieldValue(index + 1, val));
 wrapper.instance().updateTotal();

 expect(wrapper.state("total"))
 .toBe(values.reduce((total, val) => total + val), 0);
})

it("updates total when button is clicked", () => {
 const wrapper = shallow(<App />);
 const button = wrapper.find("button").first();

 const values = [10, 20, 30];
 values.forEach((val, index) =>
 wrapper.instance().updateFieldValue(index + 1, val));

 button.simulate("click")

 expect(wrapper.state("total"))
 .toBe(values.reduce((total, val) => total + val), 0);
})

The new test simulates the click event, the handler for which invokes the component’s updateTotal
method. To ensure that the event has been handled, the value of the total state data property is read.

Chapter 17 ■ Unit Testing

508

Testing the Interaction Between Components
The ability to navigate the content rendered by a component can be combined with the methods described
in Table 17-6 to test the interaction between components, as shown in Listing 17-17.

Listing 17-17.  Testing Component Interaction in the appBehavior.test.js File in the src Folder

import React from "react";
import Adapter from 'enzyme-adapter-react-16';
import Enzyme, { shallow, mount } from "enzyme";
import App from "./App";
import { ValueInput } from "./ValueInput";

Enzyme.configure({ adapter: new Adapter() });

it("uses title prop", () => {

 const titleVal = "test title"
 const wrapper = shallow(<App title={ titleVal } />);

 const firstTitle = wrapper.find("h5").text();
 const stateValue = wrapper.state("title");

 expect(firstTitle).toBe(titleVal);
 expect(stateValue).toBe(titleVal);
});

it("updates state data", () => {
 const wrapper = shallow(<App />);
 const values = [10, 20, 30];

 values.forEach((val, index) =>
 wrapper.instance().updateFieldValue(index + 1, val));
 wrapper.instance().updateTotal();

 expect(wrapper.state("total"))
 .toBe(values.reduce((total, val) => total + val), 0);
})

it("updates total when button is clicked", () => {
 const wrapper = shallow(<App />);
 const button = wrapper.find("button").first();

 const values = [10, 20, 30];
 values.forEach((val, index) =>
 wrapper.instance().updateFieldValue(index + 1, val));

 button.simulate("click")

 expect(wrapper.state("total"))
 .toBe(values.reduce((total, val) => total + val), 0);
})

Chapter 17 ■ Unit Testing

509

it("child function prop updates state", () => {
 const wrapper = mount(<App />);
 const valInput = wrapper.find(ValueInput).first();
 const inputElem = valInput.find("input").first();

 inputElem.simulate("change", { target: { value: "100"}});
 wrapper.instance().updateTotal();

 expect(valInput.state("fieldValue")).toBe("100");
 expect(wrapper.state("total")).toBe(100);
})

The new test locates the input element rendered by the first ValueInput and triggers its change event,
supplying an argument that will provide the component’s handler with the values it needs. The instance
method is used to invoke the updateTotal method of the App component, and the state method is used to
check that the state data for both the App and ValueInput components has been updated correctly.

Summary
In this chapter, I showed you how to perform unit tests on React components. I showed you how to run
tests using Jest and how to perform those tests with shallow and full rendering, provided by the Enzyme
package. I explained how to examine the content rendered by a component, how to invoke its methods, how
to explore its state, and how to manage its props. Together, these features allow a component to be tested in
isolation and in combination with its children. In the next part of the book, I describe how to supplement the
core React features to create complete web applications.

PART III

Creating Complete Applications

513© Adam Freeman 2019
A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_18

CHAPTER 18

Creating Complete Applications

React provides an excellent set of features for presenting HTML content to the user and relies on third-party
packages to provide the supporting functionality required to develop complete web applications. There are
countless packages available for use with React, and in this part of the book, I introduce those that are most
widely used and most likely to be needed by readers of this book. These packages are all open-source and
freely available, and there are paid-for support options in some cases.

In this chapter, I build an example application using only the features described in Part 2 of this book. In
the chapters that follow, I introduce the third-party packages and demonstrate the features they provide and
explain the problems they solve. Table 18-1 provides a brief overview of the packages that are covered in this
part of the book.

Table 18-1.  The Packages Described in This Part of the Book

Name Description

Redux Redux provides a data store that manages data outside of an application’s components.
I use this package in Chapters 19 and 20.

React Redux React Redux connects React components through its props to a Redux data store,
allowing direct access to data without relying on prop threading. I use this package in
Chapters 19 and 20.

React Router React Router provides URL routing for React applications, allowing the components
displayed to the user to be selected based on the browser’s URL. I use this package in
Chapters 21 and 22.

Axios Axios provides a consistent API for making asynchronous HTTP requests. I use
this package in Chapter 23 to consume a RESTful web service and in Chapter 25 to
consume a GraphQL service.

Apollo Boost Apollo is a client for consuming GraphQL services, which are more flexible than
traditional RESTful web services. I use the Boost edition of this package, which
provides sensible defaults for React applications, in Chapter 25 to consume a GraphQL
service.

React Apollo React Apollo connects React components to GraphQL queries and mutations, allowing
a GraphQL service to be consumed through props.

Chapter 18 ■ Creating Complete Applications

514

There are credible alternatives for each of the packages I have selected, and I make suggestions
in each chapter in case you can’t get along with the packages that are covered. Please e-mail me at
adam@adam-freeman.com if there is a package that interests you that I have not covered in this part of the
book. Although I make no promises, I will try to include commonly requested packages in the next edition of
this book or, if there is sufficient demand, in updates posted to this book’s GitHub repository.

Creating the Project
Open a new command prompt, navigate to a convenient location, and run the command shown in
Listing 18-1.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/pro-react-16.

Listing 18-1.  Creating the Example Project

npx create-react-app productapp

Run the commands shown in Listing 18-2 to navigate to the productapp folder to add the Bootstrap package.

Listing 18-2.  Adding the Bootstrap CSS Framework

cd productapp
npm install bootstrap@4.1.2

To include the Bootstrap CSS stylesheet in the application, add the statement shown in Listing 18-3 to
the index.js file, which can be found in the productapp/src folder.

Listing 18-3.  Including Bootstrap in the index.js File in the src Folder

import React from 'react';
import ReactDOM from 'react-dom';
import './index.css';
import App from './App';
import * as serviceWorker from './serviceWorker';
import 'bootstrap/dist/css/bootstrap.css';

ReactDOM.render(<App />, document.getElementById('root'));

// If you want your app to work offline and load faster, you can change
// unregister() to register() below. Note this comes with some pitfalls.
// Learn more about service workers: http://bit.ly/CRA-PWA
serviceWorker.unregister();

https://github.com/Apress/pro-react-16

Chapter 18 ■ Creating Complete Applications

515

Starting the Development Tools
Using the command prompt, run the command shown in Listing 18-4 in the productapp folder to start the
development tools.

Listing 18-4.  Starting the Development Tools

npm start

Once the initial preparation for the project is complete, a new browser window will open and display
the URL http://localhost:3000, which shows the placeholder content in Figure 18-1.

Creating the Example Application
The application in this chapter is simple but representative of a typical project built using only the features
provided by React. The application presents the user with create, read, update, and delete (CRUD) features
for two types of data, products and suppliers, and the user can toggle between the data that is being
managed. Figure 18-2 shows how the application will appear once the components defined in the following
sections have been created.

Figure 18-1.  Running the example application

Chapter 18 ■ Creating Complete Applications

516

Example applications are contrived, of course, and my goal, in this case, is to show that the core React
features are powerful but are not sufficient on their own to create complex web applications. Once the
application has been defined, I highlight the problems that it contains, each of which I address using the
tools and packages described in the following chapters.

Creating the Product Features
To get started with the application functionality, I added a file called ProductTableRow.js to the src folder
and used it to define the component shown in Listing 18-5.

Listing 18-5.  The Contents of the ProductTableRow.js File in the src Folder

import React, { Component } from "react";

export class ProductTableRow extends Component {

 render() {
 let p = this.props.product;
 return <tr>
 <td>{ p.id }</td>
 <td>{ p.name }</td>
 <td>{ p.category}</td>
 <td className="text-right">${ Number(p.price).toFixed(2) }</td>
 <td>
 <button className="btn btn-sm btn-warning m-1"
 onClick={ () => this.props.editCallback(p) }>
 Edit
 </button>

Figure 18-2.  The example application

Chapter 18 ■ Creating Complete Applications

517

 <button className="btn btn-sm btn-danger m-1"
 onClick={ () => this.props.deleteCallback(p) }>
 Delete
 </button>
 </td>
 </tr>
 }
}

This component renders a single row in a table, with columns for id, name, category, and price
properties, which are obtained from a prop object called product. There is a further column that displays
Edit and Delete buttons that invoke function props named editCallback and deleteCallback, passing the
product prop as an argument.

Creating the Product Table
I added a file called ProductTable.js to the src folder and used it to define the component shown in Listing 18-6.

Listing 18-6.  The Contents of the ProductTable.js File in the src Folder

import React, { Component } from "react";
import { ProductTableRow } from "./ProductTableRow";

export class ProductTable extends Component {

 render() {
 return <table className="table table-sm table-striped table-bordered">
 <thead>
 <tr>
 <th colSpan="5"
 className="bg-primary text-white text-center h4 p-2">
 Products
 </th>
 </tr>
 <tr>
 <th>ID</th><th>Name</th><th>Category</th>
 <th className="text-right">Price</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 {
 this.props.products.map(p =>
 <ProductTableRow product={ p }
 key={ p.id }
 editCallback={ this.props.editCallback }
 deleteCallback={ this.props.deleteCallback } />)
 }
 </tbody>
 </table>
 }
}

Chapter 18 ■ Creating Complete Applications

518

This component renders a table, whose body is populated with ProductTableRow components for each
object in an array prop named products. This component passes on the deleteCallback and editCallback
function props to the ProductTableRow instances.

Creating the Product Editor
To allow the user to edit a product or provide values for a new product, I added a file called ProductEditor.js
in the src folder and added the code shown in Listing 18-7.

Listing 18-7.  The Contents of the ProductEditor.js File in the src Folder

import React, { Component } from "react";

export class ProductEditor extends Component {

 constructor(props) {
 super(props);
 this.state = {
 formData: {
 id: props.product.id || "",
 name: props.product.name || "",
 category: props.product.category || "",
 price: props.product.price || ""
 }
 }
 }

 handleChange = (ev) => {
 ev.persist();
 this.setState(state => state.formData[ev.target.name] = ev.target.value);
 }

 handleClick = () => {
 this.props.saveCallback(this.state.formData);
 }

 render() {
 return <div className="m-2">
 <div className="form-group">
 <label>ID</label>
 <input className="form-control" name="id"
 disabled
 value={ this.state.formData.id }
 onChange={ this.handleChange } />
 </div>
 <div className="form-group">
 <label>Name</label>
 <input className="form-control" name="name"
 value={ this.state.formData.name }
 onChange={ this.handleChange } />
 </div>

Chapter 18 ■ Creating Complete Applications

519

 <div className="form-group">
 <label>Category</label>
 <input className="form-control" name="category"
 value={ this.state.formData.category }
 onChange={ this.handleChange } />
 </div>
 <div className="form-group">
 <label>Price</label>
 <input className="form-control" name="price"
 value={ this.state.formData.price }
 onChange={ this.handleChange } />
 </div>
 <div className="text-center">
 <button className="btn btn-primary m-1" onClick={ this.handleClick }>
 Save
 </button>
 <button className="btn btn-secondary"
 onClick={ this.props.cancelCallback }>
 Cancel
 </button>
 </div>
 </div>
 }
}

The ProductEditor component presents the user with fields for editing the properties of an object.
The initial values for the fields are received from a prop named product and used to populate state data.
There is a Save button that invokes a function prop named saveCallback when it is clicked, passing the
state data values so that can be saved. There is also a Cancel button that invokes a function callback named
cancelCallback when it is clicked.

Creating the Product Display Component
Next, I need a component that will switch between the table of products and the product editor. I added a file
called ProductDisplay.js to the src folder and used it to define the component shown in Listing 18-8.

Listing 18-8.  The Contents of the ProductDisplay.js File in the src Folder

import React, { Component } from "react";
import { ProductTable } from "./ProductTable"
import { ProductEditor } from "./ProductEditor";

export class ProductDisplay extends Component {

 constructor(props) {
 super(props);
 this.state = {
 showEditor: false,
 selectedProduct: null
 }
 }

Chapter 18 ■ Creating Complete Applications

520

 startEditing = (product) => {
 this.setState({ showEditor: true, selectedProduct: product })
 }

 createProduct = () => {
 this.setState({ showEditor: true, selectedProduct: {} })
 }

 cancelEditing = () => {
 this.setState({ showEditor: false, selectedProduct: null })
 }

 saveProduct = (product) => {
 this.props.saveCallback(product);
 this.setState({ showEditor: false, selectedProduct: null })
 }

 render() {
 if (this.state.showEditor) {
 return <ProductEditor
 key={ this.state.selectedProduct.id || -1 }
 product={ this.state.selectedProduct }
 saveCallback={ this.saveProduct }
 cancelCallback={ this.cancelEditing } />
 } else {
 return <div className="m-2">
 <ProductTable products={ this.props.products }
 editCallback={ this.startEditing }
 deleteCallback={ this.props.deleteCallback } />
 <div className="text-center">
 <button className="btn btn-primary m-1"
 onClick={ this.createProduct }>
 Create Product
 </button>
 </div>
 </div>
 }
 }
}

This component defines state data to determine whether the data table or the editor should be shown
and, if it is the editor, which product the user wants to modify. This component passes on function props to
both the ProductEditor and ProductTable components, as well as introducing its own functionality.

Creating the Supplier Functionality
The part of the application that deals with supplier data follows a similar pattern to the components created
in earlier sections. I added a file called SupplierTableRow.js to the src folder and used it to define the
component shown in Listing 18-9.

Chapter 18 ■ Creating Complete Applications

521

Listing 18-9.  The Contents of the SupplierTableRow.js File in the src Folder

import React, { Component } from "react";

export class SupplierTableRow extends Component {

 render() {
 let s = this.props.supplier;
 return <tr>
 <td>{ s.id }</td>
 <td>{ s.name }</td>
 <td>{ s.city}</td>
 <td>{ s.products.join(", ") }</td>
 <td>
 <button className="btn btn-sm btn-warning m-1"
 onClick={ () => this.props.editCallback(s) }>
 Edit
 </button>
 <button className="btn btn-sm btn-danger m-1"
 onClick={ () => this.props.deleteCallback(s) }>
 Delete
 </button>
 </td>
 </tr>
 }
}

This component renders a table row with the id, name, city, and products properties of a prop object
named supplier. There are also Edit and Delete buttons that invoke function props.

Creating the Supplier Table
To present a table of suppliers to the user, I added a file called SupplierTable.js to the src folder and added
the code shown in Listing 18-10.

Listing 18-10.  The Contents of the SupplierTable.js File in the src Folder

import React, { Component } from "react";
import { SupplierTableRow } from "./SupplierTableRow";

export class SupplierTable extends Component {

 render() {
 return <table className="table table-sm table-striped table-bordered">
 <thead>
 <tr>
 <th>ID</th><th>Name</th><th>City</th>
 <th>Products</th><th></th>
 </tr>
 </thead>
 <tbody>

Chapter 18 ■ Creating Complete Applications

522

 {
 this.props.suppliers.map(s =>
 <SupplierTableRow supplier={ s }
 key={ s.id }
 editCallback={ this.props.editCallback }
 deleteCallback={ this.props.deleteCallback } />)
 }
 </tbody>
 </table>
 }
}

This component renders a table, mapping each object in the suppliers prop array into a
SupplierTableRow. The props for the callbacks are received from the parent component and passed on.

Creating the Supplier Editor
To create the editor for suppliers, I added a file called SupplierEditor.js to the src folder and used it to
define the component shown in Listing 18-11.

Listing 18-11.  The Contents of the SupplierEditor.js File in the src Folder

import React, { Component } from "react";

export class SupplierEditor extends Component {

 constructor(props) {
 super(props);
 this.state = {
 formData: {
 id: props.supplier.id || "",
 name: props.supplier.name || "",
 city: props.supplier.city || "",
 products: props.supplier.products || [],
 }
 }
 }

 handleChange = (ev) => {
 ev.persist();
 this.setState(state =>
 state.formData[ev.target.name] =
 ev.target.name === "products"
 ? ev.target.value.split(",") : ev.target.value);
 }

 handleClick = () => {

Chapter 18 ■ Creating Complete Applications

523

 this.props.saveCallback(
 {
 ...this.state.formData,
 products: this.state.formData.products.map(val => Number(val))
 });
 }

 render() {
 return <div className="m-2">
 <div className="form-group">
 <label>ID</label>
 <input className="form-control" name="id"
 disabled
 value={ this.state.formData.id }
 onChange={ this.handleChange } />
 </div>
 <div className="form-group">
 <label>Name</label>
 <input className="form-control" name="name"
 value={ this.state.formData.name }
 onChange={ this.handleChange } />
 </div>
 <div className="form-group">
 <label>City</label>
 <input className="form-control" name="city"
 value={ this.state.formData.city }
 onChange={ this.handleChange } />
 </div>

 <div className="form-group">
 <label>Products</label>
 <input className="form-control" name="products"
 value={ this.state.formData.products }
 onChange={ this.handleChange } />
 </div>

 <div className="text-center">
 <button className="btn btn-primary m-1" onClick={ this.handleClick }>
 Save
 </button>
 <button className="btn btn-secondary"
 onClick={ this.props.cancelCallback }>
 Cancel
 </button>
 </div>
 </div>
 }
}

Chapter 18 ■ Creating Complete Applications

524

Creating the Supplier Display Component
To manage the side of the application that deals with supplier data so that only the table or the editor is
shown, I added a file called SupplierDisplay.js to the src folder and used it to define the component
shown in Listing 18-12.

Listing 18-12.  The Contents of the SupplierDisplay.js File in the src Folder

import React, { Component } from "react";
import { SupplierEditor } from "./SupplierEditor";
import { SupplierTable } from "./SupplierTable";

export class SupplierDisplay extends Component {

 constructor(props) {
 super(props);
 this.state = {
 showEditor: false,
 selected: null
 }
 }

 startEditing = (supplier) => {
 this.setState({ showEditor: true, selected: supplier })
 }

 createSupplier = () => {
 this.setState({ showEditor: true, selected: {} })
 }

 cancelEditing = () => {
 this.setState({ showEditor: false, selected: null })
 }

 saveSupplier= (supplier) => {
 this.props.saveCallback(supplier);
 this.setState({ showEditor: false, selected: null })
 }

 render() {
 if (this.state.showEditor) {
 return <SupplierEditor
 key={ this.state.selected.id || -1 }
 supplier={ this.state.selected }
 saveCallback={ this.saveSupplier }
 cancelCallback={ this.cancelEditing } />
 } else {
 return <div className="m-2">
 <SupplierTable suppliers={ this.props.suppliers }
 editCallback={ this.startEditing }
 deleteCallback={ this.props.deleteCallback }
 />

Chapter 18 ■ Creating Complete Applications

525

 <div className="text-center">
 <button className="btn btn-primary m-1"
 onClick={ this.createSupplier }>
 Create Supplier
 </button>
 </div>
 </div>
 }
 }
}

The SupplierDisplay component has its own state data for determining whether the editor or table
component should be displayed.

Completing the Application
To allow the user to choose between the product or supplier features, I added a file called Selector.js to the
src folder and added the code shown in Listing 18-13.

Listing 18-13.  The Contents of the Selector.js File in the src Folder

import React, { Component } from "react";

export class Selector extends Component {

 constructor(props) {
 super(props);
 this.state = {
 selection: React.Children.toArray(props.children)[0].props.name
 }
 }

 setSelection = (ev) => {
 ev.persist();
 this.setState({ selection: ev.target.name});
 }

 render() {
 return <div className="container-fluid">
 <div className="row">
 <div className="col-2">
 { React.Children.map(this.props.children, c =>
 <button
 name={ c.props.name }
 onClick={ this.setSelection }
 className={`btn btn-block m-2
 ${this.state.selection === c.props.name
 ? "btn-primary active": "btn-secondary"}`}>
 { c.props.name }
 </button>
)}

Chapter 18 ■ Creating Complete Applications

526

 </div>
 <div className="col">
 {
 React.Children.toArray(this.props.children)
 .filter(c => c.props.name === this.state.selection)
 }
 </div>
 </div>
 </div>
 }
}

The Selector component is a container that renders a button for each of its children and displays
only the one selected by the user. To provide the data that will be displayed by the application and
implementation for the callback functions that operate on it, I added a file called ProductsAndSuppliers.js
to the src folder and used it to define the component shown in Listing 18-14.

Listing 18-14.  The Contents of the ProductsAndSuppliers.js File in the src Folder

import React, { Component } from 'react';
import { Selector } from './Selector';
import { ProductDisplay } from './ProductDisplay';
import { SupplierDisplay } from './SupplierDisplay';

export default class ProductsAndSuppliers extends Component {

 constructor(props) {
 super(props);
 this.state = {
 products: [
 { id: 1, name: "Kayak",
 category: "Watersports", price: 275 },
 { id: 2, name: "Lifejacket",
 category: "Watersports", price: 48.95 },
 { id: 3, name: "Soccer Ball", category: "Soccer", price: 19.50 }
],
 suppliers: [
 { id: 1, name: "Surf Dudes", city: "San Jose", products: [1, 2] },
 { id: 2, name: "Field Supplies", city: "New York", products: [3] },
]
 }
 this.idCounter = 100;
 }

 saveData = (collection, item) => {
 if (item.id === "") {
 item.id = this.idCounter++;
 this.setState(state => state[collection]
 = state[collection].concat(item));
 } else {

Chapter 18 ■ Creating Complete Applications

527

 this.setState(state => state[collection]
 = state[collection].map(stored =>
 stored.id === item.id ? item: stored))
 }
 }

 deleteData = (collection, item) => {
 this.setState(state => state[collection]
 = state[collection].filter(stored => stored.id !== item.id));
 }

 render() {
 return <div>
 <Selector>
 <ProductDisplay
 name="Products"
 products={ this.state.products }
 saveCallback={ p => this.saveData("products", p) }
 deleteCallback={ p => this.deleteData("products", p) } />
 <SupplierDisplay
 name="Suppliers"
 suppliers={ this.state.suppliers }
 saveCallback={ s => this.saveData("suppliers", s) }
 deleteCallback={ s => this.deleteData("suppliers", s) } />
 </Selector>
 </div>
 }
}

The component defines product and suppliers state data properties and defines methods that allow
objects to be deleted or saved for each data category. The component renders a Selector and provides the
category display components as its children.

The final step is to replace the contents of the App component so that the custom components defined
in the previous sections are displayed to the user, as shown in Listing 18-15.

Listing 18-15.  Adding Data and Methods to the App.js File in the src Folder

import React, { Component } from "react";
import ProductsAndSuppliers from "./ProductsAndSuppliers";

export default class App extends Component {

 render() {
 return <ProductsAndSuppliers/>
 }
}

Once you save the changes to the App component, the browser will display the completed example
application. To make sure that everything works as it should, click the Suppliers button, click the Create
Supplier button, and fill out the form. Click the Save button, and you should see a new entry in the table with
the detail you entered, as shown in Figure 18-3.

Chapter 18 ■ Creating Complete Applications

528

Understanding the Limitations of the Example Application
The example application shows how React components can be combined to create applications—but it also
shows the limitations of the features that React provides.

The biggest limitation of the example application is that it uses statically defined data that is hard-coded
into the App component. The same data is displayed each time the application is started, and changes are
lost when the browser is reloaded or closed.

The most common way of persisting data outside of a web application is to use a web service, although
modern browsers provide support for storing limited amounts of data locally. React doesn’t include
integrated support for working with web services, but there are some good choices, both for simple web
services, which I describe in Chapter 23, and those that present more complex data, which I describe in
Chapters 24 and 25.

The next limitation is that the state data has been lifted all the way to the top of the application.
As I explained in Part 2, state data can be used to coordinate between components, and that state data can
be lifted up to the common ancestor of components that need to access the same data.

The example application shows the downside of this approach, such that the important data—the
products and suppliers arrays, in this case—end up being pushed to the top level of the application.
React destroys components when they are unmounted and their state data is lost, which means that any
component that is below the Selector in the example application is unsuitable for storing the application’s
data. As a result, all of the application’s data has been defined in the App component, along with the methods
that operate on that data. I exacerbated this problem with the structure I chose for the application, but the
underlying issue is that a component’s state is perfect for keeping track of the data required to manage the
content presented to the user—such as whether a data table or an editor should be displayed—but isn’t well-
suited for managing the data that relates to the purpose of the application, often known as the domain data
or model data.

The best way to prevent the model data from being pushed up to the top-level component is to put it in
a separate data store, which leaves the React components to deal with the presentation of the data without
having to manage it. I explain the use of a data store and show you how to create one in Chapters 19 and 20.

Figure 18-3.  Testing the example application

Chapter 18 ■ Creating Complete Applications

529

The application is also limited in the way that it requires the user to work through a specific sequence
of tasks to get to specific features. In many applications, especially those designed to support a specific
corporate function, users have to perform a small set of tasks and want to be able to start them as easily as
possible. The example application only presents its features in response to clicking particular elements. In
Chapters 21 and 22, I add support for URL routing, which makes it possible for users to navigate to specific
features directly.

Summary
In this chapter, I created the example application that I will enhance throughout this part of the book. In the
next chapter, I start that process by introducing a data store, which will allow the model data to be removed
from the App component and distributed directly to the parts of the application that need it.

531© Adam Freeman 2019
A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_19

CHAPTER 19

Using a Redux Data Store

A data store moves the application’s data outside of the React component hierarchy. Using a data store
means that the data doesn’t have to be lifted up to the top-level component and doesn’t have to thread props
to ensure access to that data where it is needed. The result is a more natural application structure, which
leaves the React components to focus on what they are good at, which is rendering content for the user.

But data stores can be complex, and introducing them to an application can be a counterintuitive
process. In this chapter, I introduce Redux, which is the most popular choice of data store for React
projects, and show you to create a data store and integrate into an application. In Chapter 20, I explain how
Redux works in more depth and explain some of its advanced features. Table 19-1 puts using a Redux data
store in context.

Table 19-1.  Putting Redux Data Stores in Context

Question Answer

What is it? A data store moves an application’s data outside of the component hierarchy,
which means that data doesn’t have to be lifted up and then made available to
descendants through prop threading.

Why is it useful? Data stores can simplify the components in a project, producing an application that
is easier to develop and test.

How is it used? Data is moved into a dedicated part of the application that can be accessed directly
by the components that require it. In the case of Redux, components are connected
to the data store through props, which takes advantage of the nature of React,
although the mapping process itself can be awkward and require close attention.

Are there any pitfalls
or limitations?

Data stores can be complex and often work in counterintuitive ways. Some data
store packages, including Redux, enforce specific methods of dealing with data that
some developers find restrictive.

Are there any
alternatives?

Not all applications need a data store. For smaller amounts of data, using
component state features may be acceptable and the React context API, described
in Chapter 14, can be used for basic data management features.

Chapter 19 ■ Using a Redux Data Store

532

Table 19-2 summarizes the chapter.

Preparing for This Chapter
In this chapter, I continue using the productapp project created in Chapter 18. To prepare for this chapter,
open a new command prompt and run the commands shown in Listing 19-1 in the productapp folder.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/pro-react-16.

Listing 19-1.  Installing Packages

npm install redux@4.0.1
npm install react-redux@6.0.0

For quick reference, Table 19-3 describes the packages added to the project by the commands in
Listing 19-1.

Table 19-2.  Chapter Summary

Problem Solution Listing

Create a data store Define the initial data, action types, creators, and reducers 3–8, 13–21

Add a data store to a React
application

Use the Provider component from the React-Redux package 9

Consume a data store in a
React component

Use the connect function to map the component’s props to
the data store’s data and action creators

10, 12

Dispatch multiple data store
actions

Use the dispatch function directly when mapping data store
action creators to component function props.

22

Table 19-3.  The Packages Added to the Project

Name Description

redux This package contains the main Redux data store features.

react-redux This package contains the integration features for using Redux with React.

Once the packages have been installed, run the command shown in Listing 19-2 in the productapp
folder to start the React development tools.

https://github.com/Apress/pro-react-16

Chapter 19 ■ Using a Redux Data Store

533

Listing 19-2.  Starting the Development Tools

npm start

Once the application has been compiled, the development HTTP server will start and display the
content shown in Figure 19-1.

Figure 19-1.  Running the example application

Creating a Data Store
Much like React, Redux imposes a specific flow for data and changes. And, like React, understanding how
the different parts of Redux fit together can be difficult at first. There are two characteristics of Redux that
cause confusion.

First, changes in Redux are not applied directly to the data in the store, even though that data is
expressed as regular JavaScript objects. Instead, Redux relies on functions that accept a payload and update
the data in the store, similar to the way that React components enforce the use of the setState method to
update state data.

The second point of confusion is the terminology. There are a number of different parts in a Redux
data store, and their names don’t intuitively describe their purpose. For quick references as you get started
with Redux, Table 19-4 describes the terms that you will encounter and that are explained in more detail the
sections that follow, where I create a data store and integrate it into the example application.

Chapter 19 ■ Using a Redux Data Store

534

CHOOSING AN ALTERNATIVE DATA STORE PACKAGE

Redux is only one of the data store packages available for use with React, although it is the most
well-known and the one that is chosen by most projects. If you don’t like the way that Redux works,
then MobX (https://github.com/mobxjs/mobx) may be a good alternative. MobX works well with
React and allows direct state changes. The main drawback is that it relies on decorators, which some
developers find awkward and which are not yet part of the JavaScript specification (although they are
widely used, including by Angular).

In Chapters 24 and 25, I introduce GraphQL and explain its use in retrieving data for applications. If you
become a committed React user, then you may want to consider Relay (https://facebook.github.
io/relay) for data management. Relay works only with GraphQL, which means that it isn’t suitable for
all projects, but it has some interesting features and integrates well with React.

Defining the Data Types
The example application contains similar sets of features applied to two types of data. In this situation, it is
easy to end up with duplication in the code that manages the data store, performing essentially the same
operation but on different collections of objects, with the effect that the data store is harder to write, harder
to understand, and prone to errors introduced by copying the code for one type of data and incorrectly
adapting it.

This is such a common problem that I am going to demonstrate a data store that consolidates as much
common code as possible. The first step is to define constant values that will let me consistently identify the
different types of data throughout the data store. I created the src/store folder and added to it a file called
dataTypes.js with the statements shown in Listing 19-3.

Table 19-4.  Important Redux Terms

Name Description

action An action describes an operation that will change the data in the store. Redux doesn’t
allow data to be modified directly and requires actions to specify changes.

action type Actions are plain JavaScript objects that have a type parameter, which specifies the
action type. This ensures that actions can be identified and processed correctly.

action creator An action creator is a function that creates an action. Action creators are presented
to React components as function props so that invoking the action creator function
applies a change to the data store.

reducer A reducer is a function that receives an action and processes the change it represents
in the data store. An action specifies which operation should be applied to the data
store, but it is the reducer that contains the JavaScript code that makes it happen.

selector A selector provides a component with access to the data it requires from the data
store. Selectors are presented to React components as data props.

https://github.com/mobxjs/mobx
https://facebook.github.io/relay
https://facebook.github.io/relay

Chapter 19 ■ Using a Redux Data Store

535

Listing 19-3.  The Contents of the dataTypes.js File in the src/store Folder

export const PRODUCTS = "products";
export const SUPPLIERS = "suppliers";

Defining the Initial Data
In later chapters, I show you how to get data from web services, but for the moment I am going to
continue using statically defined data. To define the initial contents of the data store, I created a file called
initialData.js in the store folder and added the statements shown in Listing 19-4.

■■ Note A s I add more features to the example application, I am going to create different sections of the data store
to keep features separate. I am going to refer to the product and supplier data presented to the user as model data
to differentiate it from the internal data used to coordinate between components, which I will refer to as state data.

Listing 19-4.  The Contents of the initialData.js File in the src/store Folder

import { PRODUCTS, SUPPLIERS } from "./dataTypes";

export const initialData = {
 [PRODUCTS]: [
 { id: 1, name: "Trail Shoes", category: "Running", price: 100 },
 { id: 2, name: "Thermal Hat", category: "Running", price: 12 },
 { id: 3, name: "Heated Gloves", category: "Running", price: 82.50 }],
 [SUPPLIERS]: [
 { id: 1, name: "Zoom Shoes", city: "London", products: [1] },
 { id: 2, name: "Cosy Gear", city: "New York", products: [2, 3] }],
}

The initial state of the data store is defined as a regular JavaScript object; one of the characteristics of
working with Redux is that it relies on pure JavaScript for many of its features. To make it clear when the data
store is being used, I have used different details for the objects in the PRODUCTS and SUPPLIERS arrays.

Defining the Model Data Action Types
The next step is to describe the operations that can be performed on the data in the store, which are called actions.
There can be a lot of actions in a complex application, and it can be helpful to define constant values to identify
them. I added a file called modelActionTypes.js to the store folder and added the content shown in Listing 19-5.

Listing 19-5.  The Contents of the modelActionTypes.js File in the src/store Folder

export const STORE = "STORE";
export const UPDATE = "UPDATE";
export const DELETE = "DELETE";

To provide the functionality for the example application, I need three events: STORE to add objects to the
data store, UPDATE to modify existing objects, and DELETE to remove objects.

Chapter 19 ■ Using a Redux Data Store

536

The value assigned to the action types isn’t important just as long as it is unique, and the simplest
approach is to assign each action type a string value of its name.

Defining the Model Action Creators
Actions are objects that are sent from the application to the data store to request a change. An action has an
action type and a data payload, where the action type specifies the operation and the payload provides the
data that the operation requires. Actions are ordinary JavaScript objects that can define any combination
of properties required to describe an operation. The convention is to define a type property to indicate the
event type, and I will supplement this with dataType and payload properties to specify the data that the
action should be applied to and the data required for the action.

Actions are created by action creators, which is the name given to functions that accept data from the
application and return an action that describes a change to the data store. To define the action creators, I
added a file called modelActionCreators.js to the store folder and added the code shown in Listing 19-6.

Listing 19-6.  The Contents of the modelActionCreators.js File in the src/store Folder

import { PRODUCTS, SUPPLIERS } from "./dataTypes"
import { STORE, UPDATE, DELETE } from "./modelActionTypes";

let idCounter = 100;

export const saveProduct = (product) => {
 return createSaveEvent(PRODUCTS, product);
}

export const saveSupplier = (supplier) => {
 return createSaveEvent(SUPPLIERS, supplier);
}

const createSaveEvent = (dataType, payload) => {
 if (!payload.id) {
 return {
 type: STORE,
 dataType: dataType,
 payload: { ...payload, id: idCounter++ }
 }
 } else {
 return {
 type: UPDATE,
 dataType: dataType,
 payload: payload
 }
 }
}

export const deleteProduct = (product) => ({
 type: DELETE,
 dataType: PRODUCTS,
 payload: product.id
})

Chapter 19 ■ Using a Redux Data Store

537

export const deleteSupplier = (supplier) => ({
 type: DELETE,
 dataType: SUPPLIERS,
 payload: supplier.id
})

There are four action creators in the listing. The saveProduct and saveSupplier functions receive an
object parameter and pass it to createSaveEvent, which inspects the value of the id property to determine
whether a STORE or UPDATE action is required. The deleteProduct and deleteSupplier action creators are
simpler and create a DELETE action whose payload is the id property value of the object to be deleted.

Defining the Reducer
Actions are applied to the data store by a JavaScript function called a reducer. Put another way, an action
describes the type of change that is needed, and the reducer contains the logic to make it happen. I added a
file called modelReducer.js to the store folder and added the code shown in Listing 19-7.

Listing 19-7.  The Contents of the modelReducer.js File in the src/store Folder

import { STORE, UPDATE, DELETE } from "./modelActionTypes";
import { initialData } from "./initialData";

export default function(storeData, action) {
 switch (action.type) {
 case STORE:
 return {
 ...storeData,
 [action.dataType]:
 storeData[action.dataType].concat([action.payload])
 }
 case UPDATE:
 return {
 ...storeData,
 [action.dataType]: storeData[action.dataType].map(p =>
 p.id === action.payload.id ? action.payload : p)
 }
 case DELETE:
 return {
 ...storeData,
 [action.dataType]: storeData[action.dataType]
 .filter(p => p.id !== action.payload)
 }
 default:
 return storeData || initialData;
 }
}

The reducer receives the current data from the data store and an action as its parameters. It inspects the
action and uses it to create a new data object, which will replace the existing data in the data store.

Chapter 19 ■ Using a Redux Data Store

538

There are two important rules to follow. First, the reducer must create a new object and not return
the object received as a parameter because Redux will ignore any changes that have been made. Second,
because the object that the reducer creates replaces the data in the store, it is important to copy the
properties of the existing object, not just the one modified by the action. The simplest way to copy the
properties is to use the spread operator, like this:

...
case STORE:
 return {
 ...store,
 [action.dataType]: store[action.dataType].concat([action.payload])
}
...

This ensures that all the properties are copied to the result object. The property for the data that is
changed is then replaced with the data modified by the action.

Another important aspect of the reducer is that it will be invoked when the data store is created to get
the initial data. This is handled by the default clause of the switch statement, as shown here:

...
default:
 return storeData || initialData;
...

Redux will report an error if the function returns undefined, and it is important to ensure that you
return a useful result. In the listing, I return the initialData object that was defined in Listing 19-4.

AVOIDING CODE DUPLICATION IN THE REDUCER

Most data sets require a core set of common operations. This can be seen in the example application,
where the product and supplier data both need store, update, and delete operations. This can result in
code duplication when you define the data store, with similar action types, action creators, and reducer
code. The approach I have taken in this section is to include a property in the actions that specifies
which type of data an operation should be applied to, and then I relied on the JavaScript property
accessor feature to select the appropriate data store property in the reducer, like this:

...
case STORE:
 return {
 ...store,
 [action.dataType]: store[action.dataType].concat([action.payload])
}
...

When the new data store object is created, JavaScript will evaluate the action.dataType property and
use its value to define a new property on the object and access the property on the old data store, using
the values I defined in Listing 19-5, so that a dataType value of PRODUCTS selects the products data and
a value of SUPPLIERS selects the supplier data. You don’t have to use this type of technique in your own
projects, but it helps keep the code concise and manageable.

Chapter 19 ■ Using a Redux Data Store

539

Creating the Data Store
Redux provides the createStore function, which creates the data store and prepares it for use. I added a file
called index.js to the store folder and added the code shown in Listing 19-8.

■■ Tip  You don’t have to use the index.js file name, but doing so allows the data store to be imported using
only the name of the folder, as shown in Listing 19-9.

Listing 19-8.  The Contents of the index.js File in the src/store Folder

import { createStore } from "redux";
import modelReducer from "./modelReducer";

export default createStore(modelReducer);

export { saveProduct, saveSupplier, deleteProduct, deleteSupplier }
 from "./modelActionCreators";

The default export from the index.js file is the result of calling createStore, which accepts the reducer
function as its argument. I also exported the action creators so that all of the data store’s functionality can be
accessed through a single import statement elsewhere in the application, which makes using the data store a
little simpler.

Using the Data Store in the React Application
The actions, reducers, and selectors I created in the previous section are not yet integrated into the
application, and there are no links between the components in the application and the data in the data store.
In the sections that follow, I show you how to use the data store to replace the state data and methods that
currently manage the application data.

Applying the Data Store to the Top-Level Component
The React-Redux package includes a React container component that provides access to a data store.
This component, called Provider, is applied at the top of the component hierarchy so that the data store
is available throughout the application. In Listing 19-9, I imported the data store from the index.js file
created in Listing 19-8 and used the Provider component to apply the data store to the components in the
application.

Listing 19-9.  Applying the Data Store in the App.js File in the src Folder

import React, { Component } from "react";
import ProductsAndSuppliers from "./ProductsAndSuppliers";
import { Provider } from "react-redux";
import dataStore from "./store";

export default class App extends Component {

 render() {

Chapter 19 ■ Using a Redux Data Store

540

 return (
 <Provider store={ dataStore }>
 <ProductsAndSuppliers/>
 </Provider>
)
 }
}

The Provider component has a store prop that is used to specify the data store, which I assigned the
name dataStore in the import statement.

Connecting the Product Data
The next step is to connect the data store to the components that require the data it contains and the
action creators that operate on it. I am going to take the most direct approach, which is to use the features
provided by the React-Redux package to connect the ProductDisplay component to the data store, as
shown Listing 19-10.

Listing 19-10.  Connecting to the Data Store in the ProductDisplay.js File in the src Folder

import React, { Component } from "react";
import { ProductTable } from "./ProductTable"
import { ProductEditor } from "./ProductEditor";
import { connect } from "react-redux";
import { saveProduct, deleteProduct } from "./store"

const mapStateToProps = (storeData) => ({
 products: storeData.products
})

const mapDispatchToProps = {
 saveCallback: saveProduct,
 deleteCallback: deleteProduct
}

const connectFunction = connect(mapStateToProps, mapDispatchToProps);

export const ProductDisplay = connectFunction(
 class extends Component {

 constructor(props) {
 super(props);
 this.state = {
 showEditor: false,
 selectedProduct: null
 }
 }

 startEditing = (product) => {
 this.setState({ showEditor: true, selectedProduct: product })
 }

Chapter 19 ■ Using a Redux Data Store

541

 createProduct = () => {
 this.setState({ showEditor: true, selectedProduct: {} })
 }

 cancelEditing = () => {
 this.setState({ showEditor: false, selectedProduct: null })
 }

 saveProduct = (product) => {
 this.props.saveCallback(product);
 this.setState({ showEditor: false, selectedProduct: null })
 }

 render() {
 if (this.state.showEditor) {
 return <ProductEditor
 key={ this.state.selectedProduct.id || -1 }
 product={ this.state.selectedProduct }
 saveCallback={ this.saveProduct }
 cancelCallback={ this.cancelEditing } />
 } else {
 return <div className="m-2">
 <ProductTable products={ this.props.products }
 editCallback={ this.startEditing }
 deleteCallback={ this.props.deleteCallback } />
 <div className="text-center">
 <button className="btn btn-primary m-1"
 onClick={ this.createProduct }>
 Create Product
 </button>
 </div>
 </div>
 }
 }
 })

The first step is to define a function that receives the data store and selects the props that will connect
the component and the store, like this:

...
const mapStateToProps = (storeData) => ({
 products: storeData.products
})
...

This function is conventionally named mapStateToProps, and it returns an object that maps prop
names for the connected component to data in the store. These mappings are known as selectors because
they select the data that will be mapped to the component’s prop. In this case, selector maps the store’s
products array to a prop named products.

Chapter 19 ■ Using a Redux Data Store

542

The next step is to create the object that will map the function props that the component requires to
data store action creators, like this:

...
const mapDispatchToProps = {
 saveCallback: saveProduct,
 deleteCallback: deleteProduct
}
...

The React-Redux package supports different ways of connecting action creators to function props, but
this is the simplest, which is to create an object that maps prop names to action creator functions. When the
component is connected to the data store, the action creator functions defined in this object will be wired
up so that the reducer is automatically invoked. In this case, I mapped the saveProduct and deleteProduct
action creators to function props named saveCallback and deleteCallback.

Once the mappings for data and function props have been defined, they are passed to the connect
function, provided by the React-Redux package.

...
const connectFunction = connect(mapStateToProps, mapDispatchToProps);
...

The connect function creates a higher-order component (HOC) that passes on props connected to the
data store merged with the props that are provided by the parent component.

■■ Tip H igher-order components are described in Chapter 14.

The final step is to pass a component to the function returned by connect, like this:

...
export const ProductDisplay = connectFunction(class extends Component {
...

The result is a component whose props are connected to the data store. When you save the changes in
Listing 19-10, the application will display the data defined in Listing 19-4, as shown in Figure 19-2.

Chapter 19 ■ Using a Redux Data Store

543

Because the props provided by the data store replace those from the parent component, the
ProductDisplay component operates entirely on the data store data, including creating, editing, and
deleting objects.

Connecting the Supplier Data
The same process can be applied to connect the supplier data, as shown in Listing 19-11, where I have used
the connect method to provide the SupplierDisplay component with access to the data store.

Listing 19-11.  Connecting to the Data Store in the SupplierDisplay.js File in the src Folder

import React, { Component } from "react";
import { SupplierEditor } from "./SupplierEditor";
import { SupplierTable } from "./SupplierTable";
import { connect } from "react-redux";
import { saveSupplier, deleteSupplier} from "./store";

const mapStateToProps = (storeData) => ({
 suppliers: storeData.suppliers
})

const mapDispatchToProps = {
 saveCallback: saveSupplier,
 deleteCallback: deleteSupplier
}

const connectFunction = connect(mapStateToProps, mapDispatchToProps);

export const SupplierDisplay = connectFunction(
 class extends Component {

Figure 19-2.  Using a data store for product data

Chapter 19 ■ Using a Redux Data Store

544

 constructor(props) {
 super(props);
 this.state = {
 showEditor: false,
 selected: null
 }
 }

 startEditing = (supplier) => {
 this.setState({ showEditor: true, selected: supplier })
 }

 createSupplier = () => {
 this.setState({ showEditor: true, selected: {} })
 }

 cancelEditing = () => {
 this.setState({ showEditor: false, selected: null })
 }

 saveSupplier= (supplier) => {
 this.props.saveCallback(supplier);
 this.setState({ showEditor: false, selected: null })
 }

 render() {
 if (this.state.showEditor) {
 return <SupplierEditor
 key={ this.state.selected.id || -1 }
 supplier={ this.state.selected }
 saveCallback={ this.saveSupplier }
 cancelCallback={ this.cancelEditing } />
 } else {
 return <div className="m-2">
 <SupplierTable suppliers={ this.props.suppliers }
 editCallback={ this.startEditing }
 deleteCallback={ this.props.deleteCallback }
 />
 <div className="text-center">
 <button className="btn btn-primary m-1"
 onClick={ this.createSupplier }>
 Create Supplier
 </button>
 </div>
 </div>
 }
 }
 })

Chapter 19 ■ Using a Redux Data Store

545

The result is that the SupplierDisplay component receives props that connect it to the data store, as
illustrated in Figure 19-3.

With the data store in place, the ProductsAndSuppliers component is redundant, since its role was
to provide the product and supplier data and the methods to store and delete it. In Listing 19-12, I have
updated the App component to display the Selector, ProductDisplay, and SupplierDisplay components
directly.

Listing 19-12.  Displaying Content Directly in the App.js File in the src Folder

import React, { Component } from "react";
//import ProductsAndSuppliers from "./ProductsAndSuppliers";
import { Provider } from "react-redux";
import dataStore from "./store";
import { Selector } from "./Selector";
import { ProductDisplay } from "./ProductDisplay";
import { SupplierDisplay } from "./SupplierDisplay";

export default class App extends Component {

 render() {
 return (
 <Provider store={ dataStore }>
 <Selector>
 <ProductDisplay name="Products" />
 <SupplierDisplay name="Suppliers" />
 </Selector>
 </Provider>
)
 }
}

Figure 19-3.  Using a data store for supplier data

Chapter 19 ■ Using a Redux Data Store

546

Notice I don’t have to provide props for the ProductDisplay and SupplierDisplay components to give
them access to data and methods; these will be set up by the connect method that connects the components
to the data store.

Expanding the Data Store
Data stores are not just for the data that is displayed to the user—they can also be used to store the state
data that is used to coordinate and manage components. Expanding the data store to include state data will
allow me to connect the model data in the store directly to the components that use it, which is not possible
currently because ProductDisplay and SupplierDisplay maintain state data that is used to select the
content presented to the user.

In the sections that follow, I move the state data and code that manages it into the data store so that I
can further simplify the application.

Adding State Data to the Store
I want to keep the state data separate from the model data, so I am going to add some structure to the store.
I like to represent the structure in the initial data that I used to populate the data store, although this is
entirely to help me understand the shape of the data that I am working with and is not a requirement
enforced by Redux.

To structure the store data, I moved the existing data to a property named modelData and added a new
stateData section, as shown in Listing 19-13.

Listing 19-13.  Expanding the Data in the initialData.js File in the src/store Folder

import { PRODUCTS, SUPPLIERS } from "./dataTypes";

export const initialData = {
 modelData: {
 [PRODUCTS]: [
 { id: 1, name: "Trail Shoes", category: "Running", price: 100 },
 { id: 2, name: "Thermal Hat", category: "Running", price: 12 },
 { id: 3, name: "Heated Gloves", category: "Running", price: 82.50 }],
 [SUPPLIERS]: [
 { id: 1, name: "Zoom Shoes", city: "London", products: [1] },
 { id: 2, name: "Cosy Gear", city: "New York", products: [2, 3] }],
 },
 stateData: {
 editing: false,
 selectedId: -1,
 selectedType: PRODUCTS
 }
}

My goal is to move the state data and logic in the ProductDisplay and SupplierDisplay components
into the data store. These components track the user’s selection for editing and whether the table or the
editor component should be rendered. To provide this information in the store, I defined editing, selected
and selectedType properties in the stateData section.

Chapter 19 ■ Using a Redux Data Store

547

Defining the Action Types and Creators for State Data
Next, I need to define the actions for the state data in the store. When I set up the data store, I defined
the action types and the creators in different files, but that’s not a requirement, and both can be defined
together. To separate the state data actions from the rest of the store, I added a file called stateActions.js to
the src/store folder and used it to define the action types and creators shown in Listing 19-14.

Listing 19-14.  The Contents of the stateActions.js File in the src/store Folder

import { PRODUCTS, SUPPLIERS } from "./dataTypes";

export const STATE_START_EDITING = "state_start_editing";
export const STATE_END_EDITING = "state_end_editing";
export const STATE_START_CREATING = "state_start_creating";

export const startEditingProduct = (product) => ({
 type: STATE_START_EDITING,
 dataType: PRODUCTS,
 payload: product
})

export const startEditingSupplier = (supplier) => ({
 type: STATE_START_EDITING,
 dataType: SUPPLIERS,
 payload: supplier
})

export const endEditing = () => ({
 type: STATE_END_EDITING
})

export const startCreatingProduct = () => ({
 type: STATE_START_CREATING, dataType: PRODUCTS
})

export const startCreatingSupplier = () => ({
 type: STATE_START_CREATING, dataType: SUPPLIERS
})

The action creators correspond to the methods defined by the ProductDisplay and SupplierDisplay
components and allow a user to start editing an object, cancel editing, and start creating a new object.

Defining the State Data Reducer
To update the data store in response to an action, I need to define a reducer. Rather than add code to the
existing reducer, I am going to define a separate function to deal with the state data. I added a file called
stateReducer.js in the src/store folder and added the code shown in Listing 19-15.

Chapter 19 ■ Using a Redux Data Store

548

Listing 19-15.  The Contents of the stateReducer.js File in the src/store Folder

import { STATE_START_EDITING, STATE_END_EDITING, STATE_START_CREATING }
 from "./stateActions";
import { initialData } from "./initialData";

export default function(storeData, action) {
 switch(action.type) {
 case STATE_START_EDITING:
 case STATE_START_CREATING:
 return {
 ...storeData,
 editing: true,
 selectedId: action.type === STATE_START_EDITING
 ? action.payload.id : -1,
 selectedType: action.dataType
 }
 case STATE_END_EDITING:
 return {
 ...storeData,
 editing: false
 }
 default:
 return storeData || initialData.stateData;
 }
}

The reducer for the state data keeps track of what the user is editing or creating, which echoes the
approach taken by the existing components in the example application, although I am going to use a single
set of properties to coordinate the editors for both types of model data in the application.

Incorporating the State Data Features into the Store
Redux provides the combineReducers function, which allows multiple reducers to be combined for use in a
data store, with each reducer responsible for one section of the data store data. In Listing 19-16, I used the
combineReducers function to combine the reducers for the model and state data.

Listing 19-16.  Configuring the Data Store in the index.js File in the src/store Folder

import { createStore, combineReducers } from "redux";
import modelReducer from "./modelReducer";
import stateReducer from "./stateReducer";

export default createStore(combineReducers(
 {
 modelData: modelReducer,
 stateData: stateReducer
 }));

export { saveProduct, saveSupplier, deleteProduct, deleteSupplier }
 from "./modelActionCreators";

Chapter 19 ■ Using a Redux Data Store

549

The argument for the createReducers function is an object whose property names correspond to
sections of the data store and the reducers that will manage them. In the listing, I have made the original
reducer responsible for the modelData section of the data store and have made the reducer defined in Listing
19-15 responsible for the stateData section. The combined reducers are passed to the createStore function
to create the data store.

■■ Note E ach reducer operates on a separate part of the data store, but when an action is processed, each
reducer is passed the action until one of them returns a new data store object, indicating that the action has
been processed.

Adding structure to the data in the store requires a corresponding change to the initial state returned by
the reducer function for the model data, as shown in Listing 19-17.

Listing 19-17.  Changing the Initial State in the modelReducer.js File in the src/store Folder

import { STORE, UPDATE, DELETE } from "./modelActionTypes";
import { initialData } from "./initialData";

export default function(storeData, action) {
 switch (action.type) {
 case STORE:
 return {
 ...storeData,
 [action.dataType]:
 storeData[action.dataType].concat([action.payload])
 }
 case UPDATE:
 return {
 ...storeData,
 [action.dataType]: storeData[action.dataType].map(p =>
 p.id === action.payload.id ? action.payload : p)
 }
 case DELETE:
 return {
 ...storeData,
 [action.dataType]: storeData[action.dataType]
 .filter(p => p.id !== action.payload)
 }
 default:
 return storeData || initialData.modelData;
 }
}

When the combineReducers function is used, each reducer is provided with only its section of the data
in the store and is unaware of the rest of the data and the other reducers. This means I only need to change
the source of the initial data and don’t have to worry about navigating through the new data structure when
applying an action.

Chapter 19 ■ Using a Redux Data Store

550

Connecting the React Components to the Stored State Data
Now that the state data has been put into the data store, I can connect it to components. Rather than
configure each component separately, I am going to define separate connector components that will take
care of mapping data store features to component props. I created a file called EditorConnector.js in the
src/store folder with the code shown in Listing 19-18.

UNDERSTANDING THE PRESENTER/CONNECTOR PATTERN

A common approach when using a data store is to use two different types of component. Presenter
components are responsible for rendering content to the user and responding to user input.
They receive data and function props but are not directly connected to the data store. Connector
components—confusingly, also known as container components—exist to connect to the data store to
provide presenter components with props. This is the general approach I have taken in this part of the
chapter, although, as with much in the React/Redux world, implementation details can vary, and there is
disagreement over how best to approach this kind of separation.

Listing 19-18.  The Contents of the EditorConnector.js File in the src/store Folder

import { connect } from "react-redux";
import { endEditing } from "./stateActions";
import { saveProduct, saveSupplier } from "./modelActionCreators";
import { PRODUCTS, SUPPLIERS } from "./dataTypes";

export const EditorConnector = (dataType, presentationComponent) => {

 const mapStateToProps = (storeData) => ({
 editing: storeData.stateData.editing
 && storeData.stateData.selectedType === dataType,
 product: (storeData.modelData[PRODUCTS]
 .find(p => p.id === storeData.stateData.selectedId)) || {},
 supplier:(storeData.modelData[SUPPLIERS]
 .find(s => s.id === storeData.stateData.selectedId)) || {}
 })

 const mapDispatchToProps = {
 cancelCallback: endEditing,
 saveCallback: dataType === PRODUCTS ? saveProduct: saveSupplier
 }

 return connect(mapStateToProps, mapDispatchToProps)(presentationComponent);
}

The EditorConnector is a higher-order component that provides a presentation component with the
props required by both the ProductEditor and SupplierEditor components, which means that these
components can be connected to the data store using the same code, rather than requiring separate uses of
the connect function. To support both types of editor, the HOC function accepts a data type that is used to
select the data and action creators that will be mapped to props.

Chapter 19 ■ Using a Redux Data Store

551

■■ Tip N otice that the segmentation of the data store created by the combineReducers function doesn’t have
any effect on data selection, which means I can select data from the entire store.

To provide the same service for the components that display the table components, I added a file called
TableConnector.js to the src/store folder and used it to define the HOC shown in Listing 19-19.

Listing 19-19.  The Contents of the TableConnector.js File in the src/store Folder

import { connect } from "react-redux";
import { startEditingProduct, startEditingSupplier } from "./stateActions";
import { deleteProduct, deleteSupplier } from "./modelActionCreators";
import { PRODUCTS, SUPPLIERS } from "./dataTypes";

export const TableConnector = (dataType, presentationComponent) => {

 const mapStateToProps = (storeData) => ({
 products: storeData.modelData[PRODUCTS],
 suppliers: storeData.modelData[SUPPLIERS]
 })

 const mapDispatchToProps = {
 editCallback: dataType === PRODUCTS
 ? startEditingProduct : startEditingSupplier,
 deleteCallback: dataType === PRODUCTS ? deleteProduct : deleteSupplier
 }

 return connect(mapStateToProps, mapDispatchToProps)(presentationComponent);
}

Applying the Connector Components
With the connector components in place, I can remove the state data and methods from the ProductDisplay
and SupplierDisplay components. Listing 19-20 shows the simplification of the ProductDisplay
component.

Listing 19-20.  Using Connector Components in the ProductDisplay.js File in the src Folder

import React, { Component } from "react";
import { ProductTable } from "./ProductTable"
import { ProductEditor } from "./ProductEditor";
import { connect } from "react-redux";
//import { saveProduct, deleteProduct } from "./store"
import { EditorConnector } from "./store/EditorConnector";
import { PRODUCTS } from "./store/dataTypes";
import { TableConnector } from "./store/TableConnector";
import { startCreatingProduct } from "./store/stateActions";

Chapter 19 ■ Using a Redux Data Store

552

const ConnectedEditor = EditorConnector(PRODUCTS, ProductEditor);
const ConnectedTable = TableConnector(PRODUCTS, ProductTable);

const mapStateToProps = (storeData) => ({
 editing: storeData.stateData.editing,
 selected: storeData.modelData.products
 .find(item => item.id === storeData.stateData.selectedId) || {}
})

const mapDispatchToProps = {
 createProduct: startCreatingProduct,
}

const connectFunction = connect(mapStateToProps, mapDispatchToProps);

export const ProductDisplay = connectFunction(
 class extends Component {

 // constructor(props) {
 // super(props);
 // this.state = {
 // showEditor: false,
 // selectedProduct: null
 // }
 // }

 // startEditing = (product) => {
 // this.setState({ showEditor: true, selectedProduct: product })
 // }

 // createProduct = () => {
 // this.setState({ showEditor: true, selectedProduct: {} })
 // }

 // cancelEditing = () => {
 // this.setState({ showEditor: false, selectedProduct: null })
 // }

 // saveProduct = (product) => {
 // this.props.saveCallback(product);
 // this.setState({ showEditor: false, selectedProduct: null })
 // }

 render() {
 if (this.props.editing) {
 return <ConnectedEditor key={ this.props.selected.id || -1 } />
 // return <ProductEditor
 // key={ this.state.selectedProduct.id || -1 }
 // product={ this.state.selectedProduct }
 // saveCallback={ this.saveProduct }
 // cancelCallback={ this.cancelEditing } />

Chapter 19 ■ Using a Redux Data Store

553

 } else {
 return <div className="m-2">
 <ConnectedTable />
 {/* <ProductTable products={ this.props.products }
 editCallback={ this.startEditing }
 deleteCallback={ this.props.deleteCallback } /> */}
 <div className="text-center">
 <button className="btn btn-primary m-1"
 onClick={ this.props.createProduct }>
 Create Product
 </button>
 </div>
 </div>
 }
 }
 })

The number of commented-out statements shows the amount of the ProductDisplay component that
was dedicated to providing data and function props to its children, all of which is now handled through the
data store and the connector components. There is no longer any need for local state data, so the constructor
and all of the methods except render can be removed. The component does still require a connection to the
data store, however, because it needs to know which child component to display and needs to generate key
values for the editor components.

Listing 19-21 shows the simplified SupplierDisplay component, with the redundant statements
removed rather than just commented out.

Listing 19-21.  Using Connector Components in the SupplierDisplay.js File in the src Folder

import React, { Component } from "react";
import { SupplierEditor } from "./SupplierEditor";
import { SupplierTable } from "./SupplierTable";
import { connect } from "react-redux";
import { startCreatingSupplier } from "./store/stateActions";
import { SUPPLIERS } from "./store/dataTypes";
import { EditorConnector } from "./store/EditorConnector";
import { TableConnector } from "./store/TableConnector";

const ConnectedEditor = EditorConnector(SUPPLIERS, SupplierEditor);
const ConnectedTable = TableConnector(SUPPLIERS, SupplierTable);

const mapStateToProps = (storeData) => ({
 editing: storeData.stateData.editing,
 selected: storeData.modelData.suppliers
 .find(item => item.id === storeData.stateData.selectedId) || {}
})

const mapDispatchToProps = {
 createSupplier: startCreatingSupplier
}

Chapter 19 ■ Using a Redux Data Store

554

const connectFunction = connect(mapStateToProps, mapDispatchToProps);

export const SupplierDisplay = connectFunction(
 class extends Component {

 render() {
 if (this.props.editing) {
 return <ConnectedEditor key={ this.props.selected.id || -1 } />
 } else {
 return <div className="m-2">
 <ConnectedTable />
 <div className="text-center">
 <button className="btn btn-primary m-1"
 onClick={ this.props.createSupplier }>
 Create Supplier
 </button>
 </div>
 </div>
 }
 }
 })

OVER-SIMPLIFYING COMPONENTS

As I have pushed the use of the data store further into the component hierarchy, the differences
between the components for product and supplier data have been reduced, and these components
are converging. At this point, I could replace the ProductDisplay and SupplierDisplay components
with a single component that deals with both data types and keep working toward driving the entire
application from the data store. In practice, however, there comes a point where convergence no
longer simplifies the application and starts simply moving complexity around. As you gain experience
working with the data store, you will find the point where you are comfortable with the degree you rely
on the data store and the amount of duplication in the components. Like much of React and Redux
development, this is as much personal preference as it is good practice, and it is worth experimenting
until you find an approach that suits you.

Dispatching Multiple Actions
There is a problem with the way that the example application uses the data store. If you create a new object
or edit an existing one, clicking the Save button updates the data store but doesn’t change the component
displayed to the user, as shown in Figure 19-4, and you must click the Cancel button to update the data value
that changes the selected component.

Chapter 19 ■ Using a Redux Data Store

555

The problem is that the connect function that maps action creators to props allows for only one action
creator to be selected by default, but I need two action creators to solve this problem: the saveProduct
or saveSupplier creators to update the model data and the endEditing creator to signal that editing is
complete and the table should be presented to the user.

I can’t define a new creator to perform both tasks because each action is handled by a single reducer
and each reducer is responsible for an isolated part of the data in the store, which means that an action can
lead to a change in the model data or the state data but not both.

Fortunately, the connect function provides an alternative way to map props to action creators that
provides more flexibility. When the mapDispatchToProps argument to the connect method is an object, the
connect function wraps each action creator function in a dispatch method, which is responsible for sending
the action returned by the action creator to the reducer. This means that an object that maps a creator like
this:

...
const mapDispatchToProps = {
 createSupplier: startCreatingSupplier
}
...

is transformed into an object like this:...
const mapDispatchToProps = {
 createSupplier: payload => dispatch(startCreatingSupplier(payload))
}
...

The action creator is invoked to get the action, which is then passed to the dispatch function so it can
be processed by a reducer. Instead of defining an object and allowing the connect function to wrap each
creator, you can define a function that accepts dispatch as its argument and produces props that explicitly
handle action creation and dispatch, as shown in Listing 19-22.

Figure 19-4.  Making a change using the example application

Chapter 19 ■ Using a Redux Data Store

556

Listing 19-22.  Dispatching Actions in the EditorConnector.js File in the src Folder

import { connect } from "react-redux";
import { endEditing } from "./stateActions";
import { saveProduct, saveSupplier } from "./modelActionCreators";
import { PRODUCTS, SUPPLIERS } from "./dataTypes";

export const EditorConnector = (dataType, presentationComponent) => {

 const mapStateToProps = (storeData) => ({
 editing: storeData.stateData.editing
 && storeData.stateData.selectedType === dataType,
 product: (storeData.modelData[PRODUCTS]
 .find(p => p.id === storeData.stateData.selectedId)) || {},
 supplier:(storeData.modelData[SUPPLIERS]
 .find(s => s.id === storeData.stateData.selectedId)) || {}
 })

 const mapDispatchToProps = dispatch => ({
 cancelCallback: () => dispatch(endEditing()),
 saveCallback: (data) => {
 dispatch((dataType === PRODUCTS ? saveProduct: saveSupplier)(data));
 dispatch(endEditing());
 }
 });

 return connect(mapStateToProps, mapDispatchToProps)(presentationComponent);
}

A function that dispatches an action is required as the value for each mapped prop and the
implementation can simply invoke the action creator or, in the case of the saveCallback prop, create and
dispatch multiple actions. The result is that he Save buttons rendered by the editor components invoke a
function prop that dispatches actions that update the model data and the state data, as shown in Figure 19-5.

Chapter 19 ■ Using a Redux Data Store

557

Understanding the Need for References
You may have noticed that I keep track of the object that the user has selected using a combination of id
property value and data type, like this:

...
stateData: {
 editing: false,
 selectedId: -1,
 selectedType: PRODUCTS
}
...

The table components pass a complete object to action creators that start the editing process, and
you may wonder why I have chosen to only keep an ID reference to the selected object and not store the
object itself, especially since this approach requires some additional work to obtain the object for the editor
components.

...
const mapStateToProps = (storeData) => ({
 editing: storeData.stateData.editing
 && storeData.stateData.selectedType === dataType,
 product: (storeData.modelData[PRODUCTS]
 .find(p => p.id === storeData.stateData.selectedId)) || {},
 supplier:(storeData.modelData[SUPPLIERS]
 .find(s => s.id === storeData.stateData.selectedId)) || {}
})
...

Figure 19-5.  Dispatching multiple actions

Chapter 19 ■ Using a Redux Data Store

558

The indirection is required because the data store represents the authoritative data source in the
application, which may be altered by the selectors that connect the data to components. As a demonstration,
I changed the selector for the supplier data in the TableConnector connector component, as shown in
Listing 19-23.

Listing 19-23.  Changing a Selector in the TableConnector.js File in the src Folder

import { connect } from "react-redux";
import { startEditingProduct, startEditingSupplier } from "./stateActions";
import { deleteProduct, deleteSupplier } from "./modelActionCreators";
import { PRODUCTS, SUPPLIERS } from "./dataTypes";

export const TableConnector = (dataType, presentationComponent) => {

 const mapStateToProps = (storeData) => ({
 products: storeData.modelData[PRODUCTS],
 suppliers: storeData.modelData[SUPPLIERS].map(supp => ({
 ...supp,
 products: supp.products.map(id =>
 storeData.modelData[PRODUCTS].find(p => p.id === Number(id)) || id)
 .map(val => val.name || val)
 }))
 })

 const mapDispatchToProps = {
 editCallback: dataType === PRODUCTS
 ? startEditingProduct : startEditingSupplier,
 deleteCallback: dataType === PRODUCTS ? deleteProduct : deleteSupplier
 }

 return connect(mapStateToProps, mapDispatchToProps)(presentationComponent);
}

The new selector matches up the supplier and product data to replace each supplier object’s products
property with one that contains the name, rather than the id value, of the corresponding product, as shown
in Figure 19-6.

Chapter 19 ■ Using a Redux Data Store

559

Transforming data in a selector ensures consistency whenever the same view of the data is required,
but it does mean that the connected component is no longer working with the original data from the data
store. As a consequence, relying on the data received by one component to drive the behavior of another
component can lead to problems, and it is for this reason that I used ID values to keep track of the objects
that are selected by the user for editing.

Summary
In this chapter, I created a Redux data store and connected it to the components in the example application.
I showed you how to define actions, action creators, reducers, and selectors, and I demonstrated how
data store features can be presented to components as props. In the next chapter, I describe the advanced
features Redux provides through its API.

Figure 19-6.  Altering data in a selector

561© Adam Freeman 2019
A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_20

CHAPTER 20

Using the Data Store APIs

In Chapter 19, I showed you how to use the Redux and React-Redux packages to create a data store and
connect it to the example application. In this chapter, I describe the APIs that both packages provide for
advanced use, allowing direct access to the data store and managing the connection between a component
and the data features it requires. Table 20-1 puts the data store APIs in context.

Table 20-1.  Putting Data Store APIs in Context

Question Answer

What are they? The Redux and React-Redux packages both define APIs that support advanced
use, going beyond the basic techniques described in Chapter 19.

Why are they useful? These APIs are useful for exploring how data stores work and how components
can be connected to them. They can also be used to add features to a data store
and to fine-tune an application’s use of it.

How are they used? The Redux API is used directly on the data store object or during its creation.
The React-Redux API is used when connecting a component to the data store,
either using the connect function or using its more flexible connectAdvanced
alternative.

Are there any pitfalls or
limitations?

The APIs described in this chapter require careful thought to ensure that
you achieve the desired effect. It is easy to create an application that doesn’t
properly respond to data store changes or that updates too often.

Are there any
alternatives?

You don’t have to use the APIs described in this chapter, and most projects will
be able to make effective use of a data store using only the basic techniques
described in Chapter 19.

Chapter 20 ■ Using the Data Store APIs

562

Preparing for This Chapter
In this chapter, I continue working with the productapp project created in Chapter 18 and modified in
Chapter 19. No changes are required for this chapter. Open a new command prompt, navigate to the
productapp folder, and run the command shown in Listing 20-1 to start the development tools.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/pro-react-16.

Listing 20-1.  Starting the Development Tools

npm start

Once the development tools have started, a new browser window will open and display the content
shown in Figure 20-1.

Table 20-2.  Chapter Summary

Problem Solution Listing

Access the Redux data store API Use the methods defined by the data store object returned
by the createStore method

2–4

Observe data store changes Use the subscribe method 5

Dispatch actions Use the dispatch method 6

Create a custom connector Map the props of a component to the data store features 7–8

Add features to the data store Create a reducer enhancer 9–11

Process actions before they are
passed to the reducer

Create a middleware function 12–16

Extend the data store API Create an enhancer function 17–19

Incorporate a component’s props
into a data store mapping

Use the optional argument to the connect function 20–24

Table 20-2 summarizes the chapter.

https://github.com/Apress/pro-react-16

Chapter 20 ■ Using the Data Store APIs

563

Using the Redux Data Store API
In most React applications, access to a Redux data store is mediated through the React-Redux package,
which maps data store features to props. This is the most convenient way to use Redux, but there is also a
full API that provides direct access to data store features, which I describe in the sections that follow, starting
with the features that provide access to the data in the store.

In Chapter 19, I used the Redux createStore function to create a new data store so that I could pass it as
a prop to the Provider component from the React-Redux package. The object returned by the createStore
function can also be used directly through the four methods described in Table 20-3.

Figure 20-1.  Running the example application

Table 20-3.  The Data Store Methods

Name Description

getState() This method returns the data from the data store, as described in the
“Obtaining the Data Store State” section.

subscribe(listener) This method registers a function that will be invoked each time changes are
made to the data store, as described in the “Observing Data Store Changes”
section.

dispatch(action) This method accepts an action, typically produced by an action creator,
and sends it to the data store so that it can be processed by the reducer, as
described in the “Dispatching Actions” section.

replaceReducer(next) This method replaces the reducer used by the data store to process actions.
This method is not useful in most project, and middleware provides a more
useful mechanism for changing the behavior of the data store.

Chapter 20 ■ Using the Data Store APIs

564

Obtaining the Data Store State
The getState method returns the data in the data store and allows for the contents of the store to be read.
As a demonstration, I added a file called StoreAccess.js to the store folder and used it to define the
component shown in Listing 20-2.

Listing 20-2.  The Contents of the StoreAccess.js File in the src/store Folder

import React, { Component } from "react";

export class StoreAccess extends Component {

 render() {
 return <div className="bg-info">
 <pre className="text-white">
 { JSON.stringify(this.props.store.getState(), null, 2) }
 </pre>
 </div>
 }
}

The component receives the data store object as a prop and calls the getState method, which returns
the data object for the store. To format the data, I use the JSON.stringify method, which serializes
the JavaScript object to JSON and then formats the result so that it can be easily read. In Listing 20-3,
I have added a grid layout so that the new component is displayed alongside the rest of the application
functionality.

Listing 20-3.  Displaying the Data Store Contents in the App.js File in the src Folder

import React, { Component } from "react";
import { Provider } from "react-redux";
import dataStore from "./store";
import { Selector } from "./Selector";
import { ProductDisplay } from "./ProductDisplay";
import { SupplierDisplay } from "./SupplierDisplay";
import { StoreAccess } from "./store/StoreAccess";

export default class App extends Component {

 render() {
 return <div className="container-fluid">
 <div className="row">
 <div className="col-3">
 <StoreAccess store={ dataStore } />
 </div>
 <div className="col">
 <Provider store={ dataStore }>
 <Selector>
 <ProductDisplay name="Products" />
 <SupplierDisplay name="Suppliers" />
 </Selector>
 </Provider>

Chapter 20 ■ Using the Data Store APIs

565

 </div>
 </div>
 </div>
 }
}

There can be a lot of data in a store, so I have displayed the JSON text so it will appear in its own
column, as shown in Figure 20-2. Don’t worry if you can’t fit all of the text on-screen because I’ll narrow the
focus to a subset of the data shortly.

Figure 20-2.  Getting the contents of the data store

If you examine the data that has been obtained through the getState method, you will see that
everything is included so that both the contents of the modelData and stateData properties are available.
The segmentation that is applied to reducers doesn’t affect the data returned by the getState method,
which provides access to everything in the data store.

Narrowing the Focus on Specific Data
To make it easier to keep track of the contents of the data store, I am going to focus on a subset of the data
returned by the getState method, which will allow me to more easily demonstrate other Redux features. In
Listing 20-4, I have changed the StoreAccess component so that it displays only the first product object and
the set of state data variables.

Listing 20-4.  Focusing the Data in the StoreAccess.js File in the src/store Folder

import React, { Component } from "react";

export class StoreAccess extends Component {

 constructor(props) {
 super(props);
 this.selectors = {

Chapter 20 ■ Using the Data Store APIs

566

 product: (storeState) => storeState.modelData.products[0],
 state: (storeState) => storeState.stateData
 }
 }

 render() {
 return <div className="bg-info">
 <pre className="text-white">
 { JSON.stringify(this.selectData(), null, 2) }
 </pre>
 </div>
 }

 selectData() {
 let storeState = this.props.store.getState();
 return Object.entries(this.selectors).map(([k, v]) => [k, v(storeState)])
 .reduce((result, [k, v]) => ({ ...result, [k]: v}), {});
 }
}

I have defined a selectors object whose property values are functions that select data from the store.
The selectData method uses the getState method to get the data from the data store and invokes each
selector function to generate the data that is rendered by the component. (The use of the entries, map, and
reduce methods produces an object with the same property names as the selectors prop with values that
are produced by invoking each selector function.)

The changes to the component select a more manageable section of the data from the store, as shown in
Figure 20-3.

Figure 20-3.  Selecting a subset of the store data

Chapter 20 ■ Using the Data Store APIs

567

Observing Data Store Changes
The object returned by the getState method is a snapshot of the data in the store, which isn’t automatically
updated when the store changes. The usual React change detection features don’t work on the store because
it is not part of a component’s state data. As a consequence, changes made to the data in the store do not
trigger a React update.

Redux provides the subscribe method to receive notifications when a change has been made
to the data store, which allows the getState method to be called again to get a fresh snapshot of the data.
In Listing 20-5, I have used the subscribe method in the StoreAccess component to ensure that the data
displayed by the component is kept up-to-date.

Listing 20-5.  Subscribing to Change Notifications in the StoreAccess.js File in the src/store Folder

import React, { Component } from "react";

export class StoreAccess extends Component {

 constructor(props) {
 super(props);
 this.selectors = {
 product: (storeState) => storeState.modelData.products[0],
 state: (storeState) => storeState.stateData
 }
 this.state = this.selectData();
 }

 render() {
 return <div className="bg-info">
 <pre className="text-white">
 { JSON.stringify(this.state, null, 2) }
 </pre>
 </div>
 }

 selectData() {
 let storeState = this.props.store.getState();
 return Object.entries(this.selectors).map(([k, v]) => [k, v(storeState)])
 .reduce((result, [k, v]) => ({ ...result, [k]: v}), {});
 }

 handleDataStoreChange() {
 let newData = this.selectData();
 Object.keys(this.selectors)
 .filter(key => this.state[key] !== newData[key])
 .forEach(key => this.setState({ [key]: newData[key]}));
 }

 componentDidMount() {
 this.unsubscriber =
 this.props.store.subscribe(() => this.handleDataStoreChange());
 }

Chapter 20 ■ Using the Data Store APIs

568

 componentWillUnmount() {
 this.unsubscriber();
 }
}

I subscribe to updates in the componentDidMount method. The result from the subscribe method is
a function that can be used to unsubscribe from updates, which I invoke in the componentWillUnmount
method.

The argument to the subscribe method is a function that will be invoked when there have been
changes to the data store. No argument is provided to the function, which is just a signal that there has been
a change and that the getState method can be used to get the new contents of the data store.

Redux doesn’t provide any information about what data has been changed and so I defined the
handleStoreChange method to inspect the data obtained by each of the selector functions to see whether
the data that the component renders has changed. I use the component state data feature to keep track of
the displayed data and use the setState method to trigger updates. It is important to perform a state change
only when the data displayed by the component has changed; otherwise, an update would be performed for
every change made to the data store.

To see the effect of a change, click the Edit button for the Trail Shoes product, make a change to the
Name field, and click the Save button. As you go through this process, the data displayed by the StoreAccess
component will reflect the changes in the data store, as shown in Figure 20-4.

Figure 20-4.  Receiving change notifications from the data store

Chapter 20 ■ Using the Data Store APIs

569

Dispatching Actions
Actions can be dispatched using the dispatch method, which is the same dispatch to which the React-
Redux package provided access in Chapter 19 when I needed to dispatch multiple actions.

As I explained in Chapter 19, actions are created through action creators. In Listing 20-6, I added a
button to the StoreAccess component that uses an action creator to obtain an action object, which is then
sent to the data store using the dispatch method.

Listing 20-6.  Dispatching an Action in the StoreAccess.js File in the src/store Folder

import React, { Component } from "react";
import { startCreatingProduct } from "./stateActions";

export class StoreAccess extends Component {

 constructor(props) {
 super(props);
 this.selectors = {
 product: (storeState) => storeState.modelData.products[0],
 state: (storeState) => storeState.stateData
 }
 this.state = this.selectData();
 }

 render() {
 return <React.Fragment>
 <div className="text-center">
 <button className="btn btn-primary m-1"
 onClick={ this.dispatchAction }>
 Dispatch Action
 </button>
 </div>
 <div className="bg-info">
 <pre className="text-white">
 { JSON.stringify(this.state, null, 2) }
 </pre>
 </div>
 </React.Fragment>
 }

 dispatchAction = () => {
 this.props.store.dispatch(startCreatingProduct())
 }

 selectData() {
 let storeState = this.props.store.getState();
 return Object.entries(this.selectors).map(([k, v]) => [k, v(storeState)])
 .reduce((result, [k, v]) => ({ ...result, [k]: v}), {});
 }

Chapter 20 ■ Using the Data Store APIs

570

 handleDataStoreChange() {
 let newData = this.selectData();
 Object.keys(this.selectors)
 .filter(key => this.state[key] !== newData[key])
 .forEach(key => this.setState({ [key]: newData[key]}));
 }

 componentDidMount() {
 this.unsubscriber =
 this.props.store.subscribe(() => this.handleDataStoreChange());
 }

 componentWillUnmount() {
 this.unsubscriber();
 }
}

The button responds to the click event by invoking the dispatchAction method, which invokes the
startCreatingProduct action creator and passes the result to the data store’s dispatch method. The result
is that clicking the button toggles the display to show the editor, as shown in Figure 20-5.

Figure 20-5.  Dispatching an action

Creating a Connector Component
The ability to get the current data from the store, receive change notifications, and dispatch actions provides
all the features to create a basic connector component that provides a rudimentary equivalent to the React-
Redux package I used in the example application. To create the facility to connect components to the data
store through the Redux API, I added a file called CustomConnector.js to the store folder and added the
code shown in Listing 20-7.

Chapter 20 ■ Using the Data Store APIs

571

■■ Caution I don’t recommend using a custom connector in real projects. The React-Redux package has
additional features and has been thoroughly tested, but combining core React features with the Redux data
store API provides a useful example of how advanced features can be created.

Listing 20-7.  The Contents of the CustomConnector.js File in the src/store Folder

import React, { Component } from "react";

export const CustomConnectorContext = React.createContext();

export class CustomConnectorProvider extends Component {

 render() {
 return <CustomConnectorContext.Provider value={ this.props.dataStore }>
 { this.props.children }
 </CustomConnectorContext.Provider>
 }
}

export class CustomConnector extends React.Component {
 static contextType = CustomConnectorContext;

 constructor(props, context) {
 super(props, context);
 this.state = this.selectData();
 this.functionProps = Object.entries(this.props.dispatchers)
 .map(([k, v]) => [k, (...args) => this.context.dispatch(v(...args))])
 .reduce((result, [k, v]) => ({...result, [k]: v}), {})
 }

 render() {
 return React.Children.map(this.props.children, c =>
 React.cloneElement(c, { ...this.state, ...this.functionProps }))
 }

 selectData() {
 let storeState = this.context.getState();
 return Object.entries(this.props.selectors).map(([k, v]) =>
 [k, v(storeState)])
 .reduce((result, [k, v]) => ({ ...result, [k]: v}), {});
 }

 handleDataStoreChange() {
 let newData = this.selectData();
 Object.keys(this.props.selectors)
 .filter(key => this.state[key] !== newData[key])
 .forEach(key => this.setState({ [key]: newData[key]}));
 }

Chapter 20 ■ Using the Data Store APIs

572

 componentDidMount() {
 this.unsubscriber =
 this.context.subscribe(() => this.handleDataStoreChange());
 }

 componentWillUnmount() {
 this.unsubscriber();
 }
}

I have used the context API to make the data store available through a CustomConnectorProvider
component, which is received by a CustomConnector component that receives selector and action creator
props. The selector props are processed to set the state of the component so that changes can be detected
and processed, while the action creator props are wrapped in the dispatch method so they can be invoked
as function props by the connected child components. To demonstrate the custom connector, I added the
content shown in Listing 20-8 to the App component.

Listing 20-8.  Using the Custom Connector in the App.js File in the src Folder

import React, { Component } from "react";
import { Provider } from "react-redux";
import dataStore, { deleteProduct } from "./store";
import { Selector } from "./Selector";
import { ProductDisplay } from "./ProductDisplay";
import { SupplierDisplay } from "./SupplierDisplay";
import { StoreAccess } from "./store/StoreAccess";
import { CustomConnector, CustomConnectorProvider } from "./store/CustomConnector";
import { startEditingProduct } from "./store/stateActions";
import { ProductTable } from "./ProductTable";

const selectors = {
 products: (store) => store.modelData.products
}

const dispatchers = {
 editCallback: startEditingProduct,
 deleteCallback: deleteProduct
}

export default class App extends Component {

 render() {
 return <div className="container-fluid">
 <div className="row">
 <div className="col-3">
 <StoreAccess store={ dataStore } />
 </div>
 <div className="col">
 <Provider store={ dataStore }>
 <Selector>
 <ProductDisplay name="Products" />
 <SupplierDisplay name="Suppliers" />

Chapter 20 ■ Using the Data Store APIs

573

 </Selector>
 </Provider>
 </div>
 </div>
 <div className="row">
 <div className="col">
 <CustomConnectorProvider dataStore={ dataStore }>
 <CustomConnector selectors={ selectors }
 dispatchers={ dispatchers }>
 <ProductTable/>
 </CustomConnector>
 </CustomConnectorProvider>
 </div>
 </div>
 </div>
 }
}

I don’t want to replace the existing application content, so I added a row to the Bootstrap grid
layout and used it to display a ProductTable component that is connected to the data store using the
components defined in Listing 20-8. The CustomConnector component is defined as the child of the
CustomConnectorProvider component for brevity, and the effect is to map the selectors and action creators
to props that are presented to the ProductTable component. The result is that the application displays a
second table of products, both of which reflect changes to the data they display, as shown in Figure 20-6.

Figure 20-6.  Using a custom data store connector

Chapter 20 ■ Using the Data Store APIs

574

Enhancing Reducers
As I explained in Chapter 19, a reducer is a function that processes an action and updates the data store.
A reducer enhancer is a function that accepts one or more normal reducers and uses them to add additional
features to the data store.

Redux has no special awareness when a reducer enhancer is used because the result appears just like
a regular reducer and is passed to the createStore method in just the same way, as this statement from the
index.js file in the src/store folder shows:

...
export default createStore(combineReducers(
 {
 modelData: modelReducer,
 stateData: stateReducer
 }));
...

The combineReducers function is a reducer enhancer that comes built-in to Redux and that I used in
Chapter 19 to keep the reducer logic for the model and state data separate.

Reducer enhancers are useful because they receive the actions before they are processed, which means
they can alter actions, reject them, or handle them in special ways, such as processing them using multiple
reducers, which is what the combineReducers function does.

To demonstrate a reducer enhancer, I added a file called customReducerEnhancer.js to the store
folder and added the code shown in Listing 20-9.

Listing 20-9.  The Contents of the customReducerEnhancer.js File in the src/store Folder

import { initialData } from "./initialData";

export const STORE_RESET = "store_clear";

export const resetStore = () => ({ type: STORE_RESET });

export function customReducerEnhancer(originalReducer) {

 let intialState = null;

 return (storeData, action) => {
 if (action.type === STORE_RESET && initialData != null) {
 return intialState;
 } else {
 const result = originalReducer(storeData, action);
 if (intialState == null) {
 intialState = result;
 }
 return result;
 }
 }
}

Chapter 20 ■ Using the Data Store APIs

575

The customReducerEnhancer function accepts a reducer as its argument and returns a new reducer
function that can be used by the data store. The enhancer function makes a note of the initial state of the
data store, which is obtained by the first action that is sent to the reducers. A new action type, STORE_RESET,
causes the enhancer function to return the initial data store state, which has the effect of resetting the data
store. All other actions are passed on to the normal reducer. To help implement the store reset feature,
Listing 20-9 defines a resetStore action creator function. In Listing 20-10, I have applied the reducer
enhancer to the data store.

Listing 20-10.  Applying a Reducer Enhancer in the index.js File in the src/store Folder

import { createStore, combineReducers } from "redux";
import modelReducer from "./modelReducer";
import stateReducer from "./stateReducer";
import { customReducerEnhancer } from "./customReducerEnhancer";

const enhancedReducer = customReducerEnhancer(
 combineReducers(
 {
 modelData: modelReducer,
 stateData: stateReducer
 })
);

export default createStore(enhancedReducer);

export { saveProduct, saveSupplier, deleteProduct, deleteSupplier }
 from "./modelActionCreators";

Reducer enhancers can be combined. In this listing, I use the reducer created by the combineReducers
function as the argument to the customReducerEnhancer function. In Listing 20-11, I used the resetStore
action creator to create an action when the user clicks the button rendered by the StoreAccess component.

Listing 20-11.  Changing Actions in the StoreAccess.js File in the src/store Folder

import React, { Component } from "react";
//import { startCreatingProduct } from "./stateActions";
import { resetStore } from "./customReducerEnhancer";

export class StoreAccess extends Component {

 constructor(props) {
 super(props);
 this.selectors = {
 product: (storeState) => storeState.modelData.products[0],
 state: (storeState) => storeState.stateData
 }
 this.state = this.selectData();
 }

Chapter 20 ■ Using the Data Store APIs

576

 render() {
 return <React.Fragment>
 <div className="text-center">
 <button className="btn btn-primary m-1"
 onClick={ this.dispatchAction }>
 Dispatch Action
 </button>
 </div>
 <div className="bg-info">
 <pre className="text-white">
 { JSON.stringify(this.state, null, 2) }
 </pre>
 </div>
 </React.Fragment>
 }

 dispatchAction = () => {
 this.props.store.dispatch(resetStore())
 }

 // ...other methods omitted for brevity...
}

The effect of the enhancer is that the application’s state and model data are reset when the user clicks
the Dispatch Action button, with the result that any changes are discarded, as shown in Figure 20-7.

Figure 20-7.  Resetting the data in the store

Chapter 20 ■ Using the Data Store APIs

577

Using Data Store Middleware
Redux provides support for data store middleware, which are functions that receive actions after they have
been passed to the dispatch method and before they reach the reducer, allowing them to be intercepted,
transformed, or processed in some other way. The most common uses for middleware are to add support
for actions that perform asynchronous tasks and to wrap actions in functions so they can be dispatched
conditionally or in the future.

■■ Note T here are middleware packages available that address common project needs and that you should
consider instead of writing custom code. The redux-promise package supports asynchronous actions (see
https://github.com/redux-utilities/redux-promise), and the redux-thunk package supports action
creators that return functions (see https://github.com/reduxjs/redux-thunk). I find, however, that neither
of these packages works in just the way I require, so I prefer to create my own middleware.

To demonstrate the use of middleware, I added a file called multiActionMiddleware.js to the
src/store folder and added the code shown in Listing 20-12.

Listing 20-12.  The Contents of the multiActionMiddleware.js File in the src/store Folder

export function multiActions({dispatch, getState}) {
 return function receiveNext(next) {
 return function processAction(action) {
 if (Array.isArray(action)) {
 action.forEach(a => next(a));
 } else {
 next(action);
 }
 }
 }
}

Middleware is expressed as a set of functions that return other functions, and to make it easier to
understand, I have used the function keyword in Listing 20-12. The outer function, multiActions, is called
when the middleware is registered with the data store, and it receives the data store’s dispatch and getState
method, like this:

...
export function multiActions({dispatch, getState}) {
...

This provides the middleware with the ability to dispatch actions and to get the data currently in the
data store. A data store can use multiple middleware components; actions are passed from one to the next in
a chain, and then they are passed to the data store’s dispatch method. The job of the multiActions function
is to return a function that will be invoked once the middleware chain has been assembled and that provides
the next middleware component in the chain.

...
export function multiActions({dispatch, getState}) {
 return function receiveNext(next) {
...

https://github.com/redux-utilities/redux-promise
https://github.com/reduxjs/redux-thunk

Chapter 20 ■ Using the Data Store APIs

578

A middleware component will usually process an action and then pass it on to the next component in
the chain by invoking the next function.

The result of the receiveNext function is to return the innermost function, which is invoked when an
action has been dispatched to the data store and which I have called processAction in Listing 20-12.

...
export function multiActions({dispatch, getState}) {
 return function receiveNext(next) {
 return function processAction(action) {
...

This function is able to change or replace the action object before it is passed on to the next middleware
component. It is also possible to short-circuit the chain by invoking the dispatch method received by the
outer function or do nothing at all (in which case the action won’t be processed by the data store). The
middleware component that I defined in Listing 20-12 checks to see whether the action is an array, in which
case it passes on each object contained in the array to the next middleware component for processing.

Defining the nested functions helps explain how a middleware component is defined, but the
convention is to use fat arrow functions, as shown in Listing 20-13.

Listing 20-13.  Using Fat Arrow Functions in the multiActionMiddleware.js File in the src/store Folder

export const multiActions = ({dispatch, getState}) => next => action => {
 if (Array.isArray(action)) {
 action.forEach(a => next(a));
 } else {
 next(action);
 }
}

This is the same functionality as Listing 20-12 but expressed more concisely. Redux provides an
applyMiddlware function that is used to create the middleware chain for use with the data store and which I
used in Listing 20-14 to add the new middleware component to the application.

Listing 20-14.  Registering Middleware in the index.js File in the src/store Folder

import { createStore, combineReducers, applyMiddleware } from "redux";
import modelReducer from "./modelReducer";
import stateReducer from "./stateReducer";
import { customReducerEnhancer } from "./customReducerEnhancer";
import { multiActions } from "./multiActionMiddleware";

const enhancedReducer = customReducerEnhancer(
 combineReducers(
 {
 modelData: modelReducer,
 stateData: stateReducer
 })
);

Chapter 20 ■ Using the Data Store APIs

579

export default createStore(enhancedReducer, applyMiddleware(multiActions));

export { saveProduct, saveSupplier, deleteProduct, deleteSupplier }
 from "./modelActionCreators";

The middleware function is passed as an argument to the Redux applyMiddleware function, whose
result is then passed as an argument to the createStore function.

■■ Tip  Multiple middleware functions can be passed as separate arguments to the applyMiddleware
function, which will chain them together in the order they have been specified.

Now that the data store can process arrays of actions, I can define action creators that generate more
complex results and that allow connector components to be expressed more simply. I added a file called
multiActionCreators.js in the src/store folder and used it to define the action creator shown in Listing 20-15.

Listing 20-15.  The Contents of the multiActionCreators.js File in the src/store Folder

import { PRODUCTS } from "./dataTypes";
import { saveProduct, saveSupplier } from "./modelActionCreators";
import { endEditing } from "./stateActions";

export const saveAndEndEditing = (data, dataType) =>
 [dataType === PRODUCTS ? saveProduct(data) : saveSupplier(data), endEditing()];

It is not a requirement to put such action creators in a separate file, but this creator mixes actions that
affect model and state data, and I prefer to keep them apart. The saveAndEndEditing action receives a
data object and type and uses it to produce an array of actions that will be received by the middleware and
dispatched in sequence. In Listing 20-16, I have replaced the statements in the EditorConnector component
that used the dispatch method directly to send multiple events.

Listing 20-16.  Dispatching Multiple Actions in the EditorConnector.js File in the src/store Folder

import { connect } from "react-redux";
import { endEditing } from "./stateActions";
//import { saveProduct, saveSupplier } from "./modelActionCreators";
import { PRODUCTS, SUPPLIERS } from "./dataTypes";
import { saveAndEndEditing } from "./multiActionCreators";

export const EditorConnector = (dataType, presentationComponent) => {

 const mapStateToProps = (storeData) => ({
 editing: storeData.stateData.editing
 && storeData.stateData.selectedType === dataType,
 product: (storeData.modelData[PRODUCTS]
 .find(p => p.id === storeData.stateData.selectedId)) || {},
 supplier:(storeData.modelData[SUPPLIERS]
 .find(s => s.id === storeData.stateData.selectedId)) || {}
 })

Chapter 20 ■ Using the Data Store APIs

580

 const mapDispatchToProps = {
 cancelCallback: endEditing,
 saveCallback: (data) => saveAndEndEditing(data, dataType)
 }

 return connect(mapStateToProps, mapDispatchToProps)(presentationComponent);
}

There is no change in the behavior of the application, but the code is more concise and easier to understand.

Enhancing the Data Store
Most projects will not need to modify the behavior of the data store, and if they do, the middleware features
described in the previous chapter will be sufficient. But if middleware doesn’t provide sufficient flexibility, a
more advanced option is to use an enhancer function, which is a function that takes responsibility for creating
the data store object and that can provide wrappers around the standard methods or define new ones.

The applyMiddleware function I used earlier is an enhancer function. This function replaces the data
store’s dispatch method so that it can channel actions through its chain of middleware components before
they are passed to the reducer.

To demonstrate the use of enhancer functions, I am going to add a new method to the data store that
dispatches actions asynchronously. I added a file called asyncEnhancer.js to the src/store folder and
added the code shown in Listing 20-17.

Listing 20-17.  The Contents of the asyncEnhancer.js File in the src/store Folder

export function asyncEnhancer(delay) {
 return function(createStoreFunction) {
 return function(...args) {
 const store = createStoreFunction(...args);
 return {
 ...store,
 dispatchAsync: (action) => new Promise((resolve, reject) => {
 setTimeout(() => {
 store.dispatch(action);
 resolve();
 }, delay);
 })
 };
 }
 }
}

The enhancer dispatches actions asynchronously, returning a Promise that is resolved once the action
has been dispatched. There are currently no tasks in the example application that need asynchronous work,
and so I have introduced a delay before dispatching actions to similar a background activity.

This is another Redux feature that requires a nested set of functions, which I defined using the function
keyword so I can explain how they fit together. The outer function is invoked when the enhancer is applied
to the data store and provides an opportunity to receive arguments that will configure the enhancer’s
behavior. The outermost function in Listing 20-17 receives the length of the delay that will be applied before
an action is dispatched.

Chapter 20 ■ Using the Data Store APIs

581

...
export function asyncEnhancer(delay) {
...

Now it gets more complex: the result of the outer function is a function that receives the createStore
function. The word function appears too many times for the previous sentence to make immediate sense,
and it is worth unpacking what happens.

To give enhancers complete control, Redux lets them replace the createStore function with a custom
alternative. But most reducers will just need to add features to the standard data store and so Redux provides
the existing createStore function.

...
export function asyncEnhancer(delay) {
 return function(createStoreFunction) {
...

When the enhancer is applied, this function will be invoked, and the result will be used to replace the
standard createStore function, which takes us to the innermost function in Listing 20-17, which is the one
that does all the work.

...
return function(...args) {
 const store = createStoreFunction(...args);
 return {
 ...store,
 dispatchAsync: (action) => new Promise((resolve, reject) => {

 // ...statements omitted for brevity...

 })
 };
}
...

When a data store is created, Redux invokes the function provided by the enhancer and uses the result
as the data store object, ensuring that any additional features are available to the rest of the application.
In this case, the enhancer uses the standard createStore function and then adds a dispatchAsync method
to the result. The new method receives an action and dispatches it after a delay. Using the function keyword
makes it easier to see the relationship between the nested functions, but enhancers are typically expressed
using fat arrow functions, as shown in Listing 20-18. This is the same functionality but expressed more
concisely.

Listing 20-18.  Using Arrow Functions in the asyncEnhancer.js File in the src/store Folder

export const asyncEnhancer = delay => createStoreFunction => (...args) => {
 const store = createStoreFunction(...args);
 return {
 ...store,
 dispatchAsync: (action) => new Promise((resolve, reject) => {
 setTimeout(() => {
 store.dispatch(action);
 resolve();

Chapter 20 ■ Using the Data Store APIs

582

 }, delay);
 })
 };
}

Applying the Enhancer
The standard createStore function can accept only a single enhancer function, and I am already using the
applyMiddleware enhancer. Fortunately, reducer functions can be composed so that the result from one
enhancer can be passed to another. To simplify the process of combining functions, Redux provides the
compose function, which I have used in Listing 20-19 to apply the new enhancer to the data store.

Listing 20-19.  Adding an Enhancer in the index.js File in the src/store Folder

import { createStore, combineReducers, applyMiddleware, compose } from "redux";
import modelReducer from "./modelReducer";
import stateReducer from "./stateReducer";
import { customReducerEnhancer } from "./customReducerEnhancer";
import { multiActions } from "./multiActionMiddleware";
import { asyncEnhancer } from "./asyncEnhancer";

const enhancedReducer = customReducerEnhancer(
 combineReducers(
 {
 modelData: modelReducer,
 stateData: stateReducer
 })
);

export default createStore(enhancedReducer,
 compose(applyMiddleware(multiActions), asyncEnhancer(2000)));

export { saveProduct, saveSupplier, deleteProduct, deleteSupplier }
 from "./modelActionCreators";

The result from the compose function is passed to createStore, and both enhancers are applied to the data
store, adding middleware and the new dispatchAsync method. In Listing 20-20, I updated the StoreAccess
component so that it uses the enhanced data store method when it dispatches an action and disables the
button element until the background task is complete.

Listing 20-20.  Using the Enhanced Data Store in the StoreAccess.js File in the src/store Folder

import React, { Component } from "react";
import { resetStore } from "./customReducerEnhancer";

export class StoreAccess extends Component {

 constructor(props) {
 super(props);
 this.selectors = {

Chapter 20 ■ Using the Data Store APIs

583

 product: (storeState) => storeState.modelData.products[0],
 state: (storeState) => storeState.stateData
 }
 this.state = this.selectData();
 this.buttonRef = React.createRef();
 }

 render() {
 return <React.Fragment>
 <div className="text-center">
 <button className="btn btn-primary m-1" ref={ this.buttonRef }
 onClick={ this.dispatchAction }>
 Dispatch Action
 </button>
 </div>
 <div className="bg-info">
 <pre className="text-white">
 { JSON.stringify(this.state, null, 2) }
 </pre>
 </div>
 </React.Fragment>
 }

 dispatchAction = () => {
 this.buttonRef.current.disabled = true;
 this.props.store.dispatchAsync(resetStore())
 .then(data => this.buttonRef.current.disabled = false);
 }

 // ...other methods omitted for brevity...
}

The result is that clicking the button dispatches the action, which will be processed after a two-second
display. The component receives a Promise when it dispatches the action, which is resolved once it has been
dispatched, allowing the component to enable the button element again, as shown in Figure 20-8.

Figure 20-8.  Using an enhanced data store

Chapter 20 ■ Using the Data Store APIs

584

Using the React-Redux API
The previous sections demonstrated that you can work directly with the Redux API to connect components
to the data store. For most projects, however, it is simpler and easier to use the React-Redux package as
demonstrated in Chapter 19. In the sections that follow, I describe the advanced options that the React-
Redux package provides for configuring how components are connected to the data store.

Advanced Connect Features
The connect method is typically used with two arguments, which select the data props and the function
props, like this statement from the TableConnector component:

...
return connect(mapStateToProps, mapDispatchToProps)(presentationComponent);
...

The connect function can accept some additional arguments for advanced features and can receive
arguments expressed in different ways. In this section, I explain the options for using the arguments you are
already familiar with and introduce the new arguments and demonstrate their use.

Mapping Data Props
The first argument to the connect function selects the data from the store for the component’s data props.
Usually, the selectors are defined as a function that receives the value from the store’s getState method and
returns an object whose properties correspond to the prop names. The selector function is invoked when
there is a change to the data store, and the higher-order component created by the connect function uses the
shouldComponentUpdate lifecycle method (described in Chapter 13) to see whether any the changed values
require the connector component to update.

The selection of data values is flexible and isn’t just about mapping data store properties to props. In
the TableConnector component, for example, I used the selector function to map data values from different
parts of the store, like this:

...
const mapStateToProps = (storeData) => ({
 products: storeData.modelData[PRODUCTS],
 suppliers: storeData.modelData[SUPPLIERS].map(supp => ({
 ...supp,
 products: supp.products.map(id =>
 storeData.modelData[PRODUCTS].find(p => p.id === Number(id)) || id)
 .map(val => val.name || val)
 }))
})
...

The selector function can also be expressed with a second argument, which is used to receive the
props provided for the connector component by its parent. This allows for the component’s props to be
used in selecting data and ensures that the selector function will be reevaluated when the component’s
props change as well as when there are changes to the data store. Listing 20-21 demonstrates the use of the
additional argument.

Chapter 20 ■ Using the Data Store APIs

585

Listing 20-21.  Using an Additional Selector Argument in the TableConnector.js File in the src/store Folder

import { connect } from "react-redux";
import { startEditingProduct, startEditingSupplier } from "./stateActions";
import { deleteProduct, deleteSupplier } from "./modelActionCreators";
import { PRODUCTS, SUPPLIERS } from "./dataTypes";

export const TableConnector = (dataType, presentationComponent) => {

 const mapStateToProps = (storeData, ownProps) => {
 if (!ownProps.needSuppliers) {
 return { products: storeData.modelData[PRODUCTS] };
 } else {
 return {
 suppliers: storeData.modelData[SUPPLIERS].map(supp => ({
 ...supp,
 products: supp.products.map(id =>
 storeData.modelData[PRODUCTS]
 .find(p => p.id === Number(id)) || id)
 .map(val => val.name || val)
 }))
 }
 }
 }

 const mapDispatchToProps = {
 editCallback: dataType === PRODUCTS
 ? startEditingProduct : startEditingSupplier,
 deleteCallback: dataType === PRODUCTS ? deleteProduct : deleteSupplier
 }

 return connect(mapStateToProps, mapDispatchToProps)(presentationComponent);
}

One problem with creating connectors that are applied to multiple components is that too much data
is selected, which can lead to unnecessary updates when a change in the data store affects a prop that is
used by one component but not another. The TableConnector component is a connector for both tables of
product and supplier data, but only the supplier data requires the suppliers prop to be mapped from the
data store. For the product table, not only does this mean that the computation of the suppliers property is
wasted, but it causes updates when data that it does not display is changed.

The additional argument—which is conventionally named ownProps—allows each instance of a
connector component to be customized through the standard React prop features. In Listing 20-21, I used
the ownProps argument to decide which props are mapped to the data store based on the value of a prop
named needSuppliers applied to the connector component. If the value is true, then a suppliers prop is
mapped to the data store and the products prop is mapped otherwise.

In Listing 20-22, I have added the needSuppliers prop to the ConnectedTable component rendered by
the SupplierDisplay component, which will ensure that it maps the data that its presentation component
requires. The corresponding ConnectedTable component rendered by the ProductDisplay component
doesn’t have the needSuppliers prop and won’t receive the data from the store.

Chapter 20 ■ Using the Data Store APIs

586

Listing 20-22.  Adding a Prop in the SupplierDisplay.js File in the src Folder

...
export const SupplierDisplay = connectFunction(
 class extends Component {

 render() {
 if (this.props.editing) {
 return <ConnectedEditor key={ this.props.selected.id || -1 } />
 } else {
 return <div className="m-2">
 <ConnectedTable needSuppliers={ true } />
 <div className="text-center">
 <button className="btn btn-primary m-1"
 onClick={ this.props.createSupplier }>
 Create Supplier
 </button>
 </div>
 </div>
 }
 }
 })
...

There is no difference in the behavior of the application, but behind the scenes, each presentation
component that is connected to the data store by the ConnectedTable components uses different props.

THE DANGERS OF PREMATURE OPTIMIZATION

Don’t worry too much about optimizing updates until you find you have a performance problem. Almost
all optimization adds complexity to a project, and you may find that the performance penalty incurred
by your unoptimized code is not discernable or not enough of a problem to worry about. It is easy to get
bogged down in trying to optimize away problems that may not exist, and a better approach is to write
the clearest, simplest code you can and then optimize the parts that don’t behave the way you require.

Mapping Function Props
As I explained in Chapter 19, the second connect argument, which maps between function props, can be
specified as an object or a function. When an object is provided, the value of each of the object’s properties
is assumed to be an action creator function and is automatically wrapped in the dispatch method and
mapped to a function prop. When a function is provided, the function is given the dispatch method and is
responsible for using it to create function prop mappings.

■■ Tip  You can omit the second argument to the connect function, in which the dispatch method is mapped
to a prop, also named dispatch, which allows the component to create actions and dispatch them directly.

Chapter 20 ■ Using the Data Store APIs

587

If you specify a function, then you can also choose to receive the connector components props, as
described in the previous section. This allows for advanced components to receive direction from their
parent about the set of function props that are mapped to the data store. In Listing 20-23, I have used a
function to configure function props and defined a second argument to receive the component’s props.

Listing 20-23.  Using Props in the TableConnector.js File in the src/store Folder

import { connect } from "react-redux";
import { startEditingProduct, startEditingSupplier } from "./stateActions";
import { deleteProduct, deleteSupplier } from "./modelActionCreators";
import { PRODUCTS, SUPPLIERS } from "./dataTypes";

export const TableConnector = (dataType, presentationComponent) => {

 const mapStateToProps = (storeData, ownProps) => {
 if (!ownProps.needSuppliers) {
 return { products: storeData.modelData[PRODUCTS] };
 } else {
 return {
 suppliers: storeData.modelData[SUPPLIERS].map(supp => ({
 ...supp,
 products: supp.products.map(id =>
 storeData.modelData[PRODUCTS]
 .find(p => p.id === Number(id)) || id)
 .map(val => val.name || val)
 }))
 }
 }
 }

 const mapDispatchToProps = (dispatch, ownProps) => {
 if (!ownProps.needSuppliers) {
 return {
 editCallback: (...args) => dispatch(startEditingProduct(...args)),
 deleteCallback: (...args) => dispatch(deleteProduct(...args))
 }
 } else {
 return {
 editCallback: (...args) => dispatch(startEditingSupplier(...args)),
 deleteCallback: (...args) => dispatch(deleteSupplier(...args))
 }
 }
 }

 return connect(mapStateToProps, mapDispatchToProps)(presentationComponent);
}

Chapter 20 ■ Using the Data Store APIs

588

Merging Props
The connect function accepts a third argument that is used to compose the props before they are passed to
the presentation component. This argument, known as mergeProps, is a function that receives the mapped
data props, the function props, and the connected components props and returns an object that merges
them into the object used as the props for the presentation component.

By default, the props are composed starting with the props received from the parent, which are then
combined with the data props and function props. This means a prop received from the parent will be
replaced with a mapped data prop that has the same name, and both will be replaced if there is a mapped
function prop with the same name. The mergeProps function can be used to change the priority when there
is a name clash, as well as binding actions so they are dispatched using values received as props from the
parent. Listing 20-24 shows how props can be merged explicitly using the mergeProps argument.

Listing 20-24.  Merging Props in the EditorConnector.js File in the src/store Folder

import { connect } from "react-redux";
import { endEditing } from "./stateActions";
import { PRODUCTS, SUPPLIERS } from "./dataTypes";
import { saveAndEndEditing } from "./multiActionCreators";

export const EditorConnector = (dataType, presentationComponent) => {

 const mapStateToProps = (storeData) => ({
 editing: storeData.stateData.editing
 && storeData.stateData.selectedType === dataType,
 product: (storeData.modelData[PRODUCTS]
 .find(p => p.id === storeData.stateData.selectedId)) || {},
 supplier:(storeData.modelData[SUPPLIERS]
 .find(s => s.id === storeData.stateData.selectedId)) || {}
 })

 const mapDispatchToProps = {
 cancelCallback: endEditing,
 saveCallback: (data) => saveAndEndEditing(data, dataType)
 }

 const mergeProps = (dataProps, functionProps, ownProps) =>
 ({ ...dataProps, ...functionProps, ...ownProps })

 return connect(mapStateToProps, mapDispatchToProps,
 mergeProps)(presentationComponent);
}

The mergeProps function in Listing 20-24 combines the properties from each prop’s object. The
properties are copied from the objects in the order specified, which means the function copies from
ownProps last and also means props received from the parent will be used when there are props with the
same name.

Chapter 20 ■ Using the Data Store APIs

589

Setting Connection Options
The final argument to the connect method is conventionally named options and is an object used to
configure the connection to the data store. The options object can be defined with properties whose names
are shown in Table 20-4.

Summary
In this chapter, I described the APIs provided by Redux and the React-Redux package and demonstrated
how they can be used. I showed you how to connect a component directly to the data store using the Redux
API, how to enhance the data store and its reducers, and how to define middleware components. I also
demonstrated the advanced options available when using the React-Redux package, which can be used
to manage a component’s connection to the data store. In the next chapter, I introduce URL routing to the
example application.

Table 20-4.  The Options Object Property Names

Name Description

pure By default, a connector component will be updated only when its own props
change or when one of the selected values from the data store changes, which
allows the higher-order component (HOC) created by connect to prevent
updates when no prop or data change has been made. Setting this property to
false indicates that the connector component may rely on other data, and the
HOC will not try to prevent updates. The default values for this property is true.

areStatePropsEqual This function is used to override the default equality comparison for the
mapStateToProps values to minimize updates when the pure property is true.

areOwnPropsEqual This function is used to override the default equality comparison for the
mapDispatchToProps values to minimize updates when the pure property is
true.

areMergedPropsEqual This function is used to override the default equality comparison for the
mergeProps values to minimize updates when the pure property is true.

areStatesEqual This function is used to override the default equality comparison for the entire
component state to minimize updates when the pure property is true.

591© Adam Freeman 2019
A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_21

CHAPTER 21

Using URL Routing

At the moment, the selection of content displayed to the user is controlled by the application’s state data.
Some of that state data is specific to a single component, such as the Selector component, which manages
the choice between products and supplier data. The rest of the data is in the Redux data store and is used
by the connected components to decide whether the data table or editor components are required and to
obtain the data to populate those components’ content.

In this chapter, I introduce a different approach to structuring the application, which is to select content
based on the browser’s URL, known as URL routing. Instead of button elements whose event handlers
dispatch Redux actions, I am going to render anchor elements that navigate to new URLs and respond to
those URLs by selecting content and presenting it to the user. For complex applications, URL routing can
make it easier to structure a project and make it easy to scale up and maintain features. Table 21-1 puts URL
routing in context.

Table 21-1.  Putting URL Routing in Context

Question Answer

What is it? URL routing uses the browser’s current URL to select the content presented to
the user.

Why is it useful? URL routing allows applications to be structured without the need for shared
state data, which becomes encoded in the URL, which also makes it easier to
change the structure of an application.

How is it used? Navigation elements are rendered that change the browser’s URL without
triggering a new HTTP request. The new URL is used to select the content
presented to the user.

Are there any pitfalls or
limitations?

Thorough testing is required to ensure that all of the URLs to which the user
can navigate are handled correctly and display the appropriate content.

Are there any alternatives? URL routing is entirely optional, and there are other ways to compose an
application and its data, as demonstrated in earlier chapters.

Chapter 21 ■ Using URL Routing

592

Table 21-2 summarizes the chapter.

Preparing for This Chapter
In this chapter, I continue using the productapp project created in Chapter 18 and used most recently in
Chapter 20. To prepare for this chapter, open a new command prompt, navigate to the productapp folder,
and run the command shown in Listing 21-1 to add a package to the project. The React Router package is
available for a range of application types. The package installed in Listing 21-1 is for web applications.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/pro-react-16.

Listing 21-1.  Adding a Package to the Project

npm install react-router-dom@4.3.1

To simplify the content presented to the user, I have removed some of the content rendered by the App
component, as shown in Listing 21-2.

Listing 21-2.  Simplifying Content in the App.js File in the src Folder

import React, { Component } from "react";
import { Provider } from "react-redux";
import dataStore from "./store";
import { Selector } from "./Selector";
import { ProductDisplay } from "./ProductDisplay";
import { SupplierDisplay } from "./SupplierDisplay";

Table 21-2.  Chapter Summary

Problem Solution Listing

Create a navigation element Use the Link component 4, 13

Respond to navigation Use the Route component 5–6

Match a specific URL Use the Route component’s exact prop 7

Match several URLs Specify the URLs as an array in the Route
component’s path prop or use a regular expression

8–9

Select a single route Use the Switch component 10

Define a fallback route Use the Redirect component 11, 12

Indicate the active route Use the NavLink component 14, 15

Choose the mechanism used to
represent the route in the URL

Select the router component 16

https://github.com/Apress/pro-react-16

Chapter 21 ■ Using URL Routing

593

export default class App extends Component {

 render() {
 return <Provider store={ dataStore }>
 <Selector>
 <ProductDisplay name="Products" />
 <SupplierDisplay name="Suppliers" />
 </Selector>
 </Provider>
 }
}

Save the changes to the component JavaScript file and use the command prompt to run the command
shown in Listing 21-3 in the productapp folder to start the React development tools.

Listing 21-3.  Starting the Development Tools

npm start

The project will be compiled, and the development HTTP server will be started. A new browser window
will open and display the application, as shown in Figure 21-1.

Figure 21-1.  Running the example application

Chapter 21 ■ Using URL Routing

594

Getting Started with URL Routing
To get started, I am going to use URL routing in the Selector component so that it doesn’t need its own state
data to keep track of whether the user wants to work with products or suppliers.

There are two steps to setting up URL routing. The first step is to create the links that the user will
click to navigate to a different part of the application. The second step is to select the content that will be
displayed for each URL that the user can navigate to. These steps are performed using React components
provided by the React-Router package, as shown in Listing 21-4.

Listing 21-4.  Adding URL Routing in the Selector.js File in the src Folder

import React, { Component } from "react";
import { BrowserRouter as Router, Link, Route } from "react-router-dom";
import { ProductDisplay } from "./ProductDisplay";
import { SupplierDisplay } from "./SupplierDisplay";

export class Selector extends Component {

 // constructor(props) {
 // super(props);
 // this.state = {
 // selection: React.Children.toArray(props.children)[0].props.name
 // }
 // }

 // setSelection = (ev) => {
 // ev.persist();
 // this.setState({ selection: ev.target.name});
 // }

 render() {
 return <Router>
 <div className="container-fluid">
 <div className="row">
 <div className="col-2">
 <div><Link to="/products">Products</Link></div>
 <div><Link to="/suppliers">Suppliers</Link></div>
 </div>
 <div className="col">
 <Route path="/products" component={ ProductDisplay } />
 <Route path="/suppliers" component={ SupplierDisplay} />
 </div>
 </div>
 </div>
 </Router>
 }
}

Three components are required to set up a basic routing configuration. The Router component is used
to provide access to the URL routing features. There are different ways of using the URL for navigation, each
of which has its own React-Router component that I describe in the “Selecting and Configuring the Router”

Chapter 21 ■ Using URL Routing

595

section. The convention is to import the component you require, which is BrowserRouter in this case, and
assign it the name Router, which is then used as a container for the content that requires access to the
routing features.

CHOOSING AN ALTERNATIVE ROUTING PACKAGE

React-Router is by far the most widely used routing package for React projects and is a good place to
start for most applications. There are other routing packages available, but not all of them are specific to
React and can require awkward adaptations.

If you can’t get along with React-Router, then the best alternative is Backbone (https://backbonejs.org).
This well-regarded package provides routing for any JavaScript application and works well with React.

Getting Started with the Link Component
The Link component renders an element that the user can click to navigate to a new URL, like this:

...
<div><Link to="/products">Products</Link></div>
...

The navigation URL is specified using the to prop, and this Link will navigate to the /products URL.
Navigation URLs are specified relative to the application’s starting URL, which is http://localhost:3000
during development. That means that specifying /products for the to prop of a Link component tells it
to render an element that will navigate to http://localhost:3000/products. These relative URLs will
continue to work when the application is deployed and has a public URL.

Getting Started with the Route Component
The final component added to Listing 21-4 is Route, which waits until the browser navigates to a specific
URL and then displays its content, like this:

...
<Route path="/products" component={ ProductDisplay } />
...

This Route component has been configured to wait until the browser navigates to the /products URL, at
which point it will show the ProductDisplay component. For all other URLs, this Route component will not
render any content.

The result of the changes in Listing 21-4 is not visually impressive, as Figure 21-2 shows, but it
demonstrates the basic nature of URL routing. When the browser displays the application’s starting URL,
http://localhost:3000, no content is shown. When you click the Products or Suppliers links, the
browser navigates to http://localhost:3000/products or http://localhost:3000/suppliers, and the
ProductDisplay or SupplierDisplay components are shown.

https://backbonejs.org

Chapter 21 ■ Using URL Routing

596

Right-click either of navigation elements created by the Link components and select Inspect or Inspect
Element from the pop-up menu, and you will see the HTML that has been rendered, which looks this:

...
<div>Products</div>
<div>Suppliers</div>
...

The Link components have been rendered to produce anchor (elements whose tag is a) elements, and
the value of the to prop has translated into URLs for the anchor element’s href attributes. When you click
one of the anchor elements, the browser navigates to a new URL, and the corresponding Route component
displays its content. If the browser navigates to a URL for which no Route component has been configured,
then no content is displayed, which is why a component was not shown until one of the links had been
clicked.

■■ Caution  Do not try to create your own anchor elements for navigation because they will cause the
browser to send an HTTP request to the server for the URL you specify with the effect that the application will
be reloaded. The anchor elements rendered by the Link component have event handlers that change the URL
using the HTML5 History API without triggering a new HTTP request.

Responding to Navigation
The Route component is used to implement an application’s routing scheme, which it does by waiting until
the browser navigates to a specific URL and displaying a component when it does. The mapping between
URLs and components can be complex in real applications, and the matching of URLs and the selection
of content by the Route component can be configured using the props described in Table 21-3, which I
demonstrate in the sections that follow.

Figure 21-2.  Adding navigation elements

Chapter 21 ■ Using URL Routing

597

Selecting Components and Content
The component prop is used to specify a single component that will be displayed if the current URL is
matched by the path prop. The component type is specified directly as the component prop value, like this:

...
<Route path="/products" component={ ProductDisplay } />
...

The value of the component prop should not be a function because it can lead to a new instance of the
specified component being created each time that the application updates.

Using the render Prop
The advantage of the component prop is simplicity, and it works well for projects that have self-contained
components that render all the required content and don’t require props. The Route component provides
the render prop for more complex content and to pass on props, as shown in Listing 21-5.

Listing 21-5.  Using the render Prop in the Selector.js File in the src Folder

import React, { Component } from "react";
import { BrowserRouter as Router, Link, Route } from "react-router-dom";
import { ProductDisplay } from "./ProductDisplay";
import { SupplierDisplay } from "./SupplierDisplay";

export class Selector extends Component {

 render() {
 return <Router>

Table 21-3.  The Route Component Props

Name Description

path The prop is used to specify the URL or URLs that the component should wait for.

exact When this prop is true, only URLs that precisely equal the path prop are matched, as
demonstrated in the “Restricting Matches with Props” section.

sensitive When this prop is true, matching URLs is case-sensitive.

strict When this prop is true, path values that end in a / will only match URLs whose
corresponding segment also ends with a /.

component This prop is used to specify a single component that will be displayed when the path prop
matches the browser’s current URL.

render This prop is used to specify a function that returns the content that will be displayed when
the path prop matches the browser’s current URL.

children This prop is used to specify a function that will always render content, even when the
URL specified by the path prop doesn’t match. This is useful for displaying content
in descendent components or components that are not rendered in response to URL
changes, as described in Chapter 22.

Chapter 21 ■ Using URL Routing

598

 <div className="container-fluid">
 <div className="row">
 <div className="col-2">
 <div><Link to="/products">Products</Link></div>
 <div><Link to="/suppliers">Suppliers</Link></div>
 </div>
 <div className="col">
 <Route path="/products" render={ (routeProps) =>
 <ProductDisplay myProp="myValue" /> } />
 <Route path="/suppliers" render={ (routeProps) =>
 <React.Fragment>
 <h4 className="bg-info text-center text-white p-2">
 Suppliers
 </h4>
 <SupplierDisplay />
 </React.Fragment>
 } />
 </div>
 </div>
 </div>
 </Router>
 }
}

The result of the function is the content that should be displayed by the Route component. In the listing,
I passed on a prop to the ProductDisplay component and included the SupplierDisplay component in a
larger fragment of content, as shown in Figure 21-3.

■■ Tip T he function passed to the render prop receives an object that provides information about the state of
the routing system, which I describe in Chapter 22.

Figure 21-3.  Using the Route component’s render prop

Chapter 21 ■ Using URL Routing

599

Matching URLs
One of the most difficult aspects of using URL routing is making sure that the URLs you want to support are
correctly matched by Route components. The Route component provides a range of features that allow you
to expand or narrow the range of URLs that will be matched, which I describe in the sections that follow.

Matching Using Segments
The simplest way to match a URL is to provide one or more target segments to the Route component’s path
prop. This will match any URL that starts with the segments you specify, as shown in Listing 21-6.

Listing 21-6.  Matching URLs in the Selector.js File in the src Folder

import React, { Component } from "react";
import { BrowserRouter as Router, Link, Route } from "react-router-dom";
//import { ProductDisplay } from "./ProductDisplay";
//import { SupplierDisplay } from "./SupplierDisplay";

export class Selector extends Component {

 renderMessage = (msg) => <h5 className="bg-info text-white m-2 p-2">{ msg }</h5>

 render() {
 return <Router>
 <div className="container-fluid">
 <div className="row">
 <div className="col-2">
 <div><Link to="/data/one">Link #1</Link></div>
 <div><Link to="/data/two">Link #2</Link></div>
 <div><Link to="/people/bob">Bob</Link></div>
 </div>
 <div className="col">
 <Route path="/data"
 render={ () => this.renderMessage("Route #1") } />
 <Route path="/data/two"
 render={ () => this.renderMessage("Route #2") } />
 </div>
 </div>
 </div>
 </Router>
 }
}

I replaced the ProductDisplay and SupplierDisplay components with content generated by a method
called renderMessage. There are three Link components, which target the URLs /data/one, data/two, and /
people/bob.

The first Route component is configured with /data as its path prop. This will match any URL whose
first segment is data, which means it will match the /data/one and /data/two URLs but not /people/bob.
The second Route component has /data/two as the value of its path prop, so it will only match the /data/
two URL. Each Route component evaluates its path prop independently, and you can see how they match
URLs by clicking the navigation links, as shown in Figure 21-4.

Chapter 21 ■ Using URL Routing

600

One Route component matches the /data/one URL, both match the /data/two URL, and neither
matches /people/bob, and so no content is displayed.

Restricting Matches with Props
The default behavior of the Route component can lead to over-matching, where a component matches a
URL when you don’t want it to. I might want to distinguish between the /data and /data/one URLs, for
example, so that the first URL displays a list of data items and the second displays the details of a specific
object. The default matching makes this difficult because a path prop of /data matches any URL whose first
segment is /data, regardless of how many segments the URL contains in total.

To help restrict the range of URLs that a path will match, the Route component supports three
additional props: exact, strict, and sensitive. The most useful of the three props is exact, which will
match a URL only if it exactly matches the path prop value so that a URL of /data/one won’t be matched by a
path of /data, as shown in Listing 21-7.

Listing 21-7.  Making Exact Matches in the Selector.js File in the src Folder

import React, { Component } from "react";
import { BrowserRouter as Router, Link, Route } from "react-router-dom";

export class Selector extends Component {

 renderMessage = (msg) => <h5 className="bg-info text-white m-2 p-2">{ msg }</h5>

 render() {
 return <Router>
 <div className="container-fluid">
 <div className="row">
 <div className="col-2">
 <div><Link to="/data">Data</Link></div>
 <div><Link to="/data/one">Link #1</Link></div>
 <div><Link to="/data/two">Link #2</Link></div>
 <div><Link to="/people/bob">Bob</Link></div>
 </div>
 <div className="col">
 <Route path="/data" exact={ true }
 render={ () => this.renderMessage("Route #1") } />

Figure 21-4.  Matching URLs with the Route component

Chapter 21 ■ Using URL Routing

601

 <Route path="/data/two"
 render={ () => this.renderMessage("Route #2") } />
 </div>
 </div>
 </div>
 </Router>
 }
}

Setting the exact prop affects only the Route component to which it is applied. In the example, the
exact prop prevents the first Route component from matching the /data/one and /data/two URLs, as
shown in Figure 21-5.

When set to true, the strict prop is used to restrict matches for a path that has a trailing slash to URLs
that have one too, so a path of /data/ will only match the /data/ URL and not /data. The strict prop does
match URLs with additional segments, however, so that a path of /data/ will match /data/one.

The sensitive prop is used to control case sensitivity. When true, it will allow matches only when the
case of the path prop matches the case of the URL, so a path of /data will not match a /Data URL.

Specifying Multiple URLs in a Path
The value of the Route component’s path prop can be an array of URLs, which causes content to be
displayed if any of them are matched. This can be useful when the same content is required in response to
URLs that don’t have a common structure (such as displaying the same component in response to /data/
list and /people/list) or when a specific number of exact matches are required, such as matching /data/
one and /data/two but not any other URL that starts with /data, as demonstrated in Listing 21-8.

■■ Note A t the time of writing, there is a mismatch with the prop types that are expected by the Route
component that results in a JavaScript console warning when an array is used. This warning can be ignored
and may be fixed by the time you read this chapter. See Chapters 10 and 11 for details of how the data types
that a component expects for its props can be specified.

Figure 21-5.  Making exact matches

Chapter 21 ■ Using URL Routing

602

Listing 21-8.  Using an Array of Paths in the Selector.js File in the src Folder

import React, { Component } from "react";
import { BrowserRouter as Router, Link, Route } from "react-router-dom";

export class Selector extends Component {

 renderMessage = (msg) => <h5 className="bg-info text-white m-2 p-2">{ msg }</h5>

 render() {
 return <Router>
 <div className="container-fluid">
 <div className="row">
 <div className="col-2">
 <div><Link to="/data">Data</Link></div>
 <div><Link to="/data/one">Link #1</Link></div>
 <div><Link to="/data/two">Link #2</Link></div>
 <div><Link to="/people/bob">Bob</Link></div>
 </div>
 <div className="col">
 <Route path={["/data/one", "/people/bob"] } exact={ true }
 render={ () => this.renderMessage("Route #1") } />
 <Route path={["/data", "/people"] }
 render={ () => this.renderMessage("Route #2") } />
 </div>
 </div>
 </div>
 </Router>
 }
}

The path array is provided as an expression using curly braces. The path property of the first Route
component is set to an array containing /data/one and /people/bob. These paths are combined with the
exact prop to restrict the URLs that the component will match. The second Route component is configured
to match more widely and will respond to any URL whose first segment is data or people, as shown in
Figure 21-6.

Chapter 21 ■ Using URL Routing

603

Matching URLs with Regular Expressions
Not all combinations of URLs can be expressed using individual segments, and the Route component
supports regular expressions in its path prop for more complex matches, as shown in Listing 21-9.

REGULAR EXPRESSION CLARITY VERSUS CONCISENESS

Most programmers have a tendency to express routes with the fewest regular expressions possible,
but the result can be a routing configuration that is hard to read and breaks easily when changes
are required. When deciding how to match URLs, keep expressions simple and use a path array to
expand the range of URLs that a Route can match without using regular expressions that are difficult to
understand.

Listing 21-9.  Using a Regular Expression in the Selector.js File in the src Folder

import React, { Component } from "react";
import { BrowserRouter as Router, Link, Route } from "react-router-dom";

export class Selector extends Component {

 renderMessage = (msg) => <h5 className="bg-info text-white m-2 p-2">{ msg }</h5>

 render() {
 return <Router>
 <div className="container-fluid">
 <div className="row">
 <div className="col-2">
 <div><Link to="/data">Data</Link></div>
 <div><Link to="/data/one">Link #1</Link></div>
 <div><Link to="/data/two">Link #2</Link></div>
 <div><Link to="/data/three">Link #3</Link></div>

Figure 21-6.  Using an array to specify paths

Chapter 21 ■ Using URL Routing

604

 <div><Link to="/people/bob">Bob</Link></div>
 <div><Link to="/people/alice">Alice</Link></div>
 </div>
 <div className="col">
 <Route path={["/data/(one|three)", "/people/b*"] }
 render={ () => this.renderMessage("Route #1") } />
 </div>
 </div>
 </div>
 </Router>
 }
}

The first item in the path array matches URLs whose first segment is data and second segment is
one or three. The second item matches URLs whose first segment is people and whose second segment
starts with b. The result is that the Route component will match the /data/one, /data/two, and /people/bob
URLs but not the /data/two and /people/alice URLs.

■■ Note S ee https://github.com/pillarjs/path-to-regexp for the full range of regular expression
features that can be used to match URLs.

Making a Single Route Match
Each Route component assesses its path prop independently; this can be useful but isn’t ideal if you want
just one component to be display based n the current URL. For these situations, the Redux-Router package
provides the Switch component, which acts as a wrapper around multiple Route components, queries them
in order, and displays the content rendered by the first one to match the current URL. Listing 21-10 shows
the use of the Switch component.

Listing 21-10.  Using the Switch Component in the Selector.js File in the src Folder

import React, { Component } from "react";
import { BrowserRouter as Router, Link, Route, Switch } from "react-router-dom";
import { ProductDisplay } from "./ProductDisplay";
import { SupplierDisplay } from "./SupplierDisplay";

export class Selector extends Component {

 renderMessage = (msg) => <h5 className="bg-info text-white m-2 p-2">{ msg }</h5>

 render() {
 return <Router>
 <div className="container-fluid">
 <div className="row">
 <div className="col-2">
 <div><Link to="/">Default URL</Link></div>
 <div><Link to="/products">Products</Link></div>
 <div><Link to="/suppliers">Suppliers</Link></div>
 </div>

https://github.com/pillarjs/path-to-regexp

Chapter 21 ■ Using URL Routing

605

 <div className="col">
 <Switch>
 <Route path="/products" component={ ProductDisplay} />
 <Route path="/suppliers" component={ SupplierDisplay } />
 <Route render={ () =>
 this.renderMessage("Fallback Route")} />
 </Switch>
 </div>
 </div>
 </div>
 </Router>
 }
}

The Switch component checks its children in the order they are defined, which means that the Route
components must be arranged so that the most specific URLs appear first. A Route component with no path
prop will always match the current URL and can be used as the default by the Switch component, similar to
the default clause in a regular JavaScript switch statement.

The changes in the listing associated the /products URL with the ProductDisplay component and the
/suppliers URL with the SupplierDisplay component. Any other URL will cause a message to be rendered
using the renderMessage method, as shown in Figure 21-7.

The use of the Switch component allows me to render content when the application first starts before
the user has clicked one of the navigation links. However, this is only one way to select content for the default
URL, and a more elegant approach is to use the Redirect component, as described in the next section.

Using Redirection as the Fallback Route
For some applications, it doesn’t make sense to introduce a separate URL as a fallback, in which case the
Redirect component can be used to automatically trigger navigation to a URL that can be handled by a Route
component. In Listing 21-11, I have replaced the existing fallback with a redirection to the /product URL.

Figure 21-7.  Using a Switch component

Chapter 21 ■ Using URL Routing

606

Listing 21-11.  Using a Redirection in the Selector.js File in the src Folder

import React, { Component } from "react";
import { BrowserRouter as Router, Link, Route, Switch, Redirect }
 from "react-router-dom";
import { ProductDisplay } from "./ProductDisplay";
import { SupplierDisplay } from "./SupplierDisplay";

export class Selector extends Component {

 renderMessage = (msg) => <h5 className="bg-info text-white m-2 p-2">{ msg }</h5>

 render() {
 return <Router>
 <div className="container-fluid">
 <div className="row">
 <div className="col-2">
 <div><Link to="/">Default URL</Link></div>
 <div><Link to="/products">Products</Link></div>
 <div><Link to="/suppliers">Suppliers</Link></div>
 </div>
 <div className="col">
 <Switch>
 <Route path="/products" component={ ProductDisplay} />
 <Route path="/suppliers" component={ SupplierDisplay } />
 <Redirect to="/products" />
 </Switch>
 </div>
 </div>
 </div>
 </Router>
 }
}

The to prop specifies the URL that the Redirect component will navigate to. The Redirect component
won’t be used if the Route components are able to match the current URL. But if the Switch component
reaches the Redirect component without having found a matching Route, then redirection to /products
will be performed.

Performing Selective Redirection
The most common way to use the Redirect component is with just the to prop, but there are additional
props available that can be used to restrict when redirection is performed, as described in Table 21-4.

Chapter 21 ■ Using URL Routing

607

Selectively redirecting to a new URL is a useful way of maintaining support for URLs that are no longer
directly handled by a Route, as shown in Listing 21-12. (A similar effect can be achieved using a path array
for a Route, but that can lead to complications when matching URL parameters, as described in Chapter 22.)

Listing 21-12.  Selectively Redirecting URLs in the Selector.js File in the src Folder

import React, { Component } from "react";
import { BrowserRouter as Router, Link, Route, Switch, Redirect }
 from "react-router-dom";
import { ProductDisplay } from "./ProductDisplay";
import { SupplierDisplay } from "./SupplierDisplay";

export class Selector extends Component {

 renderMessage = (msg) => <h5 className="bg-info text-white m-2 p-2">{ msg }</h5>

 render() {
 return <Router>
 <div className="container-fluid">
 <div className="row">
 <div className="col-2">
 <div><Link to="/">Default URL</Link></div>
 <div><Link to="/products">Products</Link></div>
 <div><Link to="/suppliers">Suppliers</Link></div>
 <div><Link to="/old/data">Old Link</Link></div>
 </div>
 <div className="col">
 <Switch>
 <Route path="/products" component={ ProductDisplay} />
 <Route path="/suppliers" component={ SupplierDisplay } />
 <Redirect from="/old/data" to="/suppliers" />
 <Redirect to="/products" />
 </Switch>
 </div>

Table 21-4.  The Redirect Component Props

Name Description

to This prop specifies the location to which the browser should be redirected.

from This prop restricts the redirection so that it is performed only when the current URL matches
the specified path.

exact When true, this prop restricts redirection so that it is performed only when the current URL
exactly matches the from prop, performing the same role as the Route component’s exact
prop.

strict When true, this prop restricts redirection so that it is performed only when the current
URL ends with a / if the path also ends with a /, performing the same role as the Route
component’s strict prop.

push When true, the redirection will add a new item to the browser’s history. When false, the
redirection will replace the current location.

Chapter 21 ■ Using URL Routing

608

 </div>
 </div>
 </Router>
 }
}

The new Redirect will perform a redirection from the /old/data URL to /suppliers. The order of
selective Redirect components is important, and they must be placed before the nonselective redirections
are performed; otherwise, the Switch will not reach them as it works its way through the list of routing
components.

Rendering Navigation Links
The Link component is responsible for generating the elements that navigate to new URLs, which it does by
rendering an anchor element with an event handler that changes the browser’s URL without reloading the
application. To configure its behavior, the Link component accepts the props described in Table 21-5.

The Link component will pass on any other props to the anchor element that it renders. The main use for
this feature is to apply the className prop to the Link to style the navigation links, as shown in Listing 21-13.

Listing 21-13.  Applying Classes in the Selector.js File in the src Folder

import React, { Component } from "react";
import { BrowserRouter as Router, Link, Route, Switch, Redirect }
 from "react-router-dom";
import { ProductDisplay } from "./ProductDisplay";
import { SupplierDisplay } from "./SupplierDisplay";

export class Selector extends Component {

 renderMessage = (msg) => <h5 className="bg-info text-white m-2 p-2">{ msg }</h5>

 render() {
 return <Router>
 <div className="container-fluid">
 <div className="row">
 <div className="col-2">

Table 21-5.  The Link Component Props

Name Description

to This prop is used to specify the location that clicking the link will navigate to.

replace This prop is used to specify whether clicking the navigation link will add an entry to the
browser’s history or replace the current entry, which determines whether the user will be
able to use the back button to return to the previous location. The default value is false.

innerRef This prop is used to access a ref for the underlying HTML element. See Chapter 16 for
details of refs.

Chapter 21 ■ Using URL Routing

609

 <Link className="m-2 btn btn-block btn-primary"
 to="/">Default URL</Link>
 <Link className="m-2 btn btn-block btn-primary"
 to="/products">Products</Link>
 <Link className="m-2 btn btn-block btn-primary"
 to="/suppliers">Suppliers</Link>
 <Link className="m-2 btn btn-block btn-primary"
 to="/old/data">Old Link</Link>
 </div>
 <div className="col">
 <Switch>
 <Route path="/products" component={ ProductDisplay} />
 <Route path="/suppliers" component={ SupplierDisplay } />
 <Redirect from="/old/data" to="/suppliers" />
 <Redirect to="/products" />
 </Switch>
 </div>
 </div>
 </div>
 </Router>
 }
}

The Bootstrap CSS framework is able to style anchor elements as buttons, and the classes that I have
applied in Listing 21-13 apply a button style that fills the available horizontal space and allows me to remove
the div elements that I used to stack the navigation links vertically. When the Link components render their
content, the result is a navigation link that appears as a button, as shown in Figure 21-8.

Figure 21-8.  Passing on classes to the navigation element

Chapter 21 ■ Using URL Routing

610

Indicating the Active Route
The NavLink component builds on the basic Link features but will add a class or style to the anchor element
when the value of its to property matches the current URL. Table 21-6 describes the properties provided by
the NavLink component, which are defined in addition to those described in Table 21-5. In Listing 21-14, I
have introduced NavLink components that apply the active class.

Listing 21-14.  Using NavLink Components in the Selector.js File in the src Folder

import React, { Component } from "react";
import { BrowserRouter as Router, NavLink, Route, Switch, Redirect }
 from "react-router-dom";
import { ProductDisplay } from "./ProductDisplay";
import { SupplierDisplay } from "./SupplierDisplay";

export class Selector extends Component {

 renderMessage = (msg) => <h5 className="bg-info text-white m-2 p-2">{ msg }</h5>

 render() {
 return <Router>
 <div className="container-fluid">
 <div className="row">
 <div className="col-2">
 <NavLink className="m-2 btn btn-block btn-primary"
 activeClassName="active"
 to="/">Default URL</NavLink>
 <NavLink className="m-2 btn btn-block btn-primary"
 activeClassName="active"
 to="/products">Products</NavLink>
 <NavLink className="m-2 btn btn-block btn-primary"
 activeClassName="active"
 to="/suppliers">Suppliers</NavLink>
 <NavLink className="m-2 btn btn-block btn-primary"
 activeClassName="active"
 to="/old/data">Old Link</NavLink>

Table 21-6.  The NavLink Component Properties

Name Description

activeClassName This prop specifies the classes that will be added to the anchor element when the link is
active.

activeStyle This prop specifies the styles that will be added to the anchor element when the link is
active. Styles are specified as a JavaScript object whose properties are the style names.

exact When true, this prop enforces exact matching, as described in the “Matching URLs” section.

strict When true, this prop enforces strict matching, as described in the “Matching URLs” section.

isActive This prop can be used to specify a custom function that determines whether the link is
active. The function receives match and location arguments, as described in Chapter 22.
The default behavior compares the current URL with the to prop.

Chapter 21 ■ Using URL Routing

611

 </div>
 <div className="col">
 <Switch>
 <Route path="/products" component={ ProductDisplay} />
 <Route path="/suppliers" component={ SupplierDisplay } />
 <Redirect from="/old/data" to="/suppliers" />
 <Redirect to="/products" />
 </Switch>
 </div>
 </div>
 </div>
 </Router>
 }
}

When the browser’s URL matches the value of a component’s to prop, the anchor element is added to
the active class, which provides a useful indicator to the user, as shown in Figure 21-9.

Notice that the Default URL button is always highlighted. The NavLink component relies on the Route
URL matching, which means that a to prop of / will match any URL. The exact and strict props described
in Table 21-6 have the same purpose as when applied to a Route, and Listing 21-15 shows the use of the
exact prop to restrict matching.

Listing 21-15.  Restricting NavLink Matching in the Selector.js File in the src Folder

...
<div className="col-2">
 <NavLink className="m-2 btn btn-block btn-primary"
 activeClassName="active" exact={ true }
 to="/">Default URL</NavLink>
 <NavLink className="m-2 btn btn-block btn-primary"
 activeClassName="active"
 to="/products">Products</NavLink>

Figure 21-9.  Responding to route activation

Chapter 21 ■ Using URL Routing

612

 <NavLink className="m-2 btn btn-block btn-primary"
 activeClassName="active"
 to="/suppliers">Suppliers</NavLink>
 <NavLink className="m-2 btn btn-block btn-primary"
 activeClassName="active"
 to="/old/data">Old Link</NavLink>
</div>
...

The result is that the NavLink is no longer highlighted, as shown in Figure 21-10.

■■ Note T he NavLink component doesn’t allow classes to be removed when the activeClassName
value is applied, which means that I can’t accurately re-create the original effect from the example project.
I demonstrate how to create this functionality with a custom navigation component in Chapter 22.

Selecting and Configuring the Router
URL routing relies on manipulating the browser’s URL to perform navigation without sending HTTP requests
to the server. In a web application, the core routing functionality is provided by either the BrowserRouter or
HashRouter component; both are conventionally given the name Router when they are imported, like this:

...
import { BrowserRouter as Router, Link, Switch, Route, Redirect }
 from "react-router-dom";
...

Figure 21-10.  Restricting URL matching for highlighting

Chapter 21 ■ Using URL Routing

613

BrowserRouter uses the HTML5 History API. This API provides natural URLs for routing, such as
http://localhost:3000/products, which is the type of URL you have seen in the examples in this chapter.
The BrowserRouter component can accept a range of props that configure its behavior, as described in
Table 21-7. The default values for the props are suitable for most applications.

Table 21-7.  The BrowserRouter Props

Name Description

basename This prop is used when the application isn’t at the root of its URL, such as
http://localhost:3000/myapp.

getUserConfirmation This prop is used to specify the function used to obtain user confirmation for
navigation with the Prompt component, described in Chapter 22.

forceRefresh When true, this prop forces a complete refresh during navigation with an
HTTP request sent to the server. This undermines the point of a rich client-side
application and should be used only for testing and when browsers are unable to
use the History API.

keyLength Each change in navigation is given a unique key. This prop is used to specify the
length of the key and defaults to six characters. The key is incorporated into the
location objects that identify each navigation location, described in Chapter 22.

history This prop allows a custom history object to be used. The history object is
described in Chapter 22.

Using the HashRouter Component
Older browsers don’t support the History API, and the navigation details have to be added as a fragment at
the end of the URL, following the # character. Routing with URL fragments is provided by the HashRouter
component, as shown in Listing 21-16.

Listing 21-16.  Using the HashRouter Component in the Selector.js File in the src Folder

import React, { Component } from "react";
import { HashRouter as Router, NavLink, Route, Switch, Redirect }
 from "react-router-dom";
import { ProductDisplay } from "./ProductDisplay";
import { SupplierDisplay } from "./SupplierDisplay";

export class Selector extends Component {

 // ...methods omitted for brevity...
}

Using the as keyword to import the routing component means that only the import statement has to
change. Save the changes to the file and navigate to http://localhost:3000, and you will see that the style
of the URL has changed, as shown in Figure 21-11.

Chapter 21 ■ Using URL Routing

614

■■ Tip  You may see a URL like http://localhost:3000/suppliers/#/suppliers when the browser first
reloads. This happens because the browser reloads from its current URL, which is then assumed to be the base URL
for the application. Manually navigate to http://localhost:3000 and you should see the URL shown in the figure.

The part of the URL that is used for routing now follows the # character. URL routing still works the same
way, but the URLs are less natural compared with those generated by the BrowserRouter component. The
HashRouter component can be configured with the props shown in Table 21-8.

Figure 21-11.  Using hash routing

Table 21-8.  The HashRouter Component Props

Name Description

basename This prop is used when the application isn’t at the root of its URL, such as
http://localhost:3000/myapp.

getUserConfirmation This prop is used to specify the function used to obtain user confirmation for
navigation with the Prompt component, described in Chapter 22.

hashType This prop sets the style used to encode the routing in the URL. The options are
slash, which creates the URL style shown in Figure 21-11; noslash, which omits
the leading / after the # character; and hashbang, which creates URLs such as
#!/products by inserting an exclamation mark after the # character.

Summary
In this chapter, I showed you how to use the React-Router package to add URL routing to a React application.
I explained how routing can simplify applications by moving state data into the URL and how Link and
Route components are used to create navigation elements and respond to URL changes. In the next chapter,
I describe the advanced URL routing features.

615© Adam Freeman 2019
A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_22

CHAPTER 22

Advanced URL Routing

In this chapter, I describe the advanced features that are available for URL routing with the React-Router
package. I show you how to create components that can participate in the routing process, how to navigate
programmatically, how to generate routes programmatically, and how to use URL routing in components
that are connected to the data store. Table 22-1 puts the advanced URL routing features in context.

Table 22-1.  Putting Advanced URL Routing in Context

Question Answer

What is it? The advanced routing features provide programmatic access to the URL
routing system.

Why is it useful? These features allow components to be aware of the routing system and the
currently active route.

How is it used? Access to the advanced routing features is provided by props.

Are there any pitfalls or
limitations?

These are advanced features, and care is required to ensure that they are
properly integrated into components.

Are there any
alternatives?

These are optional features. Applications can use the standard features
described in Chapter 21 or avoid URL routing entirely.

Table 22-2 summarizes the chapter.

Table 22-2.  Chapter Summary

Problem Solution Listing

Receive details of the routing system in a
component

Use the props provided by the Route
component or use the withRouter
higher-order component

3, 4, 10–12, 19–23

Get details of the current navigation location Use the location prop 5

Get URL segments from the current route Add parameters to the URL 6–9

Navigate programmatically Use the methods defined by the
history prop

13, 14

Prompt the user before navigation Use the Prompt component 15–17

Chapter 22 ■ Advanced URL Routing

616

Preparing for This Chapter
In this chapter, I continue using the productapp project from Chapter 21. To prepare for this chapter, change
the router that is used by the application from HashRouter to BrowserRouter, so that the HTML5 History API
is used for navigation, and simplified the Link and Router components, as shown in Listing 22-1.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/pro-react-16.

Listing 22-1.  Changing Routers and Routes in the Selector.js File in the src Folder

import React, { Component } from "react";
import { BrowserRouter as Router, NavLink, Route, Switch, Redirect }
 from "react-router-dom";
import { ProductDisplay } from "./ProductDisplay";
import { SupplierDisplay } from "./SupplierDisplay";

export class Selector extends Component {

 render() {
 return <Router>
 <div className="container-fluid">
 <div className="row">
 <div className="col-2">
 <NavLink className="m-2 btn btn-block btn-primary"
 activeClassName="active"
 to="/products">Products</NavLink>
 <NavLink className="m-2 btn btn-block btn-primary"
 activeClassName="active"
 to="/suppliers">Suppliers</NavLink>
 </div>
 <div className="col">
 <Switch>
 <Route path="/products" component={ ProductDisplay} />
 <Route path="/suppliers" component={ SupplierDisplay } />
 <Redirect to="/products" />
 </Switch>
 </div>
 </div>
 </div>
 </Router>
 }
}

Open a command prompt, navigate to the productapp folder, and run the command shown in
Listing 22-2 to start the development tools.

https://github.com/Apress/pro-react-16

Chapter 22 ■ Advanced URL Routing

617

Listing 22-2.  Starting the Development Tools

npm start

Once the application has been compiled, the development HTTP server will start and display the
content shown in Figure 22-1.

Creating Routing-Aware Components
When a Route displays a component, it provides it with context data that describes the current route and with
access to an API that can be used for navigation, allowing components to be aware of the current location
and to participate in routing. When the component prop is used, the Route passes the data and API to the
component it displays as props, named match, location, and history. When the render prop is used, the
render function is passed an object that has match, location, and history properties whose values are the
same objects used as render props. The match, location, and history objects are described in Table 22-3.

Figure 22-1.  Running the example application

Table 22-3.  The Props Provided by the Route Component

Name Description

match This prop provides information about how the Route component matched the current
browser URL.

location This prop provides a representation of the current location and can be used for navigation
instead of URLs expressed as strings.

history This prop provides an API that can be used for navigation, as demonstrated in the
“Navigating Programmatically” section.

Chapter 22 ■ Advanced URL Routing

618

Understanding the Match Prop
The match prop provides a component with details of how the parent Route matches the current URL.
As I demonstrated in Chapter 21, a single Route can be used to match a range of URLs, and routing-aware
components often need details about the current URL, which are available through the properties shown in
Table 22-4.

Table 22-4.  The Match Prop Properties

Name Description

url This property returns the URL that the Route has matched.

path This property returns the path value used to match the URL.

params This property returns the route params, which allow segments of a URL to be mapped to
variables, as described in the “Using URL Parameters” section.

isExact This property returns true if the route path exactly matches the URL.

To demonstrate the use of the routing props, I created the src/routing folder and added to it a file
called RouteInfo.js with the component shown in Listing 22-3, which displays the values of the match
prop’s properties.

Listing 22-3.  The Contents of the RouteInfo.js File in the src/routing Folder

import React, { Component } from "react";

export class RouteInfo extends Component {

 renderTable(title, prop, propertyNames) {
 return <React.Fragment>
 <tr><th colSpan="2" className="text-center">{ title }</th></tr>
 { propertyNames.map(p =>
 <tr key={p }>
 <td>{ p }</td>
 <td>{ JSON.stringify(prop[p]) }</td>
 </tr>)
 }
 </React.Fragment>
 }

 render() {
 return <div className="bg-info m-2 p-2">
 <h4 className="text-white text-center">Route Info</h4>
 <table className="table table-sm table-striped bg-light">
 <tbody>
 { this.renderTable("Match", this.props.match,
 ["url", "path", "params", "isExact"])}
 </tbody>
 </table>
 </div>
 }
}

Chapter 22 ■ Advanced URL Routing

619

The RouteInfo component displays the url, path, params, and isExact properties of the match prop in
a table and will allow me to easily add additional details from the other routing props later. The properties
are serialized because the values are a mix of objects and Booleans that can cause display problems if used
literally. In Listing 22-4, I have added a navigation link to the Selector component, along with a Route that
displays the RouteInfo component.

Listing 22-4.  Adding a Route in the Selector.js File in the src Folder

import React, { Component } from "react";
import { BrowserRouter as Router, NavLink, Route, Switch, Redirect }
 from "react-router-dom";
import { ProductDisplay } from "./ProductDisplay";
import { SupplierDisplay } from "./SupplierDisplay";
import { RouteInfo } from "./routing/RouteInfo";

export class Selector extends Component {

 render() {
 return <Router>
 <div className="container-fluid">
 <div className="row">
 <div className="col-2">
 <NavLink className="m-2 btn btn-block btn-primary"
 activeClassName="active"
 to="/products">Products</NavLink>
 <NavLink className="m-2 btn btn-block btn-primary"
 activeClassName="active"
 to="/suppliers">Suppliers</NavLink>
 <NavLink className="m-2 btn btn-block btn-primary"
 activeClassName="active" to="/info">Route Info</NavLink>
 </div>
 <div className="col">
 <Switch>
 <Route path="/products" component={ ProductDisplay} />
 <Route path="/suppliers" component={ SupplierDisplay } />
 <Route path="/info" component={ RouteInfo } />
 <Redirect to="/products" />
 </Switch>
 </div>
 </div>
 </div>
 </Router>
 }
}

Save the changes and click on the Route Info link and you will see the details of the match prop, as
shown in Figure 22-2. The values displayed indicate that the path prop of the Route component is /info and
it matches the /info URL which the new Link component targets. The information provided by the match
prop will become more useful as I introduce more advanced routing features, especially when I introduce
URL parameters in the “Using URL Parameters” section.

Chapter 22 ■ Advanced URL Routing

620

Understanding the Location Prop
The location object is used to describe a navigation location. The location object provided as props
describes the current location and has the properties described in Table 22-5.

Figure 22-2.  Details provided by the match routing prop

Table 22-5.  The Location Properties

Name Description

key This property returns a key that identifies the location.

pathname This property returns the path of the location.

search This property returns the search term of the location URL (the part of the URL that follows
the ? character).

hash This property returns the URL fragment of the location URL (the part that follows the #
character).

state This property is used to associated arbitrary data with a location.

The location properties provide some overlap with the match prop, but the idea is that a component
can retain a location object and use it to refer to a location instead of using strings as the value for the to
prop of the Link, NavLink, and Redirect components. In Listing 22-5, I have added the location prop to
the data displayed by the RouteInfo, along with a Link element that uses the location object for its
navigation target.

Chapter 22 ■ Advanced URL Routing

621

Listing 22-5.  Using the Location Prop in the RouteInfo.js File in the src/routing Folder

import React, { Component } from "react";
import { Link } from "react-router-dom";

export class RouteInfo extends Component {

 renderTable(title, prop, propertyNames) {
 return <React.Fragment>
 <tr><th colSpan="2" className="text-center">{ title }</th></tr>
 { propertyNames.map(p =>
 <tr key={p }>
 <td>{ p }</td>
 <td>{ JSON.stringify(prop[p]) }</td>
 </tr>)
 }
 </React.Fragment>
 }

 render() {
 return <div className="bg-info m-2 p-2">
 <h4 className="text-white text-center">Route Info</h4>
 <table className="table table-sm table-striped bg-light">
 <tbody>
 { this.renderTable("Match", this.props.match,
 ["url", "path", "params", "isExact"])}
 { this.renderTable("Location", this.props.location,
 ["key", "pathname", "search", "hash", "state"])}
 </tbody>
 </table>
 <div className="text-center m-2 bg-light">
 <Link className="btn btn-primary m-2"
 to={ this.props.location }>Location</Link>
 </div>
 </div>
 }
}

Chapter 22 ■ Advanced URL Routing

622

Figure 22-3 shows the details of the location prop and the new Link component.

Using the location prop as the value for a Link component’s to prop isn’t especially useful at the
moment because it is only able to navigate to the current location. As you will see, components can be used
to respond to multiple routes and may receive a series of locations over time, which makes using a location
object both useful and more convenient than working with URLs expressed as strings.

Using URL Parameters
When a component is aware of the URL routing system, it will often need to adapt its behavior to the current
URL. The React-Router package supports URL parameters, which assign the contents of a URL segment to a
variable that can be read by components, allowing them to respond to the current location without having to
parse the URL or understand its structure. Listing 22-6 shows the addition of a Route whose path includes a
URL parameter and Link components that target it.

Listing 22-6.  Defining a URL Parameter in the Selector.js File in the src Folder

import React, { Component } from "react";
import { BrowserRouter as Router, NavLink, Route, Switch, Redirect }
 from "react-router-dom";
import { ProductDisplay } from "./ProductDisplay";
import { SupplierDisplay } from "./SupplierDisplay";

Figure 22-3.  Displaying details of the location routing prop

Chapter 22 ■ Advanced URL Routing

623

import { RouteInfo } from "./routing/RouteInfo";

export class Selector extends Component {

 render() {
 return <Router>
 <div className="container-fluid">
 <div className="row">
 <div className="col-2">
 <NavLink className="m-2 btn btn-block btn-primary"
 activeClassName="active"
 to="/products">Products</NavLink>
 <NavLink className="m-2 btn btn-block btn-primary"
 activeClassName="active"
 to="/suppliers">Suppliers</NavLink>
 <NavLink className="m-2 btn btn-block btn-primary"
 activeClassName="active"
 to="/info/match">Match</NavLink>
 <NavLink className="m-2 btn btn-block btn-primary"
 activeClassName="active"
 to="/info/location">Location</NavLink>
 </div>
 <div className="col">
 <Switch>
 <Route path="/products" component={ ProductDisplay} />
 <Route path="/suppliers" component={ SupplierDisplay } />
 <Route path="/info/:datatype" component={ RouteInfo } />
 <Redirect to="/products" />
 </Switch>
 </div>
 </div>
 </div>
 </Router>
 }
}

URL parameters are specified as path prop segments that start with a colon (the : character). In the
example, the Route for the RouteInfo component has a path prop with a URL parameter named datatype.

...
<Route path="/info/:datatype" component={ RouteInfo } />
...

When the Route matches a URL, it will assign the value of the second segment to a URL parameter
called datatype, which will be passed on to the RouteInfo component through the match prop’s params
property. If you click the navigation links added to the example in Listing 22-6, you will see different values
displayed for the params property, as shown in Figure 22-4.

Chapter 22 ■ Advanced URL Routing

624

When the URL is /info/match, the value of the datatype parameter is match. When the URL is /info/
location, the value of the datatype parameter is location. In Listing 22-7, I have updated the RouteInfo
component to use the datatype prop to select the context data to present to the user.

Listing 22-7.  Using a URL Parameter Prop in the RouteInfo.js File in the src/routing Folder

import React, { Component } from "react";
import { Link } from "react-router-dom";

export class RouteInfo extends Component {

 renderTable(title, prop, propertyNames) {
 return <React.Fragment>
 <tr><th colSpan="2" className="text-center">{ title }</th></tr>
 { propertyNames.map(p =>
 <tr key={p }>
 <td>{ p }</td>
 <td>{ JSON.stringify(prop[p]) }</td>
 </tr>)
 }
 </React.Fragment>
 }

 render() {
 return <div className="bg-info m-2 p-2">
 <h4 className="text-white text-center">Route Info</h4>
 <table className="table table-sm table-striped bg-light">
 <tbody>
 { this.props.match.params.datatype ==="match"
 && this.renderTable("Match", this.props.match,
 ["url", "path", "params", "isExact"])}
 { this.props.match.params.datatype === "location"
 && this.renderTable("Location", this.props.location,
 ["key", "pathname", "search", "hash", "state"])}
 </tbody>
 </table>

Figure 22-4.  Receiving URL parameters through the match prop

Chapter 22 ■ Advanced URL Routing

625

 <div className="text-center m-2 bg-light">
 <Link className="btn btn-primary m-2"
 to={ this.props.location }>Location</Link>
 </div>
 </div>
 }
}

The component receives URL parameters as part of the routing props and uses them just like any other
prop. In the listing, the value of the datatype URL parameter is used for inline expressions that display the
match or location object, as shown in Figure 22-5.

Figure 22-5.  Responding to a URL parameter by selecting content

UNDERSTANDING OPAQUE URL STRUCTURE

URL parameters are not just a convenient way for a component to receive the contents of a URL
segment. They also decouple the structure of the URL from the components that are targeted by it,
allowing the structure of the URL to be altered or multiple URLs to target the same content without
modifying the component. The component in Listing 22-7, for example, depends on the datatype
URL parameter but doesn’t have any dependency on the part of the URL from which it is obtained.
This means that the component will work with a path such as /info/:datatype but will can also
be matched by a path such as /diagnostics/routing/:datatype without requiring changes to the
component’s code.

The advantage of URL parameters is that the component just needs to know the names of the URL
parameters it requires and not the details of where they appear in the URL.

Chapter 22 ■ Advanced URL Routing

626

Using Optional URL Parameters
The addition of the URL parameter means that the /info URL will no longer be matched by the Route
component. I could solve this by adding another Route, but a more elegant approach is to use an
optional parameter, which will allow the URL to match the path even if there is no corresponding segment.
In Listing 22-8, I have added a NavLink that navigates to the /info URL and changed the path of the Route
component so that the datatype parameter is optional.

Listing 22-8.  Using an Optional URL Parameter in the Selector.js File in the src Folder

import React, { Component } from "react";
import { BrowserRouter as Router, NavLink, Route, Switch, Redirect }
 from "react-router-dom";
import { ProductDisplay } from "./ProductDisplay";
import { SupplierDisplay } from "./SupplierDisplay";
import { RouteInfo } from "./routing/RouteInfo";

export class Selector extends Component {

 render() {
 return <Router>
 <div className="container-fluid">
 <div className="row">
 <div className="col-2">
 <NavLink className="m-2 btn btn-block btn-primary"
 activeClassName="active"
 to="/products">Products</NavLink>
 <NavLink className="m-2 btn btn-block btn-primary"
 activeClassName="active"
 to="/suppliers">Suppliers</NavLink>
 <NavLink className="m-2 btn btn-block btn-primary"
 activeClassName="active"
 to="/info/match">Match</NavLink>
 <NavLink className="m-2 btn btn-block btn-primary"
 activeClassName="active"
 to="/info/location">Location</NavLink>
 <NavLink className="m-2 btn btn-block btn-primary"
 activeClassName="active" to="/info">All Info</NavLink>
 </div>
 <div className="col">
 <Switch>
 <Route path="/products" component={ ProductDisplay} />
 <Route path="/suppliers" component={ SupplierDisplay } />
 <Route path="/info/:datatype?" component={ RouteInfo } />
 <Redirect to="/products" />
 </Switch>
 </div>
 </div>
 </div>
 </Router>
 }
}

Chapter 22 ■ Advanced URL Routing

627

Optional URL parameters are denoted with a question mark (the ? character) after the parameter
name, so datatype? indicates an optional parameter that will be given the name datatype if there is a
corresponding segment in the URL. If there is no segment, the path will still match, but there will be no
datatype value. In Listing 22-9, I have updated the RouteInfo component so that it displays details of both
the match and location objects if there is no datatype value.

■■ Tip  For a complete list of the different ways that URL parameters can be specified, see https://github.
com/pillarjs/path-to-regexp, which is the GitHub repository for the package that processes URLs.

Listing 22-9.  Handling an Optional URL Parameter in the RouteInfo.js File in the src Folder

import React, { Component } from "react";
import { Link } from "react-router-dom";

export class RouteInfo extends Component {

 renderTable(title, prop, propertyNames) {
 return <React.Fragment>
 <tr><th colSpan="2" className="text-center">{ title }</th></tr>
 { propertyNames.map(p =>
 <tr key={p }>
 <td>{ p }</td>
 <td>{ JSON.stringify(prop[p]) }</td>
 </tr>)
 }
 </React.Fragment>
 }

 render() {
 return <div className="bg-info m-2 p-2">
 <h4 className="text-white text-center">Route Info</h4>
 <table className="table table-sm table-striped bg-light">
 <tbody>
 { (this.props.match.params.datatype === undefined ||
 this.props.match.params.datatype ==="match")
 && this.renderTable("Match", this.props.match,
 ["url", "path", "params", "isExact"])}
 { (this.props.match.params.datatype === undefined ||
 this.props.match.params.datatype === "location")
 && this.renderTable("Location", this.props.location,
 ["key", "pathname", "search", "hash", "state"])}
 </tbody>
 </table>
 <div className="text-center m-2 bg-light">
 <Link className="btn btn-primary m-2"
 to={ this.props.location }>Location</Link>
 </div>
 </div>
 }
}

https://github.com/pillarjs/path-to-regexp
https://github.com/pillarjs/path-to-regexp

Chapter 22 ■ Advanced URL Routing

628

The value of the datatype parameter will be undefined if no segment in the URL has been matched.
The changes in the listing and the addition of the optional URL parameter allow the component to respond
to a wider range of URLs without requiring additional Route components to be used.

Accessing Routing Data in Other Components
A Route will add props to the components it displays but can’t provide them directly to other components,
including the descendants of the components it displays. To avoid prop threading, the React-Router package
provides two different approaches for providing access to routing data in descendant components, as
described in the following sections.

Accessing Routing Data Directly in a Component
The most direct way to get access to routing data is to use a Route in the render method. To demonstrate, I
added a file called ToggleLink.js to the src/routing folder and used it to define the component shown in
Listing 22-10.

■■ Tip T his is the same component I used to highlight the active route in the SportsStore application in Part 1.

Listing 22-10.  The Contents of the ToggleLink.js File in the src/routing Folder

import React, { Component } from "react";
import { Route, Link } from "react-router-dom";

export class ToggleLink extends Component {

 render() {
 return <Route path={ this.props.to } exact={ this.props.exact }
 children={ routeProps => {

 const baseClasses = this.props.className || "m-2 btn btn-block";
 const activeClass = this.props.activeClass || "btn-primary";
 const inActiveClass = this.props.inActiveClass || "btn-secondary"

 const combinedClasses =
 `${baseClasses} ${routeProps.match ? activeClass : inActiveClass}`

 return <Link to={ this.props.to } className={ combinedClasses }>
 { this.props.children }
 </Link>
 }} />
 }
}

The Route component’s children prop is used to render content regardless of the current URL and
is assigned a function that receives the routing context data. The path prop is used to indicate interest in a
URL, and when the current URL matches the path, the routeProps object passed to the children function
includes a match object that defines the properties described in Table 22-4.

Chapter 22 ■ Advanced URL Routing

629

The ToggleLink component allows me to solve a minor niggle that arises between the NavLink component
and the Bootstrap CSS framework. The NavLink works by adding a class to the anchor element it renders when
a path is matched and removing it the rest of the time. This causes a problem for some combinations of
Bootstrap classes because the order in which they are defined in the CSS stylesheet means that some classes,
such as btn-primary, won’t take effect until a related class, such as btn-secondary, are removed.

The ToggleLink component fixes this problem by adding an active class when there is a match object
and adding an inactive class when there is no match.

...
const combinedClasses =
 `${baseClasses} ${routeProps.match ? activeClass : inActiveClass}`
...

A Link is still used to generate the navigation element and respond to clicks but is styled by the
ToggleLink component such that I make free use of the Bootstrap CSS classes. In Listing 22-11, I have
replaced each NavLink with a ToggleLink.

Listing 22-11.  Replacing Navigation Components in the Selector.js File in the src Folder

import React, { Component } from "react";
import { BrowserRouter as Router, Route, Switch, Redirect }
 from "react-router-dom";
import { ProductDisplay } from "./ProductDisplay";
import { SupplierDisplay } from "./SupplierDisplay";
import { RouteInfo } from "./routing/RouteInfo";
import { ToggleLink } from "./routing/ToggleLink";

export class Selector extends Component {

 render() {
 return <Router>
 <div className="container-fluid">
 <div className="row">
 <div className="col-2">
 <ToggleLink to="/products">Products</ToggleLink>
 <ToggleLink to="/suppliers">Suppliers</ToggleLink>
 <ToggleLink to="/info/match">Match</ToggleLink>
 <ToggleLink to="/info/location">Location</ToggleLink>
 <ToggleLink to="/info" exact={ true }>All Info</ToggleLink>
 </div>
 <div className="col">
 <Switch>
 <Route path="/products" component={ ProductDisplay} />
 <Route path="/suppliers" component={ SupplierDisplay } />
 <Route path="/info/:datatype?" component={ RouteInfo } />
 <Redirect to="/products" />
 </Switch>
 </div>
 </div>
 </div>
 </Router>
 }
}

Chapter 22 ■ Advanced URL Routing

630

I have relied on the default classes specified in Listing 22-10, with the result that the navigation buttons
are added to the Bootstrap btn-primary class when they are active and to the btn-secondary class when
they are inactive, as shown in Figure 22-6.

Accessing Routing Data Using a Higher-Order Component
The withRouter function is a higher-order component that provides access to the routing system without
directly using a Route (although that is the technique used inside the withRouter function). When a
component is passed to withRouter, it receives the match, location, and history objects as props, just
as though it had been rendered directly by a Route using the component prop. This can be a convenient
alternative to writing components that render a Route. In Listing 22-12, I have used the withRouter function
to allow the RouteInfo component to be used outside of a Route.

Listing 22-12.  Creating a Routing HOC in the Selector.js File in the src Folder

import React, { Component } from "react";
import { BrowserRouter as Router, Route, Switch, Redirect, withRouter }
 from "react-router-dom";
import { ProductDisplay } from "./ProductDisplay";
import { SupplierDisplay } from "./SupplierDisplay";
import { RouteInfo } from "./routing/RouteInfo";
import { ToggleLink } from "./routing/ToggleLink";

const RouteInfoHOC = withRouter(RouteInfo)

export class Selector extends Component {

 render() {
 return <Router>
 <div className="container-fluid">

Figure 22-6.  Accessing routing data directly in a component

Chapter 22 ■ Advanced URL Routing

631

 <div className="row">
 <div className="col-2">
 <ToggleLink to="/products">Products</ToggleLink>
 <ToggleLink to="/suppliers">Suppliers</ToggleLink>
 <ToggleLink to="/info/match">Match</ToggleLink>
 <ToggleLink to="/info/location">Location</ToggleLink>
 <ToggleLink to="/info" exact={ true }>All Info</ToggleLink>
 </div>
 <div className="col">
 <RouteInfoHOC />
 <Switch>
 <Route path="/products" component={ ProductDisplay} />
 <Route path="/suppliers" component={ SupplierDisplay } />
 <Route path="/info/:datatype?" component={ RouteInfo } />
 <Redirect to="/products" />
 </Switch>
 </div>
 </div>
 </div>
 </Router>
 }
}

The withRouter function is used to provide the RouteInfo component with the data it requires even
when it is not displayed by a Route. The result is that details of the match and location objects are always
displayed, as shown in Figure 22-7.

Figure 22-7.  Using the withrouter HOC

Chapter 22 ■ Advanced URL Routing

632

The withRouter function doesn’t provide support for matching paths, which means that the match
object is of little use. The location object, however, provide details of the application’s current location, and
the history object can be used for programmatic navigation, as described in the next section.

Navigating Programmatically
Not all navigation can be handled using Link or NavLink components, especially where the application
needs to perform some internal action in response to an event and only then perform navigation. The
history object that is provided to components provides an API that allows programmatic access to the
routing system, using the methods described in Table 22-6. The history object provides a consistent
interface for navigation regardless of whether the application uses the HTML5 History API or URL fragments.

In Listing 22-13, I replaced the Link in the ToggleLink component with a button whose event handler
navigates programmatically.

Listing 22-13.  Navigating Programmatically in the ToggleLink.js File in the src/router Folder

import React, { Component } from "react";
import { Route } from "react-router-dom";

export class ToggleLink extends Component {

 handleClick = (history) => {
 history.push(this.props.to);
 }

 render() {
 return <Route path={ this.props.to } exact={ this.props.exact }
 children={ routeProps => {

Table 22-6.  The history Methods

Name Description

push(path) This method navigates to the specified path and adds a new entry in the browser’s
history. An optional state property can be provided that is available through the
location.state property.

replace(path) This method navigates to the specified path and replaces the current location in the
browser’s history. An optional state property can be provided that is available through
the location.state property.

goBack() This method navigates to the previous location in the browser’s history.

goForward() This method navigates to the next location in the browser’s history.

go(n) This method navigates to the history location n places from the current location. Use
positive values to move forward and negative values to move backward.

block(prompt) This method blocks navigation until the user responds to a prompt, as described in the
“Prompting the User Before Navigation” section.

Chapter 22 ■ Advanced URL Routing

633

 const baseClasses = this.props.className || "m-2 btn btn-block";
 const activeClass = this.props.activeClass || "btn-primary";
 const inActiveClass = this.props.inActiveClass || "btn-secondary"

 const combinedClasses =
 `${baseClasses} ${routeProps.match ? activeClass : inActiveClass}`

 return <button className={ combinedClasses }
 onClick={ () => this.handleClick(routeProps.history) }>
 {this.props.children}
 </button>
 }} />
 }
}

The onClick handler passes the history object received from the Route component to the handleClick
method, which uses the push method to navigate to the location specified by the to prop. There is no visible
difference because the anchor elements rendered by the Link components were already styled to appear as
buttons, but the ToggleLink component now handles its navigation directly.

Navigating Programmatically Using Components
An alternative to using the history object is to render components that perform navigation. In Listing 22-14,
I have changed the ToggleLink component so that clicking the button element updates state data that
causes a Redirect to be rendered instead.

Listing 22-14.  Navigating Using Components in the ToggleLink.js File in the src/router Folder

import React, { Component } from "react";
import { Route, Redirect } from "react-router-dom";

export class ToggleLink extends Component {

 constructor(props) {
 super(props);
 this.state = {
 doRedirect: false
 }
 }

 handleClick = () => {
 this.setState({ doRedirect: true},
 () => this.setState({ doRedirect: false }));
 }

 render() {
 return <Route path={ this.props.to } exact={ this.props.exact }
 children={ routeProps => {

 const baseClasses = this.props.className || "m-2 btn btn-block";
 const activeClass = this.props.activeClass || "btn-primary";

Chapter 22 ■ Advanced URL Routing

634

 const inActiveClass = this.props.inActiveClass || "btn-secondary"

 const combinedClasses =
 `${baseClasses} ${routeProps.match ? activeClass : inActiveClass}`

 return <React.Fragment>
 { this.state.doRedirect && <Redirect to={ this.props.to } /> }
 <button className={ combinedClasses } onClick={ this.handleClick }>
 {this.props.children}
 </button>
 </React.Fragment>
 }} />
 }
}

Clicking the button sets the doRedirect property to true, which triggers an update that renders the
Redirect component. The doRedirect property is set back to false automatically so that the component’s
normal content is rendered again. The result is the same as Listing 22-13, and choosing an approach is a
matter of preference and personal style.

Prompting the User Before Navigation
Navigation can be delayed by rendering a Prompt, which allows the user to confirm or cancel navigation and
which is often used to avoid accidentally abandoning form data. The Prompt component supports the props
described in Table 22-7.

Table 22-7.  The Prompt Component Props

Name Description

message This prop defines the message displayed to the user. It can be expressed as a string or as a
function that accepts a location object and returns a string.

when This prop will prompt the user only when its value evaluates to true and can be used to
conditionally block navigation.

Only a single Prompt is used, but it doesn’t matter where it is rendered because it doesn’t perform any
action until the application changes to a new location, at which point the user will be asked to confirm
navigation. In Listing 22-15, I added a Prompt to the Selector component.

■■ Tip O nly one Prompt is needed, and you should not render additional Prompt instances in the components
that perform navigation, such as the ToggleLink component in the example application. You will receive a
warning in the JavaScript console if you render multiple Prompt components.

Chapter 22 ■ Advanced URL Routing

635

Listing 22-15.  Prompting the User in the Selector.js File in the src Folder

import React, { Component } from "react";
import { BrowserRouter as Router, Route, Switch, Redirect, withRouter, Prompt }
 from "react-router-dom";
import { ProductDisplay } from "./ProductDisplay";
import { SupplierDisplay } from "./SupplierDisplay";
import { RouteInfo } from "./routing/RouteInfo";
import { ToggleLink } from "./routing/ToggleLink";

const RouteInfoHOC = withRouter(RouteInfo)

export class Selector extends Component {

 render() {
 return <Router>
 <div className="container-fluid">
 <div className="row">
 <div className="col-2">
 <ToggleLink to="/products">Products</ToggleLink>
 <ToggleLink to="/suppliers">Suppliers</ToggleLink>
 <ToggleLink to="/info/match">Match</ToggleLink>
 <ToggleLink to="/info/location">Location</ToggleLink>
 <ToggleLink to="/info" exact={ true }>All Info</ToggleLink>
 </div>
 <div className="col">
 <Prompt message={ loc =>
 `Do you want to navigate to ${loc.pathname}`} />
 <RouteInfoHOC />
 <Switch>
 <Route path="/products" component={ ProductDisplay} />
 <Route path="/suppliers" component={ SupplierDisplay } />
 <Route path="/info/:datatype?" component={ RouteInfo } />
 <Redirect to="/products" />
 </Switch>
 </div>
 </div>
 </div>
 </Router>
 }
}

To see the effect of the Prompt, click one of the button elements rendered by the ToggleLink
components. You will be asked to confirm navigation, as shown in Figure 22-8.

Chapter 22 ■ Advanced URL Routing

636

■■ Tip I f you prefer using the history object for navigation, the block method can be used to set up a prompt
that will be presented to the user, as demonstrated in the next section.

Presenting a Custom Navigation Prompt
The BrowserRouter and HashRouter components provide a getUserConfirmation prop that is used to
replace the default prompt with a custom function. To present a prompt to the user that is inline with the rest
of the application’s content, I added a file called CustomPrompt.js to the src/routing folder and used it to
define the component shown in Listing 22-16.

Listing 22-16.  The Contents of the CustomPrompt.js File in the src/routing Folder

import React, { Component } from "react";

export class CustomPrompt extends Component {

 render() {
 if (this.props.show) {
 return <div className="alert alert-warning m-2 text-center">
 <h4 className="alert-heading">Navigation Warning</h4>
 { this.props.message }
 <div className="p-1">
 <button className="btn btn-primary m-1"
 onClick={ () => this.props.callback(true) }>
 Yes
 </button>
 <button className="btn btn-secondary m-1"
 onClick={ () => this.props.callback(false)}>
 No
 </button>

Figure 22-8.  Prompting the user before navigating

Chapter 22 ■ Advanced URL Routing

637

 </div>
 </div>
 }
 return null;
 }
}

The CustomPrompt component is responsible for displaying a message to the user and presenting Yes
and No buttons that invoke a callback function that will confirm or block navigation. In Listing 22-17, I have
applied the CustomPrompt in the Selector component, along with the state data required to manage the
prompting process.

Listing 22-17.  Appling a Custom Prompt in the Selector.js File in the src Folder

import React, { Component } from "react";
import { BrowserRouter as Router, Route, Switch, Redirect, withRouter, Prompt }
 from "react-router-dom";
import { ProductDisplay } from "./ProductDisplay";
import { SupplierDisplay } from "./SupplierDisplay";
import { RouteInfo } from "./routing/RouteInfo";
import { ToggleLink } from "./routing/ToggleLink";
import { CustomPrompt } from "./routing/CustomPrompt";

const RouteInfoHOC = withRouter(RouteInfo)

export class Selector extends Component {

 constructor(props) {
 super(props);
 this.state = {
 showPrompt: false,
 message: "",
 callback: () => {}
 }
 }

 customGetUserConfirmation = (message, navCallback) => {
 this.setState({
 showPrompt: true, message: message,
 callback: (allow) => { navCallback(allow);
 this.setState({ showPrompt: false}) }
 });
 }

 render() {
 return <Router getUserConfirmation={ this.customGetUserConfirmation }>
 <div className="container-fluid">
 <div className="row">
 <div className="col-2">
 <ToggleLink to="/products">Products</ToggleLink>
 <ToggleLink to="/suppliers">Suppliers</ToggleLink>
 <ToggleLink to="/info/match">Match</ToggleLink>

Chapter 22 ■ Advanced URL Routing

638

 <ToggleLink to="/info/location">Location</ToggleLink>
 <ToggleLink to="/info" exact={ true }>All Info</ToggleLink>
 </div>
 <div className="col">
 <CustomPrompt show={ this.state.showPrompt }
 message={ this.state.message }
 callback={ this.state.callback } />
 <Prompt message={ loc =>
 `Do you want to navigate to ${loc.pathname}?`} />
 <RouteInfoHOC />
 <Switch>
 <Route path="/products" component={ ProductDisplay} />
 <Route path="/suppliers" component={ SupplierDisplay } />
 <Route path="/info/:datatype?" component={ RouteInfo } />
 <Redirect to="/products" />
 </Switch>
 </div>
 </div>
 </div>
 </Router>
 }
}

The getUserConfirmation prop supported by BrowserRouter and HashRouter is assigned a function
that receives a message to display to the user and a callback that is invoked by the user’s decision: true to
processed with navigation and false to block it. In the listing, the getUserConfirmation prop will invoke the
customGetUserConfirmation method, which updates the state data used for the CustomPrompt props, with
the result that the user is prompted, as shown in Figure 22-9.

Figure 22-9.  Using a custom prompt

Chapter 22 ■ Advanced URL Routing

639

■■ Tip N otice that I still need to use a Prompt, which is responsible for triggering the process that displays the
CustomPrompt.

Generating Routes Programmatically
The Selector component uses the ToggleLink and Route components to set up the mappings between the
URLs that the application supports and the content they relate to, but this wasn’t the way that the application
worked before I added support for URL routing. Instead, the App component treated the Selector as a
container and provided it with children to display, like this:

import React, { Component } from "react";
import { Provider } from "react-redux";
import dataStore from "./store";
import { Selector } from "./Selector";
import { ProductDisplay } from "./ProductDisplay";
import { SupplierDisplay } from "./SupplierDisplay";

export default class App extends Component {

 render() {
 return <Provider store={ dataStore }>
 <Selector>
 <ProductDisplay name="Products" />
 <SupplierDisplay name="Suppliers" />
 </Selector>
 </Provider>
 }
}

The use of container components that provide services without hard-coded knowledge of their children
is important in React development and can be easily applied when using React-Router because routes are
defined and handled using components. In Listing 22-18, I have revised the Selector component to remove
the locally defined routes and generate them from the children props instead.

Listing 22-18.  Generating Routes from Children in the Selector.js File in the src Folder

import React, { Component } from "react";
import { BrowserRouter as Router, Route, Switch, Redirect, Prompt }
 from "react-router-dom";
// import { ProductDisplay } from "./ProductDisplay";
// import { SupplierDisplay } from "./SupplierDisplay";
//import { RouteInfo } from "./routing/RouteInfo";
import { ToggleLink } from "./routing/ToggleLink";
import { CustomPrompt } from "./routing/CustomPrompt";

//const RouteInfoHOC = withRouter(RouteInfo)

export class Selector extends Component {

Chapter 22 ■ Advanced URL Routing

640

 constructor(props) {
 super(props);
 this.state = {
 showPrompt: false,
 message: "",
 callback: () => {}
 }
 }

 customGetUserConfirmation = (message, navCallback) => {
 this.setState({
 showPrompt: true, message: message,
 callback: (allow) => { navCallback(allow);
 this.setState({ showPrompt: false}) }
 });
 }

 render() {

 const routes = React.Children.map(this.props.children, child => ({
 component: child,
 name: child.props.name,
 url: `/${child.props.name.toLowerCase()}`
 }));

 return <Router getUserConfirmation={ this.customGetUserConfirmation }>
 <div className="container-fluid">
 <div className="row">
 <div className="col-2">
 { routes.map(r => <ToggleLink key={ r.url } to={ r.url }>
 { r.name }
 </ToggleLink>)}
 </div>
 <div className="col">
 <CustomPrompt show={ this.state.showPrompt }
 message={ this.state.message }
 callback={ this.state.callback } />
 <Prompt message={ loc =>
 `Do you want to navigate to ${loc.pathname}?`} />
 <Switch>
 { routes.map(r => <Route key={ r.url } path={ r.url }
 render={ () => r.component } />)}
 <Redirect to={ routes[0].url } />
 </Switch>
 </div>
 </div>
 </div>
 </Router>
 }
}

Chapter 22 ■ Advanced URL Routing

641

The Selector processes its children to build up the mappings between URLs and components and
generates the required ToggleLink and Route components, which I have supplemented with a Redirect
component, producing the result shown in Figure 22-10.

Figure 22-10.  Generating routes programmatically

Using Routing with Connected Data Store Components
To complete the adoption of routing in the example application, I am going to move the remaining state data
that coordinates components out of the data store and manage it with the set of URLs described in Table 22-8.

Table 22-8.  The URLs for the Example Application

Name Description

/products/table This URL will display the table of products.

/products/create This URL will display the editor to allow a new product to be created.

/products/edit/4 This URL will display the editor to allow an existing product to be edited, where
the last URL segment identifies the product to change.

/suppliers/table This URL will display the table of suppliers.

/suppliers/create This URL will display the editor to allow a new supplier to be created.

/suppliers/edit/4 This URL will display the editor to allow an existing supplier to be edited, where
the last URL segment identifies the supplier to change.

The URLs that the application requires can be handled with a single path with URL parameters, as follows:

...
/:datatype/:mode?/:id?
...

Chapter 22 ■ Advanced URL Routing

642

In the sections that follow, I will update the components in the application so that the data store is used
only for the model data, while the details of which content should be displayed to the user is represented
in the URL. (This kind of hard separation is only one approach, and you can take a softer line if it suits your
project so that some state data is handled in the data store and some through URLs. As with so much in
React development, there is no absolute correct approach.)

Replacing the Display Components
The ProductDisplay and SupplierDisplay components have been responsible for deciding whether the
table or editor is displayed for a specific data type. The differences between these components have been
reduced as features have been added to the example application, and the introduction of URL routing means
that a single component can easily handle the content selection for both types of data. I added a file called
RoutedDisplay.js to the src/routing folder and used it to define the component shown in Listing 22-19.

Listing 22-19.  The Contents of the RoutedDisplay.js File in the src/routing Folder

import React, { Component } from "react";
import { ProductTable } from "../ProductTable"
import { ProductEditor } from "../ProductEditor";
import { EditorConnector } from "../store/EditorConnector";
import { PRODUCTS } from "../store/dataTypes";
import { TableConnector } from "../store/TableConnector";
import { Link } from "react-router-dom";
import { SupplierEditor } from "../SupplierEditor";
import { SupplierTable } from "../SupplierTable";

export const RoutedDisplay = (dataType) => {

 const ConnectedEditor = EditorConnector(dataType, dataType === PRODUCTS
 ? ProductEditor: SupplierEditor);
 const ConnectedTable = TableConnector(dataType, dataType === PRODUCTS
 ? ProductTable : SupplierTable);

 return class extends Component {
 render() {
 const modeParam = this.props.match.params.mode;
 if (modeParam === "edit" || modeParam === "create") {
 return <ConnectedEditor key={ this.props.match.params.id || -1 } />
 } else {
 return <div className="m-2">
 <ConnectedTable />
 <div className="text-center">
 <Link to={`/${dataType}/create`}
 className="btn btn-primary m-1">
 Create
 </Link>
 </div>
 </div>
 }
 }
 }
}

Chapter 22 ■ Advanced URL Routing

643

This component performs the same task as the ProductDisplay and SupplierDisplay components
but receives the data type it is responsible for as an argument, which allows the EditorConnector and
TableConnector components to be created.

Updating the Connected Editor Component
The EditorConnector component is responsible for creating a ProductEditor or SupplierEditor that
is connected to the Redux data store. In Listing 22-20, I have used the withRouter function to create a
component that is provided with routing data but also remains connected to the data store.

Listing 22-20.  Using Routing in the EditorConnector.js File in the src/store Folder

import { connect } from "react-redux";
//import { endEditing } from "./stateActions";
import { PRODUCTS, SUPPLIERS } from "./dataTypes";
import { saveAndEndEditing } from "./multiActionCreators";
import { withRouter } from "react-router-dom";

export const EditorConnector = (dataType, presentationComponent) => {

 const mapStateToProps = (storeData, ownProps) => {
 const mode = ownProps.match.params.mode;
 const id = Number(ownProps.match.params.id);
 return {
 editing: mode === "edit" || mode === "create",
 product: (storeData.modelData[PRODUCTS].find(p => p.id === id)) || {},
 supplier:(storeData.modelData[SUPPLIERS].find(s => s.id === id)) || {}
 }
 }

 const mapDispatchToProps = {
 //cancelCallback: endEditing,
 saveCallback: (data) => saveAndEndEditing(data, dataType)
 }

 const mergeProps = (dataProps, functionProps, ownProps) => {
 let routedDispatchers = {
 cancelCallback: () => ownProps.history.push(`/${dataType}`),
 saveCallback: (data) => {
 functionProps.saveCallback(data);
 ownProps.history.push(`/${dataType}`);
 }
 }
 return Object.assign({}, dataProps, routedDispatchers, ownProps);
 }

 return withRouter(connect(mapStateToProps,
 mapDispatchToProps, mergeProps)(presentationComponent));
}

Chapter 22 ■ Advanced URL Routing

644

The component no longer uses the data store to work out whether the user is editing or creating an
object and gets this information from the URL, along with the id value when an object is being edited.

■■ Tip N otice that I use Number to parse the id URL parameter, which is presented as a string. I need the id
value to be a number in order to locate objects.

I have used the ability to merge props, described in Chapter 20, to create wrappers around the data store
action creator so that data is saved to the store and then the history object is used for navigation. The cancel
action is no longer required and can be handled directly by navigating away from the current location.

AVOIDING BLOCKED UPDATES

The withRouter and connect functions both produce components that try to minimize updates using
the shouldComponentUpdate method, which is described in Chapter 13. When the withRouter and
connect functions are used together, the result can be a component that doesn’t always update
because the React-Router and React-Redux packages perform simple comparisons on props and don’t
realize that a change has occurred. To avoid this problem, simplify the props structure to allow changes
to be more easily detected.

Updating the Connected Table Component
The same process must be performed on the component that connects the tables that display objects to the
data store, as shown in Listing 22-21.

Listing 22-21.  Using Routing in the TableConnector.js File in the src/store Folder

import { connect } from "react-redux";
//import { startEditingProduct, startEditingSupplier } from "./stateActions";
import { deleteProduct, deleteSupplier } from "./modelActionCreators";
import { PRODUCTS, SUPPLIERS } from "./dataTypes";
import { withRouter } from "react-router-dom";

export const TableConnector = (dataType, presentationComponent) => {

 const mapStateToProps = (storeData, ownProps) => {
 if (dataType === PRODUCTS) {
 return { products: storeData.modelData[PRODUCTS] };
 } else {
 return {
 suppliers: storeData.modelData[SUPPLIERS].map(supp => ({
 ...supp,
 products: supp.products.map(id =>
 storeData.modelData[PRODUCTS]
 .find(p => p.id === Number(id)) || id)
 .map(val => val.name || val)
 }))

Chapter 22 ■ Advanced URL Routing

645

 }
 }
 }

 const mapDispatchToProps = (dispatch, ownProps) => {
 if (dataType === PRODUCTS) {
 return {
 //editCallback: (...args) => dispatch(startEditingProduct(...args)),
 deleteCallback: (...args) => dispatch(deleteProduct(...args))
 }
 } else {
 return {
 //editCallback: (...args) => dispatch(startEditingSupplier(...args)),
 deleteCallback: (...args) => dispatch(deleteSupplier(...args))
 }
 }
 }

 const mergeProps = (dataProps, functionProps, ownProps) => {
 let routedDispatchers = {
 editCallback: (target) => {
 ownProps.history.push(`/${dataType}/edit/${target.id}`);
 },
 deleteCallback: functionProps.deleteCallback
 }
 return Object.assign({}, dataProps, routedDispatchers, ownProps);
 }

 return withRouter(connect(mapStateToProps,
 mapDispatchToProps, mergeProps)(presentationComponent));
}

Once again, I have used the withRouter and connect functions to produce a component that has
access to the routing data and the data store. The editing function is handled by navigating to a URL that
indicates the data type and id value. Deleting data is a task handled entirely by the data store and requires
no navigation.

Completing the Routing Configuration
The final step is to update the routing configuration to support the URLs defined in Table 22-8. In
Listing 22-22, I updated the Selector component so that it applies the RoutedDisplay component in its
render function. (I also removed the navigation prompt components and code for brevity.)

Listing 22-22.  Changing the Routing Configuration in the Selector.js File in the src Folder

import React, { Component } from "react";
import { BrowserRouter as Router, Route, Switch, Redirect }
 from "react-router-dom";
import { ToggleLink } from "./routing/ToggleLink";
//import { CustomPrompt } from "./routing/CustomPrompt";
import { RoutedDisplay } from "./routing/RoutedDisplay";

Chapter 22 ■ Advanced URL Routing

646

export class Selector extends Component {

 render() {

 const routes = React.Children.map(this.props.children, child => ({
 component: child,
 name: child.props.name,
 url: `/${child.props.name.toLowerCase()}`,
 datatype: child.props.datatype
 }));

 return <Router getUserConfirmation={ this.customGetUserConfirmation }>
 <div className="container-fluid">
 <div className="row">
 <div className="col-2">
 { routes.map(r => <ToggleLink key={ r.url } to={ r.url }>
 { r.name }
 </ToggleLink>)}
 </div>
 <div className="col">
 <Switch>
 { routes.map(r =>
 <Route key={ r.url }
 path={ `/:datatype(${r.datatype})/:mode?/:id?`}
 component={ RoutedDisplay(r.datatype)} />
)}
 <Redirect to={ routes[0].url } />
 </Switch>
 </div>
 </div>
 </div>
 </Router>
 }
}

The children provided by the parent component are no longer components and exist only to provide
prop values to the Selector so that it can set up the Route components. In Listing 22-23, I have reflected this
change in the App component, which now uses a custom HTML element to configure the Selector rather
than using the data-specific components directly.

Listing 22-23.  Completing the Routing Configuration in the App.js File in the src Folder

import React, { Component } from "react";
import { Provider } from "react-redux";
import dataStore from "./store";
import { Selector } from "./Selector";
// import { ProductDisplay } from "./ProductDisplay";
// import { SupplierDisplay } from "./SupplierDisplay";
import { PRODUCTS, SUPPLIERS } from "./store/dataTypes";

export default class App extends Component {

Chapter 22 ■ Advanced URL Routing

647

 render() {
 return <Provider store={ dataStore }>
 <Selector>
 <data name="Products" datatype={ PRODUCTS } />
 <data name="Suppliers" datatype ={ SUPPLIERS } />
 </Selector>
 </Provider>
 }
}

The result is that the data store is no longer used for coordination between components, which is now
handled entirely through the URL, as shown in Figure 22-11.

Summary
In this chapter, I showed you how to use the advanced features provided by the React-Router package.
I demonstrated how to create components that are aware of the routing system, how to use URL parameters
to provide components with easy access to data from the current route, and how to use the routing features
programmatically. I also demonstrated how components can participate in the routing system while also
being connected to Redux, allowing state data to be handled via URLs while the application’s model data is
managed by a data store. In the next chapter, I show you how to consume a RESTful web service.

Figure 22-11.  Using URL routing to coordinate components

649© Adam Freeman 2019
A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_23

CHAPTER 23

Consuming a RESTful Web Service

In this chapter, I address the example application’s lack of permanent data storage by creating a web
service and using it to manage the application’s data. The application will send HTTP requests to the web
service to retrieve data and to submit changes. I start this chapter by showing you how to consume a web
service directly in a component and then demonstrate how a web service can be used with a data store.
In Chapter 24, I explain how to use GraphQL, which is an alternative approach to dealing with web services.
Table 23-1 puts this chapter in context.

Table 23-1.  Putting Consuming Web Services in Context

Question Answer

What is it? Web services act as the data repository for an application, allowing data to be read,
stored, modified, and deleted using HTTP requests.

Why is it useful? Web services fit neatly into the features available in browsers and avoid having to deal
with local storage issues.

How is it used? Web services are not all implemented the same way, but the general approach is to send
HTTP requests where the request method identifies the operation to be performed and
the request URL identifies the data to be operated on.

Are there any
pitfalls or
limitations?

The inconsistent nature of web service implementations means that each web service
can require a slightly different set of requests. Care must be taken when consuming the
web service in a component to ensure that requests are not sent each time there is an
update.

Are there any
alternatives?

Modern web browsers support local storage options, which can be a good alternative for
some projects. The main drawback, however, is that each client has its own data, which
misses out on some of the advantages of a single central repository.

Chapter 23 ■ Consuming a RESTful Web Service

650

Table 23-2 summarizes the chapter.

Preparing for This Chapter
In this chapter, I continue using the productapp project from Chapter 22 that was modified in the chapters
since. Some preparation is required to install additional packages to the project and create the web service
that the application will rely on.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/pro-react-16.

Adding Packages to the Project
Run the commands shown in Listing 23-1 in the productapp folder to add the required packages to the project.

Listing 23-1.  Installing Additional Packages to the Project

npm install json-server@0.14.0 --save-dev
npm install npm-run-all@4.1.3 --save-dev
npm install axios@0.18.0

For quick reference, the packages by the commands in Listing 23-1 are described in Table 23-3.

Table 23-2.  Chapter Summary

Problem Solution Listing

Get data from a
web service

Create a data source that makes HTTP requests and feed the data back into
the application using a callback that invokes the setState method.

1–11

Perform additional
data operations

Extend the data source to send different combinations of HTTP methods and
URLs to indicate the required operation. Trigger the requests by responding
to component events

12–15

Handle request
errors

Use a try/catch block to catch the error and pass it to a component so that a
warning can be displayed to the user.

16–19

Consume a web
service with a data
store

Use middleware to intercept the data store actions and send the required
requests to the web service. Once a request has completed, forward the
action to the data store so that it can be updated.

20–24

https://github.com/Apress/pro-react-16

Chapter 23 ■ Consuming a RESTful Web Service

651

Preparing the Web Service
To provide the json-server package with data to work with, add a file called restData.js to the productapp
folder and add the code shown in Listing 23-2.

Listing 23-2.  The Contents of the restData.js File in the productapp Folder

module.exports = function () {
 var data = {
 products: [
 { id: 1, name: "Kayak", category: "Watersports", price: 275 },
 { id: 2, name: "Lifejacket", category: "Watersports", price: 48.95 },
 { id: 3, name: "Soccer Ball", category: "Soccer", price: 19.50 },
 { id: 4, name: "Corner Flags", category: "Soccer", price: 34.95 },
 { id: 5, name: "Stadium", category: "Soccer", price: 79500 },
 { id: 6, name: "Thinking Cap", category: "Chess", price: 16 },
 { id: 7, name: "Unsteady Chair", category: "Chess", price: 29.95 },
 { id: 8, name: "Human Chess Board", category: "Chess", price: 75 },
 { id: 9, name: "Bling Bling King", category: "Chess", price: 1200 }
],
 suppliers: [
 { id: 1, name: "Surf Dudes", city: "San Jose", products: [1, 2] },
 { id: 2, name: "Goal Oriented", city: "Seattle", products: [3, 4, 5] },
 { id: 3, name: "Bored Games", city: "New York", products: [6, 7, 8, 9] },
]
 }
 return data
}

The json-server package can work with JSON or JavaScript files. If a JSON file is used, its contents
will be modified to reflect changes requests made by clients. Instead, I have chosen the JavaScript option,
which allows data to be generated programmatically and means that restarting the process will return to the
original data. This isn’t something that you would do in a real project, but it is useful for the example because
it makes it easy to return to a known state, while still allowing the application access to persistent data.

To configure the json-server package so that it responds to requests for URLs that start with /api,
create a file called api.routes.json in the productapp folder with the contents shown in Listing 23-3.

Table 23-3.  The Packages Added to the Project

Name Description

json-server This package provides a web service that the application will query for data.
This command is installed with the save-dev command because it is required for
development and is not part of the application.

npm-run-all This package allows multiple commands to be run in parallel so that the web service
and the development server can be started at the same time. This command is installed
with the save-dev command because it is required for development and is not part of
the application.

axios This package will be used by the application to make HTTP requests to the web service.

Chapter 23 ■ Consuming a RESTful Web Service

652

Listing 23-3.  The Contents of the api.routes.json File in the productapp Folder

{ "/api/*": "/$1" }

To configure the development tools so that the web service is started at the same time as the
development web server, make the changes shown in Listing 23-4 to the package.json file in the productapp
folder.

Listing 23-4.  Configuring Tools in the package.json File in the productapp Folder

...
"scripts": {
 "start": "npm-run-all --parallel reactstart json",
 "build": "react-scripts build",
 "test": "react-scripts test",
 "eject": "react-scripts eject",
 "reactstart": "react-scripts start",
 "json": "json-server --p 3500 -r api.routes.json restData.js"
},
...

The changes to the scripts section of the package.json file use the npm-run-all package so that the
HTTP development server and json-server are started by npm start.

Adding a Component and a Route
I am going to demonstrate how to consume a web service in isolation and then show you how to use the data
in a data store. The existing components in the application are already connected to the data store, and so to
show how unconnected components can be used, I created a file called IsolatedTable.js in the src folder
and used it to create the component shown in Listing 23-5.

Listing 23-5.  The Contents of the IsolatedTable.js File in the src Folder

import React, { Component } from "react";

export class IsolatedTable extends Component {

 render() {
 return <table className="table table-sm table-striped table-bordered">
 <thead>
 <tr><th colSpan="5"
 className="bg-info text-white text-center h4 p-2">
 (Isolated) Products
 </th></tr>
 <tr>
 <th>ID</th><th>Name</th><th>Category</th>
 <th className="text-right">Price</th>
 <th></th>
 </tr>
 </thead>

Chapter 23 ■ Consuming a RESTful Web Service

653

 <tbody>
 <tr><td colSpan="5" className="text-center p-2">No Data</td></tr>
 </tbody>
 </table>
 }
}

The component renders an empty table as a placeholder for the moment. To incorporate the
component into the application, I updated the routing configuration in the Selector component to add a
new Route and a corresponding navigation link, as shown in Listing 23-6.

Listing 23-6.  Adding a Route in the Selector.js File in the src Folder

import React, { Component } from "react";
import { BrowserRouter as Router, Route, Switch, Redirect }
 from "react-router-dom";
import { ToggleLink } from "./routing/ToggleLink";
import { RoutedDisplay } from "./routing/RoutedDisplay";
import { IsolatedTable } from "./IsolatedTable";

export class Selector extends Component {

 render() {

 const routes = React.Children.map(this.props.children, child => ({
 component: child,
 name: child.props.name,
 url: `/${child.props.name.toLowerCase()}`,
 datatype: child.props.datatype
 }));

 return <Router getUserConfirmation={ this.customGetUserConfirmation }>
 <div className="container-fluid">
 <div className="row">
 <div className="col-2">
 <ToggleLink to="/isolated">Isolated Data</ToggleLink>
 { routes.map(r => <ToggleLink key={ r.url } to={ r.url }>
 { r.name }
 </ToggleLink>)}
 </div>
 <div className="col">
 <Switch>
 <Route path="/isolated" component={ IsolatedTable } />
 { routes.map(r =>
 <Route key={ r.url }
 path={ `/:datatype(${r.datatype})/:mode?/:id?`}
 component={ RoutedDisplay(r.datatype)} />
)}
 <Redirect to={ routes[0].url } />
 </Switch>
 </div>

Chapter 23 ■ Consuming a RESTful Web Service

654

 </div>
 </div>
 </Router>
 }
}

Running the Web Service and the Example Application
Using the command prompt, run the command shown in Listing 23-7 in the productapp folder to start the
development tools and the web service.

Listing 23-7.  Starting the Development Tools

npm start

Once the initial preparation for the project is complete, a new browser window will open and display
the URL http://localhost:3000, as shown in Figure 23-1.

Open a new browser window and navigate to http://localhost:3500/api/products/2. The server will
respond with the following data, which is also shown in Figure 23-2:

...
{ "id": 2, "name": "Lifejacket", "category": "Watersports", "price": 48.95 }
...

Figure 23-1.  Running the example application

Chapter 23 ■ Consuming a RESTful Web Service

655

The configuration I have chosen for this chapter means that there are two HTTP servers running. The
React development server is listening for requests on port 3000 and provides the HTML document that
bootstraps the application, along with the JavaScript and CSS files required to present the application to
the user. The RESTful web service is listening for requests on port 3500 and responds with data. This data is
expressed in the JSON format, which means it is easily processed by a JavaScript application but should not
be presented directly to most users.

Understanding RESTful Web Services
The most common approach for delivering and storing application data is applying the Representational
State Transfer pattern, known as REST, to create a data web service. There is no detailed specification for
REST, which leads to a lot of different approaches that fall under the RESTful banner. There are, however,
some unifying ideas that are useful in web application development.

The core premise of a RESTful web service is to embrace the characteristics of HTTP so that request
methods—also known as verbs—specify an operation for the server to perform, and the request URL
specifies one or more data objects to which the operation will be applied.

As an example, here is a URL that might refer to a specific product in the example application:

http://localhost:3500/api/products/2

The first segment of the URL—api—conventionally indicates that the request is for data. The next
segment—products—is used to indicate the collection of objects that will be operated on and allows a
single server to provide multiple services, each of which with its own data. The final segment—2—selects
an individual object within the products collection. In the example, it is the value of the id property that
uniquely identifies an object and that would be used in the URL, in this case, specifying the Lifejacket
object.

The HTTP verb or method used to make the request tells the RESTful server what operation should be
performed on the specified object. When you tested the RESTful server in the previous section, the browser
sent an HTTP GET request, which the server interprets as an instruction to retrieve the specified object and
send it to the client.

Table 23-4 shows the most common combination of HTTP methods and URLs and explains what each
of them does when sent to a RESTful server.

Figure 23-2.  Testing the web service

Chapter 23 ■ Consuming a RESTful Web Service

656

There are considerable differences in the way that web services are implemented, caused by differences
in the frameworks used to create them and the preferences of the development team. It is important
to confirm how a web service uses verbs and what is required in the URL and request body to perform
operations.

Common variations include web services that won’t accept any request bodies that contain id values
(to ensure they are generated uniquely by the server’s data store) and web services that don’t support all of
the verbs (it is common to ignore PATCH requests and only accept updates using the PUT verb).

■■ Tip  You may have noticed that the editor components don’t allow the user to provide a value for the id
property. This is because the web service that I create in this chapter generates id values automatically to
ensure uniqueness.

CHOOSING AN HTTP REQUEST LIBRARY

Throughout this chapter, I use the Axios library to send HTTP requests to the web service because it is
easy to use, deals with common data types automatically, and doesn’t require convoluted code to deal
with features like CORS (see the “Making Cross-Origin Requests” sidebar). Axios is widely used in web
application development, although it is not specific to React.

Axios isn’t the only way to send HTTP requests to web services. The most basic option to use the
XMLlHttpRequest object that provided the original API for making requests using JavaScript
(and which is capable of handling a range of data types, despite the XML in the name). The
XMLHttpRequest object is awkward to use but has wide browser support, and you can get further

Table 23-4.  Common HTTP Verbs and Their Effect in a RESTful Web Service

Verb URL Description

GET /api/products This combination retrieves all the objects in the products collection.

GET /api/products/2 This combination retrieves the object whose id is 2 from the products
collection.

POST /api/products This combination is used to add a new object to the products
collection. The request body contains a JSON representation of the
new object.

PUT /api/products/2 This combination is used to replace the object in the products
collection whose id is 2. The request body contains a JSON
representation of the replacement object.

PATCH /api/products/2 This combination is used to update a subset of the properties of the
object in the products collection whose id is 2. The request body
contains a JSON representation of the properties to update and the
new values.

DELETE /api/products/2 This combination is used to delete the product whose id is 2 from the
products collection.

Chapter 23 ■ Consuming a RESTful Web Service

657

details at https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest. (Axios uses
XMLHttpRequest to make HTTP requests but simplifies how they are created and processed.)

The Fetch API is a recent API provided by modern browsers that is intended to replace XMLHttpRequest
and is described at https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API. The Fetch
API is supported by recent releases of the mainstream browsers but not by older browsers, which can
be a problem for some applications.

If you are using GraphQL, then you should consider using the Apollo client, as described in Chapter 25.

Consuming a Web Service
I go through the steps required to consume a web service in the sections that follow, beginning with
requesting the initial data that the application will display to the user and then adding support for storing
and updating objects.

Creating the Data Source Component
It is a good idea to keep the code that uses Axios to consume the web service separate from the component
that uses it so that it can be more easily tested and used elsewhere in the application. I created the src/
webservice folder and added to it a file called RestDataSource.js with the code shown in Listing 23-8.

Listing 23-8.  The Contents of the RestDataSource.js File in the src/webservice Folder

import Axios from "axios";

export class RestDataSource {

 constructor(base_url) {
 this.BASE_URL = base_url;
 }

 GetData(callback) {
 this.SendRequest("get", this.BASE_URL, callback);
 }

 SendRequest(method, url, callback) {
 Axios.request({
 method: method,
 url: url
 }).then(response => callback(response.data));
 }
}

The RestDataSource class defines a constructor that receives the base URL for the web service and
defines a GetData method that calls the SendRequest.

I imported the HTTP functionality from the axios package and assigned it the name Axios.
The SendRequest method uses Axios to send an HTTP request through the request method, where
the details of the request are specified using a configuration object that has method and url properties.

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

Chapter 23 ■ Consuming a RESTful Web Service

658

Axios provides methods for sending different types of HTTP request—the get, post, and put methods,
for example, but using the approach in the listing makes it easier to apply features that affect all request
types, as you will see when I add error handling later in the chapter.

HTTP requests made using JavaScript are asynchronous. The request method returns a Promise
object that represents the eventual outcome of the request (see Chapter 4 for details of how Promise objects
are used). In Listing 23-8, I use the then method to supply Axios with a callback function to use when
the request is complete. The callback function is passed an object that describes the response using the
properties described in Table 23-5.

Axios automatically converts the JSON data format into a JavaScript object and presents it through the
response data property. As explained in Chapter 4, code that uses promises can be simplified using the
async and await keywords, as shown in Listing 23-9.

Listing 23-9.  Using async and await in the RestDataSource.js File in the src/webservice Folder

import Axios from "axios";

export class RestDataSource {

 constructor(base_url) {
 this.BASE_URL = base_url;
 }

 GetData(callback) {
 this.SendRequest("get", this.BASE_URL, callback);
 }

 async SendRequest(method, url, callback) {
 let response = await Axios.request({
 method: method,
 url: url
 });
 callback(response.data);
 }
}

Table 23-5.  The Axios Response Properties

Name Description

status This property returns the status code for the response, such as 200 or 404.

statusText This property returns the explanatory text that accompanies the status code, such as OK or
Not Found.

headers This property returns an object whose properties represent the response headers.

data This property returns the payload from the response.

config This property returns an object that contains the configuration options used to make the
request.

request This property returns the underlying XMLHttpRequest object that was used to make the
request, which can be useful if you require direct access to the API provided by the browser.

Chapter 23 ■ Consuming a RESTful Web Service

659

I can further simplify the code by combining the statements in the GetData method, as shown in
Listing 23-10.

Listing 23-10.  Combining Statements in the RestDataSource.js File in the src/webservice Folder

import Axios from "axios";

export class RestDataSource {

 constructor(base_url) {
 this.BASE_URL = base_url;
 }

 GetData(callback) {
 this.SendRequest("get", this.BASE_URL, callback);
 }

 async SendRequest(method, url, callback) {
 callback((await Axios.request({
 method: method,
 url: url
 })).data);
 }
}

This approach is more concise, but it is important to make sure you put the parentheses in the right
places, such that the await keyword is applied to the object returned by the SendRequest method and the
data property is read from the object that it produces. Without care, you can easily create a situation where
the HTTP request is sent but the response is ignored if you don’t follow this pattern.

Getting Data in the Component
The next step is to get the data into the component so that it can be displayed to the user. In Listing 23-11,
I have updated the IsolatedTable component so that it creates a data source and uses it to request data
from the web service.

■■ Note T he term isolated in the name of the component indicates that the component doesn’t share data
with any other components and deals directly with the web service. In the “Consuming a Web Service with a
Data Store” section, I show you an alternative approach where components share data via the data store.

Chapter 23 ■ Consuming a RESTful Web Service

660

Listing 23-11.  Getting Data in the IsolatedTable.js File in the src Folder

import React, { Component } from "react";
import { RestDataSource } from "./webservice/RestDataSource";

export class IsolatedTable extends Component {

 constructor(props) {
 super(props);
 this.state = {
 products: []
 }
 this.dataSource = new RestDataSource("http://localhost:3500/api/products")
 }

 render() {
 return <table className="table table-sm table-striped table-bordered">
 <thead>
 <tr><th colSpan="5"
 className="bg-info text-white text-center h4 p-2">
 (Isolated) Products
 </th></tr>
 <tr>
 <th>ID</th><th>Name</th><th>Category</th>
 <th className="text-right">Price</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 {
 this.state.products.map(p => <tr key={ p.id }>
 <td>{ p.id }</td><td>{ p.name }</td><td>{p.category}</td>
 <td className="text-right">
 ${ Number(p.price).toFixed(2)}
 </td><td/>
 </tr>)
 }
 </tbody>
 </table>
 }

 componentDidMount() {
 this.dataSource.GetData(data => this.setState({products: data}));
 }
}

The data is requested in the componentDidMount method, which ensures that the HTTP request
won’t be sent until after the component has rendered its content. The callback functions provided to the
GetData method update the component’s state data, which will trigger an update and ensure that the data is
presented to the user.

Chapter 23 ■ Consuming a RESTful Web Service

661

AVOIDING EXTRANEOUS DATA REQUESTS

Do not request data in the render method. As I explained in Chapter 13, a component’s render
method can be called often, and starting tasks in the render method can generate large numbers
of unnecessary HTTP requests and increase the number of updates that React has to perform as it
processes the response data.

Even when using the componentDidMount method, care should be taken when making requests
from components that may be unmounted and remounted, which is the case for the IsolatedTable
component in the example, which will be mounted by the routing system for the /isolated URL
and unmounted when the user navigates to another location. Each time the component is mounted,
it will request fresh data from the web service, which may not be what the application requires. To
avoid unnecessary data requests, the data can be lifted up to a component that won’t be unmounted,
stored in a context (as described in Chapter 14), or incorporated into a data store, as described in the
“Consuming a Web Service with a Data Store” section.

The result is that the data is obtained from the web service and displayed to the user when the Isolated
Data button is clicked, as shown in Figure 23-3.

Saving, Updating, and Deleting Data
To implement the operations required for saving, updating, and deleting data, I added the methods shown
in Listing 23-12 to the data source class, using Axios to send requests to the web service with different HTTP
methods.

Figure 23-3.  Getting data from the web service

Chapter 23 ■ Consuming a RESTful Web Service

662

Listing 23-12.  Adding Methods in the RestDataSource.js File in the src/webservice Folder

import Axios from "axios";

export class RestDataSource {

 constructor(base_url) {
 this.BASE_URL = base_url;
 }

 GetData(callback) {
 this.SendRequest("get", this.BASE_URL, callback);
 }

 async GetOne(id, callback) {
 this.SendRequest("get", `${this.BASE_URL}/${id}`, callback);
 }

 async Store(data, callback) {
 this.SendRequest("post", this.BASE_URL, callback, data)
 }

 async Update(data, callback) {
 this.SendRequest("put", `${this.BASE_URL}/${data.id}`, callback, data);
 }

 async Delete(data, callback) {
 this.SendRequest("delete", `${this.BASE_URL}/${data.id}`, callback, data);
 }

 async SendRequest(method, url, callback, data) {
 callback((await Axios.request({
 method: method,
 url: url,
 data: data
 })).data);
 }
}

The request configuration object passed to the Axios.request method uses a data property to specify
the payload for the request, which allows the application to provide JavaScript objects and leave Axios to
serialize them automatically.

When you implement data source methods, you will find that some adjustment is required to
accommodate the range of ways that web services can be implemented. For example, the example web
service will automatically assign a unique id property value to objects that are received in POST requests
and include the complete object in the response. The Store method in Listing 23-12 uses the data property
to get the complete object from the HTTP response and uses it to invoke the callback, which ensures that
the application receives the object as it has been stored by the web service. Not all web services operate this
way—some may require the application to include a unique identifier or will return only the identifier in the
response instead of sending the complete object.

Chapter 23 ■ Consuming a RESTful Web Service

663

When modifying an object, a PUT request is sent with the URL identifying the object to be modified,
like this:

...
this.SendRequest("put", `${this.BASE_URL}/${data.id}`, callback, data);
...

The web service returns the complete updated object, which is used to invoke the callback function.
Once again, not all web services will return the complete object, but it is a common approach because it
ensures that any additional transformations that are applied by the web service are reflected in the client.

Adding Application Support for Creating, Editing, and Deleting Data
To provide support for creating and editing data, I added a file called IsolatedEditor.js to the src folder
and used it to define the component shown in Listing 23-13.

Listing 23-13.  The Contents of the IsolatedEditor.js File in the src Folder

import React, { Component } from "react";
import { RestDataSource } from "./webservice/RestDataSource";
import { ProductEditor } from "./ProductEditor";

export class IsolatedEditor extends Component {

 constructor(props) {
 super(props);
 this.state = {
 dataItem: {}
 };
 this.dataSource = this.props.dataSource
 || new RestDataSource("http://localhost:3500/api/products");
 }

 save = (data) => {
 const callback = () => this.props.history.push("/isolated");
 if (data.id === "") {
 this.dataSource.Store(data, callback);
 } else {
 this.dataSource.Update(data, callback);
 }
 }

 cancel = () => this.props.history.push("/isolated");

 render() {
 return <ProductEditor key={ this.state.dataItem.id }
 product={ this.state.dataItem } saveCallback={ this.save }
 cancelCallback={ this.cancel } />
 }

Chapter 23 ■ Consuming a RESTful Web Service

664

 componentDidMount() {
 if (this.props.match.params.mode === "edit") {
 this.dataSource.GetOne(this.props.match.params.id,
 data => this.setState({ dataItem: data}));
 }
 }
}

React makes it easy to use existing components in new ways, and the IsolatedEditor component uses
the existing ProductEditor and its props to provide it with data and callbacks from the web service data
source. Details of the current route are used to request details of a single object using the GetOne method
when the user has selected an object for editing, and changes are sent back to the web service using the
Store or Update methods. In Listing 23-14, I have added support to the IsolatedTable component for
creating and editing objects by navigating to new URLs. I have also added a Delete button whose event
handler invokes the data source’s Delete method, which sends a DELETE request to the web service.

Listing 23-14.  Adding Data Operations in the IsolatedTable.js File in the src Folder

import React, { Component } from "react";
import { RestDataSource } from "./webservice/RestDataSource";
import { Link } from "react-router-dom";

export class IsolatedTable extends Component {

 constructor(props) {
 super(props);
 this.state = {
 products: []
 }
 this.dataSource = new RestDataSource("http://localhost:3500/api/products")
 }

 deleteProduct(product) {
 this.dataSource.Delete(product,
 () => this.setState({products: this.state.products.filter(p =>
 p.id !== product.id)}));
 }

 render() {
 return <table className="table table-sm table-striped table-bordered">
 <thead>
 <tr><th colSpan="5"
 className="bg-info text-white text-center h4 p-2">
 (Isolated) Products
 </th></tr>
 <tr>
 <th>ID</th><th>Name</th><th>Category</th>
 <th className="text-right">Price</th>
 <th></th>
 </tr>
 </thead>

Chapter 23 ■ Consuming a RESTful Web Service

665

 <tbody>
 {
 this.state.products.map(p => <tr key={ p.id }>
 <td>{ p.id }</td><td>{ p.name }</td><td>{p.category}</td>
 <td className="text-right">
 ${ Number(p.price).toFixed(2)}
 </td>
 <td>
 <Link className="btn btn-sm btn-warning mx-2"
 to={`/isolated/edit/${p.id}`}>
 Edit
 </Link>
 <button className="btn btn-sm btn-danger mx-2"
 onClick={ () => this.deleteProduct(p)}>
 Delete
 </button>
 </td>
 </tr>)
 }
 </tbody>
 <tfoot>
 <tr className="text-center">
 <td colSpan="5">
 <Link to="/isolated/create"
 className="btn btn-info">Create</Link>
 </td>
 </tr>
 </tfoot>
 </table>
 }

 componentDidMount() {
 this.dataSource.GetData(data => this.setState({products: data}));
 }
}

The final step is to update the routing configuration in the Selector component so that the /isolated/
edit and /isolated/create URLs select the IsolatedEditor component. I have also set the route for the /
isolated URL to match exactly to ensure that the Route for the IsolatedTable component doesn’t match
the other URLs, as shown in Listing 23-15.

Listing 23-15.  Adding a Route in the Selector.js File in the src Folder

import React, { Component } from "react";
import { BrowserRouter as Router, Route, Switch, Redirect }
 from "react-router-dom";
import { ToggleLink } from "./routing/ToggleLink";
import { RoutedDisplay } from "./routing/RoutedDisplay";
import { IsolatedTable } from "./IsolatedTable";
import { IsolatedEditor } from "./IsolatedEditor";

Chapter 23 ■ Consuming a RESTful Web Service

666

export class Selector extends Component {

 render() {

 const routes = React.Children.map(this.props.children, child => ({
 component: child,
 name: child.props.name,
 url: `/${child.props.name.toLowerCase()}`,
 datatype: child.props.datatype
 }));

 return <Router getUserConfirmation={ this.customGetUserConfirmation }>
 <div className="container-fluid">
 <div className="row">
 <div className="col-2">
 <ToggleLink to="/isolated">Isolated Data</ToggleLink>
 { routes.map(r => <ToggleLink key={ r.url } to={ r.url }>
 { r.name }
 </ToggleLink>)}
 </div>
 <div className="col">
 <Switch>
 <Route path="/isolated" component={ IsolatedTable }
 exact={ true } />
 <Route path="/isolated/:mode/:id?"
 component={ IsolatedEditor } />
 { routes.map(r =>
 <Route key={ r.url }
 path={ `/:datatype(${r.datatype})/:mode?/:id?`}
 component={ RoutedDisplay(r.datatype)} />
)}
 <Redirect to={ routes[0].url } />
 </Switch>
 </div>
 </div>
 </div>
 </Router>
 }
}

The IsolatedTable component displays Create, Edit, and Delete buttons, as shown in Figure 23-4.
The Create and Edit buttons present the editor component to the user, which then updates the web service
with the changes that the user makes by sending POST or PUT requests. The Delete buttons remove the
object with which they are associated by sending a DELETE request to the web service.

Chapter 23 ■ Consuming a RESTful Web Service

667

■■ Note T he changes made by the application are stored in the web service, which means you can reload the
browser and the changes will still be visible. The configuration of the json-server package at the start of the
chapter means that restarting the development tools will reset the data presented to by the web service. See
the SportsStore application in Chapter 8 for an example of using json-server for truly persistent data that does
not reset when the tools are restarted.

Dealing with Errors
The application assumes that all the HTTP requests will succeed, which is an unrealistically optimistic
approach. There are lots of reasons why an HTTP request may fail, such as connectivity issues or
server failure. Error boundaries, which I described in Chapter 14, can’t deal with problems that arise in
asynchronous operations such as HTTP requests, so a different approach is required. In Listing 23-16, I have
changed the data source so that it receives a function that it will invoke when there is a problem and use the
try/catch keywords to invoke the function when a request fails.

Listing 23-16.  Handling Errors in the RestDataSource.js File in the src/webservice Folder

import Axios from "axios";

export class RestDataSource {

 constructor(base_url, errorCallback) {
 this.BASE_URL = base_url;
 this.handleError = errorCallback;
 }

Figure 23-4.  Consuming a web service

Chapter 23 ■ Consuming a RESTful Web Service

668

 GetData(callback) {
 this.SendRequest("get", this.BASE_URL, callback);
 }

 async GetOne(id, callback) {
 this.SendRequest("get", `${this.BASE_URL}/${id}`, callback);
 }

 async Store(data, callback) {
 this.SendRequest("post", this.BASE_URL, callback, data)
 }

 async Update(data, callback) {
 this.SendRequest("put", `${this.BASE_URL}/${data.id}`, callback, data);
 }

 async Delete(data, callback) {
 this.SendRequest("delete", `${this.BASE_URL}/${data.id}`, callback, data);
 }

 async SendRequest(method, url, callback, data) {
 try {
 callback((await Axios.request({
 method: method,
 url: url,
 data: data
 })).data);
 } catch(err) {
 this.handleError("Operation Failed: Network Error");
 }
 }
}

The advantage of consolidating all the requests through the SendRequest method is that I can use a
single try/catch block to handle errors for all request types. The catch block handles errors that arise from
requests and invokes the callback function that is received as a constructor argument.

PRESENTING ERROR MESSAGES TO THE USER

The Axios package presents detailed errors when something goes wrong and includes the status code
from the response and any descriptive text the web service supplies. For most applications, however, it
doesn’t make sense to present this information to the user, who won’t understand what has happened
or know how to fix it. Instead, I recommend presenting a general error message to the user and logging
details of the problem at the server so that common issues can be identified.

To receive errors and display them to the user, I added a file called RequestError.js to the src/
webservice folder and used it to define the component shown in Listing 23-17.

Chapter 23 ■ Consuming a RESTful Web Service

669

Listing 23-17.  The Contents of the RequestError.js File in the src/webservice Folder

import React, { Component } from "react";
import { Link } from "react-router-dom";

export class RequestError extends Component {

 render() {
 return <div>
 <h5 className="bg-danger text-center text-white m-2 p-3">
 { this.props.match.params.message }
 </h5>
 <div className="text-center">
 <Link to="/" className="btn btn-secondary">OK</Link>
 </div>
 </div>
 }
}

This component displays a message obtained from a URL parameter. Listing 23-18 adds a new Route to
the Selector component that will display this component for the /error URL.

Listing 23-18.  Adding a Route in the Selector.js File in the src Folder

import React, { Component } from "react";
import { BrowserRouter as Router, Route, Switch, Redirect }
 from "react-router-dom";
import { ToggleLink } from "./routing/ToggleLink";
import { RoutedDisplay } from "./routing/RoutedDisplay";
import { IsolatedTable } from "./IsolatedTable";
import { IsolatedEditor } from "./IsolatedEditor";
import { RequestError } from "./webservice/RequestError";

export class Selector extends Component {

 render() {

 const routes = React.Children.map(this.props.children, child => ({
 component: child,
 name: child.props.name,
 url: `/${child.props.name.toLowerCase()}`,
 datatype: child.props.datatype
 }));

 return <Router getUserConfirmation={ this.customGetUserConfirmation }>
 <div className="container-fluid">
 <div className="row">
 <div className="col-2">
 <ToggleLink to="/isolated">Isolated Data</ToggleLink>
 { routes.map(r => <ToggleLink key={ r.url } to={ r.url }>
 { r.name }
 </ToggleLink>)}

Chapter 23 ■ Consuming a RESTful Web Service

670

 </div>
 <div className="col">
 <Switch>
 <Route path="/isolated" component={ IsolatedTable }
 exact={ true } />
 <Route path="/isolated/:mode/:id?"
 component={ IsolatedEditor } />
 <Route path="/error/:message"
 component={ RequestError } />
 { routes.map(r =>
 <Route key={ r.url }
 path={ `/:datatype(${r.datatype})/:mode?/:id?`}
 component={ RoutedDisplay(r.datatype)} />
)}
 <Redirect to={ routes[0].url } />
 </Switch>
 </div>
 </div>
 </div>
 </Router>
 }
}

Listing 23-19 provides the data source with a callback that navigates to the /error URL when a problem
arises and adds a button that creates an error by requesting a URL that will always produce a 404 – Not
Found error.

Listing 23-19.  Handling Errors in the IsolatedTable.js File in the src Folder

import React, { Component } from "react";
import { RestDataSource } from "./webservice/RestDataSource";
import { Link } from "react-router-dom";

export class IsolatedTable extends Component {

 constructor(props) {
 super(props);
 this.state = {
 products: []
 }
 this.dataSource = new RestDataSource("http://localhost:3500/api/products",
 (err) => this.props.history.push(`/error/${err}`));
 }

 deleteProduct(product) {
 this.dataSource.Delete(product,
 () => this.setState({products: this.state.products.filter(p =>
 p.id !== product.id)}));
 }

Chapter 23 ■ Consuming a RESTful Web Service

671

 render() {
 return <table className="table table-sm table-striped table-bordered">
 <thead>
 <tr><th colSpan="5"
 className="bg-info text-white text-center h4 p-2">
 (Isolated) Products
 </th></tr>
 <tr>
 <th>ID</th><th>Name</th><th>Category</th>
 <th className="text-right">Price</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 {
 this.state.products.map(p => <tr key={ p.id }>
 <td>{ p.id }</td><td>{ p.name }</td><td>{p.category}</td>
 <td className="text-right">
 ${ Number(p.price).toFixed(2)}
 </td>
 <td>
 <Link className="btn btn-sm btn-warning mx-2"
 to={`/isolated/edit/${p.id}`}>
 Edit
 </Link>
 <button className="btn btn-sm btn-danger mx-2"
 onClick={ () => this.deleteProduct(p)}>
 Delete
 </button>
 </td>
 </tr>)
 }
 </tbody>
 <tfoot>
 <tr className="text-center">
 <td colSpan="5">
 <Link to="/isolated/create"
 className="btn btn-info">Create</Link>
 <button className="btn btn-danger mx-2"
 onClick={ () => this.dataSource.GetOne("err")}>
 Error
 </button>
 </td>
 </tr>
 </tfoot>
 </table>
 }

 componentDidMount() {
 this.dataSource.GetData(data => this.setState({products: data}));
 }
}

Chapter 23 ■ Consuming a RESTful Web Service

672

Clicking the Error button rendered by IsolatedTable will send a request that receives an error response
from the web service, which triggers navigation to the URL that displays the error message, as shown in
Figure 23-5.

MAKING CROSS-ORIGIN REQUESTS

By default, browsers enforce a security policy that only allows JavaScript code to make asynchronous
HTTP requests within the same origin as the document that contains them. This policy is intended
to reduce the risk of cross-site scripting (CSS) attacks, where the browser is tricked into executing
malicious code, which is described at http://en.wikipedia.org/wiki/Cross-site_scripting.
For web application developers, the same-origin policy can be a problem when using web services
because they are often outside of the origin that contains the application’s JavaScript code. Two URLs
are considered to be in the same origin if they have the same protocol, host, and port, and they have
different origins if this is not the case. The URL that I use for the RESTful web service in this chapter has
a different origin to the URL used by the main application because they use different TCP ports.

The Cross-Origin Resource Sharing (CORS) protocol is used to send requests to different origins. With
CORS, the browser includes headers in the asynchronous HTTP request that provide the server with
the origin of the JavaScript code. The response from the server includes headers that tell the browser
whether it is willing to accept the request. The details of CORS are outside the scope of this book, but
there is an introduction to the topic at https://en.wikipedia.org/wiki/Cross-origin_resource_
sharing, and the CORS specification is available at www.w3.org/TR/cors.

CORS is something that happens automatically in this chapter. The json-server package that provides
the RESTful web service supports CORS and will accept requests from any origin, while the Axios
package that I use to make HTTP requests automatically applies CORS. When you select software for
your own projects, you must either select a platform that will allow all requests to be handled through a
single origin or configure CORS so that the server will accept the application’s requests for data.

Figure 23-5.  Displaying an error message

http://en.wikipedia.org/wiki/Cross-site_scripting
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
http://www.w3.org/TR/cors

Chapter 23 ■ Consuming a RESTful Web Service

673

Consuming a Web Service with a Data Store
The components I defined in the previous section are isolated from one another and are coordinated only
through the URL routing system. The advantage of this approach is simplicity, but it can lead to repeatedly
requesting the same data from the web service as the user navigates around the application and each
component sends its HTTP requests when it is mounted. If the application uses a data store, then the data
can be shared between components.

Creating the New Middleware
The store already has actions that receive objects and update the data it contains, so the approach I am going
to take is to create new Redux middleware that will intercept the existing actions and send the corresponding
HTTP requests to the web service. I added a file called RestMiddleware.js to the src/webservice folder,
with the contents shown in Listing 23-20.

Listing 23-20.  The Contents of the RestMiddleware.js File in the src/webservice Folder

import { STORE, UPDATE, DELETE} from "../store/modelActionTypes";
import { RestDataSource } from "./RestDataSource";
import { PRODUCTS, SUPPLIERS } from "../store/dataTypes";

export const GET_DATA = "rest_get_data";

export const getData = (dataType) => {
 return {
 type: GET_DATA,
 dataType: dataType
 }
}

export const createRestMiddleware = (productsURL, suppliersURL) => {

 const dataSources = {
 [PRODUCTS]: new RestDataSource(productsURL, () => {}),
 [SUPPLIERS]: new RestDataSource(suppliersURL, () => {})
 }

 return ({dispatch, getState}) => next => action => {
 switch (action.type) {
 case GET_DATA:
 if (getState().modelData[action.dataType].length === 0) {
 dataSources[action.dataType].GetData((data) =>
 data.forEach(item => next({ type: STORE,
 dataType: action.dataType, payload: item})));
 }
 break;
 case STORE:
 action.payload.id = null;
 dataSources[action.dataType].Store(action.payload, data =>
 next({ ...action, payload: data }))
 break;

Chapter 23 ■ Consuming a RESTful Web Service

674

 case UPDATE:
 dataSources[action.dataType].Update(action.payload, data =>
 next({ ...action, payload: data }))
 break;
 case DELETE:
 dataSources[action.dataType].Delete({id: action.payload },
 () => next(action));
 break;
 default:
 next(action);
 }
 }
}

One new action is required, which is to request the data from the web service. This hasn’t been required
previously because the data store has been automatically initialized with data. The action type is GET_DATA,
and Listing 23-20 defines a getData action creator.

The createRestMiddleware function accepts data sources for the product and supplier data and returns
middleware that deals with the new GET_DATA action and the existing STORE, UPDATE, and DELETE actions by
sending a request to the web service and then dispatching additional actions when the result is received,
using the existing features of the data store.

Adding the Middleware to the Data Store
In Listing 23-21, I have added the new middleware to the data store. As noted in Chapter 20, middleware
components are applied in the order in which they are added to the store.

Listing 23-21.  Applying Middleware in the index.js File in the src/store Folder

import { createStore, combineReducers, applyMiddleware, compose } from "redux";
import modelReducer from "./modelReducer";
import stateReducer from "./stateReducer";
import { customReducerEnhancer } from "./customReducerEnhancer";
import { multiActions } from "./multiActionMiddleware";
import { asyncEnhancer } from "./asyncEnhancer";
import { createRestMiddleware } from "../webservice/RestMiddleware";

const enhancedReducer = customReducerEnhancer(
 combineReducers(
 {
 modelData: modelReducer,
 stateData: stateReducer
 })
);

const restMiddleware = createRestMiddleware(
 "http://localhost:3500/api/products",
 "http://localhost:3500/api/suppliers");

Chapter 23 ■ Consuming a RESTful Web Service

675

export default createStore(enhancedReducer,
 compose(applyMiddleware(multiActions),
 applyMiddleware(restMiddleware),
 asyncEnhancer(2000)));

export { saveProduct, saveSupplier, deleteProduct, deleteSupplier }
 from "./modelActionCreators";

The order is important when considering how the data store is used by the existing components in the
application. The multiActions middleware created in Chapter 20 allows arrays of actions to be dispatched,
and this must come first; otherwise, the new middleware won’t properly process actions.

Completing the Application Changes
To automatically request the data on demand, I added a file called DataGetter.js to the src folder and used
it to define the higher-order component shown in Listing 23-22.

Listing 23-22.  The Contents of the DataGetter.js File in the src Folder

import React, { Component } from "react";
import { PRODUCTS, SUPPLIERS } from "./store/dataTypes";

export const DataGetter = (dataType, WrappedComponent) => {

 return class extends Component {
 render() {
 return <WrappedComponent { ...this.props } />
 }

 componentDidMount() {
 this.props.getData(PRODUCTS);
 if (dataType === SUPPLIERS) {
 this.props.getData(SUPPLIERS);
 }
 }
 }
}

The component requests the data after it mounts and knows that the supplier data must be
complemented by the product data in order to display the data correctly to the user so that product names
can be shown. In Listing 23-23, I have added support for the new HOC in the TableConnector component,
which ensures that the data required by the application is requested when the application starts.

Listing 23-23.  Dispatching Actions in the TableConnector.js File in the src/store Folder

import { connect } from "react-redux";
//import { startEditingProduct, startEditingSupplier } from "./stateActions";
import { deleteProduct, deleteSupplier } from "./modelActionCreators";
import { PRODUCTS, SUPPLIERS } from "./dataTypes";
import { withRouter } from "react-router-dom";
import { getData } from "../webservice/RestMiddleware";

Chapter 23 ■ Consuming a RESTful Web Service

676

import { DataGetter } from "../DataGetter";

export const TableConnector = (dataType, presentationComponent) => {

 const mapStateToProps = (storeData, ownProps) => {
 if (dataType === PRODUCTS) {
 return { products: storeData.modelData[PRODUCTS] };
 } else {
 return {
 suppliers: storeData.modelData[SUPPLIERS].map(supp => ({
 ...supp,
 products: supp.products.map(id =>
 storeData.modelData[PRODUCTS]
 .find(p => p.id === Number(id)) || id)
 .map(val => val.name || val)
 }))
 }
 }
 }

 const mapDispatchToProps = (dispatch, ownProps) => {
 return {
 getData: (type) => dispatch(getData(type)),
 deleteCallback: dataType === PRODUCTS
 ? (...args) => dispatch(deleteProduct(...args))
 : (...args) => dispatch(deleteSupplier(...args))
 }
 }

 const mergeProps = (dataProps, functionProps, ownProps) => {
 let routedDispatchers = {
 editCallback: (target) => {
 ownProps.history.push(`/${dataType}/edit/${target.id}`);
 },
 deleteCallback: functionProps.deleteCallback,
 getData: functionProps.getData

 }
 return Object.assign({}, dataProps, routedDispatchers, ownProps);
 }

 return withRouter(connect(mapStateToProps,
 mapDispatchToProps, mergeProps)(DataGetter(dataType,
 presentationComponent)));
}

The final change is to remove the static content that was used to seed the data store, as shown in
Listing 23-24.

Chapter 23 ■ Consuming a RESTful Web Service

677

Listing 23-24.  Removing the Static Data in the initialData.js File in the src/store Folder

import { PRODUCTS, SUPPLIERS } from "./dataTypes";

export const initialData = {
 modelData: {
 [PRODUCTS]: [],
 [SUPPLIERS]: []
 },
 stateData: {
 editing: false,
 selectedId: -1,
 selectedType: PRODUCTS
 }
}

The result is that the initial product and supplier data are obtained from the web service and that any
changes will trigger updates to the web service, as shown in Figure 23-6.

Summary
In this chapter, I introduced a web service and used it to obtain the data displayed by the user, store new
data, make changes, and delete data. I used the Axios library in this chapter, but there are many other
options available, and consuming a web service in a React application is a relatively simple process. In the
next chapter, I introduce GraphQL, which is a more flexible alternative to REST for web services.

Figure 23-6.  Using the web service with the data store

679© Adam Freeman 2019
A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_24

CHAPTER 24

Understanding GraphQL

GraphQL is an end-to-end system for creating and consuming APIs, providing a more flexible alternative to
using traditional RESTful web services, such as the one created in Chapter 23. In this chapter, I explain how
GraphQL services are defined and how queries are performed. In Chapter 25, I demonstrate the different
ways that a GraphQL API can be consumed by a React application. Table 24-1 puts GraphQL in context.

Table 24-1.  Putting GraphQL in Context

Question Answer

What is it? GraphQL is a query language that produces APIs.

Why is it useful? GraphQL provides the client with flexible access to data, ensuring that the client
receives only the data it requires and allowing new queries to be formulated
without requiring server-side changes.

How is it used? At the server, a schema is defined and implemented using resolver functions. The
client uses the GraphQL language to send queries and request changes.

Are there any pitfalls
or limitations?

GraphQL is complex and writing a useful schema can require skill.

Are there any
alternatives?

Clients can use RESTful web services, as described in Chapter 23.

■■ Note  I describe the features of GraphQL that are most useful for React development. For a complete
description of GraphQL, see the GraphQL specification at https://facebook.github.io/graphql/June2018.

https://facebook.github.io/graphql/June2018

Chapter 24 ■ Understanding GraphQL

680

Table 24-2 summarizes the chapter.

Preparing for This Chapter
In this chapter, I continue to use the example application from Chapter 23. To prepare for this chapter, open
a command prompt, navigate to the productapp folder, and run the commands shown in Listing 24-1 to add
packages to the project.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this book—
from https://github.com/Apress/pro-react-16.

Listing 24-1.  Adding Packages

npm install --save-dev graphql@14.0.2
npm install --save-dev express@4.16.4
npm install --save-dev express-graphql@0.7.1
npm install --save-dev graphql-import@0.7.1
npm install --save-dev cors@2.8.5

Table 24-2.  Chapter Summary

Problem Solution Listing

Define a GraphQL service Describe the queries and mutations that will
be supported and implement the resolvers
that provide them

3, 4, 8–10, 20–21

Query a GraphQL service Specify the query name and the fields that are
required in the result

7, 11, 27, 28

Filter results Specify query arguments 12–19

Make changes using a GraphQL
service

Specify the mutation and the fields for the
update

22–24

Parameterize queries Use query variables 25, 26

Request the same set of fields
from multiple queries

use a query fragment 29

https://github.com/Apress/pro-react-16

Chapter 24 ■ Understanding GraphQL

681

For quick reference, the packages by the commands in Listing 24-1 are described in Table 24-3.

Once the packages are installed, use the command prompt to run the command shown in Listing 24-2
in the productapp folder to start the development tools. The RESTful web service defined in Chapter 23 is
also started and is still used by the application.

Listing 24-2.  Starting the Development Tools

npm start

Once the initial preparation for the project is complete, a new browser window will open and display
the URL http://localhost:3000, as shown in Figure 24-1.

Table 24-3.  The Packages Added to the Project

Name Description

graphql This package contains the reference implementation of GraphQL.

express This package provides an extensible HTTP server and will be the foundation of the
GraphQL server used in this chapter.

express-graphql This package provides GraphQL services over HTTP through the express package.

graphql-import This package allows GraphQL schemas to be defined in multiple files and imports
schemas more easily than reading a file directly.

cors This package enables Cross-Origin Resource Sharing (CORS) for the Express HTTP
server.

Chapter 24 ■ Understanding GraphQL

682

Understanding GraphQL
RESTful web services are easy to get started with, but they can become inflexible as the needs of the client
evolve and the number of client applications using the service increases.

Changes that suit one application can’t be made because they cause problems in another application,
work backs up so that changes are not made in time for client-application release dates, and infrastructure
development teams struggle to balance competing demands for features. You may not have any avenue for
requesting changes when you rely on a third-party web service because you are one of dozens or hundreds
of development teams all asking for new features.

The result is a poor fit between the application and the web service it relies on. Clients often have to
make multiple requests to the web service to get the data they require; this is then merged into a useful
format. The client has to understand how the objects returned from different REST requests relate to one
another and often has to request data that is then discarded because only a subset of the data fields is
required.

The underlying problem with REST web services is that the data they provide and the way they provide
it are fixed, and that becomes an issue as the needs of the client application change. GraphQL addresses this
problem by allowing the client more control over what data is requested and how it is expressed, with the
result that client-side applications can add features that use data in new ways with fewer server-side changes
required.

Figure 24-1.  Running the example application

Chapter 24 ■ Understanding GraphQL

683

UNDERSTANDING THE DRAWBACKS OF GRAPHQL

GraphQL isn’t suitable for every situation. GraphQL is complex and not as widely understood as REST,
which can make it difficult to find experienced developers and robust and well-tested tools and libraries.
And GraphQL can shift work that would have been performed by the client application into the server,
which can increase costs in the data center and require licenses for back-end servers that support
GraphQL.

It is important to consider GraphQL as an option, especially if your application is likely to require ongoing
development after deployment or you intend to develop or support multiple client applications. But my
advice is not to rush into using GraphQL until you are sure that a REST web service won’t give you the
flexibility you need.

Creating the GraphQL Server
I am going to create a custom GraphQL server that presents the same data as the web service from
Chapter 23 The process of creating the GraphQL service isn’t required by all projects, especially when
consuming a third-party API, but understanding what is happening at the server provides useful insights
into how GraphQL works. In the sections that follow, I’ll go through the process of describing the types of
requests that the client will be able to make and write the code required to deal with those requests.

CHOOSING AN ALTERNATIVE GRAPHQL SERVER

I use the GraphQL reference implementations to create a simple GraphQL server for this chapter.
It makes it easy to demonstrate how GraphQL works but doesn’t make any provision for working with
real data.

For small and simple projects, adding persistent data support with a package such as Lowdb
(https://github.com/typicode/lowdb) or MongoDB (https://www.mongodb.com) may be suitable.

For more complex projects, the Apollo server (https://github.com/apollographql/apollo-server)
is the most common choice. There are open-source and paid-for plans available, and there is a wide
range of data integration options available, such as using GraphQL as a front end to existing REST web
services.

Creating the Schema
GraphQL describes the requests that can be performed using a schema, which is written in the GraphQL
schema language. I created the src/graphql folder and added to it a file called schema.graphql with the
contents shown in Listing 24-3.

https://github.com/typicode/lowdb
https://www.mongodb.com
https://github.com/apollographql/apollo-server

Chapter 24 ■ Understanding GraphQL

684

Listing 24-3.  The Contents of the schema.graphql File in the src/graphql Folder

type product {
 id: ID!,
 name: String!,
 category: String!
 price: Float!
}

type supplier {
 id: ID!,
 name: String!,
 city: String!,
 products: [ID]
}

type Query {
 products: [product],
 suppliers: [supplier]
}

The schema defined in Listing 24-3 defines two custom types: product and supplier. These types will
be used as the results of the queries supported by the GraphQL server. Each result type is defined with a set
of fields, each of which is typed like this:

...
category: String!
...

The name of this field is category, and its type is String. GraphQL provides a set of built-in types,
which are described in Table 24-4. The exclamation mark (the ! character) after the field type indicates that
values for this field are mandatory. Fields can also return arrays of values, like this:

...
products: [ID]
...

Table 24-4.  The Built-in GraphQL Types

Name Description

ID This type represents a unique identifier.

String This type represents a string.

Int This type represents a signed integer

Float This type represents a floating-point value

Boolean This type represents a true or false value.

Chapter 24 ■ Understanding GraphQL

685

The square brackets indicate that the products field of the supplier type will be an array of ID values.

■■ Tip D on’t worry about the GraphQL type system too much at the moment. It will start to make more sense
as you see how the different parts of the server fit together and are used by the client.

In addition to the built-in types, GraphQL supports the Query type, which is used to define the queries
that the server will support. There are two queries defined in the schema in Listing 24-3.

...
type Query {
 products: [product],
 suppliers: [supplier]
}
...

The first statement defines a query called products that will return an array of product objects.
The second statement defines a query called suppliers that will return an array of supplier objects.

Creating the Resolvers
The next step is to write the functions that implement the products and suppliers queries defined in
Listing 24-3. I added a file called resolvers.js to the src/graphql folder, with the code shown in Listing 24-4.

Listing 24-4.  The Contents of the resolvers.js File in the src/graphql Folder

var data = require("../../restData")();

module.exports = {

 products: () => data.products,
 suppliers: () => data.suppliers
}

Each resolver is a function whose name corresponds to one of the queries and that returns data in the
format declared by the schema. The data used by the products and suppliers resolvers uses data loaded
from the restData.js file.

■■ Note T he GraphQL server will be run by Node.js, which does not support JavaScript modules at the time of
writing, which means that the import and export keywords cannot be used. Instead, the require function is
used to declare a dependency on a file, and module.exports is used to make code or data available outside of
a JavaScript file.

Chapter 24 ■ Understanding GraphQL

686

Creating the Server
The final step is to create the code that will process the schema and the resolvers and create the GraphQL
server. I added a file called graphqlServer.js in the productapp folder and added the code shown in
Listing 24-5.

Listing 24-5.  The Contents of the graphqlServer.js File in the productapp Folder

var { buildSchema } = require("graphql");
var { importSchema } = require("graphql-import");
var express = require("express");
var graphqlHTTP = require("express-graphql")
var cors = require("cors")
var schema = importSchema("./src/graphql/schema.graphql");
var resolvers = require("./src/graphql/resolvers");

var app = express();

app.use(cors());
app.use("/graphql", graphqlHTTP({
 schema: buildSchema(schema),
 rootValue: resolvers,
 graphiql: true,
}));
app.listen(3600, () => console.log("GraphQL Server Running on Port 3600"));

The graphql package provides the buildSchema function, which takes a schema string and prepares it
for use. The contents of the schema file are imported using the graphql-import package and passed to the
buildSchema function. The express-graphql package integrates GraphQL support into the popular express
server, which I have configured to listen on port 3600.

To start the GraphQL server, open a new command prompt, navigate to the productapp folder, and
run the command shown in Listing 24-6. (The GraphQL server won’t automatically reload when there are
schema or resolver changes and will have to be restarted for some of the examples in this chapter, which is
why I have not integrated it into the npm start command, as I did for the RESTful web service.)

Listing 24-6.  Starting the GraphQL Server

node graphqlServer.js

The GraphQL server includes support for GraphiQL (pronounced graphical), which is a browser-based
GraphQL tool. To make sure that the GraphQL server is working, open a new browser tab and navigate to
http://localhost:3600/graphql, which should show the tool in Figure 24-2.

Chapter 24 ■ Understanding GraphQL

687

Making GraphQL Queries
The GraphiQL tool makes it easy to perform queries before integrating GraphQL into the example
application. To query for all the supplier objects, for example, enter the query shown in Listing 24-7 into the
left pane of the GraphiQL window.

Listing 24-7.  A Query for Supplier Data

query {
 suppliers {
 id,
 name,
 city,
 products
 }
}

The query is basic, but it reveals a lot about how GraphQL queries work. The query keyword is used to
differentiate between requests to retrieve data and mutations, which are used to make changes (and which
are described in the “Making GraphQL Mutations” section). The query itself is enclosed in curly brackets,
also known as braces. Inside the braces, the query name is specified, which is suppliers in this case.

When you query a GraphQL service, you must specify the data fields that you want to receive. Unlike a
REST web service, which always presents the same data structures, GraphQL allows the client to specify the
results it wants to receive, enclosed in another set of braces. The query in Listing 24-7 selects the id, name,
city, and products fields.

Figure 24-2.  The GraphiQL browser

Chapter 24 ■ Understanding GraphQL

688

■■ Note T here is no wildcard that allows all fields to be selected. If you want to receive all the fields for a data
type, then you must include all of them in the query.

Click the Execute Query button to send the request to the GraphQL server, which will return the
following result:

...
{
 "data": {
 "suppliers": [
 {
 "id": "1",
 "name": "Surf Dudes",
 "city": "San Jose",
 "products": ["1","2"]
 },
 {
 "id": "2",
 "name": "Goal Oriented",
 "city": "Seattle",
 "products": ["3","4","5"]
 },
 {
 "id": "3",
 "name": "Bored Games",
 "city": "New York",
 "products": ["6","7","8","9"]
 }
]
 }
}
...

This may not seem like a huge departure from a REST web service, but even with this basic query, the
client is able to select the fields it requires and the order in which they will be expressed.

Querying for Related Data
The GraphQL service is working, and it can be used to get product and supplier data, which meets the basic
needs of the data tables in the example application. However, one of the most powerful features of GraphQL
is the ease with which it supports related data in queries, allowing a single query to return results that
contain multiple types. In Listing 24-8, I have changed the products field to the schema for the supplier
data type.

Chapter 24 ■ Understanding GraphQL

689

GETTING SCHEMA DETAILS FOR GRAPHQL SERVICES

Writing the schema gives the best insight into the queries that a GraphQL service supports, but that
isn’t always possible. If you are not writing your own schema, the first thing to do is look for developer
documentation; many public GraphQL services publish comprehensive schema documentation, such as
the GitHub API, described at https://developer.github.com/v4.

Many services also support GraphiQL or similar tools, most of which support schema navigation.
GraphiQL, for example, makes it easy to explore the schema through its Docs link, which lets you
navigate through the queries and mutations that a service supports.

If there is no documentation and no support for GraphiQL, you can the GraphQL introspection features
to send queries about the schema. For example, the following schema query will list the regular queries
that a service supports:

...
{
 __schema {
 queryType {
 fields {
 name
 }
 }
 }
}
...

The special __schema query data type is used to request information about the schema. You can find
more details of the GraphQL introspection features at https://graphql.org/learn/introspection.

Listing 24-8.  Changing a Data Field in the schema.graphql File in the src/graphql Folder

type product {
 id: ID!,
 name: String!,
 category: String!
 price: Float!
}

type supplier {
 id: ID!,
 name: String!,
 city: String!,
 products: [product]
}

type Query {
 products: [product],
 suppliers: [supplier]
}

https://developer.github.com/v4
https://graphql.org/learn/introspection

Chapter 24 ■ Understanding GraphQL

690

Instead of returning an array of ID values, the products field now returns an array of supplier objects.
To support this change, I need to process the data used by the resolvers to resolve the relationship between
each supplier and its related product objects, as shown in Listing 24-9.

Listing 24-9.  Resolving Related Data in the resolvers.js File in the src/graphql Folder

var data = require("../../restData")();
module.exports = {

 products: () => data.products,

 suppliers: () => data.suppliers.map(s => ({
 ...s, products: () => s.products.map(id =>
 data.products.find(p => p.id === Number(id)))
 }))
}

The data is processed so that each supplier object has a products property. The products property is
a function that will resolve the related data and that will be invoked only if the client has requested this data
field, which ensures that the server doesn’t do work to get data that has not been asked for.

Stop the GraphQL server using Control+C and run the command shown in Listing 24-10 in the
productapp folder to start it again.

Listing 24-10.  Starting the GraphQL Server

node graphqlServer.js

Navigate to http://localhost:3600/graphql and enter the query shown in Listing 24-11 into the left
pane of the GraphiQL window. This query takes advantage of the change to the GraphQL schema to request
suppliers and their related product data in a single query.

Listing 24-11.  Querying for Related Data

query {
 suppliers {
 id,
 name,
 city,
 products {
 name
 }
 }
}

Chapter 24 ■ Understanding GraphQL

691

When a field returns a complex type, such as product, the query must select the fields that are required.
The addition to the query in Listing 24-11 asks the server to provide the id, name, and city fields of each
supplier object and the name field from each of its related product objects. Click the Execute Query button,
and you will receive the following results:

...
{
 "data": {
 "suppliers": [
 {
 "id": "1", "name": "Surf Dudes", "city": "San Jose",
 "products": [{ "name": "Kayak" }, { "name": "Lifejacket" }]
 },
 {
 "id": "2", "name": "Goal Oriented", "city": "Seattle",
 "products": [{ "name": "Soccer Ball" },{ "name": "Corner Flags" },
 { "name": "Stadium" }]
 },
 {
 "id": "3", "name": "Bored Games", "city": "New York",
 "products": [{ "name": "Thinking Cap" },{ "name": "Unsteady Chair" },
 { "name": "Human Chess Board" }, { "name": "Bling Bling King" }]
 }
]
 }
}
...

Notice that the client specifies the fields required for both the supplier objects and the related product
data, which ensures that only the data required by the application is retrieved.

■■ Note  In addition to regular queries, the GraphQL specification includes support for subscriptions, which
provide ongoing updates for data that is changing on the server. Subscriptions are not widely or consistently
supported, and I don’t describe them in this book.

Creating Queries with Arguments
The queries that are currently offered by the GraphQL server allow the user to select the fields that are
required but not select the objects in the result, which is a requirement for the requests for individual
objects. To give the client the ability to customize requests, GraphQL supports arguments, as shown in
Listing 24-12.

Chapter 24 ■ Understanding GraphQL

692

Listing 24-12.  Using Arguments in the schema.graphql File in the src/graphql Folder

type product {
 id: ID!,
 name: String!,
 category: String!
 price: Float!
}

type supplier {
 id: ID!,
 name: String!,
 city: String!,
 products: [product]
}

type Query {
 products: [product],
 product(id: ID!): product,
 suppliers: [supplier]
 supplier(id: ID!): supplier
}

Arguments are defined in parentheses after the query name, and each argument is assigned a name and
a type. In Listing 24-12, I added queries called product and supplier, each of which defines an id argument
whose type is ID and which has been denoted as mandatory with an exclamation mark. In Listing 24-13,
I have added resolvers for the queries that use the id value to select a data object.

Listing 24-13.  Defining Resolvers in the resolvers.js File in the src/graphql Folder

var data = require("../../restData")();

module.exports = {

 products: () => data.products,

 product: (args) => data.products.find(p => p.id === parseInt(args.id)),

 suppliers: () => data.suppliers.map(s => ({
 ...s, products: () => s.products.map(id =>
 data.products.find(p => p.id === Number(id)))
 })),

 supplier: (args) => {
 const result = data.suppliers.find(s => s.id === parseInt(args.id));
 if (result) {
 return {

Chapter 24 ■ Understanding GraphQL

693

 ...result,
 products: () => result.products.map(id =>
 data.products.find(p => p.id === Number(id)))
 }
 }
 }
}

The resolver function receives an object whose properties correspond to the query arguments. To get
the id value specified in the query, the resolver functions read the args.id property. I can simplify this code
by destructing the argument object, as shown in Listing 24-14.

■■ Tip N otice I used the parseInt function to convert the id argument for comparison. A direct comparison
using === between an ID value and a JavaScript Number value will return false.

Listing 24-14.  Destructing Arguments in the resolvers.js File in the src/graphql Folder

var data = require("../../restData")();

module.exports = {

 products: () => data.products,

 product: ({id}) => data.products.find(p => p.id === parseInt(id)),

 suppliers: () => data.suppliers.map(s => ({
 ...s, products: () => s.products.map(id =>
 data.products.find(p => p.id === Number(id)))
 })),

 supplier: ({id}) => {
 const result = data.suppliers.find(s => s.id === parseInt(id));
 if (result) {
 return {
 ...result,
 products: () => result.products.map(id =>
 data.products.find(p => p.id === Number(id)))
 }
 }
 }
}

Restart the GraphQL server and enter the query shown in Listing 24-15 into the GraphiQL window.

Chapter 24 ■ Understanding GraphQL

694

Listing 24-15.  Querying with an Argument

query {
 supplier(id: 1) {
 id,
 name,
 city,
 products {
 name
 }
 }
}

This query requests the supplier object whose id value is 1 and asks for the id, name, and city fields,
along with the name field of the related products, producing the following result:

...
{
 "data": {
 "supplier": {
 "id": "1",
 "name": "Surf Dudes",
 "city": "San Jose",
 "products": [{ "name": "Kayak" },{ "name": "Lifejacket" }]
 }
 }
}
...

Adding Arguments to Fields
Arguments can be defined for individual fields, which allows the client to be more specific about the data it
requires. In Listing 24-16, I have added an argument to the schema definition for the supplier type, which
will allow the client to filter the related product objects by name.

Listing 24-16.  Adding a Field Argument in the schema.graphql File in the src/graphql Folder

type product {
 id: ID!,
 name: String!,
 category: String!
 price: Float!
}

type supplier {
 id: ID!,
 name: String!,
 city: String!,
 products(nameFilter: String = ""): [product]
}

Chapter 24 ■ Understanding GraphQL

695

type Query {
 products: [product],
 product(id: ID!): product,
 suppliers: [supplier]
 supplier(id: ID!): supplier
}

The products field has been redefined to receive a string nameFilter argument. No exclamation point
has been used, which means that the argument is optional. If no value is used, the default value of an empty
string will be used instead. The implementation of the argument is shown in Listing 24-17.

Listing 24-17.  Implementing a Field Argument in the resolvers.js File in the src/graphql Folder

var data = require("../../restData")();

const mapIdsToProducts = (supplier, nameFilter) =>
 supplier.products.map(id => data.products.find(p => p.id === Number(id)))
 .filter(p => p.name.toLowerCase().includes(nameFilter.toLowerCase()));

module.exports = {

 products: () => data.products,

 product: ({id}) => data.products
 .find(p => p.id === parseInt(id)),

 suppliers: () => data.suppliers.map(s => ({
 ...s, products: ({nameFilter}) => mapIdsToProducts(s, nameFilter)
 })),

 supplier: ({id}) => {
 const result = data.suppliers.find(s => s.id === parseInt(id));
 if (result) {
 return {
 ...result,
 products: ({ nameFilter }) => mapIdsToProducts(result, nameFilter)
 }
 }
 }
}

To support the field argument, the function that resolves the products property on the supplier objects
accepts a parameter, which is deconstructed to get the nameFilter value and used to filter the related
product objects by name. Restart the GraphQL server and enter the query shown in Listing 24-18 into
GraphiQL to see how a field argument is used in a query.

Chapter 24 ■ Understanding GraphQL

696

Listing 24-18.  Querying with a Field Argument

query {
 supplier(id: 1) {
 id,
 name,
 city,
 products(nameFilter: "ak") {
 name
 }
 }
}

Click the Execute Query button, and you will see the following results, which show that the related
product objects have been filtered so that only those whose name field contains ak are included.

...
{
 "data": {
 "supplier": {
 "id": "1",
 "name": "Surf Dudes",
 "city": "San Jose",
 "products": [{ "name": "Kayak" }]
 }
 }
}
...

■■ Caution T he methods used to receive field arguments are invoked for every request, which can create a
substantial amount of work for the server. Consider using a memoization package for complex results, such as
fast-memoize (https://github.com/caiogondim/fast-memoize.js).

Because the field argument is applied to the type and not a specific query, the filter can be used in
any query for supplier data that includes related product data. Enter the query shown in Listing 24-19 into
GraphiQL for a demonstration.

Listing 24-19.  Using a Field Argument in Another Query

query {
 suppliers {
 id,
 name,
 city,
 products(nameFilter: "g") {
 name
 }
 }
}

https://github.com/caiogondim/fast-memoize.js

Chapter 24 ■ Understanding GraphQL

697

Click the Execute Query button, and you will see that the related product data for each supplier object
in the results has been filtered.

...
{
 "data": {
 "suppliers": [
 {
 "id": "1",
 "name": "Surf Dudes",
 "city": "San Jose",
 "products": []
 },
 {
 "id": "2",
 "name": "Goal Oriented",
 "city": "Seattle",
 "products": [{ "name": "Corner Flags" }]
 },
 {
 "id": "3",
 "name": "Bored Games",
 "city": "New York",
 "products": [{ "name": "Thinking Cap" }, { "name": "Bling Bling King"}]
 }
]
 }
}
...

Making GraphQL Mutations
Mutations are used to ask the GraphQL server to make changes to its data. Mutations are added to
the schema using the special Mutation type, and there are two broad approaches available, as shown in
Listing 24-20.

Listing 24-20.  Defining Mutations in the schema.graphql File in the src/graphql Folder

type product {
 id: ID!,
 name: String!,
 category: String!
 price: Float!
}

type supplier {
 id: ID!,
 name: String!,
 city: String!,
 products(nameFilter: String = ""): [product]
}

Chapter 24 ■ Understanding GraphQL

698

type Query {
 products: [product],
 product(id: ID!): product,
 suppliers: [supplier]
 supplier(id: ID!): supplier
}

input productInput {
 id: ID, name: String!, category: String!, price: Int!
}

type Mutation {
 storeProduct(product: productInput): product
 storeSupplier(id: ID, name: String!, city: String!, products: [Int]): supplier
}

The first mutation, called storeProduct, uses a dedicated input type, which allows the client to provide
values to describe the changes that are required. Input types are defined using the input keyword and
support the same features as regular types. In the listing, I have defined an input type called productInput
that has an optional id field and mandatory name, category, and price fields. This is broadly duplicative of
the product type already defined in the schema, which is a common approach because you can’t use regular
types as the arguments to mutations.

The storeSupplier mutation takes a simple approach, which is to define multiple arguments that allow
the client to express the details of a data object without requiring an input type. This is an effective approach
for basic mutations, but it can become unwieldy for complex mutations. Both mutations produce a result,
which provides the client with an authoritative view of the object that has been created or updated as a
result of the mutation, expressed using a regular query type. In Listing 24-21, I have added resolvers for the
mutations.

Listing 24-21.  Implementing Mutations in the resolvers.js File in the src Folder

var data = require("../../restData")();

const mapIdsToProducts = (supplier, nameFilter) =>
 supplier.products.map(id => data.products.find(p => p.id === Number(id)))
 .filter(p => p.name.toLowerCase().includes(nameFilter.toLowerCase()));

let nextId = 100;

module.exports = {

 products: () => data.products,

 product: ({id}) => data.products
 .find(p => p.id === parseInt(id)),

 suppliers: () => data.suppliers.map(s => ({
 ...s, products: ({nameFilter}) => mapIdsToProducts(s, nameFilter)
 })),

 supplier: ({id}) => {
 const result = data.suppliers.find(s => s.id === parseInt(id));

Chapter 24 ■ Understanding GraphQL

699

 if (result) {
 return {
 ...result,
 products: ({ nameFilter }) => mapIdsToProducts(result, nameFilter)
 }
 }
 },

 storeProduct({product}) {
 if (product.id == null) {
 product.id = nextId++;
 data.products.push(product);
 } else {
 product = { ...product, id: Number(product.id)};
 data.products = data.products
 .map(p => p.id === product.id ? product : p);
 }
 return product;
 },

 storeSupplier(args) {
 const supp = { ...args, id: Number(args.id)};
 if (args.id == null) {
 supp.id = nextId++;
 data.suppliers.push(supp)
 } else {
 data.suppliers = data.suppliers.map(s => s.id === supp.id ? supp: s);
 }
 let result = data.suppliers.find(s => s.id === supp.id);
 if (result) {
 return {
 ...result,
 products: ({ nameFilter }) => mapIdsToProducts(result, nameFilter)
 }
 }
 }
}

The mutations are implemented as functions that receive arguments, just like queries. These mutations
use the ID field to determine whether the client is updating an existing object or storing a new one, and
they update the presentation data used by the queries to reflect changes. To update a product with the
storeProduct mutation, restart the server and enter the GraphQL shown in Listing 24-22 into GraphiQL.

Listing 24-22.  Using the storeProduct Mutation

mutation {
 storeProduct(product: {
 id: 1,
 name: "Green Kayak",
 category: "Watersports",
 price: 290
 }) {

Chapter 24 ■ Understanding GraphQL

700

 id, name, category, price
 }
}

Mutations are performed using the mutation keyword, which is the counterpart to the query keyword
used in the previous example. The name of the mutation is specified, along with a product argument that
provides id, name, category, and price. The fields required from the result are then specified, and, in this
case, all of the fields defined by a product are selected.

Click the Execute Query button, and you will see the following results:

...
{
 "data": {
 "storeProduct": {
 "id": "1",
 "name": "Green Kayak",
 "category": "Watersports",
 "price": 290
 }
 }
}
...

To confirm that the mutation has taken effect, execute the query in Listing 24-23 using GraphiQL.

Listing 24-23.  Querying Product Data

query {
 product(id: 1) {
 id, name, category, price
 }
}

When you execute the query, you will see the following results, reflecting the changes made by
the mutation:

...
{
 "data": {
 "product": {
 "id": "1",
 "name": "Green Kayak",
 "category": "Watersports",
 "price": 290
 }
 }
}
...

Chapter 24 ■ Understanding GraphQL

701

The process for using a mutation that doesn’t rely on an input type is similar, as shown in Listing 24-24.

Listing 24-24.  Using a Mutation Without an Input Type

mutation {
 storeSupplier(
 name: "AcmeCo",
 city: "Chicago",
 products: [1, 3]
){ id, name, city, products {
 name
 }
 }
}

When the query is executed, a new supplier will be created, and the following results will be displayed:

...
{
 "data": {
 "storeSupplier": {
 "id": "100",
 "name": "AcmeCo",
 "city": "Chicago",
 "products": [{ "name": "Green Kayak" }, { "name": "Soccer Ball" }]
 }
 }
}
...

Notice that the mutation uses id values in the product field to express the relationship between
supplier and product objects, but the result includes the product names. The mutation gets its result from
the updated presentation data, showing that the result of a mutation need not be directly related to the data
it receives.

Other GraphQL Features
To complete this chapter, I am going to describe some useful features that build on those described earlier.
These are all optional, but they can be used to make the GraphQL service easier to work with.

Using Request Variables
GraphQL variables are intended to allow a request to be defined once and then customized with arguments
each time it is used, without forcing the client to dynamically generate and serialize the complete request
data for every operation. The query shown in Listing 24-25 defines a variable that is used as the argument for
the product query.

Chapter 24 ■ Understanding GraphQL

702

Listing 24-25.  A Query with a Variable

query ($id: ID!) {
 product(id: $id) {
 id, name, category, price
 }
}

Variables are applied to the query or mutation and are defined using a name that starts with a dollar
sign (the $ character) and assigned a type. In this case, the query defines a variable called id whose type is a
mandatory ID. Inside the query, the variable is used as $id and is passed to the product query argument.

To use the variable, enter the query into GraphiQL; expand the Query Variables section, which is at the
bottom-left side of the window; and enter the code shown in Listing 24-26.

Listing 24-26.  Defining a Value for a Variable

{
 "id": 2
}

This provides a value of 2 for the id variable. Click the Execute Query button, and the query and the
variable will be sent to the GraphQL server, with the effect that the product object whose id is 2 is selected,
as shown in Figure 24-3.

Figure 24-3.  Using a query variable

Variables may not appear useful when using GraphiQL, but they can simplify client development, as
demonstrated in Chapter 24.

Chapter 24 ■ Understanding GraphQL

703

Making Multiple Requests
A single operation can contain multiple requests or mutations. Enter the queries shown in Listing 24-27 into
the GraphiQL window.

Listing 24-27.  Making Multiple Queries

query {
 product(id: 1) {
 id, name, category, price
 },
 supplier(id: 1) {
 id, name, city
 }
}

Queries are separated by commas and are contained within the outer set of braces, following the query
keyword. Click the Execute Query button, and you will see the following output, which combines the results
of both queries into a single response:

...
{
 "data": {
 "product": {
 "id": "1",
 "name": "Kayak",
 "category": "Watersports",
 "price": 275
 },
 "supplier": {
 "id": "1",
 "name": "Surf Dudes",
 "city": "San Jose"
 }
 }
}
...

Notice that the name of each query is used to denote its section of the response, making it easy to
differentiate between the result from the product and supplier queries. This can present a problem when
you want to use the same query multiple times and so GraphQL supports aliases, which assign a name that
is applied to the results. Enter the queries, shown in Listing 24-28, into GraphiQL.

Listing 24-28.  Using a Query Alias

query {
 first: product(id: 1) {
 id, name, category, price
 },
 second: product(id: 2) {
 id, name, category, price
 }
}

Chapter 24 ■ Understanding GraphQL

704

The alias comes before the query and is followed by a colon (the : character). In the listing, there are
two product queries that have been given the aliases first and second. Click the Execute Query button, and
you will see how these names are used in the query results.

...
{
 "data": {
 "first": {
 "id": "1",
 "name": "Kayak",
 "category": "Watersports",
 "price": 275
 },
 "second": {
 "id": "2",
 "name": "Lifejacket",
 "category": "Watersports",
 "price": 48.95
 }
 }
}

...

Using Query Fragments for Field Selection
The requirement to select result fields from every query can lead to duplication in the client, such as in
Listing 24-28, where both the first and second queries select the id, name, category, and price fields.
Selections of fields can be defined once using the GraphQL fragments feature and then applied to multiple
requests. In Listing 24-29, I have defined a fragment and used it in the queries.

Listing 24-29.  Using a Query Fragment

fragment coreFields on product {
 id, name, category
}

query {
 first: product(id: 1) {
 ...coreFields,
 price
 },
 second: product(id: 2) {
 ...coreFields
 }
}

Chapter 24 ■ Understanding GraphQL

705

Fragments are defined using the fragment and on keywords and are specific to a single type.
In Listing 24-29, the fragment is assigned the name coreFields and is defined for product objects. The
spread operator is used to apply a fragment, which can be mixed with regular fields selections. Click the
Execute Query button, and you will see the following results:

...
{
 "data": {
 "first": {
 "id": "1",
 "name": "Kayak",
 "category": "Watersports",
 "price": 275
 },
 "second": {
 "id": "2",
 "name": "Lifejacket",
 "category": "Watersports"
 }
 }
}
...

Summary
In this chapter, I introduced GraphQL. I explained the role of the schema and its resolvers, and I
demonstrated the process for creating a simple GraphQL service for static data. I showed you how to define
queries to get data from a GraphQL service and how to use mutations to make changes. All of the example in
this chapter were performed using the GraphiQL tool, and in the next chapter, I show you how to consume
GraphQL in a React application.

707© Adam Freeman 2019
A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7_25

CHAPTER 25

Consuming GraphQL

In this chapter—the last in this book—I show you the different ways that a GraphQL service can be
consumed by a React application. I show you how to work directly with HTTP requests, how to integrate
GraphQL with a data store, and how to use a dedicated GraphQL client.

Preparing for This Chapter
In this chapter, I continue using the productapp project from Chapter 24 and the GraphQL service it
contains. To prepare for this chapter, the changes described in the following sections are required.

Adding Packages to the Project
Later in the chapter, I create components that receive GraphQL data directly, which requires additional
packages. Open a new command prompt, navigate to the productapp folder, and run the commands shown
in Listing 25-1.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/pro-react-16.

Listing 25-1.  Adding Packages to the Example Project

npm install apollo-boost@0.1.22
npm install react-apollo@2.3.2

Table 25-1 describes the purpose of the new packages.

Table 25-1.  The Packages Added to the Project

Name Description

apollo-boost This package contains the Apollo GraphQL client with a configuration that is suitable
for most projects.

react-apollo This package contains the React integration for the Apollo client.

https://github.com/Apress/pro-react-16

Chapter 25 ■ Consuming GraphQL

708

Changing the Data for the GraphQL Server
In Chapter 24, I used the same data as I had previously for the web service to highlight the different ways
that REST and GraphQL approach the same problems. For this chapter, I want to make it obvious when
the example application stops obtaining data using REST and starts using GraphQL. I created a file called
graphqlData.js in the productapp folder with the contents shown in Listing 25-2.

Listing 25-2.  The Contents of the graphqlData.js File in the productapp Folder

module.exports = function () {
 var data = {
 products: [
 { id: 1, name: "Trail Shoes", category: "Running", price: 120 },
 { id: 2, name: "Heated Gloves", category: "Running", price: 20.95 },
 { id: 3, name: "Padded Shorts", category: "Cycling", price: 19.50 },
 { id: 4, name: "Puncture Kit", category: "Cycling", price: 34.95 },
 { id: 5, name: "Mirror Goggles", category: "Swimming", price: 79500 },

],
 suppliers: [
 { id: 1, name: "Just Running", city: "Houston", products: [1, 2] },
 { id: 2, name: "Miles and Smiles", city: "Paris", products: [3, 4] },
 { id: 3, name: "Deep Dive", city: "New York", products: [5] },
]
 }
 return data
}

Updating the Schema and Resolvers
To prepare for this chapter, I need to extend the GraphQL schema to define mutations for deleting data,
as shown in Listing 25-3. I have also removed the input type so that the storeProduct and storeSupplier
mutations are consistent.

Listing 25-3.  Defining and Updating Mutations in the schema.graphql File in the src/graphql Folder

type product {
 id: ID!,
 name: String!,
 category: String!
 price: Float!
}

type supplier {
 id: ID!,
 name: String!,
 city: String!,
 products(nameFilter: String = ""): [product]
}

Chapter 25 ■ Consuming GraphQL

709

type Query {
 products: [product],
 product(id: ID!): product,
 suppliers: [supplier]
 supplier(id: ID!): supplier
}

type Mutation {
 storeProduct(id: ID, name: String!, category: String!, price: Float!): product
 storeSupplier(id: ID, name: String!, city: String!, products: [Int]): supplier
 deleteProduct(id: ID!): ID
 deleteSupplier(id: ID!): ID
}

In Listing 25-4, I have defined new resolvers for the deleteProduct and deleteSupplier mutations and
updated the storeProduct resolver to reflect the removal of the input type. I also changed the statement that
loads the data to use the file created in Listing 25-2.

Listing 25-4.  Adding and Updating Resolvers in the resolvers.js File in the src/graphql Folder

var data = require("../../graphqlData")();

const mapIdsToProducts = (supplier, nameFilter) =>
 supplier.products.map(id => data.products.find(p => p.id === Number(id)))
 .filter(p => p.name.toLowerCase().includes(nameFilter.toLowerCase()));

let nextId = 100;

module.exports = {

 products: () => data.products,

 product: ({id}) => data.products
 .find(p => p.id === parseInt(id)),

 suppliers: () => data.suppliers.map(s => ({
 ...s, products: ({nameFilter}) => mapIdsToProducts(s, nameFilter)
 })),

 supplier: ({id}) => {
 const result = data.suppliers.find(s => s.id === parseInt(id));
 if (result) {
 return {
 ...result,
 products: ({ nameFilter }) => mapIdsToProducts(result, nameFilter)
 }
 }
 },

 storeProduct(args) {
 const product = { ...args, id: Number(args.id)};
 if (args.id == null || product.id === 0) {

Chapter 25 ■ Consuming GraphQL

710

 product.id = nextId++;
 data.products.push(product);
 } else {
 data.products = data.products
 .map(p => p.id === product.id ? product : p);
 }
 return product;
 },

 storeSupplier(args) {
 const supp = { ...args, id: Number(args.id)};
 if (args.id == null) {
 supp.id = nextId++;
 data.suppliers.push(supp)
 } else {
 data.suppliers = data.suppliers.map(s => s.id === supp.id ? supp: s);
 }
 let result = data.suppliers.find(s => s.id === supp.id);
 if (result) {
 return {
 ...result,
 products: ({ nameFilter }) => mapIdsToProducts(result, nameFilter)
 }
 }
 },

 deleteProduct({id}) {
 id = Number(id);
 data.products = data.products.filter(p => p.id !== id);
 data.suppliers = data.suppliers.map(s => {
 s.products = s.products.filter(p => p !== id);
 return s;
 })
 return id;
 },

 deleteSupplier({id}) {
 data.suppliers = data.suppliers.filter(s => s.id !== Number(id));
 return id;
 }
}

The new resolvers remove an item from the data arrays and return the value of their id parameters,
corresponding to the ID type used in the schema. When a product is removed, any reference to it from a
supplier is also removed to avoid errors when subsequently querying for supplier data.

Chapter 25 ■ Consuming GraphQL

711

■■ Tip I have also changed the storeProduct and storeSupplier functions so they will treat a request
whose object has an id value of zero the same as if it contained no id value at all. This is a useful technique
when dealing with form data because it means that all the form values can be sent to the server without
needing to remove the id property to differentiate between new and modified objects.

Integrating the GraphQL Server with the Development Tools
In Chapter 24, I started the GraphQL tool directly, without using any of the React development tools. For this
chapter, I am going to start the GraphQL server automatically, alongside the development HTTP server and
the RESTful web service, which the example application is still configured to use. In Listing 25-5, I changed
the scripts section of the package.json file so that the GraphQL server is started as part of the npm start
command.

Listing 25-5.  Configuring the Project Startup in the package.json File in the productapp Folder

...
"scripts": {
 "start": "npm-run-all --parallel reactstart json graphql",
 "build": "react-scripts build",
 "test": "react-scripts test",
 "eject": "react-scripts eject",
 "reactstart": "react-scripts start",
 "json": "json-server --p 3500 -r api.routes.json restData.js",
 "graphql": "node graphqlServer.js"
},
...

To start the example application, open a new command prompt, navigate to the productapp folder, and
run the command shown in Listing 25-6.

Listing 25-6.  Running the Example Application

npm start

The development server, the RESTful web service, and the GraphQL server will all start. A new browser
tab will open and display the content shown in Figure 25-1.

Chapter 25 ■ Consuming GraphQL

712

To ensure that the GraphQL server is running correctly, navigate to http://localhost:3600/graphql
and enter the query shown in Listing 25-7 into GraphiQL.

Listing 25-7.  Querying the GraphQL Server

query {
 product(id: 1) {
 id, name, category, price
 }
}

Click the Execute Query button, and you should see the following result:

...
{
 "data": {
 "product": {
 "id": "1",
 "name": "Trail Shoes",
 "category": "Running",

Figure 25-1.  Running the example application

Chapter 25 ■ Consuming GraphQL

713

 "price": 120
 }
 }
}
...

Consuming a GraphQL Service
GraphQL queries are sent to the server using HTTP POST requests, with a JSON request body, like this:

...
{"query":"query { product(id: 1) { id, name, category, price }", "variables": null }
...

The response is a JSON string containing the results, like this:

...
{"data":{"product":{"id":"1","name":"Trail Shoes","category":"Running","price":120}}}
...

The use of HTTP and the structure of the request and response make it easy to integrate GraphQL into a
React application, following the same pattern I used in Chapter 23 for working with a RESTful web service.

Defining the Queries and Mutations
The starting point when consuming GraphQL is to define the queries and mutations that will be sent to the
server. I added a file called queries.js to the src/graphql folder and added the code shown in Listing 25-8.

Listing 25-8.  The Contents of the queries.js File in the src/graphql Folder

export const products = {
 getAll: {
 name: "products",
 graphql: `query {
 products { id, name, category, price}
 }`
 },
 getOne: {
 name: "product",
 graphql: `query ($id: ID!) {
 product(id: $id) {
 id, name, category, price
 }
 }`
 }
 }

export const suppliers = {
 getAll: {
 name: "suppliers",

Chapter 25 ■ Consuming GraphQL

714

 graphql:`query {
 suppliers { id, name, city, products { id, name }}
 }`
 },
 getOne: {
 name: "supplier",
 graphql: `query($id: ID!) {
 supplier(id: $id) {
 id, name, city, products { id, name }
 }
 }`
 }
}

Each query is defined with a GraphQL expression and a name, which the application will use to retrieve
the data from the response. The queries rely on the variable feature described in Chapter 24. Next, I added a
file called mutations.js in the src/graphql folder and defined the mutations that the application will need,
as shown in Listing 25-9.

■■ Tip S eparating the queries from the mutations isn’t required since they are all just strings, but I find it
helpful, especially for applications that make heavy use of GraphQL.

Listing 25-9.  The Contents of the mutations.js File in the src/graphql Folder

export const products = {
 store: {
 name: "storeProduct",
 graphql: `mutation ($id: ID, $name: String!,
 $category: String!, $price: Float!) {

 storeProduct(id : $id, name: $name,
 category: $category, price: $price) {
 id, name, category, price
 }
 }`
 },
 delete: {
 name: "deleteProduct",
 graphql: `mutation ($id: ID!) { deleteProduct(id: $id) }`
 }
}

export const suppliers = {
 store: {
 name: "storeSupplier",
 graphql: `mutation ($id: ID, $name: String!,
 $city: String!, $products: [Int]) {

 storeSupplier(id : $id, name: $name,

Chapter 25 ■ Consuming GraphQL

715

 city: $city, products: $products) {
 id, name, city, products { name }
 }
 }`
 },
 delete: {
 name: "deleteSupplier",
 graphql: `mutation ($id: ID!) { deleteSupplier(id: $id) }`
 }
}

There are mutations for storing and deleting product and supplier objects, and the name of each
mutation is used in the name property, following the same pattern established for the queries.

Defining the Data Source
I am going to use the same queries and mutations in different ways in this chapter, and I want to hide the
details of how data is handled from the rest of the application while following the same broad pattern I used
for working with a RESTful web service. To provide a data source that will use GraphQL to perform data
operations, I added a file called GraphQLDataSource.js to the src/graphql folder and used it to define the
class shown in Listing 25-10.

Listing 25-10.  The Contents of the GraphQLDataSource.js File in the src/graphql Folder

import Axios from "axios";
import * as allQueries from "./queries";
import * as allMutations from "./mutations";

export class GraphQLDataSource {

 constructor(dataType, errorCallback) {
 this.GRAPHQL_URL = "http://localhost:3600/graphql";
 this.queries = allQueries[dataType];
 this.mutations = allMutations[dataType];
 this.handleError = errorCallback;
 }

 GetData(callback) {
 this.SendRequest(callback, this.queries.getAll);
 }

 GetOne(id, callback) {
 this.SendRequest(callback, this.queries.getOne, { id });
 }

 Store(data, callback) {
 this.SendRequest(callback, this.mutations.store, { ...data });
 }

Chapter 25 ■ Consuming GraphQL

716

 Update(data, callback) {
 this.Store(data, callback);
 }

 Delete(data, callback) {
 this.SendRequest(callback, this.mutations.delete, { id: data.id });
 }

 async SendRequest(callback, query, data) {
 try {
 let payload = {
 query: query.graphql,
 variables: data == null ? null : { ...data }
 }
 callback((await Axios.post(this.GRAPHQL_URL,
 payload)).data.data[query.name]);
 } catch(err) {
 this.handleError("Operation Failed: Network Error");
 }
 }
}

The class defines the same methods as the REST data source created in Chapter 23, which isn’t a requirement
but helps show how the different types of service differ. To configure the data source for a specific type of data, the
constructor receives a data type string, which is used to select the queries and mutations. When making a request,
the GraphQL is sent to the user, along with a variables object. The result includes the name of the query of
mutation that was performed, which is retrieved from the response using the value of the name property.

...
callback((await Axios.post(this.GRAPHQL_URL, payload)).data.data[query.name]);
...

Configuring the Isolated Components
Using the same API as the REST data source from Chapter 23 has simplified the process of integrating
the GraphQL data into the application by changing the data source in the components that consume data.
In Listing 25-11, I have changed the data source used by the IsolatedTable component.

Listing 25-11.  Changing the Data Source in the IsolatedTable.js File in the src Folder

import React, { Component } from "react";
//import { RestDataSource } from "./webservice/RestDataSource";
import { Link } from "react-router-dom";
import { GraphQLDataSource } from "./graphql/GraphQLDataSource";
import { PRODUCTS } from "./store/dataTypes";

export class IsolatedTable extends Component {

 constructor(props) {
 super(props);
 this.state = {

Chapter 25 ■ Consuming GraphQL

717

 products: []
 }
 this.dataSource = new GraphQLDataSource(PRODUCTS,
 (err) => this.props.history.push(`/error/${err}`));
 }

 // ...methods omitted for brevity...
}

Listing 25-12 makes the corresponding change to the IsolatedEditor component.

Listing 25-12.  Changing the Data Source in the IsolatedEditor.js File in the src Folder

import React, { Component } from "react";
//import { RestDataSource } from "./webservice/RestDataSource";
import { ProductEditor } from "./ProductEditor";
import { GraphQLDataSource } from "./graphql/GraphQLDataSource";
import { PRODUCTS } from "./store/dataTypes";

export class IsolatedEditor extends Component {

 constructor(props) {
 super(props);
 this.state = {
 dataItem: {}
 };
 this.dataSource = new GraphQLDataSource(PRODUCTS,
 (err) => this.props.history.push(`/error/${err}`));
 }

 save = (data) => {
 data = { ...data, price: Number(data.price)}
 const callback = () => this.props.history.push("/isolated");
 if (data.id === "") {
 this.dataSource.Store(data, callback);
 } else {
 this.dataSource.Update(data, callback);
 }
 }

 cancel = () => this.props.history.push("/isolated");

 render() {
 return <ProductEditor key={ this.state.dataItem.id }
 product={ this.state.dataItem } saveCallback={ this.save }
 cancelCallback={ this.cancel } />
 }

 componentDidMount() {
 if (this.props.match.params.mode === "edit") {
 this.dataSource.GetOne(this.props.match.params.id,

Chapter 25 ■ Consuming GraphQL

718

 data => this.setState({ dataItem: data}));
 }
 }
}

Notice that I parse the value of the price property into a Number before the data is sent to the server.
The GraphQL server checks the data it receives against the types defined in the schema and will reject string
values, which are what form elements typically produce, if another type, such as Float, is required.

When you save the changes to the IsolatedTable and IsolatedEditor components, the application
will update, and clicking the Isolated Data button will show the data obtained from the GraphQL server, as
shown in Figure 25-2.

Using GraphQL with a Data Store
The process for using the GraphQL with a data store is similar to the process I followed in Chapter 23 for
RESTful data, using middleware to intercept actions and trigger requests to the server. I added a file called
GraphQLMiddleware.js to the src/graphql folder and used it to define the Redux middleware shown in
Listing 25-13.

Listing 25-13.  The Contents of the GraphQLMiddleware.js File in the src/graphql Folder

import { STORE, UPDATE, DELETE} from "../store/modelActionTypes";
import { PRODUCTS, SUPPLIERS } from "../store/dataTypes";
import { GraphQLDataSource } from "./GraphQLDataSource";

export const GET_DATA = "qraphql_get_data";

Figure 25-2.  Using GraphQL data

Chapter 25 ■ Consuming GraphQL

719

export const getData = (dataType) => {
 return {
 type: GET_DATA,
 dataType: dataType
 }
}

export const createGraphQLMiddleware = () => {

 const dataSources = {
 [PRODUCTS]: new GraphQLDataSource(PRODUCTS, () => {}),
 [SUPPLIERS]: new GraphQLDataSource(SUPPLIERS, () => {})
 }

 return ({dispatch, getState}) => next => action => {
 switch (action.type) {
 case GET_DATA:
 if (getState().modelData[action.dataType].length === 0) {
 dataSources[action.dataType].GetData((data) =>
 data.forEach(item => next({ type: STORE,
 dataType: action.dataType, payload: item})));
 }
 break;
 case STORE:
 action.payload.id = null;
 dataSources[action.dataType].Store(action.payload, data =>
 next({ ...action, payload: data }))
 break;
 case UPDATE:
 dataSources[action.dataType].Update(action.payload, data =>
 next({ ...action, payload: data }))
 break;
 case DELETE:
 dataSources[action.dataType].Delete({id: action.payload },
 () => next(action));
 break;
 default:
 next(action);
 }
 }
}

This middleware intercepts the actions that are dispatched by the rest of the application and uses the
data source class to send a query or mutation to the GraphQL server. In Listing 25-14, I have replaced the
REST middleware with the GraphQL code.

Listing 25-14.  Enabling the GraphQL Middleware in the index.js File in the src/store Folder

import { createStore, combineReducers, applyMiddleware, compose } from "redux";
import modelReducer from "./modelReducer";
import stateReducer from "./stateReducer";

Chapter 25 ■ Consuming GraphQL

720

import { customReducerEnhancer } from "./customReducerEnhancer";
import { multiActions } from "./multiActionMiddleware";
import { asyncEnhancer } from "./asyncEnhancer";
//import { createRestMiddleware } from "../webservice/RestMiddleware";
import { createGraphQLMiddleware } from "../graphql/GraphQLMiddleware";

const enhancedReducer = customReducerEnhancer(
 combineReducers(
 {
 modelData: modelReducer,
 stateData: stateReducer
 })
);

// const restMiddleware = createRestMiddleware(
// "http://localhost:3500/api/products",
// "http://localhost:3500/api/suppliers");

export default createStore(enhancedReducer,
 compose(applyMiddleware(multiActions),
 applyMiddleware(createGraphQLMiddleware()),
 asyncEnhancer(2000)));

export { saveProduct, saveSupplier, deleteProduct, deleteSupplier }
 from "./modelActionCreators";

Adjusting to the GraphQL Data Format
The data format returned by the GraphQL queries for the supplier data includes the related product data,
which means that a separate request for the product data is no longer required and that the components that
display the related data must be adapted to the new format. In Listing 25-15, I disabled the automatic query
for product data when the application requires supplier data.

Listing 25-15.  Disabling the Related Data Query in the DataGetter.js File in the src Folder

import React, { Component } from "react";
//import { PRODUCTS, SUPPLIERS } from "./store/dataTypes";

export const DataGetter = (dataType, WrappedComponent) => {

 return class extends Component {
 render() {
 return <WrappedComponent { ...this.props } />
 }

 componentDidMount() {
 // this.props.getData(PRODUCTS);
 // if (dataType === SUPPLIERS) {
 // this.props.getData(SUPPLIERS);
 // }

Chapter 25 ■ Consuming GraphQL

721

 this.props.getData(dataType);
 }
 }
}

In Listing 25-16, I have commented out the code in the TableConnector component that processed the
supplier data to incorporate the names of the related products. This information will be directly available
to the components now that the data is coming from the GraphQL server. TableConnector also triggers the
data request.

Listing 25-16.  Disabling Data Processing in the TableConnector.js File in the src/store Folder

import { connect } from "react-redux";
//import { startEditingProduct, startEditingSupplier } from "./stateActions";
import { deleteProduct, deleteSupplier } from "./modelActionCreators";
import { PRODUCTS, SUPPLIERS } from "./dataTypes";
import { withRouter } from "react-router-dom";
//import { getData } from "../webservice/RestMiddleware";
import { getData } from "../graphql/GraphQLMiddleware";
import { DataGetter } from "../DataGetter";

export const TableConnector = (dataType, presentationComponent) => {

 const mapStateToProps = (storeData, ownProps) => {
 if (dataType === PRODUCTS) {
 return { products: storeData.modelData[PRODUCTS] };
 } else {
 return { suppliers: storeData.modelData[SUPPLIERS] };
 // suppliers: storeData.modelData[SUPPLIERS].map(supp => ({
 // ...supp,
 // products: supp.products.map(id =>
 // storeData.modelData[PRODUCTS]
 // .find(p => p.id === Number(id)) || id)
 // .map(val => val.name || val)
 // }))
 }
 }

 const mapDispatchToProps = (dispatch, ownProps) => {
 return {
 getData: (type) => dispatch(getData(type)),
 deleteCallback: dataType === PRODUCTS
 ? (...args) => dispatch(deleteProduct(...args))
 : (...args) => dispatch(deleteSupplier(...args))
 }
 }

 const mergeProps = (dataProps, functionProps, ownProps) => {
 let routedDispatchers = {
 editCallback: (target) => {
 ownProps.history.push(`/${dataType}/edit/${target.id}`);
 },

Chapter 25 ■ Consuming GraphQL

722

 deleteCallback: functionProps.deleteCallback,
 getData: functionProps.getData

 }
 return Object.assign({}, dataProps, routedDispatchers, ownProps);
 }

 return withRouter(connect(mapStateToProps,
 mapDispatchToProps, mergeProps)(DataGetter(dataType,
 presentationComponent)));
}

To locate objects by ID, I changed the EditorConnector so that it doesn’t parse the URL parameter to a
Number, as shown in Listing 25-17.

Listing 25-17.  Changing ID Matching in the EditorConnector.js File in the src/store Folder

import { connect } from "react-redux";
//import { endEditing } from "./stateActions";
import { PRODUCTS, SUPPLIERS } from "./dataTypes";
import { saveAndEndEditing } from "./multiActionCreators";
import { withRouter } from "react-router-dom";

export const EditorConnector = (dataType, presentationComponent) => {

 const mapStateToProps = (storeData, ownProps) => {
 const mode = ownProps.match.params.mode;
 const id = ownProps.match.params.id;
 return {
 editing: mode === "edit" || mode === "create",
 product: (storeData.modelData[PRODUCTS].find(p => p.id === id)) || {},
 supplier:(storeData.modelData[SUPPLIERS].find(s => s.id === id)) || {}
 }
 }

 const mapDispatchToProps = {
 //cancelCallback: endEditing,
 saveCallback: (data) => saveAndEndEditing(data, dataType)
 }

 const mergeProps = (dataProps, functionProps, ownProps) => {
 let routedDispatchers = {
 cancelCallback: () => ownProps.history.push(`/${dataType}`),
 saveCallback: (data) => {
 functionProps.saveCallback(data);
 ownProps.history.push(`/${dataType}`);
 }
 }
 return Object.assign({}, dataProps, routedDispatchers, ownProps);
 }

Chapter 25 ■ Consuming GraphQL

723

 return withRouter(connect(mapStateToProps,
 mapDispatchToProps, mergeProps)(presentationComponent));
}

To display the names of the products, I made the change shown in Listing 25-18 to the
SupplierTableRow component.

Listing 25-18.  Selecting Product Names in the SupplierTableRow.js File in the src Folder

import React, { Component } from "react";

export class SupplierTableRow extends Component {

 render() {
 let s = this.props.supplier;
 return <tr>
 <td>{ s.id }</td>
 <td>{ s.name }</td>
 <td>{ s.city}</td>
 <td>{ s.products != null ?
 s.products.map(p => p.name).join(", ") : "" }</td>
 <td>
 <button className="btn btn-sm btn-warning m-1"
 onClick={ () => this.props.editCallback(s) }>
 Edit
 </button>
 <button className="btn btn-sm btn-danger m-1"
 onClick={ () => this.props.deleteCallback(s) }>
 Delete
 </button>
 </td>
 </tr>
 }
}

The next change is to accommodate the new data format when editing supplier data, ensuring that the
id values of the related products area displayed to the user, as shown in Listing 25-19.

Listing 25-19.  Selecting Product IDs in the SupplierEditor.js File in the src Folder

import React, { Component } from "react";

export class SupplierEditor extends Component {

 constructor(props) {
 super(props);
 this.state = {
 formData: {
 id: props.supplier.id || "",
 name: props.supplier.name || "",
 city: props.supplier.city || "",
 products: props.supplier.products != null

Chapter 25 ■ Consuming GraphQL

724

 ? props.supplier.products.map(p => p.id) : [],
 }
 }
 }

 // ...methods omitted for brevity...
}

The final change is to parse the string value obtained from the form element for the product price
property into a number, which ensures that the data sent to the server matches the Float type specified in
the schema, as shown in Listing 25-20.

Listing 25-20.  Parsing the Price Value in the ProductEditor.js File in the src Folder

...
handleClick = () => {
 this.props.saveCallback(
 {
 ...this.state.formData,
 price: Number(this.state.formData.price)
 });
}
...

Save all the changes, and the application will work entirely with data obtained from the GraphQL server
and placed in the Redux data store, as shown in Figure 25-3.

■■ Tip I f you encounter errors, stop the development tools and start them again using npm start. This will
reset the data used by the GraphQL server and undo the effects of changes made in previous sections.

Figure 25-3.  Using GraphQL data in the data store

Chapter 25 ■ Consuming GraphQL

725

Using a GraphQL Client Framework
I demonstrated how GraphQL can be used with a Redux data store in the previous section because it shows
how easily the data can be used and provides a comparison against working with a RESTful web service.

There is a different approach, which is to use a package that replaces the data store and provides
GraphQL data directly to the components that need it while caching data to avoid the kind of repeated HTTP
requests that navigation between isolated components can lead to.

The package that I use in this section is called Apollo Client, which is the client-side package from the
same developers as the Apollo GraphQL server that I mentioned in Chapter 24 (but that works with any
GraphQL server). Full documentation for the Apollo Client is available at https://www.apollographql.com/
docs/react).

■■ Note T he examples in this chapter rely on the packages installed at the start of the chapter.

Configuring the Client
The first step is to configure the client so that it knows where to send the GraphQL requests and mutations.
Listing 25-21 shows the configuration statements I added to the App component.

Listing 25-21.  Configuring Apollo Client in the App.js File in the src Folder

import React, { Component } from "react";
// import { Provider } from "react-redux";
// import dataStore from "./store";
import { Selector } from "./Selector";
//import { PRODUCTS, SUPPLIERS } from "./store/dataTypes";
import ApolloClient from "apollo-boost";
import { ApolloProvider } from "react-apollo";

const client = new ApolloClient({
 uri: "http://localhost:3600/graphql"
});

export default class App extends Component {

 render() {
 return <ApolloProvider client={ client }>
 <Selector />
 </ApolloProvider>
 }
}

A new ApolloClient object is created to manage the relationship to the GraphQL server, and its
constructor accepts a configuration object. The uri property of the configuration object specifies the URL for
GraphQL requests. There are other configuration options, but the defaults are suitable for most projects (see
www.apollographql.com for details).

The ApolloProvider component is used to integrate GraphQL features with React, and the client prop
is assigned the ApolloClient object.

https://www.apollographql.com/docs/react
https://www.apollographql.com/docs/react
http://www.apollographql.com

Chapter 25 ■ Consuming GraphQL

726

To simplify the example, I have removed the content contained within the Selector component and the
data store. I will define the components displayed by the selector directly shortly.

■■ Tip I have removed the Redux data store from the application only to simplify the example application.
Apollo Client and Redux can be used in the same application, although you should be careful not to store data in
Redux that is being managed by Apollo Client because the two will easily get out of sync.

Creating a GraphQL Component
The next step is to create components that will act as a bridge between GraphQL and the content displayed
to the user. This is the same basic approach that I have been using throughout this part of the book, and it
means that the content rendered to the user is produced by components that do not depend directly on a
specific mechanism for data, whether it be the Redux data store, a RESTful web service, or a GraphQL client.
I added a file called GraphQLTable.js to the src/graphql folder and added the code shown in Listing 25-22.

CHOOSING AN ALTERNATIVE GRAPHQL CLIENT

I picked Apollo Client because it is flexible and easy to get on with. The main alternative is Relay
(https://facebook.github.io/relay), which is developed by Facebook. Relay is more difficult to get
started with and only works with GraphQL schemas that follow a particular structure.

There are also packages that offer a subset of the features provided by Apollo Client or Relay, such as
Adrenaline (https://github.com/gyzerok/adrenaline).

Listing 25-22.  The Contents of the GraphQLTable.js File in the src/graphql Folder

import React, { Component } from "react";
import { Query } from "react-apollo";
import gql from "graphql-tag";
import * as queries from "./queries";
import { ProductTable } from "../ProductTable";

export const GraphQLTable = () => {

 const getAll = gql(queries.products.getAll.graphql);

 return class extends Component {

 constructor(props) {
 super(props);
 this.editCallback = (item) => this.props.history
 .push(`/products/edit/${item.id}`);
 }

https://facebook.github.io/relay
https://github.com/gyzerok/adrenaline

Chapter 25 ■ Consuming GraphQL

727

 render() {
 return <Query query={ getAll }>
 {({loading, data, refetch }) => {
 if (loading) {
 return <h5
 className="bg-info text-white text-center m-2 p-2">
 Loading...
 </h5>
 } else {
 return <React.Fragment>
 <ProductTable products={data.products}
 editCallback= { this.editCallback }
 deleteCallback={ () => {} } />
 <div className="text-center">
 <button className="btn btn-primary"
 onClick={ () => refetch() }>
 Reload Data
 </button>
 </div>
 </React.Fragment>
 }
 }}
 </Query>
 }
 }
}

There is a lot going on in Listing 25-22, and it is worth breaking down the component in detail to
understand each part. Like the other packages used in this part of the book, Apollo Client relies on higher-
order components to provide features. In this case, the GraphQLTable provides features to the example
application’s ProductTable component. I start by setting up the GraphQL query that will obtain the data,
like this:

...
const getAll = gql(queries.products.getAll.graphql);
...

The gql function accepts a query expressed as a string and processes it so that it can be used by Apollo
Client. I already defined the queries required by the application and organized them by data type. The gql
function can also be used directly with template strings, which allows queries to be defined like this:

...
const getAll = gql`query { products {
 id, name, category, price
}}`
...

Chapter 25 ■ Consuming GraphQL

728

The Query component provides a component with access to the data returned by a query, which is
specified by the query prop, like this:

...
return <Query query={ getAll }>
...

The query is sent to the server as soon as the Query component is rendered, and it uses a render prop
function to provide its features through an object that defines properties describing the outcome of the
query, the most useful of which are described in Table 25-2.

For the query in Listing 25-22, I use the loading, data, and refetch properties.

...
{({loading, error, refetch}) => {
...

When the component is first rendered and the request is sent to the GraphQL server, the loading value
is true. When the request has completed, the component updates, with the loading value as false, and
provides the result through the data property.

The query is executed when the Query component is rendered, but the results are cached, which
means that no query is sent to the server the next time the data is required. The refetch property provides
a function that sends the query again when it is invoked, refreshes the data in case, and updates the
component. The function assigned to the refresh property accepts an object that can be used to provide
new variables for the query. This is a useful feature, but it means that you must make sure not to invoke the
function directly when using an event handler, like this:

...
<button className="btn btn-primary" onClick={ () => refetch() }>
...

If you don’t specify an inline function, as shown, then the event object will be passed to the refetch
function, which will attempt to use it as the source of variables for the query and encounter an error.

Table 25-2.  Useful Apollo Client Render Prop Object Properties

Name Description

data This property returns the data produced by the query.

loading This property returns true when the query is being processed.

error This property returns details of any query errors.

variables This property returns the variables used for the query.

refetch This property returns a function that can be used to resend the query, optionally with new
variables.

Chapter 25 ■ Consuming GraphQL

729

Applying the GraphQL Component
In Listing 25-23, I have replaced the routing components used by the Selector component so that the
GraphQLTable component is used to respond to the /product URL.

Listing 25-23.  Changing the Routing Configuration in the Selector.js File in the src Folder

import React, { Component } from "react";
import { BrowserRouter as Router, Route, Switch, Redirect }
 from "react-router-dom";
import { ToggleLink } from "./routing/ToggleLink";
// import { RoutedDisplay } from "./routing/RoutedDisplay";
// import { IsolatedTable } from "./IsolatedTable";
// import { IsolatedEditor } from "./IsolatedEditor";
// import { RequestError } from "./webservice/RequestError";
import { GraphQLTable } from "./graphql/GraphQLTable";

export class Selector extends Component {

 render() {
 return <Router>
 <div className="container-fluid">
 <div className="row">
 <div className="col-2">
 <ToggleLink to="/products">Products</ToggleLink>
 </div>
 <div className="col">
 <Switch>
 <Route path="/products" exact={true}
 component={ GraphQLTable()} />
 <Redirect to="/products" />
 </Switch>
 </div>
 </div>
 </div>
 </Router>
 }
}

Chapter 25 ■ Consuming GraphQL

730

Save the changes, and you will see the GraphQL product and suppliers displayed, as shown in Figure 25-4.

■■ Tip I f you encounter errors, stop the development tools and start them again using npm start. This will
reset the data used by the GraphQL server and undo the effects of changes made in previous sections.

If you use the F12 Developer Tools to see the network requests that the browser makes, you will see that
queries for data are sent the first time that the routing buttons are clicked but not when the same table is
selected again. Click the Reload Data button to invoke the query’s refresh function and trigger a new query.

Using Mutations
The Mutation component is used to provide access to GraphQL mutations. In Listing 25-24, I have used
Mutation to provide access to the mutations that will delete product or supplier objects.

Listing 25-24.  Using a Mutation in the GraphQLTable.js File in the src/graphql Folder

import React, { Component } from "react";
import { Query, Mutation } from "react-apollo";
import gql from "graphql-tag";
import * as queries from "./queries";
import { ProductTable } from "../ProductTable";
import * as mutations from "./mutations";

Figure 25-4.  Using a GraphQL client package

Chapter 25 ■ Consuming GraphQL

731

export const GraphQLTable = () => {

 const getAll = gql(queries.products.getAll.graphql);
 const deleteItem = gql(mutations.products.delete.graphql);

 return class extends Component {

 constructor(props) {
 super(props);
 this.editCallback = (item) => this.props.history
 .push(`/products/edit/${item.id}`);
 }

 render() {
 return <Query query={ getAll }>
 {({loading, data, refetch }) => {
 if (loading) {
 return <h5
 className="bg-info text-white text-center m-2 p-2">
 Loading...
 </h5>
 } else {
 return <Mutation mutation={ deleteItem }
 refetchQueries={ () => [{query: getAll}] }>
 { doDelete =>
 <React.Fragment>
 <ProductTable products={data.products}
 editCallback= { this.editCallback }
 deleteCallback={ (p) =>
 doDelete({variables: {id: p.id} }) } />
 <div className="text-center">
 <button className="btn btn-primary"
 onClick={ () => refetch() }>
 Reload Data
 </button>
 </div>
 </React.Fragment>
 }
 </Mutation>
 }
 }}
 </Query>
 }
 }
}

The Mutation component follows a similar pattern to the Query component and relies on a render prop
function to provide access to a mutation. The Mutation component is configured using props, the most
useful of which are described in Table 25-3.

Chapter 25 ■ Consuming GraphQL

732

I started by passing the mutation to the gql function so that it can be used as the value for the mutation
prop on the Mutation component, like this:

...
return <Mutation mutation={ deleteMutation }
 refetchQueries={ () => [{ query: getAll}]}>
...

The cached data at the client will often become out-of-date once a mutation is performed, and the
Mutation component provides two props that can be used to keep the cache in sync. The refetchQueries
prop is assigned a function that receives the mutation result and returns an array of objects, each of which
has query and, optionally, variables properties. When the mutation has completed, the queries are sent to
the server, and the results are used to update the cache. This is the approach I have taken in Listing 25-24,
where I have configured the Mutation to update the cache with the results of the getAll query:

...
return <Mutation mutation={ deleteMutation }
 refetchQueries={ () => [{ query: getAll}]}>
...

The mutation is provided as an argument to the render prop function.

...
return <Mutation mutation={ deleteItem }
 refetchQueries={ () => [{query: getAll}] }>
 { doDelete => {
...

Variables for the mutation can be supplied as a prop on the Mutation component or as an argument to
the function. I used a function in Listing 25-24 because I receive the object that is to be deleted through a
callback.

...
deleteCallback={ (p) => doDelete({variables: {id: p.id} }) }
...

Table 25-3.  Useful Mutation Props

Name Description

mutation This prop specifies the mutation that will be sent to the server.

variables This prop specifies the variables for the mutation. Variables can also be provided when
the mutation is performed.

refetchQueries This prop specifies one or more queries to be performed when the mutation has been
completed.

update This prop specifies a function that is used to update the cache when the mutation has
been completed.

onCompleted This prop specifies a callback function that is invoked when the mutation has
completed.

Chapter 25 ■ Consuming GraphQL

733

The effect is that clicking a Delete button invokes the mutation and then sends queries the server for the
updated data, which is displayed to the user, as shown in Figure 25-5.

Updating Cached Data Without a Query
Re-querying the server after a mutation is useful when the application doesn’t know what the impact of the
changes will be. For simpler operations, querying for new data is excessive because the application knows
exactly what the effect of the mutation will be and can apply this change directly to the cached data. In
Listing 25-25, I have changed the configuration of the Mutation so that it no longer performs a query once an
item has been deleted and uses a function to update the data cache instead.

Listing 25-25.  Updating Cached Data in the GraphQLTable.js File in the src/graphql Folder

import React, { Component } from "react";
import { Query, Mutation } from "react-apollo";
import gql from "graphql-tag";
import * as queries from "./queries";
import { ProductTable } from "../ProductTable";
import * as mutations from "./mutations";

export const GraphQLTable = () => {

 const getAll = gql(queries.products.getAll.graphql);
 const deleteItem = gql(mutations.products.delete.graphql);

 return class extends Component {

 constructor(props) {
 super(props);
 this.editCallback = (item) => this.props.history
 .push(`/products/edit/${item.id}`);
 }

Figure 25-5.  Using a mutation

Chapter 25 ■ Consuming GraphQL

734

 removeItemFromCache(cache, mutationResult) {
 const deletedId = mutationResult.data[mutations.products.delete.name];
 const data =
 cache.readQuery({ query: getAll })[queries.products.getAll.name];
 cache.writeQuery({
 query: getAll,
 data: { products: data.filter(item => item.id !== deletedId) }
 });
 }

 render() {
 return <Query query={ getAll }>
 {({loading, data, refetch }) => {
 if (loading) {
 return <h5
 className="bg-info text-white text-center m-2 p-2">
 Loading...
 </h5>
 } else {
 return <Mutation mutation={ deleteItem }
 update={ this.removeItemFromCache }>
 { doDelete =>
 <React.Fragment>
 <ProductTable products={data.products}
 editCallback= { this.editCallback }
 deleteCallback={ (p) =>
 doDelete({variables: {id: p.id} }) } />
 <div className="text-center">
 <button className="btn btn-primary"
 onClick={ () => refetch() }>
 Reload Data
 </button>
 </div>
 </React.Fragment>
 }
 </Mutation>
 }
 }}
 </Query>
 }
 }
}

The update prop on a Mutation is used to specify a method that will be invoked when a mutation
has completed. The method receives the Apollo Client cache and the results from the mutation and is
responsible for updating the cached data using the methods described in Table 25-4.

Chapter 25 ■ Consuming GraphQL

735

The removeItemFromCache method in Listing 25-25 uses the readQuery method to retrieve the
cached data associated with the products query, filters out the deleted item, and writes the remaining
items back to the cache using the writeQuery method. The readQuery method accepts an object with
query and an optional variables property, and the write query method accepts an object with query,
data, and an optional variables property. The result is that when you click the Delete button for a
product, the object is deleted from the local cache after the mutation has been completed without the
need for an additional query.

Adding Support for Supplier Data and Editing
Now that the basic GraphQL client features are in place, I am going to adapt the GraphQLTable so that it
supports product and supplier data and introduce support for editing data. In Listing 25-26, I have changed
GrpahQLTable so that it receives the type of data it is working with as a parameter and selects the queries,
mutations, and component to display to the user dynamically.

Listing 25-26.  Supporting Multiple Data Types in the GraphQLTable.js File in the src/graphql Folder

import React, { Component } from "react";
import { Query, Mutation } from "react-apollo";
import gql from "graphql-tag";
import * as queries from "./queries";
import { ProductTable } from "../ProductTable";
import * as mutations from "./mutations";
import { PRODUCTS, SUPPLIERS } from "../store/dataTypes";
import { SupplierTable } from "../SupplierTable";

export const GraphQLTable = (dataType) => {

 const getAll = gql(queries[dataType].getAll.graphql);
 const deleteItem = gql(mutations[dataType].delete.graphql);

 return class extends Component {

 constructor(props) {
 super(props);
 this.editCallback = (item) => this.props.history
 .push(`/${dataType}/edit/${item.id}`);
 }

Table 25-4.  The Apollo Client Cache Methods

Name Description

readQuery This method is used to read data from the cache associated with a specific query. An error
will be thrown if you try to read data that is not in the cache, which typically occurs if a
query has not yet been executed.

writeQuery This method is used to update the data in the cache associated with a specific query.

Chapter 25 ■ Consuming GraphQL

736

 removeItemFromCache = (cache, mutationResult) => {

 const deletedId = mutationResult.data[mutations[dataType].delete.name];
 const data =
 cache.readQuery({ query: getAll })[queries[dataType].getAll.name];
 cache.writeQuery({
 query: getAll,
 data: { [dataType]: data.filter(item => item.id !== deletedId) }
 });
 }

 getRefetchQueries() {
 return dataType === PRODUCTS
 ? [{query: gql(queries[SUPPLIERS].getAll.graphql)}] : []
 }

 render() {
 return <Query query={ getAll }>
 {({loading, data, refetch }) => {
 if (loading) {
 return <h5
 className="bg-info text-white text-center m-2 p-2">
 Loading...
 </h5>
 } else {
 return <Mutation mutation={ deleteItem }
 update={ this.removeItemFromCache }
 refetchQueries={ this.getRefetchQueries }>
 { doDelete =>
 <React.Fragment>
 { dataType === PRODUCTS &&
 <ProductTable products={data.products}
 editCallback= { this.editCallback }
 deleteCallback={ (p) =>
 doDelete({variables: {id: p.id} }) }
 />
 }
 { dataType === SUPPLIERS &&
 <SupplierTable suppliers={data.suppliers}
 editCallback= { this.editCallback }
 deleteCallback={ (p) =>
 doDelete({variables: {id: p.id} }) }
 />
 }
 <div className="text-center">
 <button className="btn btn-primary"
 onClick={ () => refetch() }>
 Reload Data
 </button>
 </div>
 </React.Fragment>
 }

Chapter 25 ■ Consuming GraphQL

737

 </Mutation>
 }
 }}
 </Query>
 }
 }
}

Notice that this example combines the update and refetchQueries props on the Mutation. I need to
keep the supplier data consistent when a product is deleted, but using the readQuery method for data not
in the cache produces an error. To keep the example simple—and not to duplicate too much logic from the
GraphQL server’s resolvers—I use the update prop to perform a simple excision from the cache and the
refetchQueries prop to get fresh suppliers data.

Creating the Editor Component
To allow the user to edit objects, I added a file called GraphQLEditor.js in the src/graphql folder and used
it to define the component shown in Listing 25-27.

Listing 25-27.  The Contents of the GraphQLEditor.js File in the src/graphql Folder

import React, { Component } from "react";
import gql from "graphql-tag";
import * as queries from "./queries";
import * as mutations from "./mutations";
import { Query, Mutation } from "react-apollo";
import { PRODUCTS } from "../store/dataTypes";
import { ProductEditor } from "../ProductEditor";
import { SupplierEditor } from "../SupplierEditor";

export const GraphQLEditor = () => {

 return class extends Component {

 constructor(props) {
 super(props);
 this.dataType = this.props.match.params.dataType;
 this.id = this.props.match.params.id;
 this.query = gql(queries[this.dataType].getOne.graphql);
 this.variables = { id: this.id };
 this.mutation = gql(mutations[this.dataType].store.graphql);
 this.navigation = () => props.history.push(`/${this.dataType}`);
 }

 render() {
 return <Query query={ this.query} variables={ this.variables }>
 {
 ({loading, data}) => {
 if (!loading) {
 return <Mutation mutation={ this.mutation }
 onCompleted={ this.navigation }>

Chapter 25 ■ Consuming GraphQL

738

 { (store) => {
 if (this.dataType === PRODUCTS) {
 return <ProductEditor key={ this.id }
 product={ data.product }
 saveCallback={ (formData) =>
 store({variables: formData})}
 cancelCallback={ this.navigation } />
 } else {
 return <SupplierEditor key={ this.id }
 supplier={ data.supplier }
 saveCallback={ (formData =>
 store({ variables: formData }))}
 cancelCallback={ this.navigation } />
 }
 }
 }
 </Mutation>
 } else {
 return null;
 }
 }
 }
 </Query>
 }
 }
}

This component builds on the same features used for the table. A Query is used to request the data from
the GraphQL server, with the variables prop being used to provide the variables required by the query.
A Mutation is used to store the data, with the onCompleted prop used to navigate away from the editor once
the mutation has completed.

Notice that I have not updated the cached data. Apollo Client has a clever feature where mutations
that alter a single object and have responses with an id property and properties that have been changed are
automatically pushed into the cache and used by other Query objects. In the case of the editor component,
this means that changes to a product or supplier are automatically shown in the data table, without the need
to update the cache or re-query for the data.

Updating the Routing Configuration
To complete the example, Listing 25-28 updates the routing configuration for the example application to add
support for supplier data and for the new editor components.

Listing 25-28.  Updating the Routing Configuration in the Selector.js File in the src Folder

import React, { Component } from "react";
import { BrowserRouter as Router, Route, Switch, Redirect }
 from "react-router-dom";
import { ToggleLink } from "./routing/ToggleLink";
import { GraphQLTable } from "./graphql/GraphQLTable";
import { PRODUCTS, SUPPLIERS } from "./store/dataTypes";
import { GraphQLEditor } from "./graphql/GraphQLEditor";

Chapter 25 ■ Consuming GraphQL

739

export class Selector extends Component {

 render() {
 return <Router>
 <div className="container-fluid">
 <div className="row">
 <div className="col-2">
 <ToggleLink to="/products">Products</ToggleLink>
 <ToggleLink to="/suppliers">Suppliers</ToggleLink>
 </div>
 <div className="col">
 <Switch>
 <Route path="/products" exact={true}
 component={ GraphQLTable(PRODUCTS) } />
 <Route path="/suppliers" exact={true}
 component={ GraphQLTable(SUPPLIERS) } />
 <Route path="/:dataType/edit/:id"
 component= { GraphQLEditor() } />
 <Redirect to="/products" />
 </Switch>
 </div>
 </div>
 </div>
 </Router>
 }
}

When you save the changes, the application will be updated to support supplier data and editing, as
shown in Figure 25-6.

Figure 25-6.  Supporting supplier data and editing

Chapter 25 ■ Consuming GraphQL

740

■■ Tip I f you encounter errors, stop the development tools and start them again using npm start. This will
reset the data used by the GraphQL server and undo the effects of changes made in previous sections.

Summary
In this chapter, I showed you the different ways that a React application can consume a GraphQL service.
I showed you how to use GraphQL in isolated components, how to intercept data store actions and
service them using GraphQL, and how to adopt a GraphQL client that manages the data on behalf of the
application.

And that is all I have to teach you about React. I started by creating a simple application and then took
you on a comprehensive tour of the different building blocks in the framework, showing you how they can
be created, configured, and applied to create web applications.

I wish you every success in your React projects, and I can only hope that you have enjoyed reading this
book as much as I enjoyed writing it.

741© Adam Freeman 2019
A. Freeman, Pro React 16, https://doi.org/10.1007/978-1-4842-4451-7

�       � A
Angular, 32
Axios

alternatives, 657
cross-origin requests, 672
data source, 657

additional operations, 662
errors, 667
installing, 650
request method, 657
response properties, 658
sending requests, 657

�       � B
Bootstrap

adding to a project, 8
forms, 58
grids, 54
margin, 54
padding, 54
style contexts, 53
tables, 56

�       � C
Components

children, props, 384
class, 291

constructor, 293
definition, 292
import base class, 292
render method, 292
setState method, 295

container components, 384
contexts, 405

consumers, 409
contextType property, 416
defining, 409

providers, 410
useContext hook, 417
using functions, 412

error boundaries, 418
applying, 420
defining, 419

function components, 252
higher-order components, 393

combining, 399
creating, 396

hooks, 303
useState function, 304

lifecycle, 361
advanced methods, 371
mounting, 362
unmounting, 366
updates, 365

omitting child
components, 388

parent/child relationship, 256
props (see Props)
React.children methods, 385
React.Fragment element, 269
reconciliation

lists, 357
triggering, 359

reconciliation process, 354
rendering, 252, 350
rendering arrays, 264
render props, 400

using arguments, 403
setting state data,

props, 375
specialized components, 390
state data, 305
stateful components, 290
stateless components, 252, 290
update process, 353

Contexts. See Components
create-react-app package, 4, 218

Index

https://doi.org/10.1007/978-1-4842-4451-7

■ INDEX

742

�       � D
Data store

alternatives to Redux, 534
MobX, 534
Relay, 534

Redux (see Redux)
SportsStore, 106

Debugging, 243
Docker, 210

�       � E
Error boundaries, 418
Events

event object, 324
properties and

methods, 325
event propagation, 333

bubble phase, 333
capture phase, 337
stopping, 342
target phase, 333

event reuse, 327
event types, 326
handling, 319

custom arguments, 329
pitfalls, 321

preventing default
behavior, 331

props
camel case, 318

public class field syntax, 322

�       � F
Forms

change events, 427
checkboxes, 434

populating an array, 436
radio buttons, 432
select elements, 429
SportsStore, 153
text area elements, 438
text input elements, 427
uncontrolled form

components, 465
validation, 439, 470

defining rules, 440
displaying warnings, 443
ensuring matching

values, 449
performing validation, 443
validating checkboxes, 446
whole form validation, 452

�       � G
Git, 4
GitHub repository, examples, 36
GraphQL

mutations
defining, 697

queries
field arguments, 694
fragments, 704
making, 687
multiple queries, 703
related data, 688
selecting fields, 687
using arguments, 692

resolvers, 685
schema

data types, 685
defining, 684
language, 684

SportsStore, 167

�       � H, I
Higher-Order components, 393 See also Components
Hooks, 80, 290

effect hook, 367
cleanup, 370

state data, 303
useContext hook, 417

HTML
attributes, 43
creating dynamically, 45
elements, 39

content restrictions, 42
void elements, 42

using the DOM API, 43

�       � J, K
JavaScript

arrays, 78
accessing values, 78
built-in methods, 81
destructuring, 80
enumerating, 79
spread operator, 80

arrow functions, 69
classes, 85
closure, 71
conditional statements

equality operator, 75
identity operator, 75
if/else, 74
switch, 74

■ INDEX

743

constants
defining, 69

const keyword, 69
functions, 64

default parameters, 66
fat arrow functions, 68
parameters, 65
rest parameters, 66
results, 67
using functions as arguments, 68

lambda expressions, 69
let keyword, 69
modern features, 228
modules, 89

export, 92
import, 92, 94
import locations, 91
multiple features, 93

objects, 82
classes, 85
destructuring, 87
literal objects, 83
methods, 84
parameter names, 88
properties, 83, 87

primitive types
boolean, 72
numbers, 73
strings, 72

promises, 95
async keyword, 97
await keyword, 97

spread operator, 80
statements, 64
template strings, 73
type conversion, 76
variables

closure, 71
defining, 69

jQuery, 481
JSX

expressions, 46
events, 51
mixed content, 47
properties and methods, 49
setting props, 50

files, 227

�       � L, M
Lazy loading, 205

�       � N, O
Node.js, 3

�       � P, Q
Pagination, 136
Portals, 487
Projects

Babel transformations, 228
creation, 4
creating a new project, 218
debugging, 243
development HTTP server, 231
development tools

configuration, 242
.env file, 242
error display, 237
Flow, 241
global packages, 224
JSX format, 227
linter, 238

disabling warnings, 239
local packages, 224
modern JavaScript features, 228
npm commands, 224
package.json file, 223

dependencies section, 223
devDependencies section, 223
scripts, 223

project contents, 221
React Devtools browser

extension, 245
src folder, 222
static content, 232
TypeScript, 241

Props, 259
data props, 273
default values, defining, 281, 311
defining, 259
function props, 273

premature invocation, 278
key prop, 268
passing on props, 279

all props, 280
some props, 281

read-only nature of, 272
receiving, 260
refs prop, 484
selective rendering, 262
types, defining, 283, 311

�       � R
React

compared to Angular, 32
compared to Vue.js, 32
uses, 32

React.Fragment element, 269

■ INDEX

744

React Router
BrowserRouter, 612
getting started, 594
HashRouter, 613
history prop, 632
Link component, 595

innerRef prop, 608
replace prop, 608
to prop, 608

location prop, 620
match prop, 618
navigating programmatically, 632
NavLink component, 610
Prompt component, 634
Redirect component

selective redirection, 606
Route component, 595, 628

children prop, 596
component prop, 596
exact prop, 596, 600
path prop, 596, 599
regular expressions, 603
render prop, 596–597
sensitive prop, 596, 600
strict prop, 596, 600

URL parameters, 622
optional parameters, 626

withRouter higher-order component, 630
Redux

action, 533
action creators, 106, 536
action types, 533, 535
adding data, 546
API

data store enhancers, 580
enhancing reducers, 574
getting dispatching actions, 569
getting state data, 564
manually mapping to props, 570
middleware, 577
observing changes, 567

combineReducers function, 548
connect function, 540
creating a data store, 533
creator, 533
data types

defining, 535
dispatch function, 555
initial data, 535
merging props, 588
Provider component, 539

store prop, 539
reducer, 533, 537

combining reducers, 548
Redux-React package, 532

required packages, 532
selector, 533, 540

Refs
component lifecycle methods, 475
creating, 462

using a callback, 467
form elements, 465
jQuery example, 481
portals, 487
ref forwarding, 486
refs prop, 484
taking a snapshot, 479
using as a last resort, 462
using with other libraries, 481

Render props See Components
REST

verbs and URLs, 655
RESTful web services, 132 See also Axios
Round-trip applications, 32

�       � S
Single-page applications, 32
SportsStore, 100

additional packages, 100
Apollo, 100
Axios, 100
Bootstrap, 100
Font Awesome, 100
GraphQL, 100
React Redux, 100
React Router, 100
Redux, 100

administration
features, 174

authentication, 194
form fields, 201
guarding, 202

categories, 110
checkout, 150

form elements, 153
validation, 154

configuring URLs, 133
custom navigation, 115
data loading, 141
data store, 106
deployment, 205

app server, 208
build process, 208
container, 210
Docker, 210
lazy loading, 205

GraphQL, 167
mutations, 167
queries, 167

■ INDEX

745

resolvers, 169
schema, 167

pagination, 136
controls, 144
routing, 142

props, 109
RESTful web service, 132
shopping cart, 117

summary view, 120
store layout, 108
web service, 103

State data, 293
lifting up, 305
modifying, 295

Suspense feature, 205

�       � T
Tools

browser, 5
create-react-app Package, 4

Git, 4
Node.js, 3

�       � U
Unit testing

Enzyme features, 500
expect matchers, 501
full rendering, 503
running tests, 496
shallow

rendering, 499
testing behavior, 504
testing events, 504
testing props, 504
testing state, 504

URLrouting, See React Router

�       � V, W, X, Y, Z
Vue.js, 32

	Contents
	About the Author
	About the Technical Reviewer
	Part I: Getting Started with React
	Chapter 1: Your First React Application
	Preparing the Development Environment
	Installing Node.js
	Installing the create-react-app Package
	Installing Git
	Installing an Editor
	Installing a Browser

	Creating the Project
	Understanding the Project Structure
	Adding the Bootstrap CSS Framework
	Starting the Development Tools

	Replacing the Placeholder Content
	Displaying Dynamic Content
	Understanding State Data Changes

	Adding the To-Do Application Features
	Displaying the To-Do Items

	Introducing Additional Components
	Using the Child Components

	Adding the Finishing Touches
	Managing the Visibility of Completed Tasks
	Persistently Storing Data

	Summary

	Chapter 2: Understanding React
	Should I Use React?
	Understanding Round-Trip Applications
	Understanding Single-Page Applications
	Understanding Application Complexity

	What Do I Need to Know?
	How Do I Set Up My Development Environment?
	What Is the Structure of This Book?
	Part 1: Getting Started with React
	Part 2: Working with React
	Part 3: Creating Complete React Applications

	Are There Lots of Examples?
	Where Can You Get the Example Code?
	Where Can You Get Corrections for This Book?
	How Can You Contact Me?
	Summary

	Chapter 3: HTML, JSX, and CSS Primer
	Preparing for This Chapter
	Preparing the HTML File and the Component
	Running the Example Application

	Understanding HTML and DOM Elements
	Understanding Element Content
	Understanding Element Content Restrictions
	Understanding Void Elements

	Understanding Attributes
	Creating HTML Elements Dynamically
	Creating Elements Dynamically Using a React Component

	Using Expressions in React Elements
	Mixing Expressions and Static Content
	Performing Computation in Expressions
	Accessing Component Properties and Methods
	Using Expressions to Set Prop Values
	Using Expressions to Handle Events

	Understanding Bootstrap
	Applying Basic Bootstrap Classes
	Using Contextual Classes
	Using Margin and Padding

	Using Bootstrap to Create Grids
	Using Bootstrap to Style Tables
	Using Bootstrap to Style Forms

	Summary

	Chapter 4: JavaScript Primer
	Preparing for This Chapter
	Using Statements
	Defining and Using Functions
	Defining Functions with Parameters
	Using Default and Rest Parameters

	Defining Functions That Return Results
	Using Functions as Arguments to Other Functions
	Using Arrow Functions

	Using Variables and Types
	Using the Primitive Types
	Working with Booleans
	Working with Strings
	Using Template Strings

	Working with Numbers

	Using JavaScript Operators
	Using Conditional Statements
	The Equality Operator vs. the Identity Operator
	Explicitly Converting Types
	Converting Numbers to Strings
	Converting Strings to Numbers

	Working with Arrays
	Using an Array Literal
	Reading and Modifying the Contents of an Array
	Enumerating the Contents of an Array
	Using the Spread Operator
	Using the Built-in Array Methods

	Working with Objects
	Using Object Literals
	Using Variables as Object Properties

	Using Functions as Methods
	Using Classes
	Copying Properties from One Object to Another
	Capturing Parameter Names from Objects

	Understanding JavaScript Modules
	Creating and Using a JavaScript Module
	Using the JavaScript Module

	Exporting Named Features from a Module
	Defining Multiple Named Features in a Module
	Changing Module Feature Names
	Importing an Entire Module

	Understanding JavaScript Promises
	Understanding the Asynchronous Operation Problem
	Using a JavaScript Promise
	Simplifying the Asynchronous Code

	Summary

	Chapter 5: SportsStore: A Real Application
	Preparing the Project
	Installing Additional NPM Packages
	Adding the CSS Stylesheets to the Project
	Preparing the Web Service
	Running the Example Application

	Creating the Data Store
	Creating the Data Store Actions and Action Creators

	Creating the Shopping Features
	Creating the Product and Category Components
	Connecting to the Data Store and the URL Router
	Adding the Shop to the Application
	Improving the Category Selection Buttons

	Adding the Shopping Cart
	Extending the Data Store
	Creating the Cart Summary Component
	Adding the Cart Detail Component
	Adding the Cart URL to the Routing Configuration

	Summary

	Chapter 6: SportsStore: REST and Checkout
	Preparing for This Chapter
	Consuming the RESTful Web Service
	Creating a Configuration File
	Creating a Data Source
	Extending the Data Store
	Updating the Action Creator

	Paginating Data
	Understanding the Web Service Pagination Support
	Changing the HTTP Request and Action
	Creating the Data Loading Component
	Updating the Store Connector Component
	Updating the All Category Button
	Creating the Pagination Controls

	Adding the Checkout Process
	Extending the REST Data Source and the Data Store
	Creating the Checkout Form
	Creating the Validated Form
	Defining the Form
	Creating the Thank You Component
	Applying the New Components

	Simplifying the Shop Connector Component
	Summary

	Chapter 7: SportsStore: Administration
	Preparing for This Chapter
	Running the Example Application

	Creating a GraphQL Service
	Defining the GraphQL Schema
	Defining the GraphQL Resolvers
	Updating the Server

	Creating the Order Administration Features
	Defining the Order Table Component
	Defining the Connector Component
	Configuring the GraphQL Client
	Configuring the Mutation

	Creating the Product Administration Features
	Connecting the Product Table Component
	Creating the Editor Components
	Updating the Routing Configuration

	Summary

	Chapter 8: SportsStore: Authentication and Deployment
	Preparing for This Chapter
	Adding Authentication for GraphQL Requests
	Understanding the Authentication System
	Creating the Authentication Context
	Creating the Authentication Form
	Guarding the Authentication Features
	Adding a Navigation Link for the Administration Features

	Preparing the Application for Deployment
	Enabling Lazy Loading for the Administration Features
	Creating the Data File
	Configuring the Request URLs
	Building the Application
	Creating the Application Server
	Testing the Production Build and Server

	Containerizing the SportsStore Application
	Installing Docker
	Preparing the Application
	Creating the Docker Container
	Running the Application

	Summary

	Part II: Working with React
	Chapter 9: Understanding React Projects
	Preparing for This Chapter
	Understanding the React Project Structure
	Understanding the Source Code Folder
	Understanding the Packages Folder

	Using the React Development Tools
	Understanding the Compilation and Transformation Process
	Understanding the JSX Transformation
	Understanding the JavaScript Language Transformation

	Understanding the Development HTTP Server
	Understanding Static Content
	Using the Public Folder for Static Content

	Understanding the Error Display
	Understanding the Linter
	Disabling Linting for Individual Statements and Files

	Configuring the Development Tools

	Debugging React Applications
	Exploring the Application State
	Using the Browser Debugger

	Summary

	Chapter 10: Components and Props
	Preparing for This Chapter
	Understanding Components
	Rendering HTML Content
	Rendering Other Components

	Understanding Props
	Defining Props in the Parent Component
	Receiving Props in the Child Component

	Combining JavaScript and Props to Render Content
	Selectively Rendering Content
	Rendering Arrays
	Using the Map Method to Process Array Objects
	Adding the Key Prop

	Rendering Multiple Elements
	Rendering No Content
	Attempting to Change Props

	Using Function Props
	Invoking Prop Functions with Arguments

	Passing on Props to Child Components
	Passing On All Props to Child Components

	Providing Default Prop Values
	Type Checking Prop Values
	Summary

	Chapter 11: Stateful Components
	Preparing for This Chapter
	Understanding the Different Component Types
	Understanding Stateless Components
	Understanding Stateful Components

	Creating a Stateful Component
	Understanding the Component Class
	Understanding the Import Statement
	Understanding the render Method
	Understanding Stateful Component Props

	Adding State Data
	Reading State Data

	Modifying State Data
	Avoiding the State Data Modification Pitfalls
	Avoiding the Dependent Value Pitfall
	Avoiding the Missing Updates Pitfall

	Defining Stateful Components Using Hooks
	Lifting Up State Data
	Lifting Up State Data Further

	Defining Prop Types and Default Values
	Summary

	Chapter 12: Working with Events
	Preparing for This Chapter
	Understanding Events
	Invoking a Method to Handle an Event
	Accessing Component Features in an Event Handling Method

	Receiving an Event Object
	Differentiating Between Event Types
	Avoiding the Event Reuse Pitfall

	Invoking Event Handlers with a Custom Argument
	Preventing Default Behavior

	Managing Event Propagation
	Understanding the Target and Bubble Phases
	Understanding the Capture Phase
	Determining the Event Phase
	Stopping Event Propagation

	Summary

	Chapter 13: Reconciliation and Lifecycles
	Preparing for This Chapter
	Creating the Example Components

	Understanding How Content Is Rendered
	Understanding the Update Process
	Understanding the Reconciliation Process
	Understanding List Reconciliation

	Explicitly Triggering Reconciliation
	Understanding the Component Lifecycle
	Understanding the Mounting Phase
	Understanding the Update Phase
	Understanding the Unmounting Phase

	Using the Effect Hook
	Using the Advanced Lifecycle Methods
	Preventing Unnecessary Component Updates
	Setting State Data from Prop Values

	Summary

	Chapter 14: Composing Applications
	Preparing for This Chapter
	Creating the Example Components

	Understanding the Basic Component Relationship
	Using the Children Prop
	Manipulating Prop Children
	Adding Props to Container Children
	Ordering or Omitting Components

	Creating a Specialized Component
	Creating Higher-Order Components
	Creating Stateful Higher-Order Components
	Combining Higher-Order Components

	Using Render Props
	Using a Render Prop with an Argument

	Using Contexts for Global Data
	Defining the Context
	Creating the Context Consumer
	Creating the Context Provider
	Changing Context Data Values in a Consumer
	Using the Simplified Context Consumer APIs
	Consuming a Context Using Hooks

	Defining Error Boundaries
	Creating the Error Boundary Component

	Summary

	Chapter 15: Forms and Validation
	Preparing for This Chapter
	Defining the Example Components
	Starting the Development Tools

	Using Form Elements
	Using Select Elements
	Using Select Elements That Present Multiple Items

	Using Radio Buttons
	Using Checkboxes
	Using Checkboxes to Populate an Array
	Using Text Areas

	Validating Form Data
	Defining the Validation Rules
	Creating the Container Component
	Displaying Validation Messages
	Applying the Form Validation
	Validating Other Element and Data Types
	Ensuring That a Checkbox Is Selected
	Ensuring Matching Values

	Performing Whole-Form Validation

	Summary

	Chapter 16: Using Refs and Portals
	Preparing for This Chapter
	Creating Refs
	Using Refs to Create Uncontrolled Form Components
	Creating Refs Using a Callback Function
	Validating Uncontrolled Form Components

	Understanding Refs and the Lifecycle
	Using Refs with Other Libraries or Frameworks
	Accessing a Child Component’s Content
	Using Ref Forwarding

	Using Portals
	Summary

	Chapter 17: Unit Testing
	Preparing for This Chapter
	Creating Components
	Running the Example Application

	Running the Placeholder Unit Test
	Testing a Component Using Shallow Rendering
	Testing a Component with Full Rendering
	Testing with Props, State, Methods, and Events
	Testing the Effect of Methods
	Testing the Effects of an Event
	Testing the Interaction Between Components

	Summary

	Part III: Creating Complete Applications
	Chapter 18: Creating Complete Applications
	Creating the Project
	Starting the Development Tools

	Creating the Example Application
	Creating the Product Features
	Creating the Product Table
	Creating the Product Editor
	Creating the Product Display Component

	Creating the Supplier Functionality
	Creating the Supplier Table
	Creating the Supplier Editor
	Creating the Supplier Display Component

	Completing the Application

	Understanding the Limitations of the Example Application
	Summary

	Chapter 19: Using a Redux Data Store
	Preparing for This Chapter
	Creating a Data Store
	Defining the Data Types
	Defining the Initial Data
	Defining the Model Data Action Types
	Defining the Model Action Creators
	Defining the Reducer
	Creating the Data Store

	Using the Data Store in the React Application
	Applying the Data Store to the Top-Level Component
	Connecting the Product Data
	Connecting the Supplier Data

	Expanding the Data Store
	Adding State Data to the Store
	Defining the Action Types and Creators for State Data
	Defining the State Data Reducer
	Incorporating the State Data Features into the Store
	Connecting the React Components to the Stored State Data
	Applying the Connector Components

	Dispatching Multiple Actions
	Understanding the Need for References
	Summary

	Chapter 20: Using the Data Store APIs
	Preparing for This Chapter
	Using the Redux Data Store API
	Obtaining the Data Store State
	Narrowing the Focus on Specific Data

	Observing Data Store Changes
	Dispatching Actions
	Creating a Connector Component

	Enhancing Reducers
	Using Data Store Middleware
	Enhancing the Data Store
	Applying the Enhancer

	Using the React-Redux API
	Advanced Connect Features
	Mapping Data Props
	Mapping Function Props
	Merging Props
	Setting Connection Options

	Summary

	Chapter 21: Using URL Routing
	Preparing for This Chapter
	Getting Started with URL Routing
	Getting Started with the Link Component
	Getting Started with the Route Component

	Responding to Navigation
	Selecting Components and Content
	Using the render Prop

	Matching URLs
	Matching Using Segments
	Restricting Matches with Props
	Specifying Multiple URLs in a Path
	Matching URLs with Regular Expressions

	Making a Single Route Match
	Using Redirection as the Fallback Route
	Performing Selective Redirection

	Rendering Navigation Links
	Indicating the Active Route

	Selecting and Configuring the Router
	Using the HashRouter Component

	Summary

	Chapter 22: Advanced URL Routing
	Preparing for This Chapter
	Creating Routing-Aware Components
	Understanding the Match Prop
	Understanding the Location Prop
	Using URL Parameters
	Using Optional URL Parameters

	Accessing Routing Data in Other Components
	Accessing Routing Data Directly in a Component
	Accessing Routing Data Using a Higher-Order Component

	Navigating Programmatically
	Navigating Programmatically Using Components
	Prompting the User Before Navigation
	Presenting a Custom Navigation Prompt

	Generating Routes Programmatically
	Using Routing with Connected Data Store Components
	Replacing the Display Components
	Updating the Connected Editor Component
	Updating the Connected Table Component
	Completing the Routing Configuration

	Summary

	Chapter 23: Consuming a RESTful Web Service
	Preparing for This Chapter
	Adding Packages to the Project
	Preparing the Web Service
	Adding a Component and a Route
	Running the Web Service and the Example Application

	Understanding RESTful Web Services
	Consuming a Web Service
	Creating the Data Source Component
	Getting Data in the Component
	Saving, Updating, and Deleting Data
	Adding Application Support for Creating, Editing, and Deleting Data

	Dealing with Errors

	Consuming a Web Service with a Data Store
	Creating the New Middleware
	Adding the Middleware to the Data Store
	Completing the Application Changes

	Summary

	Chapter 24: Understanding GraphQL
	Preparing for This Chapter
	Understanding GraphQL
	Creating the GraphQL Server
	Creating the Schema
	Creating the Resolvers
	Creating the Server

	Making GraphQL Queries
	Querying for Related Data
	Creating Queries with Arguments
	Adding Arguments to Fields

	Making GraphQL Mutations
	Other GraphQL Features
	Using Request Variables
	Making Multiple Requests
	Using Query Fragments for Field Selection

	Summary

	Chapter 25: Consuming GraphQL
	Preparing for This Chapter
	Adding Packages to the Project
	Changing the Data for the GraphQL Server
	Updating the Schema and Resolvers
	Integrating the GraphQL Server with the Development Tools

	Consuming a GraphQL Service
	Defining the Queries and Mutations
	Defining the Data Source
	Configuring the Isolated Components

	Using GraphQL with a Data Store
	Adjusting to the GraphQL Data Format

	Using a GraphQL Client Framework
	Configuring the Client
	Creating a GraphQL Component
	Applying the GraphQL Component

	Using Mutations
	Updating Cached Data Without a Query

	Adding Support for Supplier Data and Editing
	Creating the Editor Component
	Updating the Routing Configuration

	Summary

	Index

