
Python, PyGame, and
Raspberry Pi Game
Development

Second Edition
—
Sloan Kelly

Python, PyGame, and
Raspberry Pi Game

Development
Second Edition

Sloan Kelly

Python, PyGame, and Raspberry Pi Game Development

ISBN-13 (pbk): 978-1-4842-4532-3		 ISBN-13 (electronic): 978-1-4842-4533-0
https://doi.org/10.1007/978-1-4842-4533-0

Copyright © 2019 by Sloan Kelly

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee
Development Editor: James Markham
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-4532-3.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Sloan Kelly
Niagara Falls, ON, Canada

https://doi.org/10.1007/978-1-4842-4533-0

For Annamarie

v

Table of Contents

Chapter 1: �What Is a Programming Language?�������������������������������������1

What Does a Computer Program Do?��2

Conclusion���3

Chapter 2: �What Is Python?���5

Programming Styles���5

Object-Oriented��7

Functional��8

What Is Pygame?���8

Conclusion���9

Chapter 3: �Introducing Python���11

The Terminal Window���11

Running the Python Interpreter��12

Python Is Interpreted��13

Python As a Calculator���13

Keywords���16

Printing��17

String Formatting���19

About the Author���xvii

About the Technical Reviewer��xix

Acknowledgments��xxi

Introduction��xxiii

vi

Variables��22

Naming Variables��22

Python As a Calculator, Part II��23

Arithmetic Operators��26

Data Types��27

Numeric Types��27

String Formatting Again���29

Conclusion���31

Chapter 4: �Breaking Free from the Interpreter������������������������������������33

What Is IDLE?���33

Starting IDLE��33

Starting a New File��34

Hello, World!���36

Running from the Command Line���36

Running from Inside IDLE���38

Conclusion���39

Chapter 5: �Making Decisions���41

A Note About Blocks���44

Testing for Equality��45

Using Boolean Logic���50

And���50

Or��51

Not��52

Nesting Ifs��52

A Note on Switch���54

Conclusion���54

Table of ContentsTable of Contents

vii

Chapter 6: �Making the Raspberry Pi Repeat Itself������������������������������55

The for Loop���55

The range() Function��57

While Loops��58

Counting���58

Sentinel��60

Conditional��62

Conclusion���62

Chapter 7: �Containers��63

Container Nomenclature��63

Tuples���64

Removing Elements from a Tuple���64

Changing Element Values���65

Tuples in Printing��66

Deconstructing Tuples��67

Lists���67

List Creation���68

Adding Values to the List��68

Removing Values from a List��69

Doctor’s Waiting Room Program���70

Dictionaries��73

Iterating Through Dictionaries��74

Adding New Items to Dictionaries��74

Removing Entries from a Dictionary���74

Conclusion���75

Table of ContentsTable of Contents

viii

Chapter 8: �Putting It Together: Tic-Tac-Toe���77

The Rules���77

Program Layout��79

Variables��79

The Game���80

Save and Run���85

Conclusion���85

Chapter 9: �Basic Introduction to PyGame��87

Importing the PyGame Framework��87

Initializing PyGame���88

The Main Loop���89

Images and Surfaces���92

Creating Images���93

Loading Images��93

Drawing Images���94

Screen Coordinates and Resolution���94

Sprite Sheets���95

Full Listing���97

Conclusion���97

Chapter 10: Designing Your Game���99

Initial Concept��99

Prototyping���100

Functional Specification��101

Weapon Firing��101

Program Design���101

Coding��102

Table of ContentsTable of Contents

ix

Testing���104

Iteration��105

Conclusion���105

Chapter 11: �Game Project: Bricks���107

The Main Framework���108

Images���109

Moving the Bat���110

Bat Initialization��111

Drawing the Bat��112

Moving the Bat���112

Moving the Ball��114

Ball Initialization���114

Ball Movement��115

Bat and Ball Collision��118

Serving the Ball��120

Brick Wall���121

Brick and Ball Collision���122

Out of Bounds���124

Conclusion���125

Chapter 12: �User-Defined Functions��127

What Is a Function?���127

Format of a Function��127

Functions as a Menial Task/Mnemonic Device��128

Sending Parameters��129

Default Argument Values��131

Named Parameters���132

Table of ContentsTable of Contents

x

Returning Values��133

Returning Tuples���134

Accessing Global Variables��135

Real-World Example of a Function���136

Conclusion���139

Chapter 13: �File Input and Output��141

Reading a File from Disk��141

Writing Data to a File���143

Reading and Writing Containers to a File���144

Writing Your Own Serializer��145

Writing Your Own Deserializer��147

JSON��148

JSON Serialization��148

JSON Deserializer���149

Handling Errors��150

Conclusion���151

Chapter 14: �Introducing Object-Oriented Programming��������������������153

Classes and Objects���154

Encapsulation��154

Abstraction���155

Inheritance���155

Polymorphism��155

Why Should You Use OOP?���156

Data Hiding���156

Reusable���156

Easier to Code and Test Separately��156

Table of ContentsTable of Contents

xi

The Ball Class��157

Creating an Instance of the Class��160

The Ball update( ) Method���161

Constructors���162

SOLID���164

Single Responsibility��165

Open-Closed Principle��165

Liskov Substitution���166

Interface Segregation���166

Dependency Inversion��167

Conclusion���170

Chapter 15: �Inheritance, Composition, and Aggregation�������������������171

Inheritance���172

Base and Child Classes��173

Programming to the Interface��175

A Note About Constructors and Base Classes��175

Composition���177

Aggregation��179

Conclusion���180

Chapter 16: �Game Project: Snake��181

Functions���182

Snake Framework��183

Images���190

Loading the Images��191

The Game Map���192

Drawing the ‘Game Over’ Screen���193

Table of ContentsTable of Contents

xii

Drawing the Game���195

Drawing the Walls��196

Drawing the Player Data��198

Drawing the Snake���199

Updating the Game��202

The updateGame( ) Method���203

Snake Movement��205

Touching a Berry���206

Collision Detection���208

Helper Functions��208

Conclusion���212

Chapter 17: �Model View Controller��213

Model���214

View���214

Controller���214

Why Use MVC?���215

The Classes��216

Folder���217

The Robot Model��217

The Robot View���219

The Radar View���221

The Robot Controller���222

The Robot Generator���225

Ensuring Constant Speed���227

The Main Robot Program���228

Conclusion���230

Table of ContentsTable of Contents

xiii

Chapter 18: �Audio��233

Playing a Sound���234

Playing, Pausing, and Changing Volume��235

Conclusion���240

Chapter 19: �Finite State Machines��241

Game State��241

Menu System���241

Non-player Artificial Intelligence��242

A Finite State Machine Example��243

Finite State Machine Manager���244

Conclusion���249

Chapter 20: �Game Project: Invaders��251

The Classes��253

The Finite State Machine���254

MVC and ‘Invaders’��255

The Framework��255

Bitmap Font��259

Interstitial Screens���263

The Main Menu���264

Player and Bullets��267

The Bullet Classes��267

The Player Classes���270

Testing Player���273

The Alien Swarm Classes���275

Collision Detection���282

Explosions��282

Collision Controller���285

Table of ContentsTable of Contents

xiv

The Main Program��288

The Main Game State���289

Running the Game���292

Conclusion���293

Chapter 21: �Simple Electronics with the GPIO Pins���������������������������295

Voltage, Current, and Resistance���296

What You Will Need��298

Breadboard���298

Breakout Board���299

Jumper Wires���300

LEDs���302

Resistors���304

Switches���307

Building a Circuit��308

Connecting the Breakout Board to the Raspberry Pi������������������������������������308

Providing Power and Ground��311

Adding the LED���312

Completing the Circuit��313

Testing the Circuit���315

Pin Meanings���316

The gpiozero Library��317

The Circuit��318

The Python Program���319

Getting Button Input���320

Reading Button Input in Python��321

Conclusion���322

Table of ContentsTable of Contents

xv

Chapter 22: �Game Project: Memory���323

Arranging the Breadboard��324

Placing the LEDs���324

Testing the Circuit��326

Placing the Tact Switches���327

Testing the Button Circuit���328

The Memory Game���330

The ButtonLED and ButtonLEDCollection Classes��331

The Main Program��334

Full Listing buttonled.py���336

Full Listing memorygame.py��338

Conclusion���339

Chapter 23: �Game Project: Quiz���341

The Electronics��341

Testing the Buttons���342

The Finite State Machine���345

Making the Game���347

The Questions���348

UI Helper Classes��354

The Game Runner and Base State Class��359

Player Input��361

The State Classes���362

Playing the Game���376

Conclusion���377

Chapter 24: �Conclusion��379

Index��381

Table of ContentsTable of Contents

xvii

About the Author

Sloan Kelly has worked in the games industry

for nearly 12 years. He has worked on a

number of AAA and indie titles and currently

works for an educational game company. He

lives in Ontario, Canada, with his wife and

children. Sloan is on Twitter @codehoose and

makes YouTube videos in his spare time.  

xix

About the Technical Reviewer

John Watson is a game developer, artist, guitar

player, husband, and father. Among John’s

many software-powered side projects, he’s

building a Raspberry Pi–powered device that

generates interactive music in live modern

dance performances. He’s also developing a

retro-inspired 2D twin-stick arcade shooter

called Gravity Ace. You can follow his progress

on Twitter @yafd or at gravityace.com. Stop by

and say hi!

xxi

Acknowledgments

I would like to thank Divya Modi, Spandana Chatterjee, and the entire

team at Apress for giving me the opportunity to write the second edition

of this book. A special thank you to Divya for keeping me in the loop

throughout this process. I would also like to thank John Watson for the

feedback that he gave while reviewing the text.

Thank you also to Eben Upton who gave us the little machine we will

use to make games and explore electronics with and to Pete Shinners

for starting PyGame and the community for keeping it going. Finally, a

huge thank you to Guido van Rossum for designing the excellent Python

language that you, dear reader, are about to learn and enjoy.

xxiii

Introduction

This book is intended for anyone who wants to learn how to program

games. It is ideally suited to students who want to learn Python and

PyGame on their Raspberry Pi. While not necessary, this book has been

oriented toward the Raspberry Pi computer.

The Python programming language is ideally suited to beginners and

experts alike. The skills you will learn in this book are easily transferable to

other computer languages too.

If you are unfamiliar with the Raspberry Pi, there are several good

eBook guides on getting started including mine called A Slice of Raspberry

Pi, available from all good eBook retailers.

This book assumes that you are familiar with the Raspberry Pi

computer and that you have the Raspberry Pi Foundation’s recommended

Raspbian operating system installed. Raspbian is a distribution of the

Debian Linux operating system built specifically for the Raspberry Pi. This

distribution contains all the Software Development Kits (SDKs) including

one for Python that includes PyGame. If you don’t have Raspbian installed,

you will have to ensure that you have Python and PyGame installed on

your system.

Don’t have a Raspberry Pi? Not to worry, you can still learn Python and

PyGame. The code in this book will work on other OSs with Python and

PyGame installed; Python is a platform-independent language.

You can obtain more information and download versions of Python from

www.python.org. PyGame can be obtained from www.pygame.org/.

Sprites from Ari Feldman’s SpriteLib have been used for the projects

contained in this book.

https://www.python.org/
https://www.pygame.org/

xxiv

�How This Book Is Organized
The book is organized into chapters covering the following:

•	 Introduction to the Python language

•	 Containers in Python

•	 The IDLE IDE

•	 Introduction to PyGame library

•	 Designing your game

•	 User-defined functions

•	 File input/output

•	 Object-oriented design and programming

•	 Model View Controller design pattern

•	 Finite state machines

•	 Interfacing with electronics

There are five projects that produce complete games, all the code and

resources for which are on the web site www.sloankelly.net/. The five

games are

•	 Bricks

•	 Snake

•	 Invaders

•	 Copycat

•	 Couch quiz

Throughout the book are lines of code that you can type in to tell the

computer to perform actions, or to add text to a file. In the book, these

lines will appear like this:

IntroductionIntroduction

http://www.sloankelly.net/

xxv

print 'hello world'

Python uses white space characters, notably tabs, to denote blocks of

code. Because this is an eBook and it is not possible to know how tabs will

be rendered on your device, white space is very important to Python, so

remember to use the “tab” key to indent the lines exactly as written like so:

name='Sloan'

if (name=='Sloan'):

 print ('Hello', name)

The line that starts with “print” has been indented using the “tab” key.

OS commands that are to be typed into a command window like

Terminal will be preceded with a “$” sign:

$ ls -al

There are screenshots and other graphics throughout the text to

illustrate output, but when it is just text it will appear in a box like this:

This is output from a command.

It can appear on one or more lines.

Finally, anything important will appear in a note formatted like this:

Take note of this message

IntroductionIntroduction

1© Sloan Kelly 2019
S. Kelly, Python, PyGame, and Raspberry Pi Game Development,
https://doi.org/10.1007/978-1-4842-4533-0_1

CHAPTER 1

What Is a
Programming
Language?
A computer program is a list of statements that a computer must carry

out in order to complete a task, usually a repetitive task that would take

a human a long time to calculate. A computer language describes the

arrangement or syntax of those statements. There are various computer

languages out there, each suitable to one or more tasks.

Each language has its own unique syntax and set of commands, but

they all have constructs that perform roughly the same types of actions:

•	 Input

•	 Output

•	 Branching (making decisions based on data)

•	 Loops

A command or keyword is a special phrase that is used by the language

to perform an action whether it is to get input from the user or display text

on the screen. These commands are reserved words that cannot be used

2

for any other purpose in your program. We’ll dive deeper into them later in

this book, but examples of keywords in Python are

•	 for

•	 if

•	 pass

�What Does a Computer Program Do?
A computer program performs a series of tasks over and over again

manipulating the user’s input and delivering output in a feedback loop.

When you move your mouse (input), the arrow on the screen moves along

with it (output).

The old definition of a computer program was a basic mathematical

formula:

Program = Algorithm + Data

An algorithm is the step-by-step procedure for processing data.

The algorithm solves a problem with the data that it has been supplied.

What kind of problem? It could be anything from calculating the area of a

rectangle or the volume of a room, where to move a player’s avatar based

on the input from a joystick, or deciding how an enemy should react to a

player who just obtained a power up.

Are all computer programs written the same way? Is there a standard

way to approach a given problem? Well, no. Not really. There are many

ways to achieve the same result in computer programming! There is no

correct way of solving a problem. So long as your program does what it is

supposed to, that’s just fine! You may want to ‘tweak’ your code later to

speed it up, but any optimization happens once you have the algorithm

right. Your program must function as expected. This is of paramount

importance.

Chapter 1 What Is a Programming Language?

3

�Conclusion
Computer programs are used to perform laborious tasks on a series of

data elements that are input by users. For games, that means updating the

player avatar location and maintaining the game world while displaying it

to the player.

It is not advisable to stick to one language but rather experience as

many languages as you can. This will enable you, the programmer, to

decide which language is best for a given situation. Your first language is

a great choice; Python is a very powerful language that can be used for a

variety of purposes and is perfect for the first-time programmer.

Chapter 1 What Is a Programming Language?

5© Sloan Kelly 2019
S. Kelly, Python, PyGame, and Raspberry Pi Game Development,
https://doi.org/10.1007/978-1-4842-4533-0_2

CHAPTER 2

What Is Python?
Python is a modern programming language that supports object-oriented,

functional, and imperative programming styles. It is ideal for the beginner

because of its readability and ease of use. The upside to all of this is that

you can write programs in less lines of code than an equivalent C/C++ or

Java program.

What on earth did I just say? Let’s break that last paragraph down and

make it a little more readable.

�Programming Styles
Python is suitable for programming in the following styles:

•	 Imperative

•	 Object-oriented

•	 Functional

Imperative programming was for the longest time the most common

way to write computer code. It describes step by step how to perform

changes to the data in a very linear manner.

For example, we have the following items:

•	 Tea bag

•	 Milk

6

•	 Cup

•	 Spoon

•	 Kettle

•	 Water

These are the things we use and manipulate in our ‘program’; this is

our data. We want to change this data to a different state. What state? Well,

we want a cup of milky tea. How do we do that? We prescribe a series of

operations that will transform this data into some other data like so:

•	 Place tea bag in cup

•	 Pour water into kettle

•	 Boil the kettle

•	 While the kettle is boiling, watch TV

•	 Pour the water from the kettle to the cup

•	 Pour milk into the cup

•	 Stir the tea with the spoon

•	 Serve

In code (not specifically Python code), this could be written as

addTo(cup, tea_bag)

addTo(kettle, water)

boil(kettle)

while isBoiling(kettle):

 watchTV()

addTo(cup, getWaterFrom(kettle))

addTo(cup, milk)

stir(cup)

serve(cup)

Chapter 2 What Is Python?

7

These are the prescribed steps (process) to change our initial data (our

input) and transform it into our output. See Figure 2-1.

�Object-Oriented
Imperative programs separate the functionality (the algorithm) from the

data. Object-oriented languages keep the functionality with the data.

Objects contain the data and the instructions used to manipulate that data

in one place.

There is an advantage to this; algorithms stored with it process your

data. Let’s take a pencil as an example. It has certain attributes that

describe it:

•	 Color

•	 Hardness

•	 Nib size

•	 Length

It also has certain actions or methods that can be applied to it:

•	 Write

•	 Erase

•	 Sharpen

INPUT OUTPUTPROCESS

Figure 2-1.  Input, process, output block diagram

Chapter 2 What Is Python?

8

These methods change the state of the object; remember that state

is determined by the data. For example, when you write using a pencil,

the nib length gets smaller and smaller. When you sharpen the pencil, its

overall length gets shorter, but the nib size is reset to its maximum.

�Functional
Functional programming is not new and was first developed in the

1930s. It has its roots in lambda calculus. Functional programming uses

mathematical functions to perform calculations. No data is changed in

these calculations; instead new values are calculated. This means that

functional programs have no state.

Functional programming tends to be used for recursion (calling the

same function from itself) and iteration through items.

In Python, Fibonacci numbers can be calculated with the following

one line:

fib = lambda n: n if n < 2 else fib(n-1) + fib(n-2)

This was taken from a discussion on StackOverflow (http://bit.ly/

FibonacciPython).

To calculate a value, the programmer simply passes in an integer value:

fib(5)

�What Is Pygame?
Pygame was started by Pete Shinners as a wrapper around the Simple

DirectMedia Library (SDL). It has been maintained by the community

since 2000 and is released under the GNU Lesser General Public License.

Which means you are free to look at the source code if you so choose.

Chapter 2 What Is Python?

http://bit.ly/FibonacciPython
http://bit.ly/FibonacciPython

9

Pygame was created to allow for the development of games without

resorting to using programming languages like C or C++.

Pygame can be used to write fast-paced 2D games in a retro style,

or modern casual and hyper-casual games. It handles the difficulties of

loading in images, displaying sprites, playing sounds, etc., for you.

For more details about Pygame, please visit their web site:

www.pygame.org/news.

�Conclusion
Python is a modern, multiparadigm programming language. It can be used

for imperative, object-oriented, and functional programming.

In addition, Pygame is a framework that allows you to create fast-paced

action games in 2D.

So, now that we know what Python is capable of, it’s time we looked at

the language itself.

Chapter 2 What Is Python?

http://www.pygame.org/news

11© Sloan Kelly 2019
S. Kelly, Python, PyGame, and Raspberry Pi Game Development,
https://doi.org/10.1007/978-1-4842-4533-0_3

CHAPTER 3

Introducing Python
In this chapter we will introduce the Python language. At this stage we’re

only interested in understanding the format or syntax of the Python language

and its keywords. Python is an interpreted language, meaning that it requires

another program called an interpreter to run any code that we write.

The Python interpreter program is called Python and is an executable

program. When you run Python from the command line by itself then you

will see the following:

pi@raspberrypi ∼ $ python
Python 2.7.9 (default, Jan 13 2013, 11:20:46)

[GCC 4.9.2] on linux2

Type "help", "copyright", "credits" or "license" for more info

>>>

This is the Python interpreter and will run each command block as you

type it in.

�The Terminal Window
For our first few Python experiments we will use the Terminal window in

Raspbian. To open a terminal window, click the icon on the top left of the

screen that looks a bit like >_. This will open a window with some text that

looks like this:

pi@raspberrypi:~ $

12

This is a very friendly prompt because the computer is telling some

important information. It shows that you are logged in as (pi@raspberrypi)

and where you are in the directory structure. In this case it’s ~ which is

shorthand for your home directory.

To the right of that text is the cursor. This is where the text that you type

will appear.

�Running the Python Interpreter
To start the Python interpreter, type the following in the terminal window:

$ python

A command block in Python is a list of commands at least one line

long. Let’s try one now:

print 'Hello, world!'

This will instruct Python to display the phrase ‘Hello, world!’ onscreen.

Notice that Python doesn’t display the quotation marks:

Hello, world!

This is because ‘Hello, world!’ is a string literal. A string is any phrase

containing alphanumeric or symbol characters that is enclosed between

‘and’ or “and”. You can’t mix and match the quotes. Being able to use both

becomes quite handy at times.

Let’s try this:

print "It's going to rain on Saturday."

With double quotes used to mark where our string literal starts and

ends, we can use the single quote as an apostrophe:

It's going to rain on Saturday.

Chapter 3 Introducing Python

13

If we used single quotes, we would have had to add a special escape

character to the line:

print 'It\'s going to rain on Saturday.'

We’ll get to escape characters later, but that’s a little messy for just

wanting to put an apostrophe in a sentence!

Let’s break down the print statement that we’ve just used. print is a

keyword used by Python to output information to the screen. The second

part, the string literal, is a parameter of the print command. Parameters are

also called arguments.

�Python Is Interpreted
Every line of Python is interpreted. This means that the computer takes

each line of code that you type and converts it one at a time to code that

the computer can understand. The other type of language is compiled.

When a language requires compilation to translate your source code into a

language the computer can understand, that processing is done by another

program called a compiler. This is a separate program that you run after

you have written all your code.

Because the Python language is interpreted, you only need one

program to run it: Python. When we are in the interactive Python shell,

anything we type is immediately interpreted by the program and the result

displayed onscreen, if there is a result.

�Python As a Calculator
Say we want to add two numbers together, for argument’s sake, 2 and 2.

Type the following into the Python interpreter and press return:

2+2

Chapter 3 Introducing Python

14

What you will see onscreen is what you were (hopefully) expecting to see:

4

We will see later that all the arithmetic operations (add, subtract,

multiply, and divide) are available as well as others that you might not

have seen before. They’ll be introduced as you go through the text.

Examples:

5 * 4

10 / 2

7 + 2

9 - 4

What about something more complex like

2 + 2 * 6

What did you expect to see? 24? Why is it 14? That’s because arithmetic

operators work on an order of precedence, or put another way, some

operators are more important than other operators. The operators ‘*’ for

multiplication and ‘/’ for divide are more important than + and – used for

addition and subtraction respectively.

If you want to ensure the order of operation, you can use parenthesis

marks ‘(’ and ‘)’ like so:

(2 + 2) * 6

Which will now give 24 because the addition of 2 and 2 will be

performed first, then its product will be multiplied by 6. Watch your

brackets! Ensure that they match up. If you don’t you’ll get a continuation

marker ‘…’) as shown in the following:

>>> (2 + 2 * 6

...

Chapter 3 Introducing Python

15

Let’s say you want to calculate the area of a floor (width × length) in

meters and convert that value to square feet. Assume that the room is 2

meters by 4 meters. You could use something like

(2 * 4) * (3.28 * 3.28)

This is because there are 3.28 feet in a meter; to get a square meter in

feet, we multiply the 3.28 feet by itself which gives us 10.7584. Multiplying

that by 2 * 4 gives us

86.0672

Or approximately 86 square feet.

We’ll go into this next bit in depth later, but for now we should take a

moment to discuss what has been typed so far.

The numeric values that you have entered are called constants. They

can never change. 1 will always be 1 and 24.234 will always be 24.234. We

can store constants in memory for safekeeping and refer to them later on

in our program. These slots in the computer’s memory are called variables.

They are called this because the value that we store can vary over the

course of the program. Let’s say we wanted to store the 10.76 constant.

We have to assign it a name. This action is called variable assignment and

looks like this:

squareFeet = 10.76

You can read that as ‘assign the value 10.76 to squareFeet’ or ‘give

squareFeet the value 10.76,’ or (as I like to call it) ‘squareFeet equals 10.76.’

That’s more of a “say what you see mentality” though!

Any time we want to use this variable, we use it in much the same way

as we’d use a constant. To calculate the area of that 2 × 4 meter room

(2 * 4) * squareFeet

Python is cAsE sEnsItIve! Note that the name of the variable is

‘squareFeet’ and not ‘squarefeet’ or ‘Squarefeet.’

Chapter 3 Introducing Python

16

�Keywords
Python has a very small number of built-in keywords, 31 in total. From

these though we can make any program you want to make from a simple

bat and ball game to a spreadsheet application, if you fancy making one of

them. Python’s keywords are the following:

•	 and

•	 as

•	 assert

•	 break

•	 class

•	 continue

•	 def

•	 del

•	 elif

•	 else

•	 except

•	 exec

•	 finally

•	 for

•	 from

•	 global

•	 if

•	 import

•	 in

Chapter 3 Introducing Python

17

•	 is

•	 lambda

•	 not

•	 or

•	 pass

•	 print

•	 raise

•	 return

•	 try

•	 while

•	 with

•	 yield

These are the building blocks of the language, the Lego bricks if

you like. From all of these words you can create anything from simple

calculations to games to application software. Sometimes, most of the

really hard work is done for you and is supplied as a Python module. This is

a library of commands, routines, and objects that are packaged together to

provide a common functionality. PyGame is an example of a collection of

modules. Each module in PyGame makes it easier for you the programmer

to make a game by providing you with prewritten code to draw images on

the screen, get input from the player, or play background music.

�Printing
We’ve seen how to display simple results on the screen, but you can get

much fancier with how those messages are formatted (how they look). For

example, you can use escape sequences to add white space characters like

tabs and returns to the text using the print command. For example:

Chapter 3 Introducing Python

18

print("these\nare\non\nseparate\nlines")

print("tab over\tto here")

The backslash character “\” is used to generate an ‘escape’ code for

the next character. Escape characters or control sequences date back to

the teletype days and are used to control the output to the device we’re

printing to: in this case the screen.

There are various control sequences and these are listed in Table 3-1

with their descriptions.

Table 3-1.  Control Sequences

Escape Sequence Description

\\ Outputs a backslash

\’ Outputs a single quote mark (’)

\” Outputs a double quote mark (”)

\a Bell

\b Performs a backspace

\f Performs a form feed

\n Performs a line feed

\N(name) Character named name in the UNICODE database

\r Performs a carriage return

\t Performs a horizontal tab

\uxxxx Character with 16-bit hex value xxxx

\Uxxxxxxxx Character with 32-bit hex value xxxxxxxx

\v Performs a vertical tab

\ooo Character with the octal value ooo

\xhh Character with the hex value hh

Chapter 3 Introducing Python

19

From these escape characters you can create complex output. This can

be used to display tabular information, for example:

print("Team\t\tWon\tLost\nLeafs\t\t1\t1\nSabres\t\t0\t2")

Will display the following table:

Team Won Lost

Leafs 1 1

Sabres 0 2

Which is pretty, but what if we want to do a better job? Say we wanted

to align the numbers to the right instead of to the left? That means moving

the numbers to the same column as the last character of “won” and “lost.”

This is where string formatting comes into play.

�String Formatting
String formatting allows you to decide how information will be displayed

to the user as text. We’ve already seen how we can manipulate the visual

portion of the text by deciding where the text will be placed; we’ll now

examine at how the data can look to the user. We don’t need to change the

data: we’re just altering how the user sees the data.

Formatting is achieved by using placeholders in the text for

information you want to insert. These are shown in Table 3-2.

Table 3-2.  String Formatting Placeholders

Placeholder Description

%s String

%d Whole number

%f Floating point number

%r Raw value

Chapter 3 Introducing Python

20

The raw value isn’t particularly helpful for end users of your program,

but it can be handy when you are debugging the code trying to find out

what went wrong. More of that later in the debugging chapter.

If we want to display three numbers, for example, the x-, y-, and

z-coordinates of an object, then we could use something like

print("{%d, %d, %d}" % (1, 2, 3))

The ‘%’ inside the string literal denotes that the following item is a

placeholder and it is of type ‘d’ for a whole number. The ‘%’ outside the

string literal is used to say ‘fill in those placeholders with’ and then the last

bit in parentheses ‘(’ and ‘)’ is called a tuple. Those are the values that are

placed in the string in the order that they appear. The text that appears

when you enter that line is

{1, 2, 3}

Let’s try it again, but this time with the player’s name, their score, and

percentage completed:

print("%s scored %d and completed %f of the quest" % ('Sloan',

15, 55))

This will output

Sloan scored 15 and completed 55.000000 of the quest

You’ll notice that the output is a little over the top; the floating point

number is showing a lot of zeros. We can minimize this by specifying how

many points there should be to the right of the decimal point.

Let’s change the line to show only two decimal points:

print("%s scored %d and completed %.2f of the quest" % ('Sloan',

15, 55))

Chapter 3 Introducing Python

21

Now the output of the statement is

Sloan scored 15 and completed 55.00 of the quest

We can also use the numbers after the ‘%’ symbol to space out the

values. For example:

print("%20s%20d" % ('Sloan', 15))

This displays the values ‘Sloan’ and ‘15’ in columns of width 20:

Sloan 15

The values are right-aligned to their positions and they both take up

20 columns. What if we wanted to left-align the name of the player though?

We would use a negative value:

print("%-20s%20d" % ('Sloan', 15))

By using the negative value, you are specifying that you want 20 spaces

but the text must be aligned to the left:

Sloan 15

Going back to our hockey team example, we can now use this

information to better place the text and data. Rather than relying on tabs

that can vary depending on the size of the text, we can make the table use

fixed values like so:

print("%s%s%s\n%s%d%d\n%s%d%d" % ('Team', 'Won', 'Lost',

'Leafs',1,1,'Sabres',0,2))

This shows how it appears without the values before the placeholder.

And now with the column width of each item:

print("%-10s%10s%10s\n%-10s%10d%10d\n%-10s%10d%10d" % ('Team',

'Won', 'Lost', 'Leafs',1,1,'Sabres',0,2))

Chapter 3 Introducing Python

22

That’s a lot of ‘%’ symbols, isn’t it! This is a rather severe case, and not

one that would be particularly common. In fact, you would use something

called variable assignment to make this a lot easier to read. We will now

look at that in detail now.

�Variables
Variables are used to store the data in memory while we are processing it.

We access the data using names. Each variable can be assigned a value.

This value represents our data that we want processed. Let’s say we want to

store the player’s name so that we could retrieve it later.

This is called variable assignment. When we assign a value to a name,

we are saying that that name now contains the assigned value:

>>> player = 'Sloan'

>>> print(player)

Sloan

>>>

Our variable assignment is

player='Sloan'

The left-hand side of the equals sign (=) is the name and the right-hand

side of the equals sign is the value. The value can be anything from a string

literal, a whole or floating point number, to a complex mathematical formula.

�Naming Variables
You can call variables whatever you want, but I would suggest that they

reflect the data that you are expecting to store in them. There are a

couple of caveats to the characters you can use for a name. They can be

alphanumeric characters and can contain the underscore character (_),

but the name can’t start with a number. You should also be wary of starting

Chapter 3 Introducing Python

23

names with the underscore character because this is sometimes used for

internal names used by Python itself, and other special cases that will be

discussed later.

These are valid variable names:

playerName

player1

numOfLives

_arg1

this_is_a_long_name_hope_its_worth__it__555

These are invalid variable names. The reasons given are shown to

the right of the ‘#’. The ‘#’ is used as a comment character in Python.

Everything after the ‘#’ is ignored on a line:

123Fred # starts with a number

Fr*d # contains an illegal character '*'

player$ # contains an illegal character '$'

the Player # contains a space. Spaces are not allowed

Python variable names are case sensitive! Be careful:

thisVariable

is not the same as

Thisvariable

You have been warned! Watch your cases!

PYTHON IS CASE SENSITIVE!

�Python As a Calculator, Part II
Remember that a computer program takes information from the user,

processes it, and gives feedback to the user as output. We are going to turn

Chapter 3 Introducing Python

24

Python into a calculator for this section. Say we set the price of a can of soda

as 55 cents, let’s remember that by putting the value 55 inside a variable:

canOfSoda = .55

We can recall the price of a can of soda using this variable name. Now,

suppose we have been told to buy 12 cans of soda, let’s remember that too

in another variable:

numCans = 12

We can now print out the value of 12 cans of soda using a simple

formula:

canOfSoda * numCans

But wait! What is this?! You don’t get 6.6, you actually get this:

6.6000000000000005

This seems a little strange, doesn’t it? Why should this happen? This

is all to do with precision. When computers calculate a fractional number,

they have to use binary numbers (base 2, 0, or 1) to calculate those

fractions. When translating them back into decimal values, it doesn’t quite

add up. We can tidy it up ourselves using string formatting:

"%2.2f" % (canOfSoda * numCans)

That’s better! And we can further tidy it up to show the dollar (or local

currency symbol) amount:

"$%2.2f" % (canOfSoda * numCans)

Which will display

'$6.60'

Notice that our values have ‘’ around them; that’s because we’re doing

raw output to the Python terminal, so anything we type in immediately

Chapter 3 Introducing Python

25

gets processed and output. If we want to print out the string without the

quotes, we need to add the print command:

print("$%2.2f" % (canOfSoda * numCans))

Outputs:

$6.60

Bad news though, the price of a can of soda has now risen to 70 cents.

No problem though, because we can just tell Python to remember the new

value:

canOfSoda = .7

Now when we calculate 12 cans of soda we’ll get a new value.

The output from the following session shows the previous value, the

assignment, and the new value:

>>> canOfSoda

0.55

>>> canOfSoda = .7

>>> canOfSoda

0.7

>>>

If we want to see how much a dozen cans cost, we use the same line as

before:

print("$%2.2f" % (canOfSoda * numCans))

Did you know that you can use the up and down cursor (arrow) keys

on your keyboard to move forward and back through the history of the

Python statements you typed in the interactive Python program? When

you step through your statements, you can use the left and right cursor

keys to move along the line and the delete/backspace keys to remove

unwanted characters. Could save you some typing time!

Chapter 3 Introducing Python

26

�Arithmetic Operators
Arithmetic operators are short-form symbols used to perform arithmetic

on numbers. You will have used the majority of them at school; Python

uses some different symbols compared to the ones used in school

(Table 3-3).

Table 3-3.  Python Arithmetic Operators

Operator Description Example

+ Addition; the two values either side of the operator

are added together

4 + 5 will give 9

- Subtraction; the value on the right-hand side of

the operator is subtracted from the value on the

left-hand side

5 – 4 will give 1

* Multiplication; the two values on either side of the

operator are multiplied together

2 × 3 will give 6

/ Division; divides the value on the left-hand side of

the operator with the value on the right-hand side

10 / 5 will give 2

% Modulus; divides the value on the left-hand side of

the operator with the value on the right-hand side

to produce the remainder

5 / 2 will give 1

** Exponent; raises the value on the left-hand side by

the power supplied on the right-hand side

2 ** 4 will give 16.

This is written in

mathematics as 24

or 2 * 2 * 2 * 2

/ Floor division; divides the value on the left-hand

side of the operator with the value on the right-

hand side to produce the integer lower value

5 / 2 will give 2.0

Chapter 3 Introducing Python

27

�Data Types
Python uses something called duck typing. Duck typing ensures that as long

as a method or functionality exists for a particular named value (a variable),

then Python will perform that action upon it. The poet James Whitcomb

Riley came up with this phrase to describe inductive reasoning:

If it looks like a duck, swims like a duck, and quacks like a duck, then it

probably is a duck.

Python does have specific data types as well, and these are used to

describe the contents of a variable. Python has the following built-in

data types:

•	 Numerics

•	 Sequences

•	 Mappings

•	 Files

•	 Classes

•	 Instances

•	 Exceptions

�Numeric Types
Numbers in Python can be represented as whole or fractional. Whole

numbers are called integers and they are numbers without a fractional

component like –256, –5, 1, 5, 9, 17, 2048. Fractional numbers have a

decimal point and some values after it, for example, 0.5, 0.333, –0.1.

Whole numbers are represented by two data types: ‘int’ which is short

for integer and ‘long.’ Fractional numbers are represented by ‘float.’ There

is another type of number called ‘complex’ that we don’t really use in

games, but Python can handle it.

The numeric data types are described in detail in Table 3-4.

Chapter 3 Introducing Python

28

In addition, the operators shown in Table 3-5 might come in handy.

These aren’t used in normal everyday arithmetic, but you might want to

negate a value or convert it from an integer to a floating point or vice versa.

Table 3-4.  Numeric Data Types

Numeric Type Description

int Integers are at least 32 bits in size (4 bytes), which means you

can store any whole number up to and including 4,294,967,295.

However, this is usually a signed value, which means that the range

of values actually goes from –2,147,483,648 to +2,147,483,647.

float A floating point number is a number with a fractional component

like 2.4 or 1.49387.

long Long integers have an unlimited precision and therefore no upper

limit on the number of bits that can be used to store them.

complex Complex numbers have real and imaginary parts. These parts are

floating point numbers.

Table 3-5.  Additional Operators

Operator Description Example

–x Negate the value ‘x’ –2 gives –2

+x Leave the value ‘x’ unchanged +2 gives 2

abs(x) Absolute value of ‘x’ abs(–5) gives 5

int(x) Convert ‘x’ to an integer int(5.44) gives 5

long(x) Convert ‘x’ to an integer long(5) gives 5

float(x) Convert ‘x’ to an integer float(5) gives 5.0

complex(real,
imaginary)

Creates a complex number with the real part

‘real’ and the imaginary part ‘imaginary’

complex(1,5)

gives (1+5j)

Chapter 3 Introducing Python

29

For example, to calculate the area of the side of a building that is 5

meters along by 10 meters high:

width = 5

height = 10

area = width * height

To display the value, type in

area

This will display the answer to 5 × 10:

50

�String Formatting Again
Let’s go back to our hockey score table:

print("%-10s%10s%10s\n%-10s%10d%10d\n%-10s%10d%10d" % ('Team',

'Won', 'Lost', 'Leafs',1,1,'Sabres',0,2))

We can break this down into smaller, more readable chunks of data.

Don’t be afraid to do just that; making your program readable is preferable

over speed. You should strive to get the code right rather than fast.

Optimization can come later.

MAKE YOUR CODE READABLE! WHEN YOU RETURN TO
IT AT A LATER DATE, YOU WILL STILL BE ABLE TO MAKE
SENSE OF IT!

There is common formatting used throughout the table; each team is

allotted ten characters for their name and won and lost numbers. At the

end of each is a new line character. We can set a variable up to remember

this format:

formatter="%-10s%10s%10s\n"

Chapter 3 Introducing Python

30

Then it’s a simple matter of assigning variables that use this format for

each header and team:

header=formatter % ("Team", "Won", "Lost")

leafs=formatter % ("Leafs", 1, 1)

sabres=formatter % ("Sabres", 0, 2)

Now that we have our header and team data stored in variables, we can

combine them all in one line to draw our table:

print("%s%s%s" % (header, leafs, sabres))

If we wanted we could assign this to a variable and print that out later.

Our variable assignment would look like this:

table = "%s%s%s" % (header, leafs, sabres)

If we just type in the table in the Python interpreter program we get

this displayed:

'Team Won Lost\nLeafs 1 1\nSabres 0 2\n'

This is the raw output of the contents of the name table. This shows us

what the name table contains, but not how it will be displayed. To display

the table correctly

print(table)

Will display

Team Won Lost

Leafs 1 1

Sabres 0 2

Chapter 3 Introducing Python

31

�Conclusion
Python can be used interactively through the Python interpreter by typing

python in a terminal window. While this is handy for one-off calculations

and simple text output, we shall now be delving deeper into the world of

Python by creating actual programs using a tool like a text editor.

Chapter 3 Introducing Python

33© Sloan Kelly 2019
S. Kelly, Python, PyGame, and Raspberry Pi Game Development,
https://doi.org/10.1007/978-1-4842-4533-0_4

CHAPTER 4

Breaking Free from
the Interpreter
Up until now we have used the interpreter to write our code. As each line is

entered, the Python program interprets it and the processed line’s output is

displayed onscreen. From now on we will use IDLE.

To quit the interpreter, if you haven’t already done so, press Ctrl+D or

enter quit(). Keep the terminal window open though! We will need that

shortly.

�What Is IDLE?
Throughout this book we will use the Integrated Development

Environment (IDE) that is included with the Raspbian IDLE, which is

short for Integrated Development and Learning Environment.

�Starting IDLE
To start IDLE, click the Raspberry Pi logo, open the “Programming” entry,

and click “Python 3 (IDLE)”. The Python shell will open in a new window,

as shown in Figure 4-1.

34

�Starting a New File
To start a new file click File ➤ New File or press Ctrl+N on your keyboard

(Figure 4-2).

This will open a new text editor window that we can enter the code that

makes up our program (Figure 4-3).

Figure 4-1.  Starting the IDLE IDE

Figure 4-2.  Create a new editor window by choosing New File from
the File menu

Chapter 4 Breaking Free from the Interpreter

35

It is a good idea to organize your work and know where to find it easily.

Some basic project management will be shown here. We will first create

a folder in the current user’s home directory (usually /home/pi) and call

this new folder “pygamebook” (without the quotes). We will place all the

programs we write inside this folder. We may make subfolders for each

project, but the “pygamebook” is our main folder.

In the terminal window/command prompt, enter the following

commands pressing enter after each line to create the pygamebook folder:

$ cd

$ mkdir pygamebook

The first line will ensure that the ‘pygamebook’ folder will be created in

your home (~) directory. The second line creates (mkdir is short for ‘make

directory’) a directory called ‘pygamebook.’ Use this folder to keep all the

files that you create from this book together.

Figure 4-3.  A blank editor window that will be used to write a
Python program

Chapter 4 Breaking Free from the Interpreter

36

�Hello, World!
The first computer program most people write is one that displays the

message ‘Hello, World!’ on the screen. This book will be no different! Type

in the code below to the blank window, each line is described as we go.

The first line of any Python script file is the location of the Python

interpreter. This is called a hash-bang and looks like this:

#!/usr/bin/python

All programs are run by the shell. This is a part of the computer’s

operating system that controls program’s access to resources like memory,

disk drives, etc.

Because source files are just text files, this hash-bang lets the shell

know that it is a script that should be run by the Python interpreter located

at /usr/bin/python.

Now that we have that in place, we can start our program. In this

instance, it’s super simple; our standard “Hello World!” program:

print("Hello, World!")

You should now have the following lines in the editor window:

#!/usr/bin/python

print("Hello, World!")

Save the file by clicking File ➤ Save or by pressing Ctrl+S on your

keyboard. When prompted, save the file as “hello.py” (without quotes) to

the “pygamebook” folder we created earlier.

�Running from the Command Line
If you want to run your program from the command prompt, you will

have to perform one more step. By default, Raspbian does not make

files executable; we have to do that. In a terminal window, move to the

Chapter 4 Breaking Free from the Interpreter

37

‘pygamebook’ folder and make the program executable by using the

chmod command. The following sequence of command will do this:

$ cd

$ cd pygamebook

$ chmod +x hello.py

This adds the executable flag to the file’s attributes. Without this

attribute, the operating system will not be able to run our program. To run

the program in a terminal window, type

$./hello.py

You will only have to add the executable flag attribute ONCE
per script!

Why do we add the ‘./’? It is because in Raspbian executable files are

searched through a series of paths. Our new folder isn’t part of the system

path, so we must tell it where it is. Luckily there’s a shortcut for this; the

current directory is called ‘.’

You can omit this step if you want; in fact the hash-bang line is only

required if you are running the program on its own as shown previously. If

you omit the line, the Raspbian shell doesn’t know what program to use to

run the script. In this case, you can use

$ python hello.py

This will launch python and run the ‘hello.py’ script (Figure 4-4).

Figure 4-4.  Adding the executable attribute and running hello.py
from the command line

Chapter 4 Breaking Free from the Interpreter

38

�Running from Inside IDLE
To run the program from within IDLE, press F5 on the keyboard or click

Run ➤ Run Module from the menu (Figure 4-5).

When the program runs you should see “Hello, World!” displayed in

the window (Figure 4-6).

From now on in this text, instead of using the Python interpreter like

we did in the first few chapters, this book will concentrate on writing script

files for our Python programs.

WHEN CREATING A PYTHON SCRIPT FILE THAT WILL BE
RUN FROM THE COMMAND LINE ALWAYS PLACE THE
PATH TO THE INTERPRETER AS THE FIRST LINE IN A
HASH-BANG: #!/usr/bin/python

Figure 4-6.  Running hello.py inside the IDLE

Figure 4-5.  Run the program by selecting Run Module from the Run
menu or pressing F5 on the keyboard

Chapter 4 Breaking Free from the Interpreter

39

For the most part I will omit this line from the example programs

and assume that we will be running from within IDLE or launching our

programs with python.

�Conclusion
Raspbian includes a Python IDE called IDLE that can be used to edit and

run Python programs without resorting to using the terminal window.

You can still run Python scripts that you create using IDLE in a terminal

window, just make sure that you add the hash-bang line to show what

Python interpreter program should be run when executing that script.

Throughout the text I will use script and program interchangeably.

A script is a text file that is interpreted by a program to execute the

instructions within it. A program is similar, but it is usually (but not always)

compiled to machine code. Because of those similarities I’m not going to

quibble about whether a Python source file is called a program or a script

in this text.

Chapter 4 Breaking Free from the Interpreter

41© Sloan Kelly 2019
S. Kelly, Python, PyGame, and Raspberry Pi Game Development,
https://doi.org/10.1007/978-1-4842-4533-0_5

CHAPTER 5

Making Decisions
Up until now we have seen very linear programs. These programs follow

from one statement to the next, never deviating. They’re just a linear

shopping list; you get the vegetables first, then bread, then canned

vegetables, and finally cat food. Why? Because that’s the order that those

items typically appear in a supermarket.

But what if you wanted to make simple changes? What if your program

could decide what to do, based upon the input it was given?

In computer science this is called branching. Essentially, a decision is

made based upon the given data, and one block of code is executed over

another block of code. Let’s look at a diagram in Figure 5-1.

42

This is called a flowchart and shows the route taken (process) through

a series of decisions based on our input that we use to generate our output.

In the diagram, we’re asking a question: “Is it raining?” Our data is either

a “YES” or a “NO.” If the answer to the question is “YES” then we bring a

brolly (umbrella). Otherwise? We do nothing.

Computers are excellent at these types of decisions; it’s either YES or

NO; on or off; true or false.

In fact, computers only really understand these binary decisions.

BINARY MEANS THAT SOMETHING IS EITHER OFF OR ON,
TRUE OR FALSE.

In Python, we don’t have “YES” or “NO” values, but we do have similar

values; ‘True’ and ‘False.’ That’s the ‘On’ and ‘Off ’ values respectively.

IS IT RAINING?

BRING A BROLLY

END

YES

NO

Figure 5-1.  Flowchart showing a simple ‘if’ statement

Chapter 5 Making Decisions

43

So how do we write this in Python? We use the ‘if’ keyword. In English,

we’d say, “If it’s raining, I’ll bring my brolly”; in Python that’s written as

isRaining = True

if isRaining:

 print("I will take my umbrella to work today")

The first line assigns the ‘True’ constant to ‘isRaining.’ True is a special

keyword (along with False) that is used in Python to denote the result of a

Boolean test.

The second line checks the value contained within ‘isRaining’ and if

it is set to True (which it is), it will print out the string of text. Notice that

you will have to press the tab key at the start of the print statement. This

is because it forms the list of statements that will execute if ‘isRaining’ is

true. In this case, we have one statement, but if we had more statements to

execute if ‘isRaining’ was true they would all be indented using the tab key.

IF conditions always equate to one of two values: True or False.

We could also have written that ‘if’ statement as

if isRaining == True:

This is much more explicit but is not the preferred use. When you have

a variable that begins with ‘is’ or ‘has,’ the assumption is that it contains a

Boolean value. ALWAYS! ALWAYS! – check that this is the case before you

use the variable.

The format of the ‘if’ statement is

if condition: {statement}

or

if condition:

 {block}

Chapter 5 Making Decisions

44

The second method is preferred because you may want to go back

and add more lines to the code that is to execute inside the ‘if’ block. Not

that for each line in the block, you will have to indent that line the same

amount each time.

�A Note About Blocks
A block of code is one or more lines of Python code. When contained

within a controlling statement like an ‘if,’ ‘for,’ or a ‘while,’ for example, the

statements that make up the block MUST be shifted one tab across. This is

because Python does not use syntactic sugar or extra characters to denote

the start and end of a block. Languages based upon the C language use

‘{‘ and ‘}’ to indicate blocks. Python does not. For example, see Figure 5-2;

this is the C language-style equivalent beside the Python version.

We can also place more than one line after the ‘:’ as shown in the

following example:

isSunny = True

if isSunny:

 print("It is sunny outside")

 print("I won't need my umbrella")

Figure 5-2.  Showing the difference between explicit block characters
and Python’s implicit indentation method

Chapter 5 Making Decisions

45

Both lines inside the ‘if’ block are executed only if ‘isSunny’ is ‘True.’

What if we wanted to display something if isRaining wasn’t true? Could we

do this:

isRaining = True

if isRaining:

 print("I will take my umbrella to work today")

 print("It is nice and sunny")

The program displays the following output when it is run:

I will take my umbrella to work today.

It is nice and sunny

This is not an ideal situation because we were only looking for one line

to be output. The second line is always going to be executed because as we

know, programs run blindly step by step through a program until they get to

the end and there are no more lines to process. What we need to do is this:

isRaining = True

if isRaining:

 print("I will take my umbrella to work today")

else:

 print("It is nice and sunny")

Notice the extra keyword ‘else’. This allows us to better control what

we expect to do if ‘isRaining’ turns out to be false. You don’t have to put in

an ‘else’ for each ‘if.’ Sometimes there will be no alternatives and you only

want to run a particular set of statements for a particular condition.

�Testing for Equality
Python allows the programmer to test for equality – we have seen this

insofar as we were testing that a particular variable is equal to true. We

Chapter 5 Making Decisions

46

know that IF conditions have to equate to one of two values: TRUE or

FALSE, so how can we test for (in)equality? We use one of the following

range operators:

•	 Equals (==)

•	 Less than (<)

•	 Greater than (>)

•	 Less than or equal to (<=)

•	 Greater than or equal to (>=)

•	 Not equal to (!=)

These are mathematical symbols. For those of you unfamiliar with

them, especially the less-than and greater-than symbols, the small pointy

end points to the lesser value. You cannot use these operators against

variables that contain Boolean True or False; equality operators can only

work against numbers or character strings.

The following program prompts the user to enter two string values and

then checks which string is greater. We’ll cover the finer details in just a

second, but the program does have some shortcomings. Can you see what

they are?

print “This program will take two strings and decide which one is

greater”

first = input("First string: ")

second = input("Second string: ")

if first > second:

 tup = (first, second)

else:

 tup = (second, first)

print("%s is greater than %s" % tup)

Chapter 5 Making Decisions

47

The first line displays a message indicating what the program will do.

The next two lines prompt the user to enter two separate string values and

place them in ‘first’ and ‘second’ variables. The ‘if’ statement condition is

if first > second:

This checks to see if the first string is greater than the second. If it is, a

tuple called ‘tup’ is created and first and second are stored. Note the order;

first is before second. We’ll discuss tuples in length later, but for now let’s

just say they’re a collection of one or more values.

If the second string is greater than the first, then the tup variable is also

created, but the order is reversed; ‘second’ appears before ‘first.’

Type in the preceding program and run it. Enter the values in Table 5-1.

What do you notice about the results? Were you expecting that?

The problem with our little example is that unless ‘first’ is absolutely

greater than ‘second,’ the ‘else’ block is executed. We can remedy this by

changing the program to

print("This program will take two strings and decide which one

is greater")

tup = None

first = input("First string: ")

second = input("Second string: ")

if first > second:

 tup = (first, second)

Table 5-1.  Values for Two String Program

Run # of Program ‘first’ ‘second’

1 Lowercase a Uppercase A

2 Aaa Zzz

3 9 100

Chapter 5 Making Decisions

48

elif second > first:

 tup = (second, first)

if tup != None:

 print("%s is greater than %s" % tup)

else:

 print("The strings were equal")

The keyword ‘None’ is used to initially assign a value to ‘tup.’ None

means that a value has not been assigned to the variable. We still want to

have a variable called ‘tup’ and assign it a value later. So in this case we set

‘tup’ to equal ‘None’ initially because it might not get set at all in the logic

of the program. If we don’t set it, then trying to access it will cause a ‘not

defined’ error.

If you see a “name ‘variable name’ not defined” error it usu-
ally means you have not assigned it a value before using it OR
you have misspelt the variable name!

Change the preceding program to use an equality sign (==) in the

second ‘if.’ Will you need to change the text of the ‘print’ statements? If so,

what would you change them to?

More common than text equality is numeric equality. Equality tests for

numbers are used for collision detection, deciding if a player or enemy is

dead, how much fuel is remaining, etc.

Say, for example, we wanted to check and see if the player’s character

was within a certain boundary on the screen. This involves checking both

the x- and y-coordinates of the player. We can combine our conditions in

one statement using Boolean logic.

In this example we are testing the player’s x- and y-coordinates to

determine if they are inside a rectangular area that is 100 units across and

225 units tall and placed at (0, 25) as shown in Figure 5-3:

Chapter 5 Making Decisions

49

From the diagram it is clear to us that the player is inside the rectangle.

How can we get the computer to check if the player is inside the rectangle

and respond accordingly? This is in 2D space – two dimensions; a

horizontal and a vertical component to the player’s position, that is, their

x- and y-coordinates. The easiest way is to split this into two separate 1D

checks and combine the results to both. In English:

If the player’s x-coordinate is between 0 and 100 inclusive AND the

player’s y-coordinate is between 25 and 250 inclusive, they are inside

the area.

In code this looks like

x = 50

y = 50

if x >= 0 and x <= 100 and y >= 25 and y <= 250:

 print("Player is inside the area. Sound the alarm!")

else:

 print("Player is outside the area. Do nothing")

(100, 250)

Player
(50, 50)

(0, 25)

y

x

Figure 5-3.  Position of the player within a rectangular area

Chapter 5 Making Decisions

50

�Using Boolean Logic
As we saw in the previous chapter, computers use Boolean logic: any

question so long as it results in a TRUE or FALSE answer. The following

Boolean keywords can be used to make more complex If conditions:

•	 And

•	 Or

•	 Not

�And
And in an ‘if’ statement will equate to true only if both conditions are true:

isRaining = True

isSunny = True

if isRaining and isSunny:

 print("Sun showers")

In the context of a game you might have a condition to test that if the

player has a key and he or she hits a door, and then opens the door:

if playerHasKey and playerHitDoor:

 OpenTheDoor()

 RemoveKeyFromInventory()

The two methods OpenTheDoor() and RemoveKeyFromInventory()

are programmer made; they’re not part of Python. We’ll learn about how to

make user-defined functions in a later chapter.

In Boolean logic, truth tables are used to show the result of an

operation (‘and,’ ‘or,’ or ‘not’). Typically, this shows the values for two

inputs called ‘A’ and ‘B’ and a result.

The truth table, shown in Table 5-2, for ‘and’ is as follows.

Chapter 5 Making Decisions

51

This shows that for ‘and,’ the combined result of ‘A’ and ‘B’ can only be

true when both ‘A’ and ‘B’ are true.

�Or
Or in an ‘if’ statement will equate to true if either one or the other

condition is true:

isRaining = True

isSunny = False

if isRaining or isSunny:

 print("Some kind of weather out there")

else:

 print("No weather! How unusual for this time of year")

The truth table for ‘or’ is shown in Table 5-3:

Table 5-2.  ‘and’ Truth Table

A B Result

False False False

False True False

True False False

True True True

Table 5-3.  ‘or’ Truth Table

A B Result

False False False

False True True

True False True

True True True

Chapter 5 Making Decisions

52

This shows that ‘or’ is only false when both ‘A’ and ‘B’ are false.

�Not
Not is used to negate a condition: turn it from a true to a false and vice

versa. This is a unary operator and only works on a single condition:

isRaining = True

isSunny = False

if isRaining and not isSunny:

 print("It's raining and not sunny")

else:

 print("Sun showers")

The truth table (Table 5-4) for ‘not’ is different in that it only has one

input because it is a unary operator. The truth table therefore only has the

‘A’ input.

You can see that whatever the input is, the ‘not’ keyword negates it.

�Nesting Ifs
When we need to make complex decisions based on a number of facts, we

can do what is called “nesting.” This means placing an ‘if’ block of code

inside another ‘if’ block of code, for example:

Table 5-4.  ‘not’ Truth Table

A Result

False True

True False

Chapter 5 Making Decisions

53

isRaining = True

isCloudy = True

if isRaining:

 print("I will take my umbrella to work today")

elif isCloudy:

 print("It looks like it will rain. I'll take my umbrella")

else:

 print("It is sunny. I'll not bother with the brolly")

The truth table for this is shown in Table 5-5 to make the preceding

example clearer.

The format of an IF statement is therefore

if condition:

 Action(s)

[else:

 Action(s)]

[elif condition:

 Action(s)]

Table 5-5.  ‘if ’ Block Truth Table

IsRaining IsCloudy Output

True True I will take my umbrella to work today

True False I will take my umbrella to work today

False True It looks like it will rain, I’ll take my umbrella in case

False False It is sunny. I’ll not bother with the brolly

Chapter 5 Making Decisions

54

�A Note on Switch
For users of other languages, you should note that there is no “switch”

statement in Python. It was proposed for the language, but ultimately

rejected. In an OO (object-oriented) language like Python, “switch” can be

replaced by polymorphic (we’ll get to this later!) calls. Stack Overflow (a

great web site, and one you should bookmark) has a great article on how to

get around “switch.”

See http://stackoverflow.com/questions/126409/ways-to-

eliminate-switch-in-code for details. The switch keyword can be easily

implemented using ifs like so:

character = input("Enter command (help, list): ")

if character == "help":

 print("The help screen goes here")

elif character == "list":

 print("List the items here")

else:

 print("Invalid command!")

�Conclusion
Computers are very good at making simple decisions quickly. Using the

comparison and range operators, one can determine if two values are

equal, or if they are within a range (e.g., between 1 and 10).

These decisions can be combined using Boolean logic operators like

And, Or, and Not and the If keyword to make branching code; run some

code if true, some other code if false. We’ll see in later chapters how these

small building blocks can build complex systems.

Chapter 5 Making Decisions

http://stackoverflow.com/questions/126409/ways-to-eliminate-switch-in-code
http://stackoverflow.com/questions/126409/ways-to-eliminate-switch-in-code

55© Sloan Kelly 2019
S. Kelly, Python, PyGame, and Raspberry Pi Game Development,
https://doi.org/10.1007/978-1-4842-4533-0_6

CHAPTER 6

Making the Raspberry
Pi Repeat Itself
A video game repeats the action until all the players’ lives have gone,

or the end of the game has been reached. So far, we have only written

programs that run through a sequence of commands and then terminate.

With the use of certain Python keywords, we can get the computer to

repeat a block of code when required, either using conditions or for a set

number of times.

�The for Loop
The ‘for loop’ in Python takes a list, and for each item in the list it performs

a series of action. These actions are contained within the block of code that

appears after the ‘:’ character and are shifted to the right by one tab. The

flowchart in Figure 6-1 shows what happens inside a ‘for’ loop.

56

As an example, the following program will print the numbers 1

through 5 inclusive. We’ll talk about some of the quirks of the range()

function in a moment.

Don’t forget the hash-bang at the top of the script! Remember that you

need the hash-bang to run script files from the command prompt. And

you’ll also need to change the file mode (chmod) and add the executable

flag. See Chapter 4 (“Breaking Free from the Interpreter”) if you can’t quite

remember how to do it.

for i in range(1, 6):

 print(i)

The ‘i’ variable here has a special meaning. It is acting as a control

for the loop. In fact, we give any variable that controls flow the name

control variable. Again, this is just a name I’ve given the variable. I could

have called in ‘n’ or ‘j’ or ‘fred.’ Control variables tend to have short

names. I chose this one because we're iterating through integers or whole

numbers and ‘i’ seemed appropriate for the task.

END OF LIST
REACHED?

PROCESS
STATEMENTS

FETCH NEXT ITEM

NO

YES

END

Figure 6-1.  Flowchart diagram showing a for loop

Chapter 6 Making the Raspberry Pi Repeat Itself

57

The format of a ‘for’ loop is

for condition:

 Action(s)

Where ‘condition’ is any statement that generates a list.

�The range() Function
The range() function is provided by Python and as such is referred to as an

intrinsic function. It generates a list of numbers from the start value to 1-n

where n is the last value in the range. The following examples are taken

from statements typed into the Python interpreter:

>>> range(1,6)

[1, 2, 3, 4, 5]

>>> range(2,4)

[2, 3]

You can also specify a third parameter. This parameter indicates the

count that is added to each number after each iteration of the ‘for’ loop.

The default value is 1 (one), which is why you don’t need to provide it:

>>> range(10, 255, 10)

[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140,

150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250]

>>> range (10, 0, -1)

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

That’s right, you can even use negative values to iterate from a larger

number to a smaller number.

We’ll talk about lists and dictionaries in the next chapter, but we’ve

already established that the ‘for’ loop iterates through lists. So, what if we

didn’t have numbers? What if we had the names of characters from TV:

Chapter 6 Making the Raspberry Pi Repeat Itself

58

names = ['John', 'Anne', 'Fred', 'Beth']

for name in names:

 print(name)

The ‘names’ variable is assigned the value of a list of people’s names.

The ‘for’ loop iterates through each of the names and prints them on the

screen. The control variable in this example is ‘name.’ At each iteration of

the loop, the next name from the list will be pulled out and processed.

�While Loops
For loops are great for iterating through a fixed list, but what if we don’t

know how many items we have? For example, reading the contents of a file,

or getting data from a web site. This is where the ‘while’ keyword comes in.

Although the while loop has the same format no matter which one

used, there are three types of while loop:

•	 Counting

•	 Sentinel

•	 Conditional

�Counting
A counting while loop is pretty much just a substitute for the ‘for’ keyword.

Sure, you can use it for a substitute for the ‘for’ keyword, but it doesn’t look

as elegant. For example:

#!/usr/bin/python

i = 1

while i < 6:

 print(i)

 i = i + 1

Chapter 6 Making the Raspberry Pi Repeat Itself

59

In this example I’ve kept in the hash-bang.

Whereas in the ‘for’ loop the control variable is contained within the

‘for’ statement, a ‘while’ loop has the control variable defined out-with the

loop. The programmer also must manually update the control variable the

required step each time.

Don’t forget to update the control variable! If you don’t, you’ll
end up in an infinite loop and will have to break out of your
program using Ctrl + C!

Notice that the format of a ‘while’ statement is

while condition:

 Action(s)

The ‘where condition’ is a statement that equates to ‘True’ or ‘False’:

a Boolean. This is similar then to the ‘if’ keyword in that it too takes a

Boolean condition as its argument. The flowchart for this ‘while’ loop is

shown in Figure 6-2.

i < 6

END

YES
print(i)

i = i + 1

NO

i = 1

Figure 6-2.  The example ‘while’ loop's flowchart

Chapter 6 Making the Raspberry Pi Repeat Itself

60

From the flowchart we can see that the statements in the ‘while’ block

are only executed while the Boolean condition is ‘True.’

This means that the ‘while’ loop’s condition acts as a gatekeeper to the

lines inside the block. If that condition is not true, don’t execute the lines

within. Change the initialization of ‘i’ to 6:

#!/usr/bin/python

i = 6

while i < 6:

 print(i)

 i = i + 1

Run the script. What happens? Nothing. No output at all. This is

because i< 6, when i = 6 returns ‘False’.

�Sentinel
A sentinel while loop is one that keeps looping around until a certain value

is reached.

Let’s return to our menu example from the previous chapter. We have

three commands: list, help, and quit. When the user selects quit, the

program ends.

We have no idea how many commands the user will use throughout

their session with the program, and we have no idea how many times they

will use the same command. This is an ideal use case for the ‘while’ loop

because it can be used to keep a program running while a condition has

not been met:

cmd = input("Command: ")

while cmd != 'quit':

 if cmd == 'help':

 print("Put help here")

 elif cmd == 'list':

Chapter 6 Making the Raspberry Pi Repeat Itself

61

 print("Put list here")

 else:

 print("Invalid command!")

 cmd = input("Command: ")

When we start getting into multiple tabs, you really have to keep the

correct spacing. In your editor you should see a program like the one

shown in Figure 6-3.

If the input() function does not work for you, try raw_input()
because you may be running Python 2.7

Here is a typical output from running the program:

Command: help

Put help here

Command: list

Put list here

Command: badcommand

Invalid command!

Command: quit

Figure 6-3.  The menu program showing the indented lines of code

Chapter 6 Making the Raspberry Pi Repeat Itself

62

�Conditional
These are a combination of the previous two: counting and sentinel. This

is when you want to count a sequence but you don’t know what sequence

you are counting. Let’s say you want to write a program to sum all the

numbers up to a certain value. You might write something like this:

#!/usr/bin/python

topNum = int(input("Sum of numbers to? "))

count = 0

while topNum > 0:

 count += topNum

 topNum = topNum - 1

print("Sum of all numbers is %d" % count)

To get the input as a number we have to convert to an integer (whole

number) using the int() function.

The input() function always returns a string!

�Conclusion
Looping is used a lot in computer programs. Based on the circumstances

you will have to make a choice as to which loop to use: the for loop or

the while.

If the range is known or you want to loop through a list of values (like

the names example in this chapter) then the for loop is perfect for you.

There are three types of while loop: counting, sentinel, and

conditional. The counting version is very rarely used and most people

prefer the ‘for’ loop. However, sentinel and conditional are widely used

to keep looping until a certain – usually at the time of writing – unknown

condition is met.

Chapter 6 Making the Raspberry Pi Repeat Itself

63© Sloan Kelly 2019
S. Kelly, Python, PyGame, and Raspberry Pi Game Development,
https://doi.org/10.1007/978-1-4842-4533-0_7

CHAPTER 7

Containers
Up until now, we’ve mostly stored a single value in a variable like this:

playerName = 'Sloan'

Python allows you to store multiple values in the same variable. In this,

you are assigning a container object a name. There are three different types

of containers:

•	 Tuple

•	 List

•	 Dictionary

There are cases when you will use one over the other, and we’ll discuss

the pros and cons of each use.

�Container Nomenclature
Container subparts are called elements. Each element can be indexed

using the ‘[‘and’]’ characters and specifying a number between 0 and n-1

where ‘n’ is the number of items in the container between them. We’ll see

how this works in the Tuples part.

64

�Tuples
Tuples are immutable collections of objects. Neither the elements in the

collection nor the container itself can be modified. This means that you

can’t add and remove elements from a tuple.

For video games you might want to store the position of a player – their

x- and y-coordinates – in a tuple.

A tuple is a list of objects, either literals or variable names, separated by

a comma and enclosed in parentheses characters ‘(’ and ‘)’. For example:

('sloan', 'robert')

To access an element in the tuple, use the ‘[’ and ‘]’ characters and

place the index value between them. Say you want the first element in the

array, then you would specify ‘0’ like so:

('sloan', 'robert')[0]

This will display

'sloan'

�Removing Elements from a Tuple
If you want to remove items from a tuple (you can’t) but there is a way

around it. Create a new tuple! Let’s say you have a tuple that contains five

elements but you don’t want the third element:

numbers = (1, 2, 3, 4, 5)

tuple(x for x in numbers if x != 3)

Woah! That looks needlessly complex! That’s because tuples are

immutable and that means they can’t change. Let’s break down the

Chapter 7 Containers

65

complexity a little. The tuple() function returns a tuple from whatever

sequence it is given. For example:

>>> tuple('abcdef')

('a', 'b', 'c', 'd', 'e', 'f')

>>> tuple(['sloan', 'robert'])

('sloan', 'robert')

In the former example, the character string is split into separate

characters. The latter contains a list of names and a tuple is created from

that list.

The part that does all the magic is called list comprehension. It is used

to create a list based upon existing lists.

x for x in range(0, 5) if x != 3

List comprehension takes in a list, processes each element in the list,

and produces another list. As we’ve seen, the tuple() keyword makes a

tuple out of any sequence. A string is a sequence of characters, a tuple is a

(immutable) sequence of objects, and lists are also a sequence of objects.

Don’t get too bogged down in the format of that statement; it is merely

an example of how one would go about removing an item from a tuple.

�Changing Element Values
Another ‘can’t do’ for tuples. However, there is also a way around that.

Tuples are immutable which means they cannot be changed, and so are

their elements. The only alternative is to create another tuple.

In this example we have a tuple that represents the x- and y-coordinates

of the player (‘playPos’) and another tuple that represents the speed

(‘speed’) of the player. To get the next position of the player, we add

Chapter 7 Containers

66

the speed to the current position. Remember, we can’t change the tuple or

its elements. We must create a new tuple and assign that value to ‘playPos’:

playPos = (5, 4)

print("playPos = %d, %d" % playPos)

speed = (2, 1)

playPos = (playPos[0] + speed[0], playPos[1] + speed[1])

print("playPos = %d, %d" % playPos)

The line:

playPos = (playPos[0] + speed[0], playPos[1] + speed[1])

On the right-hand side of the equals sign, the new tuple is created.

This is then assigned to the name ‘playPos.’ The tuple that ‘playPos’ was

assigned is overwritten by this new value. This is the equivalent of the

following simple assignments:

>>> num = 5

>>> print(num)

5

>>> num = 10

>>> print(num)

10

In this example, the value ‘num’ is initially assigned the value 5. It is then

assigned the value 10. This overwrites the value initially stored in ‘num.’

�Tuples in Printing
We have used tuples before with respect to displaying formatted strings.

For example:

>>> numbers = (1, 2, 3, 4, 5)

>>> print("%d %d %d %d %d" % numbers)

1 2 3 4 5

Chapter 7 Containers

67

�Deconstructing Tuples
Another common action is to deconstruct the tuple into its component

parts and assign them to separate variables. This is achieved by placing the

variables that are to be assigned values on the left-hand side of the equals sign

and the tuple on the other. In the following example we have a vector ‘vec’

that contains two elements: one for the x- and another for the y-coordinate:

>>> vec = (2, 3)

>>> x, y = vec

>>> x

2

>>> y

3

>>>

Similarly, you can construct a tuple by specifying comma-

separated values too. I don‘t recommend this; I prefer to use the explicit

parenthesized syntax, but this works just as well:

>>> vec2 = x, y

>>> vec2

(2, 3)

>>>

�Lists
Lists are mutable containers. This means that both the elements and the

list itself can be altered. In the case of the list, this means that we can add

and remove elements to the list after we create it. Items are added to the

list using the append() method, and removal is through the remove()

method. A method is an action that an object can perform. We will see

more of methods in the object-oriented section of this text.

Chapter 7 Containers

68

Lists are used a lot in video games. Your inventory is a list of items, the

sprites (images) onscreen are stored as a list, and the collection of levels

that make up your game could be stored in a list.

�List Creation
You can create a blank list or one that is initially populated with values:

blankList = []

populatedList = [1, 2, 3, 4, 5]

The output of which, if we were to run these commands in the Python

interpreter, would be

>>> blankList = []

>>> populatedList = [1, 2, 3, 4, 5]

>>> blankList

[]

>>> populatedList

[1, 2, 3, 4, 5]

>>>

�Adding Values to the List
If we want to add values to the ‘blankList’ we simply use the append()

method and place whatever we want to add within the parentheses:

>>> blankList.append("Python")

>>> blankList

['Python']

>>>

Adding another computer language name (Lua this time) would mean

that our blankList would contain

Chapter 7 Containers

69

>>> blankList.append("Lua")

>>> blankList

['Python', 'Lua']

>>>

�Removing Values from a List
To remove an item from the list, the remove() method is used like so:

>>> populatedList = [1, 2, 3, 4, 5]

>>> populatedList.remove(3)

>>> populatedList

[1, 2, 4, 5]

>>>

You can also remove items from the list by their index value. There is

no built-in method to do this in a list; instead we use the ‘del’ keyword. For

example, to remove the first element, or index 0 (zero), we would use

>>> populatedList = [1, 2, 4, 5]

>>> del populatedList[0]

>>> populatedList

[2, 4, 5]

>>>

This means that we can remove more than one item as well; say we

want to remove all the items from the list. We would do this:

>>> populatedList = [2, 4, 5]

>>> del populatedList[:]

>>> populatedList

[]

>>>

Chapter 7 Containers

70

ahead and populate the list again:

populatedList = [1, 2, 3, 4, 5]

Let’s say we want to delete 2 and 3 from the list. We could issue this

line twice:

del populatedList[1]

Why twice? Well, index 1 of the list is the ‘2’ element. When we delete

something in a list, everything after that moves up one slot. So, the array

now contains

[1, 3, 4, 5]

Which means that index 1 now contains ‘3.’

Typing the same command twice is a little wasteful when we can do it

all at once. We can use the colon (‘:’) to specify a range of values to remove.

So now, to delete 2 and 3 at the same time we would use

del populatedList[1:3]

The number before the colon is the starting index for the deletion. The

number after the column is one plus the number of elements you want to

remove. If you wanted to remove everything from the first element onward,

you could use

del populatedList[1:]

�Doctor’s Waiting Room Program
I’ve created a simple program to demonstrate lists using the example of

a doctor’s waiting room. The user has the ability to add patients, remove

them from the list as they are called, and quit the program. All actions are

done through a menu.

#!/usr/bin/python3

names = [] # an empty list of names

Chapter 7 Containers

71

We start off with a blank list each morning.

cmd = ""

while cmd != '4':

There are four commands: 1 – list names, 2 – add name, 3 – call next

patient, and 4 – quit. The user’s commands will be stored in the ‘cmd’

variable. Note that we have a ‘while’ loop to keep the user inside the

program until they choose to quit.

 print("1. List names")

 print("2. Add name")

 print("3. Call next patient")

 print("\n4. Quit")

The menu is displayed to let the user know the options that they can

choose.

 cmd = input("\rCommand : ")

The user is now prompted for a command. We’ll now use a series of

nested-ifs to perform the command chosen by the user.

 if cmd == '1':

 for name in names:

 print (name)

 print ("\n")

If the user enters ‘1’ then we use a ‘for’ loop to go through all the

names in the ‘names’ list. In each iteration, we print the patient’s name.

Finally we end it with a newline character (‘\n’) to give us some white

space onscreen.

 elif cmd == '2':

 newName = input("Name : ")

 names.append(newName)

Chapter 7 Containers

72

If the user enters ‘2’ then we prompt them for the newly arrived

patient’s name. We then add that new name to the list of names using the

append() method.

 elif cmd == '3':

 if len(names) == 0:

 print ("There are no more patients!")

 else:

 nextPatient = names[0]

 names.remove(nextPatient)

 print ("Calling %s" % nextPatient)

For the third and final command, but not quite the end of our program,

the user has opted to call the next patient to be seen. The practice offers

a strict first-come-first-served policy. This means that the first item in the

list is removed. However, if we have no items in the list, then a warning

message is displayed. You can determine the length of a list of items using

the ‘len’ keyword.

 elif cmd != '4':

 print ("Invalid command!")

The final lines in the program are used to let the user know that they

have typed in an invalid command: something other than 1, 2, 3, or 4.

Save the program as ‘patients.py’ (without the quotes) and don’t forget

to change the program’s attributes to allow it to be executed. Remember!

You only have to change this once:

$ chmod +x patients.py

Chapter 7 Containers

73

To run the program:

$./patients.py

When you are in the same directory as the program.

�Dictionaries
Dictionaries are a set of key/value pairs. This means that instead of

an indexing number, you can use a user-defined key to access the

information.

Dictionaries can be used in video games to look up related data. For

example, if you want to look up what damage a particular sword does you

could use a dictionary to store the data for each weapon in the game. You

could do the same with a list, but it would take time to go through the list,

one element at a time to find the data. When you want to find something

quickly, use a dictionary.

As an example, we’ll define a dictionary that contains telephone

numbers for various people. A person’s telephone number can be

obtained by using their name:

>>> numbers = {'Sloan':'416-555-1234', 'Kevin':'212-555-4321'}

>>> numbers['Sloan']

'416-555-1234'

>>>

The first line defines the dictionary ‘numbers’ containing two entries.

Each entry is a separate key/value pair. Each key/value is separated using a

colon ‘:’ and each pair is separated using a comma ‘,’.

Chapter 7 Containers

74

�Iterating Through Dictionaries
We can iterate through each item using the iteritems() method for the

dictionary:

>>> for k,v in numbers.iteritems():

... print ("%s = %s" % (k ,v))

...

Sloan = 416-555-1234

Kevin = 212-555-4321

>>>

�Adding New Items to Dictionaries
Dictionaries have a simpler way of adding new items: if a key doesn’t exist,

that value is added to the dictionary. If a key already exists then the new

value is assigned to that key.

>>> numbers['Frank'] = '216-555-1234'

>>> numbers

{'Sloan': '416-555-1234', 'Frank': '216-555-1234', 'Kevin': '2

>>>

�Removing Entries from a Dictionary
To remove an entry from a dictionary, we use our old friend ‘del.’ To

remove ‘Sloan’ from the dictionary ‘numbers’

>>> del numbers['Sloan']

>>> numbers

{'Frank': '216-555-1234', 'Kevin': '212-555-4321'}

>>>

Chapter 7 Containers

75

�Conclusion
We’ve seen that Python offers us three different types of containers that

provide options for our programs. The tuple can be used to group together

like items that are immutable (cannot be changed). Use a tuple to define

a structure line a point in space. The properties of a point in space are

its x- and y-coordinates. These two elements don’t change, and you very

rarely iterate (loop) through them. The list container can be used to store a

collection of items that can be added and removed. Finally, the dictionary

allows items to be added and removed as well as altered.

We’re going to take a break from the Python language just now to look

at how to go about designing a game and taking the leap to the windowed

system called LXDE that the Raspberry Pi uses. This is because we’re going

to start looking at PyGame in the next few chapters.

Chapter 7 Containers

77© Sloan Kelly 2019
S. Kelly, Python, PyGame, and Raspberry Pi Game Development,
https://doi.org/10.1007/978-1-4842-4533-0_8

CHAPTER 8

Putting It Together:
Tic-Tac-Toe
Before we start looking at PyGame and how to create arcade-style games

we should take a step back and put what we’ve covered in the first few

chapters into a simple ASCII console game of Tic-Tac-Toe – a game for two

players.

�The Rules
For those of you who haven’t played Tic-Tac-Toe before, here are the rules:

Draw a board on a piece of paper with nine squares, people usually

do this by drawing two horizontal lines parallel to each other followed by

two vertical lines parallel to each other but perpendicular to the horizontal

lines like a hash symbol: # (Figure 8-1).

78

The first player uses the token X and the second player uses the token O.

Each player, starting with X, places their token on a box on the board. A slot

can only take one token! The game ends when a player places a token that

creates a horizontal, vertical, or diagonal three-in-a-row of their token like

the examples shown in Figure 8-2.

1 2 3

4 5 6

7 8 9

Figure 8-1.  The layout of a tic-tac-toe board

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

Figure 8-2.  The winning lines in a tic-tac-toe board

Chapter 8 Putting It Together: Tic-Tac-Toe

79

�Program Layout
The program will be laid out in the following general sections:

•	 Variable declaration and initialization – Create the

variables and give them initial values

•	 Display a welcome message – Simple text indicating

what the program does and how to play the game

•	 Display the board

•	 Get the player’s input – Where do they want to position

their piece on the board

•	 Test the validity of the input – Keep asking the player if

the input is invalid

•	 Place the piece on the board

•	 Check if the player has won – If they have won, display

a congratulatory message and end the game

•	 Jump back up to ‘Display the board’ if there is still a slot

available to place a token

We will make use of while loop and if statements in this program. The

while loops will keep the game being played while there are still slots open

or no one has won. The if statements will be used to determine if we have a

winner or if the player’s input is valid.

�Variables
We need a place to store data while the program is running and need to

decide what variables we will be using. Table 8-1 shows what variables will

be declared and how they will be used.

Chapter 8 Putting It Together: Tic-Tac-Toe

80

�The Game
Create a new folder called ‘ch8’ inside the ‘pygamebook’ folder. Create a

new file called ‘tictactoe.py’ inside ‘ch8.’ Open the file in the Python IDLE

and enter the following text. I will add comments as I go along to help

illustrate what the code is doing.

#!/usr/bin/python

#

Program: Tic-Tac-Toe Example

Author: Sloan Kelly

The header information is useful because it can quickly identify what

the purpose of this program or script is for, and who wrote it.

board = ['1', '2', '3', '4', '5', '6', '7', '8', '9']

Table 8-1.  Declared Variables

Variable Use

board Initially containing the characters 1 through 9, this will contain the

positions of the X and O tokens on the board and will be used to

draw the board onscreen

currentToken The current token, that is, the current player and will contain either

an X or an O

winningToken One of the control variables that will be used to keep the game

playing through all the player turns. When set to either X or O, the

program will exit

slotsFilled It is possible that no one will win the game – this is sometimes

called a Cat’s Game. In this case we need a way to exit the while

loop if no other moves can be made. This second control variable

will increment each time a player makes a move

Chapter 8 Putting It Together: Tic-Tac-Toe

81

currentToken = 'X'

winningToken = "

slotsFilled = 0

The variables used by the program are declared and initialized. The

‘board’ variable contains an array of strings that contain the symbols 1 – 9

inclusive. These will be used for two reasons: to show the player what

number they can enter and secondly to allow the program to determine if a

slot has been taken up by a token.

The ‘currentToken’ is set to the first player’s token and the

‘winningToken’ and ‘slotsFilled’ are set to default values of an empty string

(‘’) and 0 respectively. The latter two variables are used to control the game

and ensure it keeps playing while there is no winner and there are slots to

fill on the board.

print ("Tic-Tac-Toe by Sloan Kelly")

print ("Match three lines vertically, horizontally or

diagonally")

print ("X goes first, then O")

Some basic information about the program will be displayed to the

player. It let’s them know the name of the program, who authored it, and

some basic rules of play.

while winningToken == " and slotsFilled < 9:

An example of a sentinel while loop, keeping the game running while

no one has won and there are slots to be filled.

 print("\n")

 print("%s|%s|%s" % (board[0], board[1], board[2]))

 print("-+-+-")

 print("%s|%s|%s" % (board[3], board[4], board[5]))

 print("-+-+-")

 print("%s|%s|%s" % (board[6], board[7], board[8]))

Chapter 8 Putting It Together: Tic-Tac-Toe

82

Display the board to the player. Over time, the entries in the board will

fill with X’s and O’s, but on the first turn, the board contains the symbols

1 through 9. The player will then input that number and we will have to

translate it down one because in Python array indexes start at 0, not at 1.

Also – don’t forget your indentations!

 pos = -1

 while (pos == -1):

This while loop will keep the player inside it while they have chosen an

invalid value for the slot.

 �pos = int(input("\n%s's turn. Where to? : " %

currentToken))

 if pos < 1 or pos > 9:

 pos = -1

 print ("Invalid choice! 1-9 only.")

Prompt the player for input and then validate it by ensuring the input is

between 1 and 9 inclusive. If not, display an error message and set the ‘pos’

variable back to –1 (invalid entry) which keeps the player inside the while

loop until they enter a correct value.

 pos = pos – 1

Move ‘pos’ so that it is in the 0–8 range for the ‘board’ array.

 if board[pos] == 'X' or board[pos] == 'O':

 pos = -1

 �print("That spot has already been taken by %s! Try

again" % board[pos])

Check to see if the value at position ‘pos’ on the board has been taken

by a player, if so display a warning.

 board[pos] = currentToken

 slotsFilled = slotsFilled + 1

Chapter 8 Putting It Together: Tic-Tac-Toe

83

Otherwise, set the board at index ‘pos’ to the current token and

increment the ‘slotsFilled’ variable. Notice that these two lines are outside

the while loop because the ‘pos’ variable has been validated at this point.

 �row1 = board[0] == currentToken and board[1] ==

currentToken and board[2] == currentToken

 �row2 = board[3] == currentToken and board[4] ==

currentToken and board[5] == currentToken

 �row3 = board[6] == currentToken and board[7] ==

currentToken and board[8] == currentToken

To make this program neater, I split the board, column, and diagonal

checks over multiple lines of code. The first group determines the state of

the rows.

 �col1 = board[0] == currentToken and board[3] ==

currentToken and board[6] == currentToken

 �col2 = board[1] == currentToken and board[4] ==

currentToken and board[7] == currentToken

 �col3 = board[2] == currentToken and board[5] ==

currentToken and board[8] == currentToken

The second group determines the state of the columns.

 �diag1 = board[0] == currentToken and board[4] ==

currentToken and board[8] == currentToken

 �diag2 = board[2] == currentToken and board[4] ==

currentToken and board[6] == currentToken

The final group determines the state of the diagonals.

 row = row1 or row2 or row3

 col = col1 or col2 or col3

 diag = diag1 or diag2

Chapter 8 Putting It Together: Tic-Tac-Toe

84

The groups are combined into single variables to make the if-check

easier.

 if (row or col or diag):

If the player has obtained a row or a column or a diagonal, they have

won and the game goes into the end game state.

 print("\n")

 print("%s|%s|%s" % (board[0], board[1], board[2]))

 print("-+-+-")

 print("%s|%s|%s" % (board[3], board[4], board[5]))

 print("-+-+-")

 print("%s|%s|%s" % (board[6], board[7], board[8]))

Display the board again to show the players who won.

 print("Congratulations %s! You won!!" % currentToken)

 winningToken = currentToken

Display a “Congratulations!” message and set the winning token.

Remember – this is one of the sentinel control variables used by the main

(the top) while loop. If this is set to a nonempty value, that is, we set it to

the contents of ‘currentToken’, the main loop ends.

 if currentToken == 'X':

 currentToken = 'O'

 else:

 currentToken = 'X'

If the game is still playing, the current token needs to be swapped for

the opposite. If the current token is X we swap for the O and vice versa.

if slotsFilled == 9 and winningToken == ":

 print("No one won :(Better luck next time, players!")

Chapter 8 Putting It Together: Tic-Tac-Toe

85

Our final if-check is outside the main loop and displays a message if

neither player wins.

�Save and Run
Save and run the program. If you want to run the program from the

command line you will need to locate the folder in the terminal, for

example:

$ cd ~

$ cd pygamebook

$ cd ch8

Then enter the chmod command to make sure that the program can

execute:

$ chmod +x tictactoe.py

Finally, enter the following to run the game:

$./tictactoe.py

If you want to run the game from inside IDLE, press the F5 key on your

keyboard or select “Run Module” from the “Run” menu.

�Conclusion
It’s not our first 2D graphics game, but it is our first game! A gentle

introduction to writing a game with Python. We used the constructs that

were talked about in the first few chapters of the book to build this game.

Even though they are simple, these small building blocks – variables, loops,

conditions, and containers – can help us build complex pieces of software.

Chapter 8 Putting It Together: Tic-Tac-Toe

87© Sloan Kelly 2019
S. Kelly, Python, PyGame, and Raspberry Pi Game Development,
https://doi.org/10.1007/978-1-4842-4533-0_9

CHAPTER 9

Basic Introduction
to PyGame
PyGame is a free framework for Python that provides modules designed

to write video games. It is built on top of the Simple DirectMedia Layer

Library (SDL) that provides easy access to sound and visual elements.

In this section we will see how to set up PyGame and look at some

of the elements that will be used in our future programs. The Python

language does not include PyGame, and as such the framework must be

imported before it can be used.

�Importing the PyGame Framework
Importing a module in Python is through the ‘import’ keyword. To import

PyGame you would add the following line to the top of the script, after the

hash-bang:

import pygame, os, sys

from pygame.locals import *

The first line imports the PyGame module and its objects as well

as the OS and system modules. The import keyword does not enter the

names of the objects defined in pygame, os, and sys directly in the current

symbol table. It only enters the module names. To access the elements of

88

each module we have to use the module name, which is why we have to

write pygame.locals. The second line says that we’re going to import the

constants from the PyGame framework as if they were defined locally. In

this case we won’t have to prefix each constant with ‘pygame.’ The ‘from’

keyword is a variant of the import keyword that allows us to import module

elements as if they were defined in our (local) code base.

�Initializing PyGame
Before using any of the objects in the framework, you must initialize it first.

We also want to clamp the updates to 30 frames per second, so we add an

fpsClock variable that we initialize to 30 frames per second.

pygame.init()

fpsClock = pygame.time.Clock()

surface = pygame.display.set_mode((800, 600))

The first line initializes PyGame. The second line creates an instance

of an object and stores this value in ‘fpsClock’. An object is an instance of

a class. We’ll cover this in detail in the object-oriented section. Everything

in Python is an object, and that’s part of the beauty of the language; but for

now, let’s just say that you can create your own data types. These user-

defined data types are called ‘classes.’

The third line creates a surface that we can draw our images

(background and sprites) upon. The set_mode() method takes two

parameters that specify the width and the height of the surface in pixels.

In this example, we’re creating an 800 × 600 pixel surface.

It’s good practice to clear the screen before we draw on it. So, rather than

plucking numbers out of thin air, we’re going to create a tuple that contains

the Red, Green, and Blue components of the background. A pixel onscreen

is made up of combinations of red, green, and blue. These ratios determine

what color is displayed. For example (0, 0, 0) is black and (255, 255, 255)

Chapter 9 Basic Introduction to PyGame

89

is white. The tuple represents, in order, the red, green, and blue combination

that makes up the color. So, (255, 0, 0) is red and (0, 0, 255) is blue.

background = pygame.Color(100, 149, 237) # cornflower blue

In this example I’ve chosen cornflower blue because it’s not a color

you see very often, so when the window appears, you’ll know the program

has worked.

�The Main Loop
Some programs, notably those run from the command line, tend to

perform a series of tasks and exit. This is not true with the majority of

windowed environment programs and games. These programs stay active

until the user explicitly quits. During the execution they perform what

is called the main loop. This contains the series of statements that are

executed over and over again until the program ends. The main loop is

while True:

This keeps the program in memory because it executes the loop while

the condition is ‘True.’ Because the condition actually is ‘True,’ the loop

will always execute.

 surface.fill(background)

First we clear the surface before drawing anything onscreen. This

erases what was there before and allows us to start fresh.

 for event in pygame.event.get():

 if event.type == QUIT:

 pygame.quit()

 sys.exit()

PyGame provides us with events from the window manager:

keypresses, button clicks, and window close requests. When we get

Chapter 9 Basic Introduction to PyGame

90

a window close request (‘QUIT’) we will stop PyGame and quit the

application. There are a number of events that can occur during the loop,

and these are held in a list that we can iterate through. So, we have to

check each event to see what type it is and then act upon it. In our basic

framework we’re only checking for the ‘QUIT’ event.

 pygame.display.update()

 fpsClock.tick(30)

The pygame.display.update() method redraws the screen. When you

place objects on the screen it is drawn to an area of memory called the

back buffer. When update is called, this back buffer is made visible, and

the buffer that is currently displaying data (front buffer) becomes the back

buffer. This allows for smooth movement and reduces flickering.

Create a folder called ‘ch9’ inside the ‘pygamebook’ folder. Save the

code in that has been presented so far in this chapter to a new file called

‘firstwindow.py’. When running the program you should see a cornflower

blue window appear (Figure 9-1).

Figure 9-1.  PyGame window displaying a cornflower blue
background

Chapter 9 Basic Introduction to PyGame

91

Click the ‘X’ button on the top right to close the window.

Most modern video cards have two areas of memory; both are used to

display images to the user, but only one is shown at a time. This technique

is called double buffering and is shown in Figure 9-2.

From the user’s viewpoint, they see the items visible on the monitor.

But behind the scenes, the program is drawing to the back buffer. With

the flick of an electronic finger, the user is shown the images on the back

buffer. Figure 9-3 shows what happens.

Figure 9-2.  Double buffering in a modern graphics adapter

Chapter 9 Basic Introduction to PyGame

92

Theaters have used this technique to hide set changes. While the actors

are out on stage, behind the curtain a new scene is being dressed. When the

actor’s scene is finished, the curtain opens, and the new scene is revealed.

Finally, we want to clamp the updates to 30 frames per second. To do

that we call fpsClock.tick(30). This ensures that we get consistent timing

in our game. This is the maximum that the clock can run at, but not the

minimum. You may perform complex calculations during your game that

could drop the frame rate. You will need to be aware of that when you start

to write more complex games than the ones presented in this text.

�Images and Surfaces
PyGame uses surfaces to draw images onto the screen. It uses the image

module to load image files from disk. These are then converted to an

internal format and stored in a surface object until later use. You will create

Figure 9-3.  The contents of the front and back buffers

Chapter 9 Basic Introduction to PyGame

93

at least one surface object, for your main screen. This will be the object

that you will draw your sprites and other images on.

The surface that we perform the main drawing is the back buffer. We

then present this back buffer to the screen by calling the update() method.

�Creating Images
For the most part, you will want to create images in a third-party product,

such as the Open Source GIMP (GNU Image Manipulation Program) at

www.gimp.org. GIMP is a professional-level graphics program on par with

Photoshop. If, like me, you have spent most of your professional life using

Photoshop, you might find GIMP a bit frustrating to use at first – this is

no fault of the application! Just relax and you’ll be creating images like

you did in Photoshop! Any image creation program that allows you to

generate BMP, PNG, and JPG images is fine. There is a list of these in the

appendices. If you are stuck with images, there are some (badly) drawn

images located on this book’s web site (http://sloankelly.net) to help

you. Some of the images are part of SpriteLib through the GPL (GNU

Public License); this means that the images are free to use for commercial

and noncommercial works.

�Loading Images
Python uses surfaces to draw images onscreen. When you load an image

into memory, it is put in a special surface. For example, load an image

called ‘car.png’:

image = pygame.image.load('car.png')

This will load the image into memory and place a reference to the

newly loaded object in ‘image.’

Chapter 9 Basic Introduction to PyGame

http://www.gimp.org
http://sloankelly.net

94

�Drawing Images
Images are drawn on a PyGame Surface. Remember from our skeleton

game that we created a surface that we use to draw images on the screen.

To draw an image:

surface.blit(image, (0, 0))

Where ‘surface’ is the surface instance and ‘image’ is the image you

want to draw onscreen. The second parameter is the location onscreen you

want the image drawn.

�Screen Coordinates and Resolution
The screen or monitor is the primary output device for the computer

system. There are two different types of screen: Cathode Ray Tube (CRT)

and Liquid Crystal Display (LCD). The latter is becoming cheaper and

therefore more popular, or is that cheaper because it is popular? The

computer outputs images to the monitor at a given resolution. Resolution

means “How many pixels along? How many pixels down?” Physical screen

resolution is measured in pixels. The word pixel is the shortened form of

Picture Element. There are a variety of resolutions available on your PC

from 320×240 pixels to 2560×1600 and beyond.

A graphics card inside the computer works with the CPU to produce

images on the monitor. With newer graphic cards, a Graphic Processor

Unit (GPU) is placed on the card to improve the 3D capabilities of the

system – to make games more realistic by providing higher resolutions,

special effects, and better frame rate.

Chapter 9 Basic Introduction to PyGame

95

Resolution defines how detailed your images will look onscreen. The

number of columns (the horizontal axis) and the number of rows (the

vertical axis) define the number of pixels available to the application. In

the following example a 1920×1080 resolution screen map is shown. No

matter what resolution your monitor is running the origin is at the top-left

corner, it always has the coordinates (0,0). See Figure 9-4.

�Sprite Sheets
Sprite sheets are commonly used to keep all frames of a character’s

animation on one image. The name comes from a sprite, which, in

computer terms, is a small image used as an avatar in games. An example

sprite sheet is shown in Figure 9-5.

(1919, 1079)

(0, 0)

1920×1080

Figure 9-4.  Screen coordinates of a 1920×1080 monitor

Chapter 9 Basic Introduction to PyGame

96

This sprite sheet contains four images: two frames of animation for two

Space Invaders characters. When we want to draw the character onscreen,

we choose what cell of the sprite sheet to use. Cells are determined by the

height and width of the sprite. In this case, we have 32×32 pixel sprites, so

that means our sprite sheet is 64×64 pixels because we have 2×2 sprites.

PyGame allows us to display a piece of the image we want to display.

So, for example, if we only wanted to show the second frame of the first

invader (top right of the image) we would use a line like this:

surface.blit(image, (0, 0), (32, 0, 32, 32))

The third parameter, the tuple containing four values, is the area of the

image we want to display at (0, 0). The tuple represents (x, y, width, height)

of the image to display.

Figure 9-5.  Four-image sprite sheet

Chapter 9 Basic Introduction to PyGame

97

�Full Listing
The full listing of the program in this chapter is shown as follows:

import pygame, os, sys

from pygame.locals import *

pygame.init()

fpsClock = pygame.time.Clock()

surface = pygame.display.set_mode((800, 600))

background = pygame.Color(100, 149, 237) # cornflower blue

while True:

 surface.fill(background)

 for event in pygame.event.get():

 if event.type == QUIT:

 pygame.quit()

 sys.exit()

 pygame.display.update()

 fpsClock.tick(30)

�Conclusion
This chapter has introduced the basic loop that we will use for each of the

games as well as how to initialize PyGame. set_mode() on the pygame.

display object is called and returns a surface that will be used as a back

buffer where all our images will be displayed.

Images are loaded into memory using the image.load() method and

drawn on the surface using its blit() method. Images can contain multiple

shapes, and these are called sprite sheets. A single frame of a sprite sheet

can be drawn by specifying the rectangle of the frame to draw.

Chapter 9 Basic Introduction to PyGame

99© Sloan Kelly 2019
S. Kelly, Python, PyGame, and Raspberry Pi Game Development,
https://doi.org/10.1007/978-1-4842-4533-0_10

CHAPTER 10

Designing Your Game
Before we launch into programming our first game, we’re going to slow

things down a little. Before starting any project, whether it is home

improvement, taking a trip, or programming a game, you should sit down

and plan what you want to do.

This usually involves taking the following steps:

•	 Initial concept

•	 Functional specification

•	 Program design

•	 Coding

•	 Test

•	 Iteration

Coding and testing tend to go hand in hand; you will write some code

and then test it. From a programming point of view this loop forms much

of your time in game development.

�Initial Concept
We’re concerning ourselves with small projects here. In a more formal

setting, this would entail going around all the people involved (stakeholders)

and asking them what they want from the program. In our case, it’s a video

100

game. You’ll probably be working with two or three people, and this part

tends to be brainstorming ideas:

•	 It’s gonna be a racing game

•	 With weapons

•	 And traps! You can set traps!

These ideas are all stored in a single document; Google Drive is

excellent for this type of work because it allows for collaboration between

developers.

Once you have all your requirements, you then move onto functional

requirements. Remember though that all of these documents are “living”

in that they can change. Subsequent documents/code need to be updated

to reflect those changes.

The initial concept is iterated on and these documents form what is

called the game design document or GDD for short.

�Prototyping
As part of the initial phase of game design you as the programmer may be

asked to do some proof of concept work called a prototype. This is a rough-

around-the-edges sketch of what a part of the game might feel like to play.

For example, in a card game it might be a discard hand animation, or a

screen shake when the player dies.

Code that you generate as part of the prototyping phase is not expected

to make it to production, that is, your shipped game. It does happen

sometimes, so you should always try to make your code as clean as

possible.

Chapter 10 Designing Your Game

101

�Functional Specification
Functional specification takes the requirements gathered in the first stage

and removes all the “fluff” language around them. They set out a series

of rules about the game that can be passed on to a coder to implement.

For example, our racing game can fire weapons, so our functional

requirements might have a “Weapons” section and a “Traps” section.

These sections further split down the requirements into bite-sized

chunks that a programmer can take away and implement. Along with

Program Design, this forms what is called the technical design document

(TDD). See the following examples.

�Weapon Firing
The player can fire a machine gun at another player. There should be a

maximum of ten shots per second allowed per player. If the gun is held

down for more than 2 seconds, it will start to heat up. This will start a ‘heat’

counter. After the heat counter reaches 5 seconds, the gun will no longer be

fireable. It takes a further 5 seconds for the gun to cool down once the player

has released the fire button.

This also gives the artist some cues as well; they will have to show the

gun heating up and cooling down.

�Program Design
As you can see, each step refines the previous step’s information. The

program design takes the functional requirements and breaks them

down into modules that a programmer can take and implement. The

programmer may take those modules and refine them further, making

smaller modules.

Chapter 10 Designing Your Game

102

The overall goal here is to take a problem and break it down until you

have lots and lots of smaller, more easily solved problems. This sounds

counterintuitive: take one problem and make it many. “Make a cup of tea” is

a larger problem. This can be broken down into smaller problems like this:

•	 Boil kettle

•	 Place tea bag in cup

•	 Place boiled water in cup

•	 Etc., etc.

From a programming perspective, you are taking requirements (the

basic idea for the game) through functional requirements (how the

player interacts with the game – how the game environment works) to the

program design where you take these functional requirements and figure

out what needs to be done from a programming perspective.

Now, this is somewhat of a Catch-22 situation. You need to have

experience to know how to take these requirements and figure out how

they become program design.

�Coding
Sometimes called the fun part of the process. This is where the ideas

start to take form; graphics are added, and code is used to move them

across the screen. The program itself, if you remember from the opening

chapters, is this:

Program = Data + Algorithms

The data is called the model and is manipulated by the algorithm.

Algorithms that are used to manipulate the data are called controllers and

the ones that are used to render items to the display are part of the view. In

object-oriented programming, this pattern is called Model View Controller.

Chapter 10 Designing Your Game

103

Throughout this text, we will try and keep the model, view, and

controller as separate as we can with communication going through the

controller, as shown in Figure 10-1.

The MVC pattern fits in nicely with our “Programs = Data +

Algorithms” statement. The controller manipulates the model in code.

In turn, the model’s data is read by the view to render data. There can be

many different views all rendering different data.

In the example shown in Figure 10-2, we see that the main view of the

game displays the player and enemy sprites at full size while the smaller

radar view shows the approximate positions of the player and enemies

relative to the whole game world. There is a main view controller and a

radar view controller. Both controllers have access to the same data: the

player and enemy positions.

MODEL

Changes
read by

controller

Controller updates model

Updates Display
VIEWCONTROLLER

Figure 10-1.  The Model View Controller pattern

Chapter 10 Designing Your Game

104

The code to show the aliens and the player ship in the main playing

field is different to how they are displayed in the radar view. They do share

one thing in common though; they use the same data. The player’s model

is also used to display (in yet another view) the number of lives left, the

score, and the number of smart bombs at the player’s disposal.

Although we won’t be formally introduced to the MVC pattern until the

object-oriented chapters, we will be using the spirit of this pattern in the

games (Bricks and Snake) that precede that section.

�Testing
During development, you will be constantly testing your code. Each time

you implement (code) a new routine, you will test it to make sure that it does

what you set out for it to do. How do you know that it’s doing the right thing?

You have documentation in the form of the “Requirements” and “Functional

Specification” to ensure that what you expect to happen does happen.

Figure 10-2.  A game displaying two views of the same objects in the
game

Chapter 10 Designing Your Game

105

From a programming perspective, there are two types of testing done

at the coding level: white-box and black-box testing. The former examines

each code step in turn and ensures that they perform as expected. The

latter takes each separate module and treats them as a black box. Data

goes in, results come out.

�Iteration
As I mentioned before, the Game Design Document or GDD is a ‘living’

document. The people developing the game will continually play the game

as it is being created. This is called play testing. This play testing causes a

feedback loop that might change elements of the original design. You can

find that the thing that made the game ‘fun’ becomes tiring. By iterating on

the design during development you make small changes that will improve

your initial concept.

�Conclusion
Although you won’t always create separate documents for the

requirements and functional specifications, it is still a good idea to jot your

thoughts down. Even if it’s just a reminder as to what needs programming

and what art needs creating. If you’re still not keen on writing, don’t forget

that a drawing is worth a thousand words.

When it comes to programming, think before you put your hands on

the keyboard to start typing. The biggest question you must ask yourself is,

“What do I hope to achieve with the code I’m about to write?” You should

have a clear idea of the goal that you’re aiming for before you start typing.

Last, but certainly not least, is testing. Always, always, always test

your code!

Chapter 10 Designing Your Game

107© Sloan Kelly 2019
S. Kelly, Python, PyGame, and Raspberry Pi Game Development,
https://doi.org/10.1007/978-1-4842-4533-0_11

CHAPTER 11

Game Project: Bricks
In this chapter we’ll review Bricks, our first game project. For those of you

who haven’t played this game before, you control a bat at the bottom of the

screen (Figure 11-1). There is a collection of bricks above you and using

the ball you must destroy all the bricks by hitting them with the ball.

Sounds simple enough, but in this project, we’ll learn about

•	 Player movement

•	 Automatic (non-player) movement

•	 Collision detection

•	 Displaying images

108

�The Main Framework
We will lay down the main framework in this section to give you an

overview of the structure of the entire game. To keep things simple for our

first game, there won’t be any interstitial screens such as splash screens,

menus, pause screens, etc.

There will be placeholder comments through the framework indicating

points where new lines will be added throughout the course of this project.

#!/usr/bin/python

import pygame, os, sys

from pygame.locals import *

Figure 11-1.  The main brick play screen

Chapter 11 Game Project: Bricks

109

pygame.init()

fpsClock = pygame.time.Clock()

mainSurface = pygame.display.set_mode((800, 600))

pygame.display.set_caption('Bricks')

black = pygame.Color(0, 0, 0)

bat init

ball init

brick init

while True:

 mainSurface.fill(black)

 # brick draw

 # bat and ball draw

 # events

 for event in pygame.event.get():

 if event.type == QUIT:

 pygame.quit()

 sys.exit()

 # main game logic

 # collision detection

 pygame.display.update()

 fpsClock.tick(30)

Create a new folder inside the ‘pygamebook’ folder called ‘bricks’. Save

the file in there and call it ‘bricks.py’.

�Images
There are three images used in the game, all of which are downloadable from

the Resources section on the book’s web site (http://sloankelly.net). If

you don’t want to use those images, you can create your own. The game,

Chapter 11 Game Project: Bricks

http://sloankelly.net

110

however, assumes the following dimensions for each of the images. See

Figures 11-2 to 11-4.

�Moving the Bat
The user controls the bat using their mouse. We clamp the movement to

the x-axis by ignoring the y-axis changes on the mouse. The bat is also

restricted to allow movement within the confines of the screen only. The

bat must remain within the play field (the screen) during the game.

Figure 11-2.  Ball.png 8×8 pixels

Figure 11-4.  Brick.png 31×16 pixels

Figure 11-3.  Bat.png 55×11 pixels

Chapter 11 Game Project: Bricks

111

�Bat Initialization
Locate the following line in the framework:

bat init

Underneath that line, add a couple of blank lines to give you some

space. Type the following:

bat = pygame.image.load('bat.png')

Our bat is loaded into memory as a surface called ‘bat’. It doesn’t

need to be called this, but it makes sense to call your variables

something meaningful. You could also have called it ‘batImage’ or

‘batSprite’, for example.

playerY = 540

Our player’s movement is restricted to the x-axis, so they will always

be at a height of 540 pixels on the screen. This is quite near the bottom;

remember that as you increase in value on the y-axis, you move further

down the screen.

batRect = bat.get_rect()

The bat’s rectangle will be used in our collision detection

calculations later.

mousex, mousey = (0, playerY)

We give the mouse coordinates a default value. Notice that we use a

tuple here? We could have also written that single line as two like this:

mousex = 0

mousey = playerY

Which would take up two lines and wouldn’t imply what our values are

for; they represent the coordinates of the bat in 2D space on the screen.

Chapter 11 Game Project: Bricks

112

�Drawing the Bat
Each time the main loop is executed, we clear the main surface in one line,

which is already contained in the main loop:

mainSurface.fill(black)

This fills the main surface with black, fresh so that we can draw other

things on top of it! Scroll down to this line:

bat and ball draw

And add the following line after that:

mainSurface.blit(bat, batRect)

Save and run the game. What do you see? The bat should be at the top

left of the screen. But why is that the case? The answer lies in ‘batRect.’

Take another look at the initialization of ‘batRect’:

batRect = bat.get_rect()

This will contain the dimensions of the bat:

(0, 0, 55, 11)

Which means that the image will be drawn at (0, 0). It’s time to move

the bat.

�Moving the Bat
Moving the bat is achieved in two steps:

•	 Capturing the mouse input

•	 Drawing the bat image at the new location

Scroll down to the section marked

events

Chapter 11 Game Project: Bricks

113

Change the code underneath to read:

for event in pygame.event.get():

 if event.type == QUIT:

 pygame.quit()

 sys.exit()

 elif event.type == MOUSEMOTION:

 mousex, mousey = event.pos

 if (mousex < 800 - 55):

 batRect.topleft = (mousex, playerY)

 else:

 batRect.topleft = (800 - 55, playerY)

That’s a lot of tabs! Careful with the tab placement or your code won’t work.

�Events

Events are generated by the Windows manager, whether that’s under

Microsoft Windows, Mac OS, or an X-Windows manager under a Linux

operating system like the one running on your Raspberry Pi. Events that

apply to the currently active window are passed to it by the system for

processing. You only need to check for events that you want to perform

actions for. In this game, we’re only interested in checking for this:

•	 The user closing the window

•	 The user moving the mouse

•	 The user clicking the mouse button (later)

�Quit Event

Each event is passed through as an event type with additional parameters,

as required. For the QUIT event, there are no additional parameters. QUIT

is just a signal to the application to shut down, which we do by exiting

PyGame and the program itself.

Chapter 11 Game Project: Bricks

114

�Mouse Move Event

When the user moves the mouse, the information is passed from the

hardware (the mouse, the physical interface, some controller chips),

through some low-level OS drivers to the currently active application. In

this case, our game. With it comes the position of the mouse as well as any

buttons that were pressed. Like all events, this message is only passed if the

event occurs (mouse is moved in this case).

The event type for mouse movement is ‘MOUSEMOTION’ and has a

parameter called ‘pos’ that contains the location of the mouse. ‘pos’ is a

tuple that contains the x- and y-coordinates of the mouse position.

The new x-coordinate is clamped within the confines of the screen and

then assigned to the ‘topleft’ property of the ‘batRect’ variable.

Save and run the program. The bat will now move with the mouse

movement. If it doesn‘t, or you get errors, check your code. It could be a

stray or missing ‘tab.’

�Moving the Ball
Moving the ball is done entirely in code and does not require input from

the user, save from the initial tap of the mouse button to get things rolling,

if you pardon the pun.

�Ball Initialization
Ball initialization looks very similar to the bat initialization. Locate this line

in code:

ball init

Chapter 11 Game Project: Bricks

115

Add the following lines underneath:

ball = pygame.image.load('ball.png')

ballRect = ball.get_rect()

ballStartY = 200

ballSpeed = 3

ballServed = False

bx, by = (24, ballStartY)

sx, sy = (ballSpeed, ballSpeed)

ballRect.topleft = (bx, by)

The first two lines load the image and capture its rectangle. The next

two lines set up the default values for the starting y-coordinate and speed.

The ‘ballServed’ variable is used to determine, in the code later, if the ball

has or has not been served. The remaining lines set up the initial position

of the ball and its speed.

Scroll down the code to

bat and ball draw

Add the following line to draw the ball onscreen:

mainSurface.blit(ball, ballRect)

Save and run the game. You will now see the ball in the top left

of the screen. If you don’t, check your code against the lines written

above. Typing mistakes or typos are common, even among seasoned

programmers!

�Ball Movement
Ball movement is achieved by adding the speed of the ball to the current

position. This is from the Physics equation:

Speed = Distance / Time

Chapter 11 Game Project: Bricks

116

How do we do this in code? Scroll down to the line that reads

main game logic

The formula to calculate distance is

Distance = Speed × Time

Because our rate is fixed to 30 frames per second, we will be adding our

speed to the current position once every 1/30 of a second. This means that

after 1 second our ball will have traveled

30 × 3 = 90 pixels

So, the actual velocity of our ball is 90 pixels per second.

Just after the ‘main game logic’ comment line, add the following code

and run the game:

bx += sx

by += sy

ballRect.topleft = (bx, by)

A new symbol has been introduced here. The += operator is used

to add the value on the left of the operator to the value on the right and

place the sum in the variable on the left of the operator. It's a short form

of bx = bx + sx. There are other short-form operators like –= (minus), ×=

(multiply), and /= (divide) that follow the same rule we outlined for +=.

The ball will now move slowly and diagonally from the top left of the

screen to the bottom right. What happens if it hits the bat? What happens

when it reaches the end of the screen? Nothing; the ball just passes right

through the bat and sails past the edge of the screen.

Let’s remedy this situation. First, we’ll clamp the ball within the

confines of the screen area. Our screen is 800×600 pixels in size. Our ball

is 8×8 pixels in size. We’ll use some Boolean logic to determine, from the

ball’s position, if it hits the edges. If so, we’ll reverse the speed. This means

that in the next loop the ball will move in the opposite direction as shown

in Figure 11-5.

Chapter 11 Game Project: Bricks

117

Figure 11-5 shows the two stages of collision: detection and response.

Detection – have two objects collided and response – what are we going to

do about it? In this case we are detecting whether the ball is touching the

outside edge of the screen and our reaction is to reflect the ball back in the

direction it came.

Detection determines if two objects have touched
Response is the action(s) that are performed when two objects
collide

Add a one or two blank lines after the ball position update code and

add the following:

if (by <= 0):

 by = 0

 sy *= -1

The ball’s y-coordinate is checked against 0, which is the topmost row

of pixels on the display. Remember that the top left of the screen is (0, 0)

and the bottommost is the maximum size; in our case, that’s (800, 600).

Initial direction of travel
Speed is (3, 3)

Ball hits the edge of
the screen

Direction is reversed on
the x-axis only (side wall
hit) so new speed is
(–3, 3)

Figure 11-5.  Ball hitting a side wall showing reversal of direction
along the x-axis

Chapter 11 Game Project: Bricks

118

This code will ensure that the topmost boundary of the screen reflects the

ball. The ball is only reflected on the y-axis because we have hit a vertical

boundary of the screen, in this case the top edge.

Do the same for the bottom of the screen. In this case, we must

subtract the size of the ball from the bottommost number. Our ball is 8×8

pixels, so that means we must subtract 8. Remember that when we draw an

image onscreen, we’re drawing it from the top left of the image:

if (by >= 600 - 8):

 by = 600 - 8

 sy *= -1

The sides of the screen will reflect on the x-axis instead of the y-axis:

if (bx <= 0):

 bx = 0

 sx *= -1

This will reflect the ball on the left-hand edge (when x is 0). Finally,

we’ll reflect when we’re on the right-hand edge (when x is 800 – 8 or 792):

if (bx >=800 - 8):

 bx = 800 - 8

 sx *= -1

Save and run the game. You’ll now see the ball bounces around the

screen. But it still goes through the bat. We need to add more code to the

game to get it to collide with the bat so that it bounces up the screen.

�Bat and Ball Collision
The bat and ball collision works in a similar way to checking a collision

against the bottom of the screen. We will use the colliderect method of the

Rect class to determine if a collision has occurred.

Chapter 11 Game Project: Bricks

119

Add a couple of blank lines after the last code you typed and add

if ballRect.colliderect(batRect):

 by = playerY - 8

 sy *= -1

The colliderect takes a single parameter that represents the rectangle

we want to the check collision against. The colliderect method returns a

Boolean ‘True’ or ‘False’ depending on whether the rectangles intersect

each other. See Figure 11-6.

The top-left image shows that when the two rectangles are touching,

colliderect will return ‘True.’ The top-right image shows that when the two

rectangles are not touching, colliderect will return ‘False’.

The bottom two images show what happens when the bat and ball

intersect. Colliderect will return ‘True’ because the two rectangles are

touching, but in code, we must move the ball’s position up so that they’re

Ball and bat rectangles are touching so
colliderect will return True

Ball and bat rectangles are not touching
so colliderect will return False

Ball and bat rectangles are intersecting
so colliderect will return True. This causes
an issue for us, so we have to correct it!

To correct this issue, the ball’s y-coordinate
is moved back on colliding with the bat
to prevent any visual anomalies

Figure 11-6.  Collision rectangles showing touching, not touching,
and intersection

Chapter 11 Game Project: Bricks

120

not touching. This stops any anomalies from occurring; if you hit the ball

from the side it travels inside the bat! By replacing the ball to touch the top

of the bat, we get around this problem, and this line:

by = playerY - 8

Is the one that solves the issue. Save and run the code and you’ll be

able to knock the ball back up the screen using the bat.

�Serving the Ball
Up until this point we’ve just served the ball as the game starts. We want to

restrict the ball serve to when the user clicks the left mouse button. Firstly,

we’ll stop the ball movement if it hasn’t been served. Locate the line:

main game logic

You should see these lines underneath:

bx += sx

by += sy

ballRect.topleft = (bx, by)

Change these lines to read

if ballServed:

 bx += sx

 by += sy

 ballRect.topleft = (bx, by)

Saving and running the game will show that the ball stays in the top left.

Chapter 11 Game Project: Bricks

121

To get it to move, we have to change ‘ballServed’ to ‘True.’ In order to

do that, we have to respond to the player clicking the left mouse button.

That’s in the events section of the code. Scroll up to the events section and

add these lines after the last ‘elif’ block:

elif event.type == MOUSEBUTTONUP and not ballServed:

 ballServed = True

The MOUSEBUTTONUP tests for any button on the mouse being

‘up’. So, really, right-clicking will work too. We also test for the case where

ballServed is already ‘True.’ If the ball is already served, we don’t need to

serve it again.

�Brick Wall
We’re almost there! The last piece of this puzzle is the wall of bricks that

the player must destroy. Like the screenshot at the start of this section

shows, we’re going to arrange the bricks in the center of the screen.

Locate the following line in the code:

brick init

Add the following lines, column aligned with the pound sign (#) on the

previous line:

brick = pygame.image.load('brick.png')

bricks = []

Chapter 11 Game Project: Bricks

122

Once again, we load in an image that we're going to use for our bricks.

We then create an empty list where we will store the positions of each of

the bricks.

for y in range(5):

 brickY = (y * 24) + 100

 for x in range(10):

 brickX = (x * 31) + 245

 width = brick.get_width()

 height = brick.get_height()

 rect = Rect(brickX, brickY, width, height)

 bricks.append(rect)

Our bricks are arranged in five rows of ten bricks. We store the brick

locations in the ‘bricks’ list. Our brick positions are stored as Rect instances

because it will make collision detection easier later.

Scroll down to find this line of code:

brick draw

Add the following lines just after:

for b in bricks:

 mainSurface.blit(brick, b)

Save and run the game. You’ll now see the wall of bricks. Once again,

you’ll notice that the collision doesn’t work, so the ball just sails through

the wall. We’ll fix that in our last section.

�Brick and Ball Collision
Our bat and ball move and our brick wall displays. Our penultimate task

in this project is to destroy the bricks as the ball hits them. This is similar

to when the ball hits the bat except we will remove the brick that was hit.

Luckily, PyGame provides a method on the Rect class called collidelist().

Chapter 11 Game Project: Bricks

123

Scroll down the source code and locate

collision detection

You will remember that our bricks are just a list of rectangles. The

collidelist() method takes a list of rectangles and returns the index of the

two rectangles that were hit. We will use the rectangle of the ball as the

left-hand side of the test and the bricks variable as the parameter to the

function:

brickHitIndex = ballRect.collidelist(bricks)

if brickHitIndex >= 0:

 hb = bricks[brickHitIndex]

Capture the index of the brick rectangle contained in bricks that

intersects with the ballRect rectangle. In layman’s terms, find out which

brick the ball touched. If no brick was hit, this method returns a –1. So,

we’re only interested in values greater than or equal to zero. Remember

that lists start at element zero (0), not 1 in Python.

 mx = bx + 4

 my = by + 4

 if mx > hb.x + hb.width or mx < hb.x:

 sx *= -1

 else:

 sy *= -1

We then calculate the midpoint of the ball’s rectangle, which is 4 pixels

in and 4 pixels down because the ball is an 8×8 image. We then test this

against the width of the brick that was hit. If it is outside the width then the

ball was hit from the side. Otherwise, the ball hit the brick on the top or

bottom. We deflect the ball accordingly by changing its speed.

 del (bricks[brickHitIndex])

Because we hit the brick, we remove it from the list.

Chapter 11 Game Project: Bricks

124

Save and run the game. When the ball hits the bricks, they will be

removed, and the ball will rebound from the hit. Now, what about hitting

the bottom of the screen?

�Out of Bounds
When the ball hits the bottom of the screen it should be marked as out of

bounds. As it stands, we haven’t done that and the ball simply bounces off

the bottom.

Scroll down the source code to find the line that reads

main game logic

You will see this block of code:

if (by >= 600 - 8):

 by = 600 - 8

 sy *= -1

Replace it with

if (by >= 600 - 8):

 ballServed = False

 bx, by = (24, ballStartY)

 ballSpeed = 3

 sx, sy = (ballSpeed, ballSpeed)

 ballRect.topleft = (bx, by)

When the ball hits the bottom of the screen, the ‘ballServed’ flag is

reset to ‘False’ meaning that the ball has not been served. Because the ball

hasn’t been served, it will not be updated. The code also resets the ball’s

position and speed to the starting values.

Save and run the complete game, clicking any mouse button to serve

the ball and using the mouse to move.

Chapter 11 Game Project: Bricks

125

�Conclusion
You have written your first game! This game really shows the power of

Python and PyGame because a game like this contains the following:

•	 Mouse movement

•	 Automatic ball movement

•	 Collision

•	 Brick destruction

•	 Boundary checking

And it can all be achieved in around 120 lines of code.

Now that we have the first game under our belt, we’ll spend some time

learning more about the Python language.

Chapter 11 Game Project: Bricks

127© Sloan Kelly 2019
S. Kelly, Python, PyGame, and Raspberry Pi Game Development,
https://doi.org/10.1007/978-1-4842-4533-0_12

CHAPTER 12

User-Defined
Functions
A user-defined function allows you to package and name several lines of

code and reuse those lines of code throughout your program. All you must

do is call the name you’ve given your function.

�What Is a Function?
A function in Python can be used to perform a simple task, and as such

is just a mnemonic or special name given to a collection of lines. You can

also optionally send values into a function as parameters or return a value

from a function. Only one value can be returned from a function, but that

value can be a tuple.

�Format of a Function
The following simple function displays “Hello world” when it is called:

def sayHello():

 print("Hello, world!")

sayHello()

128

Use the def keyword to define the function. The function consists of its

name and optional parameters inside parentheses ‘(‘ and ’)’.

Because it is a Python block, the first line ends in a colon and the lines

that form the block are indented one tab.

�Functions as a Menial Task/Mnemonic
Device
At the trivial end, functions can be used as a mnemonic or replacement for

multiple lines of code that you will use over and over again. For example, if

you want to display a box you might want to use something like this:

def drawBox():

 print("+--------+")

 print("| |")

 print("+--------+")

drawBox()

print("Between two boxes")

drawBox()

The output of this code is

+--------+

| |

+--------+

Between two boxes

+--------+

| |

+--------+

We now have consistency when we want to draw a box. Each box will

look like every other box when we call drawBox().

Chapter 12 User-Defined Functions

129

FUNCTIONS ALLOW YOU TO REUSE CODE

This is the power of functions: they allow for something called code

reuse. Code reuse means that you can use the same single block of code

multiple times in your application. If you need to change that function for

any reason, any code that calls it will get the changed version.

The other goal of functions is to make the place where you call it easier

to read. A block of code should perform a single task rather than multiple

tasks. When writing a program, consider where these breaks should occur.

These should be your functions.

For example, you have been asked to read in the temperatures from

the keyboard and write them to a file and calculate the average, maximum,

and minimum values and store them in a separate file. You might write

functions called

•	 getTemperatures()

•	 writeTemperatures()

•	 calcAverage()

•	 calcMinimum()

•	 calcMaximum()

•	 writeStats()

These would then be called from the main program in the correct

sequence.

�Sending Parameters
Having a block of code that you can execute repeatedly from multiple

places is all well and good, but it’s a bit restricting. What if you wanted to

change some values each time you call it? Parameters (or arguments) can

Chapter 12 User-Defined Functions

130

be used to provide your function with more information. For example,

the width and height of the box you want to draw. Consider the following

function:

def drawBox(width, height):

The drawBox() method takes two parameters: one is named width and

the other height. These parameters are passed into the function from the

calling line (seen later). These are just names that we use so that we can

refer to the parameters in a meaningful way in the body of the function.

 if width < 0:

 width = 3

The boxes are drawn on a character-based display, and as such, the

minimum width that we can have is three characters; this is because we use

‘+’ characters at each of the corners and ‘–’ to denote the horizontal line.

 if height < 3:

 height = 3

We have a similar restriction with height. Our minimum height is

three because we have to have two horizontal lines and at least one line

containing ‘|’, some spaces and then ‘|’ to represent the vertical lines of

the box.

 width = width - 2

Whatever our width is, it’s two characters too long! This is because

each row starts and ends with ‘|’. The number of characters is therefore

width – 2 (two ‘|’ characters).

 print("+" + "-" * width + "+")

Our top line is fixed because it contains the corner pieces represented

by ‘+’. We also use Python’s handy string arithmetic to generate the string

Chapter 12 User-Defined Functions

131

line; ‘+’ is used to concatenate (add) two strings together, and ‘*’ is used to

multiply a string with a number to repeat a character a certain number of

times.

 for y in range(3, height + 1):

 print("|" + " " * width + "|")

The for loop goes through each value from ‘3’ to the height plus one.

Remember that the range goes from a starting value to one less than the

number you want. Again, we use string arithmetic to generate our line.

 print("+" + "-" * width + "+")

We close off the function by drawing the bottom of the box.

To call the function, you use the function’s name and then pass in the

parameters that we want to use:

drawBox(5, 4)

You must know what each parameter is used for, so that’s why it’s a

good idea to name the parameters to something recognizable. In this

example, if the width of the box is 5 and the height is 4, its output will be

+---+

| |

| |

+---+

�Default Argument Values
Default values for each parameter can be specified. This means that if the

user doesn’t want to specify the value of an argument, they don’t have to.

Let’s say we want to default width and height to 3. Change the function

definition to

def drawBox(width = 3, height = 3):

Chapter 12 User-Defined Functions

132

If we just want a 3×3 box we can do this:

drawBox()

That will assign the default values to both width and height. Let’s say

we want to specify width without height. Let’s create a 5×3 rectangle:

drawBox(5)

The default value must be the rightmost parameters passed to the

function. The following function signatures are valid because all the

parameters that follow the first parameter with a default value are also

assigned default values:

def drawBox(width, height = 10)

def drawSprite(sprite, width = 32, height = 32, transparency = 1)

The following function signatures are invalid:

def drawBox(width = 5, height)

def drawSprite(sprite = None, width, height, transparency = 1)

All parameters that follow a parameter with a default value must also

have default values!

�Named Parameters
What about if we just want a default width, but we want to specify a height?

That’s easy enough; just pass in the name of the parameter you want to

specify a value for:

drawBox(height = 10)

This will draw a 3×10 box. Width will default to 3 because it has not

been assigned a value. This technique is called named parameters and

allows you to specify the parameter by name. In other languages optional

Chapter 12 User-Defined Functions

133

parameters – those with a default value – must be placed at the end of the

parameter list. In Python, you can use named parameters to specify all or

just some of the optional arguments.

�Returning Values
One of the primary uses for functions is to generate a new value from the

supplied arguments. Let’s take a look at a trivial example first, adding two

numbers together:

def add(first, second):

 return first + second

print(add(10, 5))

The function is defined as usual with the ‘def’ keyword and a name for

the function. The function takes two parameters ‘first’ and ‘second.’

The only line that makes up the body of the function is

return num1 + num2

The ‘return’ keyword takes whatever value is on the right-hand side of

it and passes it back to the calling line. In our example, the calling line is

this print statement:

print(add(10, 5))

‘first’ is assigned the value 10 and ‘second’ is assigned the value

5. The two are added together and returned. The ‘print’ keyword then

displays the value returned. Because it’s an integer value, this is a trivial

undertaking and it just displays the result:

15

Chapter 12 User-Defined Functions

134

But we can add so much more than integer values:

print(add('sloan ', 'kelly'))

print(add(3.14, 1.61))

print(add((1,2,3), (4,5,6)))

Anything we can add together can use this function. We’ve seen that

Python will return anything we want from a function, and it could depend

on the arguments that are passed how that value is determined.

�Returning Tuples
Tuples can be returned as whole tuples or into their separate element

values. In the following example, the tuple is returned and printed to the

screen:

def getPlayerPosition():

 return (10, 5)

print (getPlayerPosition())

The output is

(10, 5)

We can also explode the tuple into separate variables when we call the

function for example:

def getPlayerPosition():

 return (10, 5)

x, y = getPlayerPosition()

print ("Player x is", x)

print ("Player y is", y)

Chapter 12 User-Defined Functions

135

Which will display

Player x is 10

Player y is 5

�Accessing Global Variables
Global variables are generally thought to be bad programming practice.

They can lead to mistakes, or bugs, in code because it will take time to

track down when each global variable is accessed (the value is read) and

each time it is changed (a value is written to it).

Functions can read global variables with no problem, like in this

example:

num = 5

def printNum():

 print(num)

printNum()

What if we change the value inside the function? What happens to it

then?

num = 5

def changeNum():

 num = 10

print(num)

changeNum()

print(num)

Now, the output is

5

5

Chapter 12 User-Defined Functions

136

Why is this the case? Well, in order to prevent bad things from

happening in your program, Python has a fail-safe technique to prevent

global values being written to unless you explicitly say they can be written

to. To mark the variable as being ‘write-enabled’ in your function, add

global and the name of the global variable, like so:

num = 5

def changeNum():

 global num

 num = 10

print(num)

changeNum()

print(num)

With the addition of the global keyword and the name of the global

variable, any changes to the ‘num’ global in printNum will be applied . The

output of the program will now be

5

10

�Real-World Example of a Function
Functions can contain their own variables. These variables are said to be

local to the function. They cannot be seen or manipulated by anything

outside of the function. This hiding of variables is called variable scope.

We have seen that global variables can be accessed anywhere. With local

variables they are visible only to that function and only exist if the function

is executing.

We can rewrite some of the code for our Bricks game to use functions.

I’ll leave it as an exercise for the reader to convert other areas of the code

Chapter 12 User-Defined Functions

137

to functions. We’ll create a function to load the brick image and set up the

brick positions.

Open up the Python file that contains the code for the ‘Bricks’ game.

Right now, the code you have should have an area that looks like this:

brick init

brick = pygame.image.load('brick.png')

bricks = []

for y in range(5):

 brickY = (y * 24) + 100

 for x in range(10):

 brickX = (x * 31) + 245

 width = brick.get_width()

 height = brick.get_height()

 rect = Rect(brickX, brickY, width, height)

 bricks.append(rect)

Remove the line

brick = pygame.image.load('brick.png')

And replace it with

brick = None

Change the remaining lines to read

def createBricks(pathToImg, rows, cols):

 global brick

The function will take in three parameters. The first is the path of

the image file that we will use to draw the bricks. The second and third

parameters are the number of rows and columns of bricks we want. Our

brick positions are stored in a list called ‘bricks’ and the image is called

‘brick.’ We are going to create a global variable at the top of the file called

brick. This holds our image of a brick.

Chapter 12 User-Defined Functions

138

 brick = pygame.image.load(pathToImg)

 bricks = []

 for y in range(rows):

 brickY = (y * 24) + 100

 for x in range(cols):

 brickX = (x * 31) + 245

 width = brick.get_width()

 height = brick.get_height()

 rect = Rect(brickX, brickY, width, height)

 bricks.append(rect)

 return bricks

Now, scroll back down to just before this line at the start of the main loop:

Now add this line just above the ‘while True’:

bricks = createBricks('brick.png', 5, 10)

We return the list of brick data directly into our ‘bricks’ variable. This

means that we don’t need to create a variable earlier and add a global line

in our function.

USE GLOBAL VARIABLES SPARINGLY!

Global variables can and should be avoided, and we’ll see how

throughout this book. Rather than teaching those techniques now and

muddying the waters, it’s best to let this infraction slip and enjoy our

first game!

Save and run the game. It should work as before, but the cool thing is

that now you can easily change the number of rows and columns of bricks

just by changing the parameters passed to ‘createBricks.’

Chapter 12 User-Defined Functions

139

�Conclusion
In this chapter we have explored the first Python example of code reuse:

functions. Functions allow us to write macro programs that perform a

single task, for example, displaying sprites, saving the game, or setting up

the game screen.

You can pass additional information to functions by giving values to

the formal arguments (parameters) listed in parentheses after the function

name. Each parameter should have a name that describes what they will

be used for, for example, ‘playerData,’ ‘width,’ ‘enemySprite,’ etc.

Sometimes not all parameters are required for a function and you

can add default values for each argument. You can also specify a named

parameter when you call a function if there are multiple defaulted values

and you only want to specify one or two.

Chapter 12 User-Defined Functions

141© Sloan Kelly 2019
S. Kelly, Python, PyGame, and Raspberry Pi Game Development,
https://doi.org/10.1007/978-1-4842-4533-0_13

CHAPTER 13

File Input and Output
Being able to save and load files from disk is an important part of game

development. Assets such as levels, player sprites, etc., are loaded from

files stored on disk. Progress is saved to disk to allow players to resume

their game from when they last played.

In this section we will look at the basics of file input and output as well

as introduce a way to store ordered data like the dictionary container we

introduced in Chapter 7.

To save and load data, your script must import the ‘os’ (short for

Operating System) module to access files on the disk.

�Reading a File from Disk
This program reads the source of the program from disk and displays the

contents to the screen:

import os

f = open('readmyself.py', 'r')

for line in f:

 print(line)

f.close() # ALWAYS close a file that you open

142

The open keyword’s first argument is the file that we want to access.

The second argument is the mode that we want to access the file:

•	 ‘r’ – Read the contents of the file

•	 ‘w’ – Write data to the file

•	 ‘a’ – Append (add on to the end of an existing file) data

to the file

The default is ‘r’ for read, so we could omit this argument in this

instance. Finally, this is for text mode only. This means that if we pass a

‘\n’ it will be converted to the platform-specific line ending. On UNIX and

Raspbian this is ‘\n’ but on Windows it‘s ‘\r\n’.

You can add ‘b’ to the access mode parameter (e.g., ‘rb’ or ‘wb’) to

specify binary mode. This mode is commonly used for things like images

or complex save data.

The open keyword returns a File object. We can use this to read

information from the file, or write out data, depending on what we want to do.

DON’T FORGET TO CALL close() ON ANY FILE YOU OPEN!

Save the program as ‘readmyself.py’ inside a folder called ‘ch13’ inside

the ‘pygamebook’ folder and run it. The program will display the content,

but it adds blank lines between each line of the code:

import os

f = open('readmyself.py', 'r')

for line in f:

 print(line)

f.close()

They are not there in the file, so where do they come from? Well, on

disk, each line is terminated with a ‘\n’ which is a newline, and the print

keyword adds its own newline making those empty lines.

Chapter 13 File Input and Output

143

To get around this, you can add .rstrip(‘\n’) to each print, like so:

print(line.rstrip('\n'))

The rstrip() function returns a copy of the string where all the

specified characters have been removed (stripped) from the end of the

string. By default, this is all whitespace characters, but in this case we only

want to strip out the ‘newline’ character.

�Writing Data to a File
Writing text to a file uses the write method of the file object. This next

program takes a list of high scores and writes it out to a text file.

players = ['Anna,10000', 'Barney,9000', 'Jane,8000', 'Fred,7000']

The list contains the names of the players and their scores separated by

a comma.

f = open('highscores.txt', 'w')

The file is opened in ‘write’ mode because we are sending data to the

file. The file’s name can be whatever you want it to be, but it should be

something that makes sense. It doesn’t even have to end in .txt.

for p in players:

 f.write(p + '\n')

All the values in the list are cycled through and the write method of the

File object is called with the list item followed by a ‘\n’. If we didn’t include

that, the file would have all the names and scores mashed together on a

single line.

f.close()

Chapter 13 File Input and Output

144

You must always remember to close the file when you’re finished with

it. When I’m writing a file read/write, I always write the open and close

lines first, then code what I want to do with the file. This means that I never

forget to close the file.

Locate the ‘highscores.txt’ file on disk and enter the following

command:

$ more highscores.txt

You should see the following output:

Anna,10000

Barney,9000

Jane,8000

Fred,7000

While this is what we want, the internal structure of the data is wrong.

We typically do not store the player name and their score as a single string.

Instead, we use a container of some kind.

�Reading and Writing Containers to a File
There are two methods for reading and writing complex data to a file.

The first method that will be illustrated is the manual write-your-own

format. The second will be using the JSON format to organize our data

so that the structure is maintained in the file.

Writing data in memory to a file is called serialization and reading

the data back from a file into memory is called deserialization. Code the

writes data to disk is called a serializer and code that reads data from

a disk is called a deserializer. We will look at writing our own serializer

and deserializer and then using Python’s provided JSON library to make

reading and writing complex data to and from a disk easier.

Chapter 13 File Input and Output

145

WRITING DATA FROM MEMORY TO A FILE IS CALLED
SERIALIZATION

READING DATA FROM A FILE TO MEMORY IS CALLED
DESERIALIZATION

Typically, you will write your own serialization methods when you

have a proprietary data structure or format or if you want to obfuscate

(scramble and muddle) what you are storing to disguise what you are

doing from potential hackers of your game.

�Writing Your Own Serializer
The player and their score are related but should not be stored together in

a single string. Instead, the high score table will be a dictionary containing

the player’s names (the key) and their scores (the value):

players = { 'Anna': 10000, 'Barney': 9000, 'Jane': 8000,

'Fred': 7000 }

We can iterate through the values in the dictionary using the ‘for’

keyword and obtaining the key for each element in turn. With the key, we

can unlock the value like so:

for p in players:

 print(p, players[p])

This will display the following (almost familiar) output:

Anna 10000

Barney 9000

Jane 8000

Fred 7000

Chapter 13 File Input and Output

146

Create a new program called ‘serializer.py’ and enter the following

code:

def serialize(fileName, players):

 f = open(fileName, 'w')

 for p in players:

 f.write(p + ',' + str(players[p]) + '\n')

 f.close()

The serialization method takes two parameters. The first is the name

of the file the high score table will be written to and the second is the

dictionary containing the player names and scores. Wrapping the score

inside the str() function converts the value to a string so that we can use

string concatenation (adding two or more strings together).

players = { 'Anna': 10000, 'Barney': 9000, 'Jane': 8000,

'Fred': 7000 }

serialize('highscores.txt', players)

The ‘players’ dictionary is created just above the call to the serialize

function – no need to add ‘global’ inside the function either because the

code does not change the ‘players’ dictionary and we are passing it as a

parameter.

This gives us the format that we had before because the same

information is written to the file:

Anna,10000

Barney,9000

Jane,8000

Fred,7000

Now, how do we read the data back from the file and into memory?

Chapter 13 File Input and Output

147

�Writing Your Own Deserializer
The deserialization has a twist because the data is in a string format – we

are writing to a string file after all – and the name and score are separated

by a comma (,). Comma separated values are quite common and there

is a function called ‘split()’ that will make separating string values easier.

Splitting a string returns an array of strings:

‘my,string,here’ will split to become [‘my’, ‘string’, ‘here’]

To ensure that our score is stored in the correct data type the ‘int()’

function is used. Putting this all together our deserialization function looks

like this:

def deserialize(fileName, players):

 f = open(fileName, 'r')

 for entry in f:

 split = entry.split(',')

 name = split[0]

 score = int(split[1])

 players[name] = score

The function takes two parameters; the first is the name of the file that

contains the high score data and the second is the player’s dictionary.

Each line is read in from the file and the split() function is called using

the comma (,) as the separator. This will split the values into the player

name and score. An entry to the dictionary is added where the name is the

key and the integer version of the score is the value.

players = { }

deserialize('highscores.txt', players)

print(players)

Chapter 13 File Input and Output

148

The ‘players’ variable is set to be a blank dictionary. Calling the

function and displaying the contents:

{'Anna': 10000, 'Barney': 9000, 'Jane': 8000, 'Fred': 7000}

�JSON
JSON stands for JavaScript Object Notation and is a common way for

systems to serialize and deserialize data for storage or transmission across

a network. The format of a JSON object is very similar to the way that a

Python dictionary looks. In fact, they are almost identical. This is the high

score table formatted as a JSON string:

{"Anna": 10000, "Barney": 9000, "Jane": 8000, "Fred": 7000}

Spooky, right!?

Python provides the ‘json’ module to make reading and writing JSON

objects easier through the ‘json’ object’s ‘dump()’ and ‘load()’ methods.

To use JSON you must add the following line to the top of your

program with the rest of the imports:

import json

�JSON Serialization
JSON serialization is done in one line. Revisiting the high score serializer

from earlier, we can rewrite the ‘serialize()’ function:

import json

def serialize(fileName, players):

 f = open(fileName, 'w')

 json.dump(players, f)

 f.close()

Chapter 13 File Input and Output

149

Instead of having to write out our own format, we let the ‘json’ object

do the heavy lifting. The ‘dump()’ method writes out the object, no matter

what it is, as a JSON formatted string to the file ‘f’.

players = { 'Anna': 10000, 'Barney': 9000, 'Jane': 8000,

'Fred': 7000 }

serialize('jsonhiscore.txt', players)

The part the calls the ‘serialize()’ method doesn’t change; it still passes

in two values, but this time I changed the location of the file. Handy things

functions!

To view the contents of the file:

$ more jsonhiscore.txt

This will display the following:

{"Anna": 10000, "Barney": 9000, "Jane": 8000, "Fred": 7000}

�JSON Deserializer
The ‘deserialize()’ function will change slightly because we will be

returning the ‘player’ dictionary and so we do not need to pass that in as

an argument. The ‘deserialize()’ method program looks like this:

import json

def deserialize(fileName):

 f = open(fileName, 'r')

 players = json.load(f)

 f.close()

 return players

The ‘load()’ method on the ‘json’ object is called passing in the file

handle. This function takes the string contents of the file and builds the

Chapter 13 File Input and Output

150

appropriate Python data structure. The output of this function is stored in

the variable ‘players’ and that is returned to the caller.

players = deserialize('jsonhiscore.txt')

print (players)

At the function call site, we can see that the ‘deserialize()’ method has

lost a parameter but gained a return value. The return value is a dictionary

and that is demonstrated by the output of the ‘print()’:

{'Anna': 10000, 'Barney': 9000, 'Jane': 8000, 'Fred': 7000}

�Handling Errors
File access can sometimes be a tricky action because files can become

locked by the system (virus checkers) or the file you expect to be there

might not exist. To handle this, you can use structured error handling (SEH

for short). Your program won’t crash, but you should handle the event

gracefully.

Create a new program in the ‘ch13’ folder called ‘filenotfound.py’.

It demonstrates a function that can be used to determine if a file exists

or not. The function tries to read the file. If it succeeds, the function

returns True, otherwise it returns False:

import os

def fileExists(fileName):

 try:

 f = open(fileName, 'r')

 f.close()

 return True

 except IOError:

 return False

Chapter 13 File Input and Output

151

The code that we want to ‘try’ to execute is placed inside the ‘try’ block.

If a problem happens, the code inside the ‘except’ is run. Code inside the

‘try’ block will stop as soon as it encounters a problem, so if you have a lot

of processing in there, some of that code might not execute so it’s best to

keep the ‘try’ block as short as possible.

print (fileExists('filenotfound.py'))

print (fileExists('this-does-not-exist.txt'))

The output of this program is

True

False

�Conclusion
You should now understand how to read from and write to a file.

Remember to close the file when you are done. Don’t keep the file open for

longer than you must; just open it, do what you need to do, and close it as

quickly as possible.

Serialization is the process of writing the contents of a variable in

memory to a file on disk. The code that writes to disk is called a serializer.

Deserialization is the process of reading the contents of a file on disk and

constructing an in-memory object from it. The code that reads data from

disk is called a deserializer.

You can write your own serialization/deserialization methods, but it

is often easier to use a predetermined format like JSON to perform these

operations.

Disk access is sometimes error prone because you are calling the

operating system. Occasionally the file may be in use and you will not have

access to it. Be sure to use structured error handling or SEH for short to

safely access files.

Chapter 13 File Input and Output

153© Sloan Kelly 2019
S. Kelly, Python, PyGame, and Raspberry Pi Game Development,
https://doi.org/10.1007/978-1-4842-4533-0_14

CHAPTER 14

Introducing
Object-Oriented
Programming
Until now we have been using Python as a structured language. Each line is

executed one after the other. If we want to reuse code, we create functions.

There is another way to program called object-oriented programming.

In object-oriented programming we create little objects that not only

hold our data but group the operations – the things we want to do with

that data – with the data itself. The main features of object-oriented

programming, or OOP for short, are

•	 Encapsulation

•	 Abstraction

•	 Inheritance

•	 Polymorphism

The next two chapters will cover the basics of OOP and how it can be

used for your games. We will be using a lot of new terms in this chapter.

It is a whistle-stop overview of the topic, so don’t feel you have to run

through this quickly, please take your time.

154

�Classes and Objects
A ‘class’ is a definition of an abstract thing. The ‘class’ defines methods

(actions) that can be taken on the data (attributes) of the ‘instance.’ Class

definitions can be written in the same file as the rest of your Python game.

It is, however, more common to place classes in a file of their own.

Function and class definitions stored in a file are called modules. We’ve

used modules before to import additional functionality into our games, for

example, pygame, os, and sys.

An ‘instance’ of a class is called an ‘object.’ An ‘instance’ of a user-

defined class is much like ‘5’ is an instance of an integer, or “Hello, World”

is an instance of a string. Both ‘integer’ and ‘string’ are abstractions, and ‘5’

and “Hello, World” are instances of each respectively.

OOP allows you to chop your program into discrete bundles, like we

did with functions, but where all the data and the code associated with a

class are stored together.

�Encapsulation
Encapsulation is all about data privacy. The contents of a class – it’s state –

is kept private and is only accessible to the code inside the class.

The data contained inside a class is called a private field. Fields are

variables and can be changed and read directly by only the class that owns

them.

Fields can be exposed too, although in languages like Java, C#, and

C++ this is generally frowned upon. Instead, the internal fields are hidden

behind methods called getters (for getting data) and setters for giving a

value to a field. In either case fields are also known as attributes.

The functions that are exposed to others are called public methods.

These allow the outside code to interact with the class.

Chapter 14 Introducing Object-Oriented Programming

155

�Abstraction
Along with encapsulation you want to make your class as simple as possible.

You don’t want people using it to have to do some complex series of steps, or

to know too much about the internal workings of your class to use it.

This is where abstraction comes in. To turn on a games console

and start playing a game, you press the power button. This is a simple

interface – the button – that does a number of steps: performs a self-check

called a POST (power on self-test), loads code from the BIOS which in turn

launches the Operating System. All you had to do was push a button.

�Inheritance
Sometimes you will start writing a class and realize that it copies quite a

bit of code from another class. In fact, most of the code is the same as the

other class. If only there was a way to share that code. There is! It’s called

inheritance and it allows one class to derive from another. This way you

only have to write the specific code that changed from your base class.

Talking of which, a parent class is called a base class and a class that uses

another as a basis is called a subclass or derived class.

�Polymorphism
Polymorphism is from Greek and means many shapes. In OOP it is

sometimes necessary to alter subclasses. Polymorphism can go hand in

hand with inheritance. For example, we might have a Shape class that

Circle, Square, and Triangle are derived from. The Shape class has a

draw() method that the other classes implement drawing different shapes

onscreen.

Chapter 14 Introducing Object-Oriented Programming

156

�Why Should You Use OOP?
OOP allows us to create code that is

•	 Data hiding

•	 Reusable

•	 Easier to code and test separately

�Data Hiding
Rather than passing data around the program, or worse of all having global

data, the information is stored inside the classes. The data held in these

classes can only be accessed through methods exposed by the class. These

methods make up the interface, that is, how the class is accessed by the

other code in your game.

�Reusable
Much like functions, classes can be reused by multiple games. You can

build up quite a big library of classes over your years programming. Each

one of these classes can be used in subsequent projects.

�Easier to Code and Test Separately
On a larger project the workload can be divided between developers. With

the workload divided the programmers can write the classes and test them

in isolation from the rest of the game. By writing and testing the classes

separately you increase the chance of reusability because the classes do

not rely on each other and can work independently.

Chapter 14 Introducing Object-Oriented Programming

157

�The Ball Class
Let’s take an example of an object we’ve seen before: a ball. A ball can

be described by its size, shape, and color. These are its attributes. In a

game world, we can’t do much with a ball, but what we can do is update

its position, check for collisions, and draw it onscreen. These actions are

called methods.

Create a new folder inside ‘pygamebook’ called ‘ch14.’ Copy the ‘ball.

png’ image from the ‘Bricks’ project to this folder. Inside the folder create

a new file called ‘BallClass.py’. Add the following lines to the top of the file

to tell the shell where to find the Python executable and what modules we

will require:

#!/usr/bin/python

import pygame, os, sys

from pygame.locals import *

In Python we would describe the ball class like this:

class Ball:

A class is defined using the class keyword. You must give your class a

name. Something short and meaningful is perfect, but avoid plurals. If you

have a collection of items (like balls) use BallCollection rather than Balls

for the name of the class.

 x = 0

 y = 200

 speed = (4, 4)

 img = pygame.image.load('ball.png')

Chapter 14 Introducing Object-Oriented Programming

158

These variables are called ‘member fields’ and they are stored on a

per-object basis. This means that each object gets a separate bit of memory

for each field. In our Ball class, we have four such member fields: one each

for the coordinates on the x- and y-planes, the ball speed, and one for the

ball’s image.

 def update(self, gameTime):

 pass

Methods are defined as you would a function with the def keyword, the

method/function name, and the parameter list. The major difference is the

use of the ‘self’ keyword as the first entry of the parameter list.

Earlier I mentioned that the member fields are per object. The ‘self’

keyword is used because Python passes in a reference to the object being

used for that operation. Whereas the data is different for each object, the

code is not. It is shared between all instances of the class. This means that

the same piece of code that updates a ball is used by all instances of the

Ball class.

You must always put a ‘self’ keyword as the first argument in your

method’s parameter list, even if you have no other parameters.

THE FIRST ARGUMENT IN A CLASS METHOD’S PARAMETER
LIST IS ALWAYS ‘self’

There’s a new keyword in there, and this isn’t part of OOP but it’s vital

in this example. We’ve produced what is effectively a stub. This means that

our class doesn’t do much. None of the methods perform any reasonable

operation either, but because Python can’t have an empty block, we must

use the ‘pass’ keyword instead. This would be the equivalent in a C-style

language of doing ‘{ }’.

 def hasHitBrick(self, bricks):

 return False

Chapter 14 Introducing Object-Oriented Programming

159

This method will return true if the ball has hit a brick. In our stub-code,

we always return False.

 def hasHitBat(self, bat):

 return False

Our stub method for testing whether the ball has hit the bat:

 def draw(self, gameTime, surface):

 surface.blit(self.img, (self.x, self. y))

This isn’t a stub because we know exactly how this will be achieved.

We use the main surface to blit our image to the screen at the correct x-

and y-coordinates. To access the object’s member field, we must use the

‘self’ keyword. Attributes and methods belonging to the current object

are accessed through ‘self’ followed by a dot (‘.’) followed by the attribute

or method. When calling the method, you don’t pass in ‘self,’ Python will

handle that for you. ‘self’ is only placed in the parameter list at the method

declaration.

if __name__ == '__main__':

Python knows the name of each module – remember that a Python

file that contains functions and/or class definitions is a module – that it is

running because it is the name of the file without the ‘.py’ extension.

When you execute a Python script using one of the following methods:

$./myprogram.py

$ python3 myprogram.py

The entry file is given a special name, so instead of ‘myprogram,’ the

name of the entry point file is ‘__main__’. We can use this to our advantage

because it means that we can put our classes in separate files; import them

as required; and more importantly, test them in isolation.

This is the beauty of OOP: the fact that you can take small objects, test

them in isolation, and then combine them into a much larger program.

Chapter 14 Introducing Object-Oriented Programming

160

In simplest terms, this ‘if’ statement checks to see if this is the

main entry point into our program, and if it is it will run the code block

underneath. If it is not, the code block underneath will be ignored.

We don’t have to remove this code when we use the ‘Ball’ class in

other programs because it will be ignored.

 pygame.init()

 fpsClock = pygame.time.Clock()

 surface = pygame.display.set_mode((800, 600))

�Creating an Instance of the Class
This is our almost-standard initialization code for PyGame. We initialize

PyGame and create a clock to clamp our game to 30 frames per second.

We create a surface that is 800×600 pixels.

 ball = Ball()

To create an instance of a class, this is all that is required: you assign

a new instance of the class to a name, just as you would when you assign

a number to a name. The major difference is the parentheses at the end

of the assignment. This allows for parameters to be passed to a special

method called a constructor. We’ll see what a constructor in Python looks

like later.

 while True:

 for event in pygame.event.get():

 if event.type == QUIT:

 pygame.quit()

 sys.exit()

We’ve employed the same code as in the Bricks program to ensure that

we listen for system events, especially when those events tell us to close the

window.

Chapter 14 Introducing Object-Oriented Programming

161

The ball’s position is updated by calling the ‘update()’ method of the

ball object. The implementation of this method will be coded as follows;

remember it just contains ‘pass’ for now:

 ball.update(fpsClock)

Our display update starts with this line:

 surface.fill((0, 0, 0))

Clear the screen for drawing. We don’t bother with creating colors

here, just passing in a tuple representing the Red, Green, and Blue

components (all zero is black) is good enough for our test code.

 ball.draw(fpsClock, surface)

In this line we call the draw() method on the ball object we created a

few lines earlier. Although the method signature has three arguments (self,

gameTime, and surface) we don’t explicitly pass in ‘self.’ This is passed in

my Python itself as the ‘ball’ instance of the Ball class.

 pygame.display.update()

 fpsClock.tick(30)

Finally, we update the display to flip the back buffer to the front buffer and

vice versa. We also tick the clock to ensure a steady 30 frames per second.

�The Ball update( ) Method
When we run the program it won’t do much; it will in fact just draw the ball

in the top left-hand corner of the playing screen. Go back up to the ball’s

update() method and change it to look like this:

 def update(self, gameTime):

 sx = self.speed[0]

 sy = self.speed[1]

Chapter 14 Introducing Object-Oriented Programming

162

We can’t assign values directly to tuples so we’ll copy the values into

local variables; it saves us typing as well. We can reassign the tuple later.

 self.x += sx

 self.y += sy

 if (self.y <= 0):

 self.y = 0

 sy = sy * -1

 if (self.y >= 600 - 8):

 self.y = 600 - 8

 sy = sy * -1

 if (self.x <= 0):

 self.x = 0

 sx = sx * -1

 if (self.x >=800 - 8):

 self.x = 800 - 8

 sx = sx * -1

 self.speed = (sx, sy)

Any changes to ‘sx’ and ‘sy’ will be reassigned to the ‘speed’ member

field.

Save and run the program. You should see the ball bouncing around

the screen.

�Constructors
A constructor is a special method that is called when an object is

instantiated. The method isn’t called using the conventional calling

method with the object, a dot, and the method name. You’ve actually been

calling the constructor when you created the ball:

ball = Ball()

Chapter 14 Introducing Object-Oriented Programming

163

Although you didn’t explicitly create a constructor, Python creates

one for you. It doesn’t contain any code and it would look something like

this (don’t ever do this, it’s not worth it; just let Python create one for you

behind the scenes):

def __init__(self):

 pass

The double underscores before and after a name, like __init__, are

special method names used by Python. When you want to do something

different from the default behavior you will override the default method

with your own. Python describes these names as ‘magic’ and as such you

should never invent your own and only use them as documented. Like

when we want to create our own constructors.

In Python the constructor method is called init. It takes at least one

parameter, the ‘self’ keyword. In our Ball class, we’ll create our own

constructor. Remove all these lines from the class:

x = 0

y = 24

speed = (4, 4)

img = pygame.image.load('ball.png')

Replace them with

 def __init__(self, x, y, speed, imgPath):

 self.x = x

 self.y = y

 self.speed = speed

 self.img = pygame.image.load(imgPath)

Chapter 14 Introducing Object-Oriented Programming

164

Notice that we have to add ‘self.’ to the name of the member field

when we read or write values to it. This is the same when we’re in the

constructor. Scroll down the source code to the ball initialization line and

change that to

 ball = Ball(0, 200, (4, 4), 'ball.png')

This will pass in the start coordinates, speed, and image file used for

the ball graphic to the Ball instance that is created. As with functions, the

ability to pass values to a constructor is very powerful and allows your

objects to be used in many situations.

�SOLID
What does all this mean? Well, in an OOP language we have created a class

to represent our Ball. We don’t care what happens inside that class so long

as it does what we expect it to do. Although we will be writing the classes

in this book ourselves, we could farm out the work to other developers and

give them a specification or interface to code to. So for example, all action

objects must have an update() method that takes in an FPS clock.

Classes describe attributes and methods that describe and perform

actions, respectively, of an abstract data structure. There is an acronym

that describes five principles of object design. For our games, we will try to

adhere to these principles:

•	 Single responsibility

•	 Open-closed principle

•	 Liskov substitution

•	 Interface segregation

•	 Dependency inversion

Chapter 14 Introducing Object-Oriented Programming

165

The initials of these spell out SOLID. While it is not important to

use these techniques in all your games, you should strive to make your

classes in such a way that they try to adhere to the principles laid out in

the following sections. You may skip this and move onto the conclusion if

you wish.

�Single Responsibility
Each class should have a single responsibility and that responsibility

should be contained within the class. In other words, you have a ball

class and its functionality should be wrapped within that class. You

should not implement additional functionality, like a Bat inside that

same class. Create a separate class for each item. If you have lots of space

invaders, you only need to create one Invader class, but you can create an

InvaderCollection class to contain all your invaders.

�Open-Closed Principle
Your class should be thoroughly tested (hint: name ==‘ main ’) and should

be closed from further expansion. It’s OK to go in and fix bugs, but your

existing classes shouldn’t have additional functionality added to them

because that will introduce new bugs. You can achieve this in one of two

ways: extension or composition.

With extension, you are extending the base class and changing the

existing functionality of a method. With composition, you encapsulate the

old class inside a new class and use the same interface to change how the

caller interacts with the internal class. A class interface is just the list of

methods (the actions) that can be performed on the class.

Chapter 14 Introducing Object-Oriented Programming

166

�Liskov Substitution
This is by far the trickiest of all the SOLID principles. The idea behind

this principle is that when extending a class the subclass should act no

different than the class it extends. This is also known as the substitutability

of a class.

�Interface Segregation
Interface segregation means that you should code to the interface, rather

than the implementation. There are other ways to achieve this in other

OOP languages, but Python uses something called Duck Typing.

In certain programming languages like Java, C#, and C++, an object’s

type is used to determine if it is suitable. In Python, however, suitability is

determined by the presence of the method or property rather than the type

of the object.

If it walks like a duck and it quacks like a duck, it’s a duck

Python will try and call a method on an object with the same name

and parameters even if they’re not the same object. Take this example

program. We create two classes: Duck and Person. Each class has a method

called Quack(). Watch what happens in the makeItQuack() function. The

parameter that is passed gets its Quack() method called

class Duck:

 def Quack(self):

 print ("Duck quack!")

class Person:

 def Quack(self):

 print ("Person quack!")

Chapter 14 Introducing Object-Oriented Programming

167

def makeItQuack(duck):

 duck.Quack()

duck = Duck()

person = Person()

makeItQuack(duck)

makeItQuack(person)

We have sort of seen Duck Typing before when we created the add()

function to add two things together; integers, real numbers, strings, and

tuples all worked because they can all be added together using the plus

(‘+’) operator.

�Dependency Inversion
Last is dependency inversion. Dependency inversion is a form of decoupling

where higher-level modules (classes) should not depend on lower-level

modules (classes). They should instead both depend on abstractions.

Second, abstractions should not depend on details. Details should depend

on abstractions. Let’s create an example to better illustrate this.

class Alien(object):

 def __init__(self):

 self.x = 0

 self.y = 0

 def update(self):

 self.x = self.x + 5

 def draw(self):

 print("%d, %d" % (self.x, self.y))

alien1 = Alien()

alien1.update()

alien1.draw()

Chapter 14 Introducing Object-Oriented Programming

168

The Alien class breaks the Open/Closed principle because it is closed

for extension; we’d have to create a new class if we wanted to have an alien

that moved diagonally. What we need is another class to calculate the new

position of the alien, like this:

class Strafe(object):

 def update(self, obj):

 obj.x = obj.x + 5

We have a separate class to represent how each alien in our game

moves across the screen. These classes can be passed into the Alien object

when it is created. Let’s say we want to move an alien diagonally:

class Diagonal(object):

 def update(self, alien):

 obj.x = obj.x + 5

 obj.y = obj.y + 5

The movement classes Strafe and Diagonal don’t need to know what

they are moving, so long as they have fields called ‘x’ and ‘y.’ Similarly, the

Alien class does not need to know what the Strafe and Diagonal classes do

so long as they have an update() method.

class Alien(object):

 def __init__(self, movement):

 self.x = 0

 self.y = 0

 self.movement = movement

 def update(self):

 self.movement.update(self)

Chapter 14 Introducing Object-Oriented Programming

169

 def draw(self):

 print("%d, %d" % (self.x, self.y))

class Strafe(object):

 def update(self, obj):

 obj.x = obj.x + 5

class Diagonal(object):

 def update(self, obj):

 obj.x = obj.x + 5

 obj.y = obj.y + 5

alien1 = Alien(Strafe())

alien2 = Alien(Diagonal())

alien1.update()

alien1.update()

alien2.update()

alien2.update()

alien1.draw()

alien2.draw()

It seems a little over the top to create separate classes for each

movement method, but it does mean that in this example you wouldn’t have

to create a new alien class for each movement method. For example if you

wanted to add a vertical movement it’s a simple matter of adding a few lines

of code. In fact, the movement class could take input from another player

from the other side of the world, the Alien class would never need to know.

Chapter 14 Introducing Object-Oriented Programming

170

�Conclusion
This has been a short introduction to OOP. By this point you should

understand the following:

•	 Attributes are member fields and contain data that

describes the class.

•	 Methods are functions that belong to a class that

perform actions on the class.

•	 Self is used to reference.

•	 A constructor can be used to initialize member fields

when the object instance is created.

•	 Python uses Duck Typing; when you see a bird that

walks like a duck, swims like a duck, and quacks like a

duck … it’s a duck.

As an exercise, create a new blank file called BatClass and implement

a class called ‘Bat.’ You can use the code from the Brick game as a starting

point.

Chapter 14 Introducing Object-Oriented Programming

171© Sloan Kelly 2019
S. Kelly, Python, PyGame, and Raspberry Pi Game Development,
https://doi.org/10.1007/978-1-4842-4533-0_15

CHAPTER 15

Inheritance,
Composition, and
Aggregation
When most people learn about object-oriented programming, they learn

three things:

•	 Objects have attributes (data) that contain the object’s

state.

•	 Methods that control access (change or view) the

object’s state.

•	 Objects can be extended using a technique called

inheritance.

There are others, but those are the three main things that people

remember about their first introduction to object-oriented programming.

Most people fixate on that last one: object extension by inheritance.

That’s true in a lot of cases, but there are ways that objects can be extended

using techniques called composition and aggregation. This section will

introduce the three methods of object extension.

172

�Inheritance
Inheritance occurs at the very base level of the Python language. When

you create a new class, you are extending a base class called ‘object.’ This

simple object

class Foo:

 def bar(self):

 print("bar")

foo = Foo()

foo.bar()

can be rewritten explicitly as

class Foo(object):

 def bar(self):

 print("bar")

foo = Foo()

foo.bar()

Indeed, if you are using the newer Python syntax you are encouraged

to use this syntax. You will see it used in the ‘Invaders’ game later in this

very text. For more information regarding the old way vs. the new way,

please visit https://wiki.python.org/moin/NewClassVsClassicClass.

USE THE NEWER MyClass(object) SYNTAX WHEN DEFINING
CLASSES.

Taking this a step further, let’s create two classes. The first is a base class.

A base class contains the basic level of functionality that is required

to perform a given set of actions. It can contain methods that are

placeholders for actions that will be implemented by a child class.

A child class is any class that derives from another class. In actuality,

every class you create is a child class of the Python base ‘object’ class.

Chapter 15 Inheritance, Composition, and Aggregation

https://wiki.python.org/moin/NewClassVsClassicClass

173

�Base and Child Classes
Create a new folder inside ‘pygamebook’ called ‘ch15’ and inside this new

folder, create a file called ‘baseclass.py’ and enter the following code:

class MyBaseClass(object):

 def methodOne(self):

 print ("MyBaseClass::methodOne()")

When a class derives from another class, remember to put the base

class’ name in parentheses after your new class’ name:

class MyChildClass(MyBaseClass):

 def methodOne(self):

 print ("MyChildClass::methodOne()")

We’ll create a function to call the methodOne() method of each class:

def callMethodOne(obj):

 obj.methodOne()

This method takes in a single parameter ‘obj’ and calls the

methodOne() method of that object.

instanceOne = MyBaseClass()

instanceTwo = MyChildClass()

It then creates an instance of the ‘MyBaseClass’ and ‘MyChildClass’

classes.

callMethodOne(instanceOne)

callMethodOne(instanceTwo)

Using the function, we pass in our instances of the base and child

classes. Save and run the program. You should see

MyBaseClass::methodOne()

MyChildClass::methodOne()

Chapter 15 Inheritance, Composition, and Aggregation

174

The function is called and it, in turn, takes the parameter and calls the

methodOne() method of the object that it receives. Add another line after

the last callMethodOne() line:

callMethodOne(5)

Run the program. You should see output similar to

MyBaseClass::methodOne()MyChildClass::methodOne()

Traceback (most recent call last):

File "baseclass.py", line 26, in <module>

callMethodOne(5)

File "baseclass.py", line 17, in callMethodOne

obj.methodOne()

AttributeError: 'int' object has no attribute 'methodOne'

This is because the ‘int’ object that is built into Python does not

contain a method called ‘methodOne.’

Python uses a technique called duck typing.

When I see a bird that walks like a duck and swims like a duck
and quacks like a duck, I call that bird a duck.

This means that when Python sees a method call on an object,

it assumes that that message can be passed to it. The benefit of this

technique is that inheritance has been almost superseded by a technique

called programming to the interface.

Programming to the interface means that you don’t need to worry

about the internal workings of the object; you just need to know what

methods are available.

There is still an applicable use for inheritance though. For example,

you may have a base class that provides much of the functionality required.

Subclasses would then implement their specific methods.

Chapter 15 Inheritance, Composition, and Aggregation

175

�Programming to the Interface
Let’s take a look at another example. Rather than using inheritance, we’ll

use the same method for two different objects:

class Dog(object):

 def makeNoise(self):

 print ("Bark!")

class Duck(object):

 def makeNoise(self):

 print ("Quack!")

animals = [Dog(), Duck()]

for a in animals:

 a.makeNoise()

Our two classes – Dog and Duck – both contain a method called

makeNoise(). A list of animals is created that contains an instance of

Dog and Duck classes. Iteration through the list is then used to call the

makeNoise() method for each object.

�A Note About Constructors and Base Classes
To round off inheritance, we need to mention the recommended steps

in calling the base class of an object’s constructor. Take the following two

classes as an example:

class Foo(object):

 x = 0

 def __init__(self):

 print ("Foo constructor")

 self.x = 10

Chapter 15 Inheritance, Composition, and Aggregation

176

 def printNumber(self):

 print (self.x)

class Bar(Foo):

 def __init__(self):

 print ("Bar constructor")

b = Bar()

b.printNumber()

When you run this code you will get the following output:

Bar constructor

0

Even though ‘Bar’ extends ‘Foo,’ it hasn’t initialized the ‘x’ field

because the init () method of the parent class was not called. To properly

do that, change the constructor of ‘Bar’ to

 def __init__(self):

 super(Bar, self).__init__()

 print ("Bar constructor")

What is going here? The super() method allows us to reference the base

class; however, the base class needs to know two things: the derived class

type and the instance. We achieve this by passing in the type of our derived

class – ‘Bar’ in this case and ‘self.’ We can then call the method __init__() to

set up our fields correctly. When you run the program, you should see

Foo constructor

Bar constructor

10

You must always call your base class’s constructor before you write any

other code in your derived class’s constructor. This is especially true if you

are creating a base class with lots of functionality and inheriting from it.

Make sure you call the base class’s constructor!

Chapter 15 Inheritance, Composition, and Aggregation

177

�Composition
Composition is the containment of one or more objects inside another.

With composition, the contained objects’ creation and destruction are

controlled by the container object. The container object generally acts as a

controller for the contained objects. For example:

class Alien:

 def __init__(self, x, y):

 self.x = x

 self.y = y

 def draw(self):

 pass

The ‘Alien’ class contains just the x- and y-coordinates that would be

used to display an alien at a particular point onscreen. Other attributes

that you might want to add would be the type of alien or its shield strength.

class AlienSwarm:

 def __init__(self, numAliens):

 self.swarm = []

 y = 0

 x = 24

 for n in range(numAliens):

 alien = Alien(x, y)

 self.swarm.append(alien)

 x += 24

 if x > 640:

 x = 0

 y += 24

The __init__() method takes a single parameter that represents the

number of aliens in the swarm. The logic in the method ensures that the

swarm is evenly distributed across the screen. Each alien is separated by 24

pixels across and 24 pixels down.

Chapter 15 Inheritance, Composition, and Aggregation

178

 def debugPrint(self):

 for a in self.swarm:

 print ("x=%d, y=%d" % (a.x, a.y))

 def isHit(self, x, y):

 alienToRemove = None

 for a in self.swarm:

 print ("Checking Alien at (%d, %d)" % (a.x, a.y))

 �if x>=a.x and x <= a.x + 24 and y >= a.y and

y <= a.y + 24:

 print (" It's a hit! Alien is going down!")

 alienToRemove = a

 break

 if alienToRemove != None:

 self.swarm.remove(alienToRemove)

 return True

 return False

swarm = AlienSwarm(5)

swarm.debugPrint()

The ‘break’ keyword is used to exit from the enclosed loop. When the

‘break’ keyword is executed the control of the program jumps to the line

immediately after the loop statements. A related keyword is ‘continue.’

Continue stops processing the remaining statements in the current

iteration of the loop and moves control back to the top of the loop. Both

‘break’ and ‘continue’ work with any loop structure.

The Alien class is never called outside the AlienSwarm. It is created by

the AlienSwarm class, and any interaction with the outside world is also

done through this class.

Chapter 15 Inheritance, Composition, and Aggregation

179

�Aggregation
Aggregation is, conceptually, much like composition. A container object

has a link to other objects and it manipulates them in some form, through

a method or methods. However, the big difference is that the creation and

destruction of the objects are handled elsewhere outside of the class. With

aggregation, the container class must not delete objects that it uses.

Say we have a Collision class and we want to check if any of the player’s

bullets have hit an alien, we could implement something like this –

assuming Alien and AlienSwarm remain unchanged:

class Bullet:

 def __init__(self, x, y):

 self.x = x

 self.y = y

class Player:

 def __init__(self):

 self.bullets = [Bullet(24, 8)]

 self.score = 0

 def getBullets(self):

 return self.bullets

 def removeBullet(self, bullet):

 self.bullets.remove(bullet)

class Collision:

 def __init__(self, player, swarm):

 self.player = player

 self.swarm = swarm

 def checkCollisions(self):

 bulletKill = []

Chapter 15 Inheritance, Composition, and Aggregation

180

 for b in player.getBullets():

 if swarm.isHit(b.x, b.y):

 bulletKill.append(b)

 continue

 for b in bulletKill:

 self.player.score += 10

 print ("Score: %d" % self.player.score)

 self.player.removeBullet(b)

swarm = AlienSwarm(5)

player = Player()

collision = Collision(player, swarm)

collision.checkCollisions()

The Collision class is an aggregation, that is, it contains a reference to

two other classes: Player and AlienSwarm. It does not control the creation

and deletion of those classes.

This ties in with our SOLID principal; each class should have a single

purpose and should be independent of each other. In this case, our Player

class does not need to know about aliens, and likewise the AlienSwarm

class doesn’t need to know about players. We can use our interfaces to

create a class that sits in between the two to allow us (the programmer) to

determine if a collision has occurred.

�Conclusion
Python allows for standard OOP techniques but offers its own unique

twist: duck typing. By programming to the interface, we can ensure that

our classes can be written independently of each other.

PROGRAM TO THE INTERFACE TO KEEP YOUR CLASSES
SMALL AND NIMBLE

Chapter 15 Inheritance, Composition, and Aggregation

181© Sloan Kelly 2019
S. Kelly, Python, PyGame, and Raspberry Pi Game Development,
https://doi.org/10.1007/978-1-4842-4533-0_16

CHAPTER 16

Game Project: Snake
For our second game we are going to re-create the classic Snake game.

Snake has been with us since the late 1970s and, if you had a Nokia phone,

you probably had a version of the game on it. You control a snake, and you

move around the screen using the cursor keys. You must eat fruit to grow.

You are not allowed to touch the outside walls or yourself. Did I mention

that you are growing? See Figure 16-1.

Figure 16-1.  Snake game running

182

In this game we are going to introduce the following:

•	 Class declarations and instances (objects)

•	 File input

•	 Cell-based collision detection

•	 Functions

•	 Text fonts

Snake will use more functions than object-oriented techniques. For

the most part, our objects in this game will be for organizational purposes

only. There will be very little OOP involved.

�Functions
The following functions are defined:

•	 drawData

•	 drawGameOver

•	 drawSnake

•	 drawWalls

•	 headHitBody

•	 headHitWall

•	 loadImages

•	 loadMapFile

•	 loseLife

•	 positionBerry

•	 updateGame

Chapter 16 Game Project: Snake

183

We can create a structured diagram in Figure 16-2 showing how these

functions all work together.

Main

updateGame

[Game Over]

[Collision][Drawing]

headHitsWallheadHitsBodydrawSnake drawDatadrawWalls

Figure 16-2.  Structured diagram for the Snake game

The structured diagram shows how each function interacts with each

other. The functions enclosed in parentheses don’t exist. They are used to

group together like functions. For example, drawing the game calls three

separate functions. We could create another function – I will leave that to

the reader’s discretion.

�Snake Framework
The basic outline for the Snake game is shown in the following. Create

a new file in your working folder and call it snake.py. Type the code in

exactly as follows. Don’t forget to read the comments as you go to help you

Chapter 16 Game Project: Snake

184

understand what’s going on and what the intent of the author (me) was.

We’ll replace some of the comments with code later on in this section. You

should include the comments in your own listings as you type the code.

This will act as placeholders for the later code.

#!/usr/bin/python

import pygame, os, sys

import random

from pygame.locals import *

By now you should recognize the familiar start to our programs! The

hash-bang and the import of the Python modules we need: PyGame, OS,

and System. We’re also importing a new one for this game: Random. This

module will allow us to generate a random starting position for the berry.

pygame.init()

fpsClock = pygame.time.Clock()

surface = pygame.display.set_mode((640, 480))

font = pygame.font.Font(None, 32)

To keep the map size down, the game will run in a 640×480 window.

We’ll see in a second how to create the map. Our PyGame initialization

and clock to keep everything at 30 frames per second are also initialized

here. Our last bit of initialization is to create a font object using the default

font with a size of 32 pixels.

class Position:

 def __init__(self, x, y):

 self.x = x

 self.y = y

Our first class is a simple one: Position. This holds the position of a

map block. We use the constructor (in Python, that’s the init () method) to

pass in the x- and y-coordinates.

Chapter 16 Game Project: Snake

185

class GameData:

 def __init__(self):

 self.lives = 3

 self.isDead = False

 self.blocks = []

 self.tick = 250

 self.speed = 250

 self.level = 1

 self.berrycount = 0

 self.segments = 1

 self.frame = 0

 bx = random.randint(1, 38)

 by = random.randint(1, 28)

 self.berry = Position(bx, by)

 self.blocks.append(Position(20,15))

 self.blocks.append(Position(19,15))

 self.direction = 0

The GameData holds just about everything we need to store about the

game. The majority of this data is for the player’s snake.

•	 lives – The number of lives the player has left.

•	 isDead – Is set to true when the snake’s head touches a

piece of the tail or a wall.

•	 blocks – The list of blocks that make up the tail of the

snake.

•	 tick – The running total used to count down to the next

animation frame. In milliseconds.

•	 speed – The default tick speed. Also in milliseconds.

•	 level – The current level of difficulty.

Chapter 16 Game Project: Snake

186

•	 berrycount – The number of berries consumed by the

snake in this level.

•	 segments – The number of segments added when a

berry is consumed. This value changes each level.

•	 frame – The current animation frame used to draw the

snake’s head. The snake has two frames of animation,

not unlike Pacman.

•	 direction – The current traveling direction of the snake.

0 is right, 1 is left, 2 is up, and 3 is down. The snake can

only move in one of those four directions. They also

cannot reverse direction. For example, if the snake is

traveling right, the player cannot move to the left. They

can move either up or down, or continue going right.

The snake starts out with two blocks that are represented by two

instances of the ‘Position’ class; that means that it has one head segment

and one tail segment. The number of segments grows every time a berry is

consumed.

Berry positions, bx and by, are used to position a berry at a location on

the game screen. These are stored in the ‘berry’ attribute of the GameData

class.

def loseLife(gamedata):

 pass

def positionBerry(gamedata):

 pass

def loadMapFile(fileName):

 return None

def headHitBody(gamedata):

 return False

Chapter 16 Game Project: Snake

187

def headHitWall(map, gamedata):

 return False

def drawData(surface, gamedata):

 pass

def drawGameOver(surface):

 pass

def drawWalls(surface, img, map):

 pass

def drawSnake(surface, img, gamedata):

 pass

def updateGame(gamedata, gameTime):

 pass

def loadImages():

 return {}

These are all the functions that were drawn on the structured diagram.

They will be discussed in detail when we start implementing the

functionality for the game.

images = loadImages()

images['berry'].set_colorkey((255, 0, 255))

Our images are loaded in using the loadImages() function. The images

are stored in a dictionary. The key is a string value, and the example given

shows that we are setting the color key of the ‘berry’ image to purple (Red

= 255, Green = 0, and Blue = 255). PyGame will not draw any pixel of that

image that matches the supplied color. This means that you can have

transparent pixels in your image. This is handy for windows or complex

shapes like a berry.

Chapter 16 Game Project: Snake

188

snakemap = loadMapFile('map.txt')

data = GameData()

quitGame = False

isPlaying = False

These local (to the main game loop) variables are used to store the

map, create an instance of the GameData class, a control variable to

determine if the user quits the game, and finally one to determine if the

user is playing the game. The default value is ‘False’ because we want to

start the game in “Game Over” mode to allow the user to choose whether

to play the game or exit the application.

while not quitGame:

 for event in pygame.event.get():

 if event.type == QUIT:

 pygame.quit()

 sys.exit()

In a real game you probably wouldn’t want to quit the game if the user

closed the window. Or, at the very least you would want to prompt them to

confirm the action. In this simple game, however, we just close the game

and quit to the desktop.

 if isPlaying:

 x = random.randint(1, 38)

 y = random.randint(1, 28)

Our screen size is 40 blocks along by 30 blocks down. For a 640×480

screen that means that we have a block size of 16×16 pixels. The random

value that is generated here will be used to place the berry that will be

consumed by the player-controlled snake.

Our random values are between 1 and 38 because we want to produce

a value in the range 1 to 38 inclusive. Our map is going to be a solid block

that makes up the border of the playing area. We’ll discuss this in detail in

a following section.

Chapter 16 Game Project: Snake

189

 rrect = images['berry'].get_rect()

 rrect.left = data.berry.x * 16

 rrect.top = data.berry.y * 16

Now that we have our random values for the x- and y-coordinates we

will assign them to the left and top fields of the berry image rectangle.

The coordinates are multiplied by 16 because each cell is 16×16 in size.

Do update stuff here

Our update routines will go here. This is just a placeholder comment.

This type of comment will be used throughout the book. If you see

comments as part of the ‘type in’ code, please include it with your own

source code. We will return to this point later on in the text, and if you

don’t have it, it could lead to confusion.

 isPlaying = (data.lives > 0)

This is a nice short form way to set the isPlaying variable to false if the

player has no lives left. You could easily rewrite this as an ‘if’ statement.

How would you go about that?

 if (isPlaying):

The value to isPlaying could have changed after the previous line. This

is why we do another if-check of this variable here.

 surface.fill((0, 0, 0))

 # Do drawing stuff here

 else:

If the game is not playing then it’s in the “Game Over” mode. Be careful

with this ‘else’ because it is paired with the previous ‘if ’ statement. The

“Game Over” mode displays a message to the user. If they want to play the

game again, the user must press ‘space’ on the keyboard.

Chapter 16 Game Project: Snake

190

 keys = pygame.key.get_pressed()

 if (keys[K_SPACE]):

 isPlaying = True

 data = None

 data = GameData()

If the user presses the spacebar, we set the isPlaying flag to true and

reset the data to a new instance of GameData. It is good practice when you

have finished with an object to set the variable that points to it to ‘None.’

 drawGameOver(surface)

The “Game Over” screen is drawn by calling the drawGameOver()

function.

 pygame.display.update()

 fpsClock.tick(30)

Our last lines flip the screen (double-buffered display) and clamp the

frame rate to a maximum of 30 frames per second. Save the program. The

program won’t run just now; we need to load the images and the map data

first before we can see anything onscreen.

�Images
The game needs the following images:

•	 berry.png – The berry that the snake eats

•	 snake.png – A multiframe image that contains all the

images used by the snake

•	 wall.png – A block that the snake cannot travel through

Chapter 16 Game Project: Snake

191

Our images are 16×16 except for snake.png, which is 144×16 pixels. The

reason for this is that all the images that we want for the snake are included

in the same file. See Figure 16-3.

Figure 16-3.  The frames of the snake

These images, as with all the examples in this book, can be

downloaded from http://sloankelly.net.

�Loading the Images
Copy or make the images and put them in the same directory as the snake.

py file. Locate the loadImages() function and change it to look like this:

def loadImages():

 wall = pygame.image.load('wall.png')

 raspberry = pygame.image.load('berry.png')

 snake = pygame.image.load('snake.png')

The images are loaded in separately, but we’re going to put them in a

dictionary to keep all the images together.

 return {'wall':wall, 'berry':raspberry, 'snake':snake}

The next step is to create and load the map that makes up the game

screen.

Chapter 16 Game Project: Snake

http://sloankelly.net

192

�The Game Map
The map for the game is held in a text file called map.txt. Create a new

file called ‘map.txt’ in the same folder as ‘snake.py’. In this file enter the

following text:

11

1000000000000000000000000000000000000001

1000000000000000000000000000000000000001

1000000000000000000000000000000000000001

1000000000000000000000000000000000000001

1000000000000000000000000000000000000001

1000000000000000000000000000000000000001

1000000000000000000000000000000000000001

1000000000000000000000000000000000000001

1000000000000000000000000000000000000001

1000000000000000000000000000000000000001

1000000000000000000000000000000000000001

1000000000000000000000000000000000000001

1000000000000000000000000000000000000001

1000000000000000000000000000000000000001

1000000000000000000000000000000000000001

1000000000000000000000000000000000000001

1000000000000000000000000000000000000001

1000000000000000000000000000000000000001

1000000000000000000000000000000000000001

1000000000000000000000000000000000000001

1000000000000000000000000000000000000001

1000000000000000000000000000000000000001

1000000000000000000000000000000000000001

1000000000000000000000000000000000000001

1000000000000000000000000000000000000001

1000000000000000000000000000000000000001

Chapter 16 Game Project: Snake

193

1000000000000000000000000000000000000001

1000000000000000000000000000000000000001

11

That’s 30 lines of text. The top and bottom lines are

11

And the rest of the lines are

1000000000000000000000000000000000000001

You can experiment with different patterns of 0s and 1s if you like. Each

‘0’ represents an open space that the snake can travel through. Each ‘1’

represents a wall block that will kill the snake if it is touched. Save this file

and open snake.py. Locate the loadMapFile() function and change it to

def loadMapFile(fileName):

 f = open(fileName, 'r')

 content = f.readlines()

 f.close()

 return content

The readlines() method reads each line of text in a file into a list. Save

the ‘snake.py’ file.

�Drawing the ‘Game Over’ Screen
If we run the game now, we will see nothing because we have not

implemented any of the drawing methods. Let’s start by showing the “Game

Over” screen. Locate the drawGameOver() function and change it to

def drawGameOver(surface):

 text1 = font.render("Game Over", 1, (255, 255, 255))

 �text2 = font.render("Space to play or close the window", 1,

(255, 255, 255))

Chapter 16 Game Project: Snake

194

Font’s render() method creates a PyGame surface that will fit the text

exactly. The parameters that the render() method takes are the string that

is to be displayed, the anti-aliasing level, and the color.

Anti-aliasing means that the text won’t appear with jaggy edges. In

Figure 16-4 you can see the effects of anti-aliasing vs. having no aliasing.

Figure 16-4.  The anti-aliased version of the font is shown in the
bottom half of the image

The image has been split down the middle and shows the anti-aliased

text to the left of the red line and the aliased version to the right.

 cx = surface.get_width() / 2

 cy = surface.get_height() / 2

 textpos1 = text1.get_rect(centerx=cx, top=cy - 48)

 textpos2 = text2.get_rect(centerx=cx, top=cy)

We’re using named arguments here because we don’t need to specify

all the values for the text positions. These two lines create the rectangles

that are used to place the text in the middle of the screen.

 surface.blit(text1, textpos1)

 surface.blit(text2, textpos2)

The blit() method of the surface instance passed to the function is used

to draw the text on the surface. Save and run the game. You should now see

the following screen (as shown in Figure 16-5) appear when you run the

game:

Chapter 16 Game Project: Snake

195

Close the window when you’ve finished. If you press ‘space’ the screen

will go blank and nothing will happen because we haven’t added the

functions to update or draw the screen. Let’s add the drawing functions now.

�Drawing the Game
The drawing of the snake, the playing area, and the game data (player’s

lives, score, and level text) are performed by three functions:

•	 drawWalls

•	 DrawSnake

•	 drawData

Figure 16-5.  The “Game Over” screen, as it appears when the game
starts

Chapter 16 Game Project: Snake

196

In ‘snake.py’, scroll down in the source code to the line that reads

Do drawing stuff here

Add the following lines just underneath that comment. Be sure that

you get the right number of tabs per line. The left column of each line

should start directly under the ‘#’ of the comment:

 drawWalls(surface, images['wall'], snakemap)

 surface.blit(images['berry'], rrect)

 drawSnake(surface, images['snake'], data)

 drawData(surface, data)

There isn’t a specific routine for drawing the berry, so we just call

the main surface’s blit() method directly. There is an order to how we

draw things onscreen. Images drawn on the screen after other images

will appear on top. So, the walls appear behind the snake, and the snake

appears behind the lives/score display.

�Drawing the Walls
The walls are drawn in the drawWalls() function. Locate this function in

the source code and change it to read

def drawWalls(surface, img, map):

The function takes three parameters. The first argument is the main

surface that we will draw our wall blocks on. The second is the image we

will use to represent a brick in the wall, and finally the third argument is

the map data. This is the data we loaded from the file earlier on.

Chapter 16 Game Project: Snake

197

 row = 0

 for line in map:

 col = 0

 for char in line:

 if (char == '1'):

For each character in the line we examine it. If the character is ‘1’ we

put down a block. Because we are keeping count of the row (variable ‘row’)

and column (variable ‘col’), calculating the onscreen position is just a

matter of multiplying each by 16. Why? Because our block image is 16×16

pixels and our file is not mapped per pixel. Instead, each character in the

map file represents a 16×16 block.

It is an array of characters arranged from zero to the maximum row

and column we have given. In this game’s case, that maximum is 40 blocks

by 30 blocks. For a 640×480 screen, that’s 16×16 pixels per block.

 imgRect = img.get_rect()

 imgRect.left = col * 16

 imgRect.top = row * 16

 surface.blit(img, imgRect)

The image rectangle’s left and top values are changed each time a

block is drawn to ensure the image is drawn to the surface at the right

position.

 col += 1

 row += 1

Save and run the game. When you press the spacebar to start the game,

you will see the wall around the playing field and the berry. Close the game

when you are ready and let’s start adding the lives, level, and score display.

See Figure 16-6.

Chapter 16 Game Project: Snake

198

�Drawing the Player Data
The player needs some feedback on how well they are doing. This is usually

an indicator of their score, the number of lives left, and usually the current

level. We will add code to the drawData() function to give our player’s

feedback. Locate the drawData() function in code and change it to this:

def drawData(surface, gamedata):

The function takes in two parameters. The first is the surface we will

draw the data on. The second is the actual game data itself. A new string

function is introduced called format. It’s similar to the one used for the

Figure 16-6.  The wall and berry displayed when the game is run
with the code up to this point

Chapter 16 Game Project: Snake

199

print() method, but the result can be stored in a variable. Instead of %d

and %s for numbers and strings, placeholders are used. The first variable is

{0}, the second is {1}, and so on:

 text = "Lives = {0}, Level = {1}"

 info = text.format(gamedata.lives, gamedata.level)

 text = font.render(info, 0, (255, 255, 255))

 textpos = text.get_rect(centerx=surface.get_width()/2, top=32)

 surface.blit(text, textpos)

The data is rendered as text using a tuple to inject the data into a string.

This is called string formatting and we saw this kind of code when we

looked at tuples in the previous sections.

Save the program at this point. You can run it if you wish. This time,

when the game starts you will see the player’s lives and current level at the

top of the screen.

�Drawing the Snake
Drawing the snake is a little more complex than our previous drawing

functions – that’s why I left it for last! Our snake image (the actual .png

file) is 144 pixels by 16, which means that it contains nine 16×16 images.

We need to somehow slice them up into individual images.

Locate the drawSnake() function in the code and change it to read

def drawSnake(surface, img, gamedata):

The function takes in three parameters. The first is the surface that the

snake is to be drawn on. The second is the snake image, and last the third

parameter is the GameData instance. This holds all the information about

our snake. Specifically, the blocks attribute of the GameData class contains

a list of coordinates in the range 0..39 for the column and 0..29 for the row.

The coordinates are stored as instances of the ‘Position’ class.

Chapter 16 Game Project: Snake

200

These coordinates are instances of the Position class. The blocks attribute

is a list and as the snake grows, the number of items in this list grows.

 first = True

This is set to true because the first block drawn is special. It is the head

of the snake. The image that we draw here depends on

•	 The direction the snake is facing

•	 Whether its mouth is open or not

Look at the snake image again in Figure 16-7.

Figure 16-7.  The snake image contains coded data for the snake’s
head and its tail section

There is actually a pattern to the sub-images. The last cell is the normal

tail block. The remaining eight blocks represent the head of the snake.

Their position in the array corresponds to the direction of the snake:

•	 0 – Right

•	 1 – Left

•	 2 – Up

•	 3 – Down

If we multiply the direction number – which is stored in GameData’s

direction attribute – by two we get the starting cell number for the image

we want. The snake’s head is animated, too – it opens and closes. All we

have to do is add the current frame (GameData’s frame attribute) to get the

required image.

Chapter 16 Game Project: Snake

201

 for b in gamedata.blocks:

 dest = (b.x * 16, b.y * 16, 16, 16)

We cycle through all the blocks (positions) of the snake in the list.

The destination is a simple calculation: the position multiplied by the

dimensions of a single cell (16×16 pixels) to give the screen coordinate.

 if first:

 first = False

 �src = (((gamedata.direction * 2) + gamedata.frame)

* 16, 0, 16, 16)

If we are at the head of the list, we draw the head of the snake.

Remember that we can draw a part of an image by specifying a tuple that

represents the starting x- and y-pixels of the sub-image and its width and

height.

For our snake, our sub-image’s x-coordinate is calculated using this

formula:

((direction * 2) + animation_frame) * 16

Our image is taken from the top of the sprite sheet, the top is where the

y-coordinate is 0 (zero). Our dimensions of width and height are also fixed

at 16×16 pixels.

 else:

 src = (8 * 16, 0, 16, 16)

For normal blocks, we just want to draw the last image in the snake.png

file. This is the rightmost 16×16 square, which happens to be the eighth

frame of the image. We could have hard-wired the value, but 8 * 16 makes

for a little more descriptive code in this case.

 surface.blit(img, dest, src)

Save and run the game and you will see the snake, the wall, and the

player data, as shown in Figure 16-8.

Chapter 16 Game Project: Snake

202

�Updating the Game
Static screens, as fun as they are, are no substitute for actually playing the

game! However, we haven’t implemented any routines to get player input,

check for collisions, or update the player’s data. Locate the following line:

Do update stuff here

Just after the line, add the following code:

 updateGame(data, fpsClock.get_time())

The majority of the update code resides in the updateGame() function.

We’ll examine that in detail in a moment.

Figure 16-8.  Snake, berry, and walls

Chapter 16 Game Project: Snake

203

 crashed = headHitWall(snakemap, data) or headHitBody(data)

 if (crashed):

 loseLife(data)

 positionBerry(data)

We now test to see if the snake’s head has hit a wall (headHitWall()

function) or its own body (headHitBody() function). If that’s the case, the

player loses a life and the berry is repositioned.

�The updateGame( ) Method
This is the largest method in the game and it does the most work.

Its purpose is to

•	 Update the snake’s head and tail

•	 Get input from the player

•	 Check to see if the snake’s head hit the berry

Browse to the part of the code that looks like this:

def updateGame(gamedata, gameTime):

 pass

Change this function to

def updateGame(gamedata, gameTime):

 gamedata.tick -= gameTime

 head = gamedata.blocks[0]

Each part of your game can update at a different rate. For example, you

may only want to update certain parts of your game once per second, and

others you might want to update 30 times a second. This can be achieved

by reading the system clock and determining the number of milliseconds

since the code was last called. In this method, we are passing in the

difference (in milliseconds) since the last call as ‘gameTime.’

Chapter 16 Game Project: Snake

204

The gamedata’s tick is decremented by the current game time. When

this counter hits zero, we update the snake’s head to show it closed (if it’s

currently open) or open if it’s currently closed. We also take note of the

current position of the head of the snake. This is always the zeroth element

of the blocks attribute of the ‘gamedata.’

 if (gamedata.tick < 0):

 gamedata.tick += gamedata.speed

 gamedata.frame += 1

 gamedata.frame %= 2

If the tick attribute is less than zero, we add the speed to it to start the

timer all over again. We then add one to the current frame count. We use

the modulo calculation to clamp the value to 0 or 1 because we only have

two frames of animation. In other languages there is a ‘switch’ or ‘case’

statement. This isn’t the case (sorry) in Python, but it’s easily achievable

using nested if/elif statements.

 if (gamedata.direction == 0):

 move = (1, 0)

 elif (gamedata.direction == 1):

 move = (-1, 0)

 elif (gamedata.direction == 2):

 move = (0, -1)

 else:

 move = (0, 1)

In the game of Snake, the snake is always moving; the player only

controls direction. Based upon the direction the player wants the snake to

move, the appropriate tuple is created.

 newpos = Position(head.x + move[0], head.y + move[1])

Chapter 16 Game Project: Snake

205

This tuple is then used to generate and store the new position for the

head of the snake.

 first = True

 for b in gamedata.blocks:

 temp = Position(b.x, b.y)

 b.x = newpos.x

 b.y = newpos.y

 newpos = Position(temp.x, temp.y)

The tail of the snake moves up to follow the head. This of course is just

an illusion; what we actually do is move the segments of the snake to the

previous segment’s position.

�Snake Movement
Keeping with the updateGame() function; snake movement is clamped to

one of four directions: left, right, up, and down. The player can only really

suggest the movement: the snake itself moves under its own steam. The

snake’s direction is chosen by the player by pressing one of the arrow keys

on the keyboard.

To get the keyboard input we fetch the list of keys that are currently

pressed:

 keys = pygame.key.get_pressed()

The get_pressed() method returns a dictionary of Boolean values.

Now that we have the keys pressed, we can test each of the arrow keys to

see if the player has depressed it. We also must make sure that they are

not trying to go in the opposite direction. The player can’t turn right if

they are already heading left, they can’t turn up if they are already heading

down, etc.

Chapter 16 Game Project: Snake

206

 if (keys[K_RIGHT] and gamedata.direction != 1):

 gamedata.direction = 0

 elif (keys[K_LEFT] and gamedata.direction != 0):

 gamedata.direction = 1

 elif(keys[K_UP] and gamedata.direction != 3):

 gamedata.direction = 2

 elif(keys[K_DOWN] and gamedata.direction != 2):

 gamedata.direction = 3

We store the current direction in the direction field of the ‘gamedata’

instance.

�Touching a Berry
The last part of the updateGame() function is to handle our reaction to

the snake head touching a berry. To progress through the game, the player

must get the snake to ‘eat’ the berries that appear on the playing field. To

‘eat’ the berries, the player has to steer the head of the snake over the cell

that the berry appears. Once the berry has been ‘devoured,’ a new berry is

positioned at another random position onscreen and the snake grows by

a certain number of segments. The number of segments depends on what

level the player is on. The higher the level, the more segments are added to

the snake.

 �if (head.x == gamedata.berry.x and head.y == gamedata.berry.y):

 lastIdx = len(gamedata.blocks) - 1

 for i in range(gamedata.segments):

 blockX = gamedata.blocks[lastIdx].x

 blockY = gamedata.blocks[lastIdx].y

 gamedata.blocks.append(Position(blockX, blockY))

Chapter 16 Game Project: Snake

207

If the head of the snake is in the same cell as the berry, then we append

the appropriate number of segments to the end of the snake. The number

of segments we add to the end depends on the level in the game. The

higher the level, the more segments are added. This makes that game more

difficult in later levels because the snake will have more segments for each

berry that is consumed.

 bx = random.randint(1, 38)

 by = random.randint(1, 28)

 gamedata.berry = Position(bx, by)

 gamedata.berrycount += 1

Next, we generate a new position and set that as the location of the

berry. We also increment a counter holding the number of berries that our

snake has consumed.

If our snake has consumed ten berries, we move up to the next level.

This has the added effect of increasing the speed of the snake (adding a

little extra excitement!), and the number of segments added to the player

each time the snake eats a berry.

We clamp the number of segments to 64 and the update speed (in

milliseconds) to 100:

 if (gamedata.berrycount == 10):

 gamedata.berrycount = 0

 gamedata.speed -= 25

 gamedata.level += 1

 gamedata.segments *= 2

 if (gamedata.segments > 64):

 gamedata.segments = 64

 if (gamedata.speed < 100):

 gamedata.speed = 100

Chapter 16 Game Project: Snake

208

�Collision Detection
As we have seen, collision detection in this game is done on a per-cell basis

rather than per pixel. In some ways, this makes our job easier because all

we need to do is determine when one block overlaps another, in other

words, they occupy the same cell.

�Helper Functions
There are four functions that we haven’t filled in, but without them we

won’t be able to detect whether the player has hit a wall or whether the

snake has touched itself. Our missing implementations are for

•	 loseLife()

•	 positionBerry()

•	 headHitBody()

•	 headHitWall()

�Losing a Life

When the snake’s head hits its own tail or a wall, the player loses a life.

When this happens, we removed all the current blocks that make up the

tail of the snake and subtract one from the number of lives. We then add

two blocks to the snake to start the player off again. Find ‘loseLife’ in the

code and change it to look like this:

def loseLife(gamedata):

 gamedata.lives -= 1

 gamedata.direction = 0

Mark the number of lives down by one and reset the direction to the right.

 gamedata.blocks[:] = []

Chapter 16 Game Project: Snake

209

This line removes all the items in the list.

 gamedata.blocks.append(Position(20,15))

 gamedata.blocks.append(Position(19,15))

Add two new blocks to the snake in the default position.

�Repositioning the Berry

When the player dies, we have to find a new position for the berry. Find the

‘positionBerry’ function in the code and change it to look like this:

def positionBerry(gamedata):

 bx = random.randint(1, 38)

 by = random.randint(1, 28)

 found = True

First, we generate a random number in our playing field. We then cycle

through all the game blocks to make sure that we don’t randomly generate

a position within the snake itself:

 while (found):

 found = False

 for b in gamedata.blocks:

 if (b.x == bx and b.y == by):

 found = True

Checking to see if the berry occupies the same position as a snake

block is easy. We just have to check two values for equality: the x- and

y-coordinates of the berry and each of the blocks.

 if (found):

 bx = random.randint(1, 38)

 by = random.randint(1, 28)

Chapter 16 Game Project: Snake

210

If the berry is on a cell that contains a block, ‘found’ is set to True.

If this happens, we assign new values to our ‘bx’ and ‘by’ variables and

try again.

 gamedata.berry = Position(bx, by)

Once we find a block that doesn’t contain a piece of snake, we assign

the position to the berry field of the game data.

�Testing Snake Body Hits

The snake’s head cannot ‘touch’ its body. Each time we update the snake,

we must also check to see if the head has touched the body. Our cell-based

collision detection makes this easy. We only have to check the x- and

y-coordinates of the snake’s head against the x- and y-coordinates of the rest

of the blocks that make up the body of the snake. Locate the ‘headHitBody’

function and change it to look like this:

def headHitBody(gamedata):

 head = gamedata.blocks[0]

Create a variable to hold a reference to the first block in the list of

blocks that make up the snake. This is the head of the snake.

 for b in gamedata.blocks:

Go through each of the blocks one at a time.

 if (b != head):

If the block is not the head, check to see if the head is in the same cell

as the current block.

 if(b.x == head.x and b.y == head.y):

 return True

Chapter 16 Game Project: Snake

211

If the head is in the same position as a block in the snake’s body, return

True to the function’s caller.

 return False

Otherwise, return False indicating to the caller that there has been no

collision.

�Testing Wall Hits

The final function we need to fill in is to test whether the snake’s head hits

the wall. Locate the ‘headHitWall’ function and change it to this:

def headHitWall(map, gamedata):

 row = 0

 for line in map:

 col = 0

 for char in line:

 if (char == '1'):

For each character in the line we check to see if it is a wall character.

Our map file contains 0’s and 1’s; any ‘1’ represents a wall in the play

field. Our control variables ‘col’ and ‘row’ are checked against the current

position of the zeroth element of the blocks. This is the head of the snake.

 �if (gamedata.blocks[0].x == col and gamedata.

blocks[0].y == row):

 return True

 col += 1

 row += 1

 return False

Chapter 16 Game Project: Snake

212

�Conclusion
Save the game and run it. You should be able to start playing Snake. If

you get any errors, check the code against the text in the book and make

sure you haven’t transposed any letters. Remember that whitespace is

important: those ‘tab’ characters need to be in the right place! As a final

alternative, download the code from http://sloankelly.net and check

yours against the code there.

As an exercise, alter the Lives/Level indicator to show the number of

berries collected. What if each berry was worth five points and moving

to another level gave the player an additional 100 points? What variables

would you need to add to GameData?

Chapter 16 Game Project: Snake

http://sloankelly.net

213© Sloan Kelly 2019
S. Kelly, Python, PyGame, and Raspberry Pi Game Development,
https://doi.org/10.1007/978-1-4842-4533-0_17

CHAPTER 17

Model View Controller
Model View Controller was mentioned before in the “Designing Your

Game” section to describe how the interactions between different objects

can be used to simplify the problem: breaking down a bigger problem into

smaller easier-to-manage chunks. See Figure 17-1.

MODEL

Changes
read by

controller

Controller updates model

Updates display
VIEWCONTROLLER

Figure 17-1.  Model View Controller design pattern

214

�Model
The model represents the data or attributes associated with the object.

For example, a player has a position in space, lives, shield strength, and

score. The model usually has very few methods, possibly to do with saving

or serializing data out to cheap storage like a disk drive. This would be

used to save game data. However, it is more likely that you would have a

save controller that would read the data from the models and store them.

�View
The view is the visual representation of each of the models in the game.

Some models don’t have a direct visual representation in the game.

For example, the data associated with an NPC (non-player character) in

an RPG (role-playing game)

�Controller
The controller is the glue that links the model to the view. The player

interacts with the view (clicking a button, moving a player), and this calls

a method on the controller. In turn, the controller updates the model to

represent the new state.

In computing terms, state is the current value for an object or value.

For example, in one state a player might be jumping, in another they could

be running. In each state the internal variables (the object’s fields) are set

to particular values.

Chapter 17 Model View Controller

215

�Why Use MVC?
MVC allows you, the programmer, to split the functionality of the object

from its visual representation and data. With each responsibility handled by

different classes, it’s very easy to swap out different controllers and views.

As an illustrative example of MVC, let’s create a little game that moves

a robot around the screen using the cursor keys. We’ll add a second view

that contains a little blip in a radar view. We’ll start by separating out the

classes into separate files and then combine them into one game using

another file as the ‘glue code’, the main game loop. See Figure 17-2.

Figure 17-2.  The robot ‘game’ showing the robot in the middle.
Radar in the top left

Chapter 17 Model View Controller

216

�The Classes
The classes we are going to create are

•	 RadarView

•	 RobotController

•	 RobotGenerator

•	 RobotModel

•	 RobotView

You don’t need to add ‘Model,’ ‘View,’ and ‘Controller’ to each class

that you create, but it shows us clearly in this example what class performs

what purpose.

�RadarView

The radar view displays a small blip that represents the robot in a smaller

version of the screen in the top-left corner of the window.

�RobotController

The robot controller alters the state of the model based upon the player’s

input.

�RobotGenerator

The robot generator generates a robot in a random position on the screen

after a specified period. The maximum number of robots can also be set.

�RobotModel

The robot model holds the state of the robot. It has no methods at all, just

data.

Chapter 17 Model View Controller

217

�RobotView

The robot view displays the robot on the screen. It does not alter the robot

model; it just reads the data from the model and decides what to display

based upon the state of the model.

�Folder
Create a new directory inside the ‘pygamebook’ folder called ‘ch17.’ We

will create all the files inside this directory.

�The Robot Model
The model class, called RobotModel, contains just the data for the

robot. The updating of each instance of this class will be done using the

RobotController, a class that will be defined subsequently.

Create a new file called ‘robotmodel.py’ and type in the following code:

class RobotModel(object):

Classes are defined with just a name. In our example, we’re going to

post-fix each class with its intended purpose. You might not want to do

that, or it might not make sense to do so. Use your judgment on your own

class names.

 def __init__(self, x, y, frame, speed):

The __init__ method (functions inside a class definition are called

methods) is a special method called a constructor. It takes four parameters

for the start position of the robot, the current animation frame, and its

update speed. The first parameter ‘self’ is required by Python and refers to

the object being created.

Chapter 17 Model View Controller

218

 self.x = x

 self.y = y

 self.frame = frame

 self.speed = speed

 self.timer = 0

We’ll use the ‘timer’ member field to control the current frame of the

robot; it has a ‘walking’ animation. The rest of the RobotModel class are

methods to access and change the data of the model:

 def setPosition(self, newPosition):

 self.x, self.y = newPosition

 def getPosition(self):

 return (self.x, self.y)

 def getFrame(self):

 return self.frame

 def nextFrame(self):

 self.timer = 0

 self.frame += 1

 self.frame %= 4

The nextFrame() method is called by the RobotController to move the

robot onto the next frame. It adds one to the frame count then uses the

modulo operator (%) to clamp the self.frame field to between 0 and 3.

 def getTimer(self):

 return self.timer

 def getSpeed(self):

 return self.speed

 def setSpeed(self, speed):

 self.speed = speed

Chapter 17 Model View Controller

219

These getter and setter methods will be used by the RobotGenerator

and RobotController classes.

Getters and Setters are so called because they start with either
‘get’ or ‘set’ and are used to access data contained in a class
instance

�The Robot View
The RobotView class displays the large graphic of the robot at the position

in the robot’s model. The graphic used by the robot contains four frames

and each frame is 32×32 pixels. See Figure 17-3.

Figure 17-3.  The robot, a 128×32 pixel image with four 32×32 frames

The current frame is calculated in the RobotController class, which

we’ll see in just a moment. In the meantime, create a new file called

robotview.py and enter the following text:

import pygame

from pygame.locals import *

We need this import for the Rect class.

from robotmodel import RobotModel

Chapter 17 Model View Controller

220

Our RobotView class uses RobotModel, so we need to import that file.

class RobotView(object):

 def __init__(self, imgPath):

 self.img = pygame.image.load(imgPath)

 def draw(self, surface, models):

 for model in models:

 rect = Rect(model.getFrame() * 32, 0, 32, 32)

 surface.blit(self.img, model.getPosition(), rect)

The draw() method takes in the surface that the robots are to be drawn

on and also the list of models. The for loop iterates through each robot

instance in ‘models’ and draws them on the surface.

Because we only want to show a small 32×32 portion of our image.

The source area to copy to the screen is calculated using the model’s frame.

The model has four frames: 0, 1, 2, and 3. If this value is multiplied by 32,

the possible rectangles are (0, 0, 32, 32), (32, 0, 32, 32), (64, 0, 32, 32), and

(96, 0, 32, 32), as shown in Figure 17-4.

Figure 17-4.  The start coordinates of each frame of the robot’s
animation

Chapter 17 Model View Controller

221

�The Radar View
The radar view shows a tiny blip (3×3 pixels, white) on a radar screen. The

radar screen is a 66×50 pixels image with a 1-pixel border. See Figure 17-5.

Figure 17-5.  The 66×50 radar image

The area of the radar is 64×48 pixels, but the graphic is slightly larger to

accommodate the 1-pixel border around the outside. The scale of the radar

is 1:10 of the main playing area which is 640×480 pixels. This is also why

the blips are 3×3 pixels because it is a close approximation to the robot’s

32×32 pixel actual size.

Create a new file called radarview.py and enter the following text:

import pygame

from robotmodel import RobotModel

class RadarView(object):

 def __init__(self, blipImagePath, borderImagePath):

 self.blipImage = pygame.image.load(blipImagePath)

 self.borderImage = pygame.image.load(borderImagePath)

Chapter 17 Model View Controller

222

The constructor takes two arguments: one for the blip image path and

the second is the border image path. The images are loaded and placed

into fields for later use by the draw() method.

 def draw(self, surface, robots):

 for robot in robots:

The draw method takes in the surface the robots will be drawn onto

and the list of robots.

 x, y = robot.getPosition()

 x /= 10

 y /= 10

 x += 1

 y += 1

 surface.blit(self.blipImage, (x, y))

The ‘blip’ representing the robot requires us to do some math. We need

to convert the coordinate that is a value between 0..639 on the x-axis and

0..479 on the y-axis to a value between 0..63 on the radar’s x-axis and 0..47 on

the radar’s y-axis. This means that we have to divide the robot’s position by

10 and add 1 because remember that our 1 pixel radar border doesn’t count.

 surface.blit(self.borderImage, (0, 0))

Finally, the border is drawn completing the radar view.

�The Robot Controller
The robot controller is the glue that binds the model and the view together;

it uses the clock to update the current frame and it polls the keyboard to

read the input from the player. It uses this input to update the player’s

position based upon the speed (in pixels per second) of the robot.

Chapter 17 Model View Controller

223

Create a new file called robotcontroller.py and type in the following code:

from robotmodel import RobotModel

The robot’s model RobotModel is imported from the robotmodel.py file

because the controller class reads and writes values to the robot models.

This means that the controller changes the state of each robot in the

game.

class RobotController(object):

 def __init__(self, robots):

 self.robots = robots

The RobotController’s constructor take in a list of robots that it will

update once per frame. Rather than calling an update on each object, a

single update method – the RobotController’s update() method is called

once and it updates each model. This is a really efficient way to process a

number of like items.

 def update(self, deltaTime):

 for robot in self.robots:

 robot.timer += deltaTime

 if robot.getTimer() >= 0.125:

 robot.nextFrame()

Each robot is processed in a loop. Using the data stored for each robot,

the code determines whether to update the next frame or to move the

object by changing its position (see the following text).

The time difference from the last time this method was called, and this

time is added to the ‘timer’ field of the model. If the ‘timer’ is greater than

or equal to 0.125 seconds, we tell the model to move to the next frame.

Chapter 17 Model View Controller

224

 speed = self.multiply(robot.getSpeed(), deltaTime)

 pos = robot.getPosition()

 x, y = self.add(pos, speed)

 sx, sy = robot.getSpeed()

The model’s position is incremented by the pixels per second

multiplied by the time difference from when the method was last called.

This is explained in detail as follows:

 if x < 0:

 x = 0

 sx *= -1

 elif x > 607:

 x = 607

 sx *= -1

 if y < 0:

 y = 0

 sy *= -1

 elif y > 447:

 y = 447

 sy *= -1

 robot.setPosition((x, y))

 robot.setSpeed((sx, sy))

The values on the x- and y-axes are clamped to the screen in this series

of if statements. The new position and speed are then set on the current

robot model.

 def multiply(self, speed, deltaTime):

 x = speed[0] * deltaTime

 y = speed[1] * deltaTime

 return (x, y)

Chapter 17 Model View Controller

225

 def add(self, position, speed):

 x = position[0] + speed[0]

 y = position[1] + speed[1]

 return (x, y)

Two helper functions to make working with tuples easier. Tuples

are immutable, which means we cannot change the value of any of the

elements. We can make new tuples, we just can’t change the ones we have.

The two helper methods make multiplying and adding tuples a little easier.

�The Robot Generator
The last class is not part of the MVC pattern, but I needed a way to generate

the robots at random positions and speeds. To achieve this, I created the

RobotGenerator class. Create a new file called ‘robotgenerator.py’ and

enter the following code:

import random

from robotmodel import RobotModel

class RobotGenerator(object):

 def __init__(self, generationTime = 1, maxRobots = 10):

 self.robots = []

 self.generationTime = generationTime

 self.maxRobots = maxRobots

 self.counter = 0

The RobotGenerator’s constructor allows the caller – the part of the

code that creates the instance of the class – to specify the number of

Chapter 17 Model View Controller

226

seconds between creation of the robots and the maximum number of

robots. The ‘self.counter’ field stores the current time in seconds. If the

‘self.counter’ is greater than or equal to ‘self.generationTime,’ a robot is

created (see following update).

 def getRobots(self):

 return self.robots

Get the list of robots. This method is accessed in two ways; it is passed

as an argument to the RobotController constructor and as a parameter to

the RadarView and RobotView draw() methods.

 def update(self, deltaTime):

 self.counter += deltaTime

The timer is incremented by deltaTime which itself is a fraction of a

second.

 �if self.counter >= self.generationTime and len(self.

robots) < self.maxRobots:

 self.counter = 0

 x = random.randint(36, 600)

 y = random.randint(36, 440)

 frame = random.randint(0, 3)

 sx = -50 + random.random() * 100

 sy = -50 + random.random() * 100

 newRobot = RobotModel(x, y, frame, (sx, sy))

 self.robots.append(newRobot)

If the counter reaches a certain time (generationTime) and the

number of robots is less than the maximum number of robots, we add a

new robot to the scene. The position and speed of the generated robot are

randomized.

Chapter 17 Model View Controller

227

�Ensuring Constant Speed
We want to ensure that we have a constant speed when our objects are

moving. Sometimes other routines take longer to run, and we can’t ensure

this. For example, if we decide that our robot should move at 200 pixels per

second. If we assume that our routine will get called 30 frames per second,

then we should just increment the speed by 6.25 each frame. Right? Wrong!

Our robot’s position should change by 200 pixels per second. If the

player holds down the right cursor key, the robot should move to the right

200 pixels after 1 second. What happens if the update method only gets

called 15 times per second? This means that our robot will only move 15 ×

6.25 = 93.75 pixels in 1 second.

Remember in “Snake” we used the clock’s tick of milliseconds to

update parts of the code when we wanted them to be updated. We can use

this delta time to calculate the distance we need to travel in a single ‘tick’ of

the game. A tick is each time the game loops around.

This means that even with a variable frame rate, you will still have a

constant speed because the delta time will ensure that your speed remains

constant over time.

With delta time, your 15 times per second update will still result in a

displacement of 200 pixels after 1 second of holding down the right cursor

key. Why? Because with each update, we multiply the desired speed by

the fraction of a second since the last call. For a 15th of a second, that’s 66

milliseconds.

0.066 × 200 = 13.2 pixels each update

13.2 pixels × 15 updates = 198 pixels per second

Which is roughly the speed we want. If our frame rate increases to 60

frames per second:

60 frames per second is 16.67 milliseconds

0.01667 × 200 = 3.333 pixels each update

3.333 pixels × 60 updates = 200.00 pixels per second

Chapter 17 Model View Controller

228

You can see that with 60 frames per second, we get a much more

accurate speed than at 15 frames per second. For our purposes, though,

30 frames per second is more than adequate for our needs.

�The Main Robot Program
The main robot program takes all these individual classes and combines

them into a single ‘game’ example. Create a new file called robot.py. In this

new file, add the following code:

import pygame, sys

from pygame.locals import *

Our more-than-familiar imports to access the PyGame library of routines

and classes as well as the OS and System libraries supplied with Python.

from robotview import RobotView

from robotcontroller import RobotController

from robotgenerator import RobotGenerator

from radarview import RadarView

These import the RobotModel, RobotView, RadarView,

RobotGenerator, and RobotController from the respective files. We use the

‘from’ keyword to minimize the amount of typing required. With ‘from,’ we

need only type the class name rather than ‘robotview.RobotView’.

pygame.init()

fpsClock = pygame.time.Clock()

surface = pygame.display.set_mode((640, 480))

Next, we initialize PyGame and set up a clock, so we can clamp our

frame rate to a maximum of 30 frames per second. Our test game will be

640×480 pixels in size.

lastMillis = 0

Chapter 17 Model View Controller

229

The ‘lastMillis’ keeps the last number of milliseconds between frames.

This value is returned by ‘fpsClock.tick()’.

generator = RobotGenerator()

view = RobotView('robot.png')

radar = RadarView('blip.png', 'radarview.png')

controller = RobotController(generator.getRobots())

This is where we create instances of our classes. The constructor

arguments are passed through. We’re just using hard-coded values in this

example, but you could easily read in this data from a text file if you so desired.

while True:

 for event in pygame.event.get():

 if event.type == QUIT:

 pygame.quit()

 sys.exit()

Our main loop has the get-out-of-jail escape we’ve seen before; when

the user closes the window, we quit PyGame and signal to the operating

system that we’re exiting the application.

 deltaTime = lastMillis / 1000

 generator.update(deltaTime)

 controller.update(deltaTime)

Generally, you want to update your classes before you draw their visual

representations. Both the generator and controller need an update call so

that new robots get generated and the ones that have been generated are

updated. Remember, all the controller code is in one class, if we change

anything in that controller class, ALL our robots are affected. This is really

powerful!

Chapter 17 Model View Controller

230

 surface.fill((0, 0, 0))

 view.draw(surface, generator.getRobots())

 radar.draw(surface, generator.getRobots())

Next, the screen is cleared with black, the tuple for the fill() method

is for the red, green, and blue components of a color, and black is the

absence of all color so all the values are zero. The main view is drawn first,

so this draws all the robots at their positions with their current animation

frame. Next the radar is drawn on top.

This is called draw order. The images that are drawn to the screen first are

drawn behind images drawn later. Think of it as photographs being placed on

a table. Those placed first will get obscured by those placed on top.

 pygame.display.update()

 lastMillis = fpsClock.tick(30)

Our last actions in the main game loop are to flip the front buffer to the

back and vice versa and clamp the frame rate to 30 frames per second. The

‘lastMillis’ is stored and this will give us an approximate time of how long it

took to generate the last frame. That will be used to determine the position

and animation frame of each robot.

Save and run the game. After about a second a robot will appear, then

another and another until there are ten onscreen. Notice that the ‘radar’

view updates with the relative position of each of the robots.

�Conclusion
The Model View Controller design pattern can be used to functionally split

up an object into three separate classes. This enables you, the programmer,

to decide how to combine those classes later. For example, if you only want

to provide keyboard support at the start of development, a new controller

that allows for joystick support can be easily added at a later stage. This

new addition will not impact the view or model classes.

Chapter 17 Model View Controller

231

MVC is ideal if you have many NPCs onscreen at any one time. You

can use one class to store their positional/frame data (model), one class to

perform the update (the controller), and another to display them (view).

In fact, you can have different views depending on what type of NPC it is,

for example a BlacksmithView only draws blacksmiths, ChefView only

draws chefs. This reduces the amount of data in memory because only one

class (BlacksmithView) has an instance of the image for the blacksmith,

and only one class (ChefView) has an instance of the image for the chef.

In a more traditional OOP setting you might have the position and shape

data together meaning you could have potentially thousands of images in

memory.

Chapter 17 Model View Controller

233© Sloan Kelly 2019
S. Kelly, Python, PyGame, and Raspberry Pi Game Development,
https://doi.org/10.1007/978-1-4842-4533-0_18

CHAPTER 18

Audio
Audio is an important part of making a game. You can have the best visuals

in the world, the best mechanics, but something is missing – it’s audio!

In this chapter we take a look at playing one-off sounds such as explosions

or effects as well as music.

Sounds are played using PyGame’s built-in mixer object. Like,

PyGame, you must first initialize the sound mixer before using it.

pygame.mixer.init()

Likewise, when you stop using the sound mixer, you should shut it

down gracefully by calling the quit method:

pygame.mixer.quit()

You can check to see if the mixer is playing sounds by calling the ‘get_

busy()’ method:

pygame.mixer.get_busy()

This will return a Boolean True or False to indicate that the mixer is still

doing something. We will use this in the two example programs to keep the

program running.

The Sound class’ init() method takes a single parameter, which is

usually just the path to the sound file on disk. You can also pass in buffers

and other things, but we’ll only be passing in the path to the sound file.

shootSound = pygame.mixer.Sound('playershoot.wav')

234

Like every other class, calling the constructor – the init() method –

passes back an instance of the class. The Sound class can load Ogg Vorbis

or WAV files only. Ogg files are compressed and are therefore more suited

to machines that have a tight space requirement.

�Playing a Sound
Create a new folder inside ‘pygamebook’ called ‘ch18.’ Inside that folder

create a new Python script file called ‘testsound.py’. Enter the following

code and run it to play the sound. The file playershoot.wav is available on

the web site (http://sloankelly.net) in the Resources section. If you

don’t want to download that file, you can supply your own.

import pygame, os, sys

from pygame.locals import *

Import the usual modules.

pygame.mixer.init()

Initialize the sound mixer.

shootSound = pygame.mixer.Sound('playershoot.wav')

Load in the playershoot.wav sound file and name it shootSound.

shootSound.play()

Play the sound by calling the play() method.

while pygame.mixer.get_busy():

 pass

This is a dummy while statement to keep the program busy while the

sound is playing. Remember the pass keyword? It’s like a blank statement

Chapter 18 Audio

http://sloankelly.net

235

that does nothing in Python. You can use it to create stub code for

functions or, as in this case, to create blank while loops.

pygame.mixer.quit()

Always quit the mixer when you are finished with audio. Save and run

the program and you will hear a ‘pew!’ noise before it closes. This is an

example of a one-off sound effect. That’s one part of the audio story for

games. The second is music and we will cover that next.

�Playing, Pausing, and Changing Volume
The sound object allows you to change the volume that the music is being

played back. The mixer can also perform a nice fade out. The following

program will start playing a piece of music and allow the player to control

the volume and can play/pause the music as well. When finished, the

music will fade out and the program will stop.

In this section we will introduce

•	 pygame.mixer.fadeout()

•	 pygame.mixer.pause()

•	 pygame.mixer.unpause()

•	 Sound.set_volume()

Create a new Python script inside ‘ch18’ called ‘playsong.py’ and add

the following code. As usual, I will explain as we go:

import pygame

from pygame.locals import *

Required imports for PyGame to run.

Chapter 18 Audio

236

class Print:

 def __init__(self):

 self.font = pygame.font.Font(None, 32)

 def draw(self, surface, msg, position):

 obj = self.font.render(msg, True, (255, 255, 255))

 surface.blit(obj, position)

This is a small helper class that will make printing text easier in the

main code. It creates a Font instance and the ‘draw()’ method renders the

given text to a surface and that in turn is blitted onto the given surface.

pygame.init()

pygame.mixer.init()

Initialization of both PyGame and the sound mixer.

fpsClock = pygame.time.Clock()

surface = pygame.display.set_mode((640, 480))

out = Print()

Creating the clock, the main drawing surface, and the instance of the

‘Print’ object. The display is 640×480 pixels because we don’t need to

display much information for this project.

song = pygame.mixer.Sound('bensound-theelevatorbossanova.ogg')

song.play(-1)

Load the song into memory and immediately play it. Note that the

‘play()’ method is passed a parameter of –1 which means that it will keep

repeating until it is told to stop.

running = True

paused = False

fading = False

volume = 1

Chapter 18 Audio

237

These control variables are, from the top:

•	 To keep the program running while the music is playing

•	 Is the music paused

•	 Is the music fading out

•	 The music volume

Entering the main loop:

while running:

 for event in pygame.event.get():

 if event.type == QUIT:

 pygame.mixer.fadeout(1000)

The main loop is kept running by checking the ‘running’ variable.

If that variable contains ‘True,’ the program will keep looping back and

executing the body of the loop. The first part of which is the ‘for’ loop that

determines what state the game should be in. The first check (above) is

to see if the player has quit the game (i.e., they clicked the X button on

the window). If so, we instruct the mixer to fade out the music for 1000

milliseconds or 1 second.

 elif event.type == KEYDOWN:

The next check is to see if the player has pressed a key. If they have, we

want to react to it, the space key is used to pause/unpause the music, the [

and] keys are used to decrease and increase the volume, respectively, and

the escape key (ESC) is used to quit the game.

 if event.key == pygame.K_SPACE:

 paused = not paused

 if paused:

 pygame.mixer.pause()

 else:

 pygame.mixer.unpause()

Chapter 18 Audio

238

If the player presses the space bar, the ‘paused’ variable is set to be the

opposite of the value that it currently holds. This means that if it is ‘True,’

it will be set to ‘False’ and vice versa. The appropriate method is called on

the mixer object to pause/unpause the music.

 elif event.key == pygame.K_ESCAPE and not fading:

 fading = True

 pygame.mixer.fadeout(1000)

If the player pressed the escape key and the game is not fading the

music, set ‘fading’ to True so that the player can’t keep fading the music

and inform the PyGame mixer that the music should fade from full volume

to zero over 1 second (1000 milliseconds). The fadeout() method takes a

numeric value in milliseconds.

 elif event.key == pygame.K_LEFTBRACKET:

 volume = volume - 0.1

 if volume < 0:

 volume = 0

 song.set_volume(volume)

Sound volume is between 0 and 1 inclusive. 0 is off (muted) and 1 is

full volume. If the player presses the left [bracket, the volume of the sound

should decrease. To do this we subtract 0.1 from the current volume.

There is then a check to make sure that it stays in the range 0..1 and then

‘set_volume()’ is called on the ‘song’ object to apply this new volume. The

‘song’ object is the .ogg file that we loaded in earlier.

 elif event.key == pygame.K_RIGHTBRACKET:

 volume = volume + 0.1

 if volume > 1:

 volume = 1

 song.set_volume(volume)

Chapter 18 Audio

239

If the player presses the right] bracket, the volume of the sound should

increase. To do this we add 0.1 to the current volume. There is then a check

to make sure that it stays in the range 0..1 and then ‘set_volume()’ is called

on the ‘song’ object to apply this new volume.

Now that the events have been taken care of, the final update step is to

check to see if we are still playing audio, if not we should quit the loop:

 if not pygame.mixer.get_busy():

 running = False

If ‘running’ is False, the game quits.

 surface.fill((0, 0, 0))

 �out.draw(surface, "Press <SPACE> to pause / unpause the music",

(4, 4))

 �out.draw(surface, "Press <ESC> to fade out and close program",

(4, 36))

 �out.draw(surface, "Press [and] to alter the volume", (4, 68))

 �out.draw(surface, "Current volume: {0:1.2f}".format(volume),

(4, 100))

 pygame.display.update()

 fpsClock.tick(30)

Draw the text onscreen to let the player know the keys to press.

pygame.mixer.quit()

pygame.quit()

When the game is over, make sure to quit both the mixer and PyGame.

Save and run the program; you should see something like the output

shown in Figure 18-1. You will also hear the song being played.

Chapter 18 Audio

240

�Conclusion
This has been a small introduction to what you can achieve with the

PyGame sound mixer. Adding audio to your game is very important

because it can enhance the sense of fun and really help convey (for

example) the weight of objects or how much damage has been taken.

Remember to always quit the mixer when your game ends!

Figure 18-1.  The output from the ‘playsong.py’ script

Chapter 18 Audio

241© Sloan Kelly 2019
S. Kelly, Python, PyGame, and Raspberry Pi Game Development,
https://doi.org/10.1007/978-1-4842-4533-0_19

CHAPTER 19

Finite State Machines
A state can be described as a condition of a program or entity. Finite

defines that there is only a set number of states that the program or

entity can be defined by. The entity is controlled by a series of rules that

determine what the next state of the program or entity is to be placed in.

Finite State Machines are used in video games for Artificial Intelligence

(AI) as well as menu systems and the overall game state as well.

�Game State
A game is a computer program that has unique, discrete,

compartmentalized states, for example, splash screen, playing the game,

game over, the main menu, and the options menu. Each part can be

viewed as a separate state.

�Menu System
Menu systems used to control various aspects of the game can also be

compartmentalized into separate states, for example, the main menu,

display options, control options, and sound options. These are all

separate states.

242

�Non-player Artificial Intelligence
This is the most common use of Finite State Machines (FSMs) and the

one that most people associate with FSMs. At a basic level, each enemy

that the player encounters has a Finite State Machine attached to them.

By attached, I mean that it has a reference to a Finite State Machine in the

form of a member variable, like ‘self.fsm’, for example.

Enemy FSMs can run independently of each other, or there can be an

overarching ‘pack AI’ that controls a whole series of enemies. For example,

you might have ten enemies but the ‘pack AI’ will control how many

enemies are used to attack the player, how many will ‘run away,’ etc.

In a specific case, let’s take an example of a guard. He might have two

states: patrol and attack. The guard stays in the patrol state until an enemy

(the player) comes within range, say 50 units, and they then move to the

attack state.

FSMs are usually described using a diagram. Each block represents the

state and each arrow shows the rule and the direction of transition. That is,

if that rule is met, the arrow points to the state that the entity should use.

See Figure 19-1.

PATROL

ATTACK

Player within melee range?

Player outside melee range?

Figure 19-1.  Finite State Machine showing a simple two-state
patrol/attack for an enemy AI

Chapter 19 Finite State Machines

243

If the guard is in the patrol state and the player enters the melee range,

the guard will move to the attack state. This no doubt will contain code that

attacks the player. Similarly, if the guard is in attack state and the player

moves outside the melee range, it will transition back to the patrol state.

�A Finite State Machine Example
This example shows a three-state FSM. Each state has the following

methods:

•	 enter()

•	 exit()

•	 update()

There is a FSM manager that controls the current state of the program.

This manager has two methods:

•	 changeState()

•	 update()

The changeState() method transitions the entity from one state to another,

and the update() method calls the update() method of the current state.

In the following section we will create an example Finite State

Machine (FSM). Create a new folder inside ‘pygamebook’ called ‘ch19.’

Inside the ‘ch19’ folder, create a new Python file called ‘fsm.py’. When it is

completed you will see the following output:

Entering State One

Hello from StateOne!

Hello from StateOne!

Hello from StateOne!

Hello from StateOne!

Hello from StateOne!

Chapter 19 Finite State Machines

244

Exiting State One

Entering State Two

Hello from StateTwo!

Hello from StateTwo!

Hello from StateTwo!

Hello from StateTwo!

Hello from StateTwo!

Exiting State Two

Entering Quit

Quitting...

If you don’t, recheck your code.

�Finite State Machine Manager
The finite machine manager class is defined below. Remember to type it

(and the rest of the code!) explicitly. You can change whatever you want

later, but first type in the code exactly as seen.

The FSM manager controls the current state of the entity. In our

example, we’re going to have three states. The first two states display

“hello” messages, the latter quits the application. The transition rule is

diagrammed below in Figure 19-2.

Chapter 19 Finite State Machines

245

StateOne transitions to StateTwo when the count reaches zero.

StateTwo transitions to StateQuit when the count reaches zero. StateQuit

calls Python’s exit() method to quit the application.

class FsmManager:

 def __init__(self):

 self.currentState = None

StateOne

StateQuit

End

StateTwo

count == 0

count == 0

Figure 19-2.  FSM example state machine showing transitions

Chapter 19 Finite State Machines

246

The current state is set to None. We will call the changeState() method

explicitly in the main part of the program below.

 def update(self):

 if (self.currentState != None):

 self.currentState.update()

The update() method checks to see if we have a current state, and if so,

we call the update() method of it. Notice that we’re using Python’s duck

typing here.

 def changeState(self, newState):

 if (self.currentState != None):

 self.currentState.exit()

When we change state, we want to give the current state the chance to

‘shutdown’ or ‘clean up’ before we transition to the new state. The exit()

method does just that, or at least it’s up to the developer who implements

the state to put the code they want in the exit() method.

 self.currentState = newState

 self.currentState.enter()

Similarly, when we enter a new state, we need to let the state know that

this event has occurred. The developer of each state will place code in the

enter() method if they want to act upon that event.

class StateOne:

In general, there is very little difference between StateOne and

StateTwo apart from the text messages that appear onscreen.

class StateOne:

 def __init__(self, fsm):

 self.count = 5

 self.fsm = fsm

 self.nextState = None

Chapter 19 Finite State Machines

247

We will set the nextState field in the main part of the program. This is

the next state that this current state will transition to. There are far more

complex FSM systems that apply rules to the various states and make for

an even more flexible system. This, being a simple example, bakes the

rules inside each of the states.

 def enter(self):

 print("Entering State One")

The enter() method is used to set up various values for the current

state. In this example, we just write a message to the screen.

 def exit(self):

 print("Exiting State One")

The exit() method could be used to clean up the current state before it

transitions to the new state. In this example, we show a simple message.

 def update(self):

 print("Hello from StateOne!")

 self.count -= 1

 if (self.count == 0):

 fsm.changeState(self.nextState)

The update() method is called by the FSM manager. In our example,

we count down until we reach zero and then transition to the next state.

class StateTwo:

 def __init__(self, fsm):

 self.count = 5

 self.fsm = fsm

 self.nextState = None

 def enter(self):

 print("Entering State Two")

Chapter 19 Finite State Machines

248

 def exit(self):

 print("Exiting State Two")

 def update(self):

 print("Hello from StateTwo!")

 self.count -= 1

 if (self.count == 0):

 fsm.changeState(self.nextState)

There isn’t much difference in StateOne and StateTwo. The quit state is

also very simple; it just exits the application.

class StateQuit:

 def __init__(self, fsm):

 self.fsm = fsm

 def enter(self):

 print("Entering Quit")

 def exit(self):

 print("Exiting Quit")

 def update(self):

 print("Quitting...")

 exit()

We don’t need to update any variables; we’re just quitting the

application at this point.

fsm = FsmManager()

stateOne = StateOne(fsm)

stateTwo = StateTwo(fsm)

stateQuit = StateQuit(fsm)

Chapter 19 Finite State Machines

249

Here we create our FSM manager and the states. Each state takes the

FSM manager as an argument in the constructor.

stateOne.nextState = stateTwo

stateTwo.nextState = stateQuit

The next state for stateOne and stateTwo are assigned. StateOne’s next

state is stateTwo and stateTwo’s next state is stateQuit.

fsm.changeState(stateOne)

We set the initial state for the FSM manager to be the StateOne.

while True:

 fsm.update()

Our while loop is very simple; just call the FSM manager’s update()

method. That’s it. Our states handle the program flow from there.

Save and run the file and you should see the output we showed at the

start of this chapter.

�Conclusion
The goal of any object-oriented pattern is to make classes and main

programs as small as possible. This reduces the amount of code that you

have to read for a particular class, making it easier to understand. Each

class should have a single purpose. Our FSM manager class has a single

purpose: run the currently selected state. Each state has a single purpose

too: perform certain actions until the rule changes then transition to a new

state.

FSMs are perfect for Artificial Intelligence (AI) because you can

design quite complex interactions based upon known criteria: Is the user

within weapons range? Am I able to fire my weapon? Can the player see

me? Etc., etc.

Chapter 19 Finite State Machines

250

You can also use FSMs to control program state. Let’s take an example

of the flow of a typical game application. See Figure 19-3.

SplashScreen MainMenu

PlayGame

GameOver

Quit

Three seconds
elapsed

Three seconds
elapsed

Player selects
‘play game’

Player selects ‘quit’

Player loses all lives

End

Figure 19-3.  FSM for a game

The entry state is SplashScreen and this screen transitions after

3 seconds to the main menu. The main menu gives the user two choices:

play the game or quit to the OS. If the user is playing the game and they

die, the game transitions to the GameOver state. It remains in this state for

3 seconds, and after that, the game transitions to the MainMenu state.

Our next project “Invaders” ties our Model-View-Controller (MVC) and

Finite State Machine (FSM) knowledge together.

Chapter 19 Finite State Machines

251© Sloan Kelly 2019
S. Kelly, Python, PyGame, and Raspberry Pi Game Development,
https://doi.org/10.1007/978-1-4842-4533-0_20

CHAPTER 20

Game Project:
Invaders
Our final arcade-style game project is Invaders and it brings together

everything that we’ve done up until this point. We’ve got sounds,

animation, MVC, and FSM all wrapped in one game. See Figure 20-1.

Figure 20-1.  The Invaders game in action

252

Before we get started, create a new folder inside ‘pygamebook’ called

‘projects,’ if there isn’t one there already. Inside ‘projects,’ create another

folder called ‘invaders.’ This is where all the files that we create will be

stored for this project. We’re going to be using several files for this project,

and they are

•	 bitmapfont.py – Contains a sprite sheet for a bitmap font

•	 bullet.py – Bullet classes

•	 collision.py – Collision classes

•	 interstitial.py – Interstitial screens, that is, the “Get

Ready” and “Game Over” screens

•	 invaders.py – The actual runnable game; this is the

‘main’ program, which creates the framework and

instantiates all the objects

•	 invadersgame.py – The actual ‘play game’ state class

•	 menu.py – Menu classes

•	 player.py – Player classes

•	 raspigame.py – Base classes that you can use to extend

for your own games

•	 swarm.py – Alien swarm classes

There are three WAV files for our sound effects:

•	 aliendie.wav

•	 playerdie.wav

•	 playershoot.wav

Chapter 20 Game Project: Invaders

253

We also have several PNG files that contain the animation frames for

all the invaders, the player, the display font (we’re using a bitmap font),

and the bullets:

•	 alienbullet.png

•	 bullet.png

•	 explosion.png

•	 fasttracker2-style_12×12.png

•	 invaders.png

•	 ship.png

The entire source and all the resources (the images and the sound

files) can all be downloaded from sloankelly.net in the Resources section.

�The Classes
The following classes will be defined as part of this project:

•	 BitmapFont – Permits the drawing of a bitmap font on a

PyGame surface.

•	 BulletController, BulletModel, BulletView – The MVC

classes for the ‘bullet’ entities. Bullets can be ‘owned’

by a swarm of aliens or by the player.

•	 CollisionController – Handles the collision detection for

the game. This includes player/bullet and alien/bullet

as well as player/alien collision detection.

•	 ExplosionController, ExplosionModel,

ExplosionModelList, ExplosionView – The MVC classes

for the ‘explosion’ entities. When an alien invader or

the player dies, an explosion is shown in their place.

Chapter 20 Game Project: Invaders

http://sloankelly.net

254

•	 GameState – The base class for all of the game’s states.

•	 InterstitialState – Interstitial screens are used in

video games to display “Game Over” or “Get Ready”

messages. This is a ‘state of being’ for the program;

therefore InterstitialState is derived from a state base

class called ‘GameState.’

•	 InvaderModel, SwarmController, InvaderView –

The alien invader swarm’s MVC classes. There is

no individual controller for each alien; instead the

‘SwarmController’ updates the position of each alien

and determines which one is firing on the player.

•	 PlayGameState – Play game state.

•	 MainMenuState – Main menu state.

•	 PlayerController, PlayerLivesView, PlayerModel,

PlayerView – The ‘player’ entity’s MVC classes.

•	 RaspberryPiGame – Contains the main update loop

that we’ve seen in our previous programs. This is

effectively the Finite State Manager.

�The Finite State Machine
The game is controlled using a finite state machine (FSM). The diagram

in Figure 20-2 shows the distinct states and how the game transitions

between them.

Chapter 20 Game Project: Invaders

255

The game starts with the main menu state and ends with the ‘quit’

game state. The ‘quit’ game state isn’t really a state, as you will see; it’s

actually the absence of state; we set the current state of the game to

‘None’ and the code handles this by neatly quitting the program. In our

implementation, the base class for each state is defined as ‘GameState.’

�MVC and ‘Invaders’
Each entity (the player, alien swarm, alien) has a corresponding model,

view, and controller class. For the alien invaders, the controller handles

more than one alien entity.

�The Framework
The basic state class and state machine manager are defined in a file called

‘raspigame.py’. Create this file and type in the following code:

import pygame, os, sys

from pygame.locals import *

class GameState(object):

Main Menu “Get Ready”

Play Game“Game Over”Quit

Player chooses “Start Game”

Player chooses
“Quit”

Player dies,
lives > 0

Player dies,
lives==0

Screen timeout Screen timeout

Figure 20-2.  The ‘Invaders’ game Finite State Machine

Chapter 20 Game Project: Invaders

256

The game state class defines an interface that is used by the

RaspberryPiGame class. Each state manages a particular function

of the game. For example: main menu, the actual game play, and

interstitial screens. The GameState class uses the new format for class

definition. Each class that uses the new format must extend from the

object. In Python, extending a class means that you place the name of

the base class in parentheses after the class name.

 def __init__(self, game):

 self.game = game

Initialize the Game state class. Each subtype must call this method.

Take one parameter, which is the game instance.

 def onEnter(self, previousState):

 pass

The base class ‘GameState’ does not contain any code for onEnter().

Classes that extend ‘GameState’ are expected to provide their own

definition. This method is called by the game when entering the state for

the first time.

 def onExit(self):

 pass

The base class ‘GameState’ does not contain any code for onExit().

Classes that extend ‘GameState’ are expected to provide their own

definition. This method is called by the game when leaving the state.

 def update(self, gameTime):

 pass

The base class ‘GameState’ does not contain any code for update().

Classes that extend ‘GameState’ are expected to provide their own

Chapter 20 Game Project: Invaders

257

definition. This method is called by the game allowing the state to

update itself. The game time (in milliseconds) is the time since the last

call to this method.

 def draw(self, surface):

 pass

The base class ‘GameState’ does not contain any code for draw().

Classes that extend ‘GameState’ are expected to provide their own

definition. This method is called by the game, allowing the state to draw

itself. The surface that is passed is the current drawing surface.

class RaspberryPiGame(object):

Basic game object-oriented framework for the Raspberry Pi. Users

create ‘states’ that alter what is being displayed onscreen/updated at any

particular time. This is really just a glorified state manager.

 def __init__(self, gameName, width, height):

 pygame.init()

 pygame.display.set_caption(gameName);

 self.fpsClock = pygame.time.Clock()

 �self.mainwindow = pygame.display.set_mode((width, height))

 self.background = pygame.Color(0, 0, 0)

 self.currentState = None

The class constructor takes in the name of the game which will be

used to change the window’s title bar. The constructor creates the main

window, the FPS clock, and the default background color for the game.

The current state is initially set to ‘None.’

 def changeState(self, newState):

 if self.currentState != None:

 self.currentState.onExit()

Chapter 20 Game Project: Invaders

258

 if newState == None:

 pygame.quit()

 sys.exit()

 oldState = self.currentState

 self.currentState = newState

 newState.onEnter(oldState)

This method transitions from one state to another. If there is an

existing state, the state’s onExit() method is called. This will clean up the

current state and perform any tasks that the state needs to do when exiting.

The new state’s onEnter method is called unless newState is ‘None.’ If the

newState is ‘None’ then the game will terminate.

 def run(self, initialState):

 self.changeState(initialState)

 while True:

 for event in pygame.event.get():

 if event.type == QUIT:

 pygame.quit()

 sys.exit()

 gameTime = self.fpsClock.get_time()

 if (self.currentState != None):

 self.currentState.update(gameTime)

 self.mainwindow.fill(self.background)

 if (self.currentState != None):

 self.currentState.draw (self.mainwindow)

 pygame.display.update()

 self.fpsClock.tick(30)

Chapter 20 Game Project: Invaders

259

Our main game loop, which we’ve seen several times before, has been

moved to the run() method. This handles all the event management, state

update, and display.

Save the file.

�Bitmap Font
Before we can test the player’s tank and bullets, we must first define the

bitmap font class. A normal font contains a mathematical representation of

each of the characters. A bitmap font provides a sprite sheet that contains

all the individual characters that make up the font. We then use PyGame’s

built-in functionality to ‘cut up’ the sprite sheet into those individual

characters. See Figure 20-3.

Thanks to user ‘darkrose’ on OpenGameArt (a great resource!)

for the sample bitmap font used in this example. As you can see from

the preceding image, each letter of the alphabet and the symbols are

Figure 20-3.  Example of a bitmap font taken from https://
opengameart.org/content/8x8-ascii-bitmap-font-with-c-source

Chapter 20 Game Project: Invaders

https://opengameart.org/content/8x8-ascii-bitmap-font-with-c-source
https://opengameart.org/content/8x8-ascii-bitmap-font-with-c-source

260

displayed in a grid. They are arranged in the order that they appear in the

ASCII (American Standard Code for Information Interchange) character

set. The first printable character is space, which ironically prints a blank

space. Space is the 33rd character in the ASCII character set, and because

we start numbering at zero, this makes space ASCII 32.

�Cutting Up the Image

To access the exclamation mark beside the space, ASCII 33, we use some

modulo and division trickery to calculate the row and column of the

character.

The row is calculated by taking the ASCII value of the character (in this

case 33) and dividing it by the number of columns:

33 / 16 = 2

The column is calculated by taking the ASCII value of the character

and modding it with the number of columns:

33 mod 16 = 1

So, our character (!) is located at row 2, column 1. We then multiply

those values by the number of pixels in each cell. Our characters are

generated from an 8×8 grid, so we multiply each value by 8:

2 * 8 = 16

1 * 8 = 8

The starting x- and y-coordinates of the start of the 8×8 grid that makes

up the exclamation character are (8, 16) as shown in Figure 20-4.

Chapter 20 Game Project: Invaders

261

In the ‘Invaders’ game, bitmap font display is handled by the

BitmapFont class. We’ll define that class now. Create a new file and call it

‘bitmapfont.py’. Enter the code below and save the file.

There is a little twist to this though. The font included with the

‘Invaders’ project doesn’t have the first non-printable 32 characters.

It starts with the space character. This is not really an issue, but it adds

an extra step to move the characters down 32 positions. Take note of the

toIndex() method.

import pygame, os, sys

from pygame.locals import *

class BitmapFont(object):

 def __init__(self, fontFile, width, height):

 self.image = pygame.image.load(fontFile)

Figure 20-4.  Close-up of a bitmap font showing the pixel start
position of the 8×8 grid for the exclamation mark character

Chapter 20 Game Project: Invaders

262

 self.cellWidth = width

 self.cellHeight = height

 width = self.image.get_rect().width

 height = self.image.get_rect().height

 self.cols = width / self.cellWidth

 self.rows = height / self.cellHeight

The constructor loads the file and based upon the width and height

of each character, it calculates the number of columns and rows for the

character table.

 def draw(self, surface, msg, x, y):

 for c in msg:

 ch = self.toIndex(c)

 ox = (ch % self.cols) * self.cellWidth

 oy = (ch / self.cols) * self.cellHeight

This is the part of the code that calculates the x- and y-offset into the

bitmap for the current character in the message.

 cw = self.cellWidth

 ch = self.cellHeight

 sourceRect = (ox, oy, cw, ch)

 �surface.blit(self.image, (x, y, cw, ch), sourceRect)

 x += self.cellWidth

Finally, the partial image is blitted to the surface.

 def centre(self, surface, msg, y):

 width = len(msg) * self.cellWidth

 halfWidth = surface.get_rect().width

 x = (halfWidth - width) / 2

 self.draw(surface, msg, x, y)

Chapter 20 Game Project: Invaders

263

The centre() method calculates the overall width of the message and

centres it on the line.

 def toIndex(self, char):

 return ord(char) - ord(' ')

The bitmap font that we use for ‘Invaders’ starts at space (ASCII 32).

We use the ord() function that Python provides to get the ASCII value of

the character. Subtracting the ASCII value for space gives us our index

value into the bitmap font.

�Interstitial Screens
Interstitial screens are the images that are displayed in between levels

(“Get Ready!”) when the pause screen is shown or when the player

dies, that is, the “Game Over” screen appears. Create a new file called

‘interstitial.py’ and type in the following code:

import pygame, os, sys

from pygame.locals import *

from bitmapfont import *

from raspigame import *

class InterstitialState(GameState):

Our InterstitialState class extends GameState. Remember: if we extend

from a class, we place that parent (or base) class’ name in parentheses after

the name of the class.

 def __init__(self, game, msg, waitTimeMs, nextState):

 super(InterstitialState, self).__init__(game)

The base class’ constructor must be called. Under Python, the child class

name and the child class instance ‘self’ must be passed to the super() method.

Python 3.0 ‘fixes’ this by way of ‘syntactic sugar’ and just allowing you to call

super(). Not so with the version of Python that ships with the Raspberry Pi.

Chapter 20 Game Project: Invaders

264

We must also call the constructor directly; that’s why the call is to

the __init__() method. The base class’ constructor expects an instance of

RaspiGame, so this is duly passed to the base class’ constructor.

 self.nextState = nextState

 �self.font = BitmapFont('fasttracker2-style_12x12.png',

12, 12)

 self.message = msg

 self.waitTimer = waitTimeMs

The fields for the interstitial state are initialized.

 def update(self, gameTime):

 self.waitTimer -= gameTime

 if (self.waitTimer < 0):

 self.game.changeState(self.nextState)

The update method waits until the timer runs down. When the timer

reaches zero, the game is told to move to the next state.

 def draw(self, surface):

 �self.font.centre(surface, self.message, surface.get_

rect().height / 2)

Save the file.

�The Main Menu
The main menu contains two items:

•	 Start game

•	 Quit

Like the interstitial screen, the main menu is a subclass of GameState.

Create a new file called ‘menu.py’ and enter the following code:

Chapter 20 Game Project: Invaders

265

import pygame, os, sys

from pygame.locals import *

from raspigame import *

from bitmapfont import *

Our main menu state uses the bitmap font class to draw the text on

screen and the raspigame file is imported because MainMenuState is a

subclass of GameState. GameState is defined in the raspigame.py file.

class MainMenuState(GameState):

 def __init__(self, game):

 super(MainMenuState, self).__init__(game)

 self.playGameState = None

 �self.font = BitmapFont('fasttracker2-style_12x12.png',

12, 12)

 self.index = 0

 self.inputTick = 0

 self.menuItems = ['Start Game', 'Quit']

The currently selected item is stored in ‘index,’ and the menu items are

contained in the ‘menuItems’ list.

 def setPlayState(self, state):

 self.playGameState = state

The current play state is set to ‘state.’

 def update(self, gameTime):

 keys = pygame.key.get_pressed()

 �if ((keys[K_UP] or keys[K_DOWN]) and self.inputTick == 0):

 self.inputTick = 250

 if (keys[K_UP]):

 self.index -= 1

 if (self.index < 0):

 self.index = len(self.menuItems) -1

Chapter 20 Game Project: Invaders

266

 elif (keys[K_DOWN]):

 self.index += 1

 if (self.index == len(self.menuItems)):

 self.index = 0

The user presses the up and down arrow keys to select a menu item.

To prevent the menu selection from spinning out of control, the updates

are clamped to four per second (250 milliseconds).

 elif (self.inputTick >0):

 self.inputTick -= gameTime

 if (self.inputTick < 0):

 self.inputTick = 0

The selection is prevented from spinning by updating the inputTick

control variable. Once it reaches zero, input is allowed again.

 if (keys[K_SPACE]):

 if (self.index == 1):

 self.game.changeState(None) # exit the game

 elif (self.index == 0):

 self.game.changeState(self.playGameState)

When the user presses the spacebar, the current selected index is

tested. If the user chose the zeroth element, the game changes to the

playGameState. If the user chooses the first element, the game exits.

 def draw(self, surface):

 self.font.centre(surface, "Invaders! From Space!", 48)

 count = 0

 y = surface.get_rect().height - len(self.menuItems) * 160

 for item in self.menuItems:

 itemText = " "

Chapter 20 Game Project: Invaders

267

 if (count == self.index):

 itemText = "> "

 itemText += item

 self.font.draw(surface, itemText, 25, y)

 y += 24

 count += 1

Each menu item is drawn onscreen. The selected menu item is prefixed

with a ‘>’ character to indicate to the player that the item has been selected.

Save the file.

�Player and Bullets
The bullet classes deal with the position and collection of bullets that have

been fired. Like all the entities in this game, the bullets are split into separate

model, view, and controller classes. MVC plays a big part in this game!

�The Bullet Classes
Create a new Python file in the Invaders folder and call it ‘bullet.py’. Enter

the following text:

import pygame, os, sys

from pygame.locals import *

class BulletModel(object):

Our bullet model is super simple. It is a class that contains an x- and

y-coordinate representing the bullet’s position in 2D space. It has one

method, and only one method called update() that takes a single delta

value. This is added to the y-coordinate of the bullet’s position.

 def __init__(self, x, y):

 self.x = x

 self.y = y

Chapter 20 Game Project: Invaders

268

sets the bullet’s position to (x, y) on the screen.

 def update(self, delta):

 self.y = self.y + delta

updates the bullet’s y-coordinate.

class BulletController(object):

The bullet controller contains a list of bullets. Each bullet is updated

each time the update() method is called.

 def __init__(self, speed):

 self.countdown = 0

 self.bullets = []

 self.speed = speed

The constructor creates a blank array of bullet objects and sets

the speed of each bullet to ‘speed.’ The countdown variable is used

as a cooldown for the player. They can only fire a bullet every 1000

milliseconds.

 def clear(self):

 self.bullets[:] = []

Clear the bullet list.

 def canFire(self):

 return self.countdown == 0 and len(self.bullets) < 3

The player can only fire if the countdown has expired and there are less

than three active bullets.

 def addBullet(self, x, y):

 self.bullets.append(BulletModel(x, y))

 self.countdown = 1000

Chapter 20 Game Project: Invaders

269

A bullet is added to the system and the countdown is reset to 1 second

(1000 milliseconds). When the countdown reaches zero, the player can fire

again. The countdown field is updated in the update() method.

 def removeBullet(self, bullet):

 self.bullets.remove(bullet)

Bullets are removed from the list when they have either killed an alien

or they pop off the top of the screen.

 def update(self, gameTime):

 killList = []

The killList holds bullets that will be removed in this update. Bullets

that pop off the top of the screen are removed from the list.

 if (self.countdown > 0):

 self.countdown = self.countdown - gameTime

 else:

 self.countdown = 0

The gameTime (in milliseconds) is subtracted from the countdown

field.

When the countdown field reaches zero, the player can fire again.

 for b in self.bullets:

 b.update(self.speed * (gameTime / 1000.0))

 if (b.y < 0):

 killList.append(b)

Each bullet is updated. If their y-coordinate is less than zero (the bullet

has popped off the top of the screen), then it is marked for removal.

 for b in killList:

 self.removeBullet(b)

Chapter 20 Game Project: Invaders

270

Our final bullet class is the view. This takes all the data from the bullet

controller and displays each bullet onscreen.

class BulletView(object):

 def __init__(self, bulletController, imgpath):

 self.BulletController = bulletController

 self.image = pygame.image.load(imgpath)

Initialize the bullet view with the bullet controller and the path to the

bullet image.

 def render(self, surface):

 for b in self.BulletController.bullets:

 surface.blit(self.image, (b.x, b.y, 8, 8))

Save the file.

�The Player Classes
Create a new file called ‘player.py’ and enter the following code. The MVC

components of the player entity are contained in this one file.

import pygame, os, sys

from pygame.locals import *

from bullet import *

from bitmapfont import *

class PlayerModel(object):

 def __init__(self, x, y):

 self.x = x

 self.y = y

 self.lives = 3

 self.score = 0

 self.speed = 100 # pixels per second

Chapter 20 Game Project: Invaders

271

The player model contains all the data for the player entity: its position

onscreen in the form of x- and y-coordinates, the number of lives, the

player’s score, and their movement speed in pixels per second. Remember:

by using pixels per second we can ensure that no matter the speed of the

machine, we get a consistent movement speed.

class PlayerController(object):

 def __init__(self, x, y):

 self.model = PlayerModel(x, y)

 self.isPaused = False

 self.bullets = BulletController(-200) # pixels per sec

 self.shootSound = pygame.mixer.Sound('playershoot.wav')

The constructor creates an instance of the player model and a

BulletController. The bullet controller takes in a single parameter

representing the movement speed in pixels per second. It is a negative value

because we are going ‘up’ the screen, which is tending to zero. Why? Well,

remember that in computing, the top left of the screen is position (0, 0) and

the bottom-right corner is the maximum value on the x- and y-axes.

 def pause(self, isPaused):

 self.isPaused = isPaused

Prevent the player from moving the tank.

 def update(self, gameTime):

 self.bullets.update(gameTime)

 if (self.isPaused):

 return

 keys = pygame.key.get_pressed()

 if (keys[K_RIGHT] and self.model.x < 800 - 32):

 �self.model.x += (gameTime/1000.0) * self.

model.speed

Chapter 20 Game Project: Invaders

272

 elif (keys[K_LEFT] and self.model.x > 0):

 �self.model.x -= (gameTime/1000.0) * self.

model.speed

The player can move left and right using the cursor (arrow) keys on the

keyboard. The position is updated by a percentage of the movement speed

based upon the game time. This allows us to have smooth movement no

matter the speed of the CPU or our frame rate.

 if (keys[K_SPACE] and self.bullets.canFire()):

 x = self.model.x + 9 # bullet is 8 pixels

 y = self.model.y - 16

 self.bullets.addBullet(x, y)

 self.shootSound.play()

When the player hits the space bar, a bullet is added to the current list

of bullets and we play the bullet shooting sound. The firing is restricted by

the canFire() method of the ‘BulletController’ class.

 def hit(self, x, y, width, height):

 �return (x >= self.model.x and y >= self.model.y and x

+ width <= self.model.x + 32 and y + height <= self.

model.y + 32)

This method allows us to test collisions against any other object by

boiling the object down to its purest form: its position in space and its

width and height.

There are two view classes for the player: PlayerView displays the

player’s tank at the bottom of the screen, and PlayerLivesView displays the

number of lives the player has left.

class PlayerView(object):

 def __init__(self, player, imgpath):

 self.player = player

 self.image = pygame.image.load(imgpath)

Chapter 20 Game Project: Invaders

273

 def render(self, surface):

 �surface.blit(self.image, (self.player.model.x, self.

player.model.y, 32, 32))

The PlayerView class has one main method called ‘render.’ This displays

the tank at the player’s position. The player model is passed into the view.

class PlayerLivesView(object):

 def __init__(self, player, imgpath):

 self.player = player

 self.image = pygame.image.load(imgpath)

 �self.font = BitmapFont('fasttracker2-style_12x12.png',

12, 12)

The constructor takes two arguments: the player model and a string

that represents the image path to a bitmap font.

 def render(self, surface):

 x = 8

 for life in range(0, self.player.model.lives):

 surface.blit(self.image, (x, 8, 32, 32))

 x += 40

 �self.font.draw(surface, '1UP SCORE: ' + str(self.

player.model.score), 160, 12)

The render method draws the ship image ‘lives’ number of times and

then displays the player’s score as ‘1UP SCORE: 00000.’

�Testing Player
We can test the Player classes by adding the following code to the player.

py file. This part is optional, but it gives a clear example that classes can be

Chapter 20 Game Project: Invaders

274

tested in isolation from the main program. If you don’t want to add this,

you can just save the file and move to the next section.

if (__name__ == '__main__'):

Each Python file is given a name at runtime. If this is the main file, that

is, this is the file that is run, it is given the special name ‘main.’ If that is the

case we will initialize PyGame and create our code to test our classes.

 pygame.init()

 fpsClock = pygame.time.Clock()

 surface = pygame.display.set_mode((800, 600))

 pygame.display.set_caption('Player Test')

 black = pygame.Color(0, 0, 0)

 player = PlayerController(0, 400)

 playerView = PlayerView(player, 'ship.png')

 playerLivesView = PlayerLivesView(player, 'ship.png')

Create one each of controller, view, and lives view for our Player.

 while True:

 for event in pygame.event.get():

 if event.type == QUIT:

 pygame.quit()

 sys.exit()

 player.update(fpsClock.get_time())

 surface.fill(black)

 playerView.render(surface)

 playerLivesView.render(surface)

 pygame.display.update()

 fpsClock.tick(30)

Chapter 20 Game Project: Invaders

275

Our main loop checks to see if ‘QUIT’ has been selected by the user

(i.e., they closed the window), if not then the update() method is called

and each display is rendered. Save the ‘player.py’ file.

�The Alien Swarm Classes
Create a new Python file called ‘swarm.py’. We will implement the

following classes in this file:

•	 InvaderModel

•	 SwarmController

•	 InvaderView

import pygame, os, sys

from pygame.locals import *

from bullet import *

The PyGame libraries need to be referenced for image manipulation.

The alien swarm also uses bullets, so we need to import the ‘bullet.py’ file

too. Our InvaderModel contains minimal code; it is mostly just data that is

used to describe the alien to the AlienView.

There are two frames of animation for each type of alien, and there are

also two alien types.

class InvaderModel(object):

 def __init__(self, x, y, alientype):

 self.x = x

 self.y = y

 self.alientype = alientype

 self.animframe = 0

The constructor takes three arguments, not including ‘self.’ The first two

are the starting coordinates of the alien, and the last one is the alien type.

Chapter 20 Game Project: Invaders

276

There are two alien types: one red and one green. They score differently

when hit which is why we need to store what type of alien this model

represents.

 def flipframe(self):

 if self.animframe == 0:

 self.animframe = 1

 else:

 self.animframe = 0

The flipframe() method toggles the current frame of animation from

0 to 1 back to zero again. The aliens only have two frames of animation.

 def hit(self, x, y, width, height):

 �return (x >= self.x and y >= self.y and x + width

<= self.x + 32 and y + height <= self.y + 32)

The last line in the hit() method is all on one line. The hit() method is

used by the Collision class to determine if a hit has occurred.

The SwarmController class is actually the controller for the multiple

aliens. It uses composition because each individual alien is created and

destroyed by the Swarm class.

class SwarmController(object):

 def __init__(self, scrwidth, offsety, initialframeticks):

 self.currentframecount = initialframeticks

 self.framecount = initialframeticks

The current animation frame is controlled from here. This ensures that

each alien ‘marches’ in time with the other aliens.

 self.invaders = []

 self.sx = -8

 self.movedown = False

 self.alienslanded = False

Chapter 20 Game Project: Invaders

277

The current alien direction is set to a negative (left) direction. The

‘movedown’ flag is set when the aliens have to move down the screen

when they hit a side. The final flag ‘alienslanded’ means that it’s game over

for the player when this is True.

 self.bullets = BulletController(200) # pixels per sec

The BulletController class is also part of the SwarmController. The

pixels per second value for bullet speed is positive because we are going

down the screen. Remember that for the player, it was negative because

the player’s bullets go up screen.

 �self.alienShooter = 3 # each 3rd alien (to start

with) fires

 self.bulletDropTime = 2500

 �self.shootTimer = self.bulletDropTime # each bullet

is fired in this ms interval

 self.currentShooter = 0 # current shooting alien

 for y in range(7):

 for x in range(10):

 �invader = InvaderModel(160 + (x * 48) +

8, (y * 32) + offsety, y % 2)

 self.invaders.append(invader)

The nested for-loop is used to generate the alien swarm. Each swarm

member is an instance of the InvaderModel class.

 def reset(self, offsety, ticks):

 self.currentframecount = ticks

 self.framecount = ticks

 for y in range(7):

 for x in range(10):

Chapter 20 Game Project: Invaders

278

 �invader = InvaderModel(160 + (x * 48) +

8, (y * 32) + offsety, y % 2)

 self.invaders.append(invader)

The ‘reset’ method is used reset the alien swarm for the next attack,

speeding up their descent.

 def update(self, gameTime):

 self.bullets.update(gameTime)

 self.framecount -= gameTime

 movesideways = True

The ‘framecount’ member field is used as a timer. The gameTime is

subtracted from the current time in ‘framecount,’ and when it reaches

zero, we ‘tick’ the swarm. This is how we control the update speed of our

objects. We can specify different ‘tick’ times. The smaller the ‘framecount,’

the quicker the update occurs because we must subtract less time.

 if self.framecount < 0:

 if self.movedown:

 self.movedown = False

 movesideways = False

 self.sx *= -1

 self.bulletDropTime -= 250

 if (self.bulletDropTime < 1000):

 self.bulletDropTime = 1000

 self.currentframecount -= 100

 �if self.currentframecount < 200: #clamp

the speed of the aliens to 200ms

 self.currentframecount = 200

 for i in self.invaders:

 i.y += 32

Chapter 20 Game Project: Invaders

279

If we have to move down, the section of code under ‘if self.movedown’

provides the steps required to move the alien swarm down the screen.

When the swarm moves down screen, the ‘currentframecount’ is updated.

This is because the aliens speed up each time they drop further toward the

player.

 �self.framecount = self.currentframecount +

self.framecount

 for i in self.invaders:

 i.flipframe()

 if movesideways:

 for i in self.invaders:

 i.x += self.sx

 x, y, width, height = self.getarea()

 �if (x <= 0 and self.sx < 0) or (x + width

>= 800 and self.sx > 0):

 self.movedown = True

The getarea() method determines the area used by all the aliens left on

the playing field. We then use this information to determine if that area has

‘hit’ the sides. If the area hit the sides, we mark the swarm to move down

the next tick.

 self.shootTimer -= gameTime

 if (self.shootTimer <= 0):

 �self.shootTimer += self.bulletDropTime

reset the timer

 �self.currentShooter += self.alienShooter

 �self.currentShooter = self.

currentShooter % len(self.invaders)

Chapter 20 Game Project: Invaders

280

 �shooter = self.invaders[self.

currentShooter]

 x = shooter.x + 9 # bullet is 8 pixels

 y = shooter.y + 16

 self.bullets.addBullet(x, y)

The shooting timer works on a different ‘tick’ than the frame update.

When the timer reaches zero, the current shooter is incremented by

‘alienShooter’; therefore it’s not part of the main swarm tick.

The ‘currentShooter’ field is clamped to the number of aliens we have

left. This ensures that we don’t ever try and access an alien outside our list.

The current shooter is then referenced, and we add a bullet at the shooter’s

position. I chose 3 (three) as the incrementor because it gave a pseudo-

random feel to the shooting.

 def getarea(self):

 leftmost = 2000

 rightmost = -2000

 topmost = -2000

 bottommost = 2000

Setting up the maximum and minimum boundaries.

 for i in self.invaders:

 if i.x < leftmost:

 leftmost = i.x

 if i.x > rightmost:

 rightmost = i.x

 if i.y < bottommost:

 bottommost = i.y

 if i.y > topmost:

 topmost = i.y

Chapter 20 Game Project: Invaders

281

Using some simple range checking, we calculate the leftmost,

rightmost, topmost, and bottommost points from all the aliens.

 width = (rightmost - leftmost) + 32

 height = (topmost - bottommost) + 32

 return (leftmost, bottommost, width, height)

Our final Invader class is the view class. It uses aggregation because it

references the SwarmController class.

class InvaderView:

 def __init__(self, swarm, imgpath):

 self.image = pygame.image.load(imgpath)

 self.swarm = swarm

The constructor takes in two arguments. The first is the

SwarmController instance, and the second is the path to the image file that

represents our alien sprites.

 def render(self, surface):

 for i in self.swarm.invaders:

 �surface.blit(self.image, (i.x, i.y, 32, 32),

(i.animframe * 32, 32 * i.alientype, 32, 32))

The ‘render’ method loops through all the invaders in

SwarmController’s ‘swarm’ field and displays it onscreen. The ‘animframe’

field of the Invader model is used to control how far to the left the slice is

taken of the sprite sheet. The ‘alientype’ field is how far up the slice is.

Save the file. We’re going to need this and the other files for collision

detection.

Chapter 20 Game Project: Invaders

282

�Collision Detection
Our collision detection classes are stored in the ‘collision.py’ file. Create a

new blank file and call it ‘collision.py’. This will hold the following classes:

•	 ExplosionModel

•	 ExplosionModelList

•	 ExplosionView

•	 ExplosionController

•	 CollisionController

We will examine each in the order that they appear in the file.

�Explosions
Action games require loud noises and explosions. Our game is no different!

The four explosion classes – ExplosionModel, ExplosionModelList,

ExplosionView, and ExplosionController – are used by the

CollisionController to create and update the various explosions that occur

throughout the game. Each explosion is drawn onscreen using a sprite

sheet that consists of a series of animation frames.

Our file starts in the familiar way with a series of imports:

import pygame, os, sys

from pygame.locals import *

from player import *

from bullet import *

from swarm import *

from interstitial import *

Our own classes from player, bullet, swarm, and interstitial are

required.

Chapter 20 Game Project: Invaders

283

class ExplosionModel(object):

 def __init__(self, x, y, maxFrames, speed, nextState = None):

 self.x = x

 self.y = y

 self.maxFrames = maxFrames

 self.speed = speed

 self.initialSpeed = speed

 self.frame = 0

 self.nextState = nextState

The ‘ExplosionModel’ class contains no methods, much like all

our other models. It only contains fields that describe an explosion; it’s

position, the number of frames, the update speed, the current frame, and

the next state.

class ExplosionModelList(object):

 def __init__(self, game):

 self.explosions = []

 self.game = game

 def add(self, explosion, nextState = None):

 x, y, frames, speed = explosion

 exp = ExplosionModel(x, y, frames, speed, nextState)

 self.explosions.append(exp)

 def cleanUp(self):

 killList = []

 for e in self.explosions:

 if (e.frame == e.maxFrames):

 killList.append(e)

 nextState = None

Chapter 20 Game Project: Invaders

284

 for e in killList:

 if (nextState == None and e.nextState != None):

 nextState = e.nextState

 self.explosions.remove(e)

 if (nextState != None):

 self.game.changeState(nextState)

The cleanUp() method needs a little explanation. With this

mechanism, we can encode in our explosion the ability to move the game

to another state. For example, when the player dies and they have no more

lives, we can change the state of the game to ‘Game Over.’

class ExplosionView(object):

 def __init__(self, explosions, explosionImg, width, height):

 self.image = pygame.image.load(explosionImg)

 self.image.set_colorkey((255, 0, 255))

 self.explosions = explosions

 self.width = width

 self.height = height

 def render(self, surface):

 for e in self.explosions:

 �surface.blit(self.image, (e.x, e.y, self.width,

self.height), (e.frame * self.width, 0, self.

width, self.height))

The ‘ExplosionView’ loops through all the explosions and displays

each one of them in turn.

class ExplosionController(object):

 def __init__(self, game):

 self.list = ExplosionModelList(game)

Chapter 20 Game Project: Invaders

285

 def update(self, gameTime):

 for e in self.list.explosions:

 e.speed -= gameTime

 if (e.speed < 0):

 e.speed += e.initialSpeed

 e.frame += 1

 self.list.cleanUp()

The ‘ExplosionController’ is the simplest controller we’ve encountered.

It has an initialization method that creates an ‘ExplosionModelList’ (an

example of composition) and an update() method. The update() method

only needs to increment the frame count. When the count reaches the

maximum frame count, it is automatically removed in the cleanUp()

method of the ‘ExplosionModelList’ class.

�Collision Controller
The ‘CollisionController’ class doesn’t need a corresponding model or

view because it does not require either. It does use other controllers and

models to determine if a collision has occurred. If something was hit, a

suitable sound is made, and an action is performed.

class CollisionController(object):

 �def __init__(self, game, swarm, player, explosionController,

playState):

 self.swarm = swarm

 self.player = player

 self.game = game

 self.BulletController = player.bullets

 self.EnemyBullets = swarm.bullets

 self.expCtrl = explosionController

 self.playGameState = playState

Chapter 20 Game Project: Invaders

286

 self.alienDeadSound = pygame.mixer.Sound('aliendie.wav')

 self.playerDie = pygame.mixer.Sound('playerdie.wav')

The constructor for ‘CollisionController’ takes in the game, swarm

controller, player controller, explosion controller instances, and the play

game state. We also load a couple of sounds for when the player hits an alien

(‘aliendie.wav’) or if an alien unfortunately hits the player (‘playerdie.wav’).

 def update(self, gameTime):

 aliens = []

 bullets = []

 for b in self.BulletController.bullets:

 if (bullets.count(b)>0):

 continue

 for inv in self.swarm.invaders:

 if (inv.hit(b.x+3, b.y+3, 8, 12)):

 aliens.append(inv)

 bullets.append(b)

 break

Gather all the player’s bullets and the aliens that have hit an invader.

 for b in bullets:

 self.BulletController.removeBullet(b)

Remove all the bullets that were found that hit an alien

 for inv in aliens:

 self.swarm.invaders.remove(inv)

 self.player.model.score += (10 * (inv.alientype + 1))

 self.expCtrl.list.add((inv.x, inv.y, 6, 50))

 self.alienDeadSound.play()

Chapter 20 Game Project: Invaders

287

Remove all the aliens that have been hit by the player’s bullets. This

part also increments the player’s score and plays the alien death sound.

 playerHit = False

 for b in self.EnemyBullets.bullets:

 if (self.player.hit (b.x+3, b.y+3, 8, 12)):

 self.player.model.lives -= 1

 playerHit = True

 break

Now we check the enemy bullets. If any one of them has hit the player,

we set the ‘playerHit’ flag to ‘True’ and ‘break’ the for-loop. There is no need

to continue searching through the bullets if we have already hit the player.

 if (playerHit):

 self.EnemyBullets.clear()

 self.player.bullets.clear()

 if (self.player.model.lives > 0):

 self.player.pause(True)

 �getReadyState = InterstitialState(self.game,

'Get Ready!', 2000, self.playGameState)

 �self.expCtrl.list.add((self.player.model.x,

self.player.model.y, 6, 50), getReadyState)

 self.playerDie.play()

If the player has been hit, we clear all the bullets from the game. If the

player still has lives left, we pause the player and change the game state

to the ‘get ready’ screen and add an explosion to show the player’s tank

destroyed. Remember: we can change the state after an explosion (see the

‘ExplosionController’ class) and that’s what we’re setting up here.

We’re almost done! Two more files to go. These are the main program

and the main game state.

Chapter 20 Game Project: Invaders

288

�The Main Program
The main program is a single file called ‘invaders.py’. Create a new file

called ‘invaders.py’ and enter the following code. The ‘RaspberryPiGame’

class that we created earlier is expecting an initial state. Our main

program’s function is to create the states used by the Finite State Machine

(FSM) and set the initial state.

import pygame, os, sys

from pygame.locals import *

Our imports

from raspigame import *

from interstitial import *

from menu import MainMenuState

from invadersgame import PlayGameState

Our usual imports for the OS and PyGame modules plus our own local

modules. We’re installing everything from ‘raspigame.py’ and ‘interstitial.py’

but only MainMenuState from ‘menu.py’ and PlayGameState from

‘invadersgame.py’.

invadersGame = RaspberryPiGame("Invaders", 800, 600)

mainMenuState = MainMenuState(invadersGame)

gameOverState = InterstitialState(invadersGame, 'G A M E O V

E R !', 5000, mainMenuState)

playGameState = PlayGameState(invadersGame, gameOverState)

getReadyState = InterstitialState(invadersGame, 'Get Ready!',

2000, playGameState)

mainMenuState.setPlayState(getReadyState)

Create instances of the states used in the game: main menu, game over,

play game, and the get ready states.

invadersGame.run(mainMenuState)

Chapter 20 Game Project: Invaders

289

Set the initial state of the game to be the main menu. And that’s it –

that’s the main program. Its sole purpose is to create the links between

the game states and to set the initial state, and it’s all achieved in six

lines of code.

Save this file.The last class that remains to do is the main game state.

�The Main Game State
Create a new file called ‘invadersgame.py’. Enter the following code:

import pygame, os, sys

from pygame.locals import *

from raspigame import *

from swarm import *

from player import *

from collision import *

Module imports.

class PlayGameState(GameState):

 def __init__(self, game, gameOverState):

 super(PlayGameState, self).__init__(game)

 self.controllers = None

 self.renderers = None

 self.player_controller = None

 self.swarm_controller = None

 self.swarmSpeed = 500

 self.gameOverState = gameOverState

 self.initialise()

Our ‘PlayGameState’ class derives from ‘GameState’ and so the

constructor must call the base class’ constructor. The fields for the

Chapter 20 Game Project: Invaders

290

controllers and the ‘Game Over’ state are initialized. To keep this method

down to a bare minimum, the initialise() method is called.

 def onEnter(self, previousState):

 self.player_controller.pause(False)

The onEnter() method is part of the GameState class. The only thing

we need to do is tell the player controller that it is unpaused.

 def initialise(self):

 �self.swarm_controller = SwarmController(800, 48, self.

swarmSpeed)

 �swarm_renderer = InvaderView(self.swarm_controller,

'invaders.png')

 self.player_controller = PlayerController(0, 540)

 �player_renderer = PlayerView(self.player_controller,

'ship.png')

 �lives_renderer = PlayerLivesView(self.player_

controller, 'ship.png')

 �bullet_renderer = BulletView(self.player_controller.

bullets, 'bullet.png')

 �alienbullet_renderer = BulletView(self.swarm_

controller.bullets, 'alienbullet.png')

 explosion_controller = ExplosionController(self.game)

 �collision_controller = CollisionController(self.

game, self.swarm_controller, self.player_controller,

explosion_controller, self)

 �explosion_view = ExplosionView(explosion_controller.

list.explosions, 'explosion.png', 32, 32)

Chapter 20 Game Project: Invaders

291

 �self.renderers = [alienbullet_renderer, swarm_

renderer, bullet_renderer, player_renderer, lives_

renderer, explosion_view]

 �self.controllers = [self.swarm_controller, self.player_

controller, collision_controller, explosion_controller]

The initialise() method contains the code that creates the instances

of each of the controllers and renderers. These are then added to the

‘renderers’ and ‘controllers’ fields. Each of these fields is a list that we can

iterate through in the update() and draw() methods.

 def update(self, gameTime):

 for ctrl in self.controllers:

 ctrl.update(gameTime)

Loop through all of the controllers and call the update() method on

each of them. Because we have stored the controllers in a list, updating

each of them is a fairly trivial piece of code

 if (self.player_controller.model.lives == 0):

 self.game.changeState(self.gameOverState)

If the player has no more lives left, we change the state of the game to

the “Game Over” state. As it stands, it doesn’t matter what lines follow, but

you may want to add a ‘return’ here to exit from the method.

 if (len(self.swarm_controller.invaders) == 0):

 self.swarmSpeed -= 50

 if (self.swarmSpeed < 100):

 self.swarmSpeed = 100

If there are no more aliens left onscreen then we start a new level. The

speed of the aliens is decreased; this means that the delta time between

updates is decreased. This also means we get faster aliens.

Chapter 20 Game Project: Invaders

292

 self.swarm_controller.reset(48, self.swarmSpeed)

 �levelUpMessage = InterstitialState(invadersGame,

'Congratulations! Level Up!', 2000, self)

 self.game.changeState (levelUpMessage)

Now that we are starting a new board (swarm of aliens) we tell the

swarm controller to reset to the new speed and change the state of the

game to show the “Level Up” message.

 def draw(self, surface):

 for view in self.renderers:

 view.render(surface)

The last method draws all the objects on the screen.

Save the file. We’re finished! You now have a fully working “Invaders”

game.

�Running the Game
To run the game, press F5 in the code editor for ‘invaders.py’ or type the

following at the command prompt from within the ‘pygamebook/projects/

invaders’ folder:

$ python ./invaders.py

Us the arrow keys to select the menu option and press space to select

as shown in Figure 20-5. Have fun, you’ve earned it!

Chapter 20 Game Project: Invaders

293

�Conclusion
We have built complex arcade-style games using our Raspberry Pi,

Python, and PyGame. Using patterns like MVC (Model View Controller),

our program classes can be kept relatively short and focused on doing

one thing be it rendering sprites, controlling a character or being the

data model.

In the last few chapters of the book we will combine what we have

learned with Python and PyGame and create other interactions with our

environment using the General Purpose Input/Output, or GPIO, pins of

the Raspberry Pi to control LEDs and receive input from buttons.

Figure 20-5.  The Invaders main menu

Chapter 20 Game Project: Invaders

295© Sloan Kelly 2019
S. Kelly, Python, PyGame, and Raspberry Pi Game Development,
https://doi.org/10.1007/978-1-4842-4533-0_21

CHAPTER 21

Simple Electronics
with the GPIO Pins
Up until now we have seen the Raspberry Pi communicate with

the keyboard and mouse as input devices and the display as an

output. The Raspberry Pi can communicate with a wide variety of

peripherals – a fancy name for things you can add on – as well as

electronic components like Light Emitting Diodes (LEDs) or switches.

This is achieved by attaching devices through the pins on the top of the

Raspberry Pi. These pins are called the General Purpose Input/ Output

pins or GPIOs for short.

There are 40 pins on a Raspberry Pi Model B+ as shown in

Figure 21-1.

296

You should always be careful when attaching and detaching

peripherals and should turn the power off when doing so. Keeping the

power on and attaching devices may damage the computer.

Careful when plugging devices into the Raspberry Pi! Always
turn off the machine before doing so!

�Voltage, Current, and Resistance
Before we connect our components to the Raspberry Pi, we should take

a step back and discuss some of the basics of electronics. An electronic

circuit is formed when a path is created that allows free electrons to move

along it. The continuous movement of these electrons is a current, think

river. The force causing these electrons to flow is called voltage and is the

measurement of potential energy between two points in the circuit.

Figure 21-1.  The location of the General Purpose Input/Output
(GPIO) pins on the Raspberry Pi board

Chapter 21 Simple Electronics with the GPIO Pins

297

Finally, there is resistance. No matter how well you plan your circuit,

you will always get some resistance to the flow. This might be caused by

imperfections in the wire, loss of energy because of heat loss, etc. You can

even add imperfections by adding devices called resistors to lower the flow

of current. In Figure 21-2 we see a circuit that contains an LED (a light)

and a switch as well as a resistor. They are all connected to a battery. The

circuit is completed because the two ends of the battery – the +ve and –ve

ends – are connected through the resistor, switch, and LED. The circuit

will be complete, that is, the electrons will be free to flow from +ve to –ve

terminals of the battery when the switch is connected. This flow is called

conventional current.

Switch

Battery

+ -

LED

330 ohms
Resistor

Figure 21-2.  A simple circuit that will illuminate the light when the
switch on the left has been pressed

This circuit will light the LED when the switch is pressed. Later in this

chapter we will build this circuit using the components listed as follows.

Chapter 21 Simple Electronics with the GPIO Pins

298

�What You Will Need
For the remaining projects in this book, you will need a few things before

you can get started creating circuits with the Raspberry Pi. At the minimum

you will need

•	 Breadboard

•	 A breakout board

•	 Jumper wires

•	 LEDs

•	 Resistors (330Ω will be fine)

•	 Switches

The Raspberry Pi can provide 3.3V power as well as ground. Again, be

careful connecting and disconnecting wires. You can cause damage to your

Raspberry Pi if you do not take care what pins you are connecting.

�Breadboard
A breadboard is used to prototype electronic circuits. It allows for easy

placement and removal of components like LEDs, wires and switches

without having to solder or de-solder those components. As shown in

Figure 21-2, the breadboard is covered in tiny connectors protected by a

plastic shell. The tiny connectors are arranged in a very particular way.

On the top and bottom are two lines labeled + (positive) and –

(negative). These are the power (3.3 volts) and ground (0 volt) lines. If you

connect the Raspberry PI’s 3.3V output to the + rail, all the connectors on

that rail receive 3.3 volts. This makes attaching a component to the +ve

(positive) and –ve (negative) rails easy.

Chapter 21 Simple Electronics with the GPIO Pins

299

The middle section is split down the middle and separates each

row in half. The columns of each row section are connected. Again, this

makes connecting multiple outputs to a single pin easier. Each row is

not connected to the other. There is usually a numbering system on

breadboards to make creating circuits easier. In the following example the

columns are labeled ‘a’ through ‘j’ and the rows are numbered in intervals

of 5: 1, 5, 10, 15, etc.

�Breakout Board
A breakout board is a simple device that makes connecting a Raspberry

Pi to a breadboard for prototyping easy. The device is placed on the

breadboard as shown in Figure 21-3. The remaining columns in each row

allow jumper wires or resistors to be connected to the associated pin on

that row.

Figure 21-3.  A breadboard for prototyping electronic circuits

Chapter 21 Simple Electronics with the GPIO Pins

300

The Raspberry Pi and the breadboard can then be connected using the

supplied ribbon cable. Please read the instructions on how to connect the

ribbon cable as it varies depending on the supplier and the model.

Most breakout boards come in the variety shown in Figure 21-3 but

some are T-shaped to make connecting even easier.

Notice that the breakout board has the Raspberry Pi pins marked

on the side. This makes pins easier to identify when placing jumper

wires. Adafruit supplies a breakout board called the ‘cobbler’ for various

Raspberry Pi models. See www.adafruit.com/ for more details.

�Jumper Wires
Jumper wires come in a variety of lengths as shapes as can be seen in

Figures 21-4 and 21-5. Some are pre-packages in a box and others are

random assortments inside a plastic bag. Either way they are usually a

solid piece of wire that allow you to connect LEDs, switches, etc., to the

Raspberry Pi pins.

Chapter 21 Simple Electronics with the GPIO Pins

http://www.adafruit.com/

301

Figure 21-4.  A breakout board (middle of the picture) on a
breadboard with jumper wires and resistors connected to the pins

Chapter 21 Simple Electronics with the GPIO Pins

302

�LEDs
Light Emitting Diodes (LEDs) allow an electric current to pass in one direction

(that’s the diode part) and emit light at the same time. It is used to provide

cheap low-cost light and comes in a variety of packages. For most electronics,

the familiar color domed version, as shown in Figure 21-6, is used.

Figure 21-5.  A selection of solid core wires

Chapter 21 Simple Electronics with the GPIO Pins

303

You have probably noticed that one leg is longer than the other. This is

called the anode and is always connected to the +ve (3.3V) rail. The shorter

leg is called the cathode and is connected to the ground or 0V line. If you

connect it the other way, the light will not illuminate. You won’t break the

light, it just won’t light.

You will also need to attach a resistor to the circuit when using LEDs

because they can draw more power from the Raspberry Pi which can then

damage the computer.

Figure 21-6.  An LED. Note that one leg is longer than the other. The
longer leg is the anode and is always connected to the positive rail.

Chapter 21 Simple Electronics with the GPIO Pins

304

�Resistors
Resistors limit the amount of current traveling through a circuit. The

measure of resistance is called an ohm (Ω) and the larger the resistance

value, the more it limits the current. The formula for calculating voltages,

current (measured in amps), and resistance (ohms) in a circuit is

V = IR

where V is the voltage, I is current, and R is resistance. If you want to

calculate the current going through a 330Ω resistor at 3.3V, then it would be

V = IR

So, that means that I = V / R:

I = 3.3 / 330

I = 0.01 amps

If we increase that resistor to 470 Ω, it drops the amps from 0.01 amps

to 0.006 amps, almost half of the original value, meaning that there is less

current going through to the other side of the resistor.

A strip of resistors is shown in Figure 21-7. The value of the resistor

has been written on the paper strip to make it easier to identify its value:

330Ω. The bands around the resistor indicate its value. There are between

three and six colored bands, but the resistors I have use five as shown in

Table 21-1:

Chapter 21 Simple Electronics with the GPIO Pins

305

Figure 21-7.  A strip of resistors from a supplier with the value
marked on the paper tape

Table 21-1.  Resistor Color Band Positions and Meanings

Color First Band Second Band Third Band Multiplier Tolerance

Black 0 0 0 1Ω

Brown 1 1 1 10Ω ± 1%

Red 2 2 2 1KΩ ± 2%

Orange 3 3 3 10KΩ

Yellow 4 4 4 100KΩ

Green 5 5 5 1MΩ ± 0.5%

Blue 6 6 6 10MΩ ± 0.25%

(continued)

Chapter 21 Simple Electronics with the GPIO Pins

306

The colors of the resistors I have are shown in Table 21-2.

Table 21-2.  Converting the Colored Bands to

Determine the Value of the Resistor

Color Value

Orange 3

Orange 3

Black 0

Black 1 Ω

Gold ± 5%

This is 330 × 1 Ω or 330 Ω with a tolerance of ± 5%.

It is important to use a resistor when placing a LED in your circuit.

A LED will try to absorb as much current as possible and a resistor is a

great way to limit that absorption. Resistors do not have directionality,

unlike LEDs, so you can put them any way round you like, I’d recommend

keeping them all facing the same direction for clarity.

Color First Band Second Band Third Band Multiplier Tolerance

Violet 7 7 7 1GΩ ± 0.1%

Gray 8 8 8 0.1Ω ± 0.05%

White 9 9 9 0.01Ω

Gold ± 5%

Silver ± 10%

Table 21-1.  (continued)

Chapter 21 Simple Electronics with the GPIO Pins

307

�Switches
Figure 21-8 shows a simple push-button tact switch. It contains four pins

arranged in two pairs. Each pair is disconnected from the other. When the

switch is depressed a contact inside the package completes the connection

between the pairs.

Figure 21-8.  A simple push-button tact switch

Chapter 21 Simple Electronics with the GPIO Pins

308

�Building a Circuit
Now that we have learned the basics of electronic circuits, let’s build a very

simple one that requires no programming. We’re going to recreate the

circuit from Figure 21-1. For this we will need

•	 A breadboard

•	 A breakout board

•	 Three jumper wires

•	 A 330Ω resistor

•	 A tact switch

•	 An LED

�Connecting the Breakout Board to the
Raspberry Pi
Shut down the Raspberry Pi by clicking on the Raspberry Pi menu and

choosing “Shutdown…” as shown in Figure 21-9.

Chapter 21 Simple Electronics with the GPIO Pins

309

Figure 21-9.  The shutdown menu item on the Raspberry Pi system
menu

Wait until the machine full shuts down. Don’t disconnect the power!

We need the power to build the circuit.

Connect the ribbon cable for the breakout board to the Raspberry Pi’s

GPIO pins. Be careful not to force it as this may bend the pins if the cable is

not seated correctly.

There is usually a white wire on the ribbon cable. This indicates the

first pin and is used to align the Raspberry Pi with the breakout board.

Make sure that the white wire is nearest the top of the board, that is, further

away from the USB and network ports as shown in Figure 21-10.

Chapter 21 Simple Electronics with the GPIO Pins

310

Insert the breakout board on the breadboard. The breakout board

should straddle the middle trough of the breadboard as shown in

Figure 21-4. Again, take care not to bend any of the pins.

Figure 21-10.  The arrow indicates the location of the white wire on
the cable. Notice the orientation of the board to the USB, network,
and HDMI ports

Chapter 21 Simple Electronics with the GPIO Pins

311

Next, connect the other end of the ribbon cable to the breakout board.

This is made easier by having a notch in the side of the breakout board and

a raised section on the ribbon connector. It can only go in one way, but to

be sure, the white wire on the cable should at the top of the board.

You should now have the Raspberry Pi connected to the breadboard.

Even though the Raspberry Pi is off, the power is still connected to it. We

can use this to power our circuit.

�Providing Power and Ground
The first two jumper wires we will add are to the Raspberry Pi’s 3.3V and

ground pins. These are located near the top of the breakout board and are

shown in Figure 21-11.

Figure 21-11.  The 3V3 pin and the ground pin wires

Insert one end of a wire in the 3V3 (3.3 volt) pin row as shown in

Figure 21-11. Place the other end in the +ve rail of the breadboard. This

is our 3.3V line. Anything connected to that line – shown in red on the

breadboard – will be connected to 3.3V.

Chapter 21 Simple Electronics with the GPIO Pins

312

Next take another wire and connect it to a row marked with a GND or

ground. This will be our ground wire. We don’t have a place to put that yet,

so just leave it floating for now.

�Adding the LED
Place an LED on the motherboard with the anode (the longer leg) on one

row and the cathode (the shorter leg) on another. Don’t place the pins

on the same row or it won’t work! In Figure 21-12 I show how I placed

the LED. It doesn’t matter which way round it is – the arrow indicates the

anode – so long as you remember which way it is.

Figure 21-12.  The LED pins are placed on different rows. The arrow
is pointing to the anode pin.

To connect the LED to the 3.3V line, we will use a 330Ω resistor.

Remember! Always use a resistor with an LED!

Connect one end of a resistor to the same row as the anode and the

other to the +ve rail as shown in Figure 21-13.

Chapter 21 Simple Electronics with the GPIO Pins

313

Figure 21-13.  Connecting the LED to the 3.3V line using a 330Ω
resistor

�Completing the Circuit
We’ll now complete the circuit by adding the tact switch and the jumper

wires. Place a switch on the breadboard as shown in Figure 21-14.

Chapter 21 Simple Electronics with the GPIO Pins

314

I like to place it across the trough in the middle of the board, but you

can place it any where you want. Remember that the switch has two pairs

and the pins of each pair are connected to each other. This means that, as

shown in Figure 21-14, we need to connect the wires to the top and bottom

pins so that when the tact switch is pressed the circuit is completed. If

we connected the two top pins or the two bottom pins, the circuit would

complete.

Take the 0V (ground) wire that we left floating earlier and insert it into

a connector on the same row as the top pin of the switch. Take another

jumper wire and connect it to the same row as the bottom pin of the switch

and to the cathode (short pin) of the LED.

You should now have a circuit that looks something like that shown in

Figure 21-15.

Figure 21-14.  A tact switch straddling the trough in the middle of the
breadboard

Chapter 21 Simple Electronics with the GPIO Pins

315

�Testing the Circuit
The full circuit is shown in Figure 21-16. You should review the

connections in that circuit against the physical circuit you have just made.

Make sure all the connections match with the ones in the figure before

pressing the tact switch.

Figure 21-15.  The completed circuit. The breakout board is partially
visible at the top of the picture.

Chapter 21 Simple Electronics with the GPIO Pins

316

If everything is OK, press down on the tact switch and the circuit

should light up! If it doesn’t, check your wiring. If you disconnected the

power from the Raspberry Pi – remember, we need that power for this

circuit – you should re-connect the power. This will turn on your Raspberry

Pi, but that’s fine. For this exercise we only need the power from the pins.

�Pin Meanings
Each pin has a specific purpose and the Raspberry Pi allows you to connect

to peripherals using SPI (Serial Peripheral Interface), I2C (Inter-Integrated

Circuit), or the GPIO pins directly. For the remainder of this book we will

Figure 21-16.  The circuit diagram showing the connections between
the Raspberry Pi and the breadboard. Use this diagram to ensure you
have your circuit built correctly before pressing the tact switch.

Chapter 21 Simple Electronics with the GPIO Pins

317

be concentrating on the GPIO pins themselves. We will see later that we

must tell the Raspberry Pi how we will be using the GPIO pins, that is, what

mode of operation. Figure 21-17 shows what the physical pins map to.

Figure 21-17.  The position of each GPIO, voltage, and ground pins

The first thing you’ll notice is that the numbered pins are not in

sequence. These are the GPIO pins and are directly accessible through

Python. You can connect switches, LEDs, etc., to these pins and have

Python read their values or write values to them to turn on lights.

The 3v3 pins output 3.3 volts and the 5V pins output 5 volts. It is

recommended that you stick to 3.3V lines unless the peripheral that you

are trying to connect requires 5 volts. The ground pins are agnostic; it

doesn’t matter whether you are using 5 volts or 3.3, your circuit uses the

same ground pins. The ground pins are marked ‘G’ in Figure 21-17.

The last two pins are pins 0 and 1 of the GPIO and are not accessible.

You should NOT connect devices to these two pins. Those pins are marked

‘- -’ in the diagram.

Let’s rebuild the circuit and use Python to turn on the light.

�The gpiozero Library
To ‘talk’ with the electronic components on the breadboard, we will use

the gpiozero library. This is a set of utilities that make it easy to talk to and

read data from components connected to the GPIO pins.

Chapter 21 Simple Electronics with the GPIO Pins

318

This book will only cover a very small part of the functionality that

this library covers. If you want to attach motion sensors, temperature

gauges, potentiometers, etc., then I recommend reading through the

documentation at https://gpiozero.readthedocs.io.

The first program that we’ll create with this library is one that turns an

LED on for a second and then off.

�The Circuit
The circuit, shown in Figure 21-18, connects the LED’s anode (longer of the

two pins) to the Raspberry Pi through GPIO pin 4. The resistor is connected

to the cathode (shorter of the two pins) of the LED and in turn to one of the

ground pins of the Raspberry Pi. Construct the circuit shown in Figure 21-18.

Figure 21-18.  The circuit for the Python controlled LED

The LED should not be lit at this point. We’re going to do that in code.

Chapter 21 Simple Electronics with the GPIO Pins

https://gpiozero.readthedocs.io

319

�The Python Program
Open up the IDLE IDE and create a new file called ‘ch21-1.py’ and place it

in a new folder called ‘ch21’ inside the ‘pygamebook’ folder. Inside the file,

type the following:

from gpiozero import LED

from time import sleep

Import the gpiozero library to access the LED class. This wrapper class

makes it easier to turn on and off LEDs. The second import is for the sleep()

function. Sleep takes one parameter and that is the number of seconds that

the computer should wait before executing the next statement

led = LED(4)

Create a LED object that is connected to a physical LED that is

connected to GPIO pin 4.

led.on()

sleep(1)

Turn the LED on and wait for a second.

led.off()

sleep(1)

Turn the LED off and wait for a second.

Save and run the program. Observe what happens on the breadboard –

the LED lights up for a second and then turns off!

�Other Functions

The on() and off() functions are perfect for turning off and on the LED, but

you can also toggle the state of the LED, so if the light is illuminated, calling

toggle() will turn if off and vice versa. Lastly, blink() will do just that – it

will blink the LED. You can specify the duration that the light is on, and the

duration that the light is off.

Chapter 21 Simple Electronics with the GPIO Pins

320

�Getting Button Input
As well as outputting values to a GPIO pin, the Raspberry Pi can read

values in. In this section we will add a button to the circuit and control the

blinking of the LED. The modified circuit is shown in Figure 21-19.

Figure 21-19.  The circuit for the tact switch controlled LED

The LED is still connected to GPIO pin 4 as it was in the previous

circuit. The switch is connected to GPIO 17 on one side and the other side

is tied to a ground pin on the Raspberry Pi. The Button object can be used

to make reading the state of the button (pressed, released) easy.

Chapter 21 Simple Electronics with the GPIO Pins

321

�Reading Button Input in Python
Create a new file called ‘ch21-2.py’ in the same folder as the previous

program. Enter the code exactly as written:

from gpiozero import LED, Button

Import both the LED and Button classes from the gpiozero library.

led = LED(4)

button = Button(17)

Create a LED object where the physical LED is connected to GPIO pin 4.

Create a Button object where the physical tact switch is connected to

GPIO pin 17.

ledOn = False

wasPressed = False

Flag to remember the state of the LED – ledOn. When the program

starts it is off so ‘ledOn’ is set to False. Flag to remember the last state of

the button – wasPressed. This will prevent the button from being pressed

continually and flashing the LED off and on rapidly.

while True:

Keep the program running. To quit the program press Ctrl+C.

 if not button.is_pressed and wasPressed:

 ledOn = not ledOn

Toggle the state of the ‘ledOn’ variable if the button has been released,

that is, if the button was pressed and is not not pressed.

Chapter 21 Simple Electronics with the GPIO Pins

322

 if ledOn:

 led.blink()

 else:

 led.off()

 wasPressed = button.is_pressed

If the LED should be on, set it to blink. Otherwise, it should be turned

off. The ‘state’ variable is set to the current state of the button pressed.

Save and run the program.

Press the tact switch on the breadboard briefly. The LED will start to

blink. Pressing the button again will stop the LED blinking. Press Ctrl+C

on the keyboard to quit the program. You could add another button to the

circuit board and query that button to determine if the program should

stop. Sounds like an interesting exercise! How would you go about it?

�Conclusion
The General Purpose Input/Output (GPIO) pins allow the Raspberry Pi

to talk to electronic components like LEDs, switches, motion sensors,

temperature gauges, etc. It has additional modes that allow you to connect

to peripherals that support SPI or I2C standards.

Using the GPIO we can extend our programs by flashing LEDs or

getting input from tact switches. In the next couple of chapters, we will see

how we can use the GPIO for game input and output.

Chapter 21 Simple Electronics with the GPIO Pins

323© Sloan Kelly 2019
S. Kelly, Python, PyGame, and Raspberry Pi Game Development,
https://doi.org/10.1007/978-1-4842-4533-0_22

CHAPTER 22

Game Project: Memory
The game ‘Memory’ is the first GPIO project. The board is set up with two

rows: one with four LEDs and the other with four buttons as shown in the

finished board in Figure 22-1.

Figure 22-1.  The suggested layout of the breadboard with two rows:
one with four LEDs and the other with four buttons

324

When the sequence plays on the LEDs, the player repeats the sequence

by pressing the corresponding buttons on the row underneath the LEDs.

The game starts with one LED being played but moves up to four LEDs as

the game progresses.

�Arranging the Breadboard
We will build the breadboard in a specific order: the row of LEDs, then the

row of tact switches. After each row has been constructed, a small script is

written to test the components and make sure the wiring is correct.

�Placing the LEDs
Arrange the LEDs and tact switches as shown in Figure 22-1. The LEDs

should be aligned so that the longer leg (the anode) is on the right-

hand side. There is no technical reason for this, but it keeps the design

consistent and ensures that the wires will be placed in the correct holes on

the board. Figure 22-2 shows how the LEDs should be connected.

Chapter 22 Game Project: Memory

325

Each cathode (the shorter pin) is connected to ground pin 31 via a

330Ω resistor. The anode (the longer pin) is connected to a specific GPIO

pin number as shown in the diagram. To make creating the circuit easier,

I placed a small jumper – as shown in Figure 22-3 – from pin 31 (ground)

to the –ve rail on the breadboard. Connecting the resistor to pin 31 then

means connecting the resistor to the –ve rail.

Figure 22-2.  The connections from the GPIO pins to the
corresponding LEDs

Chapter 22 Game Project: Memory

326

Notice in the taller box there are only three exposed holes in the

breadboard that connect with pin 31 (ground). By making the –ve rail

connect with pin 31, we effectively have approximately 50 holes connected,

depending on the size of your breadboard.

As can be seen in Figure 22-3, the lighter wires are connecting to pins

23, 12, 16, and 21.

�Testing the Circuit
To test the circuit we will write a small Python script to turn on and off the

LEDs in sequence. Create a new folder inside the ‘projects’ folder inside

‘pygamebook’ called ‘memory.’ Inside this folder create a new Python

script called ‘ledtest.py’. It is a very short program that turns each LED on

in turn for half a second and then moves onto the next one.

from gpiozero import LED

from time import sleep

Figure 22-3.  Connecting ground pin 31 to the –ve rail makes
connecting the resistors easier

Chapter 22 Game Project: Memory

327

Import the gpiozero library to access the LED class. Import time for the

sleep function.

leds = [LED(23), LED(12), LED(16), LED(21)]

Create an array of LED objects. Notice that the numbers are in the

order the LEDs appear from left to right.

while True:

 for led in leds:

 led.on()

 sleep(0.5)

 led.off()

The loop will keep the program running, cycling through all the lights,

turning them on then off one after the other. Save and run the program.

To exit the program, press Ctrl+C.

If there are any problems, check the wiring and which pins are

connected to the LEDs.

�Placing the Tact Switches
The buttons, or tact switches, are placed on the board and attached to

the GPIO pins and ground as shown in the (simplified) diagram shown in

Figure 22-4.

Chapter 22 Game Project: Memory

328

The wires connecting to Pin 31 (ground) can be done by placing wires

from the switches to the –ve rail as we did previously for the LEDs.

�Testing the Button Circuit
For this test, we will write a script to turn on the corresponding LED when

a switch has been pressed. From a logical point of view, the button on

GPIO 4 will turn on the LED connected to GPIO 23, the button on GPIO 17

will turn on the LED connected to GPIO 12, and so on.

Our program will use tuples of LED and Button classes.

Create a new script called ‘buttontest.py’ inside the ‘memory’ folder

and enter the following code:

from gpiozero import LED, Button

from time import sleep

Figure 22-4.  The tact switch connections to the GPIO pins and ground

Chapter 22 Game Project: Memory

329

Imports for the program. gpiozero for LED and Button classes and time

for the sleep function.

pair1 = (LED(23), Button(4))

pair2 = (LED(12), Button(17))

pair3 = (LED(16), Button(22))

pair4 = (LED(21), Button(6))

The pairings match each LED with a corresponding button. The zeroth

element of the tuple is the LED and the first element of the tuple is the

button. Remember: we can use integer index values to access tuple parts.

pairs = [pair1, pair2, pair3, pair4]

To make our program short, we will use a list of the pairs and loop

through them.

while True:

 for pair in pairs:

 if pair[1].is_pressed:

 pair[0].on()

 else:

 pair[0].off()

The loop keeps the program running while we test the buttons.

Each pair in the list is looped through. The button’s ‘is_pressed’

property is tested and if the button is pressed, the corresponding LED

is illuminated. Otherwise, the LED is turned off.

Save the program and run it. Press and hold each switch in turn.

The corresponding LED should illuminate. If it does not, check your

wiring and try again.

The full wiring for the circuit is shown in Figure 22-5.

Chapter 22 Game Project: Memory

330

Now that we have built and tested the circuit, we can make the game.

�The Memory Game
The basic algorithm of the program is this:

•	 Choose one, then two, then three, then four LEDs in a

random order

•	 Play the sequence of LEDs

•	 Wait for the player to input the sequence back

Figure 22-5.  The game’s completed diagram showing all the
connections

Chapter 22 Game Project: Memory

331

•	 Display congratulations/bad luck message (in the

console)

•	 Continue with the next sequence

Start a new Python script file inside ‘memory’ called ‘buttonled.py’.

This will contain two helper classes for our project. The first helper class is

a LED/Button aggregate class and the second is a collection of instances of

this class that will handle choosing the random sequences.

�The ButtonLED and ButtonLEDCollection Classes
Enter the following code:

from gpiozero import LED, Button

import random

Imports for the ButtonLED and ButtonLEDCollection classes. gpiozero

is imported for the LED and Button classes and random is imported

because of our need to randomly shuffle the list of LEDs to make the game

different each time it is played.

class ButtonLED(object):

 def __init__(self, ledPin, buttonPin):

 self.led = LED(ledPin)

 self.button = Button(buttonPin)

Constructor takes two arguments: the GPIO pin number connected to

the LED and the GPIO pin number connected to the tact switch.

 def on(self):

 self.led.on()

Turn the LED on.

 def off(self):

 self.led.off()

Chapter 22 Game Project: Memory

332

Turn the LED off.

 def wait(self, timeout):

 self.button.wait_for_press(timeout)

 return self.button.is_pressed

The wait() method will wait, stop program execution, until the button

has been pressed. If the button has not been pressed after the ‘timeout’

value (in seconds) then the program will resume. The button’s current

pressed state is returned to the caller. The method will be used by the

program to determine if the player has clicked the button in the correct

sequence in the main program.

class ButtonLEDCollection(object):

 def __init__(self):

 led1 = ButtonLED(23, 4)

 led2 = ButtonLED(12, 17)

 led3 = ButtonLED(16, 22)

 led4 = ButtonLED(21, 6)

 self.items = [led1, led2, led3, led4]

The constructor creates ButtonLED objects and adds them to an

internal list called ‘items.’

 def pick(self, count):

 leds = self.items

 random.shuffle(leds)

 picked = []

 for n in range(0, count):

 picked.append(leds[n])

 return picked

Chapter 22 Game Project: Memory

333

The pick() method shuffles the LEDs and chooses the first ‘count’

items. Let’s say the initial sequence points to GPIO pins 6, 7, 8, and 9. After

shuffling it might be 7, 6, 9, and 8. Choosing the first three would return

7, 6, and 9 meaning the second, first, and fourth LEDs. This method is the

heart of creating a random sequence of LEDs for the Memory game.

 def waitForClick(self):

 isPressed = False

 while not isPressed:

 for led in self.items:

 isPressed = isPressed or led.button.is_pressed

This waits for the player to press any of the tact switches. This is a

blocking call and the program will not be able to proceed until a button

has been pressed.

if __name__=='__main__':

 from time import sleep

 collection = ButtonLEDCollection()

 leds = collection.pick(4)

 for led in leds:

 led.on()

 sleep(1)

 led.off()

To test the classes and make sure everything is working, a small test-

stub has been created. It creates an instance of the ButtonLEDCollection

class and picks four LEDs turning them on and off one by one. Save and

run the script. If you don’t see the four LEDs flash in a random order,

you should check the program and the wiring to make sure you have

everything wired and coded correctly. Do this before proceeding to the

main program.

Chapter 22 Game Project: Memory

334

�The Main Program
The main program is a new file called ‘memorygame.py’. Create this new

file and enter the following code:

#!/usr/bin/python3

import sys

from time import sleep

from buttonled import ButtonLEDCollection

The imports for the game include the ‘buttonled.py’ file created in the

previous part. There are only two classes imported, we could have used *,

but I chose to explicitly name ButtonLEDCollection in this instance

because it is the only class needed.

collection = ButtonLEDCollection()

Create an instance of the ButtonLEDCollection class.

print ("Welcome to the Game of Memory!")

print ("A sequence of LEDs will flash, ")

print ("you will be asked to repeat the")

print ("pattern. Press any button to start")

Display a welcome message to the player. Even though most of the

action happens on the breadboard, some information on the console is

helpful.

collection.waitForClick()

Wait for the player to press any of the tact switches.

for n in range(1, 5):

Remember that although the range value is from 1 to n, the values

actually go 1 to n-1 which means that this will loop through the numbers 1-4.

Chapter 22 Game Project: Memory

335

 leds = collection.pick(n)

 print ("Remember this sequence")

 for led in leds:

 led.on()

 sleep(1)

 led.off()

Pick a random sequence of LEDs. Flash the sequence and tell the

player they need to memorize the sequence.

 print("Your turn!")

 for led in leds:

 if led.wait(1):

 led.on()

 sleep(0.5)

 led.off()

 else:

 print ("Missed! Game Over!")

 sys.exit()

It is now the players turn. The led objects are looped through again –

remember, those are LED/Button aggregate objects – and the button is

tested. If it has been pressed within the given time of 1 second, then the

next led object is chosen. Otherwise, it is game over.

print ("Congratulations!")

Display a congratulatory message if the player correctly remembers all

four sequences. Save the file.

Run the program by typing:

$ python3 memorygame.py

Chapter 22 Game Project: Memory

336

Or, change the execution mode of the script and run it by itself:

$ chmod +x memorygame.py

$./memorygame.py

The game will begin and you will be presented with sequences of one,

two, three, and finally four random LEDs. Good luck!

�Full Listing buttonled.py
The full listing of buttonled.py has been included to help debug any issues

you may encounter:

from gpiozero import LED, Button

import random

class ButtonLED(object):

 def __init__(self, ledPin, buttonPin):

 self.led = LED(ledPin)

 self.button = Button(buttonPin)

 def on(self):

 self.led.on()

 def off(self):

 self.led.off()

 def wait(self, timeout):

 self.button.wait_for_press(timeout)

 return self.button.is_pressed

Chapter 22 Game Project: Memory

337

class ButtonLEDCollection(object):

 def __init__(self):

 led1 = ButtonLED(23, 4)

 led2 = ButtonLED(12, 17)

 led3 = ButtonLED(16, 22)

 led4 = ButtonLED(21, 6)

 self.items = [led1, led2, led3, led4]

 def pick(self, count):

 leds = self.items

 random.shuffle(leds)

 picked = []

 for n in range(0, count):

 picked.append(leds[n])

 return picked

 def waitForClick(self):

 isPressed = False

 while not isPressed:

 for led in self.items:

 isPressed = isPressed or led.button.is_pressed

if __name__=='__main__':

 from time import sleep

 collection = ButtonLEDCollection()

 leds = collection.pick(4)

 for led in leds:

 led.on()

 sleep(1)

 led.off()

Chapter 22 Game Project: Memory

338

�Full Listing memorygame.py
The full listing of memorygame.py has been included to help debug any

issues you may encounter:

#!/usr/bin/python3

import sys

from time import sleep

from buttonled import ButtonLED, ButtonLEDCollection

collection = ButtonLEDCollection()

print ("Welcome to the Game of Memory!")

print ("A sequence of LEDs will flash, ")

print ("you will be asked to repeat the")

print ("pattern. Press any button to start")

collection.waitForClick()

for n in range(1, 5):

 leds = collection.pick(n)

 print ("Remember this sequence")

 for led in leds:

 led.on()

 sleep(1)

 led.off()

 print("Your turn!")

 for led in leds:

 if led.wait(1):

 led.on()

 sleep(0.5)

 led.off()

Chapter 22 Game Project: Memory

339

 else:

 print ("Missed! Game Over!")

 sys.exit()

print ("Congratulations!")

�Conclusion
This was a fun little game to get you used to coding up a hardware game

with the Raspberry Pi and Python. The gpiozero library makes accessing

the GPIO pins very easy.

I would always recommend creating test programs for your circuits

to prove that they work before setting about writing your actual games.

In fact, writing tests is really important, the more tests you can write the

better you can prove that your program will do what it is setting out to

achieve.

To enhance the memory game you could have a dedicated start button

to begin the sequence rather than the four play buttons. In addition, you

could let the player choose their skill level. The timeout value passed to the

wait() method could be altered; 1.5 seconds for easy, 1 second for normal,

and 0.5 seconds for hard.

Chapter 22 Game Project: Memory

341© Sloan Kelly 2019
S. Kelly, Python, PyGame, and Raspberry Pi Game Development,
https://doi.org/10.1007/978-1-4842-4533-0_23

CHAPTER 23

Game Project: Quiz
The last project of this book is a couch quiz game for two players. Players are

presented with a series of multiple-choice questions and must decide the

correct answer. The game uses a mix of PyGame and electronics; the questions

are displayed on the monitor and all the input comes from two pairs of three

tact switches. Some of the game screens are shown in Figure 23-1.

Figure 23-1.  Screens from the Quiz game: splash, get ready, the
question, and score screens

Create a new folder inside the ‘pygamebook’ ‘projects’ folder called

‘quiz.’ This is where all the scripts we will write for this project will be located.

�The Electronics
For this game’s circuit you will need the following:

•	 A breadboard

•	 Six tact switches

•	 Various lengths of wire

342

Figure 23-2 shows the circuit diagram for the project. It consists of two

pairs of three tact switches. Each tact switch is connected to ground using

Pin 31 on the Raspberry Pi. Player 1’s buttons are connected to GPIO pins 4,

17, and 22, and Player 2’s buttons are connected to GPIO pins 5, 6, and 13.

Figure 23-2.  The circuit diagram for the quiz game showing the two
sets of tact switches

Once the circuit has been built on the breadboard and attached to the

Raspberry Pi, we will use a short program to test the buttons. To do this,

our program will light up an onscreen display using PyGame.

�Testing the Buttons
The test program, shown in Figure 23-3, displays two groups of three

circles. When a tact switch is depressed, the circle ‘lights up,’ that is, the red

dot appears as a brighter color.

Chapter 23 Game Project: Quiz

343

Create a new script inside the ‘quiz’ folder called ‘buttontest.py’ and

enter the following:

#!/usr/bin/python3

import pygame, os, sys

from pygame.locals import *

from gpiozero import Button

Figure 23-3.  The test program running showing that three tact
switches have been depressed

Chapter 23 Game Project: Quiz

344

Standard imports for PyGame as well as the gpiozero library.

def drawButtonState(surface, button, pos):

 color = 32

 if button.is_pressed:

 color = 192

 pygame.draw.circle(surface, (color, 0, 0), pos, 35)

Draw the state of the button. If the button is pressed, a bright circle is

displayed.

def drawPlayerState(surface, buttons, startx):

 x = startx

 for b in buttons:

 drawButtonState(surface, b, (x, 240))

 x = x + 80

 return x

Loop through the given buttons and detect if each is pressed.

Calls drawButtonState.

pygame.init()

fpsClock = pygame.time.Clock()

surface = pygame.display.set_mode((640, 480))

Initialize PyGame and create a screen and clock.

player1 = [Button(4), Button(17), Button(22)]

player2 = [Button(5), Button(6), Button(13)]

Create two lists of buttons. Each button is connected to the tact switch

on the specified GPIO pin.

background = (0, 0, 0) # Black

while True:

 surface.fill(background)

Chapter 23 Game Project: Quiz

345

 for event in pygame.event.get():

 if event.type == QUIT:

 pygame.quit()

 sys.exit()

 x = 80

 x = drawPlayerState(surface, player1, x)

 x = x + 80

 drawPlayerState(surface, player2, x)

 pygame.display.update()

 fpsClock.tick(30)

Save and run the program. Press and hold each of the tact switches.

The colored circles onscreen should ‘light up’ when the switch is depressed.

If that is not the case, check the circuit and try the program again.

If the circuit is working correctly, we can move onto the visual part of

the project. This will require us to create a state machine.

�The Finite State Machine
There is a total of five states in the game and their transitions are shown in

Figure 23-4. The five states are

•	 Splash screen – Shows a welcome message

•	 Get ready – Shows a ‘Get Ready’ message

•	 Choose question – Chooses a new question from

the list

•	 Show question – Displays the question, the three

choices, and a countdown

Chapter 23 Game Project: Quiz

346

•	 Show score – Displays the current scores for both

players

•	 Game over – This is the same state as ‘show score’ but

contains an indicator showing who won the overall game

Get Ready

Auto-transition to...

Auto-transition to...

Timeout or both players
have answered the question

Auto-transition to...

All questions have been asked

Player chooses “Start G
ame”

Choose QuestionSplash Screen

Show Question

Game Over End

Show Score

Figure 23-4.  The Finite State Machine (FSM) for the quiz game

Because “Show Score” and “Game Over” are very similar, we will

only need to create one class for both of those states, as well as the “Get

Ready” and “Splash Screen” states. The rules for moving, also called state

transformations, between states are shown in Table 23-1.

Chapter 23 Game Project: Quiz

347

Table 23-1.  The Game States, Their Transition Rules, and Classes

State Next State Class Transform Condition

Splash
Screen

Get Ready HeaderTextScreen One of the players presses a tact

switch

Get Ready Choose

Question

HeaderTextScreen Automatically moves to the next

state after a certain duration

Choose
Question

Show

Question or

Game Over

ChooseQuestion Automatically moves to the next

state. If there are no more questions,

the next state is “Game Over”

Show
Question

Show Score ShowQuestion Automatically moves to the next

state after the time limit (countdown)

has reached zero, or both players

have chosen their answer

Show Score Choose

Question

ShowScore Automatically moves to the next

state after a certain duration

Game Over None –

Game ends

ShowScore No condition. Game ends

�Making the Game
There are some additional classes that need to be built in addition to the

states mentioned earlier. These are

•	 Question deserialization

•	 The base state class

•	 The game runner

•	 UI helper classes

We will look at each of these in turn.

Chapter 23 Game Project: Quiz

348

�The Questions
The questions for the quiz were sourced from Pub Quiz Questions HQ

(https://pubquizquestionshq.com/) which is a free and open resource

for questions. The questions are formatted on a web page so I took some

time to organize them into a JSON file. The resulting data file should be

saved as ‘questions.json’ to the ‘quiz’ folder:

{

 "questions":

 [

 {

 �"question": "�New York City Hall is in which

Borough?",

 "answer": "Manhattan",

 "answers": [

 "Queens",

 "Brooklyn"

]

 },

 {

 "question": "Which was the first baseball team

 in Texas to make it to the World

 Series?",

 "answer": "Houston Astros",

 "answers": [

 "Houston Oilers",

 "Texas Rangers"

]

 },

Chapter 23 Game Project: Quiz

https://pubquizquestionshq.com/

349

 {

 �"question": "�Dwight D. Eisenhower was

President from 1953 to 1961, but

who was his Vice President?",

 "answer": "Richard Nixon",

 "answers": [

 "John Kennedy",

 "Lyndon Johnson"

]

 },

 {

 �"question": "�Which was the most successful NFL

team of the decade beginning in

Jan 2000 with 4 Super Bowl wins?",

 "answer": "New England Patriots",

 "answers": [

 "Buffalo Bills",

 "San Diego Chargers"

]

 },

 {

 �"question": "�Why was there no World Series

played in 1994?",

 "answer": "Player's strike",

 "answers": [

 "No one bought tickets",

 "Ban on baseballs"

]

 },

Chapter 23 Game Project: Quiz

350

 {

 �"question": "�Lansing is the state capital of

which northern state in America?",

 "answer": "Michigan",

 "answers": [

 "Ilinois",

 "Wisconsin"

]

 },

 {

 �"question": "�As of 2013 the most widely

circulated newspaper in the USA

was The Wall Street Journal.

Which company owns it?",

 "answer": "News Corporation

 "answers": [

 "Chicago Tribune",

 "Conde Nast"

]

 },

 {

 �"question": "�Out of which city were Aerosmith

formed?",

 "answer": "Boston",

 "answers": [

 "New York",

 "Los Angeles"

]

 },

Chapter 23 Game Project: Quiz

351

 {

 �"question": "�Which future president gained

national fame through his role in

the War of 1812, most famously

where he won a decisive victory at

the Battle of New Orleans?",

 "answer": "Andrew Jackson",

 "answers": [

 "George Washington",

 "Abraham Lincoln"

]

 },

 {

 �"question": "�Born in Massachusetts, which

painter's most famous work is

'Arrangement in Grey and Black

No.1'?",

 "answer": "James Abbott McNeill Whistler",

 "answers": [

 "Andy Warhol",

 "Phillipe Stark"

]

 }

]

}

The JSON file is formatted as an object with a list property called

“questions.” Each object in the array has the following properties:

•	 Question – The text of the question

•	 Answer – The correct answer for the question

•	 Answers – A list of incorrect answers

Chapter 23 Game Project: Quiz

352

I chose to use a function to create an array of questions. This function

loads in the questions from the ‘questions.json’ file and fills a list of

‘Question’ objects.

Create a new file called ‘questions.py’ and enter the following:

#!/usr/bin/python3

import json

import random

Imports for JSON serialization/deserialization. The random import

will be used to randomize the order of the questions and the answers

class Question(object):

 def __init__(self, jsonQuestion):

 self.question = jsonQuestion['question']

 self.answers = jsonQuestion['answers']

 self.answer = jsonQuestion['answer']

 self.answers.append(jsonQuestion['answer'])

 random.shuffle(self.answers)

 index = 0

 for a in self.answers:

 if a == jsonQuestion['answer']:

 self.answerIndex = index

 index = index + 1

The ‘Question’ class is used to store the question text, the correct

answer, and the other suggestions. The index of the correct answer is

also stored. This will make determining whether a player has chosen the

correct answer a little easier; the first button is mapped to the first choice

and so on. To make it interesting, each time the game is played the answers

are shuffled using the ‘random.shuffle()’ method. This handy method

scrambles the elements of a list. We’ll see it be used in the following

‘loadQuestions()’ function.

Chapter 23 Game Project: Quiz

353

def loadQuestions(filename):

 f = open(filename)

 questionFile = json.load(f)

 f.close()

Load the entire contents of the question file into memory.

 questions = []

 for q in questionFile['questions']:

 questions.append(Question(q))

For each question in the file, create a new instance of the ‘Question’

class and append it to the ‘questions’ list.

 random.shuffle(questions)

 return questions

Once all the questions have been added to the list, the ‘random.

shuffle()’ method is used again to re-order the questions so that no two

games are identical.

if __name__ == '__main__':

 questions = loadQuestions("questions.json")

 for q in questions:

 print(q.question)

 print("Answer index %d" % q.answerIndex)

 for a in q.answers:

 if a == q.answer:

 print("\t* %s" % a)

 else:

 print("\t%s" % a)

To test that the code runs, I added a test stub to the bottom of the file.

It loads in the ‘questions.json’ file and displays the question and answers.

The correct answer is marked with an asterisk (*).

Chapter 23 Game Project: Quiz

354

Save the file and run it. You will have to add the execution bit before

you can run it:

$ chmod +x questions.py

$./questions.py

You should see a list of questions displayed onscreen. If you don’t,

please check the code.

�UI Helper Classes
The UI helper classes are contained within a single file. The classes are

•	 Text – Basic text component

•	 Question – Displays the question and answers

•	 Countdown – Displays a progress bar that counts down

from 30 seconds to 0

Create a new file called ‘ui.py’ and enter the following text:

import pygame

from pygame.locals import *

Import the PyGame modules.

class Text(object):

 def __init__(self, size, colour):

 self.size = size

 self.colour = colour

 self.font = pygame.font.Font(None, size)

 def draw(self, surface, msg, pos, centred = False):

 x, y = pos

 tempSurface = self.font.render(msg, True, self.colour)

Chapter 23 Game Project: Quiz

355

 if centred:

 x = x - tempSurface.get_width() / 2

 y = y + tempSurface.get_height() / 4

 pos = (x, y)

 surface.blit(tempSurface, pos)

The Text class is a wrapper around the existing PyGame Font class.

It makes positioning the text easier onscreen and provides a handy way

to draw text centered to a particular point.

class QuestionText(object):

 def __init__(self):

 self.questionText = Text(32, (255, 255, 0))

 self.answerText = Text(32, (255, 255, 255))

 self.disabledText = Text(32, (56, 56, 56))

Constructor for the QuestionText class. This creates three separate

Text instances: one for the question text, one for the answer text, and

one for the disabled state. When the round is over, the correct answer is

highlighted. The disabled text is used to draw the two incorrect answers.

 �def draw(self, surface, question, answer, answers,

showAnswer = False):

 y = 64

 maxWidth = 60

 lineHeight = 32

 if len(question) > maxWidth:

 question.split(" ")

 temp = ""

 for word in question:

 temp = temp + word

Chapter 23 Game Project: Quiz

356

 if len(temp) > maxWidth:

 pos = (400, y)

 �self.questionText.draw(surface, temp, pos,

True)

 temp = ""

 y = y + lineHeight

 self.questionText.draw(surface, temp, (400, y), True)

 else:

 �self.questionText.draw(surface, question, (400, y),

True)

If the question text is longer than the screen width, it is split into

separate words. Each word is added to a list until the maximum width

has been reached. That text is then drawn to the screen. The remaining

text is then processed until the entire question has been displayed. If the

question text is less than the width of the screen it is displayed normally.

 y = y + lineHeight * 2

 label = "A"

 for a in answers:

 font = self.answerText

 if showAnswer and a != answer:

 font = self.disabledText

 �font.draw(surface, "%s. %s" % (label, a), (100, y),

False)

 labelChar = ord(label)

 labelChar = labelChar + 1

 label = chr(labelChar)

 y = y + 40

Each answer is displayed with A, B, or C prefixed to it. In order to achieve

this ‘effect,’ we must first convert the current label to a number – this is what

the ‘ord()’ function does. It looks up the ASCII (American Standard Code

Chapter 23 Game Project: Quiz

357

for Information Interchange) table and returns a number based on the

character. The first time the loop is run, label = ‘A’ and so ord() will return 65

because ‘A’ is at position 65 of the ASCII table. The value is incremented to

get to the next character so 65 would become 66 and this is converted to a

character using the ‘chr()’ function. 66 in ASCII is ‘B.’

class Countdown(object):

 �def __init__(self, seconds, pos, width, height,

innerColour, borderColour, text):

 self.maxSeconds = seconds

 self.seconds = seconds

 self.pos = pos

 self.width = width

 self.height = height

 self.finished = False

 self.text = text

 self.innerColour = innerColour

 self.borderColour = borderColour

 self.fullRect = Rect(pos, (width, height))

 self.rect = Rect(pos, (width, height))

That’s quite a long constructor! These parameters will be used to

draw the countdown meter that takes the shape of a progress bar that gets

shorter the longer it remains onscreen.

 def draw(self, surface):

 pygame.draw.rect(surface, self.innerColour, self.rect)

 �pygame.draw.rect(surface, self.borderColour, self.

fullRect, 2)

To draw the progress bar, we’ll use the ‘draw.rect()’ method provided

by PyGame. It can be drawn in one of two ways: filled or with a border.

The ‘inside’ of the progress bar will be drawn as a filled rectangle and the

‘outside’ of the progress bar will be drawn with a border.

Chapter 23 Game Project: Quiz

358

The current size of the countdown is drawn from ‘self.rect’ and the full

rectangle ‘self.fullRect’ is drawn over the top as shown in Figure 23-5.

27

Figure 23-5.  The progress bar for the quiz game

 x, y = self.pos

 x = x + self.width / 2

 pos = (x, y)

 self.text.draw(surface, "%02d" % self.seconds, pos, True)

The seconds remaining is drawn on top of the progress bar.

 def reset(self):

 self.finished = False

 self.seconds = self.maxSeconds

Reset the countdown each time we display the question.

 def update(self, deltaTime):

 if self.seconds == 0:

 return

 self.seconds = self.seconds - deltaTime

 if self.seconds < 0:

 self.seconds = 0

 self.finished = True

 �progressWidth = self.width * (self.seconds / self.

maxSeconds)

 self.rect = Rect(self.pos, (progressWidth, self.height))

Chapter 23 Game Project: Quiz

359

Update the countdown by decrementing the current seconds count in

‘self.seconds’. If seconds reaches 0 then we don’t update. If the timer reaches

zero, ‘self.finished’ is set to True. Finally the current width of the inner part of

the progress bar is calculated and stored for the ‘draw()’ method.

Save the file.

�The Game Runner and Base State Class
The game runner is a very basic framework class that will allow the game

to transition between states. To create an interface to program to, a base

state class needs to be created. This will also be used as the basis for all

other state classes.

The ‘NullState’ class will provide the basis for the other states in the

game’s FSM. The ‘GameRunner’ class will

•	 Initialize PyGame

•	 Update the current state

•	 Draw the current state

The game update method will also transition between the various

states too. We will write a main entry point to the program later that will

create an instance of the ‘GameRunner’ class.

Create a new file called ‘gamerunner.py’ and enter the following:

import pygame

from pygame.locals import *

Imports for PyGame.

class NullState(object):

 def update(self, deltaTime):

 return None

Chapter 23 Game Project: Quiz

360

 def draw(self, surface):

 pass

 def onEnter(self):

 pass

 def onExit(self):

 pass

The ‘NullState’ class is the basis for the other states in the game.

It contains four methods that are used to

•	 Update

•	 Draw

•	 Inform the state that it is being entered

•	 Inform the state that it is being transitioned out

class GameRunner(object):

 �def __init__(self, dimensions, title, backColour,

initialState):

 self.state = initialState

 self.clock = pygame.time.Clock()

 self.backColour = backColour

 self.surface = pygame.display.set_mode(dimensions)

 pygame.display.set_caption(title)

Initialize PyGame and create a clock. This creates the display and sets

the caption of the window.

 def update(self):

 deltaTime = self.clock.tick(30) / 1000.0

 if self.state != None:

 self.state = self.state.update(deltaTime)

 return self.state

Chapter 23 Game Project: Quiz

361

The time between the last time this method was run and now is

calculated and stored in ‘deltaTime.’ The time is in milliseconds so to get

it into seconds we divide by 1000. The current state’s ‘update()’ method

is called. The state’s ‘update()’ method returns the next state to transition

to. The current state is returned to the caller. The caller will be the main

program that we will write later.

 def draw(self):

 self.surface.fill(self.backColour)

 if self.state != None:

 self.state.draw(self.surface)

 pygame.display.update()

This clears the main surface and gets the current state to draw itself on

top and then updates the display.

Save the file.

�Player Input
Without player input we would be making movies! For this game the player

input is captured using the ‘PlayerController’ class. This class also contains

the player’s current score. Create a new file called ‘playercontroller.py’ and

enter the following text:

from gpiozero import Button

The import for the gpiozero library.

class PlayerController(object):

 def __init__(self, pins):

 self.buttons = []

 self.score = 0

 for pin in pins:

 self.buttons.append(Button(pin))

Chapter 23 Game Project: Quiz

362

Constructor for the ‘PlayerController’ class. Notice that it creates a list

of buttons from the ‘pins’ list that is passed to it.

 def anyButton(self):

 for button in self.buttons:

 if button.is_pressed:

 return True

 return False

Method to determine if any button has been pressed.

 def playerChoice(self):

 index = 0

 for button in self.buttons:

 if button.is_pressed:

 return index

 index = index + 1

 return -1

Method to determine the player’s answer selection. This method

returns –1 if the player has not made a selection, or the index in the ‘self.

buttons’ list of the button that the player pressed.

�The State Classes
The following classes will be created for the states in the game:

•	 ChooseQuestion

•	 HeaderTextScreen

•	 ShowQuestion

•	 ShowScore

Chapter 23 Game Project: Quiz

363

Each game state is re-entrant. This means that the state can be run any

number of times during program execution. Each state is told when they

are entered by calling the ‘onEnter()’ method and when they are no longer

the current state by calling the ‘onExit()’ method.

When you are making your own states, setup code for states should

be performed in the ‘onEnter()’ method and tear down (clean up) actions

should be performed in the ‘onExit()’ method.

�Separating Class from State

The state of a finite state machine (FSM) is an instance of a class.

There is no need to create multiple classes that perform the same or

similar operations just because they represent a different state. In this

game there are two uses where the same classes are used:

•	 HeaderTextScreen – Used by the ‘Get Ready’ and

‘Splash Screen’ states

•	 ShowScore – Used by the ‘Show Score’ and ‘Game Over’

states

This topic will be revisited when we create the main file.

�Maintaining Game State

The game’s current state is in two parts: the action currently being

performed and the data that action is processing. The data is stored in the

current question and in each of the player’s controllers. We already have

separate classes for the players (‘PlayerController’) but we need one for

the current question. Create a new file called ‘currentquestion.py’. Inside

this file will be a class definition for the currently displayed question. This

information will be altered by the ‘ChooseQuestion’ state and displayed by

the ‘ShowQuestion’ state.

Chapter 23 Game Project: Quiz

364

It should be noted as we will see later that the other states do not need

to know about the current question and are therefore not given this data.

Enter the following code in ‘currentquestion.py’:

class CurrentQuestion(object):

 def __init__(self):

 self.question = ""

 self.answer = ""

 self.answerIndex = -1

 self.answers = []

And that’s it; it’s just the information for the current question.

Save the file.

�ChooseQuestion Class

The ‘ChooseQuestion’ state picks Create a new file called ‘choosequestion.

py’. This class will be used to choose the current question from the list of

questions.

from gamerunner import NullState

The ‘ChooseQuestion’ class extends ‘NullState’ and so we must import

‘NullState’ into this file.

class ChooseQuestion(NullState):

 �def __init__(self, nextState, gameOverState,

currentQuestion, questions):

 self.questions = questions

 self.nextState = nextState

 self.gameOverState = gameOverState

 self.current = -1

 self.currentQuestion = currentQuestion

Chapter 23 Game Project: Quiz

365

The constructor takes four parameters. The first is the default game state

to transition to if there is another question. As we see from Table 23-1, this

would normally be the ‘Show Question’ state. However, if the ‘end of game’

condition is reached, the game will transition to the ‘gameOverState’ state.

‘currentQuestion’ is the instance of the game state talked about in

Maintaining Game State. The final parameter is the list of ‘Question’

instances loaded from the JSON file containing the questions.

 def update(self, deltaTime):

 self.current = self.current + 1

 if self.current == len(self.questions):

 self.currentQuestion.question = "

 self.currentQuestion.answer = "

 self.currentQuestion.answerIndex = -1

 self.currentQuestion.answers = []

 return self.gameOverState

 else:

 question = self.questions[self.current]

 self.currentQuestion.question = question.question

 self.currentQuestion.answer = question.answer

 self.currentQuestion.answers = question.answers

 �self.currentQuestion.answerIndex = question.

answerIndex

 return self.nextState

The index ‘self.current’ is incremented. If the value is equal to the

length of ‘self.questions’, it is game over. Otherwise the current question’s

data is set and the ‘nextState’ is returned.

The ‘ChooseQuestion’ class doesn’t have a ‘draw()’ method so we don’t

need to add an override method for it here; ‘NullState’ already provides a

basic ‘draw()’ method. Save the file.

Chapter 23 Game Project: Quiz

366

�HeaderTextScreen Class

The HeaderTextScreen is used by both the ‘Splash Screen’ and ‘Get Ready’

states to display informative text to the players. In the case of the splash

screen, the name of the game is displayed along with “Press any button”

to continue. With ‘Get Ready’ the text “Get Ready” is displayed. The

difference between the two states is that the splash screen requires input

from the player whereas the ‘get ready’ instance automatically transitions

to the next state after a set duration.

Create a new file called ‘headertextscreen.py’ and enter the following

text:

from ui import *

from playercontroller import *

from gamerunner import NullState

Required imports.

class HeaderTextScreen(NullState):

 def __init__(self, nextState, player1, player2, waitTime = 0):

 self.nextState = nextState

 self.player1 = player1

 self.player2 = player2

 self.big = Text(128, (255, 192, 0))

 self.small = Text(36, (255, 255, 255))

 self.waitTime = waitTime

 self.currentTime = 0

 self.header = ""

 self.subHeader = ""

The constructor takes four parameters: the next state, the player

controllers, and the wait time. If the wait time is zero then it is assumed

that some player interaction is required, that is, one of the players has to

press a button to move to the next state.

Chapter 23 Game Project: Quiz

367

 def setHeader(self, header):

 self.header = header

Set the heading text.

 def setSub(self, subHeader):

 self.subHeader = subHeader

Set the subheading text.

 def setNextState(self, nextState):

 self.nextState = nextState

Set the next state.

 def update(self, deltaTime):

 if self.waitTime > 0:

 self.currentTime = self.currentTime + deltaTime

 if self.currentTime >= self.waitTime:

 return self.nextState

 elif self.player1.anyButton() or self.player2.anyButton():

 return self.nextState

 return self

This performs the state transition. If ‘self.waitTime’ is greater than

zero then it is the automatic countdown version, otherwise it is the user-

controlled version of the state.

 def draw(self, surface):

 self.big.draw(surface, self.header, (400, 200), True)

 self.small.draw(surface, self.subHeader, (400, 300), True)

Save the file.

Chapter 23 Game Project: Quiz

368

�ShowQuestion Class

The ‘Show Question’ state displays the current question, the answers, and

a countdown. When the countdown reaches 0 (from 30 seconds) or both

players have made their selection the state transitions to the next state. The

state makes use of the ‘PlayerController’; one for each player as well as the

‘CurrentQuestion’ instance.

Create a new file called ‘showquestion.py’ and enter the following text:

from gamerunner import NullState

from ui import Text, QuestionText, Countdown

Importing the ‘gamerunner’ file for the ‘NullState’ class. This class uses

the ‘Text,’ ‘Countdown,’ and ‘QuestionText’ classes from ‘ui.’

class ShowQuestion(NullState):

 �def __init__(self, nextState, currentQuestion, player1,

player2):

 self.nextState = nextState

 self.player1 = player1

 self.player2 = player2

 self.player1Choice = -1

 self.player2Choice = -1

 self.currentQuestion = currentQuestion

 self.showAnswer = False

 self.endCount = 3

 self.questionText = QuestionText()

 text = Text(32, (255, 255, 255))

 �self.countdown = Countdown(30, (80, 560), 640, 32,

(128, 0, 0), (255, 0, 0), text)

The constructor for ShowQuestion takes four parameters: the next

state to transition to, the current question instance, and the two player

controllers to get input from them.

Chapter 23 Game Project: Quiz

369

 def calcScore(self):

 if self.player1Choice == self.currentQuestion.answerIndex:

 self.player1.score = self.player1.score + 1

 if self.player2Choice == self.currentQuestion.answerIndex:

 self.player2.score = self.player2.score + 1

Helper function to calculate the players’ scores.

 def update(self, deltaTime):

 if self.player1Choice == -1:

 p1 = self.player1.playerChoice()

 if p1 >= 0:

 self.player1Choice = p1

 if self.player2Choice == -1:

 p2 = self.player2.playerChoice()

 if p2 >= 0:

 self.player2Choice = p2

 if self.player1Choice >= 0 and self.player2Choice >= 0:

 self.showAnswer = True

 if not self.showAnswer:

 self.countdown.update(deltaTime)

 if self.countdown.finished:

 self.showAnswer = True

 else:

 self.endCount = self.endCount - deltaTime

 if self.endCount <= 0:

 self.calcScore()

 return self.nextState

 return self

Chapter 23 Game Project: Quiz

370

The update method ticks the countdown timer if ‘self.showAnswer’ is

False. When the countdown timer reaches zero or both players have made

their selection ‘self.showAnswer’ is set to True. Once a player has selected

an answer, they cannot change it.

 def draw(self, surface):

 �self.questionText.draw(surface, self.currentQuestion.

question, self.currentQuestion.answer, self.

currentQuestion.answers, self.showAnswer)

 if not self.showAnswer:

 self.countdown.draw(surface)

Draw the question and answers, the ‘self.showAnswer’ field value

is passed to the questionText’s ‘draw()’ method to highlight the correct

answer. If the countdown is active, show it.

 def onExit(self):

 self.endCount = 3

 self.showAnswer = False

 self.countdown.reset()

Clean up the current state on exit.

 def onEnter(self):

 self.player1Choice = -1

 self.player2Choice = -1

Set up the player data on entry to the state.

Save the file.

�ShowScore Class

The ‘Show Score’ and ‘Game Over’ states both share this class. In between

each question, the players’ scores are shown. When the ‘Game Over’

screen is shown, the scores and “Winner” or “Tie” is displayed. The

“Winner” tag is shown under the player who won the game.

Chapter 23 Game Project: Quiz

371

For this file I created a simple test stub to verify the positions of the

onscreen text.

Create a new file called ‘showscore.py’ and enter the following text:

#!/usr/bin/python3

import pygame

from pygame.locals import *

from gamerunner import NullState

from ui import Text

Imports required by the ‘ShowScore’ class.

class ShowScore(NullState):

 �def __init__(self, nextState, player1, player2, showWinner

= False):

 self.nextState = nextState

 self.player1 = player1

 self.player2 = player2

 self.counter = 3

 self.showWinner = showWinner

 self.scoreText = Text(300, (255, 255, 0))

 self.playerText = Text(128, (255, 255, 255))

The ‘ShowScore’ constructor takes four parameters. The first is the next

state to transition to, the next are the controllers for the first and second

player. These are required for the ‘score’ field on the ‘PlayerController’

class. Finally, the ‘showWinner’ parameter is used to display either

“Winner” or “Tie” depending on the end state of the game when all the

questions have been asked.

Chapter 23 Game Project: Quiz

372

 def update(self, deltaTime):

 self.counter = self.counter - deltaTime

 if self.counter <= 0:

 return self.nextState

 return self

The score screen only shows for a specific amount of time. Once that

time expires, the state transitions to the next.

 def draw(self, surface):

 self.playerText.draw(surface, "Player 1", (200, 85), True)

 self.playerText.draw(surface, "Player 2", (600, 85), True)

 �self.scoreText.draw(surface, str(self.player1.score),

(200, 150), True)

 �self.scoreText.draw(surface, str(self.player2.score),

(600, 150), True)

 if self.showWinner:

 winner = "WINNER!"

 pos = 200

 if self.player1.score == self.player2.score:

 winner = "TIE!"

 pos = 400

 elif self.player2.score > self.player1.score:

 pos = 600

 self.playerText.draw(surface, winner, (pos, 400), True)

Draw the screen.

 def onEnter(self):

 self.counter = 3

When entering the state, set the current counter to 3 seconds.

Chapter 23 Game Project: Quiz

373

if __name__ == '__main__':

 import sys

 class P(object):

 def __init__(self, s):

 self.score = s

 pygame.init()

 fpsClock = pygame.time.Clock()

 surface = pygame.display.set_mode((800, 600))

 score = ShowScore(None, P(55), P(10), True)

 background = (0, 0, 0) # Black

 while True:

 surface.fill(background)

 for event in pygame.event.get():

 if event.type == QUIT:

 pygame.quit()

 sys.exit()

 deltaTime = fpsClock.tick(30) / 1000.0

 score.draw(surface)

 pygame.display.update()

Test stub. This will display a ‘Game Over’ state. Save and run the file to

see. If you want to see a ‘Show Score’ screen, change this line:

 score = ShowScore(None, P(55), P(10), True)

to

 score = ShowScore(None, P(55), P(10))

Chapter 23 Game Project: Quiz

374

�The Main File

The main file is actually only a few lines of code and most of that is setting

up the Finite State Machine. Create a new file called ‘quiz.py’ and enter the

following text:

#!/usr/bin/python3

import pygame

from gamerunner import GameRunner

from questions import *

from headertextscreen import HeaderTextScreen

from choosequestion import ChooseQuestion

from playercontroller import PlayerController

from showquestion import ShowQuestion

from showscore import ShowScore

from currentquestion import CurrentQuestion

All the imports for the program.

pygame.init()

player1 = PlayerController([4, 17, 22])

player2 = PlayerController([5, 6, 13])

currentQuestion = CurrentQuestion()

Initialize PyGame and set up the game state data that is stored in the

‘PlayerController’ instances as well as the ‘CurrentQuestion’ instance.

questions = loadQuestions("questions.json")

Load the questions from the JSON file.

showQuestion = ShowQuestion(None, currentQuestion, player1,

player2)

gameOver = ShowScore(None, player1, player2, True)

Chapter 23 Game Project: Quiz

375

chooseQuestion = ChooseQuestion(showQuestion, gameOver,

currentQuestion, questions)

showScore = ShowScore(chooseQuestion, player1, player2)

showQuestion.nextState = showScore

The ‘ShowQuestion,’ ‘ShowScore,’ and ‘ChooseQuestion’ classes are

used to build some of the states used in the game. Because of the creation

of the states it wasn’t possible to set the initial state for the ‘ShowQuestion,’

instead the ‘showQuestion’ instance’s ‘nextState’ was set manually and

None was passed to the constructor of ‘ShowQuestion.’

interstitial = HeaderTextScreen(chooseQuestion, player1,

player2, 3)

interstitial.setHeader("Get Ready!")

interstitial.setSub("")

splashScreen = HeaderTextScreen(interstitial, player1, player2)

splashScreen.setHeader("QUIZ!")

splashScreen.setSub("Press any button to start")

The interstitial (in between game play) screens for “Get Ready!” and

the splash screen. Notice that we didn’t create a separate class for the

splash screen and for “Get Ready!”, it just uses two separate instances of

‘HeaderTextScreen.’

When we transition from one state to another, we transition from

one instance of a class to another. So there is no need to write completely

separate classes for each state.

game = GameRunner((800, 600), "Quiz", (0, 0, 0), splashScreen)

The instance of the game runner is being set to a 800×600 sized

window with a black (0, 0, 0) background and the initial state to the splash

screen instance ‘splashScreen.’

Chapter 23 Game Project: Quiz

376

lastState = None

while game.state != None:

 nextState = game.update()

 if nextState != lastState:

 if game.state != None:

 game.state.onExit()

 if nextState != None:

 nextState.onEnter()

 lastState = nextState

 game.draw()

pygame.quit()

The main program loop consists of calling the game’s ‘update()’

and ‘draw()’ methods. It could be argued that this loop be placed in a

‘run()’ method of ‘GameRunner,’ I mean it is in the name. I will leave

that as an exercise for you the reader; create a method called ‘run()’ on

‘GameRunner’ that runs the loop.

Save the file.

�Playing the Game
To play the game you will need an opponent; it’s a couch-based quiz game

after all. Position yourselves on the couch and run the ‘quiz.py’ file. You

will need to set the execution bit for the file:

$ chmod +x quiz.py

And then run it:

$./quiz.py

Chapter 23 Game Project: Quiz

377

Once the game starts, one of you presses a button on the breadboard

to start the quiz. Try to answer each question as it appears. If you don’t

answer within the 30 second timeout, you forfeit the point. The winner is

the person with the most points at the end of the game. Good luck!

�Conclusion
That was a fun game that showed how you can build PyGame-based

games that interact with electronic components. You could rewrite the

input routines of the earlier projects like Brick, Snake, and Invaders to use

tact switches for input instead of computer keys.

Chapter 23 Game Project: Quiz

379© Sloan Kelly 2019
S. Kelly, Python, PyGame, and Raspberry Pi Game Development,
https://doi.org/10.1007/978-1-4842-4533-0_24

CHAPTER 24

Conclusion
By now, you should have a good understanding of the Python language

as well as the PyGame library. With the games included in this text,

you should have a good understanding of what goes into creating a

video game. Indeed, armed with a good idea, you should have enough

knowledge to make a game on your own! In this book we’ve covered player

input, displaying graphics, playing sounds, and moving characters about

the screen as well as alternative forms of input and output in the form of

reading and writing to the GPIO pins.

In addition to the games, we also looked at Object-Oriented

Programming and some associated design patterns such as Finite State

Machines (FSMs) and Model View Controllers (MVCs). These will help you

in the construction of your own games, and if you wanted to take it further,

a possible career in the games industry.

Hopefully by this stage you should have a good understanding of the

Python language itself and PyGame. Due to the three games included

in this text (Bricks, Snake, and Invaders), you have an understand what

goes into making a video game. With everything in here, you should have

enough to create your own. All it takes is a great idea!

Where to now? Now that you have the programming bug (pardon the

pun), the sky is the limit. Perhaps you want to learn C++ and do some

3D games.

380

If you want to read more about Python you should head over to

https://docs.python.org/. PyGame has full documentation too at

www.pygame.org/wiki/index.

Even if you don’t decide to take up programming as a full-time job,

making games for a hobby is still great fun.

Consider taking part in a game jam like Ludum Dare (https://

ldjam.com) or others listed at https://itch.io/jams. It’s great fun to

work on a game for a short time period, usually over a weekend. You can

even bring in friends to help you make it. Who knows, you might even

create the next “Nuclear Throne,” “Super Meat Boy,” or “Stardew Valley.”

I hope that you have enjoyed this book and whatever you choose to do

I hope you have fun doing it.

Happy coding!

Chapter 24 Conclusion

https://docs.python.org/
http://www.pygame.org/wiki/index
https://ldjam.com
https://ldjam.com
https://itch.io/jams

381© Sloan Kelly 2019
S. Kelly, Python, PyGame, and Raspberry Pi Game Development,
https://doi.org/10.1007/978-1-4842-4533-0

Index

A
Abstraction, 155
Aggregation, 179–180
Algorithm, 2
Alien Swarm classes

alien types, 276
BulletController class, 277
current shooter, 280
flipframe() method, 276
framecount, 278
getarea() method, 279
PyGame libraries, 275
render method, 281
reset method, 278
SwarmController class, 276
view class, 281

American Standard Code for
Information Interchange
(ASCII), 260, 357

And statement, 50
Anti-aliasing, 194
append() method, 67
Arithmetic operators, 26
Artificial intelligence (AI), 241
Audio

playing sound, 234–235
play/pause music, 236–238

playsong.py output, 239

pygame.mixer.fadeout(), 235
pygame.mixer.unpause(), 237
Sound.set_volume(), 238–239

pygame.mixer.get_busy(), 233
pygame.mixer.init(), 233
pygame.mixer.quit(), 233

B
Ball update() method, 161
BatImage/BatSprite, 111
Bitmap font class

ASCII character, 260
centre() method, 263
ord() function, 263
sprite sheet, 259
toIndex() method, 261

blit() method, 194, 196
Blocks, 44–45
Boolean logic, 50–52
Breadboard, 298–299
Breakout board, 299–300
Bricks, 137
Bullet classes

bullet controller, 270
bullet view, 270
countdown variable, 268
killList, 269
update() method, 267

https://doi.org/10.1007/978-1-4842-4533-0

382

C
Calculator, 23–25

arithmetic operations, 14
constants, 15
variables, 15

Cathode Ray Tube (CRT), 94
changeState() method, 243, 246
chmod command, 37
Circuit creation, Raspberry Pi, 308

breakout board, 309, 311
complete circuit, 314–315
jumper wires, 313–314
LED, 312–313
power and ground, 311–312
tact switch, 313–314
testing, 315–316

Class, 154
collidelist() method, 123
CollisionController

class, 253, 285
Collision detection, snake game

headHitBody function, 210
headHitWall function, 211
loseLife function, 208
positionBerry

function, 209–210
Command/keyword, 1
Compiler, 13
Composition, 177–178
Computer program, 1–2
Constructor, 162
Container elements, 63
Conventional current, 297

D
Data types, 27
Decision making

Boolean value, 43
branching, 41
flowchart, 42
‘if’ statement, 42–43

Deserialization, 144
Dictionaries

add new items, 74
iterating, 74
remove entries, 74

drawBox() method, 130
drawData() function, 198
drawGameOver() function, 190, 193
draw() method, 220, 222, 365
draw.rect()’ method, 357
drawSnake() function, 199
drawWalls() function, 196
Duck typing, 27, 174

E
Encapsulation, 154
Equality testing

collision detection, 48
IF conditions, 45
‘None’ keyword, 48
player’s x-and y-coordinates,

48–49
range operators, 46
string program, 46–48

Escape characters/control
sequences, 18

INDEX

383

F
File input and output

deserialization, 144, 147
JSON

defintion, 148
deserialization, 149
serialization, 148

reads program from disk, 141–143
SEH, 150–151
serialization, 144–146
writing text to file, 143–144

Finite State Machines (FSM), 363, 379
AI, 241, 242
game state, 241
manager

enter() method, 246–247
exit() method, 245–247
quit state, 248
transition rule, 244–245
update() method, 247, 249

menu systems, 241
quiz game, 346

for loop function, 55–56

G
Game design document (GDD)

play testing, 105
functional specification, 101
Google Drive, 100
MVC, 102–104
program design, 101–102
prototype, 100

Game project, bricks
bat and ball collision, 118–119
bat initialization, 110–111
collidelist() method, 123
drawing Bat, 112
framework, 108–109
images used in, 109–110
moving ball, 114–118, 120
moving bat

events, 113
mouse move event, 114
QUIT event, 113
steps, 112–113

play screen, 108
wall, 121–124

Game project, memory
algorithm, 330
arranging breadboard, 324–326
ButtonLEDCollection

classes, 331
GPIO project, 323
layout of breadboard, 323
listing buttonled.py, 336–337
main program, 334, 336
testing circuit, 326–330

Game state, 241
General Purpose Input/ Output

(GPIOs) pins, 295
ground pins, 317
Python accessible, 317
Raspberry Pi, 295–296
3v3 pins, 317

get_pressed() method, 205

INDEX

384

Global variables, 135
GNU Image Manipulation Program

(GIMP), 93
gpiozero library

button input, 320
ledOn variable, 321
tact switch, 321–322

GPIO pins, 317
LED, 318
Python program

LED class, 319
off() function, 319
on() function, 319
sleep() function, 319

H
hash-bang, 36
Hello, World program

executable flag, 37
hash-bang, 37
IDLE, 38–39

hit() method, 276

I
Inheritance, 155, 172
__init__() method, 264
Integrated Development and Learning

Environment (IDLE)
definition, 33
new file, 34–35
Raspberry Pi logo, 33

Interface segregation, 166
InterstitialState class, 263
InterstitialState game, 254
Invaders collision detection

classes, 282
cleanUp() method, 284
CollisionController

class, 285–287
ExplosionController, 285
ExplosionModel’ class, 283
ExplosionModelList, 285
ExplosionView, 284
sprite sheet, 282

Invaders framework
bitmap font class, 259–263
constructor, 257
game state class, 256
interstitial screens, 263–264
MainMenuState, 265
onEnter(), 256
onExit(), 256
playGameState, 266
Raspberry Pi, 257
run() method, 259
update(), 256

Invaders game
Bullet classes, 267–269
classes, 253–254
files, 252
FSM, 254–255, 288
GameState

Game Over state, 291
initialise() method, 290–291

INDEX

385

onEnter() method, 290
PlayGameState, 289
run the game, 292

player classes, 270, 272–273, 275
PNG files, 253
RaspberryPiGame class, 288
WAV files, 252

iteritems() method, 74

J
JavaScript Object Notation

(JSON), 148
Jumper wires, 300, 302

K
Keywords, 16–17

L
Light Emitting Diodes

(LEDs), 302, 304
Liquid Crystal Display (LCD), 94
List comprehension, 65
Lists container

add values, 68–69
creation, 68
Doctor’s waiting room

program, 70–72
remove values, 69–70

loadImages() function, 187, 191
loadMapFile() function, 193
loadQuestions()’ function, 352

M
makeNoise(), 175
Menu systems, 241
Model View Controllers (MVCs), 379

classes, 216–217
constant speed, 227–228
controller, 214
design pattern, 213
model, 214
pattern, 103
view, 214

N
Naming variables, 22–23
Nesting Ifs statement, 52–53
Non-player artificial intelligence,

242–243
Not statement, 52
NullState’ class, 360
Numeric types, 27–29

O
Object-oriented programming (OOP)

abstraction, 155
aggregation, 179–180
base class, 173–174
child class, 173–174
class, 154
composition, 177–178
constructor, 175–176
data hiding, 156

INDEX

386

dependency inversion, 167–169
encapsulation, 154
inheritance, 155, 172
instance of a class, creation, 160

Ball update() method, 161
constructor, 162, 164

interface programming, 175
interface segregation, 166–167
polymorphism, 155
reusable, 156
single responsibility, 165

onEnter()’ method, 363
onExit()’ method, 363
OpenTheDoor() method, 50
Or statement, 51–52

P
Player classes, invaders

bullet controller, 271
canFire() method, 272
MVC components, 270
PlayerLivesView, 272
PlayerView, 272
position, 272
render method, 273
testing, 273, 275

Play testing, 105
Polymorphism, 155
Programming styles

functional, 8
imperative, 5–7

object-oriented, 7–8
PyGame, 8–9

definition, 87
draw image, 94
GIMP, 93
graphics card, 94
importing module, 87–88
initializing, 88–89
load image, 93
main loop, 89–90
program code, 97
pygame.display.update()

method, 90–92
resolution, 95
screen/monitor, 94
sprite sheets, 95–96

pygame.display.update()
method, 90

pygame.mixer.get_busy(), 233
pygame.mixer.init(), 233
pygame.mixer.quit(), 233
Python interpreter, 11–13

Q
Quiz game

base state class, 359–361
game circuit, 341–342
game runner class, 359–361
player input, 361–362
play the game, 376
questions

JSON file, 348–351

Object-oriented programming
 (OOP) (Cont.)

INDEX

387

JSON serialization /
deserialization, 352

questions.py, 352
state classes (see State classes)
test program, 342–345

R
RadarView, 216, 221–222
random.shuffle()’ method, 352–353
range() function, 57–58
RaspberryPiGame class, 254
RemoveKeyFromInventory()

method, 50
remove() method, 67
Resistors, 297, 304

color band, 305–306
LED, 306

RobotController, 216
model’s position, 224
player’s position, 222
position and speed, 224
update() method, 223

RobotGenerator, 216, 225–226
RobotModel, 216

getter and setter
methods, 219

__init__ method, 217
nextFrame() method, 218
robot data, 217

Robot program
controller class, 229
draw order, 230

fill() method, 230
from keyword, 228
get-out-of-jail escape, 229
lastMillis, 229–230
PyGame, 228

RobotView, 217, 219–220

S
Serialization, 144
Simple DirectMedia Layer

Library (SDL), 8, 87
Snake framework

berry positions, 186
GameData, 185–186
Game Over mode, 188
isPlaying variable, 189
map size, 184
PyGame, 187
Python modules, 184

Snake game
framework (see Snake

framework)
functions, 182–183
game, drawing, 195–196
game map, 192–193
Game Over screen, 193–195
images, 190–191
player data, 198–199
snake, drawing, 200–202
walls, drawing, 196–198

split() function, 147
Sprite sheets, 95–96

INDEX

388

State classes
ChooseQuestion, 364–365
game state, 363–364
HeaderTextScreen, 366–367
main file, 374–376
ShowQuestion, 368, 370
ShowScore, 370–373

StateOne transitions, 245
StateQuit transitions, 245
StateTwo transitions, 245
String formatting, 19–21, 29–30
Structured error handling (SEH), 150
SwarmController class, 276
Switches, 307
Switch statement, 54

T
Terminal window, 11–12
Tic-Tac-Toe

chmod command, 85
“Congratulations!” message, 84
error message, 82
position, 82
program layout, 79
Python array, 82
rules, 77–78
run the game, 85
sentinel while loop, 81
‘slotsFilled’ variable, 83
‘tictactoe.py, 80
variables, 79

tuple() function, 65

tuple() keyword, 65
Tuples container

change elements, 65–66
deconstruction, 67
description, 64
print, 66
remove elements, 64–65

U
UI helper classes

countdown, 357
FSM, 358
QuestionText class, 355–356
text, 355

updateGame() function, 202
snake movement, 205
touching berry, 206–207

updateGame() method, 203
gamedata’s tick, 204
modulo calculation, 204
snake direction, 204

update() method, 243,
246, 361

User-defined function
argument values, 131–132
bricks, 137–138
code, 137
drawBox() method, 129–131
Global variables, 135–136
goal, 129
“Hello world, 127–128
as a mnemonic device, 128
returning tuples, 134

INDEX

389

returning values, 133
temperatures, 129

V
Variable assignment, 22
Voltage, 296

W, X, Y, Z
While loops

conditional, 62
counting, 58–60
sentinel, 60–61

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: What Is a Programming Language?
	What Does a Computer Program Do?
	Conclusion

	Chapter 2: What Is Python?
	Programming Styles
	Object-Oriented
	Functional
	What Is Pygame?
	Conclusion

	Chapter 3: Introducing Python
	The Terminal Window
	Running the Python Interpreter
	Python Is Interpreted
	Python As a Calculator
	Keywords
	Printing
	String Formatting

	Variables
	Naming Variables

	Python As a Calculator, Part II
	Arithmetic Operators
	Data Types
	Numeric Types
	String Formatting Again

	Conclusion

	Chapter 4: Breaking Free from the Interpreter
	What Is IDLE?
	Starting IDLE
	Starting a New File
	Hello, World!
	Running from the Command Line
	Running from Inside IDLE

	Conclusion

	Chapter 5: Making Decisions
	A Note About Blocks
	Testing for Equality
	Using Boolean Logic
	And
	Or
	Not

	Nesting Ifs
	A Note on Switch
	Conclusion

	Chapter 6: Making the Raspberry Pi Repeat Itself
	The for Loop
	The range() Function

	While Loops
	Counting
	Sentinel
	Conditional

	Conclusion

	Chapter 7: Containers
	Container Nomenclature
	Tuples
	Removing Elements from a Tuple
	Changing Element Values
	Tuples in Printing
	Deconstructing Tuples

	Lists
	List Creation
	Adding Values to the List
	Removing Values from a List
	Doctor’s Waiting Room Program

	Dictionaries
	Iterating Through Dictionaries
	Adding New Items to Dictionaries
	Removing Entries from a Dictionary

	Conclusion

	Chapter 8: Putting It Together: Tic-Tac-Toe
	The Rules
	Program Layout
	Variables
	The Game
	Save and Run
	Conclusion

	Chapter 9: Basic Introduction to PyGame
	Importing the PyGame Framework
	Initializing PyGame
	The Main Loop
	Images and Surfaces
	Creating Images
	Loading Images
	Drawing Images
	Screen Coordinates and Resolution
	Sprite Sheets
	Full Listing
	Conclusion

	Chapter 10: Designing Your Game
	Initial Concept
	Prototyping

	Functional Specification
	Weapon Firing

	Program Design
	Coding
	Testing
	Iteration
	Conclusion

	Chapter 11: Game Project: Bricks
	The Main Framework
	Images
	Moving the Bat
	Bat Initialization
	Drawing the Bat
	Moving the Bat
	Events
	Quit Event
	Mouse Move Event

	Moving the Ball
	Ball Initialization
	Ball Movement
	Bat and Ball Collision
	Serving the Ball

	Brick Wall
	Brick and Ball Collision
	Out of Bounds

	Conclusion

	Chapter 12: User-Defined Functions
	What Is a Function?
	Format of a Function
	Functions as a Menial Task/Mnemonic Device
	Sending Parameters
	Default Argument Values
	Named Parameters

	Returning Values
	Returning Tuples

	Accessing Global Variables
	Real-World Example of a Function
	Conclusion

	Chapter 13: File Input and Output
	Reading a File from Disk
	Writing Data to a File
	Reading and Writing Containers to a File
	Writing Your Own Serializer
	Writing Your Own Deserializer

	JSON
	JSON Serialization
	JSON Deserializer

	Handling Errors
	Conclusion

	Chapter 14: Introducing Object-Oriented Programming
	Classes and Objects
	Encapsulation
	Abstraction
	Inheritance
	Polymorphism
	Why Should You Use OOP?
	Data Hiding
	Reusable
	Easier to Code and Test Separately

	The Ball Class
	Creating an Instance of the Class
	The Ball update() Method
	Constructors

	SOLID
	Single Responsibility
	Open-Closed Principle
	Liskov Substitution
	Interface Segregation
	Dependency Inversion

	Conclusion

	Chapter 15: Inheritance, Composition, and Aggregation
	Inheritance
	Base and Child Classes
	Programming to the Interface
	A Note About Constructors and Base Classes

	Composition
	Aggregation
	Conclusion

	Chapter 16: Game Project: Snake
	Functions
	Snake Framework
	Images
	Loading the Images

	The Game Map
	Drawing the ‘Game Over’ Screen
	Drawing the Game
	Drawing the Walls
	Drawing the Player Data
	Drawing the Snake
	Updating the Game
	The updateGame() Method
	Snake Movement
	Touching a Berry

	Collision Detection
	Helper Functions
	Losing a Life
	Repositioning the Berry
	Testing Snake Body Hits
	Testing Wall Hits

	Conclusion

	Chapter 17: Model View Controller
	Model
	View
	Controller
	Why Use MVC?
	The Classes
	RadarView
	RobotController
	RobotGenerator
	RobotModel
	RobotView

	Folder
	The Robot Model
	The Robot View
	The Radar View
	The Robot Controller
	The Robot Generator

	Ensuring Constant Speed
	The Main Robot Program
	Conclusion

	Chapter 18: Audio
	Playing a Sound
	Playing, Pausing, and Changing Volume
	Conclusion

	Chapter 19: Finite State Machines
	Game State
	Menu System
	Non-player Artificial Intelligence
	A Finite State Machine Example
	Finite State Machine Manager

	Conclusion

	Chapter 20: Game Project: Invaders
	The Classes
	The Finite State Machine
	MVC and ‘Invaders’
	The Framework
	Bitmap Font
	Cutting Up the Image

	Interstitial Screens
	The Main Menu

	Player and Bullets
	The Bullet Classes
	The Player Classes
	Testing Player

	The Alien Swarm Classes
	Collision Detection
	Explosions
	Collision Controller

	The Main Program
	The Main Game State
	Running the Game
	Conclusion

	Chapter 21: Simple Electronics with the GPIO Pins
	Voltage, Current, and Resistance
	What You Will Need
	Breadboard
	Breakout Board
	Jumper Wires
	LEDs
	Resistors
	Switches

	Building a Circuit
	Connecting the Breakout Board to the Raspberry Pi
	Providing Power and Ground
	Adding the LED
	Completing the Circuit
	Testing the Circuit

	Pin Meanings
	The gpiozero Library
	The Circuit
	The Python Program
	Other Functions

	Getting Button Input
	Reading Button Input in Python

	Conclusion

	Chapter 22: Game Project: Memory
	Arranging the Breadboard
	Placing the LEDs

	Testing the Circuit
	Placing the Tact Switches
	Testing the Button Circuit

	The Memory Game
	The ButtonLED and ButtonLEDCollection Classes
	The Main Program

	Full Listing buttonled.py
	Full Listing memorygame.py
	Conclusion

	Chapter 23: Game Project: Quiz
	The Electronics
	Testing the Buttons

	The Finite State Machine
	Making the Game
	The Questions
	UI Helper Classes
	The Game Runner and Base State Class
	Player Input
	The State Classes
	Separating Class from State
	Maintaining Game State
	ChooseQuestion Class
	HeaderTextScreen Class
	ShowQuestion Class
	ShowScore Class
	The Main File

	Playing the Game
	Conclusion

	Chapter 24: Conclusion
	Index

