

React Cookbook

Create dynamic web apps with React using Redux,
Webpack, Node.js, and GraphQL

Carlos Santana Roldan

BIRMINGHAM - MUMBAI

React Cookbook
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Kunal Chaudhari
Acquisition Editor: Larissa Pinto
Content Development Editor: Francis Carneiro
Technical Editor: Diksha Wakode
Copy Editor: Safis Editing
Project Coordinator: Alinka Dias
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Graphics: Jason Monteiro
Production Coordinator: Arvindkumar Gupta

First published: August 2018

Production reference: 1290818

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78398-072-7

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Carlos Santana Roldan is a senior web developer with more than 11 years of experience.
Currently, he is working as a React Technical Lead in Disney ABC Television Group. He is
the founder of Codejobs.com, one of the most popular developer communities in Latin
America, training people in web technologies such as React, Node.js, and JavaScript.

I would like to express my deepest appreciation and special gratitude to all those from the
Packt Editorial team who helped me complete this book, especially Francis Savio Carneiro,
Larissa Pinto, and Diksha Wakode.

I'd also like to thank Adrian Aguirre and Tony Guerrero for all the help in the book.
Finally, my deepest thanks to my wife, Cristina Rojas, for the support; my parents,
Francisco Santana and Thelma Roldan, who have supported me in my
professional growth; and my friends and family who helped manifest the book.

About the reviewer
Mayur Tanna is a senior IT consultant working with CIGNEX Datamatics. He has worked
on various high-value projects with international clients such as World Bank and the
United Nations and played a key role in creating the architecture of those projects using the
latest technologies, including React, Angular, Node.js, MongoDB, Spring Boot, Firebase,
Amazon Web Services, and Google Cloud Platform. Mayur is the co-author of the book
Serverless Web Applications with React and Firebase. He holds a master's degree in Computer
Applications and has trained lot of engineering students through tech workshops. In his
free time, he plays table tennis and cricket.

I want to thank my wife, Dr. Purna, my parents, Mr. Ratilal and Mrs. Nirmala, my li'l
child, Dhyey, and the rest of my family, who have supported and encouraged me in spite of
all the time it took me away from them. Without their support, the review of this book
would not have been possible. I would also like to thank the Packt team for giving me the
opportunity to review this book.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

To the memory of my two grandmothers, Maria Concepción Carrillo, and Ana María
Ochoa, to my mother, Thelma C. Roldán, and my father Francisco Santana, for their
sacrifices and for exemplifying the power of determination and dedication.

– Carlos Santana Roldán

Table of Contents
Preface 1

Chapter 1: Working with React 6
Introduction 6
Working with the latest JS features in React 7

How to do it... 7
What's new in React? 14

How to do it... 14
Using React on Windows 17

How to do it... 17

Chapter 2: Conquering Components and JSX 20
Introduction 20
Creating our first React component 20

Getting ready 21
How to do it... 21
How it works... 23
There's more... 24

Organizing our React application 24
How to do it... 24
How it works... 27

Styling a component with CSS classes and inline styles 27
How to do it... 27
How it works... 31
There's more... 31

Passing props to a component and validating them with PropTypes 34
How to do it... 34
How it works... 38
There's more... 39

Using local state in a component 39
How to do it... 40
How it works... 44
There's more... 44

Making a functional or stateless component 44
How to do it... 45
How it works... 48
There's more... 48

Understanding React lifecycle methods 49
How to do it... 49

Todo list – implementing ComponentWillMount 49

Table of Contents

[ii]

Pomodoro timer – implementing the constructor and componentDidMount 63
Crypto coins exchanger – implementing shouldComponentUpdate 76
Notes – implementing componentWillReceiveProps and componentWillUnmount 81
C3.js chart – implementing componentDidUpdate 89
Basic animation – implementing componentWillUpdate 94

How it works... 97
Understanding React Pure Components 97

Getting ready 97
How to do it… 98
How it works… 101

Preventing XSS vulnerabilities in React 106
How to do it... 106
How it works... 118
There's more... 119

Chapter 3: Handling Events, Binding and Useful React Packages 120
Introduction 120
Binding methods using the constructor versus using arrow
functions 120

How to do it... 121
How it works... 126

Creating form elements with events 126
How to do it... 127
How it works... 140
There's more... 141

Displaying information in a modal with react-popup 142
Getting ready 142
How to do it... 143
How it works... 145
There's more... 146

Implementing Airbnb React/JSX Style Guide 146
Getting ready 146
How to do it... 148
How it works... 153
There's more... 155

Updating our title and meta tags with React Helmet 156
Getting ready 156
How to do it... 157
How it works... 158
There's more... 159

Chapter 4: Adding Routes to Our Application with React Router 160
Introduction 160
Implementing React Router v4 160

Getting ready 160
How to do it... 161

Table of Contents

[iii]

How it works... 168
There's more... 169

Adding parameters to our routes 169
How to do it... 170
How it works... 175

Chapter 5: Mastering Redux 179
Introduction 179
Creating a Redux Store 183

Getting ready 184
How to do it... 184
How it works... 187

Making action creators and dispatching actions 189
Getting ready 189
How to do it... 189
How it works... 199

Implementing Firebase with Redux 201
Getting ready 201
How to do it... 211
How it works... 222

Chapter 6: Creating Forms with Redux Form 229
Introduction 229
Creating a controlled form with the local state 229

Getting ready 229
How to do it... 230
How it works... 237

Building a form using Redux Form 237
Getting ready 237
How to do it... 238
How it works... 242

Implementing validation in a form 243
How to do it... 243
How it works... 245

Chapter 7: Animations with React 246
Introduction 246
Animating a todo list with ReactCSSTransitionGroup 246

Getting Ready 247
How to do it... 247
How it works... 251

Using react-animations library 253
Getting ready 253
How to do it... 253
There's more... 255

Creating our first animation with React Pose 255

Table of Contents

[iv]

Getting ready 255
How to do it... 256
How it works... 260
There's more... 263

Chapter 8: Creating an API with Node.js Using MongoDB and MySQL 265
Introduction 265
Creating a basic API with Express 266

Getting ready 266
How to do it... 268
How it works... 275

Building a database with MongoDB 277
Getting ready 277

Installing MongoDB Community Edition manually (the hard way) 277
Installing MongoDB Community Edition with Homebrew (the easy way) 278
Running MongoDB 279

How to do it... 280
How it works... 287

GET method endpoints 288
POST method endpoints 291
DELETE method endpoints 293
PUT method endpoints 295

Building a database with MySQL 297
Getting ready 297
How to do it... 297
How it works... 308

POST method endpoints 308
GET method endpoints 310
DELETE method endpoints 312
PUT method endpoints 314

Adding access tokens to secure our API 315
Getting ready 316
How to do it... 316
How it works... 321
There's more... 325

Chapter 9: Apollo and GraphQL 326
Introduction 326
Creating our first GraphQL server 327

Getting ready 327
How to do it... 327
How it works... 331
There's more... 334

Creating a Twitter timeline with Apollo and GraphQL 337
Getting ready 337

Creating our GraphQL backend server 338
How to do it... 346

Table of Contents

[v]

How it works... 361

Chapter 10: Mastering Webpack 4.x 365
Introduction 365
Webpack 4 Zero Configuration 365

Getting Ready 366
How to do it... 366
How it works... 368
There's more... 370

Adding React to Webpack 4 372
Getting Ready 372
How to do it... 372
How it works... 376
There's more... 378

Adding Webpack Dev Server and Sass, Stylus, or LessCSS with
React 380

Getting Ready 381
How to do it... 381
How it works... 386
There's more... 386

Webpack 4 Optimization – Splitting Bundles 389
Getting Ready 390
How to do it... 390
How it works... 392

Implementing Node.js with React/Redux and Webpack 4 396
Getting Ready 396
How to do it... 397
How it works... 406
There's more... 409

Chapter 11: Implementing Server-Side Rendering 412
Introduction 412
Implementing Server-Side Rendering 413

Getting ready 414
How to do it... 414
How it works... 426
There's more... 428

Implementing promises with Server-Side Rendering 429
Getting ready 429
How to do it... 429
How it works... 439

Implementing Next.js 441
Getting ready 441
How to do it... 441
How it works... 449

Table of Contents

[vi]

Chapter 12: Testing and Debugging 451
Introduction 451
Testing our first component with Jest and Enzyme 452

Getting ready 452
How to do it... 452
How it works... 457
There's more... 458

Testing a Redux Container, Actions, and Reducers 460
Getting Ready 461
How to do it... 461

Debugging a React application using React and Redux Dev Tools 467
Getting Ready 468
How to do it... 469

Simulating Events 471
How to do it... 471
How it works... 475

Chapter 13: Deploying to Production 477
Introduction 477
Deploying to production on Digital Ocean 477

Getting ready 478
How to do it... 479
How it works... 485
There's more... 488

Configuring Nginx, PM2, and a domain in our Droplet 489
Getting Ready 489
How to do it... 490
How it works... 491
There's more... 492

Implementing Jenkins (continuous integration) 495
Getting Ready 495
How to do it... 495
How it works... 509

Chapter 14: Working with React Native 514
Introduction 514
Creating our first React Native Application 515

Getting Ready 515
How to do it... 515
How it works... 522

Creating a Todo List with React Native 528
How to do it... 528
How it works... 532
There's more... 537

Implementing React Navigation V2 538

Table of Contents

[vii]

Getting Ready 539
How to do it... 539
How it works... 544

Appendix A: Most Common React Interview Questions 548

Other Books You May Enjoy 550

Index 553

Preface
Nowadays exists tons of JavaScript libraries, frameworks, and tools for Web development.
However, we should evaluate each technology to see if it fits for our project requirements.
That's why I want to introduce to you React, one of the most powerful libraries to create
dynamic UIs. Right now is the most popular library (not a framework) made by Facebook. I
have worked with others JS frameworks such as AngularJS (also the new versions Angular
2, 4, 5), Backbone.js, Ember, and Vue.js in different projects but I can tell you that using
React I enjoy more to developing new Web applications.

React has changed the way of doing Web applications and combined with Redux, we get a
powerful frontend architecture that makes sense not only to experienced developers but
also to those who're just starting their frontend journey.

The book introduces all the tools and best practices of React in simple recipes easy to
follow, all of the recipes in this book are 100% practical and each one has the necessary code
to understand all the important things.

Welcome to a better future and have fun reading and learning from this book.

Who this book is for
The book can be used by any developer who has a basic knowledge of building web
applications. Mainly for JavaScript developers but not limited to any other type of devs.

What this book covers
Chapter 1, Working with React, React is a JavaScript library (MIT License) made by
Facebook to create interactive UIs. It's used to create dynamic and reusable components.
The most powerful thing about React is that can be used in the client, server, mobile
applications and even VR applications.

Chapter 2, Conquering Components and JSX , this chapter contains recipes related to how to
create components in React. We are going to learn how to create React components (class
components, pure components, and functional components) and organize our project
structure.

Preface

[2]

Chapter 3, Handling Events, Binding and Useful React Packages, this chapter contains recipes
related to handling events, binding methods in React and we will implement some of the
most useful React packages.

Chapter 4, Adding Routes to Our Application with React Router, in this chapter, we are going
to learn how to add dynamic routes in our project using React Router v4.

Chapter 5, Mastering Redux, Redux is a predictable state container for JavaScript apps. That
means Redux can be used with vanilla JavaScript or frameworks/libraries such as Angular
and jQuery. Redux is mainly a library responsible for issuing state updates and responses
to actions.

Chapter 6, Creating Forms with Redux Form, Forms are a fundamental part of any web
application, and in the following recipes, we are going to learn how to use forms with and
without Redux Form.

Chapter 7, Animations with React, Animations are very common in any web application.
Since CSS3, animations have become widespread and easy to implement. The most
common use of animations are transitions, where you can change CSS properties and
define the duration or delay.

Chapter 8, Creating an API with Node.js Using MongoDB and MySQL, Node.js is widely used
as a backend for web applications because it is easy to create an API and its performance is
better than technologies such as Java, PHP, and Ruby. Usually, the most popular way to
use Node.js is by using a framework called Express.

Chapter 9, Apollo and GraphQL, GraphQL is an Application Layer Query Language which
can be used with any database, also is an open source (MIT license) created by Facebook.
The main difference with REST is that GraphQL does not use endpoints but queries instead
and is supported by most of the server languages such as JavaScript (Node.js), Go, Ruby,
PHP, Java, Python, and so on.

Chapter 10, Mastering Webpack 4.x, Webpack 4 does not need a configuration file by
default. Before in the oldest versions, you must have a configuration file, but of course, if
you need to customize Webpack 4 to your project needs, you can still create a configuration
file which will be way easier to configure.

Preface

[3]

Chapter 11, Implementing Server-Side Rendering, Probably you don't need to worry about
Server Side Rendering (SSR) if you don't care too much about SEO. Currently, the
Googlebot supports Client Side Rendering (CSR), and it can index our site in Google, but if
you care about SEO and you are worried about improving the SEO on others Search
Engines like Yahoo, Bing or DuckDuckGo then using Server Side Rendering (SSR) is the
way to go.

Chapter 12, Testing and Debugging, testing and debugging are very important for any
project that wants to have the best quality. Unfortunately, many developers do not care
about testing (unit tests) because they think that will reduce the speed of the development
and some of them leave it until the end of the project. In my personal experience, I can say
that testing since the beginning of the project will save you time because at the end you will
have fewer bugs to fix.

Chapter 13, Deploying to Production, now is time to deploy our application to production
and show it to the world. In this chapter, you will learn how to deploy our React
Application using one of the best cloud services: Digital Ocean.

Chapter 14, Working with React Native, React Native is a framework for building mobile
apps using JavaScript and React. Many people think that with React Native you make some
"mobile web app" or a "hybrid app" (like Ionic, PhoneGap or Sencha) but you build a native
app because React Native converts your React code to Java for Android and Objective-C for
iOS apps.

To get the most out of this book
To master React, you need to have a fundamental knowledge of JavaScript and Node.js.
The book mostly targets Web developers, and at the time of writing, the following
assumptions were made for the reader:

The reader knows how to install the latest version of Node.js.
An intermediate developer who can understand JavaScript ES6 syntax.
Little experience with CLI tools and Node.js syntax.

The book also has a little for Mobile developers (iOS and Android) using React Native, if
you are a beginner you should learn how to install Android SDK or the iOS simulator with
Xcode.

Preface

[4]

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​React- ​Cookbook. If there's an update to the code, it will be updated on
the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Warnings or important notes appear like this.

Tips and tricks appear like this.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/React-Cookbook
https://github.com/PacktPublishing/React-Cookbook
https://github.com/PacktPublishing/React-Cookbook
https://github.com/PacktPublishing/React-Cookbook
https://github.com/PacktPublishing/React-Cookbook
https://github.com/PacktPublishing/React-Cookbook
https://github.com/PacktPublishing/React-Cookbook
https://github.com/PacktPublishing/React-Cookbook
https://github.com/PacktPublishing/React-Cookbook
https://github.com/PacktPublishing/React-Cookbook
https://github.com/PacktPublishing/React-Cookbook
https://github.com/PacktPublishing/React-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[5]

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Working with React

In this chapter, the following recipes will be covered:

Introduction
Working with the latest JS features in React
What's new in React?
Using React on Windows

Introduction
React is a JavaScript library (MIT License) made by Facebook to create interactive UIs. It's
used to create dynamic and reusable components. The most powerful thing about React is
that can be used in the client, server, mobile applications, and even VR applications.

In the modern web, we need to manipulate the DOM constantly; the problem is that doing
this a lot may affect the performance of our application seriously. React uses a Virtual
DOM, which means that all updates occur in memory (this is faster than manipulating the
real DOM directly). The learning curve of React is short in comparison with other
JavaScript frameworks such as Angular, Vue, or Backbone, mainly because the React code
is mostly written with modern JavaScript (classes, arrow functions, string templates, and so
on) and does not have too many patterns used to write code, like Dependency Injection, or
a template system, like in Angular.

Companies such as Airbnb, Microsoft, Netflix, Disney, Dropbox, Twitter, PayPal,
Salesforce, Tesla, and Uber are extensively using React in their projects. In this book, you
will learn how to develop your React applications in the way they do, using best practices.

Working with React Chapter 1

[7]

Working with the latest JS features in React
As I said in the introduction, React is mainly written with modern JavaScript (ES6, ES7, and
ES8). If you want to take advantage of React, there are some modern JS features that you
should master to get the best results for your React applications. In this first recipe, we are
going to cover the essential JS features so you are ready and can start working on your first
React application.

How to do it...
In this section, we will see how to use the most important JS features in React:

let and const: The new way to declare variables in JavaScript is by using let1.
or const. You can use let to declare variables that can change their value but in
block scope. The difference between let and var is that let is a block scoped
variable that cannot be global, and with var, you can declare a global variable,
for example:

 var name = 'Carlos Santana';
 let age = 30;

 console.log(window.name); // Carlos Santana
 console.log(window.age); // undefined

The best way to understand "block scope" is by declaring a for loop with var2.
and let. First, let's use var and see its behavior:

 for (var i = 1 ; i <= 10; i++) {
 console.log(i); // 1, 2, 3, 4... 10
 }

 console.log(i); // Will print the last value of i: 10

If we write the same code, but with let, this will happen:3.

 for (let i = 1 ; i <= 10; i++) {
 console.log(i); // 1, 2, 3, 4... 10
 }

 console.log(i); // Uncaught ReferenceError: i is not defined

Working with React Chapter 1

[8]

With const, we can declare constants, which means the value can't be changed4.
(except for arrays and objects):

 const pi = 3.1416;
 pi = 5; // Uncaught TypeError: Assignment to constant variable.

If we declare an array with const, we can manipulate the array elements (add,5.
remove, or modify elements):

 const cryptoCurrencies = ['BTC', 'ETH', 'XRP'];

 // Adding ERT: ['BTC', 'ETH', 'XRP', 'ERT'];
 cryptoCurrencies.push('ERT');

 // Will remove the first element: ['ETH', 'XRP', 'ERT'];
 cryptoCurrencies.shift();
 // Modifying an element
 cryptoCurrencies[1] = 'LTC'; // ['ETH', 'LTC', 'ERT'];

Also, using objects, we can add, remove, or modify the nodes:6.

 const person = {
 name: 'Carlos Santana',
 age: 30,
 email: 'carlos@milkzoft.com'
 };
 // Adding a new node...
 person.website = 'https://www.codejobs.com';

 // Removing a node...
 delete person.email;

 // Updating a node...
 person.age = 29;

Working with React Chapter 1

[9]

Spread operator: The spread operator (...) splits an iterable object into7.
individual values. In React, it can be used to push values into another array, for
example when we want to add a new item to a Todo list by utilizing setState
(this will be explained in the next chapter):

 this.setState({
 items: [
 ...this.state.items, // Here we are spreading the current items
 {
 task: 'My new task', // This will be a new task in our Todo list.
 }
]
 });

Also, the Spread operator can be used in React to spread attributes (props) in JSX:8.

 render() {
 const props = {};

 props.name = 'Carlos Santana';
 props.age = 30;
 props.email = 'carlos@milkzoft.com';
 return <Person {...props} />;
 }

Rest parameter: The rest parameter is also represented by The last9.
parameter in a function prefixed with ... is called the rest parameter. The rest
parameter is an array that will contain the rest of the parameters of a function
when the number of arguments exceeds the number of named parameters:

 function setNumbers(param1, param2, ...args) {
 // param1 = 1
 // param2 = 2
 // args = [3, 4, 5, 6];
 console.log(param1, param2, ...args); // Log: 1, 2, 3, 4, 5, 6
 }
 setNumbers(1, 2, 3, 4, 5, 6);

Working with React Chapter 1

[10]

Destructuring: The destructuring assignment feature is the most used in React. It10.
is an expression that allows us to assign the values or properties of an iterable
object to variables. Generally, with this we can convert our component props into
variables (or constants):

 // Imagine we are on our <Person> component and we are
 // receiving the props (in this.props): name, age and email.
 render() {
 // Our props are:
 // { name: 'Carlos Santana', age: 30, email:
 'carlos@milkzoft.com' }
 console.log(this.props);
 const { name, age, email } = this.props;
 // Now we can use the nodes as constants...
 console.log(name, age, email);

 return (

 Name: {name}
 Age: {age}
 Email: {email}

);
 }

 // Also the destructuring can be used on function parameters
 const Person = ({ name, age, email }) => (

 Name: {name}
 Age: {age}
 Email: {email}

);

Arrow functions: ES6 provides a new way to create functions using the =>11.
operator. These functions are called arrow functions. This new method has a
shorter syntax, and the arrow functions are anonymous functions. In React,
arrow functions are used as a way to bind the this object in our methods instead
of binding it in the constructor:

 class Person extends Component {
 showProps = () => {
 console.log(this.props); // { name, age, email... }
 }

 render() {
 return (

Working with React Chapter 1

[11]

 <div>
 Consoling props: {this.showProps()}
 </div>
);
 }
 }

Template literals: The template literal is a new way to create a string using12.
backticks (` `) instead of single quotes (' ') or double quotes (" "). React use
template literals to concatenate class names or to render a string using a ternary
operator:

 render() {
 const { theme } = this.props;

 return (
 <div
 className={`base ${theme === 'dark' ? 'darkMode' :
 'lightMode'}`}
 >
 Some content here...
 </div>
);
 }

Map: The map() method returns a new array with the results of calling a13.
provided function on each element in the calling array. Map use is widespread in
React, and is mainly used to render multiple elements inside a React component;
for example, it can be used to render a list of tasks:

 render() {
 const tasks = [
 { task: 'Task 1' },
 { task: 'Task 2' },
 { task: 'Task 3' }
];

 return (

 {tasks.map((item, key) => <li key={key}>{item.task}}

);
 }

Working with React Chapter 1

[12]

Object.assign(): The Object.assign() method is used to copy the values of14.
all enumerable own properties from one or more source objects to a target object.
It will return the target object. This method is used mainly with Redux to create
immutable objects and return a new state to the reducers (Redux will be covered
in Chapter 5, Mastering Redux):

 export default function coinsReducer(state = initialState, action) {
 switch (action.type) {
 case FETCH_COINS_SUCCESS: {
 const { payload: coins } = action;

 return Object.assign({}, state, {
 coins
 });
 }

 default:
 return state;
 }
 };

Classes: JavaScript classes, introduced in ES6, are mainly a new syntax for the 15.
existing prototype-based inheritance. Classes are functions and are not hoisted.
React uses classes to create class Components:

 import React, { Component } from 'react';

 class Home extends Component {
 render() {
 return <h1>I'm Home Component</h1>;
 }
 }

 export default Home;

Static methods: Static methods are not called on instances of the class. Instead,16.
they're called on the class itself. These are often utility functions, such as
functions to create or clone objects. In React, they can be used to define the
PropTypes in a component:

 import React, { Component } from 'react';
 import PropTypes from 'prop-types';
 import logo from '../../images/logo.svg';

 class Header extends Component {
 static propTypes = {
 title: PropTypes.string.isRequired,

Working with React Chapter 1

[13]

 url: PropTypes.string
 };

 render() {
 const {
 title = 'Welcome to React',
 url = 'http://localhost:3000'
 } = this.props;

 return (
 <header className="App-header">

 <h1 className="App-title">{title}</h1>
 </header>
);
 }
 }

 export default Header;

Promises: The Promise object represents the eventual completion (or failure) of17.
an asynchronous operation and its resulting value. We will use promises in React
to handle requests by using axios or fetch; also, we are going to use Promises to
implement the server-side rendering (this will be covered in Chapter 11,
Implementing Server-Side Rendering).
async/await: The async function declaration defines an asynchronous function,18.
which returns an AsyncFunction object. This also can be used to perform a
server request, for example using axios:

 Index.getInitialProps = async () => {
 const url = 'https://api.coinmarketcap.com/v1/ticker/';
 const res = await axios.get(url);

 return {
 coins: res.data
 };
 };

Working with React Chapter 1

[14]

What's new in React?
This paragraph was written on August 14, 2018, and the latest version of React was 16.4.2.
The React 16 version has a new core architecture named Fiber.

In this recipe, we will see the most important updates in this version that you should be
aware of to get the most out of React.

How to do it...
Let's see the new updates:

Components can now return arrays and strings from render: Before, React1.
forced you to return an element wrapped with a <div> or any other tag; now it is
possible to return an array or string directly:

 // Example 1: Returning an array of elements.
 render() {
 // Now you don't need to wrap list items in an extra element
 return [
 <li key="1">First item,
 <li key="2">Second item,
 <li key="3">Third item,
];
 }

 // Example 2: Returning a string
 render() {
 return 'Hello World!';
 }

Also, React now has a new feature called Fragment, which also works as a2.
special wrapper for elements. It can be specified with empty tags (<></>) or
directly using React.Fragment:

 // Example 1: Using empty tags <></>
 render() {
 return (
 <>
 <ComponentA />
 <ComponentB />
 <ComponentC />
 </>
);
 }

Working with React Chapter 1

[15]

 // Example 2: Using React.Fragment
 render() {
 return (
 <React.Fragment>
 <h1>An h1 heading</h1>
 Some text here.
 <h2>An h2 heading</h2>
 More text here.
 Even more text here.
 </React.Fragment>
);
 }

 // Example 3: Importing Fragment
 import React, { Fragment } from 'react';
 ...
 render() {
 return (
 <Fragment>
 <h1>An h1 heading</h1>
 Some text here.
 <h2>An h2 heading</h2>
 More text here.
 Even more text here.
 </Fragment>
);
 }

Error boundaries with from the official website:3.

A JavaScript error in a part of the UI shouldn’t break the whole app. To solve this
problem for React users, React 16 introduces a new concept of an "error
boundary". Error boundaries are React components that catch JavaScript errors
anywhere in their child component tree, log those errors, and display a fallback UI
instead of the component tree that crashed. Error boundaries catch errors during
rendering, in lifecycle methods, and in constructors of the whole tree below them. A
class component becomes an error boundary if it defines a new lifecycle method called
componentDidCatch(error, info).

 class ErrorBoundary extends React.Component {
 constructor(props) {
 super(props);
 this.state = {
 hasError: false
 };
 }

Working with React Chapter 1

[16]

 componentDidCatch(error, info) {
 // Display fallback UI
 this.setState({
 hasError: true
 });
 // You can also log the error to an error reporting service
 logErrorToMyService(error, info);
 }

 render() {
 if (this.state.hasError) {
 // You can render any custom fallback UI
 return <h1>Something went wrong.</h1>;
 }
 return this.props.children;
 }
 }

 // Then you can use it as a regular component:
 render() {
 <ErrorBoundary>
 <MyComponent />
 </ErrorBoundary>
 }

Better server-side rendering with from the official site:4.

React 16 includes a completely rewritten server renderer. It's really fast. It supports
streaming, so you can start sending bytes to the client faster. And thanks to a new
packaging strategy that compiles away process.env checks (Believe it or not, reading
process.env in Node is really slow!), you no longer need to bundle React to get good
server-rendering performance.

Reduced file size with from the official site: "Despite all these additions, React 165.
is actually smaller compared to 15.6.1.

react is 5.3 kb (2.2 kb gzipped), down from 20.7 kb (6.9 kb gzipped)
react-dom is 103.7 kb (32.6 kb gzipped), down from 141 kb (42.9 kb
gzipped)
react + react-dom is 109 kb (34.8 kb gzipped), down from 161.7 kb (49.8
kb gzipped)

That amounts to a combined 32% size decrease compared to the previous version
(30% post-gzip)."

Working with React Chapter 1

[17]

If you want to check the latest updates on React, you can visit the official
React blog: https:/ ​/ ​reactjs. ​org/ ​blog.

Using React on Windows
I'm not a big fan of Windows for development since it's kind of problematic to configure
sometimes. I will always prefer Linux or Mac, but I'm aware that a lot of people who are
reading this book will use Windows. In this recipe, I'll show you the most common
problems you may have when you try to follow the recipes in this book using Windows.

How to do it...
We'll now see the most common problems using Windows for development:

Terminal: The first problem you will face is to use the Windows terminal (CMD)1.
because it does not support Unix commands (like Linux or Mac). The solution is
to install a Unix Terminal; the most highly recommended is to use the Git Bash
Terminal, which is included with Git when you install it (https:/ ​/​git- ​scm. ​com),
and the second option is to install Cygwin, which is a Linux Terminal in
Windows (https:/ ​/​www. ​cygwin. ​com).
Environment variables: Another common problem using Windows is to set2.
environment variables. Generally, when we write npm scripts, we set
environment variables such as NODE_ENV=production or
BABEL_ENV=development, but to set those variables in Windows, you use
the SET command, which means you need to do SET NODE_ENV=production or
SET BABEL_ENV=development. The problem with this is that if you are working
with other people that use Linux or Mac, they will have problems with the SET
command, and probably you will need to ignore this file and modify it only for
your local environment. This can be tedious. The solution to this problem is to
use a package called cross-env; you can install it by doing npm install cross-
env, and this will work in Windows, Mac, and Linux:

 "scripts": {
 "start": "cross-env NODE_ENV=development webpack-dev-server --
 mode development --open",
 "start-production": "cross-env NODE_ENV=production webpack-dev-
 server --mode production"
 }

https://reactjs.org/blog
https://reactjs.org/blog
https://reactjs.org/blog
https://reactjs.org/blog
https://reactjs.org/blog
https://reactjs.org/blog
https://reactjs.org/blog
https://reactjs.org/blog
https://reactjs.org/blog
https://git-scm.com
https://git-scm.com
https://git-scm.com
https://git-scm.com
https://git-scm.com
https://git-scm.com
https://git-scm.com
https://git-scm.com
https://git-scm.com
https://www.cygwin.com
https://www.cygwin.com
https://www.cygwin.com
https://www.cygwin.com
https://www.cygwin.com
https://www.cygwin.com
https://www.cygwin.com
https://www.cygwin.com
https://www.cygwin.com

Working with React Chapter 1

[18]

Case-sensitive files or directories: In reality, this also happens on Linux, but3.
sometimes it is very difficult to identify this problem, for example, if you create a
component in the components/home/Home.jsx directory but in your code
you're trying to import the component like this:

 import Home from './components/Home/Home';

Normally, this won't cause any problems on Mac but can generate an
error on Linux or Windows because we are trying to import a file with a
different name (because it's case-sensitive) into the directory.

Paths: Windows uses a backslash (\) to define a path, while in Mac or Linux they4.
use a forward slash (/). This is problematic because sometimes we need to define
a path (in Node.js mostly) and we need to do something like this:

 // In Mac or Linux
 app.use(
 stylus.middleware({
 src: __dirname + '/stylus',
 dest: __dirname + '/public/css',
 compile: (str, path) => {
 return stylus(str)
 .set('filename', path)
 .set('compress', true);
 }
 })
);

 // In Windows
 app.use(
 stylus.middleware({
 src: __dirname + '\stylus',
 dest: __dirname + '\public\css',
 compile: (str, path) => {
 return stylus(str)
 .set('filename', path)
 .set('compress', true);
 }
 })
);

 // This can be fixed by using path
 import path from 'path';
 // path.join will generate a valid path for Windows or Linux and Mac
 app.use(
 stylus.middleware({

Working with React Chapter 1

[19]

 src: path.join(__dirname, 'stylus'),
 dest: path.join(__dirname, 'public', 'css'),
 compile: (str, path) => {
 return stylus(str)
 .set('filename', path)
 .set('compress', config().html.css.compress);
 }
 })
);

2
Conquering Components and

JSX
In this chapter, the following recipes will be covered:

Creating our first React component
Organizing our React application
Styling a component with CSS classes and inline styles
Passing props to a component and validating them with PropTypes
Using local state in a component
Making a functional or stateless component
Understanding React lifecycle methods
Understanding React Pure Components
Preventing XSS vulnerabilities in React

Introduction
This chapter contains recipes related to how to create components in React. We are going to
learn how to create React components (class components, pure components, and functional
components) and organize our project structure. We'll also learn how to use React local
state, implement all the React lifecycle methods, and finally, we'll see how to prevent XSS
vulnerabilities.

Creating our first React component
The component is the essential part of React. With React you can build interactive and
reusable components. In this recipe, you will create your first React component.

Conquering Components and JSX Chapter 2

[21]

Getting ready
First, we need to create our React application using create-react-app. Once that is done,
you can proceed to create your first React component.

Before you install create-react-app, remember that you need to download and install
Node from www.nodejs.org. You can install it for Mac, Linux, and Windows.

Install create-react-app globally by typing this command in your Terminal:

 npm install -g create-react-app

Or you can use a shortcut:

 npm i -g create-react-app

How to do it...
Let's build our first React application by following these steps:

Create our React application with the following command:1.

 create-react-app my-first-react-app

Go to the new application with cd my-first-react-app and start it with npm2.
start.
The application should now be running at http://localhost:3000.3.
Create a new file called Home.js inside your src folder:4.

import React, { Component } from 'react';

class Home extends Component {
 render() {
 return <h1>I'm Home Component</h1>;
 }
}

export default Home;

File: src/Home.js

http://www.nodejs.org

Conquering Components and JSX Chapter 2

[22]

You may have noticed that we are exporting our class component at the end of5.
the file, but it's fine to export it directly on the class declaration, like this:

 import React, { Component } from 'react';
 export default class Home extends Component {
 render() {
 return <h1>I'm Home Component</h1>;
 }
 }

File: src/Home.js

I prefer to export it at the end of the file, but some people like to do it in
this way, so it depends on your preferences.

Now that we have created the first component, we need to render it. So we need6.
to open the App.js file, import the Home component, and then add it to the
render method of the App component. If we are opening this file for the first time,
we will probably see a code like this:

 import React, { Component } from 'react';
 import logo from './logo.svg';
 import './App.css';
 class App extends Component {
 render() {
 return (
 <div className="App">
 <header className="App-header">

 <h1 className="App-title">Welcome to React</h1>
 </header>
 <p className="App-intro">
 To get started, edit <code>src/App.js</code>
 and save to reload.
 </p>
 </div>
);
 }
 }

 export default App;

File: src/App.js

Conquering Components and JSX Chapter 2

[23]

Let's change this code a little bit. As I said before, we need to import our Home7.
component and then add it to the JSX. We also need to replace the <p> element
with our component, like this:

 import React, { Component } from 'react';
 import logo from './logo.svg';

 // We import our Home component here...
 import Home from './Home';
 import './App.css';

 class App extends Component {
 render() {
 return (
 <div className="App">
 <header className="App-header">

 <h1 className="App-title">Welcome to React</h1>
 </header>
 {/* Here we add our Home component to be render it */}
 <Home />
 </div>
);
 }
 }

 export default App;

File: src/App.js

How it works...
As you can see, we imported React and Component from the React library. You probably
noticed that we are not using the React object directly. To write code in JSX, you need to
import React. JSX is similar to HTML, but with a few differences. In the following recipes,
you will learn more about JSX.

This component is called a class component (React.Component), and there are different
types: pure components (React.PureComponent) and functional components, also known
as stateless components, which we will cover in the following recipes.

Conquering Components and JSX Chapter 2

[24]

If you run the application, you should see something like this:

There's more...
In our example, we created the Home.js file, and our component's name is Home.

All React component names should start with the first letter capitalized in
both the file and the class name. To begin with, it might feel
uncomfortable for you to see this, but this is the best practice in React.

Some of the main differences between JSX and HTML are the attributes names. You may
have noticed that we are using className instead of class. This is the only special
attribute name. Others that are two words separated by a dash need to be converted to
camelCase, for example, onClick, srcSet, and tabIndex. The aria-* and data-*
attributes still uses the same nomenclature (data-something and aria-label).

Organizing our React application
In this recipe, we will learn how to structure our project in a better way.

How to do it...
We can create React components with the default structure that create-react-app
provides, but in this recipe, I'll show you a better way to organize the project so that we are
ready when for when the application grows.

We need to create a new React app (check the last recipe if you haven't created a1.
React app yet)

Conquering Components and JSX Chapter 2

[25]

Currently, our React application directory tree looks like this:2.

We need to create src/components and src/shared directories3.
After this, we need to create the src/components/Home directory for our4.
component and move Home.js into this folder
The App.js file stays at the src/components level5.
Also, App.css and App.test.js will stay at src/components level6.
Move the logo.svg file to src/shared/images7.
Our index.js will stay at the src/ level8.
Now your directory tree should look like this:9.

Conquering Components and JSX Chapter 2

[26]

I highly recommend that you create another directory for shared
components, src/shared/components. I'll explain more about this in
the next recipes.

In the App.js file, change the logo and Home imports:10.

 import logo from '../shared/images/logo.svg';
 import Home from './Home/Home';

File: src/components/App.js

After you changed that, we need to open the index.js and fix the import path11.
for the App component:

import App from './components/App';

File: src/index.js

Conquering Components and JSX Chapter 2

[27]

How it works...
This new structure will give us more flexibility to group our React components smartly.
With this new structure, we are going to be able to create sub-components, if we need them,
and that is very important when developing complex applications with React.

In the next recipes, we will see how to share components in our application.

Styling a component with CSS classes and
inline styles
In the last recipe, we learned how to create a class component. Now let's add some CSS to
our Home component.

In React, one of the best practices is to have the style file in the same directory as the
component. If you have worked with PHP, Node, or any other server language, you
probably write your styles in a style.css file, and you include it using a link tag in your
template. React uses Webpack, which is the most popular module bundler at the moment.
With Webpack, we can configure the way that we want to handle our styles (using CSS
directly or by using a CSS preprocessor such as Sass, Stylus, or Less CSS), and
with Webpack we can implement CSS modules. This is a powerful way to avoid the three
main issues of CSS:

No more conflicts (unintentional CSS overwrites)
Explicit dependencies (styles per component)
No global scope

In Chapter 10, Mastering Webpack 4.x, we will cover Webpack, and we'll be able to
implement CSS modules using Sass or Stylus in our project.

How to do it...
We will now go about adding CSS to our Home component:

Create a new application, or use the previous one (my-first-react-app).1.

Conquering Components and JSX Chapter 2

[28]

Then create a new CSS file for our Home component. Let's reuse the Home2.
component we created in the last recipe. Now you need to create a Home.css file
at the same level as your Home.js file (inside the components folder). Before
you create this file, let's modify our Home component a little bit:

 import React, { Component } from 'react';

 // We import our Home.css file here
 import './Home.css';

 class Home extends Component {
 render() {
 return (
 <div className="Home">
 <h1>Welcome to Codejobs</h1>

 <p>
 In this recipe you will learn how to add styles to
 components. If you want to learn more you can visit
 our Youtube Channel at
 Codejobs.
 </p>
 </div>
);
 }
 }

 export default Home;

File: src/components/Home/Home.js

We'll now add styles to our Home.css. Basically, we wrapped our component3.
into a div with a className of Home, and inside we have an <h1> tag with the
text Welcome to Codejobs, and then a <p> tag with a message. We need to
import our Home.css file directly, and then our CSS file will look like this:

 .Home {
 margin: 0 auto;
 width: 960px;
 }

 .Home h1 {
 font-size: 32px;
 color: #333;
 }

Conquering Components and JSX Chapter 2

[29]

 .Home p {
 color: #333;
 text-align: center;
 }

 .Home a {
 color: #56D5FA;
 text-decoration: none;
 }

 .Home a:hover {
 color: #333;
 }

File: src/components/Home/Home.css

Now let's suppose you need to add an inline style. We do this with the style4.
property, and the CSS properties need to be written in camelCase and
between {{ }}, like this:

 import React, { Component } from 'react';

 // We import our Home.css file here
 import './Home.css';

 class Home extends Component {
 render() {
 return (
 <div className="Home">
 <h1>Welcome to Codejobs</h1>
 <p>
 In this recipe you will learn how to add styles to
 components. If you want to learn more you can visit
 our Youtube Channel at
 Codejobs.
 </p>

 <p>
 <button
 style={{
 backgroundColor: 'gray',
 border: '1px solid black'
 }}
 >
 Click me!
 </button>
 </p>
 </div>

Conquering Components and JSX Chapter 2

[30]

);
 }
 }

 export default Home;

File: src/components/Home/Home.js

You also can pass an object to the style property like this:5.

 import React, { Component } from 'react';

 // We import our Home.css file here
 import './Home.css';

 class Home extends Component {
 render() {
 // Style object...
 const buttonStyle = {
 backgroundColor: 'gray',
 border: '1px solid black'
 };

 return (
 <div className="Home">
 <h1>Welcome to Codejobs</h1>
 <p>
 In this recipe you will learn how to add styles to
 components. If you want to learn more you can visit
 our Youtube Channel at
 Codejobs.
 </p>
 <p>
 <button style={buttonStyle}>Click me!</button>
 </p>
 </div>
);
 }
 }

 export default Home;

File: src/components/Home/Home.js

Conquering Components and JSX Chapter 2

[31]

How it works...
As you can see, it is straightforward to connect a CSS file to our component, and if you
followed all the steps correctly, your site should look like this:

There's more...
You're probably curious about how the CSS code is added to the browser since we haven't
imported a CSS file to our project directly (by using a <link> tag, for example). Well, you
will be surprised to see that the CSS code is being injected into our <head> tag using
the <style> tag for each imported stylesheet. If you inspect your project with Chrome
DevTools you will see something like this:

Conquering Components and JSX Chapter 2

[32]

Conquering Components and JSX Chapter 2

[33]

This behavior is because the style-loader is a Webpack loader that is being used by
default in our application when we create it with create-react-app:

There is no way to modify the Webpack configuration directly when we use create-
react-app because it is using a package called react-scripts, but in Chapter 10,
Mastering Webpack, we will see how to configure our Webpack without using a starting kit
such as create-react-app.

There are more Webpack loaders that do different things, such as css-loader for CSS
modules, sass-loader to implement Sass, stylus-loader to implement Stylus,
and extract-text-plugin to move the CSS code to a .css file instead of injecting it to
the DOM (usually, this is only used in production).

Conquering Components and JSX Chapter 2

[34]

Passing props to a component and
validating them with PropTypes
So far, you are getting familiar with React components, but there is more to it than
rendering static HTML. Like any application, we need to be able to send information (via
props) to different elements. In this recipe, we are going to create new
components: Header, Content, and Footer (we will group these components into a folder
called layout), and we will send some props (as attributes and as children) and validate
them with PropTypes.

How to do it...
Taking the same of the React application we created before, let's create first
our Header component.

At this point, our current header is placed on App.js:1.

 import React, { Component } from 'react';
 import logo from '../shared/images/logo.svg';
 import Home from './Home/Home';
 import './App.css';

 class App extends Component {
 render() {
 return (
 <div className="App">
 <header className="App-header">

 <h1 className="App-title">Welcome to React</h1>
 </header>

 <Home />
 </div>
);
 }
 }

 export default App;

File: src/components/App.js

Conquering Components and JSX Chapter 2

[35]

Let's move that header to our new Header component and then import it into2.
the App component. Because the layout components are global or shared, we
need to create a layout directory in our shared components directory
(src/shared/components/layout).
Before you continue, you must install a package called prop-types to use3.
the PropTypes validation:

npm install prop-types

PropTypes was initially released as part of the React core module and is4.
commonly used with React components. PropTypes is used to document the
intended types of properties passed to components. React will check the props
passed to your components against those definitions, and it will send a warning
in development if they don't match:

 import React, { Component } from 'react';
 import PropTypes from 'prop-types';
 import logo from '../../images/logo.svg';

 class Header extends Component {
 // Here you can define your PropTypes.
 static propTypes = {
 title: PropTypes.string.isRequired,
 url: PropTypes.string
 };

 render() {
 const {
 title = 'Welcome to React',
 url = 'http://localhost:3000'
 } = this.props;

 return (
 <header className="App-header">

 <h1 className="App-title">{title}</h1>
 </header>
);
 }
 }

 export default Header;

File: src/shared/components/layout/Header.js

Conquering Components and JSX Chapter 2

[36]

The static PropTypes property is basically an object where you need to define5.
the types of prop you will pass. array, bool, func, number, object, string,
and symbol are primitive types, but there are also particular types, such as node,
element, instanceOf, oneOf, oneOfType, arrayOf, objectOf, shape and
any. There is an optional property called isRequired that can be added to any
type if the prop must be required and will produce a React warning if is not
defined.
Import and render our Header component:6.

 import React, { Component } from 'react';
 import Home from './Home/Home';
 import Header from '../shared/components/layout/Header';
 import './App.css';

 class App extends Component {
 render() {
 return (
 <div className="App">
 <Header title="Welcome to Codejobs" />
 <Home />
 </div>
);
 }
 }

 export default App;

File: src/components/App.js

Don't get confused with the <Header/> component, it is not the same as
the <header> tag from HTML5, that's why in React is recommended to
use capital letters in the class names.

All the properties passed to our components are contained in this props. You7.
may have noticed that we are only sending the title prop because it is the only
one that is required. The url prop is optional and also has a default value in the
destructuring (http://localhost:3000). If we don't pass the title prop, even if
we have a default value Welcome to React in the destructuring we are going to
get a warning like this:

Conquering Components and JSX Chapter 2

[37]

Create our Footer component:8.

 import React, { Component } from 'react';

 class Footer extends Component {
 render() {
 return (
 <footer>© Codejobs {(new Date()).getFullYear()}</footer>
);
 }
 }

 export default Footer;

File: src/shared/components/layout/Footer.js

So far, we only have passed props as attributes (with self-closed components9.
<Component />), but there is another way to pass props as children
(<Component>Children Content</Component>). Let's create a Content
component and send our Home component as a child of content:

 import React, { Component } from 'react';
 import PropTypes from 'prop-types';

 class Content extends Component {
 static propTypes = {
 children: PropTypes.element.isRequired
 };

 render() {
 const { children } = this.props;

 return (
 <main>
 {children}
 </main>
);
 }
 }

 export default Content;

File: src/shared/components/layout/Content.js

Conquering Components and JSX Chapter 2

[38]

With those changes, our App.js file should now look like this:10.

 import React, { Component } from 'react';
 import Home from './Home/Home';

 // Layout Components
 import Header from '../shared/components/layout/Header';
 import Content from '../shared/components/layout/Content';
 import Footer from '../shared/components/layout/Footer';

 import './App.css';

 class App extends Component {
 render() {
 return (
 <div className="App">
 <Header title="Welcome to Codejobs" />

 <Content>
 <Home />
 </Content>
 <Footer />
 </div>
);
 }
 }

 export default App;

File: src/components/App.js

How it works...
PropTypes validations are very important for developers because they force us to define
which type of prop we are going to receive in our components and validate whether some
of them are required or not.

Conquering Components and JSX Chapter 2

[39]

If you followed all the steps correctly, you should see something like this:

There's more...
As you can see, there are many ways to send props to components. There are more ways to
receive props, such as using Redux (through a container) or React Router, but those are
topics that we are going to cover in the next chapters.

Using local state in a component
The local state is a fundamental feature of React for creating dynamic components. Local
state is only available on class components, and each component manages its state. You can
define the initial value of the state on the component's constructor, and when you update
the value of the state, the component will be re-render itself.

Local state is helpful with toggles, for handling forms, and is used to manage
information within the same component. It is not recommended to use local state if we
need to share data between different components. In that scenario, we need to
implement Redux state, which we will cover in Chapter 5, Mastering Redux.

Conquering Components and JSX Chapter 2

[40]

How to do it...
Let's define our initial state. Let's see how it works the component's render method when
the local state is updated:

Using our Home component, we are going to add a constructor and define1.
our initial state:

 import React, { Component } from 'react';
 import './Home.css';

 class Home extends Component {
 constructor() {
 // We need to define super() at the beginning of the
 // constructor to have access to 'this'
 super();
 // Here we initialize our local state as an object
 this.state = {
 name: 'Carlos'
 };
 }

 render() {
 return (
 <div className="Home">
 {/* Here we render our state name */}
 <p>Hi my name is {this.state.name}</p>
 </div>
);
 }
 }

 export default Home;

File: src/components/Home/Home.js

Conquering Components and JSX Chapter 2

[41]

In this example, we are defining our local state in the constructor as an object,2.
and in the render, we are printing the value directly. We are using super() at
the beginning of the constructor. This is used to call the parent
constructor, (React.Component). If we don't include it, we will get an error like
this:

After we added super(), we need to define our initial state as a regular object:3.

 this.state = {
 name: 'Carlos'
 };

Updating our local state with this.setState(): Right now, this is just a state4.
that is not being updated. That means that the component will never re-render
again. To update the state, we need to use the this.setState() method and
pass the new value of the state. We can add a setTimeout to update the name
state after 1 second (1,000 milliseconds), so we need to modify
our render method like this:

 render() {
 setTimeout(() => {
 this.setState({
 name: 'Cristina' // Here we update the value of the state
 });
 }, 1000);

Conquering Components and JSX Chapter 2

[42]

 console.log('Name:', this.state.name);

 return (
 <div className="Home">
 <p>Hi my name is {this.state.name}</p>
 </div>
);
 }

If you run this in your browser, you will see the first value of the state is5.
Carlos, and 1 second after this it will change to Cristina. I have added
a console.log to log the value of the state name. If you open your browser
console, you will see this:

Conquering Components and JSX Chapter 2

[43]

Updating our local state in the componentDidMount lifecycle method: You're6.
probably wondering why is repeated so many times. It is simple; this is the way
React works. Every time we update a state the method render is fired, and in this
code, we added a setTimeout which updates the state after a second. That
means that the render method is being called every second, causing an infinitive
loop. This will affect the performance of our application, and that's why you
need to be careful when you update a state. As you can see updating it in the
render method is not a good idea. So, where should I update the state? Well, it
depends on your application, but for now, I'll show you a method that is part of
the React lifecycle called componentDidMount():

 import React, { Component } from 'react';
 import './Home.css';

 class Home extends Component {
 constructor() {
 super();

 this.state = {
 name: 'Carlos'
 };
 }

 componentDidMount() {
 setTimeout(() => {
 this.setState({
 name: 'Cristina'
 });
 }, 1000);
 }

 render() {
 console.log('Name:', this.state.name);

 return (
 <div className="Home">
 <p>Hi my name is {this.state.name}</p>
 </div>
);
 }
 }

 export default Home;

File: src/components/Home/Home.js

Conquering Components and JSX Chapter 2

[44]

If you run this code and you see the console, now you will see this:7.

How it works...
With componentDidMount, we avoided the infinite loop. The reason why this is a better
approach is that componentDidMount is being executed just once when the component is
already mounted, and in that method, we are executing our setTimeout and updating the
name state only once. In the following recipes, we are going to learn more about React
lifecycle methods.

There's more...
Local state is also used to handle forms, but we will cover forms in Chapter 6, Creating
Forms with Redux Form.

Making a functional or stateless component
So far, we have only learned how to create class components in React. These components are
useful when you need to handle local state, but in some cases, we will need to render static
markup. For static components, we need to use functional components, also known as
stateless components. This will improve the performance of our application.

In the Passing props to a component and validating them with PropTypes recipe, we created
some layout components (Header, Content, and Footer). These components, as you may
imagine, are frequently not dynamic (unless you want to have a toggle menu or some user
information in the header), so in this case, we can convert them into functional components.

Conquering Components and JSX Chapter 2

[45]

How to do it...
It's now time to convert our Header component to a functional component:

First, let's see what the current Header component looks like:1.

 import React, { Component } from 'react';
 import PropTypes from 'prop-types';
 import logo from '../../images/logo.svg';

 class Header extends Component {
 static propTypes = {
 title: PropTypes.string.isRequired,
 url: PropTypes.string
 };

 render() {
 const {
 title = 'Welcome to React',
 url = 'http://localhost:3000'
 } = this.props;

 return (
 <header className="App-header">

 <h1 className="App-title">{title}</h1>
 </header>
);
 }
 }

 export default Header;

File: src/shared/components/layout/Header.js

The first thing to do is to convert our class component into an arrow function,2.
and with this change, we don't need to import React.Component anymore. The
second part of the migration is to pass the props as parameter in the function
instead of getting them from this.props, and the last step is to move our
static propTypes as a node of the function. After those changes, our code should
look like this:

 import React from 'react';
 import PropTypes from 'prop-types';

Conquering Components and JSX Chapter 2

[46]

 import logo from '../../images/logo.svg';

 // We created a component with a simple arrow function.
 const Header = props => {
 const {
 title = 'Welcome to React',
 url = 'http://localhost:3000'
 } = props;

 return (
 <header className="App-header">

 <h1 className="App-title">{title}</h1>
 </header>
);
 };

 // Even with Functional Components we are able to validate our
 // PropTypes.
 Header.propTypes = {
 title: PropTypes.string.isRequired,
 url: PropTypes.string
 };

 export default Header;

File: src/shared/components/layout/Header.js

A functional component is an equivalent to just having the render
method. That's why we only need to return the JSX directly.

After we migrated our Header component, we will migrate3.
the Footer component; this is easier because it does not have props. First, let's
see what our Footer component looks like:

 import React, { Component } from 'react';

 class Footer extends Component {
 render() {
 return (
 <footer>
 © Codejobs {(new Date()).getFullYear()}
 </footer>

Conquering Components and JSX Chapter 2

[47]

);
 }
 }

 export default Footer;

File: src/shared/components/layout/Footer.js

Now, as a functional component, it should look like this:4.

 import React from 'react';

 // Since we don't have props, we can directly return our JSX.
 const Footer = () => (
 <footer>© Codejobs {(new Date()).getFullYear()}</footer>
);

 export default Footer;

File: src/shared/components/layout/Footer.js

In this case, as you can see, we need to create an arrow function without
parameters (because we don't have any props) and directly return the JSX
we need to render.

Converting the Content component to a functional component:5.

 import React, { Component } from 'react';
 import PropTypes from 'prop-types';

 class Content extends Component {
 static propTypes = {
 children: PropTypes.element.isRequired
 };

 render() {
 const { children } = this.props;

 return (
 <main>
 {children}
 </main>
);
 }
 }

Conquering Components and JSX Chapter 2

[48]

 export default Content;

File: src/shared/components/layout/Content.js

This component is similar to our Header component. We need to pass the props6.
as parameters and keep our propTypes:

 import React from 'react';
 import PropTypes from 'prop-types';

 const Content = props => {
 const { children } = props;

 return (
 <main>
 {children}
 </main>
);
 };

 Content.propTypes = {
 children: PropTypes.element.isRequired
 };

 export default Content;

File: src/shared/components/layout/Content.js

How it works...
Even with functional components, we can validate our PropTypes. Remember, if you don't
need any dynamic data or local state then you should consider using a stateless component.
This will improve the performance of your application.

There's more...
A functional component not only does not have a state but also does not have the React
lifecycle methods either.

Conquering Components and JSX Chapter 2

[49]

Understanding React lifecycle methods
React provides methods to handle the data during the lifecycle of a component. This is very
useful when we need to update our application at particular times.

How to do it...
In this section, we are going to explain each example independently.

Todo list – implementing ComponentWillMount
In this recipe, you will learn about the lifecycle methods in React. We will see how the
information flows through the methods since the component is pre-mounted, mounted,
and unmounted. The Todo list that we will develop in this recipe will look like this:

Conquering Components and JSX Chapter 2

[50]

For this Todo list, we need to create a new folder called Todo into our1.
components directory, and you also need to create files
called Todo.js and Todo.css. This is the skeleton of the Todo component:

import React, { Component } from 'react';
import './Todo.css';

class Todo extends Component {
 constructor() {
 super();
 }

 componentWillMount() {

 }

 render() {
 return (
 <div className="Todo">
 <h1>New Task:</h1>
 </div>
);
 }
}

export default Todo;

File: src/components/Todo/Todo.js

Constructor: A constructor is a unique method that is executed before the object2.
is initialized. A constructor can use the super keyword to call the constructor of
the super class (parent class). This method is used to initialize our local state or to
bind our methods. For the Todo list, we need to initialize the local state in
the constructor with some values in the task and items array:

constructor() {
 super();

 // Initial state...
 this.state = {
 task: '',
 items: []
 };
}

Conquering Components and JSX Chapter 2

[51]

The componentWillMount method is executed once before the component is3.
mounted. In this case, before our component is mounted we need to update
our items state with the default tasks:

componentWillMount() {
 // Setting default tasks...
 this.setState({
 items: [
 {
 id: uuidv4(),
 task: 'Pay the rent',
 completed: false
 },
 {
 id: uuidv4(),
 task: 'Go to the gym',
 completed: false
 },
 {
 id: uuidv4(),
 task: 'Do my homework',
 completed: false
 }
]
 });
}

We are using uuidv4 to generate random IDs. To install this package, you need4.
to run the following command:

 npm install uuid

And then you need to import it like this:5.

 import uuidv4 from 'uuid/v4';

After we defined our default tasks, let's see how we need to render the Todo list:6.

 render() {
 return (
 <div className="Todo">
 <h1>New Task:</h1>

 <form onSubmit={this.handleOnSubmit}>
 <input
 value={this.state.task}
 onChange={this.handleOnChange}
 />

Conquering Components and JSX Chapter 2

[52]

 </form>

 <List
 items={this.state.items}
 markAsCompleted={this.markAsCompleted}
 removeTask={this.removeTask}
 />
 </div>
);
 }

Our JSX is divided into two parts. The first one is a form with an input that is7.
connected to our local state (this.state.task), and we will save the task when
the user submits the form (onSubmit). The second part is the
component list where we are going to display our Todo list (or tasks list), passing
the items array and the markAsCompleted (to mark a task as a completed)
and removeTask (to remove the task from the list) functions.
The handleOnChange method is for connecting our input value with our state8.
task:

 handleOnChange = e => {
 const { target: { value } } = e;

 // Updating our task state with the input value...
 this.setState({
 task: value
 });
 }

The handleOnSubmit method is for updating the items state and pushing the9.
new task to the array:

 handleOnSubmit = e => {
 // Prevent default to avoid the actual form submit...
 e.preventDefault();

 // Once is submited we reset the task value and we push
 // the new task to the items array.
 if (this.state.task.trim() !== '') {
 this.setState({
 task: '',
 items: [
 ...this.state.items,
 {
 id: uuidv4(),
 task: this.state.task,

Conquering Components and JSX Chapter 2

[53]

 complete: false
 }
]
 });
 }
 }

The markAsCompleted function is going to be called from our List component10.
and needs to receive the id of the task we want to mark as completed. With this,
we can find the specific task in our items array, modify the node as completed,
and then update the local state:

 markAsCompleted = id => {
 // Finding the task by id...
 const foundTask = this.state.items.find(
 task => task.id === id
);

 // Updating the completed status...
 foundTask.completed = true;

 // Updating the state with the new updated task...
 this.setState({
 items: [
 ...this.state.items,
 ...foundTask
]
 });
 }

The removeTask function is also being called from the List component, and11.
like markAsCompleted, we need to receive the id to remove the specific task:

 removeTask = id => {
 // Filtering the tasks by removing the specific task id...
 const filteredTasks = this.state.items.filter(
 task => task.id !== id
);

 // Updating items state...
 this.setState({
 items: filteredTasks
 });
 }

Conquering Components and JSX Chapter 2

[54]

Let's put all the pieces together. Our Todo component should look like this:12.

 import React, { Component } from 'react';
 import uuidv4 from 'uuid/v4';
 import List from './List';
 import './Todo.css';

 class Todo extends Component {
 constructor() {
 super();

 // Initial state...
 this.state = {
 task: '',
 items: []
 };
 }

 componentWillMount() {
 // Setting default tasks...
 this.setState({
 items: [
 {
 id: uuidv4(),
 task: 'Pay the rent',
 completed: false
 },
 {
 id: uuidv4(),
 task: 'Go to the gym',
 completed: false
 },
 {
 id: uuidv4(),
 task: 'Do my homework',
 completed: false
 }
]
 });
 }

 handleOnChange = e => {
 const { target: { value } } = e;

 // Updating our task state with the input value...
 this.setState({
 task: value
 });

Conquering Components and JSX Chapter 2

[55]

 }

 handleOnSubmit = e => {
 // Prevent default to avoid the actual form submit...
 e.preventDefault();

 // Once is submitted we reset the task value and
 // we push the new task to the items array.
 if (this.state.task.trim() !== '') {
 this.setState({
 task: '',
 items: [
 ...this.state.items,
 {
 id: uuidv4(),
 task: this.state.task,
 complete: false
 }
]
 });
 }
 }

 markAsCompleted = id => {
 // Finding the task by id...
 const foundTask = this.state.items.find(
 task => task.id === id
);

 // Updating the completed status...
 foundTask.completed = true;

 // Updating the state with the new updated task...
 this.setState({
 items: [
 ...this.state.items,
 ...foundTask
]
 });
 }

 removeTask = id => {
 // Filtering the tasks by removing the specific task id...
 const filteredTasks=this.state.items.filter(
 task => task.id !== id
);

 // Updating items state...

Conquering Components and JSX Chapter 2

[56]

 this.setState({
 items: filteredTasks
 });
 }

 render() {
 return (
 <div className="Todo">
 <h1>New Task:</h1>

 <form onSubmit={this.handleOnSubmit}>
 <input
 value={this.state.task}
 onChange={this.handleOnChange}
 />
 </form>

 <List
 items={this.state.items}
 markAsCompleted={this.markAsCompleted}
 removeTask={this.removeTask}
 />
 </div>
);
 }
 }

 export default Todo;

File: src/components/Todo/Todo.js

Now that we have completed our Todo component, let's see what13.
our List component looks like:

 import React from 'react';

 const List = props => (

 {props.items.map((item, key) => (
 <li
 key={key}
 className={`${item.completed ? 'completed' : 'pending'}`}
 >
 {/*
 * If the task is completed we assign the
 * .completed class otherwise .pending
 */}
 {item.task}

Conquering Components and JSX Chapter 2

[57]

 <div className="actions">
 {/*
 * Using a callback on the onClick we call our
 * markAsCompleted function
 */}
 <span
 className={item.completed ? 'hide' : 'done'}
 onClick={() => props.markAsCompleted(item.id)}
 >
 <i className="fa fa-check"></i>

 {/*
 * Using a callback on the onClick we call
 * our removeTask function
 */}
 <span
 className="trash"
 onClick={() => props.removeTask(item.id)}
 >
 <i className="fa fa-trash"></i>

 </div>

))}

);

 export default List;

File: src/components/Todo/List.js

Every time we use a .map function to render multiple React elements from an14.
array, we must add the key prop to each item we created. Otherwise, we will get
a React warning like this:

Conquering Components and JSX Chapter 2

[58]

You have probably noticed that we also included some Font Awesome icons, and15.
to make it work we need to add the Font Awesome CDN into the main
index.html file:

 <head>
 <title>React App</title>
 <link
href="https://maxcdn.bootstrapcdn.com/font-awesome/4.7.0/css/font-a
wesome.min.css"
 rel="stylesheet"
 />
 </head>

File: public/index.html

The last part is the CSS for the Todo list (you're free to change the styles if you16.
prefer):

 .Todo {
 background-color: #f5f5f5;
 border-radius: 4px;
 border: 1px solid #e3e3e3;
 box-shadow: inset 0 1px 1px rgba(0,0,0,.05);
 margin: 50px auto;
 min-height: 20px;
 padding: 20px;
 text-align: left;
 width: 70%;
 }

 .Todo ul {
 margin: 20px 0px;
 padding: 0;
 list-style: none;
 }

 .Todo ul li {
 background-color: #fff;
 border: 1px solid #ddd;
 display: flex;
 justify-content: space-between;
 margin-bottom: -1px;
 padding: 10px 15px;
 }

 .Todo ul li .hide {
 visibility: hidden;

Conquering Components and JSX Chapter 2

[59]

 }

 .Todo ul li.completed {
 background-color: #dff0d8;
 }

 .Todo ul li .actions {
 display: flex;
 justify-content: space-between;
 width: 40px;
 }

 .Todo ul li span {
 cursor: pointer;
 }

 .Todo ul li .done {
 color: #79c41d;
 display: block;
 }

 .Todo ul li .trash {
 color: #c41d1d;
 display: block;
 }

 .Todo form input {
 background-color: #fff;
 border-radius: 4px;
 border: 1px solid #ccc;
 box-shadow: inset 0 1px 1px rgba(0,0,0,.075);
 color: #555;
 font-size: 14px;
 height: 34px;
 line-height: 34px;
 padding: 6px 12px;
 width: 40%;
 }

File: src/components/Todo/Todo.css

Conquering Components and JSX Chapter 2

[60]

Don't forget to import the Todo component into your App component. Otherwise,17.
the component won't render:

 import React, { Component } from 'react';
 import Todo from './Todo/Todo';
 import Header from '../shared/components/layout/Header';
 import Content from '../shared/components/layout/Content';
 import Footer from '../shared/components/layout/Footer';
 import './App.css';

 class App extends Component {
 render() {
 return (
 <div className="App">
 <Header title="Todo List" />

 <Content>
 <Todo />
 </Content>

 <Footer />
 </div>
);
 }
 }

 export default App;

File: src/components/App.js

Conquering Components and JSX Chapter 2

[61]

If you followed all the instructions correctly you should see the Todo List like18.
this:

The initial state with default tasks:

Adding a new task:

Conquering Components and JSX Chapter 2

[62]

Write the task title and then press Enter:

Mark a task as complete:

Conquering Components and JSX Chapter 2

[63]

Removing a task:

I challenge you to save the tasks using localStorage instead of defining
the default tasks with componentWillMount.

Pomodoro timer – implementing the constructor and
componentDidMount
To understand componentDidMount, we are going to create a Pomodoro Timer (if you
don't know what it is you can read this: https:/ ​/​en.​wikipedia. ​org/ ​wiki/ ​Pomodoro_
Technique).

Our Pomodoro timer will look like this:

https://en.wikipedia.org/wiki/Pomodoro_Technique
https://en.wikipedia.org/wiki/Pomodoro_Technique
https://en.wikipedia.org/wiki/Pomodoro_Technique
https://en.wikipedia.org/wiki/Pomodoro_Technique
https://en.wikipedia.org/wiki/Pomodoro_Technique
https://en.wikipedia.org/wiki/Pomodoro_Technique
https://en.wikipedia.org/wiki/Pomodoro_Technique
https://en.wikipedia.org/wiki/Pomodoro_Technique
https://en.wikipedia.org/wiki/Pomodoro_Technique
https://en.wikipedia.org/wiki/Pomodoro_Technique
https://en.wikipedia.org/wiki/Pomodoro_Technique
https://en.wikipedia.org/wiki/Pomodoro_Technique
https://en.wikipedia.org/wiki/Pomodoro_Technique
https://en.wikipedia.org/wiki/Pomodoro_Technique
https://en.wikipedia.org/wiki/Pomodoro_Technique

Conquering Components and JSX Chapter 2

[64]

Creating our Pomodoro Timer:

The first thing we need to do is to create a new folder called Pomodoro in our1.
components directory, as well as a file called Timer.js and the CSS
file, Timer.css. This is the skeleton of the class component we will use for this
component:

import React, { Component } from 'react';
import './Timer.css';

class Timer extends Component {
 constructor() {
 super();
 }

 componentDidMount() {

 }

 render() {
 return (
 <div className="Pomodoro">

Conquering Components and JSX Chapter 2

[65]

 </div>
);
 }
}

export default Timer;

File: src/components/Pomodoro/Timer.js

For our Pomodoro timer, we need to initialize our local state in2.
the constructor with some values for the time and for the alert (when the time is
over):

 constructor() {
 super();

 // Initial State
 this.state = {
 alert: {
 type: '',
 message: ''
 },
 time: 0
 };

 // Defined times for work, short break and long break...
 this.times = {
 defaultTime: 1500, // 25 min
 shortBreak: 300, // 5 min
 longBreak: 900 // 15 min
 };
 }

The componentDidMount method is called once the component is mounted and3.
is executed just once. In this case, once our component is mounted we need to
update our time state with the default time (25 min), and to do this, we need to
create a new method called setDefaultTime and then execute it in
our componentDidMount method:

 componentDidMount() {
 // Set default time when the component mounts
 this.setDefaultTime();
 }

 setDefaultTime = () => {
 // Default time is 25 min
 this.setState({

Conquering Components and JSX Chapter 2

[66]

 time: this.times.defaultTime
 });
 }

After we defined our default time to our time state, let's see how we need4.
to render the Pomodoro Timer. Our render method should look like this:

 render() {
 const { alert: { message, type }, time } = this.state;

 return (
 <div className="Pomodoro">
 <div className={`alert ${type}`}>
 {message}
 </div>

 <div className="timer">
 {this.displayTimer(time)}
 </div>

 <div className="types">
 <button
 className="start"
 onClick={this.setTimeForWork}
 >
 Start Working
 </button>
 <button
 className="short"
 onClick={this.setTimeForShortBreak}
 >
 Short Break
 </button>
 <button
 className="long"
 onClick={this.setTimeForLongBreak}
 >
 Long Break
 </button>
 </div>
 </div>
);
 }

Conquering Components and JSX Chapter 2

[67]

In this case, our JSX is very simple. We are getting the values from the local state5.
(message, type, and time) and displaying a div to show our alert when the user
receives an alert message. We have another div to show our timer, and here we
are passing our current time (expressed in seconds) to
the displayTimer method, which will convert those seconds into mm:ss format.
The last piece of the layout are the buttons to select the type of timer (start
working for 25 min, short break for 5 min, or long break for 15 min), and you
may have noticed that we are executing different methods on the onClick event
for each type of timer.
setTimeForWork, setTimeForShortBreak, and setTimeForLongBreak: The6.
purpose of these three functions is to update the alert message depending on the
type of the timer and then call a common function called setTime, passing as a
parameter the specific time for each option. Let's first see what these three
functions should look like:

 setTimeForWork = () => {
 this.setState({
 alert: {
 type: 'work',
 message: 'Working!'
 }
 });

 return this.setTime(this.times.defaultTime);
 }

 setTimeForShortBreak = () => {
 this.setState({
 alert: {
 type: 'shortBreak',
 message: 'Taking a Short Break!'
 }
 });

 return this.setTime(this.times.shortBreak);
 }

 setTimeForLongBreak = () => {
 this.setState({
 alert: {
 type: 'longBreak',
 message: 'Taking a Long Break!'
 }
 });

Conquering Components and JSX Chapter 2

[68]

 return this.setTime(this.times.longBreak);
 }

As we learned in the previous recipes when we specify our methods with arrow7.
functions in our class they are automatically bound (they have access to the
"this" object). That means we don't need to bind them on the constructor. Now
let's create our setTime method:

 setTime = newTime => {
 this.restartInterval();

 this.setState({
 time: newTime
 });
 }

As you can see, we executed a new method called restartInterval(), and we8.
updated our local state with the newTime variable, which we passed as a
parameter (it can be 1,500 seconds = 25 min, 300 seconds = 5 min or 900 seconds =
15 min). You probably noticed, from the name of the function, that we are going
to use a setInterval function, which is used to call a function every X
milliseconds. Our restartInterval function should be like this:

 restartInterval = () => {
 // Clearing the interval
 clearInterval(this.interval);

 // Execute countDown function every second
 this.interval = setInterval(this.countDown, 1000);
 }

In this case, we first cleared our interval9.
with clearInterval(this.interval). This is because the user can switch
between the different types of the timer, so we need to clear the interval each
time we set a new timer. After we cleared the interval, then we call the
countDown function every second using setInterval. The countDown function
is as follows:

 countDown = () => {
 // If the time reach 0 then we display Buzzzz! alert.
 if (this.state.time === 0) {
 this.setState({
 alert: {
 type: 'buz',
 message: 'Buzzzzzzzz!'
 }

Conquering Components and JSX Chapter 2

[69]

 });
 } else {
 // We decrease the time second by second
 this.setState({
 time: this.state.time - 1
 });
 }
 }

The last piece of this puzzle is the displayTimer function, which will convert10.
the time into an mm:ss format and display it in our component:

 displayTimer(seconds) {
 // Formatting the time into mm:ss
 const m = Math.floor(seconds % 3600 / 60);
 const s = Math.floor(seconds % 3600 % 60);
 return `${m < 10 ? '0' : ''}${m}:${s < 10 ? '0' : ''}${s}`;
 }

Let's put it all together:11.

 import React, { Component } from 'react';
 import './Timer.css';

 class Timer extends Component {
 constructor() {
 super();

 // Initial State
 this.state = {
 alert: {
 type: '',
 message: ''
 },
 time: 0
 };

 // Defined times for work, short break and long break...
 this.times = {
 defaultTime: 1500, // 25 min
 shortBreak: 300, // 5 min
 longBreak: 900 // 15 min
 };
 }

 componentDidMount() {
 // Set default time when the component mounts
 this.setDefaultTime();

Conquering Components and JSX Chapter 2

[70]

 }

 setDefaultTime = () => {
 // Default time is 25 min
 this.setState({
 time: this.times.defaultTime
 });
 }

 setTime = newTime => {
 this.restartInterval();

 this.setState({
 time: newTime
 });
 }

 restartInterval = () => {
 // Clearing the interval
 clearInterval(this.interval);

 // Execute countDown every second
 this.interval = setInterval(this.countDown, 1000);
 }

 countDown = () => {
 // If the time reach 0 then we display Buzzzz! alert.
 if (this.state.time === 0) {
 this.setState({
 alert: {
 type: 'buz',
 message: 'Buzzzzzzzz!'
 }
 });
 } else {
 // We decrease the time second by second
 this.setState({
 time: this.state.time - 1
 });
 }
 }

 setTimeForWork = () => {
 this.setState({
 alert: {
 type: 'work',
 message: 'Working!'
 }

Conquering Components and JSX Chapter 2

[71]

 });

 return this.setTime(this.times.defaultTime);
 }

 setTimeForShortBreak = () => {
 this.setState({
 alert: {
 type: 'shortBreak',
 message: 'Taking a Short Break!'
 }
 });

 return this.setTime(this.times.shortBreak);
 }

 setTimeForLongBreak = () => {
 this.setState({
 alert: {
 type: 'longBreak',
 message: 'Taking a Long Break!'
 }
 });

 return this.setTime(this.times.longBreak);
 }

 displayTimer(seconds) {
 // Formatting the time into mm:ss
 const m = Math.floor(seconds % 3600 / 60);
 const s = Math.floor(seconds % 3600 % 60);

 return `${m < 10 ? '0' : ''}${m}:${s < 10 ? '0' : ''}${s}`;
 }

 render() {
 const { alert: { message, type }, time } = this.state;

 return (
 <div className="Pomodoro">
 <div className={`alert ${type}`}>
 {message}
 </div>

 <div className="timer">
 {this.displayTimer(time)}
 </div>

Conquering Components and JSX Chapter 2

[72]

 <div className="types">
 <button
 className="start"
 onClick={this.setTimeForWork}
 >
 Start Working
 </button>
 <button
 className="short"
 onClick={this.setTimeForShortBreak}
 >
 Short Break
 </button>
 <button
 className="long"
 onClick={this.setTimeForLongBreak}
 >
 Long Break
 </button>
 </div>
 </div>
);
 }
 }

 export default Timer;

File: src/components/Pomodoro/Timer.js

After we have completed our component, the last step is to add our styles. This is12.
the CSS used for the Pomodoro timer. Of course, you can change it if you prefer:

.Pomodoro {
 padding: 50px;
}

.Pomodoro .timer {
 font-size: 100px;
 font-weight: bold;
}

.Pomodoro .alert {
 font-size: 20px;
 padding: 50px;
 margin-bottom: 20px;
}

.Pomodoro .alert.work {

Conquering Components and JSX Chapter 2

[73]

 background: #5da423;
}

.Pomodoro .alert.shortBreak {
 background: #f4ad42;
}

.Pomodoro .alert.longBreak {
 background: #2ba6cb;
}

.Pomodoro .alert.buz {
 background: #c60f13;
}

.Pomodoro button {
 background: #2ba6cb;
 border: 1px solid #1e728c;
 box-shadow: 0 1px 0 rgba(255, 255, 255, 0.5) inset;
 color: white;
 cursor: pointer;
 display: inline-block;
 font-size: 14px;
 font-weight: bold;
 line-height: 1;
 margin: 50px 10px 0px 10px;
 padding: 10px 20px 11px;
 position: relative;
 text-align: center;
 text-decoration: none;
}

.Pomodoro button.start {
 background-color: #5da423;
 border: 1px solid #396516;
}

.Pomodoro button.short {
 background-color: #f4ad42;
 border: 1px solid #dd962a;
}

File: src/components/Pomodoro/Timer.css

Conquering Components and JSX Chapter 2

[74]

Don't forget to import the <Timer /> component into App.js. If you follow everything
correctly, you should see the Pomodoro timer working like this:

Working:

Taking a short break:

Conquering Components and JSX Chapter 2

[75]

Taking a long break:

Buzzzz - time over!:

Conquering Components and JSX Chapter 2

[76]

I challenge you to add a Play, Pause, and Reset buttons to control the
timer.

Crypto coins exchanger – implementing
shouldComponentUpdate
Today, everyone is talking about Bitcoin, Ethereum, Ripple, and other cryptocurrencies.
Let's create our own Crypto Coins Exchanger to learn
how shouldComponentUpdate works.

Our exchanger will look like this:

Conquering Components and JSX Chapter 2

[77]

We'll sell entire coins. That means we won't trade with decimals; everything1.
should be an integer, and each currency costs $10 dollars. Our code is simple, so
let's take a look:

import React, { Component } from 'react';
import './Coins.css';

class Coins extends Component {
 constructor() {
 super();

 // Initial state...
 this.state = {
 dollars: 0
 };
 }

 shouldComponentUpdate(props, state) {
 // We only update if the dollars are multiples of 10
 return state.dollars % 10 === 0;
 }

 handleOnChange = e => {
 this.setState({
 dollars: Number(e.target.value || 0)
 });
 }

 render() {
 return (
 <div className="Coins">
 <h1>Buy Crypto Coins!</h1>

 <div className="question">
 <p>How much dollars do you have?</p>

 <p>
 <input
 placeholder="0"
 onChange={this.handleOnChange}
 type="text"
 />
 </p>
 </div>

 <div className="answer">
 <p>Crypto Coin price: $10</p>
 <p>

Conquering Components and JSX Chapter 2

[78]

 You can buy {this.state.dollars / 10}
 coins.
 </p>
 </div>
 </div>
);
 }
}

export default Coins;

File: src/components/Coins/Coins.js

We are updating our dollars state every time the user writes something in the2.
input and converting the value to a number, but if you run this code, you will
probably notice that when you put in a number under 10, the message You can
buy 0 coins doesn't change until you write 10, 20, 30, 40, and so on.
shouldComponentUpdate: This method is one of the most important methods3.
that improve the performance of our application. It receives two
parameters (props, state) every time we update a local state, and when a prop is
updated this method is executed. The returned value must be boolean, which
means that if you intentionally write the following, your component will never
update because this method will block it from updating:

shouldComponentUpdate(props, state) {
 return false;
}

But, on the other hand, if you return true or even if you don't define this method4.
at all, the default behavior of React is always to update the component, which in
some cases can cause a performance issue when we are rendering vast views and
handling a lot of data that changes regularly.

Conquering Components and JSX Chapter 2

[79]

In our example, we are returning true only when the number of dollars that the5.
user enters is a multiple of 10. That's why you only see the component updating
in this case:

But it is not going to work for numbers that are not multiples of 10:6.

Conquering Components and JSX Chapter 2

[80]

Now, if we remove the shouldComponentUpdate method from our component7.
or we directly return a true value, the component will update every time we
write a number, and this will be the result:

As you can see, with shouldComponentUpdate, we can control the updates of8.
our component, and this improves the performance of the application
significantly. The last piece of our example is the CSS:

 .Coins {
 background-color: #f5f5f5;
 border-radius: 4px;
 border: 1px solid #e3e3e3;
 box-shadow: inset 0 1px 1px rgba(0,0,0,.05);
 margin-bottom: 20px;
 margin: 50px auto;
 min-height: 20px;
 padding: 19px;
 text-align: left;
 width: 70%;
 }

 .Coins input {
 background-color: #fff;
 border-radius: 4px;
 border: 1px solid #ccc;

Conquering Components and JSX Chapter 2

[81]

 box-shadow: inset 0 1px 1px rgba(0,0,0,.075);
 color: #555;
 font-size: 14px;
 height: 34px;
 line-height: 34px;
 padding: 6px 12px;
 width: 120px;
 }

File: src/components/Coins/Coins.css

Notes – implementing componentWillReceiveProps
and componentWillUnmount
In this example, we are going to create a simple list of notes where, every 10 seconds, we
will simulate that we receive an update from the service with new data, and with
componentWillReceiveProps, we will register the last time we got an update from the
server:

The componentWillReceiveProps method is called right before rendering.1.
Like shouldComponentUpdate, it is called whenever new props are passed to
the component, or the state has changed. In this example, we need to create fake
data, but data normally needs to come from an actual service:

 export const notes1 = [
 {
 title: 'Note 1',
 content: 'Content for Note 1'
 },
 {
 title: 'Note 2',
 content: 'Content for Note 2'
 },
 {
 title: 'Note 3',
 content: 'Content for Note 3'
 }
];

 export const notes2 = [
 {
 title: 'Note 4',
 content: 'Content for Note 4'
 },
 {

Conquering Components and JSX Chapter 2

[82]

 title: 'Note 5',
 content: 'Content for Note 5'
 },
 {
 title: 'Note 6',
 content: 'Content for Note 6'
 }
];

File: src/components/Notes/data.js

After we've created our fake data, let's create our component:2.

 import React, { Component } from 'react';
 import moment from 'moment';
 import './Notes.css';
 const formatTime = 'YYYY-MM-DD HH:mm:ss';

 class Notes extends Component {
 constructor() {
 super();

 // We save the first date when the data is
 // rendered at the beginning
 this.state = {
 lastUpdate: moment().format(formatTime).toString()
 }
 }

 componentWillReceiveProps(nextProps) {
 // If the prop notes has changed...
 if (nextProps.notes !== this.props.notes) {
 this.setState({
 lastUpdate: moment().format(formatTime).toString()
 });
 }
 }
 render() {
 const { notes } = this.props;

 return (
 <div className="Notes">
 <h1>Notes:</h1>

 {notes.map((note, key) => (
 <li key={key}>{note.title} - {note.content}
))}

Conquering Components and JSX Chapter 2

[83]

 <p>Last Update: {this.state.lastUpdate}
 </p>
 </div>
);
 }
 }

 export default Notes;

File: src/components/Notes/Notes.js

In this example, we are using the moment.js library. To install it, you need to3.
run the following command:

 npm install moment

Now, in our App.js file, we are going to simulate that after 10 seconds of the4.
first render, we will receive a new update from the service and render the new
notes:

 import React, { Component } from 'react';
 import Notes from './Notes/Notes';
 import Header from '../shared/components/layout/Header';
 import Content from '../shared/components/layout/Content';
 import Footer from '../shared/components/layout/Footer';

 // This is our fake data...
 import { notes1, notes2 } from './Notes/data';
 import './App.css';

 class App extends Component {
 constructor() {
 super();

 // The first time we load the notes1...
 this.state = {
 notes: notes1
 };
 }

 componentDidMount() {
 // After 10 seconds (10000 milliseconds) we concatenate our
 // data with notes2...
 setTimeout(() => {
 this.setState({

Conquering Components and JSX Chapter 2

[84]

 notes: [...this.state.notes, ...notes2]
 });
 }, 10000);
 }

 render() {
 return (
 <div className="App">
 <Header title="Notes" />

 <Content>
 <Notes notes={this.state.notes} />
 </Content>

 <Footer />
 </div>
);
 }
 }

 export default App;

File: src/components/App.js

The last part is the CSS file:5.

 .Notes {
 background-color: #f5f5f5;
 border-radius: 4px;
 border: 1px solid #e3e3e3;
 box-shadow: inset 0 1px 1px rgba(0,0,0,.05);
 margin-bottom: 20px;
 margin: 50px auto;
 min-height: 20px;
 padding: 19px;
 text-align: left;
 width: 70%;
 }

 .Notes ul {
 margin: 20px 0px;
 padding: 0;
 list-style: none;
 }

 .Notes ul li {
 background-color: #fff;
 border: 1px solid #ddd;

Conquering Components and JSX Chapter 2

[85]

 display: flex;
 justify-content: space-between;
 margin-bottom: -1px;
 padding: 10px 15px;
 position: relative;
 }

File: src/components/Notes/Notes.css

If you run the application, you will see something like this:6.

Conquering Components and JSX Chapter 2

[86]

After 10 seconds you will see this:7.

As you can see, the Last Update date has changed from 2018-02-20 00:07:28 to8.
2018-02-20 00:07:38 (10 seconds later).
componentWillUnmount: This is the last method to be called immediately before9.
the component is removed from the DOM. Generally, is used to perform a clean-
up for any DOM elements or timers created by the
componentWillMount method. Let's modify our code a little bit to be able to call
this method. In our Notes component, you can add this code after the render
method:

 componentWillUnmount() {
 console.log('Hasta la vista baby!');
 document.body.style = 'background: black;';
 document.getElementById('unmountMessage').style.color =
'white';
 }

Conquering Components and JSX Chapter 2

[87]

We need to modify our index.html file to manually include a button that won't10.
be part of React:

 <body>
 <div id="root"></div>

 <div id="unmountMessage">There is no mounted component!</div>

 <button
 id="unmount"
 style="margin:0
auto;display:block;background:red;color:white;"
 >
 Unmount
 </button>
 </body>

File: public/index.html

And then, in our index.js file, where we are rendering our <App11.
/> component, let's add some extra code (we need actually to remove the
element from the DOM):

 import React from 'react';
 import ReactDOM from 'react-dom';
 import './index.css';
 import App from './components/App';
 import registerServiceWorker from './registerServiceWorker';

 const unmountButton = document.getElementById('unmount');

 // Is not very common to remove a Component from the DOM,
 // but this will be just to understand how
 // componentWillUnmount works.
 function unmount() {
 ReactDOM.unmountComponentAtNode(
 document.getElementById('root')
);
 document.getElementById('unmountMessage')
 .style.display = 'block';
 unmountButton.remove();
 }

 unmountButton.addEventListener('click', unmount);

 document.getElementById('unmountMessage')
 .style.display = 'none';

Conquering Components and JSX Chapter 2

[88]

 ReactDOM.render(<App />, document.getElementById('root'));
 registerServiceWorker();

File: src/index.js

With this, we will have a hideous red button at the bottom of our page, and when12.
we click it, we are going to unmount our component. The background will go
black, and we will display the text "There is no mounted component!", and the
console will display Hasta la vista baby!:

Conquering Components and JSX Chapter 2

[89]

After you click the button, you will see this:13.

C3.js chart – implementing componentDidUpdate
C3.js is a third-party library that makes it easy to generate D3-based charts by wrapping the
code required to construct the entire chart. That means you don't need to write any D3 code
anymore:

componentDidUpdate: This React method is normally used to manage third-1.
party UI elements and interact with the native UI. When we use a third-party
library such as C3.js, we need to update the UI library with the new data. Install
C3.js with npm:

 npm install c3

After we install C3.js, we need to add the C3 CSS file to our index.html. For2.
now, we can use the CDN they provide:

<!-- Add this on the <head> tag -->
<link
href="https://cdnjs.cloudflare.com/ajax/libs/c3/0.4.10/c3.min.css"
rel="stylesheet" />

File: public/index.html

Conquering Components and JSX Chapter 2

[90]

Now we can create our Chart component:3.

 import React, { Component } from 'react';
 import c3 from 'c3';
 import './Chart.css';

 class Chart extends Component {
 componentDidMount() {
 // When the component mounts the first time we update
 // the chart.
 this.updateChart();
 }

 componentDidUpdate() {
 // When we receive a new prop then we update the chart again.
 this.updateChart();
 }

 updateChart() {
 c3.generate({
 bindto: '#chart',
 data: {
 columns: this.props.columns,
 type: this.props.chartType
 }
 });
 }

 render() {
 return <div id="chart" />;
 }
 }

 export default Chart;

File: src/components/Chart/Chart.js

Conquering Components and JSX Chapter 2

[91]

As you can see, we are executing the4.
updateChart method on componentDidUpdate, which is executed every time
the user receives a new prop from App.js. Let's add some logic that we need in
our App.js file:

 import React, { Component } from 'react';
 import Chart from './Chart/Chart';
 import Header from '../shared/components/layout/Header';
 import Content from '../shared/components/layout/Content';
 import Footer from '../shared/components/layout/Footer';
 import './App.css';

 class App extends Component {
 constructor(props) {
 super(props);

 this.state = {
 chartType: 'line'
 };

 this.columns = [
 ['BTC', 3000, 6000, 10000, 15000, 13000, 11000],
 ['ETH', 2000, 3000, 5000, 4000, 3000, 940],
 ['XRP', 100, 200, 300, 500, 400, 300],
];
 }

 setBarChart = () => {
 this.setState({
 chartType: 'bar'
 });
 }

 setLineChart = () => {
 this.setState({
 chartType: 'line'
 });
 }

 render() {
 return (
 <div className="App">
 <Header title="Charts" />

 <Content>
 <Chart
 columns={this.columns}

Conquering Components and JSX Chapter 2

[92]

 chartType={this.state.chartType}
 />

 <p>
 Chart Type
 <button onClick={this.setBarChart}>Bar</button>
 <button onClick={this.setLineChart}>Line</button>
 </p>
 </Content>

 <Footer />
 </div>
);
 }
 }

 export default App;

File: src/components/App.js

Now let's add some basic styles to our Chart component:5.

 p {
 text-align: center;
 }

 button {
 background: #159fff;
 border: none;
 color: white;
 margin-left: 1em;
 padding: 0.5em 2em;
 text-transform: uppercase;
 &:hover {
 background: darken(#159fff, 5%);
 }
 }

 #chart {
 background: #fff;
 width: 90%;
 margin: 1em auto;
 }

File: src/components/Chart.css

Conquering Components and JSX Chapter 2

[93]

In this case, we are creating some charts to display information about the most6.
important cryptocurrencies today (BTC - Bitcoin, ETH - Ethereum and XRP -
Ripple). This is how it should look:

This image gives you an idea of how the line charts look like

We have two buttons to switch between chart types (bar or line). If we click on7.
BAR, we should see this chart:

This image gives you an idea of how the bar charts look like.

Conquering Components and JSX Chapter 2

[94]

If you remove the componentDidUpdate method from the Chart component,8.
then when you press the buttons the chart is not going to update. This is
because every time we need to refresh the data, we need to call
the c3.generate method, and in this
case, React's componentDidUpdate method is very useful.

Basic animation – implementing componentWillUpdate
In this example, we are going to learn how to use componentWillUpdate:

componentWillUpdate allows you to manipulate a component just before it1.
receives new props or a new state. It is typically used for animations. Let's create
a basic animation (fade in/fade out) to see how to use it:

 import React, { Component } from 'react';
 import './Animation.css';

 class Animation extends Component {
 constructor() {
 super();

 this.state = {
 show: false
 };
 }

 componentWillUpdate(newProps, newState) {
 if (!newState.show) {
 document.getElementById('fade').style = 'opacity: 1;';
 } else {
 document.getElementById('fade').style = 'opacity: 0;';
 }
 }

 toggleCollapse = () => {
 this.setState({
 show: !this.state.show
 });
 }

 render() {
 return (
 <div className="Animation">
 <button onClick={this.toggleCollapse}>
 {this.state.show ? 'Collapse' : 'Expand'}

Conquering Components and JSX Chapter 2

[95]

 </button>

 <div
 id="fade"
 className={
 this.state.show ? 'transition show' : 'transition'
 }
 >
 This text will disappear
 </div>
 </div>
);
 }
 }

 export default Animation;

File: src/components/Animation/Animation.js

As you can see, we are validating the show state with newState and observe2.
that it is true. Then we add opacity 0, and if it is false, we add opacity 1. An
important thing I want to mention about componentWillUpdate is that you
can't update the state (which means you are not able to use this.setState) in
this method because it will cause another call to the same method, creating an
infinite loop. Let's add some styles:

.Animation {
background: red;
 }
.Animation .transition {
transition: all 3s ease 0s;
color: white;
padding-bottom: 10px;
}
.Animation .transition.show {
padding-bottom: 300px;
background: red;
}

File: src/components/Animation/Animation.css

Conquering Components and JSX Chapter 2

[96]

If you run the application, you will see this view:3.

After you click on the button, you will see an animation with the text fading out,4.
and the red div will be expanded, giving you this result:

Conquering Components and JSX Chapter 2

[97]

How it works...
As you can see with all those examples, React lifecycle methods are used to handle different
scenarios in our application. In Chapter 5, Mastering Redux, we are going to see how to
implement Redux and how the lifecycle methods can work with Redux states.

Understanding React Pure Components
Many people get confused by the difference between a Functional Component and a Pure
Component. Most of them think they are the same, but this is not true. When we use a Pure
Component, we need to import PureComponent from React:

 import React, { PureComponent } from 'react';

If your React component's render method is "pure" (that means it renders the same result,
given the same props and state), you can use this function to improve the performance of
your application. A Pure Component performs a shallow comparison for the props and
nextProps objects as well as the state and nextState objects. Pure components do not include
the shouldComponentUpdate(nextProps, nextState) method, and if we try to add it,
we will get a warning from React.

In this recipe, we will create a basic example to understand how Pure Components works.

Getting ready
For this recipe, we need to install the Chrome extension React Developer Tools to do a
simple debug in our application. In Chapter 12, Testing and Debugging, we will delve into
this topic.

You can download React Developer Tools from https:/ ​/ ​chrome. ​google. ​com/ ​webstore/
detail/​react-​developer- ​tools/ ​fmkadmapgofadopljbjfkapdkoienihi.

https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi

Conquering Components and JSX Chapter 2

[98]

How to do it…
We will create a component where we will sum all the numbers entered in an input. We can
take some of the last recipes to start from there:

The first thing we will do is to modify our App.js and include the Numbers1.
component:

 import React, { Component } from 'react';
 import Numbers from './Numbers/Numbers';

 import Header from '../shared/components/layout/Header';
 import Content from '../shared/components/layout/Content';
 import Footer from '../shared/components/layout/Footer';
 import './App.css';

 class App extends Component {
 render() {
 return (
 <div className="App">
 <Header title="Understanding Pure Components" />

 <Content>
 <Numbers />
 </Content>

 <Footer />
 </div>
);
 }
 }

 export default App;

File: src/components/App.js

Now we will create the Numbers component:2.

 // Dependencies
 import React, { Component } from 'react';

 // Components
 import Result from './Result';

 // Styles
 import './Numbers.css';

Conquering Components and JSX Chapter 2

[99]

 class Numbers extends Component {
 state = {
 numbers: '', // Here we will save the input value
 results: [] // In this state we will save the results of the sums
 };

 handleNumberChange = e => {
 const { target: { value } } = e;

 // Converting the string value to array
 // "12345" => ["1", "2", "3", "4", "5"]
 const numbers = Array.from(value);

 // Summing all numbers from the array
 // ["1", "2", "3", "4", "5"] => 15
 const result = numbers.reduce((a, b) => Number(a) + Number(b), 0);

 // Updating the local state
 this.setState({
 numbers: value,
 results: [...this.state.results, result]
 });
 }

 render() {
 return (
 <div className="Numbers">
 <input
 type="number"
 value={this.state.numbers}
 onChange={this.handleNumberChange}
 />

 {/* Rendering the results array */}

 {this.state.results.map((result, i) => (
 <Result key={i} result={result} />
))}

 </div>
)
 }
 }

 export default Numbers;

File: src/components/Numbers/Numbers.js

Conquering Components and JSX Chapter 2

[100]

Then, let's create the Result component (as a Class Component):3.

 import React, { Component } from 'react';

 class Result extends Component {
 render() {
 return {this.props.result};
 }
 }

 export default Result;

File: src/components/Numbers/Result.js

Finally, the styles:4.

 .Numbers {
 padding: 30px;
 }

 .Numbers input[type=number]::-webkit-inner-spin-button,
 .Numbers input[type=number]::-webkit-outer-spin-button {
 -webkit-appearance: none;
 margin: 0;
 }

 .Numbers input {
 width: 500px;
 height: 60px;
 font-size: 20px;
 outline: none;
 border: 1px solid #ccc;
 padding: 10px;
 }

 .Numbers ul {
 margin: 0 auto;
 padding: 0;
 list-style: none;
 width: 522px;
 }

 .Numbers ul li {
 border-top: 1px solid #ccc;
 border-left: 1px solid #ccc;
 border-right: 1px solid #ccc;
 padding: 10px;
 }

Conquering Components and JSX Chapter 2

[101]

 .Numbers ul li:first-child {
 border-top: none;
 }

 .Numbers ul li:last-child {
 border-bottom: 1px solid #ccc;
 }

File: src/components/Numbers/Numbers.css

How it works…
If you run the application, you will see this:

As you can see, we are using an input with type number, which means we will only accept
numbers if you start writing numbers (1, then 2, then 3, and such), you will see the results
of the sum on each row (0 + 1 = 1, 1 + 2 = 3, 3 + 3 = 6).

Conquering Components and JSX Chapter 2

[102]

Probably this looks very simple to you, but if let's inspect the application using React
Developer Tools, we need to enable the Highlight Updates option.

Conquering Components and JSX Chapter 2

[103]

After this, start writing multiple numbers in the input (quickly), and you will see all the
renders that React is performing.

As you can see, React is doing a lot of renderings. When the highlights are red, it means the
performance of that component is not good. Here's when Pure Components will help us;
let's migrate our Result component to be a Pure Component:

 import React, { PureComponent } from 'react';

 class Result extends PureComponent {
 render() {
 return {this.props.result};
 }
 }

 export default Result;

File: src/components/Numbers/Result.js

Conquering Components and JSX Chapter 2

[104]

Now if we try to do the same with the numbers, let's see the difference.

As you can see, with the Pure Component React, do less renders in comparison to a Class
Component. Probably now you think that if we use a Stateless component instead of a Pure
Component, the result will be the same. Unfortunately, this won't happen; if you want to
verify this, let's change the Result component again and convert it into a Functional
Component.:

 import React from 'react';

 const Result = props => {props.result};

 export default Result;

File: src/components/Numbers/Result.js

Conquering Components and JSX Chapter 2

[105]

Even the code is less, but let's see what happen with the renders.

As you can see, the result is the same as the Class Component, which means not all the time
using a Stateless component necessary will help us improve the performance of our
application. If you have components that you consider are pure, consider converting them
into Pure components.

Conquering Components and JSX Chapter 2

[106]

Preventing XSS vulnerabilities in React
In this recipe, we are going to learn about cross-site scripting (XSS) vulnerabilities in React.
XSS attacks are widespread in web applications, and some developers are still not aware of
this. XSS attacks are malicious scripts that are injected into the DOM of unprotected web
applications. The risks can vary with each application. It could just be an innocent alert
script injection or, worse, someone can get access to your cookies and steal your private
credentials (passwords), for example.

Let's create an XSS component to start playing around a little bit with some XSS attacks. We
are going to have a response variable that is simulating a response from a real server, and
we will simulate that we are using Redux's initial state (we are going to see Redux
in Chapter 5, Mastering Redux).

How to do it...
We will now see how to create our XSS component:

Create an XSS component:1.

 import React, { Component } from 'react';

 // Let's suppose this response is coming from a service and have
 // some XSS attacks in the content...
 const response = [
 {
 id: 1,
 title: 'My blog post 1...',
 content: '<p>This is HTML code</p>'
 },
 {
 id: 2,
 title: 'My blog post 2...',
 content: `<p>Alert: <script>alert(1);</script></p>`
 },
 {
 id: 3,
 title: 'My blog post 3...',
 content: `
 <p>
 <img onmouseover="alert('This site is not secure');"
 src="attack.jpg" />
 </p>
 `

Conquering Components and JSX Chapter 2

[107]

 }
];

 // Let's suppose this is our initialState of Redux
 // which is injected to the DOM...
 const initialState = JSON.stringify(response);

 class Xss extends Component {
 render() {
 // Parsing the JSON string to an actual object...
 const posts = JSON.parse(initialState);
 // Rendering our posts...
 return (
 <div className="Xss">
 {posts.map((post, key) => (
 <div key={key}>
 <h2>{post.title}</h2>

 <p>{post.content}</p>
 </div>
))}
 </div>
);
 }
 }

 export default Xss;

File: src/components/Xss/Xss.js

Conquering Components and JSX Chapter 2

[108]

If you render this component, you will see something like this:2.

As you can see, by default, React prevents us from injecting HTML code directly3.
into our components. It is rendering the HTML as a string. This is good,
but sometimes we need to insert HTML code in our components.
Implementing dangerouslySetInnerHTML: This prop probably scares you a4.
little bit (maybe because it explicitly says the word danger!). I'm going to show
you that this prop is not too bad if we know how to use it securely. Let's modify
our previous code, and we are going to add this prop to see how the HTML is
rendering it now:

import React, { Component } from 'react';
 // Let's suppose this response is coming from a service and have
 // some XSS attacks in the content...
 const response = [
 {
 id: 1,
 title: 'My blog post 1...',
 content: '<p>This is HTML code</p>'
 },
 {

Conquering Components and JSX Chapter 2

[109]

 id: 2,
 title: 'My blog post 2...',
 content: `<p>Alert: <script>alert(1);</script></p>`
 },
 {
 id: 3,
 title: 'My blog post 3...',
 content: `
 <p>
 <img onmouseover="alert('This site is not secure');"
 src="attack.jpg" />
 </p>
 `
 }
];

 // Let's suppose this is our initialState of Redux
 // which is injected to the DOM...
 const initialState = JSON.stringify(response);

 class Xss extends Component {
 render() {
 // Parsing the JSON string to an actual object...
 const posts = JSON.parse(initialState);

 // Rendering our posts...
 return (
 <div className="Xss">
 {posts.map((post, key) => (
 <div key={key}>
 <h2>{post.title}</h2>
 <p>Secure Code:</p>
 <p>{post.content}</p>
 <p>Insecure Code:</p>
 <p
 dangerouslySetInnerHTML={{ __html: post.content }}
 />
 </div>
))}
 </div>
);
 }
 }

 export default Xss;

File: src/components/Xss/Xss.js

Conquering Components and JSX Chapter 2

[110]

Our site should now look like this:5.

Conquering Components and JSX Chapter 2

[111]

It is interesting, probably you thought that the content of "My blog post 2" will6.
fire an alert in the browser but does not. If we inspect the code the alert script is
there.

Even if we use dangerouslySetInnerHTML, React protects us from malicious7.
scripts injections, but it is not secure enough for us to relax on the security aspect
of our site. Now let's see the issue with My blog post 3 content. The
code <img onmouseover="alert('This site is not
secure');" src="attack.jpg" /> is not directly using a <script> tag to
inject a malicious code, but is using an img tag with an event (onmouseover). So,
if you were happy about React's protection, we can see that this XSS attack will
be executed if we move the mouse over the image:

Conquering Components and JSX Chapter 2

[112]

Conquering Components and JSX Chapter 2

[113]

Removing XSS attacks: This is kind of scary, right? But as I said at the beginning8.
of this recipe, there is a secure way to use dangerouslySetInnerHTML and, yes,
as you may be thinking right now, we need to clean our code of malicious scripts
before we render it with dangerouslySetInnerHTML. The next script will take
care of removing <script> tags and events from tags, but of course, you can
modify this depending on the security level you want to have:

 import React, { Component } from 'react';

 // Let's suppose this response is coming from a service and have
 // some XSS attacks in the content...
 const response = [
 {
 id: 1,
 title: 'My blog post 1...',
 content: '<p>This is HTML code</p>'
 },
 {
 id: 2,
 title: 'My blog post 2...',
 content: `<p>Alert: <script>alert(1);</script></p>`
 },
 {
 id: 3,
 title: 'My blog post 3...',
 content: `
 <p>
 <img onmouseover="alert('This site is not secure');"
 src="attack.jpg" />
 </p>
 `
 }
];

 // Let's suppose this is our initialState of Redux
 // which is injected to the DOM...
 const initialState = JSON.stringify(response);

 const removeXSSAttacks = html => {
 const SCRIPT_REGEX =
/<script\b[^<]*(?:(?!<\/script>)<[^<]*)*<\/script>/gi;

 // Removing the <script> tags
 while (SCRIPT_REGEX.test(html)) {
 html = html.replace(SCRIPT_REGEX, '');
 }

Conquering Components and JSX Chapter 2

[114]

 // Removing all events from tags...
 html = html.replace(/ on\w+="[^"]*"/g, '');

 return {
 __html: html
 }
 };

 class Xss extends Component {
 render() {
 // Parsing the JSON string to an actual object...
 const posts = JSON.parse(initialState);

 // Rendering our posts...
 return (
 <div className="Xss">
 {posts.map((post, key) => (
 <div key={key}>
 <h2>{post.title}</h2>
 <p>Secure Code:</p>
 <p>{post.content}</p>
 <p>Insecure Code:</p>
 <p
 dangerouslySetInnerHTML=
 {removeXSSAttacks(post.content)}
 />
 </div>
))}
 </div>
);
 }
 }

 export default Xss;

File: src/components/Xss/Xss.js

Conquering Components and JSX Chapter 2

[115]

If we look at the code now, we will see that now our render is more secure:9.

The problem with JSON.stringify: So far, we have learned how to inject HTML10.
code into a React component with dangerouslySetInnerHTML, but there
is another potential security issue using JSON.stringify. If we have an XSS attack
(<script> tag inside the content) in our response and then we
use JSON.stringify to convert the object to a string, the HTML tags are not
encoded. That means that if we inject the string into our HTML (like Redux does
with the initial state), we will have a potential security issue. The output
of JSON.stringify(response) is this:

 [
 {"id":1,"title":"My blog post 1...","content":"<p>This is
HTML code</p>"},
 {"id":2,"title":"My blog post 2...","content":"<p>Alert:
<script>alert(1);</script></p>"},
 {"id":3,"title":"My blog post 3...","content":"<p><img
onmouseover=\"alert('This site is not secure');\"
src=\"attack.jpg\" /></p>"}
]

As you can see, all the HTML is exposed without any encoding characters, and11.
that is a problem. But how we can fix this? We need to install a package
called serialize-javascript:

 npm install serialize-javascript

Conquering Components and JSX Chapter 2

[116]

Instead of using JSON.stringify, we need to serialize the code like this:12.

 import serialize from 'serialize-javascript';

 // Let's suppose this response is coming from a service and have
 // some XSS attacks in the content...
 const response = [
 {
 id: 1,
 title: 'My blog post 1...',
 content: '<p>This is HTML code</p>'
 },
 {
 id: 2,
 title: 'My blog post 2...',
 content: `<p>Alert: <script>alert(1);</script></p>`
 },
 {
 id: 3,
 title: 'My blog post 3...',
 content: `<p><img onmouseover="alert('This site is not
 secure');" src="attack.jpg" /></p>`
 }
];

 // Let's suppose this is our initialState of Redux which is
 // injected to the DOM...
 const initialState = serialize(response);
 console.log(initialState);

The output of the console is as follows:13.

 [
 {"id":1,"title":"My blog post
1...","content":"\u003Cp\u003EThis is
\u003Cstrong\u003EHTML\u003C\u002Fstrong\u003E
code\u003C\u002Fp\u003E"},
 {"id":2,"title":"My blog post
2...","content":"\u003Cp\u003EAlert:
\u003Cscript\u003Ealert(1);\u003C\u002Fscript\u003E\u003C\u002Fp\u0
03E"},
 {"id":3,"title":"My blog post
3...","content":"\u003Cp\u003E\u003Cimg onmouseover=\"alert('This
site is not secure');\" src=\"attack.jpg\"
\u002F\u003E\u003C\u002Fp\u003E"}
]

Conquering Components and JSX Chapter 2

[117]

Now that we have our code with HTML entities (encoded) instead of directly14.
having HTML tags, and the good news is that we can use JSON.parse to convert
this string again into our original object. Our component should look like this:

 import React, { Component } from 'react';
 import serialize from 'serialize-javascript';

 // Let's suppose this response is coming from a service and have
 // some XSS attacks in the content...
 const response = [
 {
 id: 1,
 title: 'My blog post 1...',
 content: '<p>This is HTML code</p>'
 },
 {
 id: 2,
 title: 'My blog post 2...',
 content: `<p>Alert: <script>alert(1);</script></p>`
 },
 {
 id: 3,
 title: 'My blog post 3...',
 content: `<p><img onmouseover="alert('This site is not
secure');"
 src="attack.jpg" /></p>`
 }
];

 // Let's suppose this is our initialState of Redux which is
 // injected to the DOM...
 const secureInitialState = serialize(response);
 // const insecureInitialState = JSON.stringify(response);

 console.log(secureInitialState);

 const removeXSSAttacks = html => {
 const SCRIPT_REGEX =
/<script\b[^<]*(?:(?!<\/script>)<[^<]*)*<\/script>/gi;

 // Removing the <script> tags
 while (SCRIPT_REGEX.test(html)) {
 html = html.replace(SCRIPT_REGEX, '');
 }

 // Removing all events from tags...
 html = html.replace(/ on\w+="[^"]*"/g, '');

Conquering Components and JSX Chapter 2

[118]

 return {
 __html: html
 }
 };

 class Xss extends Component {
 render() {
 // Parsing the JSON string to an actual object...
 const posts = JSON.parse(secureInitialState);

 // Rendering our posts...
 return (
 <div className="Xss">
 {posts.map((post, key) => (
 <div key={key}>
 <h2>{post.title}</h2>
 <p>Secure Code:</p>
 <p>{post.content}</p>
 <p>Insecure Code:</p>
 <p
dangerouslySetInnerHTML={removeXSSAttacks(post.content)}
 />
 </div>
))}
 </div>
);
 }
 }

 export default Xss;

File: src/components/Xss/Xss.js

How it works...
As you can see, XSS attacks are widespread, and many websites suffer from this problem
without knowing it. There are other injections attacks, such as SQL injections, that could
happen in an API if we don't take minimal security precautions.

Conquering Components and JSX Chapter 2

[119]

There's more...
Here are some security recommendations:

Always sanitize users' content that comes from forms.
Always use serialize instead of JSON.stringify.
Use dangerouslySetInnerHTML only when absolutely necessary.
Do unit tests for your components, and try to cover all the possible XSS attacks
(we are going to see unit tests in Chapter 12, Testing and Debugging).
Always encrypt passwords with sha1 and md5, and do not forget to add a salt
value (for example, if the password is abc123, then your salt can be encrypted
like this: sha1(md5('$4ltT3xt_abc123')).
If you use cookies to store sensitive information (personal information and
passwords mainly), you can save the cookie with Base64 to obfuscate the data.
Add some protection to your API (security tokens) unless you need to be public.
There is a recipe about security tokens in Chapter 8, Creating an API with Node.js
Using MongoDB and MySQL.

3
Handling Events, Binding and

Useful React Packages
In this chapter, the following recipes will be covered:

Binding methods using the constructor versus using arrow functions
Creating form elements with events
Displaying information in a modal with react-popup
Implementing Airbnb React/JSX Style Guide
Updating our title and meta tags with React Helmet

Introduction
This chapter contains recipes related to handling events, binding methods in React and we
will implement some of the most useful React packages.

Binding methods using the constructor
versus using arrow functions
In this recipe, we are going to learn the two ways of binding methods in React: using the
constructor and using arrow functions.

Handling Events, Binding and Useful React Packages Chapter 3

[121]

How to do it...
This recipe is straightforward, and the goal is to bind a method using the class constructor
and using arrow functions:

Let's create a new component called Calculator. We will create a basic1.
calculator with two inputs and one button. The skeleton of our component is as
follows:

 import React, { Component } from 'react';
 import './Calculator.css';

 class Calculator extends Component {
 constructor() {
 super();

 this.state = {
 number1: 0,
 number2: 0,
 result: 0
 };
 }

 render() {
 return (
 <div className="Calculator">
 <input
 name="number1"
 type="text"
 value={this.state.number1}
 />
 {' + '}
 <input
 name="number2"
 type="text"
 value={this.state.number2}
 />
 <p><button>=</button></p>
 <p className="result">{this.state.result}</p>
 </div>
);
 }
 }

 export default Calculator;

File: src/components/Calculator/Calculator.js

Handling Events, Binding and Useful React Packages Chapter 3

[122]

Now we are going to add two new methods, one to handle the inputs (onChange2.
event) and one to manage the result button (onClick). We can use the same
handleOnChange method for both inputs. Since we have the names of the fields
(which are the same as the state) we can dynamically update each state, and in
the handleResult method, we just sum both numbers:

 handleOnChange(e) {
 const { target: { value, name } } = e;

 this.setState({
 [name]: Number(value)
 });
 }

 handleResult(e) {
 this.setState({
 result: this.state.number1 + this.state.number2
 });
 }

Now in our render method, we need to add the events to the inputs and the3.
button:

 render() {
 return (
 <div className="Calculator">
 <input
 onChange={this.handleOnChange}
 name="number1"
 type="text"
 value={this.state.number1}
 />
 {' + '}
 <input
 onChange={this.handleOnChange}
 name="number2"
 type="text"
 value={this.state.number2}
 />
 <p>
 <button onClick={this.handleResult}>=</button>
 </p>
 <p className="result">{this.state.result}</p>
 </div>
);
 }

Handling Events, Binding and Useful React Packages Chapter 3

[123]

Our CSS code for this is as follows:4.

 .Calculator {
 margin: 0 auto;
 padding: 50px;
 }

 .Calculator input {
 border: 1px solid #eee;
 font-size: 16px;
 text-align: center;
 height: 50px;
 width: 100px;
 }

 .Calculator button {
 background: #0072ff;
 border: none;
 color: #fff;
 font-size: 16px;
 height: 54px;
 width: 150px;
 }

 .Calculator .result {
 border: 10px solid red;
 background: #eee;
 margin: 0 auto;
 font-size: 24px;
 line-height: 100px;
 height: 100px;
 width: 100px;
 }

File: src/components/Calculator/Calculator.css

If you run the application right now, you will see that if you try to write5.
something in the inputs or you click on the button, you will get an error such as
this:

Handling Events, Binding and Useful React Packages Chapter 3

[124]

The reason is that we need to bind those methods to the class to have access to it.6.
Let's bind our methods first using our constructor:

 constructor() {
 super();

 this.state = {
 number1: 0,
 number2: 0,
 result: 0
 };

 // Binding methods
 this.handleOnChange = this.handleOnChange.bind(this);
 this.handleResult = this.handleResult.bind(this);
 }

Handling Events, Binding and Useful React Packages Chapter 3

[125]

Using the constructor to bind the methods is good if you want to list all of them7.
on the top of the component. If you look at the Calculator component, it
should look like this:

Now let's use arrow functions to automatically bind our methods instead of8.
doing it on the constructor. For this you need to remove your bindings methods
in the constructor and change the handleOnChange and handleResult
methods to arrow functions:

 constructor() {
 super();

 this.state = {
 number1: 0,
 number2: 0,
 result: 0

Handling Events, Binding and Useful React Packages Chapter 3

[126]

 };
 }
 // Changing this method to be an arrow function
 handleOnChange = e => {
 const { target: { value, name } } = e;

 this.setState({
 [name]: Number(value)
 });
 }
 // Changing this method to be an arrow function
 handleResult = e => {
 this.setState({
 result: this.state.number1 + this.state.number2
 });
 }

You will get the same result. I prefer arrow functions to bind methods because9.
you use less code and you don't need to add the methods to the constructor
manually.

How it works...
As you can see, you have two options to bind methods in your React components. The
constructor option is most commonly used at the moment, but the arrow functions are
getting more popular. You decide which binding option you like the most.

Creating form elements with events
You may have noticed in the previous chapter that we used some simple forms with events,
but in this recipe, we will see this topic in more depth. In Chapter 6, Creating Forms with
Redux Form, we are going to learn how to handle forms with Redux Form.

Handling Events, Binding and Useful React Packages Chapter 3

[127]

How to do it...
Let's create a new component called Person:

The skeleton we are going to use for this component is as follows:1.

 import React, { Component } from 'react';
 import './Person.css';

 class Person extends Component {
 constructor() {
 super();

 this.state = {
 firstName: '',
 lastName: '',
 email: '',
 phone: ''
 };
 }

 render() {
 return (
 <div className="Person">

 </div>
);
 }
 }

 export default Person;

File: src/components/Person/Person.js

Let's add the firstName, lastName, email, and phone fields to our form.2.
The render method should look like this:

 render() {
 return (
 <div className="Person">
 <form>
 <div>
 <p>First Name:</p>
 <p><input name="firstName" type="text" /></p>
 </div>

 <div>

Handling Events, Binding and Useful React Packages Chapter 3

[128]

 <p>Last Name:</p>
 <p><input name="lastName" type="text" /></p>
 </div>

 <div>
 <p>Email:</p>
 <p><input name="email" type="email" /></p>
 </div>

 <div>
 <p>Phone:</p>
 <p><input name="phone" type="tel" /></p>
 </div>

 <p>
 <button>Save Information</button>
 </p>
 </form>
 </div>
);
 }

Let's use these CSS styles for our form:3.

 .Person {
 margin: 0 auto;
 }

 .Person form input {
 font-size: 16px;
 height: 50px;
 width: 300px;
 }

 .Person form button {
 background: #0072ff;
 border: none;
 color: #fff;
 font-size: 16px;
 height: 50px;
 width: 300px;
 }

File: src/components/Person/Person.css

Handling Events, Binding and Useful React Packages Chapter 3

[129]

If you run your application, you should see this view:4.

Let's use our local state in the inputs. The only way we can retrieve the values5.
from the inputs in React is by connecting the value of each field to a specific local
state like this:

 render() {
 return (
 <div className="Person">
 <form>
 <div>
 <p>First Name:</p>
 <p>
 <input
 name="firstName"

Handling Events, Binding and Useful React Packages Chapter 3

[130]

 type="text"
 value={this.state.firstName}
 />
 </p>
 </div>

 <div>
 <p>Last Name:</p>
 <p>
 <input
 name="lastName"
 type="text"
 value={this.state.lastName}
 />
 </p>
 </div>

 <div>
 <p>Email:</p>
 <p>
 <input
 name="email"
 type="email"
 value={this.state.email}
 />
 </p>
 </div>

 <div>
 <p>Phone:</p>
 <p>
 <input
 name="phone"
 type="tel"
 value={this.state.phone}
 />
 </p>
 </div>

 <p>
 <button>Save Information</button>
 </p>
 </form>
 </div>
);
 }

Handling Events, Binding and Useful React Packages Chapter 3

[131]

If you try to type something, you will notice that you are not allowed to
write anything, and this is because all the inputs are connected to the local
state, and the only way we can re-render the typed text is by updating the
local state.

As you can imagine, the only way we can update our local state is by detecting a6.
change in our inputs, and that will happen when the user inputs something. Let's
add a method for the onChange event:

 handleOnChange = e => {
 const { target: { value } } = e;

 this.setState({
 firstName: value
 });
 }

Like I mentioned in the last recipe when we use an arrow function in our
methods we are automatically binding the class to the method. Otherwise,
you will need to bind the method in the constructor. In our firstName
input, we need to call this method on the onChange method:

 <input
 name="firstName"
 type="text"
 value={this.state.firstName}
 onChange={this.handleOnChange}
 />

But here we have a problem. If we have four fields, then you will probably think7.
you need to create four different methods (one for each state), but there is a better
way to solve this: to get the value of the input name within the e
(e.target.name) object. In this way, we can update all the states with the same
method. Our handleOnChange method should now look like this:

 handleOnChange = e => {
 const { target: { value, name } } = e;

 this.setState({
 [name]: value
 });
 }

Handling Events, Binding and Useful React Packages Chapter 3

[132]

With this ([name]) syntax in the object, we can update all the states we have in8.
our forms dynamically. Now we need to add this method to the onChange of all
the inputs. After this, you will be able to write into the inputs:

 render() {
 return (
 <div className="Person">
 <form>
 <div>
 <p>First Name:</p>
 <p>
 <input
 name="firstName"
 type="text"
 value={this.state.firstName}
 onChange={this.handleOnChange}
 />
 </p>
 </div>

 <div>
 <p>Last Name:</p>
 <p>
 <input
 name="lastName"
 type="text"
 value={this.state.lastName}
 onChange={this.handleOnChange}
 />
 </p>
 </div>

 <div>
 <p>Email:</p>
 <p>
 <input
 name="email"
 type="email"
 value={this.state.email}
 onChange={this.handleOnChange}
 />
 </p>
 </div>

 <div>
 <p>Phone:</p>
 <p>
 <input

Handling Events, Binding and Useful React Packages Chapter 3

[133]

 name="phone"
 type="tel"
 value={this.state.phone}
 onChange={this.handleOnChange}
 />
 </p>
 </div>

 <p>
 <button>Save Information</button>
 </p>
 </form>
 </div>
);
 }

All forms need to submit the information they have collected from the user. We9.
need to use the onSubmit event of our form and call a handleOnSubmit
method to retrieve all the input values through the local state:

 handleOnSubmit = e => {
 // The e.preventDefault() method cancels the event if it is
 // cancelable, meaning that the default action that belongs to
 // the event won't occur.
 e.preventDefault();

 const { firstName, lastName, email, phone } = this.state;
 const data = {
 firstName,
 lastName,
 email,
 phone
 };
 // Once we have the data collected we can call a Redux Action
 // or process the data as we need it.
 console.log('Data:', data);
 }

After we created this method we need to call it on the onSubmit event of the10.
form tag:

 <form onSubmit={this.handleOnSubmit}>

Now you can test this. Open your browser console, and when you write some11.
values in the inputs you will be able to see the data:

Handling Events, Binding and Useful React Packages Chapter 3

[134]

We need to validate the required fields. Let's suppose that the firstName and12.
lastName fields are mandatory. If a user doesn't write a value in the fields, we
want to add an error class to display a red border around the input. The first
thing you need to do is to add a new local state for errors:

 this.state = {
 firstName: '',
 lastName: '',
 email: '',
 phone: '',
 errors: {
 firstName: false,
 lastName: false
 }
 };

You can add any fields you want to validate here, and the value is Boolean (true13.
means there is an error, false means it is okay). Then, in the handleOnSubmit
method, we need to update the state if we have an error:

 handleOnSubmit = e => {
 // The e.preventDefault() method cancels the event if it is
 // cancelable, meaning that the default action that belongs to
 // event won't occur.
 e.preventDefault();

 const { firstName, lastName, email, phone } = this.state;

 // If firstName or lastName is missing then we update the
 // local state with true
 this.setState({
 errors: {
 firstName: firstName === '',
 lastName: lastName === ''
 }
 });

 const data = {
 firstName,
 lastName,
 email,

Handling Events, Binding and Useful React Packages Chapter 3

[135]

 phone
 };

 // Once we have the data collected we can call a Redux Action
 // or process the data as we need it.
 console.log('Data:', data);
 }

Now, in your render method you need to add a ternary validation in the14.
className prop of the firstName and lastName fields, and if you want to be
fancy you can also add an error message below the inputs:

 render() {
 return (
 <div className="Person">
 <form onSubmit={this.handleOnSubmit}>
 <div>
 <p>First Name:</p>
 <p>
 <input
 name="firstName"
 type="text"
 value={this.state.firstName}
 onChange={this.handleOnChange}
 className={
 this.state.errors.firstName ? 'error' : ''
 }
 />
 {this.state.errors.firstName
 && (<div className="errorMessage">Required
 field</div>)}
 </p>
 </div>

 <div>
 <p>Last Name:</p>
 <p>
 <input
 name="lastName"
 type="text"
 value={this.state.lastName}
 onChange={this.handleOnChange}
 className={
 this.state.errors.lastName ? 'error' : ''
 }
 />
 {this.state.errors.lastName
 && <div className="errorMessage">Required

Handling Events, Binding and Useful React Packages Chapter 3

[136]

 field</div>}
 </p>
 </div>

 <div>
 <p>Email:</p>
 <p>
 <input
 name="email"
 type="email"
 value={this.state.email}
 onChange={this.handleOnChange}
 />
 </p>
 </div>

 <div>
 <p>Phone:</p>
 <p>
 <input name="phone" type="tel" value=
 {this.state.phone}
 onChange={this.handleOnChange} />
 </p>
 </div>

 <p>
 <button>Save Information</button>
 </p>
 </form>
 </div>
);
 }

The last step is to add the error classes, .error and .errorMessage:15.

 .Person .error {
 border: 1px solid red;
 }

 .Person .errorMessage {
 color: red;
 font-size: 10px;
 }

Handling Events, Binding and Useful React Packages Chapter 3

[137]

If you submit your form without firstName or lastName now, you will get this16.
view:

Handling Events, Binding and Useful React Packages Chapter 3

[138]

The full Person component should be like this:17.

 import React, { Component } from 'react';
 import './Person.css';

 class Person extends Component {
 constructor() {
 super();

 this.state = {
 firstName: '',
 lastName: '',
 email: '',
 phone: '',
 errors: {
 firstName: false,
 lastName: false
 }
 };
 }

 handleOnChange = e => {
 const { target: { value, name } } = e;

 this.setState({
 [name]: value
 });
 }

 handleOnSubmit = e => {
 // The e.preventDefault() method cancels the event if it is
 // cancelable, meaning that the default action that belongs
 // to the event won't occur.
 e.preventDefault();

 const { firstName, lastName, email, phone } = this.state;

 // If firstName or lastName is missing we add an error class
 this.setState({
 errors: {
 firstName: firstName === '',
 lastName: lastName === ''
 }
 });

 const data = {
 firstName,
 lastName,

Handling Events, Binding and Useful React Packages Chapter 3

[139]

 email,
 phone
 };

 // Once we have the data collected we can call a Redux Action
 // or process the data as we need it.
 console.log('Data:', data);
 }

 render() {
 return (
 <div className="Person">
 <form onSubmit={this.handleOnSubmit}>
 <div>
 <p>First Name:</p>
 <p>
 <input
 name="firstName"
 type="text"
 value={this.state.firstName}
 onChange={this.handleOnChange}
 className={
 this.state.errors.firstName ? 'error' : ''
 }
 />
 {this.state.errors.firstName
 && <div className="errorMessage">Required
 field</div>}
 </p>
 </div>

 <div>
 <p>Last Name:</p>
 <p>
 <input
 name="lastName"
 type="text"
 value={this.state.lastName}
 onChange={this.handleOnChange}
 className={
 this.state.errors.lastName ? 'error' : ''
 }
 />
 {this.state.errors.lastName
 && <div className="errorMessage">Required
 field</div>}
 </p>
 </div>

Handling Events, Binding and Useful React Packages Chapter 3

[140]

 <div>
 <p>Email:</p>
 <p>
 <input
 name="email"
 type="email"
 value={this.state.email}
 onChange={this.handleOnChange}
 />
 </p>
 </div>

 <div>
 <p>Phone:</p>
 <p>
 <input
 name="phone"
 type="tel"
 value={this.state.phone}
 onChange={this.handleOnChange}
 />
 </p>
 </div>

 <p>
 <button>Save Information</button>
 </p>
 </form>
 </div>
);
 }
 }

 export default Person;

File: src/components/Person/Person.js

How it works...
Forms are essential for any web application, and handling them with React is easy using
local state, but it is not the only way to manage them. If your forms are complex, with
multiple steps (are typically used on user registration), you probably need to keep the
values throughout the entire process. In this scenario, it is painless to handle forms using
Redux Form, which we are going to learn about in Chapter 6, Creating Forms with Redux
Form.

Handling Events, Binding and Useful React Packages Chapter 3

[141]

There's more...
There are more events you can use in React:

Keyboard events:

onKeyDown is executed when a key is depressed
onKeyPress is executed after the key is released, but before onKeyUp is
triggered
onKeyUp is executed last after the key is pressed

Focus events:

onFocus is executed when a control receives focus
onBlur is executed when a control loses focus

Forms events:

onChange is executed when the user changes the value in a form control
onSubmit is a particular prop for <form> that is called when a button is pressed,
or when the user hits the return key within a field

Mouse events:

onClick is when the mouse button is pressed and released
onContextMenu is when the right button is pressed
onDoubleClick is when the user performs a double-click
onMouseDown is when the mouse button is depressed
onMouseEnter is when the mouse moves over an element or its children
onMouseLeave is when the mouse leaves an element
onMouseMove is when the mouse moves
onMouseOut is when the mouse moves off an element or over one of its children
onMouseOver is when the mouse moves over an element
onMouseUp is when a mouse button is released

Handling Events, Binding and Useful React Packages Chapter 3

[142]

Drag and drop events:

onDrag

onDragEnd

onDragEnter

onDragExit

onDragLeave

onDragOver

onDragStart

onDrop

For drag and drop, events I recommend using the react-dnd (https:/ ​/​github. ​com/
react-​dnd/​react- ​dnd) library.

Displaying information in a modal with
react-popup
A modal is a dialog box/popup that is displayed over the current window, is suitable for
almost all projects. In this recipe, we will learn how to implement a basic modal using the
react-popup package.

Getting ready
For this recipe, you need to install react-popup. Let's do it with this command:

npm install react-popup

https://github.com/react-dnd/react-dnd
https://github.com/react-dnd/react-dnd
https://github.com/react-dnd/react-dnd
https://github.com/react-dnd/react-dnd
https://github.com/react-dnd/react-dnd
https://github.com/react-dnd/react-dnd
https://github.com/react-dnd/react-dnd
https://github.com/react-dnd/react-dnd
https://github.com/react-dnd/react-dnd
https://github.com/react-dnd/react-dnd
https://github.com/react-dnd/react-dnd
https://github.com/react-dnd/react-dnd
https://github.com/react-dnd/react-dnd
https://github.com/react-dnd/react-dnd

Handling Events, Binding and Useful React Packages Chapter 3

[143]

How to do it...
Using the last recipe's code, we are going to add a basic popup to display information
about the person that we registered in the form:

Open your App.jsx file and import the Popup object from react-popup. For1.
now, we are going to import Popup.css (the code is too large to put it in here,
but you can copy and paste the CSS demo code from the code repository for this
project: Chapter03/Recipe3/popup/src/components/Popup.css). Then,
after <Footer /> add the <Popup /> component:

 import React from 'react';
 import Popup from 'react-popup';
 import Person from './Person/Person';
 import Header from '../shared/components/layout/Header';
 import Content from '../shared/components/layout/Content';
 import Footer from '../shared/components/layout/Footer';
 import './App.css';
 import './Popup.css';

 const App = () => (
 <div className="App">
 <Header title="Personal Information" />

 <Content>
 <Person />
 </Content>

 <Footer />

 <Popup />
 </div>
);

 export default App;

File: src/components/App.js

Now, in our Person.js file, we need to include the popup as well:2.

import React, { Component } from 'react';
import Popup from 'react-popup';
import './Person.css';

Handling Events, Binding and Useful React Packages Chapter 3

[144]

Let's modify our handleOnSubmit method to implement the popup. First, we3.
need to validate that we are receiving at least the firstName, lastName, and
email (phone will be optional). If we get all the necessary information, then we
will create a popup and display the user's information. One of the things I like
about react-popup is that it allows us to use JSX code in its content:

 handleOnSubmit = e => {
 e.preventDefault();

 const {
 firstName,
 lastName,
 email,
 phone
 } = this.state;

 // If firstName or lastName is missing we add an error class
 this.setState({
 errors: {
 firstName: firstName === '',
 lastName: lastName === ''
 }
 });
 // We will display the popup just if the data is received...
 if (firstName !== '' && lastName !== '' && email !== '') {
 Popup.create({
 title: 'Person Information',
 content: (
 <div>
 <p>Name: {firstName} {lastName}</p>
 <p>Email: {email}</p>
 {phone && <p>Phone: {phone}</p>}
 </div>
),
 buttons: {
 right: [{
 text: 'Close',
 action: popup => popup.close() // Closes the popup
 }],
 },
 });
 }
 }

Handling Events, Binding and Useful React Packages Chapter 3

[145]

How it works...
If you did everything correctly, you should be able to see the popup like this:

As you can see in the code, the phone is optional, so if we don't include it we won't render
it:

Handling Events, Binding and Useful React Packages Chapter 3

[146]

There's more...
react-popup provides configuration to execute an action. In our example, we used that
action to close the popup when the user presses the Close button, but we can pass Redux
actions to do other things, such as send some information or even add forms inside our
popup.

Implementing Airbnb React/JSX Style Guide
Airbnb React/JSX Style Guide is the most popular style guide for coding in React. In this
recipe, we are going to implement the ESLint with the Airbnb React/JSX Style Guide rules.

Getting ready
To implement the Airbnb React/JSX Style Guide, we need to install some packages, such as
eslint, eslint-config-airbnb, eslint-plugin-babel, and eslint-plugin-react.

Handling Events, Binding and Useful React Packages Chapter 3

[147]

I don't like to force anyone to use a specific IDE, but I would like to recommend some of the
best editors to work with React.

Atom - https:/ ​/ ​atom. ​io
In my personal opinion, Atom is the best IDE for working with
React. For this recipe, we are going to use Atom.
Pros:

MIT License (open source)
Easy to install and configure
Has a lot of plugins and themes
Works perfectly with React
Support for Mac, Linux, and Windows
You can use Nuclide to React Native
(https://nuclide.io)

Cons:
It's slow compared with other IDEs (if you have 8
GB of RAM you should be fine)

Visual Studio Code (VSC) - https:/ ​/​code. ​visualstudio. ​com
VSC is another good IDE for working with React.
Pros:

MIT License (open source)
Easy to install
It has a lot of plugins and themes.
Works perfectly with React
Support for Mac, Linux, and Windows

Cons:
Microsoft (I'm not a big fan of Microsoft)
Configuration can be confusing at the beginning

Sublime Text - https:/ ​/​www. ​sublimetext. ​com
Sublime Text was my first love, but I have to accept that Atom has
taken its place.
Pros:

Easy to install
Has a lot of plugins and themes
Support for Mac, Linux, and Windows

https://atom.io
https://atom.io
https://atom.io
https://atom.io
https://atom.io
https://atom.io
https://atom.io
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://www.sublimetext.com
https://www.sublimetext.com
https://www.sublimetext.com
https://www.sublimetext.com
https://www.sublimetext.com
https://www.sublimetext.com
https://www.sublimetext.com
https://www.sublimetext.com
https://www.sublimetext.com

Handling Events, Binding and Useful React Packages Chapter 3

[148]

Cons:
Is not free ($80 USD per license).
Is still not mature enough to work with React.
Some plugins are hard to configure.

Installing all the necessary packages:

npm install eslint eslint-config-airbnb eslint-plugin-react eslint-plugin-
jsx-a11y

There are some rules of Airbnb React/JSX Style Guide that I prefer not to
use or change the default values a little bit, but it depends whether you
keep them or remove them.

You can check all the ESLint rules on the official website (https:/ ​/​eslint. ​org/ ​docs/
rules) and all the special React ESLint rules at https:/ ​/​github. ​com/ ​yannickcr/ ​eslint-
plugin-​react/​tree/ ​master/ ​docs/ ​rules.

The rules that I prefer not to use or I prefer to change the default values of are as follows:

comma-dangle: off
arrow-parens: off
max-len: 120
no-param-reassign: off
function-paren-newline: off
react/require-default-props: off

How to do it...
To enable our ESLint, we need to create a .eslintrc file and add the rules we want to turn
off:

Creating .eslintrc file. You need to create a new file called .eslintrc at the1.
root level:

 {
 "parser": "babel-eslint",
 "extends": "airbnb",
 "rules": {
 "arrow-parens": "off",

https://eslint.org/docs/rules
https://eslint.org/docs/rules
https://eslint.org/docs/rules
https://eslint.org/docs/rules
https://eslint.org/docs/rules
https://eslint.org/docs/rules
https://eslint.org/docs/rules
https://eslint.org/docs/rules
https://eslint.org/docs/rules
https://eslint.org/docs/rules
https://github.com/yannickcr/eslint-plugin-react/tree/master/docs/rules
https://github.com/yannickcr/eslint-plugin-react/tree/master/docs/rules
https://github.com/yannickcr/eslint-plugin-react/tree/master/docs/rules
https://github.com/yannickcr/eslint-plugin-react/tree/master/docs/rules
https://github.com/yannickcr/eslint-plugin-react/tree/master/docs/rules
https://github.com/yannickcr/eslint-plugin-react/tree/master/docs/rules
https://github.com/yannickcr/eslint-plugin-react/tree/master/docs/rules
https://github.com/yannickcr/eslint-plugin-react/tree/master/docs/rules
https://github.com/yannickcr/eslint-plugin-react/tree/master/docs/rules
https://github.com/yannickcr/eslint-plugin-react/tree/master/docs/rules
https://github.com/yannickcr/eslint-plugin-react/tree/master/docs/rules
https://github.com/yannickcr/eslint-plugin-react/tree/master/docs/rules
https://github.com/yannickcr/eslint-plugin-react/tree/master/docs/rules
https://github.com/yannickcr/eslint-plugin-react/tree/master/docs/rules
https://github.com/yannickcr/eslint-plugin-react/tree/master/docs/rules
https://github.com/yannickcr/eslint-plugin-react/tree/master/docs/rules
https://github.com/yannickcr/eslint-plugin-react/tree/master/docs/rules
https://github.com/yannickcr/eslint-plugin-react/tree/master/docs/rules
https://github.com/yannickcr/eslint-plugin-react/tree/master/docs/rules
https://github.com/yannickcr/eslint-plugin-react/tree/master/docs/rules
https://github.com/yannickcr/eslint-plugin-react/tree/master/docs/rules
https://github.com/yannickcr/eslint-plugin-react/tree/master/docs/rules

Handling Events, Binding and Useful React Packages Chapter 3

[149]

 "comma-dangle": "off",
 "function-paren-newline": "off",
 "max-len": [1, 120],
 "no-param-reassign": "off",
 "react/require-default-props": "off"
 }
 }

Add a script to run the linter. In your package.json file, you need to add a new2.
script to run the linter:

 {
 "name": "airbnb",
 "version": "0.1.0",
 "private": true,
 "engines": {
 "node": ">= 10.8"
 },
 "dependencies": {
 "eslint": "^4.18.2",
 "eslint-config-airbnb": "^16.1.0",
 "eslint-plugin-babel": "^4.1.2",
 "eslint-plugin-react": "^7.7.0",
 "prop-types": "^15.6.1",
 "react": "^16.2.0",
 "react-dom": "^16.2.0",
 "react-scripts": "1.1.0"
 },
 "scripts": {
 "start": "react-scripts start",
 "build": "react-scripts build",
 "test": "react-scripts test --env=jsdom",
 "eject": "react-scripts eject",
 "lint": "eslint --ext .jsx,.js src"
 }
 }

Once you have added the lint script, you can run the linter validation with this3.
command:

 npm run lint

Handling Events, Binding and Useful React Packages Chapter 3

[150]

Now you can see the linter errors you have in your project:4.

Now we need to fix the linter errors. The first error is Component should be5.
written as a pure function react/prefer-stateless-function. That means
our App component can be written in a functional component because we don't
use any local state:

 import React from 'react';
 import Person from './Person/Person';
 import Header from '../shared/components/layout/Header';
 import Content from '../shared/components/layout/Content';
 import Footer from '../shared/components/layout/Footer';
 import './App.css';

 const App = () => (
 <div className="App">
 <Header title="Personal Information" />

 <Content>
 <Person />
 </Content>

 <Footer />

Handling Events, Binding and Useful React Packages Chapter 3

[151]

 </div>
);

 export default App;

File: src/components/App.js

Next, we have this error: JSX not allowed in files with extension '.js'6.
/react/jsx-filename-extension. This error means that in the files where we
use JSX code, we need to use the .jsx extension instead of .js. We have six files
with this problem (App.js, Person.js, index.js, Content.js, Footer.js,
and Header.js). We just need to rename the files and change the extension to
.jsx (App.jsx, Person.jsx, Content.jsx, Footer.jsx, and Header.jsx).
Due to react-scripts, we won't change our index.js to index.jsx for now.
Otherwise, we will get an error like this:

In Chapter 10, Mastering Webpack 4.x, we will be able to rename all our
JSX files with the .jsx extension.

We need to suppress the lint error. We have to write this comment at the top of7.
our index.js file:

/* eslint react/jsx-filename-extension: "off" */
import React from 'react';
...

Handling Events, Binding and Useful React Packages Chapter 3

[152]

Let's look at this error: Expected a line break after this opening brace/object-curly-8.
newline, and this error: Expected a line break before this closing brace/object-
curly-newline. In our Person.jsx file, we have this object in our
handleOnChange method:

 const { firstName, lastName, email, phone } = this.state;

The rule says we need to add a break-line before and after the object:9.

 const {
 firstName,
 lastName,
 email,
 phone
 } = this.state;

Now let's look at Warning: Unexpected console statement /no-console. The10.
console.log generated a warning in our linter that won't affect us, but if you need
to have a console and you want to avoid the warning, you can add an exception
with an ESLint comment like so:

console.log('Data:', data); // eslint-disable-line no-console

More ESLint comments do the same thing:11.

 // eslint-disable-next-line no-console
 console.log('Data:', data);

If you want to disable the consoles in the entire file, then at the beginning of the12.
file you can do this:

/* eslint no-console: "off" */
import React, { Component } from 'react';
...

Error: 'document' is not defined/no-undef. There are two ways to fix this error in our13.
index.jsx where we are using the global object document. The first one is to
add a special comment to specify that the document object is a global variable:

/* global document */
import React from 'react';
import ReactDOM from 'react-dom';
...

Handling Events, Binding and Useful React Packages Chapter 3

[153]

I don't like this way. I prefer to add a globals node into our .eslintrc file:14.

{
 "parser": "babel-eslint",
 "extends": "airbnb",
 "globals": {
 "document": "true"
 },
 "rules": {
 "arrow-parens": "off",
 "comma-dangle": "off",
 "function-paren-newline": "off",
 "max-len": [1, 120],
 "no-param-reassign": "off",
 "react/require-default-props": "off"
 }
}

How it works...
The linter validation is essential for any project. Sometimes, this is a topic of discussion
because most developers do not like to follow standards, but once everyone gets familiar
with this style guide everything is more comfortable, and you will deliver better quality
code.

So far, we know how to run the linter validation in our Terminal, but you can also add the
ESLint validator to your IDE (Atom and VSC). For this example, we are going to use Atom.

Installing Atom plugins

In Atom (on a Mac) you can go to Preferences | +Install, and then you can find the Atom
plugins. I'll give you a list of the plugins I use to improve my IDE and increase my
productivity:

linter-eslint: Lint JS on the fly, using ESLint
editorconfig: Helps developers maintain consistent coding styles between
different editors
language-babel: Supports React syntax
minimap: A preview of the full source code
pigments: A package for displaying colors in projects and files

Handling Events, Binding and Useful React Packages Chapter 3

[154]

sort-lines: Sorts your lines
teletype: Shares your workspace with team members and allows them to
collaborate on code in real time

Once you have installed these, packages if you go to a file with lint errors, you will be able
to see them:

Configuring EditorConfig

EditorConfig is also very useful for maintaining consistent coding styles when people in
our team uses different editors. EditorConfig is supported by a lot of editors. You can check
whether your editor is supported on the official website, http:/ ​/ ​editorconfig. ​org.

The configuration I use is this one; you need to create a file called .editorconfig in your
root directory:

 root = true

 [*]
 indent_style = space
 indent_size = 2
 end_of_line = lf
 charset = utf-8
 trim_trailing_whitespace = true
 insert_final_newline = true

 [*.html]
 indent_size = 4

http://editorconfig.org
http://editorconfig.org
http://editorconfig.org
http://editorconfig.org
http://editorconfig.org
http://editorconfig.org
http://editorconfig.org

Handling Events, Binding and Useful React Packages Chapter 3

[155]

 [*.css]
 indent_size = 4

 [*.md]
 trim_trailing_whitespace = false

You can affect all the files with [*], and specific files with [*.extension].

There's more...
Running the linter validation in our IDE or with the Terminal is not enough to be sure that
we are going to validate 100% of our code, and we are not going to inject any linter errors
into our Git repositories. The most effective way to be 100% sure we are sending validated
code to our Git repositories is to use Git hooks. That means you run the linter validator
before performing a commit (pre-commit) or before a push (pre-push). I prefer to run the
linter on the pre-commit and the unit tests on the pre-push (we are going to cover unit tests
in Chapter 12, Testing and Debugging).

Husky is the package we are going to use to modify our Git hooks; you can install it with
this command:

 npm install husky

Once we have added this package, we need to alter our package.json and add new
scripts:

{
 "name": "airbnb",
 "version": "0.1.0",
 "private": true,
 "dependencies": {
 "eslint": "^4.18.2",
 "eslint-config-airbnb": "^16.1.0",
 "eslint-plugin-babel": "^4.1.2",
 "eslint-plugin-jsx-a11y": "^6.0.3",
 "eslint-plugin-react": "^7.7.0",
 "husky": "^0.14.3",
 "prop-types": "^15.6.1",
 "react": "^16.2.0",
 "react-dom": "^16.2.0",
 "react-scripts": "1.1.0"
 },
 "scripts": {
 "start": "react-scripts start",
 "build": "react-scripts build",

Handling Events, Binding and Useful React Packages Chapter 3

[156]

 "test": "react-scripts test --env=jsdom",
 "eject": "react-scripts eject",
 "lint": "eslint --ext .jsx,.js src",
 "precommit": "npm run lint",
 "postmerge": "npm install",
 "postrewrite": "npm install",
 }
}

We are using four scripts:

precommit: Runs before a commit is performed.
postmerge: Runs after performing a merge.
postrewrite: This hook is called by commands that rewrite commits (git
commit --amend, git-rebase; currently, git-filter-branch does not call
it!).
*prepush: I didn't add this Git hook at this moment, but this is useful for
running our unit tests ("prepush": "npm test"), we are going to add this Git
hook in Chapter 12, Testing and Debugging, when we cover the unit tests topic.

In this case, in our precommit, we will run our linter validator, and if the validator fails,
the commit will not be executed until you fix all the linter errors. The postmerge and
postrewrite hooks help us to sync our npm packages, so for example, if User A adds new
npm packages, then User B pulls the new code and will automatically run the npm
install command to install the new packages in the User B local machine.

Updating our title and meta tags with React
Helmet
In all projects, it is vital to be able to change our site title and our meta tags with
information on each specific page to be SEO friendly.

Getting ready
For this recipe, we need to install a package called react-helmet:

npm install react-helmet

Handling Events, Binding and Useful React Packages Chapter 3

[157]

How to do it...
React Helmet is the best way to handle the title and meta tags to improve the SEO on our
websites:

Once we have installed the react-helmet package using the same component1.
of App.jsx, we need to import React Helmet:

 import Helmet from 'react-helmet';

We can change the title of our page by adding the title prop to the Helmet2.
component like this:

 <Helmet title="Person Information" />

If you start your application, you will see the title in your browser:3.

Handling Events, Binding and Useful React Packages Chapter 3

[158]

If you want to change your meta tags, you can do it like this:4.

 <Helmet
 title="Person Information"
 meta={[
 { name: 'title', content: 'Person Information' },
 { name: 'description', content: 'This recipe talks about React
 Helmet' }
]}
 />

How it works...
With that code, we are going to get this output:

You can also do this if you want to add the HTML code directly into the Helmet
component:

 <Helmet>
 <title>Person Information</title>
 <meta name="title" content="Person Information" />
 <meta name="description" content="This recipe talks about React
Helmet" />
 </Helmet>

You may have noticed that there is a flashing change on the title in the first load of the
page, and this is because in our index.html file we have the title React App by default. You
can change that by editing this file:

 <head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1,
 shrink-to-fit=no">
 <meta name="theme-color" content="#000000">
 <link rel="manifest" href="%PUBLIC_URL%/manifest.json">
 <link rel="shortcut icon" href="%PUBLIC_URL%/favicon.ico">
 <title>Personal Information</title>
 </head>

File: public/index.html

Handling Events, Binding and Useful React Packages Chapter 3

[159]

There's more...
So far, we have only changed our title in the main component (<App />), but in Chapter 4,
Adding Routes to Our Application with React Router V4, we are going to be able to change our
titles and meta tags in different components based on a route.

Also, in Chapter 11, Implementing Server-Side Rendering, we are going to learn how to
implement server-side rendering in our application. You can also use React Helmet with
server-side rendering, but you need to make some changes.

First, in your index.html (Note: this file will change to a JavaScript file in Chapter 11,
Implementing Server-Side Rendering; Do not try to add this to your current index.html file)
you will need to add something like this:

 return `
 <head>
 <meta charset="utf-8">
 <title>Personal Information</title>
 ${helmet.title.toString()}
 ${helmet.meta.toString()}
 <link rel="shortcut icon" href="images/favicon.png"
 type="image/x-icon">
 </head>
 `;

And with this, we are going to be able to update our titles and meta tags using server-side
rendering.

4
Adding Routes to Our

Application with React Router
In this chapter, the following recipes will be covered:

Implementing React Router v4
Creating nested routes and adding parameters to our paths

Introduction
In this chapter, we are going to learn how to add dynamic routes in our project using React
Router v4.

Implementing React Router v4
React, unlike Angular, is a library instead of a framework, meaning specific functionalities,
for example, routing or the propTypes, are not part of the React core. Instead, routing is
handled by a third-party library called React Router.

Getting ready
We will use the code that we did in the Implementing Airbnb React/JSX Style Guide recipe
in Chapter 3, Handling Events, Binding, and Useful React Packages (Repository:
Chapter03/Recipe4/airbnb) to enable linter validation.

Adding Routes to Our Application with React Router Chapter 4

[161]

The first thing we need to do is to install React Router v4, and we can do it with this
command:

 npm install react-router-dom

You probably are confused about why we are installing react-router-dom instead of
react-router. React Router contains all the common components of react-router-dom
and react-router-native. That means that if you are using React for the web, you
should use react-router-dom, and if you are using React Native, you need to use react-
router-native. The react-router-dom package was created originally to contain
version 4, and react-router was using version 3. react-router-dom has some
improvements over react-router. They are listed here:

Improved <Link> component (which renders an <a>).
Includes <BrowserRouter>, which interacts with the browser's
window.history.
Includes <NavLink>, which is a <Link> wrapper that knows whether it's active
or not.
Includes <HashRouter>, which uses the hash in the URL to render the
components. If you have one static page, you should use this component instead
of <BrowserRouter>.

How to do it...
In this recipe, we are going to display some components based on the routes:

We need to create four functional components (About, Contact, Home, and1.
Error 404) and name them as index.jsx in their directories.
Create the Home component:2.

import React from 'react';

const Home = () => (
 <div className="Home">
 <h1>Home</h1>
 </div>
);

export default Home;

File: src/components/Home/index.jsx

Adding Routes to Our Application with React Router Chapter 4

[162]

Create the About component:3.

import React from 'react';

const About = () => (
 <div className="About">
 <h1>About</h1>
 </div>
);

export default About;

File: src/components/About/index.jsx

Create the Contact component:4.

 import React from 'react';

 const Contact = () => (
 <div className="Contact">
 <h1>Contact</h1>
 </div>
);

 export default Contact;

File: src/components/Contact/index.jsx

Create the Error 404 component:5.

 import React from 'react';

 const Error404 = () => (
 <div className="Error404">
 <h1>Error404</h1>
 </div>
);

 export default Error404;

File: src/components/Error/404.jsx

Adding Routes to Our Application with React Router Chapter 4

[163]

In our src/index.js file, we need to include our routes, which we are going to6.
create in the next step. We need to import the BrowserRouter object from
react-router-dom, and we can rename it Router:

import React from 'react';
import { render } from 'react-dom';
import { BrowserRouter as Router } from 'react-router-dom';
import './index.css';

// Routes
import AppRoutes from './routes';

render(
 <Router>
 <AppRoutes />
 </Router>,
 document.getElementById('root')
);

File: src/index.js

Now we need to create our src/routes.jsx file, to which we are going to7.
import our App and Home components, and, using the Route component, we are
going to add a route to execute our Home component when the user accesses root
(/):

// Dependencies
import React from 'react';
import { Route } from 'react-router-dom';

// Components
import App from './components/App';
import Home from './components/Home';

const AppRoutes = () => (
 <App>
 <Route path="/" component={Home} />
 </App>
);

export default AppRoutes;

File: src/routes.jsx

Adding Routes to Our Application with React Router Chapter 4

[164]

After that, we need to modify our App.jsx file to render the route components8.
as children:

 import React from 'react';
 import { element } from 'prop-types';
 import Header from '../shared/components/layout/Header';
 import Content from '../shared/components/layout/Content';
 import Footer from '../shared/components/layout/Footer';
 import './App.css';

 const App = props => (
 <div className="App">
 <Header title="Routing" />

 <Content>
 {props.children}
 </Content>

 <Footer />
 </div>
);

 App.propTypes = {
 children: element
 };

 export default App;

File: src/components/App.jsx

If you run your application, you will see the Home component in the root (/):9.

Adding Routes to Our Application with React Router Chapter 4

[165]

Now, let's add our Error 404 when the user tries to access to any other route:10.

// Dependencies
import React from 'react';
import { Route } from 'react-router-dom';

// Components
import App from './components/App';
import Home from './components/Home';
import Error404 from './components/Error/404';

const AppRoutes = () => (
 <App>
 <Route path="/" component={Home} />
 <Route component={Error404} />
 </App>
);

export default AppRoutes;

File: src/routes.jsx

If you run the application, you will see that it is rendering both components11.
(Home and Error 404). You are probably wondering why:

Adding Routes to Our Application with React Router Chapter 4

[166]

It's because we need to use the <Switch> component to execute just one12.
component if it matches the path. For this, we need to import the Switch
component and add it as a wrapper in our routes:

// Dependencies
import React from 'react';
import { Route, Switch } from 'react-router-dom';

// Components
import App from './components/App';
import Home from './components/Home';
import Error404 from './components/Error/404';

const AppRoutes = () => (
 <App>
 <Switch>
 <Route path="/" component={Home} />
 <Route component={Error404} />
 </Switch>
 </App>
);

export default AppRoutes;

File: src/routes.jsx

Now, if we go to the root (/) we will see our Home component, and the Error40413.
won't be executed at the same time (it will just be executed the Home component),
but if we go to /somefakeurl, we will see that the Home component is executed
as well, and this is an issue:

Adding Routes to Our Application with React Router Chapter 4

[167]

To fix this problem, we need to add the exact prop in the route that we want to14.
match exactly. The problem is that /somefakeurl will match our root (/), but if
we want to be very specific about the paths, we need to add the exact prop to our
Home route:

// Dependencies
import React from 'react';
import { Route, Switch } from 'react-router-dom';

// Components
import App from './components/App';
import Home from './components/Home';
import Error404 from './components/Error/404';

const AppRoutes = () => (
 <App>
 <Switch>
 <Route path="/" component={Home} exact />
 <Route component={Error404} />
 </Switch>
 </App>
);

export default AppRoutes;

Now if you go to /somefakeurl, you will be able to see the Error40415.
component:

Adding Routes to Our Application with React Router Chapter 4

[168]

How it works...
As you can see, it is very easy to implement the React Router library. Now we can add
more routes for our About (/about) and Contact (/contact) components:

// Dependencies
import React from 'react';
import { Route, Switch } from 'react-router-dom';

// Components
import App from './components/App';
import About from './components/About';
import Contact from './components/Contact';
import Home from './components/Home';
import Error404 from './components/Error/404';

const AppRoutes = () => (
 <App>
 <Switch>
 <Route path="/" component={Home} exact />
 <Route path="/about" component={About} exact />
 <Route path="/contact" component={Contact} exact />
 <Route component={Error404} />
 </Switch>
 </App>
);

export default AppRoutes;

If you go to /about, you will see this view:

Adding Routes to Our Application with React Router Chapter 4

[169]

If you go to /contact, you will see this view:

There's more...
So far, we have learned how to create simple routes in our project, but in the next recipe, we
will learn how to include parameters within our routes, how to add nested routes, and how
to navigate through our site using the <Link> component.

Adding parameters to our routes
For this recipe, we are going to use the same code as the last recipe, and we are going to
add some parameters and show how to get them into our components.

Adding Routes to Our Application with React Router Chapter 4

[170]

How to do it...
In this recipe, we are going to create a simple Notes component to display all our notes
when we visit the /notes route, but we will show one note when the user visits
/notes/:noteId (we will filter the note using noteId):

We need to create a new component called Notes1.
(src/components/Notes/index.jsx), and this is the skeleton of our Notes
component:

 import React, { Component } from 'react';
 import './Notes.css';
 class Notes extends Component {
 constructor() {
 super();
 // For now we are going to add our notes to our
 // local state, but normally this should come
 // from some service.
 this.state = {
 notes: [
 {
 id: 1,
 title: 'My note 1'
 },
 {
 id: 2,
 title: 'My note 2'
 },
 {
 id: 3,
 title: 'My note 3'
 },
]
 };
 }
 render() {
 return (
 <div className="Notes">
 <h1>Notes</h1>
 </div>
);
 }
 }
 export default Notes;

File: src/components/Notes/index.jsx

Adding Routes to Our Application with React Router Chapter 4

[171]

The CSS file is as follows:2.

 .Notes ul {
 list-style: none;
 margin: 0;
 margin-bottom: 20px;
 padding: 0;
 }

 .Notes ul li {
 padding: 10px;
 }

 .Notes a {
 color: #555;
 text-decoration: none;
 }

 .Notes a:hover {
 color: #ccc;
 text-decoration: none;
 }

File: src/components/Notes/Notes.css

Once we have created our Notes component, we need to import it into our3.
src/routes.jsx file:

// Dependencies
import React from 'react';
import { Route, Switch } from 'react-router-dom';

// Components
import App from './components/App';
import About from './components/About';
import Contact from './components/Contact';
import Home from './components/Home';
import Notes from './components/Notes';
import Error404 from './components/Error/404';

const AppRoutes = () => (
 <App>
 <Switch>
 <Route path="/" component={Home} exact />
 <Route path="/about" component={About} exact />
 <Route path="/contact" component={Contact} exact />
 <Route path="/notes" component={Notes} exact />
 <Route component={Error404} />

Adding Routes to Our Application with React Router Chapter 4

[172]

 </Switch>
 </App>
);

export default AppRoutes;

File: src/routes.jsx

Now we can see our Notes component if we go to the /notes URL:4.

Now that our Notes component is connected to React Router, let's render our5.
notes as a list:

import React, { Component } from 'react';
import { Link } from 'react-router-dom';
import './Notes.css';

class Notes extends Component {
 constructor() {
 super();

 this.state = {
 notes: [
 {
 id: 1,
 title: 'My note 1'
 },
 {
 id: 2,

Adding Routes to Our Application with React Router Chapter 4

[173]

 title: 'My note 2'
 },
 {
 id: 3,
 title: 'My note 3'
 },
]
 };
 }

 renderNotes = notes => (

 {notes.map((note, key) => (
 <li key={key}>
 <Link to={`/notes/${note.id}`}>{note.title}</Link>

))}

);

 render() {
 const { notes } = this.state;

 return (
 <div className="Notes">
 <h1>Notes</h1>

 {this.renderNotes(notes)}
 </div>
);
 }
}

export default Notes;

File: src/components/Notes/index.jsx

Adding Routes to Our Application with React Router Chapter 4

[174]

You may have noticed that we are using <Link> (this will generate an <a> tag)6.
component that points to /notes/notes.id, and this is because we are going to
add a new nested route into our src/routes.jsx file to match the id of the
note:

// Dependencies
import React from 'react';
import { Route, Switch } from 'react-router-dom';

// Components
import App from './components/App';
import About from './components/About';
import Contact from './components/Contact';
import Home from './components/Home';
import Notes from './components/Notes';
import Error404 from './components/Error/404';

const AppRoutes = () => (
 <App>
 <Switch>
 <Route path="/" component={Home} exact />
 <Route path="/about" component={About} exact />
 <Route path="/contact" component={Contact} exact />
 <Route path="/notes" component={Notes} exact />
 <Route path="/notes/:noteId" component={Notes} exact />
 <Route component={Error404} />
 </Switch>
 </App>
);

export default AppRoutes;

File: src/routes.jsx

React Router has a special prop called match, which is an object that includes all7.
the information about our executed route, and if we have parameters, we are
going to be able to see them in the match object, like this:

render() {
 // Let's see what contains our props object.
 console.log(this.props);

 // We got the noteId param from match object.
 const { match: { params: { noteId } } } = this.props;
 const { notes } = this.state;
 // By default our selectedNote is false
 let selectedNote = false;

Adding Routes to Our Application with React Router Chapter 4

[175]

 if (noteId > 0) {
 // If the note id is higher than 0 then we filter it from our
 // notes array.
 selectedNote = notes.filter(
 note => note.id === Number(noteId)
);
 }

 return (
 <div className="Notes">
 <h1>Notes</h1>
 {/* We render our selectedNote or all notes */}
 {this.renderNotes(selectedNote || notes)}
 </div>
);
}

File: src/components/Notes/index.jsx

The match prop looks like this.8.

How it works...
The match object contains a lot of useful information. React Router also includes the object's
history and location. As you can see, we can get all the parameters we pass within our
routes in the match object.

Adding Routes to Our Application with React Router Chapter 4

[176]

If you run the application and go to /notes URL, you will see this view:

If you click on any link (I clicked on My note 2), you will see this view:

Adding Routes to Our Application with React Router Chapter 4

[177]

After this, we can add a menu in our Header component to access all our routes:

import React from 'react';
import PropTypes from 'prop-types';
import { Link } from 'react-router-dom';
import logo from '../../images/logo.svg';

// We created a component with a simple arrow function.
const Header = props => {
 const {
 title = 'Welcome to React',
 url = 'http://localhost:3000'
 } = props;

 return (
 <header className="App-header">

 <h1 className="App-title">{title}</h1>

 <Link to="/">Home</Link>
 <Link to="/about">About</Link>
 <Link to="/notes">Notes</Link>
 <Link to="/contact">Contact</Link>

 </header>
);
};

// Even with Functional Components we are able to validate our PropTypes.
Header.propTypes = {
 title: PropTypes.string.isRequired,
 url: PropTypes.string
};

export default Header;

File: src/shared/components/layout/Header.jsx

Adding Routes to Our Application with React Router Chapter 4

[178]

After that, we need to modify our src/components/App.css file to style our menu. Just
add the following code at the end of the CSS file:

.App-header ul {
 margin: 0;
 padding: 0;
 list-style: none;
}

.App-header ul li {
 display: inline-block;
 padding: 0 10px;
}

.App-header ul li a {
 color: #fff;
 text-decoration: none;
}

.App-header ul li a:hover {
 color: #ccc;
}

File: src/components/App.css

Now you can see the menu like this:

5
Mastering Redux

In this chapter, the following recipes will be covered:

Creating a Redux store
Making action creators and dispatching actions
Implementing Firebase with Redux

Introduction
Redux is a predictable state container for JavaScript apps. That means Redux can be used
with vanilla JavaScript or frameworks/libraries such as Angular and jQuery. Redux is
mainly a library responsible for issuing state updates and responses to actions. Redux is
widely used with React. Instead of directly modifying the state of the application, the
modification is handled by emitting events called actions. These events are functions (also
known as action creators) that always return two key properties, a type (which indicates
the type of action being performed, and the types should typically be defined as string
constants) and a payload (the data you want to pass within the action). These functions
emit events that are subscribed to by the reducers. The reducers are pure functions written
to decide how each action will transform the state of the application. All state changes are
handled in a single place: the Redux Store.

Mastering Redux Chapter 5

[180]

Without Redux, complex patterns are needed to communicate changes between our
application components. Redux simplifies this by broadcasting state changes to
components by using an application store. Within a React Redux application, components
will subscribe to the store while the store broadcasts changes to the components. This
diagram describes perfectly how Redux works:

Redux proposes to handle our Redux state as immutable. However, the
objects and arrays in JavaScript are not, which can cause us to mutate the
state by mistake directly.

These are the three principles of Redux:

Single source of truth: The state of your whole application is stored in an object
tree within a single store.
The state is read-only: The only way to change the state is to emit an action, an
object describing what happened.
Changes are made with pure functions: To specify how the state tree is
transformed by actions, you write pure reducers.

This information was extracted from the Official site of Redux. To read
more, visit https://redux.js.org/introduction/three-principles.

https://redux.js.org/introduction/three-principles

Mastering Redux Chapter 5

[181]

What is an action?

Actions are payloads of information that send data from your application to your store.
They are the only source of information for the store. You send them to the store using
store.dispatch(). The actions are simple JavaScript objects and must have a property
called type that indicates the type of the action being performed and a payload that is the
information contained in action.

What is immutability?

Immutability is a fundamental concept in Redux. To change the state, a new object must be
returned.

These are the immutable types in JavaScript:

Number
String
Boolean
Undefined
Null

These are the mutable types in JavaScript:

Arrays
Functions
Objects

Why immutability?

More clarity: We know who changed the state (the reducer)
Better performance
Easy debugging: We can use Redux DevTools (we are going to cover that topic
in Chapter 12, Testing and Debugging)

We can work with immutability in the following ways:

ES6:
Object.assign

Spread operator (...)
Libraries:

Immutable.js

Lodash (merge and extend)

Mastering Redux Chapter 5

[182]

What is a reducer?

A reducer resembles a meat grinder. In the meat grinder, we add the ingredients on top
(state and action), and at the other end we get the result (a new state):

In technical terms, the reducer is a pure function that receives two parameters (the current
state and the action), and you return a new immutable state depending on the action.

Types of components

Container:

Focuses on how things work
Is connected to Redux
Dispatches Redux actions
Is generated by react-redux

Presentational:

Focuses on how things look
Is not connected to Redux
Receives data or functions via props
Most of the time are Stateless

Mastering Redux Chapter 5

[183]

Redux Flow

The Redux Flow starts when we call an action from the UI (React component). This action
will send the information (type and payload) to the store, which interacts with the
reducers to update the state based on the action type. Once the state is updated by the
reducer, it returns the value to the store, and then the store sends the new value to our
React application:

Creating a Redux Store
A store holds the whole state of your application, and the only way to change the state
inside is by dispatching an action. A store is not a class; it is just an object with a few
methods on it.

The store methods are as follows:

getState(): Returns the current state of your application
dispatch(action): Dispatches an action and is the only way to trigger a state
change
subscribe(listener): Adds a change listener that is called any time an action
is dispatched
replaceReducer(nextReducer): Replaces the reducer that is currently used
by the store to calculate the state

Mastering Redux Chapter 5

[184]

Getting ready
To work with Redux, we need to install the following packages:

npm install redux react-redux

How to do it...
First, we need to create a file for our store at src/shared/redux/configureStore.js:

Let's go ahead and write the following code:1.

 // Dependencies
 import { createStore } from 'redux';

 // Root Reducer
 import rootReducer from '../reducers';

 export default function configureStore(initialState) {
 return createStore(
 rootReducer,
 initialState
);
 }

File: src/shared/redux/configureStore.js

The second thing we need to do is to create our initialState variable in our2.
public/index.html file. For now, we will create a device state to detect
whether the user is using a mobile or a desktop:

<body>
 <div id="root"></div>

 <script>
 // Detecting the user device
 const isMobile = /iPhone|Android/i.test(navigator.userAgent);

 // Creating our initialState
 const initialState = {
 device: {
 isMobile
 }
 };

 // Saving our initialState to the window object

Mastering Redux Chapter 5

[185]

 window.initialState = initialState;
 </script>
</body>

File: public/index.html

We need to create a reducers directory in our shared folder. The first reducer3.
we need to create is deviceReducer:

export default function deviceReducer(state = {}) {
 return state;
}

File: src/shared/reducers/deviceReducer.js

Once we have created deviceReducer, we need to create an index.js file,4.
where we are going to import all our reducers and combine them into a
rootReducer:

// Dependencies
import { combineReducers } from 'redux';

// Shared Reducers
import device from './deviceReducer';

const rootReducer = combineReducers({
 device
});

export default rootReducer;

File: src/shared/reducers/index.js

Now let's modify our src/index.js file. We need to create our Redux Store and5.
pass it to our provider:

import React from 'react';
import { render } from 'react-dom';
import { BrowserRouter as Router } from 'react-router-dom';
import { Provider } from 'react-redux';
import './index.css';

// Redux Store
import configureStore from './shared/redux/configureStore';

// Routes
import AppRoutes from './routes';

Mastering Redux Chapter 5

[186]

// Configuring Redux Store
const store = configureStore(window.initialState);

// DOM
const rootElement = document.getElementById('root');

// App Wrapper
const renderApp = Component => {
 render(
 <Provider store={store}>
 <Router>
 <Component />
 </Router>
 </Provider>,
 rootElement
);
};

// Rendering our App
renderApp(AppRoutes);

Now we can edit our Home component. We need to connect our component to6.
Redux using connect from react-redux, and then, using mapStateToProps,
we are going to retrieve the device's state:

import React from 'react';
import { bool } from 'prop-types';
import { connect } from 'react-redux';

const Home = props => {
 const { isMobile } = props;

 return (
 <div className="Home">
 <h1>Home</h1>

 <p>
 You are using:
 {isMobile ? 'mobile' : 'desktop'}
 </p>
 </div>
);
};

Home.propTypes = {
 isMobile: bool
};

Mastering Redux Chapter 5

[187]

function mapStateToProps(state) {
 return {
 isMobile: state.device.isMobile
 };
}

function mapDispatchToProps() {
 return {};
}

export default connect(mapStateToProps, mapDispatchToProps)(Home);

How it works...
If you followed all the steps correctly, you should be able to see this view using Chrome in
your desktop:

Mastering Redux Chapter 5

[188]

And if you activate the Chrome Device Emulator, or if you use a real device or the iPhone
simulator, you will see this view:

What is mapStateToProps?

The mapStateToProps function typically confuses many people, but it is easy to
understand. It takes a piece of the state (from the store), and it passes it into your
component as a prop. In other words, the parameter that receives mapStateToProps is the
Redux state, and inside you will have all the reducers you have defined in rootReducer,
and then you return an object with the data you need to send to your component. Here's an
example:

function mapStateToProps(state) {
 return {
 isMobile: state.device.isMobile
 };
}

As you can see, the state has a device node, which is our deviceReducer; there are other
ways to do this that, most of the time, confuse many people. One way is by using ES6
destructuring and arrow functions something like this:

const mapStateToProps = ({ device }) => ({
 isMobile: device.isMobile
});

Mastering Redux Chapter 5

[189]

Also, there is another way to do it directly in the connect middleware. Usually, this can be
confusing, to begin with, but once you get used to it, it's the way to go. I typically do this:

export default connect(({ device }) => ({
 isMobile: device.isMobile
}), null)(Home);

After we map our Redux state to the props, we can retrieve the data like this:

const { isMobile } = props;

As you can see, for the second parameter, mapDispatchToProps, I directly sent a null
value since we are not dispatching an action in this component yet. In the next recipe, I am
going to talk about mapDispatchToProps.

Making action creators and dispatching
actions
Actions are the most crucial pieces of Redux; they are responsible for triggering state
updates in our Redux Store. In this recipe, we are going to display the top 100
cryptocurrencies listed on http:/ ​/​www. ​coinmarketcap. ​com using their public API.

Getting ready
For this recipe, we need to install Axios (a promise-based HTTP client for the browser and
Node.js) and Redux Thunk (a thunk is a function that wraps an expression to delay its
evaluation):

npm install axios redux-thunk

How to do it...
We are going to use the same code we created in the last recipe (Repository:
/Chapter05/Recipe1/store) and add some modifications:

First, we need to create new folders: src/actions, src/reducers,1.
src/components/Coins, and src/shared/utils.

http://www.coinmarketcap.com
http://www.coinmarketcap.com
http://www.coinmarketcap.com
http://www.coinmarketcap.com
http://www.coinmarketcap.com
http://www.coinmarketcap.com
http://www.coinmarketcap.com
http://www.coinmarketcap.com
http://www.coinmarketcap.com

Mastering Redux Chapter 5

[190]

The first file we need to create issrc/actions/actionTypes.js, where we2.
need to add our constants for our actions:

export const FETCH_COINS_REQUEST = 'FETCH_COINS_REQUEST';
export const FETCH_COINS_SUCCESS = 'FETCH_COINS_SUCCESS';
export const FETCH_COINS_ERROR = 'FETCH_COINS_ERROR';

File: src/actions/actionTypes.js

Maybe you are wondering why we need to create a constant with the same name3.
as the string. It is because, when using constants, we can't have duplicate
constant names (we will get an error if we repeat one by mistake). Another
reason is that the actions are used in two files, in the actual actions file and then
in our reducer. To avoid repeating the strings, I decided to create the
actionTypes.js file and write our constants once.
I like to divide my actions into three parts: request, received, and error. I4.
called those main actions base actions, and we need to create a file for these
actions in src/shared/redux/baseActions.js:

// Base Actions
export const request = type => ({
 type
});

export const received = (type, payload) => ({
 type,
 payload
});

export const error = type => ({
 type
});

File: src/shared/redux/baseActions.js

After we have built our baseActions.js file, we need to create another file for5.
our actions, and this should be inside src/actions/coinsActions.js. For this
recipe, we will use the public API from CoinMarketCap (https:/ ​/​api.
coinmarketcap. ​com/ ​v1/ ​ticker/ ​):

// Dependencies
import axios from 'axios';

// Action Types
import {

https://api.coinmarketcap.com/v1/ticker/
https://api.coinmarketcap.com/v1/ticker/
https://api.coinmarketcap.com/v1/ticker/
https://api.coinmarketcap.com/v1/ticker/
https://api.coinmarketcap.com/v1/ticker/
https://api.coinmarketcap.com/v1/ticker/
https://api.coinmarketcap.com/v1/ticker/
https://api.coinmarketcap.com/v1/ticker/
https://api.coinmarketcap.com/v1/ticker/
https://api.coinmarketcap.com/v1/ticker/
https://api.coinmarketcap.com/v1/ticker/
https://api.coinmarketcap.com/v1/ticker/
https://api.coinmarketcap.com/v1/ticker/

Mastering Redux Chapter 5

[191]

 FETCH_COINS_REQUEST,
 FETCH_COINS_SUCCESS,
 FETCH_COINS_ERROR
} from './actionTypes';

// Base Actions
 import { request, received, error } from
'../shared/redux/baseActions';

export const fetchCoins = () => dispatch => {
 // Dispatching our request action
 dispatch(request(FETCH_COINS_REQUEST));

 // Axios Data
 const axiosData = {
 method: 'GET',
 url: 'https://api.coinmarketcap.com/v1/ticker/',
 headers: {
 Accept: 'application/json',
 'Content-Type': 'application/json'
 }
 };

 // If everything is correct we dispatch our received action
 // otherwise our error action.
 return axios(axiosData)
 .then(response => dispatch(received(FETCH_COINS_SUCCESS,
response.data)))
 .catch(err => {
 // eslint-disable-next-line no-console
 console.log('AXIOS ERROR:', err.response);
 dispatch(error(FETCH_COINS_ERROR));
 });
};

File: src/actions/coinsActions.js

Once we have our actions file ready, we need to create our reducer file to update6.
our Redux state based on our actions. Let's create a file in
src/reducers/coinsReducer.js:

// Action Types
import {
 FETCH_COINS_SUCCESS,
 FETCH_SINGLE_COIN_SUCCESS
} from '../actions/actionTypes';

// Utils

Mastering Redux Chapter 5

[192]

import { getNewState } from '../shared/utils/frontend';

// Initial State
const initialState = {
 coins: []
};

export default function coinsReducer(state = initialState, action)
{
 switch (action.type) {
 case FETCH_COINS_SUCCESS: {
 const { payload: coins } = action;

 return getNewState(state, {
 coins
 });
 }

 default:
 return state;
 }
};

File: src/reducers/coinsReducer.js

Then we need to add our reducer to our combineReducers in7.
src/shared/reducers/index.js:

// Dependencies
import { combineReducers } from 'redux';

// Components Reducers
import coins from '../../reducers/coinsReducer';

// Shared Reducers
import device from './deviceReducer';

const rootReducer = combineReducers({
 coins,
 device
});

export default rootReducer;

File: src/shared/reducers/index.js

Mastering Redux Chapter 5

[193]

As you can see, I included the getNewState util; this is a basic function that8.
performs an Object.assign, but is more explicit and easy to understand, so
let's create our utils file at src/shared/utils/frontend.js. The
isFirstRender function is required for our component to validate whether our
data is empty or not the first time we try to render:

export function getNewState(state, newState) {
 return Object.assign({}, state, newState);
}

export function isFirstRender(items) {
 return !items || items.length === 0 || Object.keys(items).length
=== 0;
}

File: src/shared/utils/frontend.js

Now we need to create a Container component at9.
src/components/Coins/index.js. In the introduction, I mentioned there are
two types of components: container and presentational. The container must
be connected to Redux and should not have any JSX code, just our
mapStateToProps and mapDispatchToProps, and then on the export, we can
pass the presentational component that we are going to render, passing as
props the values of the actions and our Redux state. To create our
mapDispatchToProps function, we need to use the bindActionCreators
method from our Redux library. This will bind our dispatch method to all the
actions we pass. There are different ways to do this without
bindActionCreators, but using this method is considered good practice:

// Dependencies
import { connect } from 'react-redux';
import { bindActionCreators } from 'redux';

// Components
import Coins from './Coins';

// Actions
import { fetchCoins } from '../../actions/coinsActions';
// Mapping our Redux State to Props
const mapStateToProps = ({ coins }) => ({
 coins
});
// Binding our fetchCoins action.
const mapDispatchToProps = dispatch => bindActionCreators(
 {

Mastering Redux Chapter 5

[194]

 fetchCoins
 },
 dispatch
);

export default connect(
 mapStateToProps,
 mapDispatchToProps
)(Coins);

File: src/components/Coins/index.js

The Coins component that we are importing in our container is as follows:10.

// Dependencies
import React, { Component } from 'react';
import { array } from 'prop-types';

// Utils
import { isFirstRender } from '../../shared/utils/frontend';

// Styles
import './Coins.css';

class Coins extends Component {
 static propTypes = {
 coins: array
 };

 componentWillMount() {
 const { fetchCoins } = this.props;
 // Fetching coins action.
 fetchCoins();
 }

 render() {
 const { coins: { coins } } = this.props;
 // If the coins const is an empty array,
 // then we return null.
 if (isFirstRender(coins)) {
 return null;
 }

Mastering Redux Chapter 5

[195]

 return (
 <div className="Coins">
 <h1>Top 100 Coins</h1>

 {coins.map((coin, key) => (
 <li key={key}>

 {coin.rank} {coin.name} {coin.symbol}

 ${coin.price_usd}

))}

 </div>
);
 }
}

export default Coins;

File: src/components/Coins/Coins.jsx

And the CSS for this component is as follows:11.

.Coins ul {
 margin: 0 auto;
 margin-bottom: 20px;
 padding: 0;
 list-style: none;
 width: 300px;
}

.Coins ul a {
 display: block;
 color: #333;
 text-decoration: none;
 background: #5ed4ff;
}

.Coins ul a:hover {
 color: #333;
 text-decoration: none;
 background: #baecff;
}

.Coins ul li {
 border-bottom: 1px solid black;

Mastering Redux Chapter 5

[196]

 text-align: left;
 padding: 10px;
 display: flex;
 justify-content: space-between;
}

File: src/components/Coins/Coins.css

In our src/shared/redux/configureStore.js file, we need to import12.
redux-thunk and use the applyMiddleware method to use this library in our
Redux Store:

// Dependencies
import { createStore, applyMiddleware } from 'redux';
import thunk from 'redux-thunk';

// Root Reducer
import rootReducer from '../reducers';

export default function configureStore(initialState) {
 const middleware = [
 thunk
];

 return createStore(
 rootReducer,
 initialState,
 applyMiddleware(...middleware)
);
}

File: src/shared/redux/configureStore.js

Mastering Redux Chapter 5

[197]

Let's add the link to /coins in our Header component:13.

import React from 'react';
import PropTypes from 'prop-types';
import { Link } from 'react-router-dom';
import logo from '../../images/logo.svg';

// We created a component with a simple arrow function.
const Header = props => {
 const {
 title = 'Welcome to React',
 url = 'http://localhost:3000'
 } = props;

 return (
 <header className="App-header">

 <h1 className="App-title">{title}</h1>

 <Link to="/">Home</Link>
 <Link to="/about">About</Link>
 <Link to="/coins">Coins</Link>
 <Link to="/notes">Notes</Link>
 <Link to="/contact">Contact</Link>

 </header>
);
};

// Even with Functional Components we are able to validate our
PropTypes.
Header.propTypes = {
 title: PropTypes.string.isRequired,
 url: PropTypes.string
};

export default Header;

File: src/shared/components/layout/Header.jsx

Mastering Redux Chapter 5

[198]

Finally, the last piece of the puzzle is to add our component (container) to our14.
src/routes.jsx file:

// Dependencies
import React from 'react';
import { Route, Switch } from 'react-router-dom';

// Components
import App from './components/App';
import About from './components/About';
import Coins from './components/Coins';
import Contact from './components/Contact';
import Home from './components/Home';
import Notes from './components/Notes';
import Error404 from './components/Error/404';

const AppRoutes = () => (
 <App>
 <Switch>
 <Route path="/" component={Home} exact />
 <Route path="/about" component={About} exact />
 <Route path="/coins" component={Coins} exact />
 <Route path="/contact" component={Contact} exact />
 <Route path="/notes" component={Notes} exact />
 <Route path="/notes/:noteId" component={Notes} exact />
 <Route component={Error404} />
 </Switch>
 </App>
);

export default AppRoutes;

File: src/routes.jsx

Mastering Redux Chapter 5

[199]

How it works...
If you open the API (https:/ ​/​api. ​coinmarketcap. ​com/ ​v1/​ticker/ ​) you will see the JSON
object like this:

https://api.coinmarketcap.com/v1/ticker/
https://api.coinmarketcap.com/v1/ticker/
https://api.coinmarketcap.com/v1/ticker/
https://api.coinmarketcap.com/v1/ticker/
https://api.coinmarketcap.com/v1/ticker/
https://api.coinmarketcap.com/v1/ticker/
https://api.coinmarketcap.com/v1/ticker/
https://api.coinmarketcap.com/v1/ticker/
https://api.coinmarketcap.com/v1/ticker/
https://api.coinmarketcap.com/v1/ticker/
https://api.coinmarketcap.com/v1/ticker/
https://api.coinmarketcap.com/v1/ticker/
https://api.coinmarketcap.com/v1/ticker/
https://api.coinmarketcap.com/v1/ticker/

Mastering Redux Chapter 5

[200]

We will get an array of objects with the top 100 coins in https:/ ​/​coinmarketcap. ​com. If
you followed all the steps correctly, you would be able to see this view:

https://coinmarketcap.com
https://coinmarketcap.com
https://coinmarketcap.com
https://coinmarketcap.com
https://coinmarketcap.com
https://coinmarketcap.com
https://coinmarketcap.com

Mastering Redux Chapter 5

[201]

Implementing Firebase with Redux
Firebase is a Backend-as-a-Service (BaaS) that is part of the Google Cloud Platform. One of
the most popular services of Firebase is the Realtime Database, which uses a WebSocket to
sync your data. Firebase also offers services for file storage, authentication (social media
and email/password authentication), hosting, and more.

You can use Firebase mainly for real-time applications, but you can also use it as your
regular database for non-real-time applications if you want to. Firebase is supported by
many languages (such as JavaScript, Java, Python, and Go) and platforms such as Android,
iOS, and the web.

Firebase is free but, of course, if you need more capacity, they have different plans
depending on your project's requirements. You can check out the prices at https:/ ​/
firebase.​google. ​com/ ​pricing.

For this recipe, we are going to use Firebase's free service to show some popular phrases.
That means you will need to create an account using your Google email at https:/ ​/
firebase.​google. ​com.

Getting ready
Once you are registered on Firebase, you need to create a new project by clicking on Add
project in your Firebase console:

https://firebase.google.com/pricing
https://firebase.google.com/pricing
https://firebase.google.com/pricing
https://firebase.google.com/pricing
https://firebase.google.com/pricing
https://firebase.google.com/pricing
https://firebase.google.com/pricing
https://firebase.google.com/pricing
https://firebase.google.com/pricing
https://firebase.google.com/pricing
https://firebase.google.com
https://firebase.google.com
https://firebase.google.com
https://firebase.google.com
https://firebase.google.com
https://firebase.google.com
https://firebase.google.com
https://firebase.google.com

Mastering Redux Chapter 5

[202]

I'll name my project codejobs; of course, you can name it as you want:

As you can see, Firebase automatically added a random code to our Project ID, but you can
edit it if you want to make sure the Project ID does not exist, and after you must accept the
terms and conditions and click on Create Project button:

Mastering Redux Chapter 5

[203]

Now you must select the Add Firebase to your web app option, and you will get
information about your application:

Mastering Redux Chapter 5

[204]

Do not share this information with anyone. I'm sharing this with you
because I want to show you the way to connect your application to
Firebase.

Now go to Develop | Database in your dashboard and click on the Create database button:

Mastering Redux Chapter 5

[205]

After that, choose the Start option in locked mode and click on the Enable button:

Mastering Redux Chapter 5

[206]

Then, at the top of the page, select the dropdown and choose the Realtime
Database option:

Once we have our Realtime Database created, let's import some data. To do this, you can
select the Import JSON option in the dropdown:

Mastering Redux Chapter 5

[207]

Let's create a basic JSON file to import our phrases data:

 {
 "phrases": [
 {
 "phrase": "A room without books is like a body without a
 soul.",
 "author": "Marcus Tullius Cicero"
 },
 {
 "phrase": "Two things are infinite: the universe and human
 stupidity; and I'm not sure about the universe.",
 "author": "Albert Einstein"
 },
 {
 "phrase": "You only live once, but if you do it right, once is
 enough.",
 "author": "Mae West"
 },
 {
 "phrase": "If you tell the truth, you don't have to remember
 anything.",
 "author": "Mark Twain"
 },
 {
 "phrase": "Be yourself; everyone else is already taken.",
 "author": "Oscar Wilde"
 }
]
 }

File: src/data/phrases.json

Mastering Redux Chapter 5

[208]

Save this file in a data directory and then import it into your Firebase database:

As you can see in the red warning, All data at this location will be
overwritten. This means that if you have any old data in the database, it
will be replaced, so be careful with importing new data into your
database.

Mastering Redux Chapter 5

[209]

If you did everything correctly, you should see the imported data like this:

Mastering Redux Chapter 5

[210]

Now we need to alter our permissions to be able to read and write in our database. If you
go to the Rules tab, you will see something like this:

Mastering Redux Chapter 5

[211]

For now, let's change them to true and then click on the Publish button:

Finally, we have finished all the needed steps on Firebase. Now let's create the Firebase
application in React. We will re-use the last recipe of the CoinMarketCap (Repository:
Chapter05/Recipe2/coinmarketcap). The first thing we need to do is to install the
firebase dependency:

 npm install firebase

How to do it...
I removed some components from the last recipe, and I just focused on the Phrases
application. Let's create it by following these steps:

Copy your project configuration and replace it in the file:1.

 export const fbConfig = {
 ref: 'phrases',
 app: {
 apiKey: 'AIzaSyASppMJh_6QIGTeXVBeYszzz7iTNTADxRU',

Mastering Redux Chapter 5

[212]

 authDomain: 'codejobs-2240b.firebaseapp.com',
 databaseURL: 'https://codejobs-2240b.firebaseio.com',
 projectId: 'codejobs-2240b',
 storageBucket: 'codejobs-2240b.appspot.com',
 messagingSenderId: '278058258089'
 }
 };

File: src/config/firebase.js

After this, we need to create a file to manage our Firebase database, and we will2.
export our ref (our phrases table):

 import firebase from 'firebase';
 import { fbConfig } from '../../config/firebase';

 firebase.initializeApp(fbConfig.app);

 export default firebase.database().ref(fbConfig.ref);

File: src/shared/firebase/database.js

Let's prepare everything for our component. First, go to the routes file and add3.
the Phrases container to the root path of your router:

 // Dependencies
 import React from 'react';
 import { Route, Switch } from 'react-router-dom';

 // Components
 import App from './components/App';
 import Error404 from './components/Error/404';
 import Phrases from './components/Phrases';

 const AppRoutes = () => (
 <App>
 <Switch>
 <Route path="/" component={Phrases} exact />
 <Route component={Error404} />
 </Switch>
 </App>
);

 export default AppRoutes;

File: src/routes.jsx

Mastering Redux Chapter 5

[213]

Now let's create our actionTypes file:4.

 export const FETCH_PHRASE_REQUEST = 'FETCH_PHRASE_REQUEST';
 export const FETCH_PHRASE_SUCCESS = 'FETCH_PHRASE_SUCCESS';

 export const ADD_PHRASE_REQUEST = 'ADD_PHRASE_REQUEST';

 export const DELETE_PHRASE_REQUEST = 'DELETE_PHRASE_REQUEST';
 export const DELETE_PHRASE_SUCCESS = 'DELETE_PHRASE_SUCCESS';

 export const UPDATE_PHRASE_REQUEST = 'UPDATE_PHRASE_REQUEST';
 export const UPDATE_PHRASE_SUCCESS = 'UPDATE_PHRASE_SUCCESS';
 export const UPDATE_PHRASE_ERROR = 'UPDATE_PHRASE_ERROR';

File: src/actions/actionTypes.js

Now, in our actions, we are going to perform four tasks (fetch, add, delete, and5.
update) just like a CRUD (Create, Read, Update and Delete):

 // Firebase Database
 import database from '../shared/firebase/database';

 // Action Types
 import {
 FETCH_PHRASE_REQUEST,
 FETCH_PHRASE_SUCCESS,
 ADD_PHRASE_REQUEST,
 DELETE_PHRASE_REQUEST,
 DELETE_PHRASE_SUCCESS,
 UPDATE_PHRASE_REQUEST,
 UPDATE_PHRASE_SUCCESS,
 UPDATE_PHRASE_ERROR
 } from './actionTypes';

 // Base Actions
 import { request, received } from '../shared/redux/baseActions';

 export const fetchPhrases = () => dispatch => {
 // Dispatching our FETCH_PHRASE_REQUEST action
 dispatch(request(FETCH_PHRASE_REQUEST));

 // Listening for added rows
 database.on('child_added', snapshot => {
 dispatch(received(
 FETCH_PHRASE_SUCCESS,
 {
 key: snapshot.key,
 ...snapshot.val()

Mastering Redux Chapter 5

[214]

 }
));
 });

 // Listening for updated rows
 database.on('child_changed', snapshot => {
 dispatch(received(
 UPDATE_PHRASE_SUCCESS,
 {
 key: snapshot.key,
 ...snapshot.val()
 }
));
 });

 // Lisetining for removed rows
 database.on('child_removed', snapshot => {
 dispatch(received(
 DELETE_PHRASE_SUCCESS,
 {
 key: snapshot.key
 }
));
 });
 };

 export const addPhrase = (phrase, author) => dispatch => {
 // Dispatching our ADD_PHRASE_REQUEST action
 dispatch(request(ADD_PHRASE_REQUEST));

 // Adding a new element by pushing to the ref.
 // NOTE: Once this is executed the listener
 // will be on fetchPhrases (child_added).
 database.push({
 phrase,
 author
 });
 }

 export const deletePhrase = key => dispatch => {
 // Dispatching our DELETE_PHRASE_REQUEST action
 dispatch(request(DELETE_PHRASE_REQUEST));

 // Removing element by key
 // NOTE: Once this is executed the listener
 // will be on fetchPhrases (child_removed).
 database.child(key).remove();
 }

Mastering Redux Chapter 5

[215]

 export const updatePhrase = (key, phrase, author) => dispatch =>
{
 // Dispatching our UPDATE_PHRASE_REQUEST action
 dispatch(request(UPDATE_PHRASE_REQUEST));

 // Collecting our data...
 const data = {
 phrase,
 author
 };

 // Updating an element by key and data
 database
 // First we select our element by key
 .child(key)
 // Updating the data in this point
 .update(data)
 // Returning the updated data
 .then(() => database.once('value'))
 // Getting the actual values of the snapshat
 .then(snapshot => snapshot.val())
 .catch(error => {
 // If there is an error we dispatch our error action
 dispatch(request(UPDATE_PHRASE_ERROR));

 return {
 errorCode: error.code,
 errorMessage: error.message
 };
 });
 };

File: src/actions/phrasesActions.js

In Firebase, we don't use a regular ID. Instead, Firebase uses a key value
as an ID. The imported data is like a basic array, with keys 0, 1, 2, 3, 4, and
so on, so for that data, each key is used as an ID. But when we create data
through Firebase, the keys are going to be unique string values with
random code, such as -lg4fgFQkfm.

After we have added our actions, we can create our reducer file:6.

 // Action Types
 import {
 FETCH_PHRASE_SUCCESS,
 DELETE_PHRASE_SUCCESS,
 UPDATE_PHRASE_SUCCESS,

Mastering Redux Chapter 5

[216]

 } from '../actions/actionTypes';
 // Utils
 import { getNewState } from '../shared/utils/frontend';

 // Initial State
 const initialState = {
 phrases: []
 };

 export default function phrasesReducer(state = initialState,
action) {
 switch (action.type) {
 case FETCH_PHRASE_SUCCESS: {
 const { payload: phrase } = action;

 const newPhrases = [...state.phrases, phrase];

 return getNewState(state, {
 phrases: newPhrases
 });
 }

 case DELETE_PHRASE_SUCCESS: {
 const { payload: deletedPhrase } = action;

 const filteredPhrases = state.phrases.filter(
 phrase => phrase.key !== deletedPhrase.key
);

 return getNewState(state, {
 phrases: filteredPhrases
 });
 }

 case UPDATE_PHRASE_SUCCESS: {
 const { payload: updatedPhrase } = action;

 const index = state.phrases.findIndex(
 phrase => phrase.key === updatedPhrase.key
);

 state.phrases[index] = updatedPhrase;

 return getNewState({}, {
 phrases: state.phrases
 });
 }

Mastering Redux Chapter 5

[217]

 default:
 return state;
 }
 };

File: src/reducers/phrasesReducer.js

Let's now create our Redux container. We will include all the actions we will7.
dispatch in our component and connect Redux to get the phrases state:

 // Dependencies
 import { connect } from 'react-redux';
 import { bindActionCreators } from 'redux';

 // Components
 import Phrases from './Phrases';

 // Actions
 import {
 addPhrase,
 deletePhrase,
 fetchPhrases,
 updatePhrase
 } from '../../actions/phrasesActions';

 const mapStateToProps = ({ phrases }) => ({
 phrases: phrases.phrases
 });

 const mapDispatchToProps = dispatch => bindActionCreators(
 {
 addPhrase,
 deletePhrase,
 fetchPhrases,
 updatePhrase
 },
 dispatch
);

 export default connect(
 mapStateToProps,
 mapDispatchToProps
)(Phrases);

File: src/components/Phrases/index.js

Mastering Redux Chapter 5

[218]

Then our Phrases component will be as follows:8.

 // Dependencies
 import React, { Component } from 'react';
 import { array } from 'prop-types';

 // Styles
 import './Phrases.css';

 class Phrases extends Component {
 static propTypes = {
 phrases: array
 };

 state = {
 phrase: '',
 author: '',
 editKey: false
 };

 componentWillMount() {
 this.props.fetchPhrases();
 }

 handleOnChange = e => {
 const { target: { name, value } } = e;

 this.setState({
 [name]: value
 });
 }

 handleAddNewPhrase = () => {
 if (this.state.phrase && this.state.author) {
 this.props.addPhrase(
 this.state.phrase,
 this.state.author
);
 // After we created the new phrase we clean the states
 this.setState({
 phrase: '',
 author: ''
 });
 }
 }

 handleDeleteElement = key => {
 this.props.deletePhrase(key);

Mastering Redux Chapter 5

[219]

 }

 handleEditElement = (key, phrase, author) => {
 this.setState({
 editKey: key,
 phrase,
 author
 });
 }

 handleUpdatePhrase = () => {
 if (this.state.phrase && this.state.author) {
 this.props.updatePhrase(
 this.state.editKey,
 this.state.phrase,
 this.state.author
);

 this.setState({
 phrase: '',
 author: '',
 editKey: false
 });
 }
 }

 render() {
 const { phrases } = this.props;

 return (
 <div className="phrases">
 <div className="add">
 <p>Phrase: </p>

 <textarea
 name="phrase"
 value={this.state.phrase}
 onChange={this.handleOnChange}
 ></textarea>

 <p>Author</p>
 <input
 name="author"
 type="text"
 value={this.state.author}
 onChange={this.handleOnChange}
 />

Mastering Redux Chapter 5

[220]

 <p>
 <button
 onClick={
 this.state.editKey
 ? this.handleUpdatePhrase
 : this.handleAddNewPhrase
 }
 >
 {this.state.editKey
 ? 'Edit Phrase'
 : 'Add New Phrase'}
 </button>
 </p>
 </div>

 {phrases && phrases.map(({ key, phrase, author }) => (
 <blockquote key={key} className="phrase">
 <p className="mark">
 “
 </p>

 <p className="text">
 {phrase}
 </p>

 <hr />

 <p className="author">
 {author}
 </p>

 {
 this.handleDeleteElement(key);
 }}
 >
 X

 <a
 onClick={
 () => this.handleEditElement(key, phrase, author)
 }
 >
 Edit

 </blockquote>
))}
 </div>

Mastering Redux Chapter 5

[221]

);
 }
 }

 export default Phrases;

File: src/components/Phrases/Phrases.jsx

Finally, our styles file is as follows:9.

 hr {
 width: 98%;
 border: 1px solid white;
 }

 .phrase {
 background-color: #2db2ff;
 border-radius: 17px;
 box-shadow: 2px 2px 2px 2px #E0E0E0;
 color: white;
 font-size: 20px;
 margin-top: 25px;
 overflow: hidden;
 border-left: none;
 padding: 20px;
 }

 .mark {
 color: white;
 font-family: "Times New Roman", Georgia, Serif;
 font-size: 100px;
 font-weight: bold;
 margin-top: -20px;
 text-align: left;
 text-indent: 20px;
 }

 .text {
 font-size: 30px;
 font-style: italic;
 margin: 0 auto;
 margin-top: -65px;
 text-align: center;
 width: 90%;
 }

 .author {
 font-size: 30px;

Mastering Redux Chapter 5

[222]

 }

 textarea {
 width: 50%;
 font-size: 30px;
 padding: 10px;
 border: 1px solid #333;
 }

 input {
 font-size: 30px;
 border: 1px solid #333;
 }

 a {
 cursor: pointer;
 float: right;
 margin-right: 10px;
 }

File: src/components/Phrases/Phrases.css

How it works...
The key to understanding how Firebase works with Redux is that you need to know that
Firebase uses a WebSocket to sync the data, and that means the data is streaming in real
time. The way to detect data changes is by using the database.on() method.

In the fetchPhrases() action, we have three Firebase listeners:

database.on('child_added'): It has two functionalities. The first one brings
the data from Firebase (the first time) row by row. The second functionality is to
detect when a new row is added to the database and updates the data in real
time.
database.on('child_changed'): It detects changes in existing rows. This
works when we perform an update of a row.
database.on('child_removed'): Detects when a row is removed.

Mastering Redux Chapter 5

[223]

There is another method called database.once('value'), which does the same thing as
child_added but returns the data in an array, and just once. That means it does not detect
dynamic changes like child_added.

If you run the application, you will see this view:

Mastering Redux Chapter 5

[224]

The blockquotes are too big to put all of them in, but our last one is this:

Let's modify our phrases.json and add a new row:

 {
 "phrases": [
 {
 "phrase": "A room without books is like a body without a
 soul.",
 "author": "Marcus Tullius Cicero"
 },
 {
 "phrase": "Two things are infinite: the universe and human
 stupidity; and
 I'm not sure about the universe.",
 "author": "Albert Einstein"
 },
 {
 "phrase": "You only live once, but if you do it right, once is
 enough.",
 "author": "Mae West"
 },
 {
 "phrase": "If you tell the truth, you don't have to remember

Mastering Redux Chapter 5

[225]

 anything.",
 "author": "Mark Twain"
 },
 {
 "phrase": "Be yourself; everyone else is already taken.",
 "author": "Oscar Wilde"
 },
 {
 "phrase": "Hasta la vista, baby!",
 "author": "Terminator"
 }
]
 }

If we go to Firebase and import the JSON again, we will see that, in real time, the data will
be updated without refreshing the page:

Mastering Redux Chapter 5

[226]

Now, if you see an X link to remove phrases, let's remove the first one (Marcus Tullius
Cicero). If you open the Firebase page in another tab, you will see that the data is being
deleted in real time:

Mastering Redux Chapter 5

[227]

Also, if you add a new row (using textarea and input), you will see that reflected in real
time:

As I mentioned before, when we add new data from our React application, instead of
importing a JSON Firebase will generate unique keys for the new data. In this case for the
new phrase I added, the -LJSYCHLHEe9QWiAiak4 key was created.

Mastering Redux Chapter 5

[228]

Even if we update a row, we can see that the change was reflected in real time:

As you can see, all the operations are easy to implement, and with Firebase we saved a lot
of time that would otherwise have been spent working on a backend service. Firebase is
awesome!

6
Creating Forms with Redux

Form
In this chapter, the following recipes will be covered:

Creating a controlled form with the local state
Building a form using Redux Form
Implementing validation in a form

Introduction
Forms are a fundamental part of any web application, and in the following recipes, we are
going to learn how to use forms with and without Redux Form.

Creating a controlled form with the local
state
For this recipe, we are going to create a simple Todo List to use a form using our local state.

Getting ready
For this recipe, we need to install the uuid package to generate random IDs, as shown in
the following code:

npm install uuid

Creating Forms with Redux Form Chapter 6

[230]

How to do it...
Let's create our controlled form by following these steps:

First, for the Todo List, we will create a new component called Todo into1.
src/components/Todo/index.jsx. The skeleton we will use is shown in the
following code:

import React, { Component } from 'react';
import uuidv4 from 'uuid/v4';
import './Todo.css';

class Todo extends Component {
 constructor() {
 super();

 // Initial state...
 this.state = {
 task: '',
 items: []
 };
 }

 render() {
 return (
 <div className="Todo">
 <h1>New Task:</h1>

 <form onSubmit={this.handleOnSubmit}>
 <input value={this.state.task} />
 </form>
 </div>
);
 }
}

export default Todo;

File: src/components/Todo/index.jsx

Creating Forms with Redux Form Chapter 6

[231]

Remember that we need to add the component to our src/routes.jsx, as2.
shown in the following code:

// Dependencies
import React from 'react';
import { Route, Switch } from 'react-router-dom';

// Components
import App from './components/App';
import About from './components/About';
import Coins from './components/Coins';
import Contact from './components/Contact';
import Home from './components/Home';
import Notes from './components/Notes';
import Todo from './components/Todo';
import Error404 from './components/Error/404';

const AppRoutes = () => (
 <App>
 <Switch>
 <Route path="/" component={Home} exact />
 <Route path="/about" component={About} exact />
 <Route path="/coins" component={Coins} exact />
 <Route path="/contact" component={Contact} exact />
 <Route path="/notes" component={Notes} exact />
 <Route path="/notes/:noteId" component={Notes} exact />
 <Route path="/todo" component={Todo} exact />
 <Route component={Error404} />
 </Switch>
 </App>
);

export default AppRoutes;

File: src/routes.jsx

If you go to /todo you will see the input, but you will probably notice that it is3.
not possible to write anything on it, and this is because we are connecting our
local state (this.state.task) to our input value, but we need an onChange
function to update our state, as demonstrated in the following code:

import React, { Component } from 'react';
import uuidv4 from 'uuid/v4';
import './Todo.css';

class Todo extends Component {
 constructor() {

Creating Forms with Redux Form Chapter 6

[232]

 super();

 // Initial state...
 this.state = {
 task: '',
 items: []
 };
 }

 handleOnChange = e => {
 const { target: { value } } = e;
 // Updating our task state with the input value...
 this.setState({
 task: value
 });
 }

 render() {
 return (
 <div className="Todo">
 <h1>New Task:</h1>

 <form onSubmit={this.handleOnSubmit}>
 <input
 value={this.state.task}
 onChange={this.handleOnChange}
 />
 </form>
 </div>
);
 }
}

export default Todo;

File: src/components/Todo/index.jsx

Creating Forms with Redux Form Chapter 6

[233]

Now we can write anything in our input, as shown in the following screenshot:4.

To save the item written in our input, we need to add an onSubmit function in5.
our form tag, where we need to update our local state to push the item to the
items array. Also, we need to include our List component, where we are going
to display all the items. The complete code is as follows:

import React, { Component } from 'react';
import uuidv4 from 'uuid/v4';
import List from './List';
import './Todo.css';

class Todo extends Component {
 constructor() {
 super();

 // Initial state...
 this.state = {
 task: '',
 items: []
 };
 }

 handleOnChange = e => {
 const { target: { value } } = e;

 // Updating our task state with the input value...
 this.setState({
 task: value
 });

Creating Forms with Redux Form Chapter 6

[234]

 }

 handleOnSubmit = e => {
 // Prevent default to avoid the actual form submit...
 e.preventDefault();

 // Once is submitted we reset the task value and we push
 // task to the items array.
 this.setState({
 task: '',
 items: [
 ...this.state.items,
 {
 id: uuidv4(),
 task: this.state.task,
 complete: false
 }
]
 });
 }

 render() {
 return (
 <div className="Todo">
 <h1>New Task:</h1>

 <form onSubmit={this.handleOnSubmit}>
 <input
 value={this.state.task}
 onChange={this.handleOnChange}
 />
 </form>

 <List items={this.state.items} />
 </div>
);
 }
}

export default Todo;

File: src/components/Todo/index.jsx

Creating Forms with Redux Form Chapter 6

[235]

Our List component will be a functional component where we will render a list6.
of items, as shown in the following code:

import React from 'react';

const List = props => (

 {props.items.map((item, key) => (
 <li key={key}>
 {item.task}

))}

);

export default List;

File: src/components/Todo/List.jsx

Finally, we need to add our CSS file, as shown in the following code:7.

.Todo {
 background-color: #f5f5f5;
 border-radius: 4px;
 border: 1px solid #e3e3e3;
 box-shadow: inset 0 1px 1px rgba(0,0,0,.05);
 margin-bottom: 20px;
 margin: 50px auto;
 min-height: 20px;
 padding: 19px;
 text-align: left;
 width: 70%;
}

.Todo ul {
 margin: 20px 0px;
 padding: 0;
 list-style: none;
}

.Todo ul li {
 background-color: #fff;
 border: 1px solid #ddd;
 display: flex;
 justify-content: space-between;
 margin-bottom: -1px;
 padding: 10px 15px;
 position: relative;

Creating Forms with Redux Form Chapter 6

[236]

}

.Todo form input {
 background-color: #fff;
 border-radius: 4px;
 border: 1px solid #ccc;
 box-shadow: inset 0 1px 1px rgba(0,0,0,.075);
 color: #555;
 font-size: 14px;
 height: 34px;
 line-height: 34px;
 padding: 6px 12px;
 width: 40%;
}

.Todo form button {
 background: #2ba6cb;
 border: 1px solid #1e728c;
 box-shadow: 0 1px 0 rgba(255, 255, 255, 0.5) inset;
 color: white;
 cursor: pointer;
 display: block;
 font-size: 14px;
 font-weight: bold;
 line-height: 1;
 margin: 20px auto;
 padding: 10px 20px 11px;
 position: relative;
 text-align: center;
 text-decoration: none;
}

File: src/components/Todo/Todo.css

Creating Forms with Redux Form Chapter 6

[237]

Our Todo List will look as shown in the following screenshot:8.

How it works...
As you can see, the only way to retrieve the values from input forms is by using the local
state with an onChange function to update the value of the input. If you connect a state to
the input value, but you don't add an onChange callback to update it, you won't be able to
write anything, since the Virtual DOM is not being updated, and the only way to do so is
by updating our local state.

Building a form using Redux Form
Redux Form is typically used for large forms or steps forms because it has a Redux state to
keep the values through the entire form. Also, Redux Form is handy to validate the data
and efficiently handle the submission.

Getting ready
For this recipe, we need to install Redux Form as follows:

 npm install redux-form

Creating Forms with Redux Form Chapter 6

[238]

How to do it...
For this recipe, we are going to make the same Todo List, but this time using Redux Form:

Once we've installed Redux Form, we need to do some modifications to the code1.
of the last recipe to implement Redux Form. The first thing we need to do is to
add a reducer for our forms. For this, we need to import a reducer from redux-
form, and we can change the name of the variable to formReducer to be more
explicit, and then add the reducer as a form into our combineReducers, as
shown in the following code:

// Dependencies
import { combineReducers } from 'redux';
import { reducer as formReducer } from 'redux-form';

// Components Reducers
import coins from '../../reducers/coinsReducer';

// Shared Reducers
import device from './deviceReducer';

const rootReducer = combineReducers({
 coins,
 device,
 form: formReducer
});

export default rootReducer;

File: src/shared/reducers/index.js

Normally, all the forms we create with Redux Form need their component, and2.
so that means we need to create a component to handle our Todo Form. As we
need to create a file called TodoForm.jsx into our Todo folder, the code of our
component is as follows:

import React, { Component } from 'react';
import { Field, reduxForm } from 'redux-form';

class TodoForm extends Component {
 // Functional component to render an input...
 renderInput = ({ input }) => <input {...input} type="text" />;

 // This function is useful to handle our
 onSubmit = values => {
 const { addTask, dispatch, reset } = this.props;

Creating Forms with Redux Form Chapter 6

[239]

 // Resetting our form, this will clear our input...
 dispatch(reset('todo'));

 // Executing our addTask method and
 // passing the form values.
 addTask(values);
 }

 render() {
 // handleSubmit is part of Redux Form
 // to handle the onSubmit event
 const { handleSubmit } = this.props;

 return (
 <form onSubmit={handleSubmit(this.onSubmit)}>
 {/* Field is a Redux Form Component, we need to pass the
 name of the input and the component we are using to
 render it */}
 <Field
 name="task"
 component={this.renderInput}
 />
 </form>
)
 }
}
// With this we named our form reducer for this specific form
(todo).
export default reduxForm({
 form: 'todo'
})(TodoForm);

File: src/components/Todo/TodoForm.jsx

Creating Forms with Redux Form Chapter 6

[240]

Redux Form contains many useful props to handle our data in the forms. I3.
market the props we are going to use for this recipe (addTask is a prop passed
from another component, so that one is not properly part of Redux Form), you
can see the all the props by adding a console in your render method
console.log(this.props);, as shown in the following screenshot:

Creating Forms with Redux Form Chapter 6

[241]

Now let's modify our Todo component to include the TodoForm component, and4.
receive the data through our addTask method, as shown in the following code:

import React, { Component } from 'react';
import uuidv4 from 'uuid/v4';
import List from './List';
import TodoForm from './TodoForm';
import './Todo.css';
class Todo extends Component {
 constructor() {
 super();

 // Initial state...
 this.state = {
 items: []
 };
 }

 addTask = values => {
 // This values are coming from our
 // onSubmit method in our TodoForm.
 const { task } = values;

 this.setState({
 items: [
 ...this.state.items,
 {
 id: uuidv4(),
 task,
 complete: false
 }
]
 });
 }

 render() {
 return (
 <div className="Todo">
 <h1>New Task:</h1>

 <TodoForm addTask={this.addTask} />
 <List items={this.state.items} />
 </div>
);
 }
}
export default Todo;

Creating Forms with Redux Form Chapter 6

[242]

How it works...
As you can see, Redux Form is easy to implement:

On the first step, we connected our Redux Form reducer to our store1.
In the second step, we create our TodoForm component, where we render our2.
form fields, connect our form reducer to the store, and where we send back the
values to the addTask callback
In the last step, we render our TodoForm and send the addTask callback, which3.
handles the task value to insert it into the local state

In the end, we are going to see the same result as the last recipe, but now using Redux
Form, as shown in the following screenshot:

Creating Forms with Redux Form Chapter 6

[243]

Implementing validation in a form
The last part of our Redux Form implementation is the validation. Using the previous
recipe, let's add validation of the input task.

How to do it...
The validations are needed in any form, so let's add some validations to our fields:

First, we need to modify our TodoForm.jsx and we need to create a validate1.
function, where we need to validate if our task is not empty. We then need to
create a renderError method to render our error message if we try to add an
empty task, as shown in the following code:

import React, { Component } from 'react';
import { Field, reduxForm } from 'redux-form';
import './TodoForm.css';

class TodoForm extends Component {
 renderInput = ({ input }) => <input {...input} type="text" />;

 onSubmit = values => {
 const { addTask, dispatch, reset } = this.props;

 // Resetting our form...
 dispatch(reset('todo'));

 addTask(values);
 }

 renderError(field) {
 const { meta: { submitFailed, error } } = field;

 if (submitFailed && error) {
 return (
 <div className="error">
 {error}
 </div>
);
 }

 return null;
 }

 render() {

Creating Forms with Redux Form Chapter 6

[244]

 const { handleSubmit, submitting } = this.props;

 return (
 <form onSubmit={handleSubmit(this.onSubmit)}>
 <Field name="task" component={this.renderInput} />
 <Field name="task" component={this.renderError} />
 </form>
);
 }
}

const validate = values => {
 const errors = {};

 if (!values.task) {
 errors.task = 'Task cannot be empty!';
 }

 return errors;
}

export default reduxForm({
 validate,
 form: 'todo'
})(TodoForm);

File: src/components/Todo/TodoForm.jsx

Next, we need to create a TodoForm.css to add some styles to our error2.
message, as shown in the following code:

.error {
 color: red;
 font-size: small;
 margin-top: 10px;
}

File: src/components/Todo/TodoForm.css

Creating Forms with Redux Form Chapter 6

[245]

How it works...
If we try to add a new task without any value and press Enter to submit the form, we are
going to see the view shown in the following screenshot:

7
Animations with React

In this chapter, the following recipes will be covered:

Animating a todo list with ReactCSSTransitionGroup
Using react-animations library
Creating our first animation with React pose

Introduction
Animations are very common in any web application. Since CSS3, animations have become
widespread and easy to implement. The most common use of animations are transitions,
where you can change CSS properties and define the duration or delay. React can handle
animations using an animation add-on called ReactCSSTransitionGroup. In the
following recipes, we are going to use ReactCSSTransitionGroup to create some
animations. ReactCSSTransitionGroup is an add-on component for implementing basic
CSS animations and transitions smoothly.

Animating a todo list with
ReactCSSTransitionGroup
In this recipe, we are going to animate a todo list using ReactCSSTransitionGroup.

Animations with React Chapter 7

[247]

Getting Ready
For this recipe, we need to install the react-addons-css-transition-group package:

npm install react-addons-css-transition-group

How to do it...
We are going to make a Todo list with some animations:

First, let's create our Todo component:1.

import React, { Component } from 'react';
import uuidv4 from 'uuid/v4';
import List from './List';
import './Todo.css';

class Todo extends Component {
 constructor() {
 super();

 // Initial state...
 this.state = {
 task: '',
 items: []
 };
 }

 componentWillMount() {
 // Setting default tasks...
 this.setState({
 items: [
 {
 id: uuidv4(),
 task: 'Default Task 1',
 completed: false
 },
 {
 id: uuidv4(),
 task: 'Default Task 2',
 completed: true
 },
 {
 id: uuidv4(),
 task: 'Default Task 3',
 completed: false

Animations with React Chapter 7

[248]

 }
]
 });
 }

 handleOnChange = e => {
 const { target: { value } } = e;

 // Updating our task state with the input value...
 this.setState({
 task: value
 });
 }

 handleOnSubmit = e => {
 // Prevent default to avoid the actual form submit...
 e.preventDefault();

 // Once is submited we reset the task value and we push the
 // new task to the items array.
 this.setState({
 task: '',
 items: [
 ...this.state.items,
 {
 id: uuidv4(),
 task: this.state.task,
 complete: false
 }
]
 });
 }

 markAsCompleted = id => {
 // Finding the task by id...
 const foundTask = this.state.items.find(
 task => task.id === id
);

 // Updating the completed status...
 foundTask.completed = true;

 // Updating the state with the new updated task...
 this.setState({
 items: [
 ...this.state.items,
 ...foundTask
]

Animations with React Chapter 7

[249]

 });
 }

 removeTask = id => {
 // Filtering the tasks by removing the specific task id...
 const filteredTasks = this.state.items.filter(
 task => task.id !== id
);

 // Updating items state...
 this.setState({
 items: filteredTasks
 });
 }

 render() {
 return (
 <div className="Todo">
 <h1>New Task:</h1>

 <form onSubmit={this.handleOnSubmit}>
 <input
 value={this.state.task}
 onChange={this.handleOnChange}
 />
 </form>

 <List
 items={this.state.items}
 markAsCompleted={this.markAsCompleted}
 removeTask={this.removeTask}
 />
 </div>
);
 }
}

export default Todo;

File: src/components/Todo/index.jsx

Animations with React Chapter 7

[250]

Now, in our List component, we need to include ReactCSSTransitionGroup2.
and use it as a wrapper in our list elements. We need to specify the name of our
transition using the transitionName prop, and transitionAppear adds a
transition at the first animation mount. By default, it is false:

import React from 'react';
import ReactCSSTransitionGroup from 'react-addons-css-transition-
group';
import './List.css';

const List = props => (

 <ReactCSSTransitionGroup
 transitionName="todo"
 transitionAppear={true}
 >
 {props.items.map((item, key) => (
 <li
 key={key}
 className={`${item.completed ? 'completed' : 'pending'}`}
 >
 {item.task}

 <div className="actions">
 <span
 className={item.completed ? 'hide' : 'done'}
 onClick={() => props.markAsCompleted(item.id)}
 >
 <i className="fa fa-check"></i>

 <span
 className="trash"
 onClick={() => props.removeTask(item.id)}
 >
 <i className="fa fa-trash"></i>

 </div>

))}
 </ReactCSSTransitionGroup>

);

export default List;

File: src/components/Todo/List.jsx

Animations with React Chapter 7

[251]

Now, using transitionName, we will add some styles using the special classes3.
that are created by ReactCSSTransitionGroup:

.todo-enter {
 opacity: 0.01;
}

.todo-enter.todo-enter-active {
 opacity: 1;
 transition: opacity 0.5s ease;
}

.todo-leave {
 opacity: 1;
}

.todo-leave.todo-leave-active {
 opacity: 0.01;
 transition: opacity .5s ease-in;
}

.todo-appear {
 opacity: 0.01;
 transition: opacity .5s ease-in;
}

.todo-appear.todo-appear-active {
 opacity: 1;
}

File: src/components/Todo/List.css

How it works...
We need to include the elements we want to animate inside our
ReactCSSTransitionGroup component. Every time we add an item to our Todo list, we
can see that our special classes (.todo-enter and .todo-enter-active) are being
injected for a second to start our animation:

Animations with React Chapter 7

[252]

And if we remove an item, we will see the .todo-leave and .todo-leave-
active classes for a second:

Animations with React Chapter 7

[253]

As you can see, using ReactCSSTransitionGroup helps us to handle the states of our
animations. You can use this to create better animations in your React application.

Using react-animations library
In this recipe, we are going to learn how to use the library react-animations.

Getting ready
For this recipe, we need to install the following packages:

npm install react-animations radium

How to do it...
Let's do some animation:

We need to use Radium to create our inline styles to use our animations from1.
the react-animations package. First, let's create our component:

import React, { Component } from 'react';
import { fadeIn } from 'react-animations';
import Radium, { StyleRoot } from 'radium';

const styles = {
 fadeIn: {
 animation: 'x 1s',
 animationName: Radium.keyframes(fadeIn, 'fadeIn')
 }
};

class Animations extends Component {
 render() {
 return (
 <StyleRoot>
 <div className="Animations" style={styles.fadeIn}>
 <h1>This text will be animated</h1>
 </div>
 </StyleRoot>
);
 }
}

Animations with React Chapter 7

[254]

export default Animations;

File: src/components/Animations/index.jsx

In this example, we are using the fadeIn animation. We need to import the2.
animation we want to use from react-animations, add the animation to our
Radium styles, then use <StyleRoot> as a wrapper for our animation, and
finally specify the inline style, fadeIn.
If you want to use another animation, for example, bounce, then you need to add3.
the bounce animation and create a style for it:

import React, { Component } from 'react';
import { fadeIn, bounce } from 'react-animations';
import Radium, { StyleRoot } from 'radium';

const styles = {
 fadeIn: {
 animation: 'x 1s',
 animationName: Radium.keyframes(fadeIn, 'fadeIn')
 },
 bounce: {
 animation: 'x 1s',
 animationName: Radium.keyframes(bounce, 'bounce')
 }
};

class Animations extends Component {
 render() {
 return (
 <StyleRoot>
 <div className="Animations" style={styles.bounce}>
 <h1>This text will be animated</h1>
 </div>
 </StyleRoot>
);
 }
}

export default Animations;

File: src/components/Animations/index.jsx

Animations with React Chapter 7

[255]

There's more...
As you can see, using animations from react-animations is very easy. There are a lot
more animations:

bounce

fadeIn

fadeOut

flash

flip

rollIn

rollOut

rotateIn

rotateOut

rubberBand

shake

swing

zoomIn

zoomOut

To see all the available animations, visit the official repository at https:/ ​/​github. ​com/
FormidableLabs/​react- ​animations.

Creating our first animation with React Pose
React Pose is a declarative motion system for HTML, SVG, and React. It is a very cool
library with which you can do amazing animations with React.

Getting ready
For this recipe, we will need to install the following packages and update our react and
react-dom to be 16.4.2 or higher:

 npm install react react-dom react-pose styled-components

https://github.com/FormidableLabs/react-animations
https://github.com/FormidableLabs/react-animations
https://github.com/FormidableLabs/react-animations
https://github.com/FormidableLabs/react-animations
https://github.com/FormidableLabs/react-animations
https://github.com/FormidableLabs/react-animations
https://github.com/FormidableLabs/react-animations
https://github.com/FormidableLabs/react-animations
https://github.com/FormidableLabs/react-animations
https://github.com/FormidableLabs/react-animations
https://github.com/FormidableLabs/react-animations
https://github.com/FormidableLabs/react-animations

Animations with React Chapter 7

[256]

How to do it...
Follow these steps to create a React pose animation:

First, let's create our component structure:1.

import React, { Component } from 'react';
import posed from 'react-pose';
import styled from 'styled-components';
import './Animations.css';

class Animations extends Component {
 render() {
 return (
 <div class="Animations">

 </div>
);
 }
}

export default Animations;

File: src/components/Animations/index.jsx

The second thing we need to do is to create our first posed div with the states of2.
our animation (normal and hover) and create a styled div using styled-
components:

import React, { Component } from 'react';
import posed from 'react-pose';
import styled from 'styled-components';
import './Animations.css';

// Creating our posed div
const Circle = posed.div({
 normal: {
 scale: 1 // Normal state
 },
 hover: {
 scale: 3 // Hover state
 }
});

// Creating styled component
const StyledCircle = styled(Circle)`
 color: white;

Animations with React Chapter 7

[257]

 cursor: pointer;
 background: blue;
 line-height: 80px;
 border-radius: 50%;
 height: 80px;
 width: 80px;
`;

class Animations extends Component {
 render() {
 return (
 <div class="Animations">

 </div>
);
 }
}

export default Animations;

File: src/components/Animations/index.jsx

Now we need to add our StyledCircle component into our render method:3.

 render() {
 return (
 <div class="Animations">
 <StyledCircle
 pose={this.state.hover ? 'hover' : 'normal'}
 onMouseEnter={this.handleMouseEnter}
 onMouseLeave={this.handleMouseLeave}
 onClick={this.handleClick}
 style={{ background: this.state.bg }}
 >
 Click me!
 </StyledCircle>
 </div>
);
 }

File: src/components/Animations/index.jsx

Animations with React Chapter 7

[258]

As you can see, we need to create some event methods, and we are going to use4.
the local state to change the size of the circle and the color when the user clicks:

import React, { Component } from 'react';
import posed from 'react-pose';
import styled from 'styled-components';
import './Animations.css';

const Circle = posed.div({
 normal: {
 scale: 1 // Normal state
 },
 hover: {
 scale: 3 // Hover state
 }
});

// Creating styled component
const StyledCircle = styled(Circle)`
 color: white;
 cursor: pointer;
 background: blue;
 line-height: 80px;
 border-radius: 50%;
 height: 80px;
 width: 80px;
`;

class Animations extends Component {
 state = {
 bg: 'blue',
 hover: false
 };

 handleMouseEnter = () => {
 this.setState({
 hover: true
 });
 }

 handleMouseLeave = () => {
 this.setState({
 hover: false
 });
 }

 handleClick = () => {
 // Choosing a random color...

Animations with React Chapter 7

[259]

 const colors = ['red', 'green', 'gray', 'orange', 'black',
'pink'];

 this.setState({
 bg: colors[Math.floor(Math.random() * colors.length)]
 });
 }

 render() {
 return (
 <div class="Animations">
 <StyledCircle
 pose={this.state.hover ? 'hover' : 'normal'}
 onMouseEnter={this.handleMouseEnter}
 onMouseLeave={this.handleMouseLeave}
 onClick={this.handleClick}
 style={{ background: this.state.bg }}
 >
 Click me!
 </StyledCircle>
 </div>
);
 }
}

export default Animations;

File: src/components/Animations/index.jsx

Animations with React Chapter 7

[260]

How it works...
Our first view is going to be a blue circle with the label Click me!:

Animations with React Chapter 7

[261]

If we hover over the circle, we are going to see the pose animation, which increases the
scale of the circle:

Animations with React Chapter 7

[262]

Finally, if we click on the circle, we are going to see the that our circle change its
background color randomly:

Animations with React Chapter 7

[263]

There's more...
We can even combine the animations from react-animations library. For example, if we
want to flip the circle when the user clicks on it, then we can do this:

import React, { Component } from 'react';
import posed from 'react-pose';
import styled, { keyframes } from 'styled-components';
import { flip } from 'react-animations';
import './Animations.css';

const flipAnimation = keyframes`${flip}`;

const Circle = posed.div({
 normal: {
 scale: 1 // Normal state
 },
 hover: {
 scale: 3 // Hover state
 }
});

// Creating styled component
const StyledCircle = styled(Circle)`
 color: white;
 cursor: pointer;
 background: blue;
 line-height: 80px;
 border-radius: 50%;
 height: 80px;
 width: 80px;
`;

class Animations extends Component {
 state = {
 style: {
 background: 'blue'
 },
 hover: false
 };

 handleMouseEnter = () => {
 this.setState({
 hover: true
 });
 }

 handleMouseLeave = () => {

Animations with React Chapter 7

[264]

 this.setState({
 hover: false
 });
 }

 handleClick = () => {
 // Choosing a random color...
 const colors = ['red', 'green', 'gray', 'orange', 'black', 'pink'];

 this.setState({
 style: {
 animation: `1s ${flipAnimation}`,
 background: colors[Math.floor(Math.random() * colors.length)]
 }
 });
 }

 render() {
 return (
 <div className="Animations">
 <StyledCircle
 pose={this.state.hover ? 'hover' : 'normal'}
 onMouseEnter={this.handleMouseEnter}
 onMouseLeave={this.handleMouseLeave}
 onClick={this.handleClick}
 style={this.state.style}
 >
 Click me!
 </StyledCircle>
 </div>
);
 }
}

export default Animations;

File: src/components/Animations/index.jsx

8
Creating an API with Node.js
Using MongoDB and MySQL

In this chapter, the following recipes will be covered:

Creating a basic API with Express
Building a database with MongoDB
Building a database with MySQL
Adding access tokens to secure our API

Introduction
From the Node.js official website (https:/ ​/​nodejs. ​org):

Node.js is a JavaScript runtime built on Chrome's V8 JavaScript engine. Node.js uses an
event-driven, non-blocking I/O model that makes it lightweight and efficient. Node.js'
package ecosystem, npm, is the largest ecosystem of open source libraries in the world.

Node.js is widely used as a backend for web applications because it is easy to create an API
and its performance is better than technologies such as Java, PHP, or Ruby. Usually, the
most popular way to use Node.js is by using a framework called Express.

From Express official website (https:/ ​/ ​expressjs. ​com):

Express is a minimal and flexible Node.js web application framework that provides a
robust set of features for web and mobile applications.

https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://expressjs.com
https://expressjs.com
https://expressjs.com
https://expressjs.com
https://expressjs.com
https://expressjs.com
https://expressjs.com

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[266]

Creating a basic API with Express
Express is the most popular Node.js framework and is easy to install and to use. In this
recipe we are going to create, configure, and install a basic API using Express.

Getting ready
First, we need to install Node. You need to go to the official website, www.nodejs.org, and
then download Node.js. There are two versions: the LTS (Long Term Support) version and
the current version, which has the latest features. In my opinion, it is always better to
choose the LTS version, but it's up to you.

Once you have installed Node, you can check which version you have by running this
command in your Terminal:

node -v
v10.8.0

Also, Node includes Node Package Manager (npm) by default. You can check which
version you have with this command:

npm -v
6.3.0

Now we need to install Express. To do this, there is a package called express-generator,
which will allow us to create an Express application with a simple command. We need to
install it globally:

npm install -g express-generator

After we installed express-generator, we can create an Express application. I usually
prefer to create a directory called projects inside my home folder on my Mac, or if you
use Windows, you can make it at C:\projects:

express my-first-express-app

http://www.nodejs.org

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[267]

Once you run the command, you will see something like this:

If you follow the instructions to run the application, you will see the Express application
running at http://localhost:3000:

 cd my-first-express-app
 npm install
 npm start

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[268]

You will see this view:

How to do it...
The code generated by default with express-generator is ES5 code, using var,
require, module.exports, and so on:

The first thing we need to do is convert this code to be ES6. To do this, let's1.
first modify our app.js file. This is the original code of this file:

 var createError = require('http-errors');
 var express = require('express');
 var path = require('path');
 var cookieParser = require('cookie-parser');
 var logger = require('morgan');

 var indexRouter = require('./routes/index');
 var usersRouter = require('./routes/users');

 var app = express();

 // view engine setup
 app.set('views', path.join(__dirname, 'views'));
 app.set('view engine', 'jade');

 app.use(logger('dev'));
 app.use(express.json());
 app.use(express.urlencoded({ extended: false }));
 app.use(cookieParser());
 app.use(express.static(path.join(__dirname, 'public')));

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[269]

 app.use('/', indexRouter);
 app.use('/users', usersRouter);

 // catch 404 and forward to error handler
 app.use(function(req, res, next) {
 next(createError(404));
 });

 // error handler
 app.use(function(err, req, res, next) {
 // set locals, only providing error in development
 res.locals.message = err.message;
 res.locals.error = req.app.get('env') === 'development' ? err :
{};

 // render the error page
 res.status(err.status || 500);
 res.render('error');
 });

 module.exports = app;

File: app.js

Migrating to ES6, we should have this code:2.

 import createError from 'http-errors';
 import express from 'express';
 import path from 'path';
 import cookieParser from 'cookie-parser';
 import logger from 'morgan';

 import indexRouter from './routes/index';
 import usersRouter from './routes/users';

 const app = express();

 // view engine setup
 app.set('views', path.join(__dirname, 'views'));
 app.set('view engine', 'jade');

 app.use(logger('dev'));
 app.use(express.json());
 app.use(express.urlencoded({ extended: false }));
 app.use(cookieParser());
 app.use(express.static(path.join(__dirname, 'public')));

 app.use('/', indexRouter);

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[270]

 app.use('/users', usersRouter);

 // catch 404 and forward to error handler
 app.use((req, res, next) => {
 next(createError(404));
 });

 // error handler
 app.use((err, req, res, next) => {
 // set locals, only providing error in development
 res.locals.message = err.message;
 res.locals.error = req.app.get('env') === 'development' ? err : {};

 // render the error page
 res.status(err.status || 500);
 res.render('error');
 });

 // Listening port
 app.listen(3000);

File: app.js

Now let's remove our bin/www directory because we had added3.
app.listen(3000); at the end of our file, and then you need to modify the
start script in package.json:

 "scripts": {
 "start": "node app.js"
 }

File: package.json

If you try to run your application with npm start you will get this error:4.

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[271]

This error is because our ES6 code does not work directly with Node. We need to5.
use Babel to compile our file and be able to write ES6 code. For this, we need to
install babel-cli globally and also the babel-preset-es2015 package:

 npm install -g babel-cli
 npm install babel-preset-es2015

To make it work, we need to create a new file called .babelrc and add our6.
es2015 preset:

 {
 "presets": ["es2015"]
 }

File: .babelrc

Now you need to change your start script again and switch node to babel-7.
node:

 "scripts": {
 "start": "babel-node app.js"
 }

File: package.json

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[272]

If you run npm start in your terminal, you should be able to run the application8.
now.
After we have changed our code to ES6, we have another issue. If you modify a9.
file and you save it in the application, it will not refresh. Also, if for some reason
our application crashes, then our server will stop working. The way to fix this is
by using a Node watcher. The most popular one is nodemon:

 npm install nodemon

You need to modify your start script for this:10.

 "scripts": {
 "start": "nodemon app.js --exec babel-node"
 }

File: package.json

Now if you make any changes to your application (for example, in the11.
routes/index.js file, you can change the text Express on line 6 for any other
content), you will see how the server restarts itself and refreshes the site:

As you can see, the first message in green says starting babel-node12.
app.js, and then when it detects a change, it says restarting due to changes...
Now we can see the changes reflected in our site:

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[273]

Because our Express application was created to be an API instead of a regular13.
website, we need to remove many things that are superfluous, such as the views
folder and the template engine, and we need to make some structural changes to
make it easier to handle. Let's see what our app.js file looks like now:

 // Dependencies
 import express from 'express';
 import path from 'path';

 // Controllers
 import apiController from './controllers/api';

 // Express Application
 const app = express();

 // Middlewares
 app.use(express.json());
 app.use(express.urlencoded({ extended: false }));

 // Routes
 app.use('/api', apiController);

 // Listening port
 app.listen(3000);

File: app.js

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[274]

As you can see, I renamed the routes directory to controllers, and also I14.
deleted the users.js file that was in that folder, and I renamed the index.js as
api.js. Let's create an API to handle a blog:

 import express from 'express';

 const router = express.Router();
 // Mock data, this should come from a database....
 const posts = [
 {
 id: 1,
 title: 'My blog post 1',
 content: '<p>Content</p>',
 author: 'Carlos Santana'
 },
 {
 id: 2,
 title: 'My blog post 2',
 content: '<p>Content</p>',
 author: 'Cristina Rojas'
 },
 {
 id: 3,
 title: 'My blog post 3',
 content: '<p>Content</p>',
 author: 'Carlos Santana'
 }
];

 router.get('/', (req, res, next) => {
 res.send(`
 <p>API Endpoints:</p>

 /api/posts
 /api/post/:id

 `);
 });

 router.get('/posts', (req, res, next) => {
 res.json({
 response: posts
 });
 });

 router.get('/post/:id', (req, res, next) => {
 const { params: { id } } = req;

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[275]

 const singlePost = posts.find(post => post.id === Number(id));

 if (!singlePost) {
 res.send({
 error: true,
 message: 'Post not found'
 });
 }

 res.json({
 response: [singlePost]
 });
 });

 export default router;

File: controllers/api.js

How it works...
Now let's test our new API:

If we go to http://localhost:3000/api, we are going to display a list of the1.
endpoints. This is optional, but it is useful as a reference for developers:

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[276]

If you go to http://localhost:3000/api/posts, you will see all the posts:2.

Also, if you hit http://localhost:3000/api/post/1, you will get the first3.
post of the list:

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[277]

Finally, if you try to get a post that does not exist in our data4.
(http://localhost:3000/api/post/99), then we will return an error:

Building a database with MongoDB
MongoDB is the most popular NoSQL database. It is free (open source) and document-
oriented. In this recipe, we are going to install MongoDB, create a database, create a
document, and insert some data to display information with Node.js using the Mongoose
library.

Getting ready
First, we need to install MongoDB. In this recipe, I'm going to show you the easiest way to
install it using Mac, and I'll give you some links to install it if you have Linux or Windows.

From the MongoDB official documentation (https:/ ​/​docs. ​mongodb.
com/​manual/ ​tutorial/ ​install- ​mongodb- ​on-​os- ​x): "Starting in version
3.0, MongoDB only supports MacOS version 10.7 (Lion) and later on Intel
x86-64."

Installing MongoDB Community Edition manually (the
hard way)
This installation works for Mac and Linux:

Download the binary files for the version you want of MongoDB from https:/ ​/1.
www.​mongodb. ​com/ ​download- ​center#community.

https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x
https://www.mongodb.com/download-center#community
https://www.mongodb.com/download-center#community
https://www.mongodb.com/download-center#community
https://www.mongodb.com/download-center#community
https://www.mongodb.com/download-center#community
https://www.mongodb.com/download-center#community
https://www.mongodb.com/download-center#community
https://www.mongodb.com/download-center#community
https://www.mongodb.com/download-center#community
https://www.mongodb.com/download-center#community
https://www.mongodb.com/download-center#community
https://www.mongodb.com/download-center#community

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[278]

Extract the files from the downloaded file; you can use the terminal and use this2.
command:

 tar -zxvf mongodb-osx-ssl-x86_64-3.6.3.tgz

Copy the extracted folder to the location from which MongoDB will run:3.

 mkdir -p mongodb
 cp -R -n mongodb-osx-ssl-x86_64-3.6.3/ mongodb

Ensure the location of the binaries is in the PATH variable. You can add the4.
following line in your shell's rc file, such as ~/.bashrc or ~/.bash_profile:

 export PATH=<your-mongodb-install-directory>/bin:$PATH

Installing MongoDB Community Edition with Homebrew
(the easy way)
Homebrew is a package manager for Mac (also known as the missing package manager for
macOS) and is easy to install. Go to the official website (https://brew.sh), and there you will
find a command that you should run to install it, which is as follows:

 /usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"

If you have Homebrew already installed, or if you just installed it, then the first1.
thing you need to do is to update the package database with this command:

 brew update

Now we need to install MongoDB using this command:2.

 brew install mongodb

If you want to install the latest development version of MongoDB, then you3.
should run this command (I don't recommend it because it may have some bugs
that are not fixed yet, but it is up to you):

 brew install mongodb --devel

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[279]

Running MongoDB
Before we start MongoDB for the first time, we need to create a directory in which the
mongod process will write the data:

By default, the mongod process uses the /data/db directory. To create this1.
folder, you can use the following command:

 mkdir -p /data/db

Now we need to set permissions for the data directory:2.

 chmod -R 777 /data

In a new terminal (or tab) you need to run the following:3.

 mongod

If you didn't get an error, you could start the Mongo shell on the same host4.
machine as mongod (in a new terminal or tab):

 mongo --host 127.0.0.1:127017

If you get an error like this: Error: Port number 127017 out of range parsing
HostAndPort from "127.0.0.1:127017", then just run mongo without --host
flag.

Finally, if you want to stop MongoDB, press Ctrl + C in the terminal that mongod5.
is running.
If everything works, you should see this in your Terminal:6.

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[280]

How to do it...
First, we need to create a new database:

To create a new database or switch to an existing database, you need to run: use1.
<name of the database>. Let's create a blog database:

 use blog

Now we need to create a collection called posts, and you need to save the data2.
directly in JSON format using the db.<your-collection-
name>.save({}) command:

 db.posts.save({ title: 'Post 1', slug: 'post-1', content:
'<p>Content</p>' })

As you can see, I'm not adding any id value, and that is because MongoDB3.
automatically creates a unique ID for each row called _id, which is a random
hash. If you want to see the data that you just saved, you need to use the find()
method without any parameters:

 db.posts.find()

You should see your data like this:4.

Now let's suppose you add a new row for Post 2 and you want to find that5.
specific row by specifying the slug (post-2). You can do it like this:

 db.posts.find({ slug: 'post-2' })

You should see this:6.

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[281]

Now let's change the Post 2 title to My Updated Post 2. To do this, we need to7.
update our row as follows:

 db.posts.update({ slug: "post-2" }, { $set: { title: "My Updated
Post 2" }})

The first parameter is the query to find the row we want to update, and the8.
second one modifies the fields using $set.
Finally, if we want to remove a specific row, we can do it as follows:9.

 db.posts.remove({ "_id": ObjectId("5ad2e6ed4fa0d047639da616") })

The recommended way to remove a row is by specifying the _id directly to10.
avoid deleting other rows by mistake but is also possible to delete a row by any
other field. For example, let's say you want to remove Post 1 using the slug. You
can do it like this:

 db.posts.remove({ "slug": "post-1" })

Now that you have learned how to do basic operations with MongoDB let's 11.
implement MongoDB into Node.js using the Mongoose library, which is an
Object Document Mapper (ODM) for Node. We need to install some extra
packages for this recipe:

 npm install mongoose body-parser slug

Using the same code as the previous recipe (Repository:12.
Chapter08/Recipe1/my-first-express-app), we are going to connect
Mongoose to Node.js. The first thing we need to do is to modify app.js:

 // Dependencies
 import express from 'express';
 import path from 'path';
 import mongoose from 'mongoose';
 import bodyParser from 'body-parser';

 // Controllers
 import apiController from './controllers/api';

 // Express Application
 const app = express();

 // Middlewares
 app.use(bodyParser.json());
 app.use(bodyParser.urlencoded({ extended: false }));

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[282]

 // Mongoose Connection (blog is our database)
 mongoose.connect('mongodb://localhost/blog');

 // Routes
 app.use('/api', apiController);

 // Listening port
 app.listen(3000);

File: app.js

Now that we have Mongoose connected to our database we need to create a13.
model to handle our blog posts. To do this, you will need to create
a src/models/blog.js file:

// Dependencies
import mongoose, { Schema } from 'mongoose';
import slug from 'slug';

// Defining the post schema...
const postSchema = new Schema({
 title: String,
 slug: { type: String, unique: true },
 content: { type: String, required: true },
 author: String,
 createdAt: Date
});

// Adding a custom method...
postSchema.methods.addAuthor = function(author) {
 /**
 * NOTE: Probably you are thinking, why I'm using function
 * and not an arrow function?
 * Is because arrow functions does not bind their own context
 * that means this actually refers to the originating context
 */
 this.author = author;

 return this.author;
};
//Before save we create the slug and we add the current date...
postSchema.pre('save', function(next) {
 this.slug = slug(this.title, { lower: 'on' });
 this.createdAt = Date.now();

 next();
});

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[283]

// Creating our Model...
const Post = mongoose.model('Post', postSchema);

export default Post;

File: src/models/blog.js

Now to handle our model we need to create a new controller14.
(src/controllers/blog.js) where we are going to add methods to save,
update, remove, find all posts, or find a single post:

 // Dependencies
 import slugFn from 'slug';
 import Post from '../models/blog';

 export function createPost(title, content, callback) {
 // Creating a new post...
 const newPost = new Post({
 title,
 content
 });

 // Adding the post author...
 newPost.addAuthor('Carlos Santana');

 // Saving the post into the database...
 newPost.save(error => {
 if (error) {
 console.log(error);
 callback(error, true);
 }

 console.log('Post saved correctly!');
 callback(newPost);
 });
 }

 // Updating a post...
 export function updatePost(slug, title, content, callback) {
 const updatedPost = {
 title,
 content,
 slug: slugFn(title, { lower: 'on' })
 };

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[284]

 Post.update({ slug }, updatedPost, (error, affected) => {
 if (error) {
 console.log(error);
 callback(error, true);
 }

 console.log('Post updated correctly!');
 callback(affected);
 });
 }

 // Removing a post by slug...
 export function removePost(slug, callback) {
 Post.remove({ slug }, error => {
 if (error) {
 console.log(error);
 callback(error, true);
 }

 console.log('Post removed correctly!');
 callback(true);
 });
 }

 // Find all posts...
 export function findAllPosts(callback) {
 Post.find({}, (error, posts) => {
 if (error) {
 console.log(error);

 return false;
 }

 console.log(posts);
 callback(posts);
 });
 }

 // Find a single post by slug...
 export function findBySlug(slug, callback) {
 Post.find({ slug }, (error, post) => {
 if (error) {
 console.log(error);

 return false;
 }

 console.log(post);

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[285]

 callback(post);
 });
 }

File: src/controllers/blog.js

Finally, we are going to modify our API controller (src/controllers/api.js)15.
to remove the fake data we created in the last recipe and get the data from the
actual MongoDB database:

 import express from 'express';
 import {
 createPost,
 findAllPosts,
 findBySlug,
 removePost,
 updatePost
 } from './blog';

 const router = express.Router();
 // GET Endpoints
 router.get('/', (req, res, next) => {
 res.send(`
 <p>API Endpoints:</p>

 /api/posts
 /api/post/:id

 `);
 });

 router.get('/posts', (req, res, next) => {
 findAllPosts(posts => {
 res.json({
 response: posts
 });
 });
 });

 router.get('/post/:slug', (req, res, next) => {
 const { params: { slug } } = req;

 findBySlug(slug, singlePost => {
 console.log('single', singlePost);
 if (!singlePost || singlePost.length === 0) {
 res.send({
 error: true,
 message: 'Post not found'

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[286]

 });
 } else {
 res.json({
 response: [singlePost]
 });
 }
 });
 });
 // POST Endpoints
 router.post('/post', (req, res, next) => {
 const { title, content } = req.body;

 createPost(title, content, (data, error = false) => {
 if (error) {
 res.json({
 error: true,
 message: data
 });
 } else {
 res.json({
 response: {
 saved: true,
 post: data
 }
 });
 }
 });
 });

 // DELETE Endpoints
 router.delete('/post/:slug', (req, res, next) => {
 const { params: { slug } } = req;

 removePost(slug, (removed, error) => {
 if (error) {
 res.json({
 error: true,
 message: 'There was an error trying to remove this
 post...'
 });
 } else {
 res.json({
 response: {
 removed: true
 }
 })
 }
 });

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[287]

 });

 // PUT Endpoints
 router.put('/post/:slug', (req, res, next) => {
 const { params: { slug }, body: { title, content } } = req;

 updatePost(slug, title, content, (affected, error) => {
 if (error) {
 res.json({
 error: true,
 message: 'There was an error trying to update the post'
 });
 } else {
 res.json({
 response: {
 updated: true,
 affected
 }
 })
 }
 });
 });

 export default router;

File: src/controllers/api.js

How it works...
You need to install Postman (https:/ ​/ ​www.​getpostman. ​com) or any other REST client to test
the API. Mainly for a POST, PUT and DELETE methods, the GET method can be easily
verified on any browser.

https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[288]

GET method endpoints
GET /posts. This endpoint can be tested with your browser. Go
to http://localhost:3000/api/posts. I have manually inserted three rows:

If you want to test it on Postman, then write the same URL
(http://localhost:3000/api/posts), select the GET method, and click on the Send
button:

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[289]

GET /post/:slug. This endpoint is also a GET, and you need to pass the slug (friendly URL)
on the URL. For example, the slug of the first row, My blog post 1, is my-blog-post-1.
A slug is a friendly URL that has the same value of a title but in lowercase, without special
characters, and with the spaces replaced with dashes (-). In our model, we defined our slug
as a unique field. That means there cannot be more than one post with the same slug.

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[290]

Let's go to http://localhost:3000/api/post/my-blog-post-1 in the browser. If the
slug exists in the database you will see the information:

But if you try to find a slug that does not exist in the database you will get this error:

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[291]

POST method endpoints
The POST method is typically used when we want to insert new data into our database.

POST /post. For this endpoint, we need to use Postman to be able to send the data through
the body. To do this, you need to select the POST method in Postman. Use the
URL http://localhost:3000/api/post, then click on Headers, and you need to add
the header Content-Type with the value application/x-www-form-urlencoded:

After you set the header, then go to the Body tab and select the raw option, and you can
send the information like this:

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[292]

Now you can hit the Send button and see the response that the service returns:

If you did everything correctly, you should get a response with the saved node set to true
and the post node containing information about the saved post. Now if you try to hit the
Send button again with the same data (the same title), it will cause an error because, as you
remember, our slug must be unique:

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[293]

You are probably wondering what the __v is if we haven't added that node directly. That is
the versionKey, which is a property set on each document when it's first created by
Mongoose. This key's value contains the internal revision of the document. You can change
or remove the name of this document property. The default is __v.

If you want to change it, you can do something like this when you are defining a new
schema:

 // If you want to change the name of the versionKey
 new Schema({...}, { versionKey: '_myVersion' });

Or if you want to remove it, you can pass false to the versionKey, but I don't
recommend doing that because you won't have control on the version changes every time
you update a document:

 // If you want to remove it you can do:
 new Schema({...}, { versionKey: false });

DELETE method endpoints
The DELETE method, as the name implies, is for deleting rows in a database.

DELETE /post/:slug. In Postman, we need to select the DELETE method, and in the URL
you need to pass the slug of the post you want to remove. For example, let's remove the
post my-blog-post-2. If you remove it correctly you should get a response with the removed
node set to true:

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[294]

If you want to verify the post was deleted, you can go to the /posts endpoint again, and
you will see that is not in the JSON anymore:

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[295]

PUT method endpoints
The last method is PUT, and it is typically used to update a row in a database.

PUT /post/:slug. In Postman you need to select the PUT method, then the URL of the post
you want to edit. Let's edit my-blog-post-3; the URL will be
http://localhost:3000/api/post/my-blog-post-3. On the Headers tab, like in the
POST method, you need to add a Content-Type header with the value application/x-
www-form-urlencoded. In the Body tab, you send the new data you want to replace, in this
case, a new title and new content:

If everything works fine, you should get this response:

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[296]

Again, if you want to verify the post was updated correctly then go to the /posts endpoint
in your browser:

As you can see, the post title, content, and slug were updated correctly.

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[297]

Building a database with MySQL
MySQL is the most popular database. It's an open source Relational Database Management
System (RDBMS). MySQL normally is a central component of the LAMP (Linux, Apache,
MySQL, PHP/ Python/ Perl) stack; many bundles include MySQL:

AMPPS (Max, Linux, and Windows) – https:/ ​/​www. ​ampps. ​com

XAMPP (Mac, Linux, and Windows) – https:/ ​/​www. ​apachefriends. ​org

WAMP Server (Windows) – http:/ ​/​www. ​wampserver. ​com

MAMP (Mac) – https:/ ​/ ​www. ​mamp. ​info

Other developers prefer to install it individually. If you want to do this, you can download
MySQL directly from the official website: https:/ ​/​dev. ​mysql. ​com/ ​downloads/ ​mysql/ ​.

In this recipe, I'm going to use MySQL Workbench to execute the SQL queries. You can
download it from https:/ ​/ ​www. ​mysql. ​com/​products/ ​workbench/ ​. Feel free to use any
other MySQL administrator, or if you prefer the terminal, you can use MySQL commands
directly.

Here are more MySQL GUI tools:

phpMyAdmin – https:/ ​/​www. ​phpmyadmin. ​net

Sequel Pro – https:/ ​/​www. ​sequelpro. ​com

Navicat – https:/ ​/​www. ​navicat. ​com

Getting ready
To work with MySQL on Node, we need to install the sequelize and mysql2 packages:

 npm install sequelize mysql2 slug

How to do it...
The first thing we need to do is to create a database, which we will name as blog,1.
and use it:

 CREATE DATABASE blog;
 USE blog;

https://www.ampps.com
https://www.ampps.com
https://www.ampps.com
https://www.ampps.com
https://www.ampps.com
https://www.ampps.com
https://www.ampps.com
https://www.ampps.com
https://www.ampps.com
https://www.apachefriends.org
https://www.apachefriends.org
https://www.apachefriends.org
https://www.apachefriends.org
https://www.apachefriends.org
https://www.apachefriends.org
https://www.apachefriends.org
https://www.apachefriends.org
https://www.apachefriends.org
http://www.wampserver.com
http://www.wampserver.com
http://www.wampserver.com
http://www.wampserver.com
http://www.wampserver.com
http://www.wampserver.com
http://www.wampserver.com
http://www.wampserver.com
http://www.wampserver.com
https://www.mamp.info
https://www.mamp.info
https://www.mamp.info
https://www.mamp.info
https://www.mamp.info
https://www.mamp.info
https://www.mamp.info
https://www.mamp.info
https://www.mamp.info
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://www.mysql.com/products/workbench/
https://www.mysql.com/products/workbench/
https://www.mysql.com/products/workbench/
https://www.mysql.com/products/workbench/
https://www.mysql.com/products/workbench/
https://www.mysql.com/products/workbench/
https://www.mysql.com/products/workbench/
https://www.mysql.com/products/workbench/
https://www.mysql.com/products/workbench/
https://www.mysql.com/products/workbench/
https://www.mysql.com/products/workbench/
https://www.mysql.com/products/workbench/
https://www.mysql.com/products/workbench/
https://www.mysql.com/products/workbench/
https://www.phpmyadmin.net
https://www.phpmyadmin.net
https://www.phpmyadmin.net
https://www.phpmyadmin.net
https://www.phpmyadmin.net
https://www.phpmyadmin.net
https://www.phpmyadmin.net
https://www.phpmyadmin.net
https://www.phpmyadmin.net
https://www.sequelpro.com
https://www.sequelpro.com
https://www.sequelpro.com
https://www.sequelpro.com
https://www.sequelpro.com
https://www.sequelpro.com
https://www.sequelpro.com
https://www.sequelpro.com
https://www.sequelpro.com
https://www.navicat.com
https://www.navicat.com
https://www.navicat.com
https://www.navicat.com
https://www.navicat.com
https://www.navicat.com
https://www.navicat.com
https://www.navicat.com
https://www.navicat.com

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[298]

Now that we have our database ready let's work on the MySQL implementation2.
with Node.js. There are many ways to use MySQL with Node, but for this recipe,
we will use a package called Sequelize, which is a robust ORM for MySQL and
other databases such as SQLite, Postgres, and MsSQL.
The first thing we need to do is to create a config file to add our database3.
configuration (host, database, user, password, etc). To do this, you need to create
a file called config/index.js:

 export default {
 db: {
 dialect: 'mysql', // 'mysql'|'sqlite'|'postgres'|'mssql'
 host: 'localhost', // Your host, by default is localhost
 database: 'blog', // Your database name
 user: 'root', // Your MySQL user, by default is root
 password: '123456' // Your Db password, sometimes by default
 //is empty.
 }
 };

File: config/index.js

We can re-use the same API controller we used in the MongoDB recipe:4.

 import express from 'express';
 import {
 createPost,
 findAllPosts,
 findBySlug,
 removePost,
 updatePost
 } from './blog';

 const router = express.Router();

 // GET Methods
 router.get('/', (req, res, next) => {
 res.send(`
 <p>API Endpoints:</p>

 /api/posts
 /api/post/:id

 `);
 });

 router.get('/posts', (req, res, next) => {
 findAllPosts(posts => {

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[299]

 res.json({
 response: posts
 });
 });
 });

 router.get('/post/:slug', (req, res, next) => {
 const { params: { slug } } = req;

 findBySlug(slug, singlePost => {
 console.log('single', singlePost);
 if (!singlePost || singlePost.length === 0) {
 res.send({
 error: true,
 message: 'Post not found'
 });
 } else {
 res.json({
 response: [singlePost]
 });
 }
 });
 });

 // POST Methods
 router.post('/post', (req, res, next) => {
 const { title, content } = req.body;

 createPost(title, content, (data, error = false) => {
 if (error) {
 res.json({
 error: true,
 details: error
 });
 } else {
 res.json({
 response: {
 saved: true,
 post: data
 }
 });
 }
 });
 });

 // DELETE Methods
 router.delete('/post/:slug', (req, res, next) => {
 const { params: { slug } } = req;

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[300]

 removePost(slug, (removed, error) => {
 if (error) {
 res.json({
 error: true,
 message: 'There was an error trying to remove this
post...'
 });
 } else {
 res.json({
 response: {
 removed: true
 }
 })
 }
 });
 });

 // PUT Methods
 router.put('/post/:slug', (req, res, next) => {
 const { params: { slug }, body: { title, content } } = req;

 updatePost(slug, title, content, (affected, error) => {
 if (error) {
 res.json({
 error: true,
 message: 'There was an error trying to update the post'
 });
 } else {
 res.json({
 response: {
 updated: true,
 affected
 }
 })
 }
 });
 });

 export default router;

File: controllers/api.js

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[301]

Now we need to create our blog model (models/blog.js). Let's build it in5.
sections; the first thing is the connection to our database:

 // Dependencies
 import Sequelize from 'sequelize';
 import slug from 'slug';

 // Configuration
 import config from '../config';

 // Connecting to the database
 const db = new Sequelize(config.db.database, config.db.user,
 config.db.password, {
 host: config.db.host,
 dialect: config.db.dialect,
 operatorsAliases: false
 });

File: models/blog.js

After we created our database connection, let's create our Post model. We will6.
create a table called posts with the following fields: id, title, slug, content,
author, and createdAt, but Sequelize by default will automatically create an
extra field called updatedAt when you add a DATE field, which will change
every time we update a row:

 // This will remove the extra response
 const queryType = {
 type: Sequelize.QueryTypes.SELECT
 };

 // Defining our Post model...
 const Post = db.define('posts', {
 id: {
 type: Sequelize.INTEGER,
 autoIncrement: true,
 primaryKey: true
 },
 title: {
 type: Sequelize.STRING,
 allowNull: false,
 validate: {
 notEmpty: {
 msg: 'The title is empty',
 }
 }
 },

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[302]

 slug: {
 type: Sequelize.STRING,
 allowNull: false,
 unique: true,
 validate: {
 notEmpty: {
 msg: 'The slug is empty',
 }
 }
 },
 content: {
 type: Sequelize.TEXT,
 allowNull: false,
 validate: {
 notEmpty: {
 msg: 'The content is empty'
 }
 }
 },
 author: {
 type: Sequelize.STRING,
 allowNull: false,
 validate: {
 notEmpty: {
 msg: 'Who is the author?',
 }
 }
 },
 createdAt: {
 type: Sequelize.DATE,
 defaultValue: Sequelize.NOW
 },
 });

File: models/blog.js

One of the coolest things of sequelize is that we can add a validation with a7.
custom message when a field is empty (notEmpty). Now we are going to add a
method to create a new post:

 // Creating new post...
 export function createPost(title, content, callback) {
 // .sync({ force: true }), if you pass force this will
 // drop the table every time.
 db
 .sync()
 .then(() => {
 Post.create({

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[303]

 title,
 slug: title ? slug(title, { lower: 'on' }) : '',
 content,
 author: 'Carlos Santana'
 }).then(insertedPost => {
 console.log(insertedPost);
 callback(insertedPost.dataValues);
 }).catch(error => {
 console.log(error);
 callback(false, error);
 });
 });
 }

File: models/blog.js

Now we need a method to update a post:8.

 // Updating a post...
 export function updatePost(slg, title, content, callback) {
 Post.update(
 {
 title,
 slug: slug(title, { lower: 'on' }),
 content
 },
 {
 where: { slug: slg }
 }
).then(rowsUpdated => {
 console.log('UPDATED', rowsUpdated);
 callback(rowsUpdated);
 }).catch(error => {
 console.log(error);
 callback(false, error);
 });
 }

File: models/blog.js

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[304]

Also, we need a method to delete a post by its slug:9.

 // Removing a post by slug...
 export function removePost(slug, callback) {
 Post.destroy({
 where: {
 slug
 }
 }).then(rowDeleted => {
 console.log('DELETED', rowDeleted);
 callback(rowDeleted);
 }).catch(error => {
 console.log(error);
 callback(false, error);
 });
 }

File: models/blog.js

Sequelize also supports SQL queries directly. Let's create two methods, one to10.
find all the posts and the other to find a post by slug using SQL queries:

 // Find all posts...
 export function findAllPosts(callback) {
 db.query('SELECT * FROM posts', queryType).then(data => {
 callback(data);
 });
 }

 // Find a single post by slug...
 export function findBySlug(slug, callback) {
 db.query(`SELECT * FROM posts WHERE slug = '${slug}'`,
queryType).then(data => {
 callback(data);
 });
 }

File: models/blog.js

The queryType variable that we defined at the beginning of the file is to avoid11.
getting a second response from Sequelize. By default, if you don't pass this
queryType Sequelize will return the result in a multidimensional array (the first
object is the result and the second one is the metadata object). Let's put all the
pieces together:

 // Dependencies
 import Sequelize from 'sequelize';

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[305]

 import slug from 'slug';

 // Configuration
 import config from '../config';

 // Connecting to the database
 const db = new Sequelize(config.db.database, config.db.user,
 config.db.password, {
 host: config.db.host,
 dialect: config.db.dialect,
 operatorsAliases: false // This is to avoid the warning:
 //sequelize
 //deprecated String based operators are now deprecated.
 });

 // This will remove the extra metadata object
 const queryType = {
 type: Sequelize.QueryTypes.SELECT
 };

 // Defining our Post model...
 const Post = db.define('posts', {
 id: {
 type: Sequelize.INTEGER,
 autoIncrement: true,
 primaryKey: true
 },
 title: {
 type: Sequelize.STRING,
 allowNull: false,
 validate: {
 notEmpty: {
 msg: 'The title is empty',
 }
 }
 },
 slug: {
 type: Sequelize.STRING,
 allowNull: false,
 unique: true,
 validate: {
 notEmpty: {
 msg: 'The slug is empty',
 }
 }
 },
 content: {
 type: Sequelize.TEXT,

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[306]

 allowNull: false,
 validate: {
 notEmpty: {
 msg: 'The content is empty'
 }
 }
 },
 author: {
 type: Sequelize.STRING,
 allowNull: false,
 validate: {
 notEmpty: {
 msg: 'Who is the author?',
 }
 }
 },
 createdAt: {
 type: Sequelize.DATE,
 defaultValue: Sequelize.NOW
 },
 });

 // Creating new post...
 export function createPost(title, content, callback) {
 db
 .sync()
 .then(() => {
 Post.create({
 title,
 slug: title ? slug(title, { lower: 'on' }) : '',
 content,
 author: 'Carlos Santana'
 }).then(insertedPost => {
 console.log(insertedPost);
 callback(insertedPost.dataValues);
 }).catch((error) => {
 console.log(error);
 callback(false, error);
 });
 });
 }

 // Updating a post...
 export function updatePost(slg, title, content, callback) {
 Post.update(
 {
 title,
 slug: slug(title, { lower: 'on' }),

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[307]

 content
 },
 {
 where: { slug: slg }
 }
).then(rowsUpdated => {
 console.log('UPDATED', rowsUpdated);
 callback(rowsUpdated);
 }).catch(error => {
 console.log(error);
 callback(false, error);
 });
 }

 // Removing a post by slug...
 export function removePost(slug, callback) {
 Post.destroy({
 where: {
 slug
 }
 }).then(rowDeleted => {
 console.log('DELETED', rowDeleted);
 callback(rowDeleted);
 }).catch(error => {
 console.log(error);
 callback(false, error);
 });
 }

 // Find all posts...
 export function findAllPosts(callback) {
 db.query('SELECT * FROM posts', queryType).then(data => {
 callback(data);
 });
 }

 // Find a single post by slug...
 export function findBySlug(slug, callback) {
 db.query(`SELECT * FROM posts WHERE slug = '${slug}'`,
queryType).then(data => {
 callback(data);
 });
 }

File: models/blog.js

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[308]

How it works...
It will work in the same way as the MongoDB recipe, just with minor differences in the
results. To test the API, you will need to install Postman (https:/ ​/​www. ​getpostman. ​com).

POST method endpoints
The POST method is typically used when we want to insert new data into our database.

POST /post. For this endpoint, we need to use Postman to send the data through the
request body. To do this, you need to select the POST method in Postman. Enter the
URL http://localhost:3000/api/post, then click on Headers, and you need to add
a Content-Type header with a value of application/x-www-form-urlencoded:

After you set the header, go to the Body tab and select the raw option, and you can send the
information like this:

Now you can hit the Send button and see the response that the service returns:

https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[309]

If you did everything correctly, you should get a response with the saved node set to true
and the post node with information about the saved post. If you try to hit the Send button
again with the same data (the same title), it will cause an error because, as you remember,
our slug must be unique:

The text in this image is not relevant. The purpose of the image is to give you a glimpse of how the error looks like. Try in your Postman, and you will see the same error as the
image.

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[310]

GET method endpoints
GET /posts. This endpoint can be tested with your browser. Go
to http://localhost:3000/api/posts. I have manually inserted three rows with the
createPost method:

If you want to test it on Postman, then write the same URL
(http://localhost:3000/api/posts), select the GET method, and click on the Send
button:

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[311]

GET /post/:slug

This endpoint is also a GET, and you need to pass the slug (the friendly URL) in the URL.
For example, the slug of the first row, My blog post 1, is my-blog-post-1. A slug is a friendly
URL that has the same value as the title but in lowercase, without special characters and the
spaces are replaces with dashes (-). In our model, we defined our slug as a unique field,
which means that there cannot be more than one post with the same slug.

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[312]

Let's go to http://localhost:3000/api/post/my-blog-post-1 in the browser. If the
slug exists in the database you will see the information:

But if you try to view a slug that does not exist in the database you will get this error:

DELETE method endpoints
The DELETE method, as the name implies, is for deleting rows in a database.

DELETE /post/:slug. In Postman, we need to select the DELETE method, and in the URL
you need to pass the slug of the post you want to remove. For example, let's remove my-
blog-post-2. If you remove it correctly you should get a response with the
removed node with a value of true:

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[313]

If you want to verify the post was deleted, you can go to the /posts endpoint again, and
you will see that is not in the JSON anymore:

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[314]

PUT method endpoints
The last method is PUT, and it is usually used to update a row in a database.

PUT /post/:slug

In Postman, you need to select the PUT method first, then the URL of the post you want to
edit. Let's edit my-blog-post-3; so the URL will be
http://localhost:3000/api/post/my-blog-post-3. In the Headers tab, you need to
add, as in the POST method, the Content-Type header with the value application/x-
www-form-urlencoded. The last part is the Body tab, where you can send the new data
you want to replace, in this case, a new title and new content:

If everything works fine, you should get this response:

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[315]

Again, if you want to verify the post was updated correctly, then go to
the /posts endpoint in your browser:

As you can see, the post title, content, and slug were updated correctly.

Adding access tokens to secure our API
The APIs that we created in the last two recipes is public. That means everyone can access
and get the information from our server, but what happens if you want to add a security
layer on the API and get the information for registered users on your platform? We need to
add access token validation to protect our API, and to do this; we have to use JSON Web
Tokens (JWT).

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[316]

Getting ready
For this recipe, you need to install JWT for Node.js:

 npm install jsonwebtoken

How to do it...
We will mostly use the same code that we created for the MySQL recipe and add a security
layer to validate our access tokens:

The first thing we need to do is to modify our config file (config/index.js),1.
add a security node with the secretKey we are going to use to create our
tokens, and add the expiration time of the token:

 export default {
 db: {
 dialect: 'mysql', // The database engine you want to use
 host: 'localhost', // Your host, by default is localhost
 database: 'blog', // Your database name
 user: 'root', // Your MySQL user, by default is root
 password: '123456' // Your MySQL password
 },
 security: {
 secretKey: 'C0d3j0bs', // Secret key
 expiresIn: '1h' // Expiration can be: 30s, 30m, 1h, 7d, etc.
 }
 };

File: config/index.js

The next step is to create a db.js file in our model's folder to separate our2.
database connection and share it between our models. Before, we just had the
blog model, but now we are going to create a user model file as well:

 // Configuration
 import config from '../config';
 import Sequelize from 'sequelize';

 export const db = new Sequelize(
 config.db.database,
 config.db.user,
 config.db.password,
 {
 host: config.db.host,

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[317]

 dialect: config.db.dialect,
 operatorsAliases: false
 }
);

File: models/db.js

Now we need to create a table for users and save a record for our user:3.

 CREATE TABLE users (
 id int(11) UNSIGNED NOT NULL AUTO_INCREMENT,
 username varchar(255) NOT NULL,
 password varchar(255) NOT NULL,
 email varchar(255) NOT NULL,
 fullName varchar(255) NOT NULL,
 PRIMARY KEY (`id`)
);

We can insert a user with this command, change the username and password. In4.
this recipe, we are going to use the SHA1 algorithm to encrypt our passwords:

 INSERT INTO users (id, username, password, email, fullName)
 VALUES (
 NULL,
 'czantany',
 SHA1('123456'),
 'carlos@milkzoft.com',
 'Carlos Santana'
);

 // The SHA1 hash generated for the 123456 password is
 // 7c4a8d09ca3762af61e59520943dc26494f8941b

After we have created our user table and we have a registered user, let's create5.
our user model with a login method:

 // Dependencies
 import Sequelize from 'sequelize';

 // Db Connection
 import { db } from './db';

 // This will remove the extra response
 const queryType = {
 type: Sequelize.QueryTypes.SELECT
 };

 // Login

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[318]

 export function login(username, password, callback) {
 db.query(`
 SELECT id, username, email, fullName
 FROM users
 WHERE username = '${username}' AND password = '${password}'
 `, queryType).then(data => callback(data));
 }

File: models/user.js

The next step is to modify our API controller, add a login endpoint to generate6.
our token, and add a function to validate the token. Then we are going to protect
one of our endpoints (/api/posts):

 // Dependencies
 import express from 'express';
 import jwt from 'jsonwebtoken';

 // Models
 import {
 createPost,
 findAllPosts,
 findBySlug,
 removePost,
 updatePost
 } from '../models/blog';
 import { login } from '../models/user';

 // Configuration
 import config from '../config';

 // Extracting the secretKey and the expiresIn
 const { security: { secretKey, expiresIn } } = config;

 const router = express.Router();

 // Token Validation
 const validateToken = (req, res, next) => {
 if (req.headers['access-token']) {
 // The token should come as 'Bearer <access-token>'
 req.accessToken = req.headers['access-token'].split(' ')[1];
 // We just need the token that's why we split the string by
 //space
 // and we got the token in the position 1 of the array
 //generated
 // by the split method.
 return next();

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[319]

 } else {
 res.status(403).send({
 error: 'You must send an access-token header...'
 });
 }
 }

 // POST login - This will generate a new token
 router.post('/login', (req, res) => {
 const { username, password } = req.body;

 login(username, password, data => {
 if (Object.keys(data).length === 0) {
 res.status(403).send({ error: 'Invalid login' });
 }

 // Creating the token with the
 // user data + secretKey + expiration time
 jwt.sign({ data }, secretKey, { expiresIn }, (error,
 accessToken) => {
 res.json({
 accessToken
 });
 });
 });
 });

 // We pass validateToken as middleware and then we verify with
 // req.accessToken
 router.get('/posts', validateToken, (req, res, next) => {
 jwt.verify(req.accessToken, secretKey, (error, userData) => {
 if (error) {
 console.log(error);
 res.status(403).send({ error: 'Invalid token' });
 } else {
 findAllPosts(posts => {
 res.json({
 response: posts,
 user: userData
 });
 });
 }
 });
 });
 // From here all the others endpoints are public...
 router.get('/post/:slug', (req, res, next) => {
 const { params: { slug } } = req;

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[320]

 findBySlug(slug, singlePost => {
 console.log('single', singlePost);
 if (!singlePost || singlePost.length === 0) {
 res.send({
 error: true,
 message: 'Post not found'
 });
 } else {
 res.json({
 response: [singlePost]
 });
 }
 });
 });

 // POST Methods
 router.post('/post', (req, res, next) => {
 const { title, content } = req.body;

 createPost(title, content, (data, error = false) => {
 if (error) {
 res.json({
 error: true,
 details: error
 });
 } else {
 res.json({
 response: {
 saved: true,
 post: data
 }
 });
 }
 });
 });

 // DELETE Methods
 router.delete('/post/:slug', (req, res, next) => {
 const { params: { slug } } = req;

 removePost(slug, (removed, error) => {
 if (error) {
 res.json({
 error: true,
 message: 'There was an error trying to remove this
 post...'
 });
 } else {

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[321]

 res.json({
 response: {
 removed: true
 }
 });
 }
 });
 });

 // PUT Methods
 router.put('/post/:slug', (req, res, next) => {
 const { params: { slug }, body: { title, content } } = req;

 updatePost(slug, title, content, (affected, error) => {
 if (error) {
 res.json({
 error: true,
 message: 'There was an error trying to update the post'
 });
 } else {
 res.json({
 response: {
 updated: true,
 affected
 }
 });
 }
 });
 });

 export default router;

File: controllers/api.js

How it works...
If you want to test the security of your API, the first thing you need to do is to execute the
POST /api/login method to get a new token. As before, we can do this with Postman.

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[322]

You need to select the POST method and then write the
URL http://localhost:3000/api/login and add a Content-Type header with the
value application/x-www-form-urlencoded to be able to send data through the
request body:

Then, on the Body tab, we need to send our data (username and password) with the
information of the user that we have in the database. Here we are doing this process
manually, but eventually, this information should come from a login form on your website:

If you passed the correct information for your user you should get the accessToken, but if
for some reason the login fails or the user or password is incorrect, you will get an error like
this:

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[323]

Once you get the new accessToken (remember that this token will be valid just for 1 hour;
after the expiration time you will need to create a new one) you need to copy the token and
then send it as header (as an access token with the format Bearer <access-token>) in
the protected endpoint we have (/api/posts):

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[324]

It is crucial that you send the correct format, Bearer[SPACE]<access-token>. Remember, we
are using a space to get the token. If you did everything correctly, you should get the
response from the service with the posts from the blog and the user information (this can
maybe be in a different endpoint, but for this example, I just added the user data here).

Creating an API with Node.js Using MongoDB and MySQL Chapter 8

[325]

As you can see in the user data, we are getting the information from the database plus two
new fields: iat (issued at) and exp (token expiration). But what happens if our token
expires or the user sends an incorrect access-token? In these scenarios, we will return an
error:

There's more...
As you can see, token validation is easy to implement and adds a security layer for our API
when we are working with private data. You will probably ask where the best place is to
save the generated access token. Some people save the access token in cookies or sessions,
but I don't recommend this because there are some associated security issues. My
recommendation is to use local storage to save it only while the user is connected to the site,
and then remove it after the user closes the browser, but again this will depend on the type
of security you want to add to your platform.

9
Apollo and GraphQL

In this chapter, the following recipes will be covered:

Creating our first GraphQL server
Creating a Twitter timeline with Apollo and GraphQL

Introduction
GraphQL is an application-layer query language that can be used with any database. It is
also open source (MIT license) and was created by Facebook. It mainly differs from REST in
that GraphQL does not use endpoints, but queries instead, and is supported by most server
languages, such as JavaScript (Node.js), Go, Ruby, PHP, Java, and Python.

We'll now look at the main differences between GraphQL and REST.

GraphQL:

The queries are readable
You can evolve the API without versions
Type system
You can avoid doing multiple round trips to fetch related data
It's easy to limit the set of data we need

REST:

In REST, everything is a resource
REST is schemaless
You need versions to evolve the API
It's hard to limit the set of data we need
If you need data from different resources, you need to make multiple requests

Apollo and GraphQL Chapter 9

[327]

Creating our first GraphQL server
For this recipe, we are going to create a contacts list in which we will save the name, phone,
and email addresses of our friends.

Getting ready
The first thing we need to do is to create a directory for our project and initialize a new
package.json file installing express, graphql, and express-graphql:

 mkdir contacts-graphql
 cd contacts-graphql
 npm init --yes
 npm install express graphql express-graphql babel-preset-env
 npm install -g babel-cli

We need to install babel-preset-env and babel-cli to use ES6 syntax in Node. Also,
we need to create a .babelrc file :

 {
 "presets": ["env"]
 }

File: .babelrc

How to do it...
Let's create our first GraphQL server:

First, we need to create an index.js file for our Express server:1.

 import express from 'express';

 const app = express();

 app.listen(3000, () => console.log('Running server on port
3000'));

File: index.js

Apollo and GraphQL Chapter 9

[328]

If you run babel-node index.js in your terminal, you should be able to see2.
the node server running on port 3000:

Now we need to include our express-graphql library and import the3.
buildSchema method from graphql:

 import express from 'express';
 import expressGraphQL from 'express-graphql';
 import { buildSchema } from 'graphql';

 const app = express();

 app.listen(3000, () => console.log('Running server on port 3000'));

File: index.js

Once we have our expressGraphQL and buildSchema, let's create our first4.
GraphQL server with our first query:

 // Dependencies
 import express from 'express';
 import expressGraphQL from 'express-graphql';
 import { buildSchema } from 'graphql';

 // Express Application
 const app = express();

 // Creating our GraphQL Schema
 const schema = buildSchema(`
 type Query {
 message: String
 }
 `);

 // Root has the methods we will execute to get the data
 const root = {
 message: () => 'First message'
 };

 // GraphQL middleware
 app.use('/graphql', expressGraphQL({
 schema,
 rootValue: root,

Apollo and GraphQL Chapter 9

[329]

 graphiql: true // This enables the GraphQL browser's IDE
 }));

 // Running our server
 app.listen(3000, () => console.log('Running server on port
3000'));

File: index.js

Now let's create our data file for our contacts list. We can make a data directory5.
and a contacts.json file:

 {
 "contacts": [
 {
 "id": 1,
 "name": "Carlos Santana",
 "phone": "281-323-4146",
 "email": "carlos@milkzoft.com"
 },
 {
 "id": 2,
 "name": "Cristina",
 "phone": "331-251-5673",
 "email": "cristina@gmail.com"
 },
 {
 "id": 3,
 "name": "John Smith",
 "phone": "415-307-4382",
 "email": "john.smith@gmail.com"
 },
 {
 "id": 4,
 "name": "John Brown",
 "phone": "281-323-4146",
 "email": "john.brown@gmail.com"
 }
]
 }

File: data/contacts.json

Apollo and GraphQL Chapter 9

[330]

We will now need to add the methods to get the data (getContact and6.
getContacts):

 // Dependencies
 import express from 'express';
 import expressGraphQL from 'express-graphql';
 import { buildSchema } from 'graphql';

 // Contacts Data
 import { contacts } from './data/contacts';

 // Express Application
 const app = express();

 // Creating our GraphQL Schema
 const schema = buildSchema(`
 type Query {
 contact(id: Int!): Contact
 contacts(name: String): [Contact]
 }

 type Contact {
 id: Int
 name: String
 phone: String
 email: String
 }
 `);

 // Data methods
 const methods = {
 getContact: args => {
 const { id } = args;

 return contacts.filter(contact => contact.id === id)[0];
 },
 getContacts: args => {
 const { name = false } = args;

 // If we don't get a name we return all contacts
 if (!name) {
 return contacts;
 }

 // Returning contacts with same name...
 return contacts.filter(
 contact => contact.name.includes(name)
);

Apollo and GraphQL Chapter 9

[331]

 }
 };

 // Root has the methods we will execute to get the data
 const root = {
 contact: methods.getContact,
 contacts: methods.getContacts
 };

 // GraphQL middleware
 app.use('/graphql', expressGraphQL({
 schema,
 rootValue: root,
 graphiql: true // This enables the GraphQL GUI
 }));

 // Runnign our server
 app.listen(3000, () => console.log('Running server on port 3000'));

File: index.js

How it works...
If you run the server and you go to the URL http://localhost:3000/graphql, you will
see the GraphiQL IDE and, by default, the message query, if you click on the play button
you will observe the data with the message "First message":

Now in the GraphiQL IDE, we need to create a query and add a query variable for our
contactId to get a single contact:

Apollo and GraphQL Chapter 9

[332]

Now for our getContacts query, we need to pass the contactName variable:

Apollo and GraphQL Chapter 9

[333]

As you can see, if we send John as the contactName, the query will return the two rows we
have with the names John Smith and John Brown. Also, if we send an empty value, we are
going to get all the contacts:

Also, we can start using fragments, which are used to share fields between queries,
mutations, and subscriptions:

Apollo and GraphQL Chapter 9

[334]

As you can see, we define our fragment with the fields we want to get and then in both
queries (contact1 and contact2), we re-use the same fragment (contactFields). In the
query variables, we pass the values of the contacts we want to get data.

There's more...
Mutations are also essential because they help us to modify our data. Let's implement a
mutation and update a contact by passing the ID and the fields we want to change.

We need to add our mutation definition and create the function to update our contact; our
code should look like this:

 // Dependencies
 import express from 'express';
 import expressGraphQL from 'express-graphql';
 import { buildSchema } from 'graphql';

 // Contacts Data
 import { contacts } from './data/contacts';

 // Express Application
 const app = express();

Apollo and GraphQL Chapter 9

[335]

 // Creating our GraphQL Schema
 const schema = buildSchema(`
 type Query {
 contact(id: Int!): Contact
 contacts(name: String): [Contact]
 }

 type Mutation {
 updateContact(
 id: Int!,
 name: String!,
 phone: String!,
 email: String!
): Contact
 }

 type Contact {
 id: Int
 name: String
 phone: String
 email: String
 }
 `);

 // Data methods
 const methods = {
 getContact: args => {
 const { id } = args;

 return contacts.filter(contact => contact.id === id)[0];
 },
 getContacts: args => {
 const { name = false } = args;

 // If we don't get a name we return all contacts
 if (!name) {
 return contacts;
 }

 // Returning contacts with same name...
 return contacts.filter(contact => contact.name.includes(name));
 },
 updateContact: ({ id, name, phone, email }) => {
 contacts.forEach(contact => {
 if (contact.id === id) {
 // Updating only the fields that has new values...
 contact.name = name || contact.name;
 contact.phone = phone || contact.phone;

Apollo and GraphQL Chapter 9

[336]

 contact.email = email || contact.email;
 }
 });

 return contacts.filter(contact => contact.id === id)[0];
 }
 };

 // Root has the methods we will execute to get the data
 const root = {
 contact: methods.getContact,
 contacts: methods.getContacts,
 updateContact: methods.updateContact
 };

 // GraphQL middleware
 app.use('/graphql', expressGraphQL({
 schema,
 rootValue: root,
 graphiql: true // This enables the GraphQL GUI
 }));

 // Running our server
 app.listen(3000, () => console.log('Running server on port 3000'));

File: index.js

Now let's create our mutation in GraphiQL and update a contact:

Apollo and GraphQL Chapter 9

[337]

Creating a Twitter timeline with Apollo and
GraphQL
Apollo is an open source infrastructure for GraphQL. There are other libraries for handling
GraphQL, such as Relay and Universal React Query Library (URQL). The main problem
with these libraries is that they are mainly for React applications, while Apollo can work
with any other technology or framework.

Getting ready
For this recipe, we are going to create a new React application using create-react-app:

 create-react-app apollo

We need to eject the configuration by executing the following command:

 npm run eject

The eject command will bring all the configuration of react-scripts to your local
project (Webpack configuration).

Now we need to install the following packages:

 npm install apollo-boost graphql graphql-tag moment mongoose react-
 apollo

And we need to install these dev packages as well:

 npm install --save-dev babel-preset-react babel-preset-stage-0

Then we need to add a resolutions node to specify the exact version of GraphQL we are
going to use. This is to avoid version conflicts. The current version of graphql is 0.13.2.
Of course, you will need to specify the latest version of GraphqQL at the time you're
reading this:

 "resolutions": {
 "graphql": "0.13.2"
 }

Apollo and GraphQL Chapter 9

[338]

Also, we need to remove the babel node in our package.json.

 "babel": {
 "presets": [
 "react-app"
]
 }

File: package.json

Then, finally, we need to create a .babelrc file with this:

 {
 "presets": ["react", "stage-0"]
 }

File: .babelrc

Before we jump to the actual recipe, we need to create first our GraphQL backend server to
create all the queries and mutations we will need to complete this project. We'll see how to
do that in the following sections.

Creating our GraphQL backend server
Let's get started with the backend server:

First, inside the apollo project (the one we created with create-react-app),1.
we need to create a new directory called backend, initialize a package.json
file, and create inside the src folder:

 cd apollo
 mkdir backend
 cd backend
 npm init -y
 mkdir src

Apollo and GraphQL Chapter 9

[339]

Now we need to install these dependencies:2.

 npm install cors express express-graphql graphql graphql-tools
 mongoose nodemon babel-preset-es2015

 npm install -g babel-cli

In our package.json file, we need to modify our start script to use nodemon:3.

 "scripts": {
 "start": "nodemon src/app.js --watch src --exec babel-node
 --presets es2015"
 }

File: package.json

Then we need to create our app.js file, in which we are going to create our4.
GraphQL middleware:

 // Dependencies
 import express from 'express';
 import expressGraphQL from 'express-graphql';
 import cors from 'cors';
 import graphQLExpress from 'express-graphql';
 import { makeExecutableSchema } from 'graphql-tools';

 // Query
 import { typeDefs } from './types/Query';
 import { resolvers } from './types/Resolvers';

 // Defining our schema with our typeDefs and resolvers
 const schema = makeExecutableSchema({
 typeDefs,
 resolvers
 });

 // Intializing our express app
 const app = express();

 // Using cors
 app.use(cors());

 // GraphQL Middleware
 app.use('/graphiql', graphQLExpress({
 schema,
 pretty: true,
 graphiql: true
 }));

Apollo and GraphQL Chapter 9

[340]

 // Listening port 5000
 app.listen(5000);

 console.log('Server started on port 5000');

File: src/app.js

As you can see, we have included our typeDefs and resolvers from types folder,5.
so let's create that directory and create our Query file:

 export const typeDefs = [`
 # Scalar Types (custom type)
 scalar DateTime

 # Tweet Type (should match our Mongo schema)
 type Tweet {
 _id: String
 tweet: String
 author: String
 createdAt: DateTime
 }

 # Query
 type Query {
 # This query will return a single Tweet
 getTweet(_id: String): Tweet

 # This query will return an array of Tweets
 getTweets: [Tweet]
 }

 # Mutations
 type Mutation {
 # DateTime is a custom Type
 createTweet(
 tweet: String,
 author: String,
 createdAt: DateTime
): Tweet
 # Mutation to delete a Tweet
 deleteTweet(_id: String): Tweet
 # Mutation to update a Tweet (! means mandatory).
 updateTweet(
 _id: String!,
 tweet: String!
): Tweet
 }

Apollo and GraphQL Chapter 9

[341]

 # Schema
 schema {
 query: Query
 mutation: Mutation
 }
 `];

File: src/types/Query.js

After we have created our Query file, we need to add our resolvers. These are the6.
functions that are executed for each Query and Mutation. We are also going to
define our custom DateTime type using GraphQLScalarType:

 // Dependencies
 import { GraphQLScalarType } from 'graphql';
 // TweetModel (Mongo Schema)
 import TweetModel from '../model/Tweet';
 // Resolvers
 export const resolvers = {
 Query: {
 // Receives an _id and returns a single Tweet.
 getTweet: _id => TweetModel.getTweet(_id),
 // Gets an array of Tweets.
 getTweets: () => TweetModel.getTweets()
 },
 Mutation: {
 // Creating a Tweet passing the args (Tweet object), the _ is
 // the root normally is undefined
 createTweet: (_, args) => TweetModel.createTweet(args),
 // Deleting a Tweet passing in the args the _id of the Tweet
 // we want to remove
 deleteTweet: (_, args) => TweetModel.deleteTweet(args),
 // Updating a Tweet passing the new values of the Tweet we
 // want to update
 updateTweet: (_, args) => TweetModel.updateTweet(args)
 },
 // This DateTime will return the current date.
 DateTime: new GraphQLScalarType({
 name: 'DateTime',
 description: 'Date custom scalar type',
 parseValue: () => new Date(),
 serialize: value => value,
 parseLiteral: ast => ast.value
 })
 };

File: src/types/Resolvers.js

Apollo and GraphQL Chapter 9

[342]

Finally, we need to create our tweet model:7.

 // Dependencies
 import mongoose from 'mongoose';

 // Connecting to Mongo
 mongoose.Promise = global.Promise;
 mongoose.connect('mongodb://localhost:27017/twitter', {
 useNewUrlParser: true
 });

 // Getting Mongoose Schema
 const Schema = mongoose.Schema;

 // Defining our Tweet schema
 const tweetSchema = new Schema({
 tweet: String,
 author: String,
 createdAt: Date,
 });

 // Creating our Model
 const TweetModel = mongoose.model('Tweet', tweetSchema);

 export default {
 // Getting all the tweets and sorting descending
 getTweets: () => TweetModel.find().sort({ _id: -1 }),
 // Getting a single Tweet using the _id
 getTweet: _id => TweetModel.findOne({ _id }),
 // Saving a Tweet
 createTweet: args => TweetModel(args).save(),
 // Removing a Tweet by _id
 deleteTweet: args => {
 const { _id } = args;

 TweetModel.remove({ _id }, error => {
 if (error) {
 console.log('Error Removing:', error);
 }
 });

 // Even when we removed a tweet we need to return the object
 // of the tweet
 return args;
 },
 // Updating a Tweet (just the field tweet will be updated)
 updateTweet: args => {
 const { _id, tweet } = args;

Apollo and GraphQL Chapter 9

[343]

 // Searching by _id and then update tweet field.
 TweetModel.update({ _id }, {
 $set: {
 tweet
 }
 },
 { upsert: true }, error => {
 if (error) {
 console.log('Error Updating:', error);
 }
 });

 // This is hard coded for now
 args.author = 'codejobs';
 args.createdAt = new Date();

 // Returning the updated Tweet
 return args;
 }
 };

File: src/model/Tweet.js

You need to have MongoDB installed and running to use this project. If
you don't know how to do this, you can look at Chapter 8, Creating an API
with Node.js Using MongoDB and MySQL.

Apollo and GraphQL Chapter 9

[344]

Now for the moment of truth! If you followed all the steps correctly you should8.
see the GraphiQL IDE working if you go
to http://localhost:5000/graphiql, but it's possible you'll get this error:

Usually, this error means that we are using graphql in two projects (frontend9.
and backend) and npm does not know which version will use which. This is a
tricky error, but I will show you how to fix it. First, we remove the
node_modules folder from both of our projects (frontend and backend). Then we
need to add a resolutions node in both of the package.json files:

 "resolutions": {
 "graphql": "0.13.2"
 }

At the same time, we also need to remove the caret (^) from the graphql version10.
in both package.json files.
Now we must delete the package-lock.json and yarn.lock files (if you have11.
them).
Before we install the dependencies again, it's a good idea to update npm to the12.
latest version:

 npm install -g npm

Apollo and GraphQL Chapter 9

[345]

After that, just to be safe, let's remove the npm cache:13.

 npm cache clean --force

And now you run npm install again (first on the backend), and after you run14.
the project with npm start, if everything works fine you should see the
GraphiQL IDE working properly:

Apollo and GraphQL Chapter 9

[346]

How to do it...
Now that we have our backend ready, let's start working on our frontend:

The first file we need to modify is the index.js file:1.

 // Dependencies
 import React from 'react';
 import { render } from 'react-dom';
 import ApolloClient from 'apollo-boost';
 import { ApolloProvider } from 'react-apollo';

 // Components
 import App from './App';

 // Styles
 import './index.css';

 // Apollo Client
 const client = new ApolloClient({
 uri: 'http://localhost:5000/graphiql' // Backend endpoint
 });

 // Wrapping the App with ApolloProvider
 const AppContainer = () => (
 <ApolloProvider client={client}>
 <App />
 </ApolloProvider>
);

 // Root
 const root = document.getElementById('root');

 // Rendering the AppContainer
 render(<AppContainer />, root);

File: src/index.js

We connect our backend endpoint to ApolloClient, and we wrapped our <App2.
/> component with <ApolloProvider> (yes, this is similar to Redux Provider).
Now let's modify our App.js file to include our main component (Tweets):

 // Dependencies
 import React, { Component } from 'react';

 // Components
 import Tweets from './components/Tweets';

Apollo and GraphQL Chapter 9

[347]

 // Styles
 import './App.css';

 class App extends Component {
 render() {
 return (
 <div className="App">
 <Tweets />
 </div>
);
 }
 }

 export default App;

File: src/App.js

The first thing we need to do is create our GraphQL queries and mutations. To3.
do this, we need to create a new directory called graphql and other two
directories inside it, one for mutations and the other for queries:

 // Dependencies
 import gql from 'graphql-tag';

 // getTweets query
 export const QUERY_GET_TWEETS = gql`
 query getTweets {
 getTweets {
 _id
 tweet
 author
 createdAt
 }
 }
 `;

File: src/graphql/queries/index.js

Apollo and GraphQL Chapter 9

[348]

Yes, you see it properly, it's not a typo! The function is called without4.
parentheses and using only backticks (gql`YOUR QUERY HERE`). The
getTweets query is already defined in our backend. We are executing the
getTweets query, and we will get the fields (_id, tweet, author, and
createdAt). Now let's create our mutations:

 // Dependencies
 import gql from 'graphql-tag';

 // createTweet Mutation
 export const MUTATION_CREATE_TWEET = gql`
 mutation createTweet(
 $tweet: String,
 $author: String,
 $createdAt: DateTime
) {
 createTweet(
 tweet: $tweet,
 author: $author,
 createdAt: $createdAt
) {
 _id
 tweet
 author
 createdAt
 }
 }
 `;

 // deleteTweet Mutation
 export const MUTATION_DELETE_TWEET = gql`
 # ! means mandatory
 mutation deleteTweet($_id: String!) {
 deleteTweet(
 _id: $_id
) {
 _id
 tweet
 author
 createdAt
 }
 }
 `;

 // updateTweet Mutation
 export const MUTATION_UPDATE_TWEET = gql`
 mutation updateTweet(

Apollo and GraphQL Chapter 9

[349]

 $_id: String!,
 $tweet: String!
) {
 updateTweet(
 _id: $_id,
 tweet: $tweet
) {
 _id
 tweet
 author
 createdAt
 }
 }
 `;

File: src/graphql/mutations/index.js

I always like to do refactors and improve things, that's why I created two helpers5.
for the Query and Mutation components from react-apollo. First, let's create
two directories, shared and shared/components. First, this is our Query
component:

 // Dependencies
 import React, { Component } from 'react';
 import { Query as ApolloQuery } from 'react-apollo';

 class Query extends Component {
 render() {
 const {
 query,
 render: Component
 } = this.props;

 return (
 <ApolloQuery query={query}>
 {({ loading, error, data }) => {
 if (loading) {
 return <p>Loading...</p>;
 }

 if (error) {
 return <p>Query Error: {error}</p>
 }

 return <Component data={data || false} />;
 }}
 </ApolloQuery>

Apollo and GraphQL Chapter 9

[350]

);
 }
 }

 export default Query;

File: src/shared/components/Query.js

Our Mutation component should be like this:6.

 // Dependencies
 import React, { Component } from 'react';
 import { Mutation as ApolloMutation } from 'react-apollo';

 class Mutation extends Component {
 render() {
 const {
 mutation,
 query,
 children,
 onCompleted
 } = this.props;

 return (
 <ApolloMutation
 mutation={mutation}
 update={(cache, { data }) => {
 // Getting the mutation and query name
 const {
 definitions: [{ name: { value: mutationName } }]
 } = mutation;
 const {
 definitions: [{ name: { value: queryName } }]
 } = query;

 // Getting cachedData from previous query
 const cachedData = cache.readQuery({ query });

 // Getting current data (result of the mutation)
 const current = data[mutationName];

 // Initializing our updatedData
 let updatedData = [];

 // Lower case mutation name
 const mutationNameLC = mutationName.toLowerCase();

 // If the mutation includes "delete" or "remove"

Apollo and GraphQL Chapter 9

[351]

 if (mutationNameLC.includes('delete')
 || mutationNameLC.includes('remove')) {
 // Removing the current tweet by filtering
 // from the cachedData
 updatedData = cachedData[queryName].filter(
 row => row._id !== current._id
);
 } else if (mutationNameLC.includes('create')
 || mutationNameLC.includes('add')) {
 // Create or add action injects the current
 // value in the array
 updatedData = [current, ...cachedData[queryName]];
 } else if (mutationNameLC.includes('edit')
 || mutationNameLC.includes('update')) {
 // Edit or update actions will replace the old values
 // with the new ones
 const index = cachedData[queryName].findIndex(
 row => row._id === current._id
);
 cachedData[queryName][index] = current;
 updatedData = cachedData[queryName];
 }

 // Updating our data to refresh the tweets list
 cache.writeQuery({
 query,
 data: {
 [queryName]: updatedData
 }
 });
 }}
 onCompleted={onCompleted}
 >
 {/**
 * Here we render the content of the
 * component (children)
 */}
 {children}
 </ApolloMutation>
);
 }
 }

 export default Mutation;

File: src/shared/components/Mutation.js

Apollo and GraphQL Chapter 9

[352]

Once we have our helpers ready, let's create our components for Tweets, Tweet,7.
and CreateTweet. This is our Tweets component:

 // Dependencies
 import React, { Component } from 'react';

 // Components
 import Tweet from './Tweet';
 import CreateTweet from './CreateTweet';
 import Query from '../shared/components/Query';

 // Queries
 import { QUERY_GET_TWEETS } from '../graphql/queries';

 // Styles
 import './Tweets.css';

 class Tweets extends Component {
 render() {
 return (
 <div className="tweets">
 {/* Rendering CreateTweet component */}
 <CreateTweet />

 {/**
 * Executing QUERY_GET_TWEETS query and render our Tweet
 * component
 */}
 <Query query={QUERY_GET_TWEETS} render={Tweet} />
 </div>
);
 }
 }

 export default Tweets;

File: src/components/Tweets.js

Apollo and GraphQL Chapter 9

[353]

This is our Tweet component:8.

 // Dependencies
 import React, { Component } from 'react';
 import moment from 'moment';

 // Components
 import Mutation from '../shared/components/Mutation';

 // Queries
 import {
 MUTATION_DELETE_TWEET,
 MUTATION_UPDATE_TWEET
 } from '../graphql/mutations';

 import { QUERY_GET_TWEETS } from '../graphql/queries';

 // Images (those are temporary images and exists on the repository)
 import TwitterLogo from './twitter.svg';
 import CodejobsAvatar from './codejobs.png';

 class Tweet extends Component {
 // Local State
 state = {
 currentTweet: false
 };

 // Enabling a textarea for edit a Tweet
 handleEditTweet = _id => {
 const { data: { getTweets: tweets } } = this.props;

 const selectedTweet = tweets.find(tweet => tweet._id === _id);

 const currentTweet = {
 [_id]: selectedTweet.tweet
 };

 this.setState({
 currentTweet
 });
 }

 // Handle Change for textarea
 handleChange = (value, _id) => {
 const { currentTweet } = this.state;

 currentTweet[_id] = value;

Apollo and GraphQL Chapter 9

[354]

 this.setState({
 currentTweet
 });
 }

 // Delete tweet mutation
 handleDeleteTweet = (mutation, _id) => {
 // Sending variables
 mutation({
 variables: {
 _id
 }
 });
 }

 // Update tweet mutation
 handleUpdateTweet = (mutation, value, _id) => {
 // Sending variables
 mutation({
 variables: {
 _id,
 tweet: value
 }
 });
 }

 render() {
 // Getting the data from getTweets query
 const { data: { getTweets: tweets } } = this.props;

 // currentTweet state
 const { currentTweet } = this.state;

 // Mapping the tweets
 return tweets.map(({
 _id,
 tweet,
 author,
 createdAt
 }) => (
 <div className="tweet" key={`tweet-${_id}`}>
 <div className="author">
 {/* Rendering our Twitter Avatar (this is hardcoded) */}

 {/* Rendering the author */}
 {author}
 </div>

Apollo and GraphQL Chapter 9

[355]

 <div className="content">
 <div className="twitter-logo">
 {/* Rendering the Twitter Logo */}

 </div>

 {/**
 * If there is no currentTweet being edited then
 * we display the tweet as a text otherwise we
 * render a textarea with the tweet to be edited
 */}
 {!currentTweet[_id]
 ? tweet
 : (
 <Mutation
 mutation={MUTATION_UPDATE_TWEET}
 query={QUERY_GET_TWEETS}
 onCompleted={() => {
 // Once the mutation is completed we clear our
 // currentTweet state
 this.setState({
 currentTweet: false
 });
 }}
 >
 {(updateTweet) => (
 <textarea
 autoFocus
 className="editTextarea"
 value={currentTweet[_id]}
 onChange={(e) => {
 this.handleChange(
 e.target.value,
 _id
);
 }}
 onBlur={(e) => {
 this.handleUpdateTweet(
 updateTweet,
 e.target.value,
 _id
);
 }}
 />
)}
 </Mutation>
)
 }

Apollo and GraphQL Chapter 9

[356]

 </div>

 <div className="date">
 {/* Rendering the createdAt date (MMM DD, YYYY) */}
 {moment(createdAt).format('MMM DD, YYYY')}
 </div>

 {/* Rendering edit icon */}
 <div
 className="edit"
 onClick={() => {
 this.handleEditTweet(_id);
 }}
 >
 <i className="fa fa-pencil" aria-hidden="true" />
 </div>

 {/* Mutation for delete a tweet */}
 <Mutation
 mutation={MUTATION_DELETE_TWEET}
 query={QUERY_GET_TWEETS}
 >
 {(deleteTweet) => (
 <div
 className="delete"
 onClick={() => {
 this.handleDeleteTweet(deleteTweet, _id);
 }}
 >
 <i className="fa fa-trash" aria-hidden="true" />
 </div>
)}
 </Mutation>
 </div>
));
 }
 }

 export default Tweet;

File: src/components/Tweet.js

Our CreateTweet component is as follows:9.

 // Dependencies
 import React, { Component } from 'react';
 import Mutation from '../shared/components/Mutation';

Apollo and GraphQL Chapter 9

[357]

 // Images (this image is on the repository)
 import CodejobsAvatar from './codejobs.png';

 // Queries
 import { MUTATION_CREATE_TWEET } from '../graphql/mutations';
 import { QUERY_GET_TWEETS } from '../graphql/queries';

 class CreateTweet extends Component {
 // Local state
 state = {
 tweet: ''
 };

 // Handle change for textarea
 handleChange = e => {
 const { target: { value } } = e;

 this.setState({
 tweet: value
 })
 }

 // Executing createTweet mutation to add a new Tweet
 handleSubmit = mutation => {
 const tweet = this.state.tweet;
 const author = '@codejobs';
 const createdAt = new Date();

 mutation({
 variables: {
 tweet,
 author,
 createdAt
 }
 });
 }

 render() {
 return (
 <Mutation
 mutation={MUTATION_CREATE_TWEET}
 query={QUERY_GET_TWEETS}
 onCompleted={() => {
 // On mutation completed we clean the tweet state
 this.setState({
 tweet: ''
 });
 }}

Apollo and GraphQL Chapter 9

[358]

 >
 {(createTweet) => (
 <div className="createTweet">
 <header>
 Write a new Tweet
 </header>

 <section>

 <textarea
 placeholder="Write your tweet here..."
 value={this.state.tweet}
 onChange={this.handleChange}
 />
 </section>

 <div className="publish">
 <button
 onClick={() => {
 this.handleSubmit(createTweet);
 }}
 >
 Tweet it!
 </button>
 </div>
 </div>
)}
 </Mutation>
);
 }
 }

 export default CreateTweet;

File: src/components/CreateTweet.js

Apollo and GraphQL Chapter 9

[359]

Finally, but no less important, this is the file for the styles:10.

 .tweet {
 margin: 20px auto;
 padding: 20px;
 border: 1px solid #ccc;
 height: 200px;
 width: 80%;
 position: relative;
 }

 .author {
 text-align: left;
 margin-bottom: 20px;
 }

 .author strong {
 position: absolute;
 top: 40px;
 margin-left: 10px;
 }

 .author img {
 width: 50px;
 border-radius: 50%;
 }

 .content {
 text-align: left;
 color: #222;
 text-align: justify;
 line-height: 25px;
 }

 .date {
 color: #aaa;
 font-size: 12px;
 position: absolute;
 bottom: 10px;
 }

 .twitter-logo img {
 position: absolute;
 right: 10px;
 top: 10px;
 width: 20px;
 }

Apollo and GraphQL Chapter 9

[360]

 .createTweet {
 margin: 20px auto;
 background-color: #F5F5F5;
 width: 86%;
 height: 225px;
 border: 1px solid #AAA;
 }

 .createTweet header {
 color: white;
 font-weight: bold;
 background-color: #2AA3EF;
 border-bottom: 1px solid #AAA;
 padding: 20px;
 }

 .createTweet section {
 padding: 20px;
 display: flex;
 }

 .createTweet section img {
 border-radius: 50%;
 margin: 10px;
 height: 50px;
 }

 textarea {
 border: 1px solid #ddd;
 height: 80px;
 width: 100%;
 }

 .publish {
 margin-bottom: 20px;
 }

 .publish button {
 cursor: pointer;
 border: 1px solid #2AA3EF;
 background-color: #2AA3EF;
 padding: 10px 20px;
 color: white;
 border-radius: 20px;
 float: right;
 margin-right: 20px;
 }

Apollo and GraphQL Chapter 9

[361]

 .delete {
 position: absolute;
 right: 10px;
 bottom: 10px;
 cursor: pointer;
 }

 .edit {
 position: absolute;
 right: 30px;
 bottom: 10px;
 cursor: pointer;
 }

File: src/components/Tweets.css

How it works...
If you did everything correctly and you run the frontend and backend (each on a different
terminal) then you can run the project at http://localhost:3000, and you should see
this view:

Now we can create new tweets by writing them in the text area and clicking on the Tweet
it! button:

Apollo and GraphQL Chapter 9

[362]

Apollo and GraphQL Chapter 9

[363]

As you can see, the order of tweets is descending. This means that the newest tweets are
posted at the top. If you want to edit a tweet, you can click on the edit icon (the pencil):

The way to save the changes is by removing the focus (onBlur) on the textarea, and now we
can see the updated tweet:

Apollo and GraphQL Chapter 9

[364]

Finally, if you want to delete a tweet, then click on the trash icon (I have removed the
second tweet):

As you can see, the mutations are very easy to implement, and with the helpers, we have
simplified this process.

You're probably thinking that there's some way to use Redux with
GraphQL, but let me tell you that it is possible that GraphQL will replace
Redux because we have access to the data through the ApolloProvider.

10
Mastering Webpack 4.x

In this chapter, the following recipes will be covered:

Webpack 4 Zero Configuration
Adding React to Webpack 4
Adding Webpack Dev Server and Sass, Stylus, or LessCSS with React
Webpack 4 Optimization – Splitting Bundles
Implementing Node.js with React/Redux and Webpack 4

Introduction
From the Webpack 4 official website (https:/ ​/​webpack. ​js.​org):

"Webpack is a static module bundler for modern JavaScript applications. When webpack
processes your application, it internally builds a dependency graph which maps every
module your project needs and generates one or more bundles. Since version 4, webpack
does not require a configuration file to bundle your project. Nevertheless, it is incredibly
configurable to fit your needs better."

Webpack 4 Zero Configuration
Webpack 4 does not need a configuration file by default. In the older versions, you had
to have a configuration file. If you need to customize Webpack 4 to your project's needs,
you can still create a configuration file, which will be much easier to configure.

https://webpack.js.org
https://webpack.js.org
https://webpack.js.org
https://webpack.js.org
https://webpack.js.org
https://webpack.js.org
https://webpack.js.org
https://webpack.js.org
https://webpack.js.org

Mastering Webpack 4.x Chapter 10

[366]

Getting Ready
For this recipe, you need to create a new folder and install the following packages:

mkdir webpack-zero-configuration
cd webpack-zero-configuration
npm install --save-dev webpack webpack-cli

In your Webpack folder, you need to create a package.json file, and for this, you can use
the following command:

npm init -y

How to do it...
Let's now start the configuration:

Open package.json, and add a new build script:1.

 {
 "name": "webpack-zero-configuration",
 "version": "1.0.0",
 "description": "Webpack 4 Zero Configuration",
 "main": "index.js",
 "scripts": {
 "build": "webpack"
 },
 "author": "Carlos Santana",
 "license": "MIT",
 "devDependencies": {
 "webpack": "^4.6.0",
 "webpack-cli": "^2.0.15"
 }
 }

File: package.json

Run the build script in your terminal:2.

 npm run build

Mastering Webpack 4.x Chapter 10

[367]

You will see this error:3.

The error you get in the terminal will look like this: ERROR in Entry module not found: Error: Can't resolver'./src' in
'/Users/czantany/projects/React16Cookbook/Chapter9/Recipe1/webpack-zero-configuration'

Because we're now in Webpack 4, by the default, the main entry point is4.
src/index.js. Let's create this file to be able to build our first bundle:

 console.log('Index file...');

File: src/index.js

If you re-run the build script, you will see that Webpack creates a new bundle file5.
called main.js io the dist folder (again, this is by default):

The warning let us know that we can choose the mode between production or development

Mastering Webpack 4.x Chapter 10

[368]

There is a Warning message in the terminal: the mode option has not been set,6.
webpack will fallback to production for this value. Set mode to development or
production to enable defaults for each environment. You can also set it to none
to disable any default behavior. You can learn more at
https://webpack.js.org/concepts/mode/. By default, production mode is enabled,
and that's why our bundle (dist/main.js) is minified and obfuscated, similar
to the following:

 !function(e){var n={};function r(t){if(n[t])return
n[t].exports;var o=n[t]={i:t,l:!1,exports:{}};return
e[t].call(o.exports,o,o.exports,r),o.l=!0,o.exports}r.m=e,r.c=n,r.d
=function(e,n,t){r.o(e,n)||Object.defineProperty(e,n,{configurable:
!1,enumerable:!0,get:t})},r.r=function(e){Object.defineProperty(e,"
__esModule",{value:!0})},r.n=function(e){var
n=e&&e.__esModule?function(){return e.default}:function(){return
e};return r.d(n,"a",n),n},r.o=function(e,n){return
Object.prototype.hasOwnProperty.call(e,n)},r.p="",r(r.s=0)}([functi
on(e,n){console.log("Index file...")}]);

File: dist/main.js

How it works...
Webpack 4 has two modes: production and development. In Webpack 3, you needed to
create a config file for each one; now you can get the same result just with a single line. Let's
add a script to get our application to start using the development mode:

 {
 "name": "webpack-zero-configuration",
 "version": "1.0.0",
 "description": "Webpack 4 Zero Configuration",
 "main": "index.js",
 "scripts": {
 "build-development": "webpack --mode development",
 "build": "webpack --mode production"
 },
 "author": "Carlos Santana",
 "license": "MIT",
 "devDependencies": {
 "webpack": "^4.6.0",
 "webpack-cli": "^2.0.15"
 }
 }

File: package.json

Mastering Webpack 4.x Chapter 10

[369]

If you run the npm run build-development command, now you will see that the bundle
is not compressed at all:

File: dist/main.js

As you can see, by default, Webpack 4 using production minifies the code and performs
some optimizations for this environment, in Webpack 3, this configuration had to be done
manually in a config file.

Mastering Webpack 4.x Chapter 10

[370]

There's more...
If you want to implement Babel with Webpack 4 to transpile ES6 code, you need to use
babel-loader, and you may need to install the following packages:

npm install --save-dev babel-loader babel-core babel-preset-env

Create a .babelrc file at the root of your project and then add this code:1.

 {
 "presets": ["env"]
 }

File: .babelrc

Add our babel-loader using a webpack.config.js file:2.

 const webpackConfig = {
 module: {
 rules: [
 {
 test: /\.js$/,
 exclude: /node_modules/,
 use: 'babel-loader'
 }
]
 }
 };

 module.exports = webpackConfig;

File: webpack.config.js

Create a file called src/numbers.js and import it to our src/index.js to test3.
our babel-loader:

 export const numbers = ['one', 'two', 'three'];

File: src/numbers.js

Mastering Webpack 4.x Chapter 10

[371]

In our index.js file, do the following:4.

 import { numbers } from './numbers';
 numbers.forEach(number => console.log(number));

File: src/index.js

Run the npm run build script, and if everything works fine, you should get this5.
result:

It is also possible to use babel-loader directly in the terminal without a config6.
file, for this, we need to use the --module-bind flag to bind an extension to a
loader:

 {
 "name": "webpack-zero-configuration",
 "version": "1.0.0",
 "description": "Webpack 4 Zero Configuration",
 "main": "index.js",
 "scripts": {
 "build-development": "webpack --mode development --module-bind
 js=babel-loader",
 "build": "webpack --mode production --module-bind js=babel-
 loader"
 },
 "author": "Carlos Santana",
 "license": "MIT",
 "devDependencies": {
 "babel-core": "^6.26.3",
 "babel-loader": "^7.1.4",
 "babel-preset-env": "^1.6.1",
 "webpack": "^4.6.0",
 "webpack-cli": "^2.0.15"
 }
 }

Mastering Webpack 4.x Chapter 10

[372]

There are more flags to bind modules (if you want to learn more about Webpack7.
CLI, you can visit the official site at https:/ ​/​webpack. ​js. ​org/​api/ ​cli/ ​):

--module-bind-post: Bind an extension to a post-loader
--module-bind-pre: Bind an extension to a pre-loader

Adding React to Webpack 4
In this recipe, we are going to implement React with Webpack 4, but we will use a plugin
called html-webpack-plugin to generate our index.html file to render our React
application. In the next recipe, we will integrate Node.js to have more flexibility in our
server-side before rendering the HTML code.

Getting Ready
For this recipe, you will need to install the following packages:

 npm install react react-dom babel-preset-react

How to do it...
Here are the steps to add React to Webpack 4:

Using the same code of the last recipe, create a .babelrc file and add some1.
presets:

 {
 "presets": [
 "env",
 "react"
]
 }

File: .babelrc

https://webpack.js.org/api/cli/
https://webpack.js.org/api/cli/
https://webpack.js.org/api/cli/
https://webpack.js.org/api/cli/
https://webpack.js.org/api/cli/
https://webpack.js.org/api/cli/
https://webpack.js.org/api/cli/
https://webpack.js.org/api/cli/
https://webpack.js.org/api/cli/
https://webpack.js.org/api/cli/
https://webpack.js.org/api/cli/
https://webpack.js.org/api/cli/
https://webpack.js.org/api/cli/
https://webpack.js.org/api/cli/

Mastering Webpack 4.x Chapter 10

[373]

In our webpack.config.js file, where we have our babel-loader, we need to2.
add the .jsx extension beside the .js extension to be able to apply babel-
loader to our React components:

 const webpackConfig = {
 module: {
 rules: [
 {
 test: /\.(js|jsx)$/,
 exclude: /node_modules/,
 use: 'babel-loader'
 }
]
 }
 };

 module.exports = webpackConfig;

File: webpack.config.js

After we added the .jsx extension to our babel-loader, we need to create3.
the src/components/App.jsx file:

 // Dependencies
 import React from 'react';

 // Components
 import Home from './Home';

 const App = props => (
 <div>
 <Home />
 </div>
);

 export default App;

File: src/components/App.jsx

Mastering Webpack 4.x Chapter 10

[374]

Creating the Home component:4.

 import React from 'react';

 const Home = () => <h1>Home</h1>;

 export default Home;

File: src/components/Home/index.jsx

In our main index.js file, we need to include react, the render method from5.
react-dom and our App component, and render the application:

 // Dependencies
 import React from 'react';
 import { render } from 'react-dom';

 // Components
 import App from './components/App';

 render(<App />, document.querySelector('#root'));

File: src/index.jsx

You may wonder where the #root div is since we have not created index.html6.
yet. In this specific recipe, we are going to use the html-webpack-
plugin plugin to process our HTML:

 npm install --save-dev html-webpack-plugin

Open your webpack.config.js file. We need to add our html-webpack-7.
plugin and create a plugins node in our config file:

 const HtmlWebPackPlugin = require('html-webpack-plugin');

 const webpackConfig = {
 module: {
 rules: [
 {
 test: /\.(js|jsx)$/,
 exclude: /node_modules/,
 use: 'babel-loader'
 }
]
 },
 plugins: [
 new HtmlWebPackPlugin({

Mastering Webpack 4.x Chapter 10

[375]

 title: 'Codejobs',
 template: './src/index.html',
 filename: './index.html'
 })
]
 };

 module.exports = webpackConfig;

File: webpack.config.js

Create the index.html template at your src directory level:8.

 <!DOCTYPE html>
 <html>
 <head>
 <meta charset="UTF-8">
 <title><%= htmlWebpackPlugin.options.title %></title>
 </head>
 <body>
 <div id="root"></div>
 </body>
 </html>

File: src/index.html

Mastering Webpack 4.x Chapter 10

[376]

How it works...
As you can see, we can inject variables from the plugin using
the htmlWebpackPlugin.options object between the <%= and %> delimiters. Now it's
time to test our application, try to run the npm run build command:

Big red error: Can't resolve ./src directory, but what does it mean? Do you remember
how we used the .jsx extension in our files? Even we added that extension to our babel-
loader rule so why is not working? It's because we had to add a resolve node to our
configuration and specified the file extensions we want to support. Otherwise, we have to
use only the .js extension:

 const HtmlWebPackPlugin = require('html-webpack-plugin');

 const webpackConfig = {
 module: {
 rules: [
 {
 test: /\.(js|jsx)$/,
 exclude: /node_modules/,
 use: 'babel-loader'
 }
]
 },
 plugins: [
 new HtmlWebPackPlugin({
 title: 'Codejobs',
 template: './src/index.html',

Mastering Webpack 4.x Chapter 10

[377]

 filename: './index.html'
 })
],
 resolve: {
 extensions: ['.js', '.jsx']
 }
 };

 module.exports = webpackConfig;

File: webpack.config.js

If you run npm run build again, now it should work:

After you run that command, you will see that you have two files in your dist directory:
index.html and main.js. If you open your index.html file with Chrome, you should
see the following result:

Mastering Webpack 4.x Chapter 10

[378]

We can build our bundle, but it is 100% static. In the next recipe, we are going to add
Webpack Dev Server to run our React Application in an actual server and refresh the server
every time we make a change.

There's more...
I prefer to use ES6 code in all my projects, even in the configurations, and I like to break my
Webpack configuration into separate files for better organization and an easier
understanding of the configurations. If you have worked with Webpack before, you are
aware that a webpack.config.js file can be huge and very hard to maintain, so let me
explain how to do that:

Rename the webpack.config.js file to webpack.config.babel.js. When1.
you add the .babel suffix on a .js file, this will be handled by Babel
automatically.
Let's migrate our current ES5 code to ES6:2.

 import HtmlWebPackPlugin from 'html-webpack-plugin';

 export default {
 module: {
 rules: [
 {
 test: /\.(js|jsx)$/,
 exclude: /node_modules/,
 use: 'babel-loader'
 }
]
 },
 plugins: [
 new HtmlWebPackPlugin({
 title: 'Codejobs',
 template: './src/index.html',
 filename: './index.html'
 })
],
 resolve: {
 extensions: ['.js', '.jsx']
 }
 };

File: webpack.config.babel.js

Mastering Webpack 4.x Chapter 10

[379]

Create a folder called webpack and inside other called configuration.3.
Create an individual file for each node of our Webpack configuration and export4.
it. For example, let's start by creating a file for our node module, so you should
call module.js:

 export default {
 rules: [
 {
 test: /\.(js|jsx)$/,
 exclude: /node_modules/,
 use: 'babel-loader'
 }
]
 };

File: webpack/configuration/module.js

Let's create a file for our plugins (plugins.js):5.

 import HtmlWebPackPlugin from 'html-webpack-plugin';

 const plugins = [
 new HtmlWebPackPlugin({
 title: 'Codejobs',
 template: './src/index.html',
 filename: './index.html'
 })
];

 export default plugins;

File: webpack/configuration/plugins.js

It's very useful to add our array of plugins into a constant because then we can6.
add more plugins based on the environment (development or production), so
now you can add plugins in a conditional way (using push).
The last node is resolve:7.

 export default {
 extensions: ['.js', '.jsx']
 }

File: webpack/configuration/resolve.js

Mastering Webpack 4.x Chapter 10

[380]

We can import our files directly, but I prefer to use an index.js file and export8.
all of them. This way, we only import the objects we need into our
webpack.config.babel.js file:

 // Configuration
 import module from './module';
 import plugins from './plugins';
 import resolve from './resolve';

 export {
 module,
 plugins,
 resolve
 };

File: webpack/configuration/index.js

Our webpack.config.babel.js will be very clean:9.

 import {
 module,
 plugins,
 resolve
 } from './webpack/configuration';

 export default {
 module,
 plugins,
 resolve
 };

File: webpack.config.babel.js

Adding Webpack Dev Server and Sass,
Stylus, or LessCSS with React
In the last recipe, we added React to Webpack 4, and we split our Webpack configuration,
but in the end, we were just able to build our bundle and run the application as a static
page. In this recipe, we are going to add the Webpack Dev Server to run our React
Application in an actual server and restart the server every time we make a change. Also,
we are going to implement CSS preprocessors such as Sass, Stylus, and LessCSS.

Mastering Webpack 4.x Chapter 10

[381]

Getting Ready
For this recipe, you will need to install the following packages:

 npm install webpack-dev-server css-loader extract-text-webpack-
plugin@v4.0.0-beta.0 style-loader

If you want to use Sass in your project, you have to install:

 npm install sass-loader node-sass

If you prefer Stylus, you'll need the following:

 npm install stylus-loader stylus

Or if you like LessCSS, install this:

 npm install less-loader less

How to do it...
We will first add the Webpack Dev Server:

Once you installed the webpack-dev-server dependency, we need to add a1.
new script to start the application in our package.json:

 "scripts": {
 "start": "webpack-dev-server --mode development --open",
 "build-development": "webpack --mode development",
 "build": "webpack --mode production"
 }

File: package.json

Mastering Webpack 4.x Chapter 10

[382]

As you know, the --mode flag specifies the mode we want (the default is2.
production), and the --open flag opens the browser when we start the
application. Now you can run the application with the npm start command:

Your application was opened using port 8080, which is the default port3.
of webpack-dev-server. If you want to change it, you can use the --port flag
to specify which port you want to use:

"start": "webpack-dev-server --mode development --open --port 9999"

The cool thing about webpack-dev-server is that if you update any4.
component, you will see the change reflected instantaneously. For example, let's
modify our Home component:

 import React from 'react';

 const Home = () => <h1>Updated Home</h1>;

 export default Home;

File: src/components/Home/index.jsx

You can see the reflected change in the same page without refreshing the page5.
manually:

Mastering Webpack 4.x Chapter 10

[383]

Let's add Sass, Stylus, or LessCSS to our project to have some styles in the6.
application. You have to edit the file located at
webpack/configuration/module.js and add style-loader, css-loader,
and the loader we want for sass (sass-loader), stylus (stylus-loader), or less
(less-loader):

 export default {
 rules: [
 {
 test: /\.(js|jsx)$/,
 exclude: /node_modules/,
 use: 'babel-loader'
 },
 {
 test: /\.scss$/, // Can be: .scss or .styl or .less
 use: [
 {
 loader: 'style-loader'
 },
 {
 loader: 'css-loader',
 options: {
 // Enables CSS Modules
 modules: true,
 // Number of loaders applied before CSS loader
 importLoaders: 1,
 // Formatting CSS Class name
 localIdentName: '[name]_[local]_[hash:base64]',
 // Enable/disable sourcemaps
 sourceMap: true,
 // Enable/disable minification
 minimize: true
 }
 },
 {
 loader: 'sass-loader' // sass-loader or stylus-loader
 // or less-loader
 }
]
 }
]
 };

File: webpack/configuration/module.js

Mastering Webpack 4.x Chapter 10

[384]

Using Sass, we can create the Home.scss file to add some styles:7.

 $color: red;
 .Home {
 color: $color;
 }

File: src/components/Home/Home.scss

In the Home component, you can import the Sass file like this:8.

 import React from 'react';
 import styles from './Home.scss'; // For Sass
 // import styles from './Home.styl'; // For Stylus
 // import styles from './Home.less'; // For Less

 const Home = () => <h1 className={styles.Home}>Updated Home</h1>;

 export default Home;

File: src/component/Home/index.jsx

Each import line is for a different preprocessor. Use the line you want and9.
remove the others. Sass generates this style:

Mastering Webpack 4.x Chapter 10

[385]

If you want to use Stylus, create the Home.styl file and change the configuration10.
in the module.js file from the Webpack configuration:

 $color = green

 .Home
 color: $color

File: src/components/Home/Home.styl

If you want to use Less CSS, do the necessary changes on the Webpack11.
configuration and then use this file:

 @color: blue;

 .Home {
 color: @color;
 }

File: src/components/Home/Home.less

Mastering Webpack 4.x Chapter 10

[386]

How it works...
If you are curious, you probably already tried to see how it's rendering the stylesheet and
how is the class name in our HTML. If you inspect the site, you will see something like this:

Dynamically is being inject a <link> tag with a temporal URL that contains our compiled
css, and then our class name is "Home_Home_2kP..." this is because our
configuration: localIdentName: '[name]_[local]_[hash:base64]'. With this, we
are creating isolated styles, which means that we will never affect any other class if we use
the same name.

There's more...
Let's implement CSS preprocessors such as Sass, Stylus, and LessCSS:

If you want to extract your CSS code to a style.css file and compress the code1.
for production mode, you can use the extract-text-webpack-
plugin package:

 npm install extract-text-webpack-plugin@v4.0.0-beta.0

We need to add this to our Webpack plugins:2.

 import HtmlWebPackPlugin from 'html-webpack-plugin';
 import ExtractTextPlugin from 'extract-text-webpack-plugin';

 const isProduction = process.env.NODE_ENV === 'production';

 const plugins = [
 new HtmlWebPackPlugin({
 title: 'Codejobs',
 template: './src/index.html',
 filename: './index.html'

Mastering Webpack 4.x Chapter 10

[387]

 })
];

 if (isProduction) {
 plugins.push(
 new ExtractTextPlugin({
 allChunks: true,
 filename: './css/[name].css'
 })
);
 }

 export default plugins;

File: webpack/configuration/plugins.js

As you can see, I'm pushing to the plugins array only if is production. This3.
means we need to create a new script into our package.json to specify when we
are going to use production:

 "scripts": {
 "start": "webpack-dev-server --mode development --open",
 "start-production": "NODE_ENV=production webpack-dev-server --
 mode production",
 "build-development": "webpack --mode development",
 "build": "webpack --mode production"
 }

Run npm run start-production in your terminal, and you will be able to4.
start in production mode.
You will probably get some errors because we also need to add a rule for the5.
Extract Text Plugin to our module node:

 import ExtractTextPlugin from 'extract-text-webpack-plugin';

 const isProduction = process.env.NODE_ENV === 'production';

 const rules = [
 {
 test: /\.(js|jsx)$/,
 exclude: /node_modules/,
 use: 'babel-loader'
 }
];

 if (isProduction) {
 rules.push({

Mastering Webpack 4.x Chapter 10

[388]

 test: /\.scss/,
 use: ExtractTextPlugin.extract({
 fallback: 'style-loader',
 use: [
 'css-loader?minimize=true&modules=true&localIdentName=
 [name]_[local]_[hash:base64]',
 'sass-loader'
]
 })
 });
 } else {
 rules.push({
 test: /\.scss$/, // .scss - .styl - .less
 use: [
 {
 loader: 'style-loader'
 },
 {
 loader: 'css-loader',
 options: {
 modules: true,
 importLoaders: 1,
 localIdentName: '[name]_[local]_[hash:base64]',
 sourceMap: true,
 minimize: true
 }
 },
 {
 loader: 'sass-loader' // sass-loader, stylus-loader or
 //less-loader
 }
]
 });
 }

 export default {
 rules
 };

We are using Extract Text Plugin just for production. For any other environment,6.
we use style-loader, css-loader, and sass-loader directly as before.
That's why I love splitting the Webpack configuration into smaller files, as you
can see, some of the files can be huge, so this helps us to be more organized. If
you start the production mode with npm run start-production, you will see
this CSS:

Mastering Webpack 4.x Chapter 10

[389]

Webpack 4 Optimization – Splitting Bundles
Webpack 4 already has some optimizations presets for production mode, such as the code
minification (before it was made with UglifyJS), but there are more things we can use to
improve the performance of our application. In this recipe, we are going to learn how to
split bundles (vendors and application bundles), add source maps, and implement
the BundleAnalyzerPlugin.

Mastering Webpack 4.x Chapter 10

[390]

Getting Ready
For this recipe, we need to install the following packages:

npm install webpack-bundle-analyzer webpack-notifier

How to do it...
Let's add a source map to our Webpack:

Create the webpack/configuration/devtool.js file:1.

 const isProduction = process.env.NODE_ENV === 'production';

 export default !isProduction ? 'cheap-module-source-map' : 'eval';

File: webpack/configuration/devtool.js

Split the bundles (using the new "optimization" Webpack node): one for our2.
/node_modules/ which will be the biggest one, and one for our React
Application. You need to create the optimization.js file and add this code:

 export default {
 splitChunks: {
 cacheGroups: {
 default: false,
 commons: {
 test: /node_modules/,
 name: 'vendor',
 chunks: 'all'
 }
 }
 }
 }

File: webpack/configuration/optimization.js

Mastering Webpack 4.x Chapter 10

[391]

Remember that you need to add those new files into index.js:3.

 // Configuration
 import devtool from './devtool';
 import module from './module';
 import optimization from './optimization';
 import plugins from './plugins';
 import resolve from './resolve';

 export {
 devtool,
 module,
 optimization,
 plugins,
 resolve
 };

File: webpack/configuration/index.js

Add the nodes to webpack.config.babel.js:4.

 import {
 devtool,
 module,
 optimization,
 plugins,
 resolve
 } from './webpack/configuration';

 export default {
 devtool,
 module,
 plugins,
 optimization,
 resolve
 };

File: webpack.config.babel.js

Mastering Webpack 4.x Chapter 10

[392]

How it works...
Let's test this:

Just run the application with npm start. If you look at the HTML, you will see1.
that it's automatically being injected into the vendor.js and main.js bundles:

If you look at the Network tab, you can see the size of the files:2.

If you run the application with the production mode, you will notice that the3.
bundles are smaller. Run the npm run start-production command:

Mastering Webpack 4.x Chapter 10

[393]

With this optimization, we are reducing the bundle sizes by 40%. In the next4.
recipe, we are going to implement Node.js with Webpack and React, and we will
be able to apply a GZip compression, which will help us to reduce the bundle
sizes even more.
The BundleAnalyzer plugin can help us to see all the packages5.
(node_modules) and our components sizes; this will give us an image of the
bundles organizing by size (big squares mean big size and small squares mean
small size). We can also implement the WebpackNotifierPlugin plugin, which
is just a notification we can display every time our Webpack does a build:

 import HtmlWebPackPlugin from 'html-webpack-plugin';
 import ExtractTextPlugin from 'extract-text-webpack-plugin';
 import WebpackNotifierPlugin from 'webpack-notifier';
 import { BundleAnalyzerPlugin } from 'webpack-bundle-analyzer';

 const isProduction = process.env.NODE_ENV === 'production';

 const plugins = [
 new HtmlWebPackPlugin({
 title: 'Codejobs',
 template: './src/index.html',
 filename: './index.html'
 })
];

 if (isProduction) {
 plugins.push(
 new ExtractTextPlugin({
 allChunks: true,
 filename: './css/[name].css'
 })
);
 } else {
 plugins.push(
 new BundleAnalyzerPlugin(),
 new WebpackNotifierPlugin({
 title: 'CodeJobs'
 })
);
 }

 export default plugins;

File: webpack/configuration/plugins.js

Mastering Webpack 4.x Chapter 10

[394]

BundleAnalyzerPlugin will be executed only on development mode; if you6.
start the application (npm start), you will see that a new page is open and
displays all the installed packages, specifying the size of each one:

The purpose of this image is to show the sizes of the installed packages

The biggest one, of course, will be the vendor.js file, but we can also see our7.
main.js components:

Mastering Webpack 4.x Chapter 10

[395]

Mastering Webpack 4.x Chapter 10

[396]

You can see the fancy notification when you start your application:8.

Implementing Node.js with React/Redux and
Webpack 4
So far, in all the recipes, we have used React directly with create-react-app or Webpack
4. In this recipe, we are going to implement React and Redux using Node.js and Webpack 4;
this will help us to have more robust applications.

Getting Ready
Using the same code of the last recipe, you will need to install all these packages:

npm install babel-cli express nodemon react-hot-loader react-router-dom
webpack-hot-middleware compression-webpack-plugin react-redux redux

Mastering Webpack 4.x Chapter 10

[397]

How to do it...
Let's get started with the implementation:

Include the react-hot-loader plugin in our .babelrc file just for the1.
development environment:

 {
 "presets": ["env", "react"],
 "env": {
 "development": {
 "plugins": [
 "react-hot-loader/babel"
]
 }
 }
 }

File: .babelrc

Create an Express Server; you need to create a file at src/server/index.js:2.

 // Dependencies
 import express from 'express';
 import path from 'path';
 import webpackDevMiddleware from 'webpack-dev-middleware';
 import webpackHotMiddleware from 'webpack-hot-middleware';
 import webpack from 'webpack';

 // Webpack Configuration
 import webpackConfig from '../../webpack.config.babel';

 // Client Render
 import clientRender from './render/clientRender';

 // Utils
 import { isMobile } from '../shared/utils/device';

 // Environment
 const isProduction = process.env.NODE_ENV === 'production';

 // Express Application
 const app = express();

 // Webpack Compiler
 const compiler = webpack(webpackConfig);

Mastering Webpack 4.x Chapter 10

[398]

 // Webpack Middleware
 if (!isProduction) {
 // Hot Module Replacement
 app.use(webpackDevMiddleware(compiler));
 app.use(webpackHotMiddleware(compiler));
 } else {
 // Public directory
 app.use(express.static(path.join(__dirname, '../../public')));

 // GZip Compression just for Production
 app.get('*.js', (req, res, next) => {
 req.url = `${req.url}.gz`;
 res.set('Content-Encoding', 'gzip');
 next();
 });
 }

 // Device Detection
 app.use((req, res, next) => {
 req.isMobile = isMobile(req.headers['user-agent']);
 next();
 });

 // Client Side Rendering
 app.use(clientRender());

 // Disabling x-powered-by
 app.disable('x-powered-by');

 // Listen Port 3000...
 app.listen(3000);

File: src/server/index.js

We included a device detection with Node.js to use in our initialState for3.
Redux. we can create this util file for this purpose:

 export function getCurrentDevice(ua) {
 return /mobile/i.test(ua) ? 'mobile' : 'desktop';
 }
 export function isDesktop(ua) {
 return !/mobile/i.test(ua);
 }
 export function isMobile(ua) {
 return /mobile/i.test(ua);
 }

File: src/shared/utils/device.js

Mastering Webpack 4.x Chapter 10

[399]

You will need the device reducer as well:4.

 export default function deviceReducer(state = {}) {
 return state;
 }

File: src/shared/reducers/deviceReducer.js

We need to create index.js in our reducers folders, in the place where we are5.
going to combine our reducers:

 // Dependencies
 import { combineReducers } from 'redux';

 // Shared Reducers
 import device from './deviceReducer';

 const rootReducer = combineReducers({
 device
 });

 export default rootReducer;

File: src/shared/reducers/index.js

Let's create our initialState file. This is where we are going to get the device6.
information from the req object:

 export default req => ({
 device: {
 isMobile: req.isMobile
 }
 });

Redux needs a store to save all our reducers and our initialState; this will be7.
our configureStore:

 // Dependencies
 import { createStore } from 'redux';

 // Root Reducer
 import rootReducer from '../reducers';

 export default function configureStore(initialState) {
 return createStore(
 rootReducer,
 initialState

Mastering Webpack 4.x Chapter 10

[400]

);
 }

File: src/shared/redux/configureStore.js

In the last recipes, we were using the html-webpack-plugin package to render8.
the initial HTML template; now we have to do that in Node. For this, you need to
create the src/server/render/html.js file:

 // Dependencies
 import serialize from 'serialize-javascript';

 // Environment
 const isProduction = process.env.NODE_ENV === 'production';

 export default function html(options) {
 const { title, initialState } = options;
 let path = '/';
 let link = '';

 if (isProduction) {
 path = '/app/';
 link = `<link rel="stylesheet" href="${path}css/main.css" />`;
 }

 return `
 <!DOCTYPE html>
 <html>
 <head>
 <meta charset="utf-8">
 <title>${title}</title>
 ${link}
 </head>
 <body>
 <div id="root"></div>

 <script>
 window.initialState = ${serialize(initialState)};
 </script>
 <script src="${path}vendor.js"></script>
 <script src="${path}main.js"></script>
 </body>
 </html>
 `;
 }

File: src/server/render/html.js

Mastering Webpack 4.x Chapter 10

[401]

Create a function to render the HTML; I called this the clientRender.js file:9.

 // HTML
 import html from './html';

 // Initial State
 import initialState from './initialState';

 export default function clientRender() {
 return (req, res) => res.send(html({
 title: 'Codejobs',
 initialState: initialState(req)
 }));
 }

File: src/server/render/clientRender.js

After we've created our server files, we need to add our main entry file for the10.
client. In this file, we are going to wrap our main App component inside the React
Hot Loader App Container:

 // Dependencies
 import React from 'react';
 import { render } from 'react-dom';
 import { Provider } from 'react-redux';
 import { AppContainer } from 'react-hot-loader';

 // Redux Store
 import configureStore from './shared/redux/configureStore';

 // Components
 import App from './client/App';

 // Configuring Redux Store
 const store = configureStore(window.initialState);

 // Root element
 const rootElement = document.querySelector('#root');

 // App Wrapper
 const renderApp = Component => {
 render(
 <AppContainer>
 <Provider store={store}>
 <Component />
 </Provider>
 </AppContainer>,

Mastering Webpack 4.x Chapter 10

[402]

 rootElement
);
 };

 // Rendering app
 renderApp(App);

 // Hot Module Replacement
 if (module.hot) {
 module.hot.accept('./client/App', () => {
 renderApp(require('./client/App').default);
 });
 }

File: src/index.jsx

Let's create a directory for our client files. The first file we need to create11.
is App.jsx, where we are going to include our component's routes:

 // Dependencies
 import React from 'react';
 import { BrowserRouter, Switch, Route } from 'react-router-dom';

 // Components
 import About from './components/About';
 import Home from './components/Home';

 const App = () => (
 <BrowserRouter>
 <Switch>
 <Route exact path="/" component={Home} />
 <Route exact path="/about" component={About} />
 </Switch>
 </BrowserRouter>
);

 export default App;

File: src/client/App.jsx

Mastering Webpack 4.x Chapter 10

[403]

To test our routes and our Redux state (isMobile), let's create the About12.
component:

 import React from 'react';
 import { bool } from 'prop-types';
 import { connect } from 'react-redux';
 import styles from './About.scss';

 const About = ({ isMobile }) => (
 <h1 className={styles.About}>About - {isMobile ? 'mobile' :
'desktop'}</h1>
);

 About.propTypes = {
 isMobile: bool
 };

 export default connect(({ device }) => ({
 isMobile: device.isMobile
 }))(About);

File: src/client/components/About/index.jsx

Add basic styles for this component:13.

 $color: green;

 .About {
 color: $color;
 }

File: src/client/components/About/About.scss

When we want to use the React Hot Loader to refresh the page every time we 14.
make a change, we need to add an entry for our webpack-hot-middleware and
one for react-hot-loader to connect to the HMR (Hot Module Replacement):

 const isProduction = process.env.NODE_ENV === 'production';
 const entry = [];

 if (!isProduction) {
 entry.push(
 'webpack-hot-middleware/client?
 path=http://localhost:3000/__webpack_hmr&reload=true',
 'react-hot-loader/patch',
 './src/index.jsx'
);

Mastering Webpack 4.x Chapter 10

[404]

 } else {
 entry.push('./src/index.jsx');
 }

 export default entry;

File: webpack/configuration/entry.js

Create the output.js file to specify where our Webpack should save the files:15.

 // Dependencies
 import path from 'path';

 export default {
 filename: '[name].js',
 path: path.resolve(__dirname, '../../public/app'),
 publicPath: '/'
 };

You need to import these files into our index.js:16.

 // Configuration
 import devtool from './devtool';
 import entry from './entry';
 import mode from './mode';
 import module from './module';
 import optimization from './optimization';
 import output from './output';
 import plugins from './plugins';
 import resolve from './resolve';

 export {
 devtool,
 entry,
 mode,
 module,
 optimization,
 output,
 plugins,
 resolve
 };

File: webpack/configuration/index.js

Mastering Webpack 4.x Chapter 10

[405]

We need to create a mode.js file as well, and handle the environment mode17.
from our JS file because we are going to change our start script and we won't
specify the mode directly anymore:

 const isProduction = process.env.NODE_ENV === 'production';

 export default !isProduction ? 'development' : 'production';

File: webpack/configuration/mode.js

Add HotModuleReplacementPlugin into our plugins file for development18.
and CompressionPlugin for production:

 import ExtractTextPlugin from 'extract-text-webpack-plugin';
 import WebpackNotifierPlugin from 'webpack-notifier';
 import { BundleAnalyzerPlugin } from 'webpack-bundle-analyzer';
 import CompressionPlugin from 'compression-webpack-plugin';
 import webpack from 'webpack';
 const isProduction = process.env.NODE_ENV === 'production';
 const plugins = [];
 if (isProduction) {
 plugins.push(
 new ExtractTextPlugin({
 allChunks: true,
 filename: './css/[name].css'
 }),
 new CompressionPlugin({
 asset: '[path].gz[query]',
 algorithm: 'gzip',
 test: /\.js$/,
 threshold: 10240,
 minRatio: 0.8
 })
);
 } else {
 plugins.push(
 new webpack.HotModuleReplacementPlugin(),
 new BundleAnalyzerPlugin(),
 new WebpackNotifierPlugin({
 title: 'CodeJobs'
 })
);
 }
 export default plugins;

File: webpack/configuration/plugins.js

Mastering Webpack 4.x Chapter 10

[406]

In package.json, the new start script should look like this:19.

 "scripts": {
 "build": "NODE_ENV=production webpack",
 "clean": "rm -rf public/app",
 "start": "npm run clean && NODE_ENV=development nodemon src/server --
watch src/server --exec babel-node --presets es2015",
 "start-production": "npm run clean && npm run build &&
NODE_ENV=production babel-node src/server --presets es2015"
 }

File: package.json

If you use Windows, you have to use the SET keyword to
specify NODE_ENV. For example, SET NODE_ENV=development or SET
NODE_ENV=production otherwise won't work in your machine.

How it works...
We'll now see how it works:

Start the application with npm start.1.
You should see this page:2.

Mastering Webpack 4.x Chapter 10

[407]

If you open the console of your browser, you will see that the HMR is now3.
connected:

You can do a change in the Home component to see how the content is being4.
updated without refresh:

Mastering Webpack 4.x Chapter 10

[408]

As you can see in the console, the HMR specify each event is occurring and give5.
you the updated modules. If you open the Network tab, you will see the massive
size of our bundles (vendor.js = 1MB and main.js = 46.3KB):

If you hit the http://localhost:3000/about URL, you will see the About6.
component with the Redux state connected (isMobile):

If you want to run your application in production mode, execute npm run7.
start-production. If everything works fine, you should see the same site but
with smaller bundles (vendor.js: 262KB - 74% less and main.js: 5.2KB - 88% less):

Mastering Webpack 4.x Chapter 10

[409]

There's more...
I don't like to use relative paths in the imports, sometimes can be very difficult to calculate
the depth of certain files. The babel-plugin-module-resolver package can help us to
add a custom alias for our directories. For example:

 // Instead of importing like this
 import { isMobile } from '../../../shared/utils/device';

 // Using module resolver you can use an alias like:
 import { isMobile } from '@utils/device';

As you can see, using an alias is more consistent, and it does not matter in which path you
are importing the util always will be the same path using the alias, it's cool, isn't it?

First, we need to install the package:

 npm install babel-plugin-module-resolver

Then in our .babelrc, we can add our aliases for each path we want:

 {
 "presets": ["env", "react"],
 "env": {
 "development": {
 "plugins": [
 "react-hot-loader/babel"
]
 }
 },
 "plugins": [
 ["module-resolver", {
 "root": ["./"],
 "alias": {
 "@App": "./src/client/App.jsx",
 "@client": "./src/client/",
 "@components": "./src/client/components",
 "@configureStore": "./src/shared/redux/configureStore.js",
 "@reducers": "./src/shared/reducers",
 "@server": "./src/server/",
 "@utils": "./src/shared/utils",
 "@webpack": "./webpack.config.babel.js"
 }
 }]
],
 }

Mastering Webpack 4.x Chapter 10

[410]

The @ character is not necessary, but I like to use it to quickly identify whether I'm using an
alias. Now you can modify some of the files we made in this recipe and replace the paths
with the new aliases:

File: src/client/App.jsx

File: src/index.jsx

Mastering Webpack 4.x Chapter 10

[411]

File: src/server/index.js

File: src/shared/redux/configureStore.js

11
Implementing Server-Side

Rendering
In this chapter, the following recipes will be covered:

Implementing Server-Side Rendering
Implementing promises with Server-Side Rendering
Implementing Next.js

Introduction
React typically uses client-side rendering (CSR). This means that it dynamically injects the
HTML code in the target div (it generally uses the #app or #root IDs), and that's why if
you try to see the page's code directly (right-click—View Page Code) you will see
something like this:

Implementing Server-Side Rendering Chapter 11

[413]

The only way to see the actual code is by inspecting the site with Chrome Dev Tools, or
other tools, and here is the code generated by React using CSR:

By inspecting the page, you can see the code that is injected into our #root div. Server-side
rendering (SSR) is very useful for improving the SEO of our website and be indexed by the
main search engines, such as Google, Yahoo, and Bing. You probably don't need to worry
about SSR if you don't care too much about SEO. Currently, the Googlebot supports CSR,
and it can index our site on Google, but if you care about SEO and you are worried about
improving the SEO on other search engines, such as Yahoo, Bing, or DuckDuckGo, then using
SSR is the way to go.

Implementing Server-Side Rendering
In this recipe, we will implement SSR in our project.

Implementing Server-Side Rendering Chapter 11

[414]

Getting ready
We are going to use the code from the last recipe (Implementing Node.js with React/Redux and
Webpack 4) from Chapter 10, Mastering Webpack 4.x, and install some other dependencies:

npm install --save-dev webpack-node-externals webpack-dev-middleware
webpack-hot-middleware webpack-hot-server-middleware webpack-merge babel-
cli babel-preset-es2015

How to do it...
Let's now go through the steps of rendering:

First, we need to add our npm scripts to our package.json file:1.

 "scripts": {
 "clean": "rm -rf dist/ && rm -rf public/app",
 "start": "npm run clean & NODE_ENV=development
 BABEL_ENV=development
 nodemon src/server --watch src/server --watch src/shared --
 exec babel-node --presets es2015",
 "start-analyzer": "npm run clean && NODE_ENV=development
 BABEL_ENV=development ANALYZER=true babel-node src/server"
 }

File: package.json

Now we have to change our webpack.config.js file. Because we are going to2.
implement SSR, we need to separate our Webpack configuration into a client
configuration and server configuration, returning them as an array. The file
should look like this:

 // Webpack Configuration (Client & Server)
 import clientConfig from './webpack/webpack.config.client';
 import serverConfig from './webpack/webpack.config.server';

 export default [
 clientConfig,
 serverConfig
];

File: webpack.config.js

Implementing Server-Side Rendering Chapter 11

[415]

Now we need to create a file for our client configuration inside our webpack3.
folder. We need to call it webpack.config.client.js:

 // Dependencies
 import webpackMerge from 'webpack-merge';

 // Webpack Configuration
 import commonConfig from './webpack.config.common';
 import {
 context,
 devtool,
 entry,
 name,
 output,
 optimization,
 plugins,
 target
 } from './configuration';

 // Type of Configuration
 const type = 'client';

 export default webpackMerge(commonConfig(type), {
 context: context(type),
 devtool,
 entry: entry(type),
 name: name(type),
 output: output(type),
 optimization,
 plugins: plugins(type),
 target: target(type)
 });

File: webpack/webpack.config.client.js

Now the server config should be like this:4.

 // Dependencies
 import webpackMerge from 'webpack-merge';

 // Webpack Configuration
 import commonConfig from './webpack.config.common';

 // Configuration
 import {
 context,
 entry,
 externals,

Implementing Server-Side Rendering Chapter 11

[416]

 name,
 output,
 plugins,
 target
 } from './configuration';

 // Type of Configuration
 const type = 'server';

 export default webpackMerge(commonConfig(type), {
 context: context(type),
 entry: entry(type),
 externals: externals(type),
 name: name(type),
 output: output(type),
 plugins: plugins(type),
 target: target(type)
 });

File: webpack/webpack.config.server.js

As you can see, in both files we are importing a common configuration file that5.
contains a configuration that needs to be added to both the client and the server:

 // Configuration
 import { module, resolve, mode } from './configuration';
 export default type => ({
 module: module(type),
 resolve,
 mode
 });

File: webpack/webpack.config.common.js

We need to add new configuration files for Webpack nodes and also modify6.
some of the files we already have. The first one we need to create is context.js.
In this file (and some others) we are going to export a function with a type
parameter, which can be client or server, and depending on that value we will
return different configurations:

 // Dependencies
 import path from 'path';
 export default type => type === 'server'
 ? path.resolve(__dirname, '../../src/server')
 : path.resolve(__dirname, '../../src/client');

File: webpack/configuration/context.js

Implementing Server-Side Rendering Chapter 11

[417]

The entry file is where we will add all the files that are going to be added to the7.
bundle. Our entry file now should be like this:

 // Environment
 const isDevelopment = process.env.NODE_ENV !== 'production';

 export default type => {
 if (type === 'server') {
 return './render/serverRender.js';
 }

 const entry = [];

 if (isDevelopment) {
 entry.push(
 'webpack-hot-middleware/client',
 'react-hot-loader/patch'
);
 }

 entry.push('./index.jsx');

 return entry;
 };

File: webpack/configuration/entry.js

We need to create a file called externals.js, which contains the modules we won't8.
bundle (unless they are on the whitelist):

 // Dependencies
 import nodeExternals from 'webpack-node-externals';

 export default () => [
 nodeExternals({
 whitelist: [/^redux\/(store|modules)/]
 })
];

File: webpack/configuration/externals.js

Implementing Server-Side Rendering Chapter 11

[418]

Also, we need to modify our module.js file to return our rules based on the9.
environment or the configuration type:

 // Dependencies
 import ExtractTextPlugin from 'extract-text-webpack-plugin';

 // Environment
 const isDevelopment = process.env.NODE_ENV !== 'production';

 export default type => {
 const rules = [
 {
 test: /\.(js|jsx)$/,
 use: 'babel-loader',
 exclude: /node_modules/
 }
];

 if (!isDevelopment || type === 'server') {
 rules.push({
 test: /\.scss$/,
 use: ExtractTextPlugin.extract({
 fallback: 'style-loader',
 use: [
 'css-loader?minimize=true&modules=true&localIdentName=
 [name]__[local]_[hash:base64]',
 'sass-loader'
]
 })
 });
 } else {
 rules.push({
 test: /\.scss$/,
 use: [
 {
 loader: 'style-loader'
 },
 {
 loader: 'css-loader',
 options: {
 modules: true,
 importLoaders: 1,
 localIdentName: '[name]__[local]_[hash:base64]',
 sourceMap: true,
 minimize: true
 }
 },
 {

Implementing Server-Side Rendering Chapter 11

[419]

 loader: 'sass-loader'
 }
]
 });
 }

 return {
 rules
 };
 };

File: webpack/configuration/module.js

Now we need to create a node for the name:10.

 export default type => type;

File: webpack/configuration/name.js

For the output configuration, we need to return an object depending on the type11.
of configuration (client or server):

 // Dependencies
 import path from 'path';

 export default type => {
 if (type === 'server') {
 return {
 filename: 'server.js',
 path: path.resolve(__dirname, '../../dist'),
 libraryTarget: 'commonjs2'
 };
 }

 return {
 filename: '[name].bundle.js',
 path: path.resolve(__dirname, '../../public/app'),
 publicPath: '/'
 };
 };

File: webpack/configuration/output.js

Implementing Server-Side Rendering Chapter 11

[420]

In our plugins.js file, we are validating whether the user has sent the12.
ANALYZER variable to display the BundleAnalyzerPlugin just in that case and
not every time we run our application in development mode:

 // Dependencies
 import CompressionPlugin from 'compression-webpack-plugin';
 import ExtractTextPlugin from 'extract-text-webpack-plugin';
 import webpack from 'webpack';
 import WebpackNotifierPlugin from 'webpack-notifier';
 import { BundleAnalyzerPlugin } from 'webpack-bundle-analyzer';

 // Environment
 const isDevelopment = process.env.NODE_ENV !== 'production';

 // Analyzer
 const isAnalyzer = process.env.ANALYZER === 'true';

 export default type => {
 const plugins = [
 new ExtractTextPlugin({
 filename: '../../public/css/style.css'
 })
];

 if (isAnalyzer) {
 plugins.push(
 new BundleAnalyzerPlugin()
);
 }

 if (isDevelopment) {
 plugins.push(
 new webpack.HotModuleReplacementPlugin(),
 new webpack.NoEmitOnErrorsPlugin(),
 new WebpackNotifierPlugin({
 title: 'CodeJobs'
 })
);
 } else {
 plugins.push(
 new CompressionPlugin({
 asset: '[path].gz[query]',
 algorithm: 'gzip',
 test: /\.js$|\.css$|\.html$/,
 threshold: 10240,
 minRatio: 0.8
 })
);

Implementing Server-Side Rendering Chapter 11

[421]

 }

 return plugins;
 };

File: webpack/configuration/plugins.js

We need to specify our modules in our resolve file; the file should be like this:13.

 // Dependencies
 import path from 'path';

 export default {
 extensions: ['.js', '.jsx'],
 modules: [
 'node_modules',
 path.resolve(__dirname, '../../src/client'),
 path.resolve(__dirname, '../../src/server')
]
 };

File: webpack/configuration/resolve.js

The last configuration we need to create is the target.js file:14.

 export default type => type === 'server' ? 'node' : 'web';

File: webpack/configuration/target.js

After we have configured our Webpack, we need to modify our App.jsx file, in15.
which we need to create our routes for the client using the <BrowserRouter>
component and <StaticRouter> for the server:

 // Dependencies
 import React from 'react';
 import {
 BrowserRouter,
 StaticRouter,
 Switch,
 Route
 } from 'react-router-dom';

 // Components
 import About from '@components/About';
 import Home from '@components/Home';

 export default ({ server, location, context = {} }) => {

Implementing Server-Side Rendering Chapter 11

[422]

 const routes = (
 <Switch>
 <Route exact path="/" component={Home} />
 <Route exact path="/about" component={About} />
 </Switch>
);

 // Client Router
 let router = (
 <BrowserRouter>
 {routes}
 </BrowserRouter>
);

 // Server Router
 if (server) {
 router = (
 <StaticRouter location={location} context={context}>
 {routes}
 </StaticRouter>
);
 }

 return router;
 };

File: src/client/App.jsx

Now we need to modify our server file (index.js) to use our clientRender and16.
serverRender middleware:

 // Dependencies
 import express from 'express';
 import path from 'path';
 import webpackDevMiddleware from 'webpack-dev-middleware';
 import webpackHotMiddleware from 'webpack-hot-middleware';
 import webpackHotServerMiddleware from 'webpack-hot-server-
middleware';
 import webpack from 'webpack';

 // Utils
 import { isMobile, isBot } from '@utils/device';

 // Client Render
 import clientRender from './render/clientRender';

 // Webpack Configuration
 import webpackConfig from '@webpack';

Implementing Server-Side Rendering Chapter 11

[423]

 // Environment
 const isProduction = process.env.NODE_ENV === 'production';

 // Express Application
 const app = express();

 // Webpack Compiler
 const compiler = webpack(webpackConfig);

 // Public directory
 app.use(express.static(path.join(__dirname, '../../public')));

 // Device Detection
 app.use((req, res, next) => {
 req.isMobile = isMobile(req.headers['user-agent']);
 // We detect if a search bot is accessing...
 req.isBot = isBot(req.headers['user-agent']);

 next();
 });

 // Webpack Middleware
 if (!isProduction) {
 // Hot Module Replacement
 app.use(webpackDevMiddleware(compiler));
 app.use(webpackHotMiddleware(
 compiler.compilers.find(compiler => compiler.name ===
'client'))
);
 } else {
 // GZip Compression just for Production
 app.get('*.js', (req, res, next) => {
 req.url = `${req.url}.gz`;
 res.set('Content-Encoding', 'gzip');
 next();
 });
 }

 // Client Side Rendering
 app.use(clientRender());

 if (isProduction) {
 try {
 // eslint-disable-next-line
 const serverRender = require('../../dist/server.js').default;

 app.use(serverRender());
 } catch (e) {

Implementing Server-Side Rendering Chapter 11

[424]

 throw e;
 }
 }

 // For Server Side Rendering on Development Mode
 app.use(webpackHotServerMiddleware(compiler));

 // Disabling x-powered-by
 app.disable('x-powered-by');

 // Listen Port...
 app.listen(3000);

File: src/server/index.js

We need to modify our clientRender.js file. If we detect a search bot with the17.
isBot function, we will return the next() middleware. Otherwise, we render
the HTML and we execute the app with CSR:

 // HTML
 import html from './html';

 // Initial State
 import initialState from './initialState';

 export default function clientRender() {
 return (req, res, next) => {
 if (req.isBot) {
 return next();
 }

 res.send(html({
 title: 'Codejobs',
 initialState: initialState(req)
 }));
 };
 }

File: src/server/render/clientRender.js

Implementing Server-Side Rendering Chapter 11

[425]

Now let's create our serverRender.js file. Here, we need to render our App18.
component using the renderToString method from react-dom/server
library:

 // Dependencies
 import React from 'react';
 import { renderToString } from 'react-dom/server';
 import { Provider } from 'react-redux';

 // Redux Store
 import configureStore from '@configureStore';

 // Components
 import App from '../../client/App';

 import html from './html';

 // Initial State
 import initialState from './initialState';

 export default function serverRender() {
 return (req, res, next) => {
 // Configuring Redux Store
 const store = configureStore(initialState(req));

 const markup = renderToString(
 <Provider store={store}>
 <App
 server
 location={req.url}
 />
 </Provider>
);

 res.send(html({
 title: 'Codejobs',
 markup,
 initialState: initialState(req)
 }));
 };
 }

File: src/server/render/serverRender.js

Implementing Server-Side Rendering Chapter 11

[426]

How it works...
You can start the application by running the npm start command.

If you open the app at http://localhost:3000 in your browser (Chrome, for example)
and you right-click and then View page source, you will probably notice that we are not
using SSR:

This is because we will only use SSR for search bots. The isBot function will detect all the
search bots, and just for a test I added curl as a bot to test our SSR; this is the code of that
function:

 export function isBot(ua) {
 const b =
/curl|bot|googlebot|google|baidu|bing|msn|duckduckgo|teoma|slurp|yandex|cra
wler|spider|robot|crawling/i;
 return b.test(ua);
 }

File: src/shared/utils/device.js

Implementing Server-Side Rendering Chapter 11

[427]

Open a new terminal while you have the application running in another terminal, and then
execute the following command:

 curl http://localhost:3000

As you can see, the HTML code inside the #root div is render it using the SSR.

Also, if you want to try to run /about in curl, you will see that also will render it using
SSR:

There is an extension for Chrome called User-Agent Switcher for Chrome where you can
specify the user agent you want to use in your browser. In this way, you can add a special
user agent for Googlebot, for example:

Implementing Server-Side Rendering Chapter 11

[428]

Then, if you select Chrome | Bot in User-Agent Switcher, you can see that the HTML code
renders it as SSR when you do View page source:

There's more...
When we are using SSR, we have to be very careful when we try to use the object window
for the client. If you use it directly using SSR you will get a ReferenceError such as this:

 ReferenceError: window is not defined

Implementing Server-Side Rendering Chapter 11

[429]

To solve this problem, you can validate that the window object exists, but this can be very
repetitive. I prefer to create a function that can verify whether we are using a browser
(client) or a server. You can do it like this:

 export function isBrowser() {
 return typeof window !== 'undefined';
 }

Then every time you need to use the window object, you can do something like this:

 const store = isBrowser() ? configureStore(window.initialState) : {};

Implementing promises with Server-Side
Rendering
In the last recipe, we saw how SSR works, but that recipe was limited to displaying the SSR
with simple components. In this recipe, we will learn how to implement promises to
connect our components to Redux, use an API to get data and render the components using
SSR.

Getting ready
We are going to use the same code from the last recipe, but we will make some changes. In
this recipe, we need to install these packages:

 npm install axios babel-preset-stage-0 react-router-dom redux-devtools-
extension redux-thunk

How to do it...
For this recipe, we are going to implement a basic todo list pulled from an API to show how
to connect Redux to our application using SSR:

The first thing we need to do is to add a simple API to display a to-do list:1.

 import express from 'express';

 const router = express.Router();

 // Mock data, this should come from a database....

Implementing Server-Side Rendering Chapter 11

[430]

 const todo = [
 {
 id: 1,
 title: 'Go to the Gym'
 },
 {
 id: 2,
 title: 'Dentist Appointment'
 },
 {
 id: 3,
 title: 'Finish homework'
 }
];

 router.get('/todo/list', (req, res, next) => {
 res.json({
 response: todo
 });
 });

 export default router;

File: src/server/controllers/api.js

The second step is to import this API controller into our src/server/index.js2.
file and add it as middleware on the /api route:

 ...
 // Controllers
 import apiController from './controllers/api';
 ...
 // Express Application
 const app = express();

 // Webpack Compiler
 const compiler = webpack(webpackConfig);

 // Routes
 app.use('/api', apiController);
 ...

File: src/server/index.js

Implementing Server-Side Rendering Chapter 11

[431]

Previously, in our serverRender.js file, we rendered our App component3.
directly. Now we need to get the promises from the components that have a
static method called initialAction, save them into a promises array, resolve
them, and then render our App method:

 // Dependencies
 import React from 'react';
 import { renderToString } from 'react-dom/server';
 import { Provider } from 'react-redux';
 import { matchPath } from 'react-router-dom';

 // Redux Store
 import configureStore from '@configureStore';

 // Components
 import App from '../../client/App';

 // HTML
 import html from './html';

 // Initial State
 import initialState from './initialState';

 // Routes
 import routes from '@shared/routes';

 export default function serverRender() {
 return (req, res, next) => {
 // Configuring Redux Store
 const store = configureStore(initialState(req));

 // Getting the promises from the components which has
 // initialAction.
 const promises = routes.paths.reduce((promises, route) => {
 if (matchPath(req.url, route) && route.component &&
route.component.initialAction) {
promises.push(Promise.resolve(store.dispatch(route.component.initia
lAction())));
 }

 return promises;
 }, []);

 // Resolving our promises
 Promise.all(promises)
 .then(() => {
 // Getting Redux Initial State

Implementing Server-Side Rendering Chapter 11

[432]

 const initialState = store.getState();

 // Rendering with SSR
 const markup = renderToString(
 <Provider store={store}>
 <App
 server
 location={req.url}
 />
 </Provider>
);

 // Sending our HTML code.
 res.send(html({
 title: 'Codejobs',
 markup,
 initialState
 }));
 })
 .catch(e => {
 // eslint-disable-line no-console
 console.log('Promise Error: ', e);
 });
 };
 }

File: src/server/render/serverRender.js

Implementing Server-Side Rendering Chapter 11

[433]

In this recipe, we need to change our folder structure a little bit in our client4.
directory. Previously, we had a components directory and our components
were inside. Now we are going to encapsulate our components as small
applications, and inside we can create our actions, API, components, containers,
and reducers. Our new structure should look like this:

Implementing Server-Side Rendering Chapter 11

[434]

We will create a todo application. To do this, first we need to add our actions5.
folder, and inside we need to make first our actionTypes.js file. In this file, we
need to add our FETCH_TODO actions. I prefer to create an object with two
functions, one for requests and the other for the success; you will see the
advantage of this when we use this on our reducer and when we dispatch our
actions:

 // Actions
 export const FETCH_TODO = {
 request: () => 'FETCH_TODO_REQUEST',
 success: () => 'FETCH_TODO_SUCCESS'
 };

File: src/client/todo/actions/actionTypes.js

In our index.js file, we will create a fetchTodo action to retrieve our todo list6.
items from our API:

 // Base Actions
 import { request, received } from '@baseActions';

 // Api
 import api from '../api';

 // Action Types
 import { FETCH_TODO } from './actionTypes';

 export const fetchTodo = () => dispatch => {
 const action = FETCH_TODO;
 const { fetchTodo } = api;
 dispatch(request(action));

 return fetchTodo()
 .then(response => dispatch(received(action, response.data)));
 };

File: src/client/todo/actions/index.js

Implementing Server-Side Rendering Chapter 11

[435]

As you can see, we are using two particular methods (request and received) from7.
our base actions. These functions will help us to dispatch our actions easily (do
you remember that we used the request and success methods in the actions?):

 // Base Actions
 export const request = ACTION => ({
 type: ACTION.request()
 });

 export const received = (ACTION, data) => ({
 type: ACTION.success(),
 payload: data
 });

File: src/shared/redux/baseActions.js

Now let's create our api folder, where we need to add a constants.js file and8.
our index.js file:

 export const API = Object.freeze({
 TODO: 'api/todo/list'
 });

File: src/client/todo/api/constants.js

In our index.js file, we have to create our Api class and add a static method9.
called fetchTodo:

 // Dependencies
 import axios from 'axios';

 // Configuration
 import config from '@configuration';

 // Utils
 import { isBrowser } from '@utils/frontend';

 // Constants
 import { API } from './constants';

 class Api {
 static fetchTodo() {
 // For Node (SSR) we have to specify our base domain
 // (http://localhost:3000/api/todo/list)
 // For Client Side Render just /api/todo/list.
 const url = isBrowser()
 ? API.TODO

Implementing Server-Side Rendering Chapter 11

[436]

 : `${config.baseUrl}/${API.TODO}`;

 return axios(url);
 }
 }

 export default Api;

File: src/client/todo/api/index.js

In our Todo container, we need to map our todo list and add the fetchTodo action10.
to Redux. We will export a Layout component, to which we will add our other
components and manipulate the way we want to display the layout:

 // Dependencies
 import { connect } from 'react-redux';
 import { bindActionCreators } from 'redux';

 // Components
 import Layout from '../components/Layout';

 // Actions
 import { fetchTodo } from '../actions';

 export default connect(({ todo }) => ({
 todo: todo.list
 }), dispatch => bindActionCreators(
 {
 fetchTodo
 },
 dispatch
))(Layout);

File: src/client/todo/container/index.js

Our Layout component should be like this:11.

 // Dependencies
 import React from 'react';

 // Shared Components
 import Header from '@layout/Header';
 import Content from '@layout/Content';
 import Footer from '@layout/Footer';

 // Componenets
 import Todo from '../components/Todo';

Implementing Server-Side Rendering Chapter 11

[437]

 const Layout = props => (
 <main>
 <Header {...props} />
 <Content>
 <Todo {...props} />
 </Content>
 <Footer {...props} />
 </main>
);
 export default Layout;

File: src/client/todo/components/Layout.jsx

In this recipe, we are not going to see the layout components (Header, Content,12.
and Footer) since they are very generic and we have used them in the past
recipes. Now let's create our reducer file:

 // Utils
 import { getNewState } from '@utils/frontend';

 // Action Types
 import { FETCH_TODO } from '../actions/actionTypes';

 // Initial State
 const initialState = {
 list: []
 };
 export default function todoReducer(state = initialState, action)
{
 switch (action.type) {
 case FETCH_TODO.success(): {
 const { payload: { response = [] } } = action;

 return getNewState(state, {
 list: response
 });
 }

 default:
 return state;
 }
 }

File: src/client/todo/reducer/index.js

Implementing Server-Side Rendering Chapter 11

[438]

Our Todo component will execute our fetchTodo action in the13.
componentDidMount method, and then we render the Todo list into an HTML
list; very simple:

 // Dependencies
 import React, { Component } from 'react';

 // Utils
 import { isFirstRender } from '@utils/frontend';

 // Styles
 import styles from './Todo.scss';

 class Todo extends Component {
 componentDidMount() {
 const { fetchTodo } = this.props;

 fetchTodo();
 }

 render() {
 const {
 todo
 } = this.props;

 if (isFirstRender(todo)) {
 return null;
 }

 return (
 <div>
 <div className={styles.Todo}>

 {todo.map((item, key) =>
 <li key={key}>{item.title})}

 </div>
 </div>
);
 }
 }

 export default Todo;

File: src/client/todo/components/Todo.jsx

Implementing Server-Side Rendering Chapter 11

[439]

Finally, we need to create an index.jsx file for our todo app, and in this file we14.
are going to add our initialAction (this will return a promise) to execute our
fetchTodo action and render this Todo list using SSR:

 // Dependencies
 import React from 'react';

 // Actions
 import { fetchTodo } from './actions';

 // Main Container
 import Container from './container';

 // Main Component
 const Main = props => <Container {...props} />;

 // Initial Action
 Main.initialAction = () => fetchTodo();

 export default Main;

File: src/client/todo/index.jsx

How it works...
As you can see in our serverRender.js file, we get the promises and resolve them, and
then we render our application using SSR.

If you want to test the application, you need to go to http://localhost:3000/todo in your
browser.

Remember that in our app, we are just using SSR for search bots and curl, otherwise will
use CSR. This is because the only reason we have to use SSR is to improve our SEO in
Google, Yahoo, and Bing.

If we use CSR, the way we will execute our action is on the componentDidMount()
method in our Todo component; and if we are using SSR, we will use the initialAction
method, which returns a promise that will be resolved in serverRender.js.

Implementing Server-Side Rendering Chapter 11

[440]

If you open the page, you should see this:

If you want to see whether the SSR is working, you can use the curl command and execute
the same URL in your Terminal:

As you can see, the todo list reducer has been added to initialState and from there, we
can render the list using SSR.

Implementing Server-Side Rendering Chapter 11

[441]

Implementing Next.js
Next.js is a minimalistic framework for server-rendered React applications.

In this recipe, we are going to learn how to implement Next.js with Sass, and we will
also get data from a service using axios.

Getting ready
First, let's create a new directory called nextjs, initialize package.json, and finally create
a new directory inside it:

 mkdir nextjs
 cd nextjs
 npm init -y
 mkdir src

Then we need to install some dependencies:

 npm install next react react-dom axios node-sass @zeit/next-sass

How to do it...
Now that we have installed the dependencies, let's create our first Next.js application:

The first thing we need to do is to create some scripts in our package.json. In each1.
script, we need to specify the src directory. Otherwise, it will try to start Next
from the root instead of the src path:

 "scripts": {
 "start": "next start src",
 "dev": "next src",
 "build": "next build src"
 }

File: package.json

The main directory in Next is called pages. This is where we will include all the2.
pages we want to render using Next:

 cd src && mkdir pages

Implementing Server-Side Rendering Chapter 11

[442]

The first page we need to create is index.jsx:3.

 const Index = () => <h1>Home</h1>;

 export default Index;

File: src/pages/index.jsx

Now let's run our application using the dev script:4.

 npm run dev

If everything works, you should see this in your terminal:5.

Open http://localhost:3000:6.

Next.js has its own Webpack configuration and hot reloading enabled.
That means if you edit the index.js file you will see the changes reflected
without refreshing the page.

Implementing Server-Side Rendering Chapter 11

[443]

Now let's create an About page to see how the routing works:7.

 const About = () => <h1>About</h1>;

 export default About;

File: src/pages/about.jsx

Now you will see the about page if you go to http://localhost:3000/about. As you8.
can see, Next.js automatically creates a new route for each page we have created.
This means we don't need to install React Router to handle the routing.

In Next pages, it is not necessary to import React because it is
automatically handled by Next as well.

Now we need to create a next.config.js file and import the withSass method9.
to use Sass in our project. Unfortunately, this file needs to be written in ES5
syntax because the babel extension to use ES6 is not supported at the moment
(https:/ ​/ ​github. ​com/ ​zeit/ ​next. ​js/ ​issues/ ​2916):

 const withSass = require('@zeit/next-sass');

 module.exports = withSass();

File: src/next.config.js

In this file, we can also add custom Webpack configuration if we need it.

Then we need to create a special file in the pages directory called10.
_document.js. This file is automatically handled by Next.js, and here we can
define the head and body of our document:

 import Document, { Head, Main, NextScript } from 'next/document';

 export default class MyDocument extends Document {
 render() {
 return (
 <html>
 <Head>
 <title>Codejobs with Next</title>

https://github.com/zeit/next.js/issues/2916
https://github.com/zeit/next.js/issues/2916
https://github.com/zeit/next.js/issues/2916
https://github.com/zeit/next.js/issues/2916
https://github.com/zeit/next.js/issues/2916
https://github.com/zeit/next.js/issues/2916
https://github.com/zeit/next.js/issues/2916
https://github.com/zeit/next.js/issues/2916
https://github.com/zeit/next.js/issues/2916
https://github.com/zeit/next.js/issues/2916
https://github.com/zeit/next.js/issues/2916
https://github.com/zeit/next.js/issues/2916
https://github.com/zeit/next.js/issues/2916
https://github.com/zeit/next.js/issues/2916
https://github.com/zeit/next.js/issues/2916
https://github.com/zeit/next.js/issues/2916
https://github.com/zeit/next.js/issues/2916

Implementing Server-Side Rendering Chapter 11

[444]

 <link
 rel="stylesheet"
 href="/_next/static/style.css"
 />
 </Head>

 <body>
 <Main />
 <NextScript />
 </body>
 </html>
);
 }
 }

File: src/pages/_document.js

The path to the CSS file (/_next/static/style.css) is by default; we
should use that one to use styles in our project.

Now we can create some components to wrap up our pages. The first one we11.
need to create is a navbar for menu options:

 import Link from 'next/link';
 import './Navbar.scss';

 const Navbar = () => (
 <div className="navbar">

 Codejobs
 <Link href="/">Home</Link>
 <Link href="/about">About</Link>

 </div>
)
 export default Navbar;

File: src/components/Navbar.jsx

The Link component is not the same as the React Router Link. There are a
few differences; for example, the React Router Link uses the "to" prop and
the Next Link uses "href" to specify the URL.

Implementing Server-Side Rendering Chapter 11

[445]

Now we can add Sass styles for our navbar:12.

 .navbar {
 background: black;
 color: white;
 height: 60px;

 ul {
 padding: 0;
 margin: 0;
 list-style: none;

 li {
 display: inline-block;
 margin-left: 30px;
 text-align: center;

 a {
 display: block;
 color: white;
 line-height: 60px;
 width: 150px;

 &:hover {
 background: white;
 color: black;
 }
 }
 }
 }
 }

File: src/components/Navbar.scss

Then we need to create our Layout component:13.

 import Navbar from './Navbar';
 import './Layout.scss';

 const Layout = ({ children }) => (
 <div className="layout">
 <Navbar />

 <div className="wrapper">
 {children}
 </div>
 </div>
)

Implementing Server-Side Rendering Chapter 11

[446]

 export default Layout;

File: src/components/Layout.jsx

The styles for our Layout are as follows:14.

 body {
 font-family: verdana;
 padding: 0;
 margin: 0;
 }

 .layout {
 a {
 text-decoration: none;
 }

 .wrapper {
 margin: 0 auto;
 width: 96%;
 }
 }

File: src/components/Layout.scss

Do you remember the recipe in Chapter 5, Mastering Redux, about listing the top15.
100 cryptocurrencies from CoinMarketCap (Repository:
Chapter05/Recipe2/coinmarketcap)? In this recipe, we are going to do the
same using Next.js. The first thing we need to do is to modify the
page's index.js file and do an async axios request in the getInitialProps
method:

 import axios from 'axios';
 import Layout from '../components/Layout';
 import Coins from '../components/Coins';

 const Index = ({ coins }) => (
 <Layout>
 <div className="index">
 <Coins coins={coins} />
 </div>
 </Layout>
);

 Index.getInitialProps = async () => {
 const url = 'https://api.coinmarketcap.com/v1/ticker/';
 const res = await axios.get(url);

Implementing Server-Side Rendering Chapter 11

[447]

 return {
 coins: res.data
 };
 };

 export default Index;

 File: src/pages/index.js

Now let's create the Coins component:16.

 // Dependencies
 import React, { Component } from 'react';
 import { array } from 'prop-types';

 // Styles
 import './Coins.scss';

 const Coins = ({ coins }) => (
 <div className="Coins">
 <h1>Top 100 Coins</h1>

 {coins.map((coin, key) => (
 <li key={key}>
 {coin.rank} {coin.name}
 {coin.symbol}
 ${coin.price_usd}

))}

 </div>
);

 Coins.propTypes = {
 coins: array
 };

 export default Coins;

File: src/components/Coins.jsx

Implementing Server-Side Rendering Chapter 11

[448]

The styles for the Coins component are as follows:17.

 .Coins {
 h1 {
 text-align: center;
 }

 ul {
 margin: 0 auto;
 margin-bottom: 20px;
 padding: 0;
 list-style: none;
 width: 400px;

 li {
 border-bottom: 1px solid black;
 text-align: left;
 padding: 10px;
 display: flex;
 justify-content: space-between;

 a {
 display: block;
 color: #333;
 text-decoration: none;
 background: #5ed4ff;

 &:hover {
 color: #333;
 text-decoration: none;
 background: #baecff;
 }
 }
 }
 }
 }

File: src/components/Coins.scss

Implementing Server-Side Rendering Chapter 11

[449]

How it works...
Now that we have created all the pages and components, let's test our Next application by
running npm run dev:

Implementing Server-Side Rendering Chapter 11

[450]

Let's now see how it is rendering it in the HTML view:

Banzai! The HTML is rendered with SSR and is perfect for improving the SEO. As you can
see, creating an application with Next is super fast, and we avoid a lot of configuration
when enabling SSR.

12
Testing and Debugging

In this chapter, the following recipes will be covered:

Testing our first component with Jest and Enzyme
Testing a Redux Container, Actions, and Reducers
Debugging a React application using React and Redux Dev Tools
Simulating events

Introduction
Testing and debugging are very important for any project that wants to have high quality.
Unfortunately, many developers do not care about testing (unit tests) because they think
that will reduce the speed of the development and some of them leave it until the end of the
project. In my personal experience, I can say that testing from the beginning of the project
will save you time because, at the end, you will have fewer bugs to fix. React uses Jest to
test its components, containers, actions, and reducers.

In the following recipes, we are also going to learn how to debug our React/Redux
application.

Testing and Debugging Chapter 12

[452]

Testing our first component with Jest and
Enzyme
In this recipe, we are going to learn how to install and configure Jest in our project.

Getting ready
In this recipe, we need to install a few packages to test our React application:

npm install --save-dev jest jsdom enzyme enzyme-adapter-react-16 identity-
obj-proxy

How to do it...
After we've installed Jest, we need to configure it:

Add the tests scripts and the Jest configuration into our package.json:1.

 {
 "name": "react-pro",
 "version": "1.0.0",
 "scripts": {
 "clean": "rm -rf dist/ && rm -rf public/app",
 "start": "npm run clean & NODE_ENV=development
 BABEL_ENV=development nodemon src/server --watch src/server --
 watch src/shared --exec babel-node --presets es2015",
 "start-analyzer": "npm run clean && NODE_ENV=development
 BABEL_ENV=development ANALYZER=true babel-node src/server",
 "test": "node scripts/test.js src --env=jsdom",
 "coverage": "node scripts/test.js src --coverage --env=jsdom"
 },
 "jest": {
 "setupTestFrameworkScriptFile": "
 <rootDir>/config/jest/setupTestFramework.js",
 "collectCoverageFrom": [
 "src/**/*.{js,jsx}"
],
 "setupFiles": [
 "<rootDir>/config/jest/browserMocks.js"
],
 "moduleNameMapper": {
 "^.+\\.(scss)$": "identity-obj-proxy"
 }

Testing and Debugging Chapter 12

[453]

 },
 "author": "Carlos Santana",
 "license": "MIT",
 "dependencies": {
 "axios": "^0.18.0",
 "babel-preset-stage-0": "^6.24.1",
 "express": "^4.15.4",
 "react": "^16.3.2",
 "react-dom": "^16.3.2",
 "react-redux": "^5.0.6",
 "react-router-dom": "^4.2.2",
 "redux": "^4.0.0",
 "redux-devtools-extension": "^2.13.2",
 "redux-thunk": "^2.2.0"
 },
 "devDependencies": {
 "babel-cli": "^6.26.0",
 "babel-core": "^6.26.0",
 "babel-eslint": "^8.2.3",
 "babel-loader": "^7.1.2",
 "babel-plugin-module-resolver": "^3.1.1",
 "babel-preset-env": "^1.6.0",
 "babel-preset-es2015": "^6.24.1",
 "babel-preset-react": "^6.24.1",
 "compression-webpack-plugin": "^1.0.0",
 "css-loader": "^0.28.5",
 "enzyme": "^3.3.0",
 "enzyme-adapter-react-16": "^1.1.1",
 "eslint": "^4.5.0",
 "eslint-plugin-babel": "^5.1.0",
 "eslint-plugin-import": "^2.7.0",
 "eslint-plugin-jsx-a11y": "^6.0.2",
 "eslint-plugin-react": "^7.8.2",
 "eslint-plugin-standard": "^3.0.1",
 "extract-text-webpack-plugin": "4.0.0-beta.0",
 "husky": "^0.14.3",
 "identity-obj-proxy": "^3.0.0",
 "jest": "^23.1.0",
 "jsdom": "^11.11.0",
 "node-sass": "^4.5.3",
 "nodemon": "^1.17.4",
 "react-hot-loader": "^4.2.0",
 "redux-mock-store": "^1.5.1",
 "sass-loader": "^7.0.1",
 "style-loader": "^0.21.0",
 "webpack": "^4.8.3",
 "webpack-bundle-analyzer": "^2.9.0",
 "webpack-dev-middleware": "^3.1.3",

Testing and Debugging Chapter 12

[454]

 "webpack-hot-middleware": "^2.18.2",
 "webpack-hot-server-middleware": "^0.5.0",
 "webpack-merge": "^4.1.0",
 "webpack-node-externals": "^1.6.0",
 "webpack-notifier": "^1.6.0"
 }
 }

File: package.json

As you can see in our Jest configuration, we need to add2.
the setupTestFramework.js file where we'll configure our enzyme to use it
with Jest:

 import { configure } from 'enzyme';
 import Adapter from 'enzyme-adapter-react-16';

 configure({ adapter: new Adapter() });

File: config/jest/setupTestFramework.js

In the setupFiles node, we can specify our browserMocks.js file, which is3.
where we can mock any browser method we use in our App. For example, if you
want to test localStorage in your app, this file is the proper place to mock it:

 // Browser Mocks
 const requestAnimationFrameMock = callback => {
 setTimeout(callback, 0);
 };

 Object.defineProperty(window, 'requestAnimationFrame', {
 value: requestAnimationFrameMock
 });

 const localStorageMock = (() => {
 let store = {}

 return {
 getItem: key => store[key] || null,
 setItem: (key, value) => store[key] = value.toString(),
 removeItem: key => delete store[key],
 clear: () => store = {}
 };
 })();

 Object.defineProperty(window, 'localStorage', {
 value: localStorageMock

Testing and Debugging Chapter 12

[455]

 });

File: config/jest/browserMocks.js

If you are using Sass, Stylus, or Less in your components, you need to specify4.
the moduleNameMapper mode with a regex to match all the .scss files (or
.styl/.less) in your project and handle those files with identity-obj-
proxy, which is a package that mocks Webpack imports, such as CSS modules.
You may have noticed we added two new NPM scripts: one for test our app and5.
the other to get the coverage (percentage of covered unit tests). For those, we are
using a particular script, which is at scripts/test.js, let's create that file:

 // Set the NODE_ENV to test
 process.env.NODE_ENV = 'test';
 // Requiring jest
 const jest = require('jest');

 // Getting the arguments from the terminal
 const argv = process.argv.slice(2);
 // Runing Jest passing the arguments
 jest.run(argv);

File: scripts/test.js

Let's imagine we have this Home component:6.

 import React from 'react';
 import styles from './Home.scss';

 const Home = props => (
 <h1 className={styles.Home}>Hello {props.name || 'World'}</h1>
);

 export default Home;

File: src/client/home/index.jsx

Testing and Debugging Chapter 12

[456]

If you want to test this component, you need to create a file with the same name7.
but add the .test suffix in the file. In this case, our test file will be
named index.test.jsx:

 // Dependencies
 import React from 'react';
 import { shallow } from 'enzyme';

 // Component to test...
 import Home from './index';

 describe('Home', () => {
 const subject = shallow(<Home />);
 const subjectWithProps = shallow(<Home name="Carlos" />);

 it('should render Home component', () => {
 expect(subject.length).toBe(1);
 });

 it('should render by default Hello World', () => {
 expect(subject.text()).toBe('Hello World');
 });

 it('should render the name prop', () => {
 expect(subjectWithProps.text()).toBe('Hello Carlos');
 });

 it('should has .Home class', () => {
 expect(subject.find('h1').hasClass('Home')).toBe(true);
 });
 });

File: src/client/home/index.test.jsx

Testing and Debugging Chapter 12

[457]

How it works...
If you want to test your application, you need to run the following command:

 npm test

If your test is correct, you should see this result:

Testing and Debugging Chapter 12

[458]

The PASS label means that all of your tests in that file passed successfully; if you failed at
least one test, you would see the FAIL label. Let's modify our "should has .Home
class test. I'm going to change the value to "Home2" to force the fail:

As you can see, now we got the FAIL label and specified with an X the failed test. Also, the
Expected and Received values provide useful information, with these, we can see which
value is expected and which value is being received.

There's more...
Now if you want to see the coverage percentage of all your unit tests, you can use the
following command:

 npm run coverage

Testing and Debugging Chapter 12

[459]

Right now we only have 1 unit test for our Home component as you can see is in color green
and at 100%, all the other files are in red with 0% because those have not been tested yet:

Testing and Debugging Chapter 12

[460]

Also, the coverage command generates an HTML version of the result. There is a directory
called "coverage" and inside other called "Icov-report". If you open index.html in
your browser, you will see something like this:

Testing a Redux Container, Actions, and
Reducers
In this recipe, we are going to test a Redux Container, Actions, and Reducers. For this
example, we will test the Todo list that we created in Chapter 11, Implementing Server-Side
Rendering.

Testing and Debugging Chapter 12

[461]

Remember always that we use an existing recipe you must run npm
install command first to restore all the project dependencies otherwise,
you will get dependency errors.

Getting Ready
We need to install the redux-mock-store, moxios, and redux-thunk packages to test
our Redux containers. You will need to run npm install first to install all the
dependencies:

 npm install // This is to install the previous packages
 npm install redux-mock-store moxios redux-thunk

How to do it...
Let's test our Redux containers:

Redux containers should not have any JSX code; the best practice is to1.
have mapStateToProps and mapDispatchToProps in our connect method
passing another component (such as a Layout component) in the export, for
example, let's see our Todo List Container:

 // Dependencies
 import { connect } from 'react-redux';
 import { bindActionCreators } from 'redux';

 // Components
 import Layout from '../components/Layout';

 // Actions
 import { fetchTodo } from '../actions';

 export default connect(({ todo }) => ({
 todo: todo.list
 }), dispatch => bindActionCreators(
 {
 fetchTodo
 },
 dispatch
))(Layout);

File: src/client/todo/container/index.js

Testing and Debugging Chapter 12

[462]

You might be wondering what exactly we need to test in here. Well, the most2.
important things we need to test in a container are the action dispatch (the
fetchTodo action) and get our todo state from Redux with data. That being
said, this is our container unit test file:

 // Dependencies
 import React from 'react';
 import { shallow } from 'enzyme';
 import configureStore from 'redux-mock-store';

 // Actions
 import { fetchTodo } from '../actions';

 // Testable Container
 import Container from './index';

 // Mocking Initial State
 const mockInitialState = {
 todo: {
 list: [
 {
 id: 1,
 title: 'Go to the Gym'
 },
 {
 id: 2,
 title: 'Dentist Appointment'
 },
 {
 id: 3,
 title: 'Finish homework'
 }
]
 }
 };

 // Configuring Mock Store
 const mockStore = configureStore()(mockInitialState);

 // Mocking the Actions
 jest.mock('../actions', () => ({
 fetchTodo: jest.fn().mockReturnValue({ type: 'mock-
FETCH_TODO_SUCCESS' })
 }));

 describe('Todo Container', () => {
 let mockParams;

Testing and Debugging Chapter 12

[463]

 let container;

 beforeEach(() => {
 fetchTodo.mockClear();
 mockParams = {};
 mockStore.clearActions();
 container = shallow(<Container {...mockParams}
store={mockStore} />);
 });

 it('should dispatch fetchTodo', () => {
 const { fetchTodo } = container.props();

 fetchTodo();

 const actions = mockStore.getActions();

 expect(actions).toEqual([{ type: 'mock-FETCH_TODO_SUCCESS'
}]);
 });

 it('should map todo and get the todo list from Initial State',
() => {
 const { todo } = container.props();
 const { todo: { list }} = mockInitialState;

 expect(todo).toEqual(list);
 });
 });

File: src/client/todo/container/index.test.js

Test the fetchTodo action. This is the code for our action file:3.

 // Base Actions
 import { request, received } from '@baseActions';

 // Api
 import api from '../api';

 // Action Types
 import { FETCH_TODO } from './actionTypes';

 export const fetchTodo = () => dispatch => {
 const action = FETCH_TODO;
 const { fetchTodo } = api;

 dispatch(request(action));

Testing and Debugging Chapter 12

[464]

 return fetchTodo()
 .then(response => dispatch(received(action, response.data)));
 };

File: src/client/todo/actions/index.js

This is our actionTypes.js file:4.

 // Actions
 export const FETCH_TODO = {
 request: () => 'FETCH_TODO_REQUEST',
 success: () => 'FETCH_TODO_SUCCESS'
 };

File: src/client/todo/actions/actionTypes.js

To test an async Redux Action, we need to use redux-thunk and moxios to test5.
an action that is using axios to retrieve data from the server. Our test file should
look like this:

 // Dependencies
 import configureMockStore from 'redux-mock-store';
 import thunk from 'redux-thunk';
 import moxios from 'moxios';

 // Action
 import { fetchTodo } from './index';

 // Action Types
 import { FETCH_TODO } from './actionTypes';

 // Configuring Store with Thunk middleware
 const mockStore = configureMockStore([thunk]);

 // Response Mock
 const todoResponseMock = [
 {
 id: 1,
 title: 'Go to the Gym'
 },
 {
 id: 2,
 title: 'Dentist Appointment'
 },
 {
 id: 3,
 title: 'Finish homework'

Testing and Debugging Chapter 12

[465]

 }
];

 describe('fetchTodo action', () => {
 beforeEach(() => {
 moxios.install();
 });

 afterEach(() => {
 moxios.uninstall();
 });

 it('should fetch the Todo List', () => {
 moxios.wait(() => {
 const req = moxios.requests.mostRecent();

 req.respondWith({
 status: 200,
 response: todoResponseMock
 });
 });

 const expectedActions = [
 {
 type: FETCH_TODO.request()
 },
 {
 type: FETCH_TODO.success(),
 payload: todoResponseMock
 }
];

 const store = mockStore({ todo: [] })

 return store.dispatch(fetchTodo()).then(() => {
 expect(store.getActions()).toEqual(expectedActions);
 });
 });
 });

File: src/client/todo/actions/index.test.js

Testing and Debugging Chapter 12

[466]

Let's test our reducer. This is the Todo reducer file:6.

 // Utils
 import { getNewState } from '@utils/frontend';

 // Action Types
 import { FETCH_TODO } from '../actions/actionTypes';

 // Initial State
 const initialState = {
 list: []
 };

 export default function todoReducer(state = initialState, action)
{
 switch (action.type) {
 case FETCH_TODO.success(): {
 const { payload: { response = [] } } = action;

 return getNewState(state, {
 list: response
 });
 }

 default:
 return state;
 }
 }

File: src/client/todo/reducer/index.js

We need to test two things in our reducer: the initial state and the state when the7.
FETCH_TODO action is a success:

 // Reducer
 import todo from './index';

 // Action Types
 import { FETCH_TODO } from '../actions/actionTypes';

 // Initial State
 const initialState = {
 list: []
 };

 describe('Todo List Reducer', () => {
 it('should return the initial state', () => {
 const expectedInitialState = todo(undefined, {});

Testing and Debugging Chapter 12

[467]

 expect(expectedInitialState).toEqual(initialState);
 });

 it('should handle FETCH_TODO when is success', () => {
 const action = {
 type: FETCH_TODO.success(),
 payload: {
 response: [
 {
 id: 1,
 title: 'Go to the Gym'
 },
 {
 id: 2,
 title: 'Dentist Appointment'
 },
 {
 id: 3,
 title: 'Finish homework'
 }
]
 }
 };

 const expectedState = {
 list: action.payload.response
 };

 const state = todo(initialState, action);

 expect(state).toEqual(expectedState);
 });
 });

File: src/client/todo/reducer/index.test.js

Debugging a React application using React
and Redux Dev Tools
Debugging is essential for any application, it helps us to identify and fix bugs. Chrome has
two powerful tools to debug React/Redux applications integrating those to its Developer
Tools. React Dev Tool and Redux Dev Tool.

Testing and Debugging Chapter 12

[468]

Getting Ready
Using Google Chrome, you have to install both extensions:

React Developer Tools: https:/ ​/​chrome. ​google. ​com/ ​webstore/ ​detail/ ​react-
developer- ​tools/ ​fmkadmapgofadopljbjfkapdkoienihi

Redux DevTools: https:/ ​/​chrome. ​google. ​com/ ​webstore/ ​detail/ ​redux-
devtools/ ​lmhkpmbekcpmknklioeibfkpmmfibljd? ​hl=​es

Also, you need to install the redux-devtools-extension package:

npm install --save-dev redux-devtools-extension

Once you've installed React Developer Tools and Redux DevTools, you need to configure
them.

If you try to use Redux DevTools directly, it won't work; this is because we need to pass
the composeWithDevTools method into our Redux store, this should be our
configureStore.js file:

 // Dependencies
 import { createStore, applyMiddleware } from 'redux';
 import thunk from 'redux-thunk';
 import { composeWithDevTools } from 'redux-devtools-extension';

 // Root Reducer
 import rootReducer from '@reducers';

 export default function configureStore({ initialState, appName,
 reducer }) {
 const middleware = [
 thunk
];

 return createStore(
 rootReducer,
 initialState,
 composeWithDevTools(applyMiddleware(...middleware))
);
 }

File: src/shared/redux/configureStore.js

https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es

Testing and Debugging Chapter 12

[469]

How to do it...
Let's debug our application:

If you want to debug your React application, open your application with Google1.
Chrome (http://localhost:3000/todo), open your Google Dev Tools (Right
click > Inspect), select the React tab, and you will see your React components:

Testing and Debugging Chapter 12

[470]

You can select the component you want to debug, and one of the coolest things is2.
that you can see the props of your component in the right side:

If you want to debug Redux in your application and see which actions are being3.
dispatched, you need to select the Redux tab in your Chrome Dev Tools:

We are dispatching two actions in our Todo application: FETCH_TODO_REQUEST4.
and FETCH_TODO_SUCCESS. The @@INIT action is being dispatched by default in
Redux, and this happens in any application.
If you select the FETCH_TODO_REQUEST action, you will see that on the Diff tab it5.
says, "(states are equal)". That means there were no changes within that action,
but you have four tabs: Action, State, Diff, and Test.

Testing and Debugging Chapter 12

[471]

If you select the Action tab, you can see that specific action:6.

If you select FETCH_TODO_SUCCESS, you will see the data for the todo reducer:7.

Simulating Events
In this recipe, we are going to learn how to simulate the onClick and onChange events on
a simple Calculator component.

How to do it...
We will re-use the code of the last recipe (Repository:
Chapter12/Recipe3/debugging):

We will create a simple Calculator component to sum two values (input) and1.
then we will get the result when the user clicks on the equals (=) button:

 import React, { Component } from 'react';
 import styles from './Calculator.scss';

Testing and Debugging Chapter 12

[472]

 class Calculator extends Component {
 state = {
 number1: 0,
 number2: 0,
 result: 0
 };

 handleOnChange = e => {
 const { target: { value, name } } = e;

 this.setState({
 [name]: value
 });
 }

 handleResult = () => {
 this.setState({
 result: Number(this.state.number1) +
Number(this.state.number2)
 });
 }

 render() {
 return (
 <div className={styles.Calculator}>
 <h1>Calculator</h1>

 <input
 name="number1"
 value={this.state.number1}
 onChange={this.handleOnChange}
 />

 {' + '}

 <input
 name="number2"
 value={this.state.number2}
 onChange={this.handleOnChange}
 />

 <button onClick={this.handleResult}>
 =
 </button>

 <input
 name="result"
 value={this.state.result}

Testing and Debugging Chapter 12

[473]

 />
 </div>
);
 }
 }

 export default Calculator;

File: src/client/calculator/index.jsx

If you want to see this component in your browser (it was created for testing2.
purpose), you need to include it in your routes file:

 import React from 'react';
 import { Switch, Route } from 'react-router-dom';

 // Components
 import Calculator from '../../client/calculator';

 const paths = [
 {
 component: Calculator,
 exact: true,
 path: '/'
 }
];

 const all = (
 <Switch>
 <Route exact path={paths[0].path}
component={paths[0].component} />
 </Switch>
);

 export default {
 paths,
 all
 };

File: src/shared/routes/index.jsx

If you want to see some basic styles, we can use these:3.

 .Calculator {
 padding: 100px;

 input {
 width: 50px;

Testing and Debugging Chapter 12

[474]

 height: 50px;
 padding: 40px;
 font-size: 24px;
 }

 button {
 padding: 10px;
 margin: 10px;
 }
 }

File: src/client/calculator/Calculator.scss

In our test file, we need to simulate the onChange event to change the values of4.
our input and then simulate the click on the equals (=) button:

 // Dependencies
 import React from 'react';
 import { shallow } from 'enzyme';

 // Component to test...
 import Calculator from './index';

 describe('Calculator', () => {
 const subject = shallow(<Calculator />);

 it('should render Calculator component', () => {
 expect(subject.length).toBe(1);
 });

 it('should modify the state onChange', () => {
 subject.find('input[name="number1"]').simulate('change', {
 target: {
 name: 'number1',
 value: 5
 }
 });

 subject.find('input[name="number2"]').simulate('change', {
 target: {
 name: 'number2',
 value: 15
 }
 });

 // Getting the values of the number1 and number2 states
 expect(subject.state('number1')).toBe(5);
 expect(subject.state('number2')).toBe(15);

Testing and Debugging Chapter 12

[475]

 });

 it('should perform the sum when the user clicks the = button',
 () => {
 // Simulating the click event
 subject.find('button').simulate('click');

 // Getting the result value
 expect(subject.state('result')).toBe(20);
 });
 });

How it works...
If you want to see the component in your browser, run the application using npm start,
and you will see something like this:

Testing and Debugging Chapter 12

[476]

Now let's test our calculator by using the npm test command:

13
Deploying to Production

In this chapter, the following recipes will be covered:

Deploying to production on Digital Ocean
Configuring Nginx, PM2, and a domain in our Droplet
Implementing Jenkins (continuous integration)

Introduction
If you are reading this chapter, it's probably because you have completed your React
Application (congratulations!). Now it's time to deploy it to production and show it to the
world. In this chapter, we will learn how to deploy our React Application using one of the
best cloud services: Digital Ocean.

At this point, you will need to invest some money in renting the servers
you will need. I will show you the cheapest way to do this, and then, if
you want to increase the power of your servers, you will be able to do it
without re-doing the configurations.

Deploying to production on Digital Ocean
Digital Ocean is my favorite cloud-computing platform for using virtual servers (droplets)
because it is effortless to create, configure, and delete droplets, and the price is low (you can
get a droplet for $5 per month—that means $0.007 per hour). Another reason why I think
Digital Ocean is fantastic is that they have all the documentation up to date and customer
service is quick to solve any problem you may have.

For this recipe, we are going to use Ubuntu 18.04, so you will need to know some basic
Linux commands to be able to configure your droplet. If you are entirely new to Linux,
don't worry, I'll try to explain each step in a straightforward way.

Deploying to Production Chapter 13

[478]

Getting ready
First, you need to create your Digital Ocean account, go to https://www.digitalocean.com.
You can sign up with your Google account; this is the recommended way. Once you click
on the register link with Google, you will see the Billing Info view:

https://www.digitalocean.com

Deploying to Production Chapter 13

[479]

You can register your Credit/Debit Card, or you can pay with PayPal. Once you've
configured your payment information, you are ready to create your first Droplet:

How to do it...
Let's create our first Droplet:

Choose your Linux distribution; as I mentioned before, we are going to use1.
Ubuntu 18.04:

Deploying to Production Chapter 13

[480]

One-click apps are preconfigured Droplets, but I prefer to set my Droplet from2.
scratch to have the control and be able to optimize my configuration. After this
recipe, if you want to take a look at these options if you need to configure
something quickly, that's fine:

Choose the size of your Droplet. I prefer to use the 2 GB RAM Memory Droplet,3.
which costs $10 per month. You might be wondering why I don't choose the
cheapest version of 1 GB RAM; this is because I've tried to use this version, but I
noticed that 1GB RAM is not enough to handle NPM when you install the
packages. Most of the time, this will hang up your Droplet—I know sounds
ridiculous, but NPM consumes a lot of RAM.

Deploying to Production Chapter 13

[481]

If you choose the $10 Droplet, you don't have to pay that money right away. One4.
of the best things about Digital Ocean is that they only charge you for the time
you used your Droplet. That means that if after your complete this recipe (let's
say you take 2 hours to complete it), you shut down (power off) your Droplet,
you will only be charged for the 2 hours, which is $0.030. If you keep your
Droplet on for the full month (30 days), you will be charged $10, so don't worry:

Deploying to Production Chapter 13

[482]

Choose the datacenter region; this will depend on your location. If you're in the5.
US, you will need to pick New York or San Francisco. You need to choose the
datacenter closest to your location:

Name your Droplet. If you need more than one Droplet, you can select the6.
amount here:

Deploying to Production Chapter 13

[483]

Once you click on the Create button, it will take 30-45 seconds to create your7.
Droplet. Once it's completed, you will see your Droplet:

At this point, you should get an email with your server credentials:8.

Deploying to Production Chapter 13

[484]

In your Terminal, you can access your Droplet with the ssh9.
root@YOUR_DROPLET_IP command. When you access it for the first time, you
will get a message to add this IP to your known hosts after you have to put in the
Droplet password:

If everything works fine, you will be asked to change your UNIX password. You10.
need to paste the current password and after you have to write the new
password you want and retype it after you will be connected to the Droplet:

Deploying to Production Chapter 13

[485]

Let's start configuring our Droplet. Install Node.js. For this, we will install the11.
latest version of Node using a PPA. Right now, the current release of Node is
10.x. If when you are reading this recipe, Node has a new version, change the
version in the command (setup_10.x):

 cd ~
 curl -sL https://deb.nodesource.com/setup_10.x -o nodesource_setup.sh

Once we get the nodesource_setup.sh file, run the following command:12.

 sudo bash nodesource_setup.sh

To install Node, run the following:13.

 sudo apt install nodejs -y

If you want to verify the version of Node and NPM you just installed, run:14.

 node -v
 v10.8.0
 npm -v
 6.2.0

How it works...
Using some of the recipes we performed in Chapter 11, Implementing Server-Side Rendering,
I created a new GitHub repository with that code to push it to production. You can see this
repository at https:/ ​/​github. ​com/ ​csantany/ ​production.

https://github.com/csantany/production
https://github.com/csantany/production
https://github.com/csantany/production
https://github.com/csantany/production
https://github.com/csantany/production
https://github.com/csantany/production
https://github.com/csantany/production
https://github.com/csantany/production
https://github.com/csantany/production
https://github.com/csantany/production
https://github.com/csantany/production

Deploying to Production Chapter 13

[486]

In our Droplet, we will clone this git repo (if you already have your application ready, use
your repository). The production repository is public, but if you use a private repository,
you need to add the SSH Key of your Droplet in your GitHub account. For this, you need to
run the ssh-keygen command in your Droplet, and then press Enter three times without
writing any passphrase:

If your terminal was inactive for more than five minutes, it's possible your
connection will be closed, and you will have to connect again.

After you create your SSH Key, you can see it by doing: vi /root/.ssh/id_rsa.pub.
You need to copy the SSH Key and go to your GitHub Account | Settings | SSH and GPG
Keys (https:/​/​github. ​com/ ​settings/ ​ssh/ ​new). And then paste your key in the textarea
and put some title to the key. When you click the Add SSH Key button, GitHub will ask for
your password to confirm:

https://github.com/settings/ssh/new
https://github.com/settings/ssh/new
https://github.com/settings/ssh/new
https://github.com/settings/ssh/new
https://github.com/settings/ssh/new
https://github.com/settings/ssh/new
https://github.com/settings/ssh/new
https://github.com/settings/ssh/new
https://github.com/settings/ssh/new
https://github.com/settings/ssh/new
https://github.com/settings/ssh/new
https://github.com/settings/ssh/new
https://github.com/settings/ssh/new

Deploying to Production Chapter 13

[487]

Now we can clone our repository using git
clone git@github.com:csantany/production.git, or your repository:

Deploying to Production Chapter 13

[488]

Then go to the production folder and install the NPM packages:

 cd production
 npm install

To test our application, let's run our npm run start-production script:

 npm run start-production

If you want to verify that it works, go to your browser and open the IP of your droplet, and
then add port 3000—in my case will be http://178.128.177.84:3000 if everything
works fine, you should see your application (in our case we are going to open our /todo
section):

There's more...
If you want to turn off your Droplet, you can go to the Power section, or you can use the
ON/OFF switch:

Deploying to Production Chapter 13

[489]

When you click it, you will get this modal:

Configuring Nginx, PM2, and a domain in
our Droplet
At this point, our first Droplet is ready to use, but we can see our React Application using
port 3000. In this recipe, we are going to learn how to configure Nginx in our server and
how to implement a proxy to redirect the traffic from port 80 to 3000. This means that we
won't need to specify our port directly anymore. PM2 (Node Production Process Manager)
will help us to run our Node server in production securely. Generally, if we run Node
directly with the node or babel-node command and there is an error in our app, this will
crash and will stop working; PM2 restarts the Node server if an error occurs.

Getting Ready
For this recipe, we need to install PM2 globally:

 npm install -g pm2

Also, we need to install Nginx:

 sudo apt-get update
 sudo apt-get install nginx

Deploying to Production Chapter 13

[490]

How to do it...
Let's begin with the configuration:

Adjust the firewall to allow the traffic just in port 80. To list the available1.
application configurations, we run the following command:

 sudo ufw app list
 Available applications:
 Nginx Full
 Nginx HTTP
 Nginx HTTPS
 OpenSSH

Nginx Full means that we will allow the traffic from ports 80 (HTTP) and 4432.
(HTTPS). At this point, we haven't configured any domain with SSL, so we
should restrict the traffic to pass just through port 80 (HTTP):

 sudo ufw allow 'Nginx HTTP'

If we try to access our IP, we should see our Nginx working:3.

If you want to administrate the process of Nginx, you can use these commands:4.
Start server: sudo systemctl start nginx
Stop server: sudo systemctl stop nginx
Restart server: sudo systemctl restart nginx
Reload server: sudo systemctl reload nginx
Disable server: sudo systemctl disable nginx

Deploying to Production Chapter 13

[491]

Set up Nginx as a Reverse Proxy Server, for this we need to open our Nginx5.
config file:

 sudo vi /etc/nginx/sites-available/default

In the location / block, we need to replace it with:6.

 location / {
 proxy_pass http://localhost:3000;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection 'upgrade';
 proxy_set_header Host $host;
 proxy_cache_bypass $http_upgrade;
 }

How it works...
Once you've saved and closed the file, we need to verify whether we have any syntax
errors. Use the following command:

 sudo nginx -t

If everything is OK, you should see:

Finally, we restart our Nginx server:

 sudo systemctl restart nginx

Deploying to Production Chapter 13

[492]

Now we can access our IP without the port, and the React application will work fine:

There's more...
If you want to use a domain with your Droplet, it's really easy; you need to change the
Nameservers of your domain to point to Digital Ocean ones. For example, I have a domain,
called educnow.com, which I'm going to use for my Droplet. I registered this domain with
Godaddy, so I have to go to the domain management and select it. You can go directly to
the https://dcc.godaddy.com/manage/YOURDOMAIN.COM/dns URL. Then go to
Nameservers:

Deploying to Production Chapter 13

[493]

We have to click on the Change button, select Custom, specify the Digital Ocean
Nameservers, and click on Save:

Once you've modified your Nameservers, you need to go to your Droplet dashboard and
choose the Add a domain option:

Deploying to Production Chapter 13

[494]

Then introduce the domain you want to link to your Droplet and click on Add Domain:

Now you need to create a new record for CNAME. Select the CNAME tab, in the hostname
write www, in the alias field write @, and by default the TTL is 43200—this is to be able to
access your domain using the www.yourdomain.com prefix:

If you did everything correctly, you should be able to access your domain and see your
React Application working; this process can take from 30 minutes to 24 hours depending on
the DNS propagation speed.

Deploying to Production Chapter 13

[495]

Implementing Jenkins (continuous
integration)
Jenkins is one of the most popular software for continuous integration, it's based on Java
and is open source.

Getting Ready
There are some prerequisites to run Jenkins:

You need a droplet (server) with Ubuntu 18.
You need to install Java 8.

If you don't have Java 8 installed, you can install it with this command:

sudo apt install openjdk-8-jre-headless

If you want to check which version of Java you have installed, you can use the java -
version command:

How to do it...
Now let's install and configure Jenkins:

Add the repository key to the system:1.

 wget -q -O - https://pkg.jenkins.io/debian/jenkins.io.key | sudo apt-key
add -

Append the Debian package address to sources.list:2.

 sudo sh -c 'echo deb http://pkg.jenkins.io/debian-stable binary/ >
/etc/apt/sources.list.d/jenkins.list'

Deploying to Production Chapter 13

[496]

Update the apt packages:3.

 sudo apt update

Install Jenkins:4.

 sudo apt install jenkins

If you get an error when you install Jenkins, you can uninstall it with:

sudo apt-get remove --purge jenkins

Start the Jenkins service:5.

 sudo systemctl start jenkins

If you want to see the Jenkins status, use this command:6.

 sudo systemctl status jenkins

Deploying to Production Chapter 13

[497]

Jenkins runs on port 8080 by default, and we need to open the Firewall to allow7.
the traffic to that port:

 sudo ufw allow 8080

If you want to verify the firewall status, do the following:8.

 sudo ufw status

If you see Status: inactive, you will need to run these commands to enable
the firewall:

sudo ufw allow OpenSSH
sudo ufw enable

Deploying to Production Chapter 13

[498]

It's time to run our Jenkins for the first time and configure it. For this, you need9.
to visit http://<the_ip_or_domain_of_your_droplet>:8080. In my case,
it's http://142.93.28.244:8080:

To see the first password, you need to run:10.

 sudo cat /var/lib/jenkins/secrets/initialAdminPassword

Deploying to Production Chapter 13

[499]

You will see the Welcome to Jenkins page. You have to select the "Install11.
suggested plugins" option:

Deploying to Production Chapter 13

[500]

You will see the installation process:12.

Deploying to Production Chapter 13

[501]

Once the installation is complete, you need to create your first admin user:13.

Deploying to Production Chapter 13

[502]

Confirm the Jenkins URL if you don't want to change it. Click Save and Finish:14.

Deploying to Production Chapter 13

[503]

Jenkins is ready:15.

Deploying to Production Chapter 13

[504]

The first view you will see in Jenkins is this one:16.

Go to Manage Jenkins > Manage Plugins to install the GitHub plugin:17.

Deploying to Production Chapter 13

[505]

Select the Available tab and then search for GitHub Integration. Now select the18.
checkbox option and click on the Download now and install after restart button:

Select the Restart Jenkins when installation is complete, and no jobs are19.
running option:

You will see this message:20.

Wait one minute and then refresh the page. You may need to log in again.21.
Go back to Manage Plugins; now you need to install the Post build task plugin.22.

Deploying to Production Chapter 13

[506]

We can create our first Job by clicking on create new jobs on the homepage:23.

Write the name of your job, select the Freestyle project option, and click on the24.
OK button:

In the General configuration, go to the Source Code Management section, select25.
the Git option, and then write your GitHub project HTTPS URL (if you select
your SSH URL, you will need to add new SSH keys for Jenkins in your GitHub):

Deploying to Production Chapter 13

[507]

If your repository is private, you need to click on the Add button to specify your26.
GitHub credentials (username and password):

Select your credentials and make sure the master branch is selected as your27.
main branch (it's recommended to use the master instead of others branches):

Deploying to Production Chapter 13

[508]

Select the Post build task option on the Post-build Actions:28.

Deploying to Production Chapter 13

[509]

In the textarea script, add npm install && npm run start-production.29.
Click on Apply and then on the Save button:

How it works...
We've configured our Jenkins job, now let's test it. I'm going to modify a simple file to be
sure the Jenkins works properly.

At this point (if you followed the first recipe), you must stop the PM2
server with the command "npm run stop" and then remove the
production directory that we cloned before, to avoid problems with the
Jenkins job.

Deploying to Production Chapter 13

[510]

Let's modify our Home component; I'll add an extra text (Jenkins):

 import React from 'react';
 import styles from './Home.scss';

 const Home = props => (
 <h1 className={styles.Home}>Hello {props.name || 'World'}
(Jenkins)</h1>
);

 export default Home;

File: src/client/home/index.jsx

After that, you need to commit and push to master. Now go to Jenkins, select your job, and
click on Build Now:

Deploying to Production Chapter 13

[511]

After that, click on the latest build (in my case it's #5 because I did some tests before, but for
you, it will be #1):

In the build, you will see who (user) started the build and which is the revision (last commit
of master) that is building. If you want to see the Console Output, you can click on that
option on the left menu:

Deploying to Production Chapter 13

[512]

If you look at the Console Output, you will see tons of commands:

Every time we run a new build, Jenkins will fetch the latest changes of the repository:

 git config remote.origin.url https://github.com/csantany/production.git

Then will get the last commit of the master:

 git rev-parse refs/remotes/origin/master^{commit}

And finally, it will execute the commands we specified on the Post build task:

 npm install && npm run start-production

Deploying to Production Chapter 13

[513]

If everything works fine, you should see Finished: SUCCESS at the end of the output:

Now wait 30 seconds or 1 minute and then visit your production site (in my
case http://142.93.28.244/) – you will see the new changes:

If you're wondering where the files are stored, you can see them at
/var/lib/jenkins/workspace/<your_jenkins_job_name>.

14
Working with React Native

In this chapter, the following recipes will be covered:

Creating our first React Native application
Creating a Todo List with React Native
Implementing React Navigation V2

Introduction
React Native is a framework for building mobile apps using JavaScript and React. Many
people think that with React Native you make some "mobile web app" or a "hybrid app"
(such as Ionic, PhoneGap or Sencha), but you build a native app because React Native
converts your React code to Java for Android or Objective-C for iOS apps. React Native
uses most of the React concepts, such as components, props, state and lifecycle methods.

Advantages of React Native:

You code once, and you get two native apps (Android and iOS)
You don't need to have experience with Java, Objective-C, or Swift
Faster development
MIT license (open source)

Requirements for Windows:

Android Studio
Android SDK (>= 7.0 Nougat)
Android AVD

Requirements for Mac:

XCode (>= 9)
Simulator

Working with React Native Chapter 14

[515]

Creating our first React Native Application
In this recipe, we are going to build a React Native application and understand the main
differences between React and React Native.

Getting Ready
To create our new React Native application, we need to install the react-native-
cli package:

 npm install -g react-native-cli

How to do it...
Now, to create our first app:

Let's do it with this command:1.

 react-native init MyFirstReactNativeApp

After we built our React Native app, we need to install Watchman, which is a2.
file-watching service required by React Native. To install it, go to https:/ ​/
facebook. ​github. ​io/ ​watchman/ ​docs/ ​install. ​html and download the latest
version for your OS (Windows, Mac, or Linux).
In this case, we are going to use Homebrew to install it for Mac. If you don't have3.
Homebrew, you can install it with this command:

 /usr/bin/ruby -e "$(curl -fsSL
 https://raw.githubusercontent.com/Homebrew/install/master/install)"

To install Watchman, you need to run:4.

 brew update
 brew install watchman

To start the React Native project, we need to use:5.

 react-native start

https://facebook.github.io/watchman/docs/install.html
https://facebook.github.io/watchman/docs/install.html
https://facebook.github.io/watchman/docs/install.html
https://facebook.github.io/watchman/docs/install.html
https://facebook.github.io/watchman/docs/install.html
https://facebook.github.io/watchman/docs/install.html
https://facebook.github.io/watchman/docs/install.html
https://facebook.github.io/watchman/docs/install.html
https://facebook.github.io/watchman/docs/install.html
https://facebook.github.io/watchman/docs/install.html
https://facebook.github.io/watchman/docs/install.html
https://facebook.github.io/watchman/docs/install.html
https://facebook.github.io/watchman/docs/install.html
https://facebook.github.io/watchman/docs/install.html
https://facebook.github.io/watchman/docs/install.html
https://facebook.github.io/watchman/docs/install.html

Working with React Native Chapter 14

[516]

If everything works fine, you should see this:6.

Sometimes you can get errors from Watchman, for example,
Watchman error: too many pending cache jobs. Make sure watchman is
running for this project.

If you get that error or another, you have to uninstall Watchman by doing:
brew unlink watchman

And then reinstall it using:

brew update && brew upgrade

brew install watchman

Open a new terminal (Cmd + T) and run this command (depending on the device7.
you want to use):

 react-native run-ios
 or
 react-native run-android

Working with React Native Chapter 14

[517]

If there are no errors, you should see the simulator running the default8.
application:

Now that we have our application running, let's open our code and modify it a bit:

Change the App.js file:1.

 ...
 export default class App extends Component<Props> {
 render() {
 return (
 <View style={styles.container}>
 <Text style={styles.welcome}>
 This is my first React Native App!
 </Text>

Working with React Native Chapter 14

[518]

 <Text style={styles.instructions}>
 To get started, edit App.js
 </Text>
 <Text style={styles.instructions}>{instructions}</Text>
 </View>
);
 }
 }
 ...

File: App.js

If you go to the simulator again, you will need to press Cmd + R to reload the app2.
to see the new changes reflected:

Working with React Native Chapter 14

[519]

You're probably wondering if there is a way to do automatic reload instead of3.
doing this process manually, and of course, there is a way to enable the Live
Reload option; you need to press Cmd + D to open the development menu and
then select the Enable Live Reload option:

Working with React Native Chapter 14

[520]

Another exciting option is Debug JS Remotely. If you click on that one, it will4.
automatically open a Chrome tab where we can see the logs we added to our
application using console.log. For example, if I add console.log('====
Debugging my First React Native App! ===='); in my render method, I
should see it like this:

Working with React Native Chapter 14

[521]

Let's go back to the code. Maybe you are a little bit confused about the code you5.
saw in App.js because you didn't see a <div> tag or even worse the way the
styles are being created like an object instead of using a CSS file as we do in
React. I've got some good news and some bad news; the bad news is that React
Native does not support CSS and JSX/HTML code as React does. The good news
is that once you understand that the <View> component is the equivalent of
using a <div>, <Text> is the equivalent of using <p>, and the styles are like CSS
modules (object), everything else works the same as React (props, state, lifecycle
methods).
Create a new component (Home). For this purpose, we have to create a directory6.
called components, and then we save this file as Home.js:

 // Dependencies
 import React, { Component } from 'react';
 import { StyleSheet, Text, View } from 'react-native';

 class Home extends Component {
 render() {
 return (
 <View style={styles.container}>
 <Text style={styles.home}>Home Component</Text>
 </View>
);
 }
 }

 const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#F5FCFF',
 },
 home: {
 fontSize: 20,
 textAlign: 'center',
 margin: 10,
 }
 });

 export default Home;

File: components/Home.js

Working with React Native Chapter 14

[522]

In App.js, we import the Home component, and we render it:7.

 // Dependencies
 import React, { Component } from 'react';
 import { StyleSheet, Text, View } from 'react-native';

 // Components
 import Home from './components/Home';

 class App extends Component {
 render() {
 return (
 <Home />
);
 }
 }

 export default App;

File: App.js

How it works...
As you can see, creating a new React Native application is very easy but there are some key
differences between React (using JSX) and React Native using a special markup with object
styles even there are some limitations on the styles as well, for example, let's create a flex
layout:

 // Dependencies
 import React, { Component } from 'react';
 import { StyleSheet, Text, View } from 'react-native';

 class Home extends Component {
 render() {
 return (
 <View style={styles.container}>
 <View style={styles.header}>
 <Text style={styles.headerText}>Header</Text>
 </View>

 <View style={styles.columns}>
 <View style={styles.column1}>
 <Text style={styles.column1Text}>Column 1</Text>
 </View>

 <View style={styles.column2}>

Working with React Native Chapter 14

[523]

 <Text style={styles.column2Text}>Column 2</Text>
 </View>

 <View style={styles.column3}>
 <Text style={styles.column3Text}>Column 3</Text>
 </View>
 </View>
 </View>
);
 }
 }

 const styles = StyleSheet.create({
 container: {
 flex: 1,
 height: 100
 },
 header: {
 flex: 1,
 backgroundColor: 'green',
 justifyContent: 'center',
 alignItems: 'center'
 },
 headerText: {
 color: 'white'
 },
 columns: {
 flex: 1
 },
 column1: {
 flex: 1,
 alignItems: 'center',
 justifyContent: 'center',
 backgroundColor: 'red'
 },
 column1Text: {
 color: 'white'
 },
 column2: {
 flex: 1,
 alignItems: 'center',
 justifyContent: 'center',
 backgroundColor: 'blue'
 },
 column2Text: {
 color: 'white'
 },
 column3: {

Working with React Native Chapter 14

[524]

 flex: 1,
 alignItems: 'center',
 justifyContent: 'center',
 backgroundColor: 'orange'
 },
 column3Text: {
 color: 'white'
 },
 });

 export default Home;

File: components/Home.js

You probably don't like looking at a huge file (me neither), so let's separate our component
and our styles:

 import { StyleSheet } from 'react-native';

 export default StyleSheet.create({
 container: {
 flex: 1,
 height: 100
 },
 header: {
 flex: 1,
 backgroundColor: 'green',
 justifyContent: 'center',
 alignItems: 'center'
 },
 headerText: {
 color: 'white'
 },
 columns: {
 flex: 1
 },
 column1: {
 flex: 1,
 alignItems: 'center',
 justifyContent: 'center',
 backgroundColor: 'red'
 },
 column1Text: {
 color: 'white'
 },
 column2: {
 flex: 1,
 alignItems: 'center',

Working with React Native Chapter 14

[525]

 justifyContent: 'center',
 backgroundColor: 'blue'
 },
 column2Text: {
 color: 'white'
 },
 column3: {
 flex: 1,
 alignItems: 'center',
 justifyContent: 'center',
 backgroundColor: 'orange'
 },
 column3Text: {
 color: 'white'
 },
 });

File: components/HomeStyles.js

Then in our Home component, we can import the styles and use them in the same way as
before:

 // Dependencies
 import React, { Component } from 'react';
 import { StyleSheet, Text, View } from 'react-native';

 // Styles
 import styles from './HomeStyles';
 ...

File: components/Home.js

Working with React Native Chapter 14

[526]

Here is the result of the code:

But there is something unusual.

Working with React Native Chapter 14

[527]

As you can see, I created styles for the <Text> components (headerText, column1Text, and
so on), and this is because some styles are not allowed in the View component. For
example, if you try to add the color: 'white' property to the <View> component, you
will see that the property won't work and Header will have the black text:

Working with React Native Chapter 14

[528]

Creating a Todo List with React Native
In this recipe, we are going to learn how to handle events in React Native and how to
handle the state by creating a simple Todo list.

How to do it...
For this recipe, I created a new React Application called "MySecondReactNativeApp":

Create an src folder and move the App.js file inside. Also, modify this file to1.
include our Todo list:

 import React, { Component } from 'react';

 import Todo from './components/Todo';

 export default class App extends Component {
 render() {
 return (
 <Todo />
);
 }
 }

File: src/App.js

Our Todo component will be:2.

 import React, { Component } from 'react';
 import {
 Text,
 View,
 TextInput,
 TouchableOpacity,
 ScrollView
 } from 'react-native';

 import styles from './TodoStyles';

 class Todo extends Component {
 state = {
 task: '',
 list: []
 };

Working with React Native Chapter 14

[529]

 onPressAddTask = () => {
 if (this.state.task) {
 const newTask = this.state.task;
 const lastTask = this.state.list[0] || { id: 0 };
 const newId = Number(lastTask.id + 1);

 this.setState({
 list: [{ id: newId, task: newTask }, ...this.state.list],
 task: ''
 });
 }
 }

 onPressDeleteTask = id => {
 this.setState({
 list: this.state.list.filter(task => task.id !== id)
 });
 }

 render() {
 const { list } = this.state;
 let zebraIndex = 1;

 return (
 <View style={styles.container}>
 <ScrollView
 contentContainerStyle={{
 flexGrow: 1,
 }}
 >
 <View style={styles.list}>
 <View style={styles.header}>
 <Text style={styles.headerText}>Todo List</Text>
 </View>

 <View style={styles.add}>
 <TextInput
 style={styles.inputText}
 placeholder="Add a new task"
 onChangeText={(value) => this.setState({ task:
 value })}
 value={this.state.task}
 />

 <TouchableOpacity
 style={styles.button}
 onPress={this.onPressAddTask}
 >

Working with React Native Chapter 14

[530]

 <Text style={styles.submitText}>+ Add Task</Text>
 </TouchableOpacity>
 </View>

 {list.length === 0 && (
 <View style={styles.noTasks}>
 <Text style={styles.noTasksText}>
 There are no tasks yet, create a new one!
 </Text>
 </View>
)}

 {list.map((item, i) => {
 zebraIndex = zebraIndex === 2 ? 1 : 2;

 return (
 <View key={`task${i}`} style=
 {styles[`task${zebraIndex}`]}>
 <Text>{item.task}</Text>
 <TouchableOpacity onPress={() => {
 this.onPressDeleteTask(item.id) }}>
 <Text style={styles.delete}>
 X
 </Text>
 </TouchableOpacity>
 </View>
);
 })}
 </View>
 </ScrollView>
 </View>
);
 }
 }

 export default Todo;

File: src/components/Todo.js

Here are the styles:3.

 import { StyleSheet } from 'react-native';

 export default StyleSheet.create({
 container: {
 flex: 1,
 backgroundColor: '#F5FCFF',
 height: 50

Working with React Native Chapter 14

[531]

 },
 list: {
 flex: 1
 },
 header: {
 backgroundColor: '#333',
 alignItems: 'center',
 justifyContent: 'center',
 height: 60
 },
 headerText: {
 color: 'white'
 },
 inputText: {
 color: '#666',
 height: 40,
 borderColor: 'gray',
 borderWidth: 1
 },
 button: {
 paddingTop: 10,
 paddingBottom: 10,
 backgroundColor: '#1480D6'
 },
 submitText: {
 color:'#fff',
 textAlign:'center',
 paddingLeft : 10,
 paddingRight : 10
 },
 task1: {
 flexDirection: 'row',
 height: 50,
 backgroundColor: '#ccc',
 alignItems: 'center',
 justifyContent: 'space-between',
 paddingLeft: 5
 },
 task2: {
 flexDirection: 'row',
 height: 50,
 backgroundColor: '#eee',
 alignItems: 'center',
 justifyContent: 'space-between',
 paddingLeft: 5
 },
 delete: {
 margin: 10,

Working with React Native Chapter 14

[532]

 fontSize: 15
 },
 noTasks: {
 flex: 1,
 alignItems: 'center',
 justifyContent: 'center'
 },
 noTasksText: {
 color: '#888'
 }
 });

File: src/components/TodoStyles.js

How it works...
The first thing we did in our component was set our state. The task state is for the input to
create new items, and the list state is to save all the tasks items:

 state = {
 task: '',
 list: []
 };

The TextInput component creates an input element, the main difference from the input in
React is that instead of using the onChange method, it is using onChangeText and by
default gets the value, and we can update our state directly:

 <TextInput
 style={styles.inputText}
 placeholder="Add a new task"
 onChangeText={(value) => this.setState({ task: value })}
 value={this.state.task}
 />

Working with React Native Chapter 14

[533]

The TouchableOpacity component is to handle click events (onPress in React Native)
and can be used as a button. Maybe you're wondering why I didn't use the component
Button directly; this is because on iOS it's not possible to add a background color to the
button, it only works with backgrounds on Android. Using TouchableOpacity
(or TouchableHighlight), you can personalize the styles, and it works perfectly as a
button:

 <TouchableOpacity
 style={styles.button}
 onPress={this.onPressAddTask}
 >
 <Text style={styles.submitText}>+ Add Task</Text>
 </TouchableOpacity>

In the render of the tasks, I implemented a Zebra style (mixed colors) for the tasks. Also, we
are handling onPressDeleteTask to remove each item by clicking the X button:

 {list.map((item, i) => {
 zebraIndex = zebraIndex === 2 ? 1 : 2;

 return (
 <View key={`task${i}`} style={styles[`task${zebraIndex}`]}>
 <Text>{item.task}</Text>
 <TouchableOpacity onPress={() => {
 this.onPressDeleteTask(item.id) }}>
 <Text style={styles.delete}>
 X
 </Text>
 </TouchableOpacity>
 </View>
);
 })}

Working with React Native Chapter 14

[534]

If we run the application, the first thing we are going to see is this view:

If we don't have any tasks, we will see the "There are no tasks yet, create a new one!"
message.

Working with React Native Chapter 14

[535]

As you can see, there is an input on the top that has the "Add a new task" placeholder. Let's
add some tasks:

Working with React Native Chapter 14

[536]

Finally, we can delete the tasks by clicking on the X; I'll remove the Pay the rent task:

As you can see with this basic Todo list, we learned how to use the local state and how to
handle click and change events in React Native.

Working with React Native Chapter 14

[537]

There's more...
If you want to prevent the user from deleting a task by accident, you can add an Alert that
will ask the user whether they are sure they want to remove the selected task. For this, we
need to import the Alert component from react-native and modify our onPressDeleteTask
method:

 import {
 Text,
 View,
 TextInput,
 TouchableOpacity,
 ScrollView,
 Alert
 } from 'react-native';
 ...

 onPressDeleteTask = id => {
 Alert.alert('Delete', 'Do you really want to delete this task?', [
 {
 text: 'Yes, delete it.',
 onPress: () => {
 this.setState({
 list: this.state.list.filter(task => task.id !== id)
 });
 }
 }, {
 text: 'No, keep it.'
 }
]);
 }

 ...

Working with React Native Chapter 14

[538]

If you run the application and you try to delete a task now, you will see this native alert:

Implementing React Navigation V2
In this recipe, we are going to learn how to implement React Navigation V2 in our React
Native application. We will create a simple navigation between sections.

Working with React Native Chapter 14

[539]

Getting Ready
We need to install the react-navigation dependency:

 npm install react-navigation

How to do it...
Let's implement React Navigation v2:

Include createDrawerNavigation and DrawerItems from react-navigation1.
and the components we want to render as sections (Home and Configuration):

 // Dependencies
 import React, { Component } from 'react';
 import { StyleSheet, View, ScrollView, Image } from 'react-
 native';

 // React Navigation
 import { createDrawerNavigator, DrawerItems } from 'react-
 navigation';

 // Components
 import Home from './sections/Home';
 import Configuration from './sections/Configuration';

File: App.js

In CustomDrawerComponent, we will render the Codejobs logo and the menu2.
(you can modify this as you need it):

 // Custom Drawer Component
 // Here we are displaying the menu options
 // and customizing our drawer
 const CustomDrawerComponent = props => (
 <View style={styles.area}>
 <View style={styles.drawer}>
 <Image
 source={require('./assets/codejobs.jpeg')}
 style={styles.logo}>
 </Image>
 </View>

 <ScrollView>
 <DrawerItems {...props} />
 </ScrollView>

Working with React Native Chapter 14

[540]

 </View>
);

File: App.js

Create AppDrawerNavigator, specifying the components we want to display in3.
the menu as sections (Home and Configuration). Also, we need to
pass contentComponent with the CustomDrawerComponent we created before:

 // The left Drawer navigation
 // The first object are the components that we want to display
 // in the Drawer Navigation.
 const AppDrawerNavigator = createDrawerNavigator({
 Home,
 Configuration
 },
 {
 contentComponent: CustomDrawerComponent
 });

File: App.js

Create the App class and render the AppDrawerNavigator component:4.

 class App extends Component {
 render() {
 return (
 <AppDrawerNavigator />
);
 }
 }

 // Styles for left Drawer
 const styles = StyleSheet.create({
 area: {
 flex: 1
 },
 drawer: {
 height: 150,
 backgroundColor: 'white',
 alignItems: 'center',
 justifyContent:'center'
 },
 logo: {
 height: 120,
 width: 120,
 borderRadius: 60

Working with React Native Chapter 14

[541]

 }
 });

 export default App;

File: App.js

Create the section components; the first one is the Home component:5.

 // Dependencies
 import React, { Component } from 'react';
 import { View, Text, Image, TouchableOpacity } from 'react-native';
 // Styles
 import styles from './SectionStyles';
 class Home extends Component {
 // Here we specify the icon we want to render
 // in the menu for this option
 static navigationOptions = {
 drawerIcon: () => (
 <Image
 style={styles.iconsItem}
 source={require('../assets/home.png')}
 />
)
 }
 render() {
 return(
 <View style={styles.container}>
 {/* Hamburger menu */}
 <TouchableOpacity
 onPress={() => this.props.navigation.openDrawer()}
 style={styles.iconMenu}
 >
 <Image
 style={styles.menu}
 source={require('../assets/menu.png')}
 />
 </TouchableOpacity>

 {/* Here is the content of the component */}
 <Text style={styles.titleText}>I'm the home section</Text>
 </View>
);
 }
 }
 export default Home;

File: sections/Home.js

Working with React Native Chapter 14

[542]

Here is the Configuration section component:6.

 // Dependencies
 import React, { Component } from 'react';
 import { View, Text, Image, TouchableOpacity } from 'react-native';

 // Styles
 import styles from './SectionStyles';

 class Configuration extends Component {
 // Here we specify the icon we want to render
 // in the menu for this option
 static navigationOptions = {
 drawerIcon: () => (
 <Image
 style={styles.iconsItem}
 source={require('../assets/config.png')}
 />
)
 };

 render() {
 return(
 <View style={styles.container}>
 {/* Hamburger menu */}
 <TouchableOpacity
 onPress={() => this.props.navigation.openDrawer()}
 style={styles.iconMenu}
 >
 <Image
 style={styles.menu}
 source={require('../assets/menu.png')}
 />
 </TouchableOpacity>

 {/* Here is the content of the component */}
 <Text style={styles.titleText}>I'm the configuration
 section</Text>
 </View>
);
 }
 }

 export default Configuration;

File: sections/Configuration.js

Working with React Native Chapter 14

[543]

You may have noticed we are using the same styles on both components, that's7.
why I created a separate file for the styles:

 import { StyleSheet } from 'react-native';

 export default StyleSheet.create({
 container: {
 flex: 1,
 backgroundColor: '#fff',
 alignItems: 'center',
 justifyContent: 'center',
 },
 iconMenu: {
 position: 'absolute',
 left: 0,
 top: 5
 },
 titleText: {
 fontSize: 26,
 fontWeight: 'bold',
 },
 menu: {
 width: 80,
 height: 80,
 },
 iconsItem: {
 width: 25,
 height: 25
 }
 });

File: sections/sectionStyles.js

You can find the assets we are using in the repository8.
(Chapter14/Recipe3/ReactNavigation/assets).

Working with React Native Chapter 14

[544]

How it works...
If you did everything correctly, you should see this:

Working with React Native Chapter 14

[545]

The first component that is being rendered is the Home component. If you click on the
Hamburger menu, you will see the drawer with the two sections (Home and
Configuration) with their respective icons and the Codejobs logo at the top:

Working with React Native Chapter 14

[546]

Finally, if you click on Configuration, you will see that component as well:

Working with React Native Chapter 14

[547]

If you see the drawer again, you will notice that the current section that is open is also
active in the menu (in this case, Configuration).

Most Common React Interview
Questions

I would like to end this book by giving you some of the most common questions of React
and JavaScript in job interviews:

React questions:
What is React? How is it different from other JS
libraries/frameworks?
What happens during the lifecycle of a React component?
What can you tell me about JSX?
What's the difference between Real DOM and Virtual DOM?
What are the limitations of React?
Explain the purpose of render() in React
What is a state in React and how is it used?
What's the difference between states and props?
What's an arrow function in React? How is it used?
What's the difference between a Class component and a Functional
Component?
What's the difference between a stateless component and a pure
component?
Explain the lifecycle methods of React components in detail.
What are Higher Order Components (HOC)?
What is Redux?
How is Flux different from Redux?
What are refs used for in React?
What is the difference between action and reducer in Redux?
How can you improve the performance of a React Application?

Most Common React Interview Questions

[549]

JavaScript questions:
What is the difference between a callback and a promise?
What is hoisting?
What is the difference between apply and call?
What is a closure and how/why would you use it?
How does event delegation work?
What's the difference between bubbling and capturing?
What does bind() do?
What's the difference between a variable that is null, undefined, or
undeclared?
What's the difference between == and ===?
What is "lexical" scoping?
What is functional programming?
What is the difference between classical inheritance and prototypal
inheritance?

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Full-Stack React Projects
Shama Hoque

ISBN: 9781788835534

Set up your development environment and develop a MERN application
Implement user authentication and authorization using JSON Web Tokens
Build a social media application by extending the basic MERN application
Create an online marketplace application with shopping cart and Stripe
payments
Develop a media streaming application using MongoDB GridFS
Implement server-side rendering with data to improve SEO
Set up and use React 360 to develop user interfaces with VR capabilities
Learn industry best practices to make MERN stack applications reliable and
scalable

https://www.packtpub.com/web-development/full-stack-react-projects

Other Books You May Enjoy

[551]

React Native Blueprints
Emilio Rodriguez Martinez

ISBN: 9781787288096

Structure React Native projects to ease maintenance and extensibility
Optimize a project to speed up development
Make a React Native project production-ready
Use external modules to speed up the development and maintenance of your
projects
Explore the different UI and code patterns to be used for iOS and Android
Get to know the best practices when building apps in React Native

https://www.packtpub.com/web-development/react-native-blueprints

Other Books You May Enjoy

[552]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
access tokens
 adding, to secure API 315, 318, 322, 324, 325
action creators
 creating 189, 191, 198, 200
actions
 dispatching 189, 191, 198, 200
Airbnb React
 implementing 146, 149, 152, 154, 156
animation
 creating, with React Pose 255, 258, 261, 263
API
 creating, with Express 266, 267, 269, 272, 275,

277

Apollo
 used, for creating Twitter timeline 337, 338

B
binding methods
 arrow functions, used 120, 125
 constructor functions, used 120, 125

C
component
 local state, used 39, 43
 props, passing with PropTypes 34, 35, 37, 38
 styling, with CSS classes 27, 29, 31, 33
 styling, with inline styles 27, 29, 31, 33
 testing, with Enzyme 452, 457, 458, 460
 testing, with Jest 452, 457, 458, 460
 validating, with PropTypes 34, 35, 37, 38
controlled form
 creating, with local state 229, 231, 235, 237
Cygwin
 URL 17

D
database
 building, with MongoDB 277, 280, 283, 287
 building, with MySQL 297, 298, 304, 308
Digital Ocean
 production, deploying on 477, 479, 482, 486,

488, 489
domain
 configuring, in Droplet 489, 491, 493, 494

E
events
 simulating 471, 475

F
Firebase
 implementing, with Redux 201, 202, 204, 206,

208, 210, 211, 215, 221, 222, 224, 225, 227,
228

form elements
 creating, with events 126, 129, 131, 134, 135,

138, 140
form
 building, Redux Form used 237, 240, 242
 validation, implementing 243, 245
functional component
 creating 44, 46, 48

G
GraphQL
 backend server, creating 338, 340, 344, 346,

349, 356, 361, 364
 server, creating 327, 329, 331, 333, 336
 used, for creating Twitter timeline 337, 338

[554]

H
Hot Module Replacement (HMR) 403

J
Jenkins
 implementing 495, 498, 500, 502, 505, 506,

508, 510, 512, 513
JS features
 working, in React 7, 9, 10, 12
JSON Web Tokens (JWT) 315
JSX Style Guide
 implementing 146, 149, 152, 154, 156

L
LessCSS
 adding, with React 380, 382, 384, 386
local state
 used, in component 39, 43
Long Term Support (LTS) 266

M
meta tags
 updating, with React Helmet 156, 159
modal
 information, displaying with react-popup 142,

144, 146
MongoDB
 community edition, installing 277, 278
 community edition, installing with Homebrew 278
 DELETE method endpoints 293, 294
 executing 279
 GET method endpoints 288, 290
 POST method endpoints 291, 292, 293
 PUT method endpoints 295, 296
 used, for building database 277, 280, 283, 287
MySQL
 DELETE method endpoints 312
 GET method endpoints 310, 312
 POST method endpoints 308
 PUT method endpoints 314, 315
 used, for building database 297, 298, 304, 308

N
Next.js
 implementing 441, 443, 445, 446, 449
Nginx
 configuring, in Droplet 489, 491, 493, 494
Node.js
 implementing, with React 396, 401, 403
 implementing, with Redux 396, 401, 403
 implementing, with Webpack 4 396, 401, 403

O
Object Document Mapper (ODM) 281

P
parameters
 adding, to routes 169, 172, 174, 175, 178
PM2
 configuring, in Droplet 489, 491, 493, 494

R
React animations library
 using 253, 255
React application
 debugging, React Dev Tool used 467, 470
 debugging, Redux Dev Tool used 467, 470
 organizing 24, 27
React component
 creating 20, 22, 23
React Dev Tool
 used, for debugging React application 467
React Developer Tools
 URL 468
React lifecycle methods
 about 49
 animation 94
 C3.js chart 89, 92
 Crypto coins exchanger 76, 80
 notes 81, 85, 89
 Pomodoro timer 63, 67, 72
 Todo list 49, 51, 56, 60
 working 97
React Native Application
 creating 515, 516, 517, 520, 522, 526, 527
React Native

 used, for creating Todo List 528, 532, 534, 536
React Navigation V2
 implementing 538, 540, 543, 545, 547
React Pure Component 97, 100, 101, 103, 105
React Router v4
 implementing 160, 161, 163, 166, 168
React
 about 14, 15
 adding, to Webpack 4 372, 373, 374, 376, 378,

379

 used, for adding LessCSS 380, 382, 386
 used, for adding Sass 380, 382, 384, 386
 used, for adding Stylus 380, 382, 384, 386
 used, for adding Webpack Dev Server 380, 382,

384, 386
 used, for implementing Node.js 396, 401, 404,

409

 used, on Windows 17, 18
Reducers
 testing 460, 462, 466
Redux Actions
 testing 460, 462, 466
Redux Container
 testing 460, 462, 466
Redux Dev Tool
 URL 468
 used, for debugging React application 467
Redux Form
 about 237
 used, for building form 237, 240, 242
Redux Store
 creating 183, 185, 188, 189
Redux
 used, for implementing Node.js 396, 401, 404,

409

S

Sass
 adding, with React 380, 382, 384, 386
server-side rendering
 implementing 413, 416, 419, 421, 424, 426,

428, 429, 433, 435, 437, 439, 440
stateless component
 creating 44, 46, 48
Stylus
 adding, with React 380, 382, 384, 386

T
title
 updating, with React Helmet 156, 159
Todo list
 animating, with ReactCSSTransitionGroup 246,

250, 251
 creating, with React Native 528, 532, 534, 536,

538

Twitter timeline
 creating, with Apollo 337, 338
 creating, with GraphQL 337, 338

W
Webpack 4
 optimizing 389, 392, 394
 React, adding 372, 373, 374, 376, 378, 379
 used, for implementing Node.js 396, 401, 404,

409

 zero configuration 365, 366, 367, 368, 370,
371

Webpack Dev Server
 adding, with React 380, 382, 384, 386

X
XSS vulnerabilities
 preventing, in React 106, 108, 111, 115, 118

	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Dedication
	Table of Contents
	Preface
	Chapter 1: Working with React
	Introduction
	Working with the latest JS features in React
	How to do it...

	What's new in React?
	How to do it...

	Using React on Windows
	How to do it...

	Chapter 2: Conquering Components and JSX
	Introduction
	Creating our first React component
	Getting ready
	How to do it...
	How it works...
	There's more...

	Organizing our React application
	How to do it...
	How it works...

	Styling a component with CSS classes and inline styles
	How to do it...
	How it works...
	There's more...

	Passing props to a component and validating them with PropTypes
	How to do it...
	How it works...
	There's more...

	Using local state in a component
	How to do it...
	How it works...
	There's more...

	Making a functional or stateless component
	How to do it...
	How it works...
	There's more...

	Understanding React lifecycle methods
	How to do it...
	Todo list – implementing ComponentWillMount
	Pomodoro timer – implementing the constructor and componentDidMount
	Crypto coins exchanger – implementing shouldComponentUpdate
	Notes – implementing componentWillReceiveProps and componentWillUnmount
	C3.js chart – implementing componentDidUpdate
	Basic animation – implementing componentWillUpdate

	How it works...

	Understanding React Pure Components
	Getting ready
	How to do it…
	How it works…

	Preventing XSS vulnerabilities in React
	How to do it...
	How it works...
	There's more...

	Chapter 3: Handling Events, Binding and Useful React Packages
	Introduction
	Binding methods using the constructor versus using arrow functions
	How to do it...
	How it works...

	Creating form elements with events
	How to do it...
	How it works...
	There's more...

	Displaying information in a modal with react-popup
	Getting ready
	How to do it...
	How it works...
	There's more...

	Implementing Airbnb React/JSX Style Guide
	Getting ready
	How to do it...
	How it works...
	There's more...

	Updating our title and meta tags with React Helmet
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 4: Adding Routes to Our Application with React Router
	Introduction
	Implementing React Router v4
	Getting ready
	How to do it...
	How it works...
	There's more...

	Adding parameters to our routes
	How to do it...
	How it works...

	Chapter 5: Mastering Redux
	Introduction
	Creating a Redux Store
	Getting ready
	How to do it...
	How it works...

	Making action creators and dispatching actions
	Getting ready
	How to do it...
	How it works...

	Implementing Firebase with Redux
	Getting ready
	How to do it...
	How it works...

	Chapter 6: Creating Forms with Redux Form
	Introduction
	Creating a controlled form with the local state
	Getting ready
	How to do it...
	How it works...

	Building a form using Redux Form
	Getting ready
	How to do it...
	How it works...

	Implementing validation in a form
	How to do it...
	How it works...

	Chapter 7: Animations with React
	Introduction
	Animating a todo list with ReactCSSTransitionGroup
	Getting Ready
	How to do it...
	How it works...

	Using react-animations library
	Getting ready
	How to do it...
	There's more...

	Creating our first animation with React Pose
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 8: Creating an API with Node.js Using MongoDB and MySQL
	Introduction
	Creating a basic API with Express
	Getting ready
	How to do it...
	How it works...

	Building a database with MongoDB
	Getting ready
	Installing MongoDB Community Edition manually (the hard way)
	Installing MongoDB Community Edition with Homebrew (the easy way)
	Running MongoDB

	How to do it...
	How it works...
	GET method endpoints
	POST method endpoints
	DELETE method endpoints
	PUT method endpoints

	Building a database with MySQL
	Getting ready
	How to do it...
	How it works...
	POST method endpoints
	GET method endpoints
	DELETE method endpoints
	PUT method endpoints

	Adding access tokens to secure our API
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 9: Apollo and GraphQL
	Introduction
	Creating our first GraphQL server
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating a Twitter timeline with Apollo and GraphQL
	Getting ready
	Creating our GraphQL backend server

	How to do it...
	How it works...

	Chapter 10: Mastering Webpack 4.x
	Introduction
	Webpack 4 Zero Configuration
	Getting Ready
	How to do it...
	How it works...
	There's more...

	Adding React to Webpack 4
	Getting Ready
	How to do it...
	How it works...
	There's more...

	Adding Webpack Dev Server and Sass, Stylus, or LessCSS with React
	Getting Ready
	How to do it...
	How it works...
	There's more...

	Webpack 4 Optimization – Splitting Bundles
	Getting Ready
	How to do it...
	How it works...

	Implementing Node.js with React/Redux and Webpack 4
	Getting Ready
	How to do it...
	How it works...
	There's more...

	Chapter 11: Implementing Server-Side Rendering
	Introduction
	Implementing Server-Side Rendering
	Getting ready
	How to do it...
	How it works...
	There's more...

	Implementing promises with Server-Side Rendering
	Getting ready
	How to do it...
	How it works...

	Implementing Next.js
	Getting ready
	How to do it...
	How it works...

	Chapter 12: Testing and Debugging
	Introduction
	Testing our first component with Jest and Enzyme
	Getting ready
	How to do it...
	How it works...
	There's more...

	Testing a Redux Container, Actions, and Reducers
	Getting Ready
	How to do it...

	Debugging a React application using React and Redux Dev Tools
	Getting Ready
	How to do it...

	Simulating Events
	How to do it...
	How it works...

	Chapter 13: Deploying to Production
	Introduction
	Deploying to production on Digital Ocean
	Getting ready
	How to do it...
	How it works...
	There's more...

	Configuring Nginx, PM2, and a domain in our Droplet
	Getting Ready
	How to do it...
	How it works...
	There's more...

	Implementing Jenkins (continuous integration)
	Getting Ready
	How to do it...
	How it works...

	Chapter 14: Working with React Native
	Introduction
	Creating our first React Native Application
	Getting Ready
	How to do it...
	How it works...

	Creating a Todo List with React Native
	How to do it...
	How it works...
	There's more...

	Implementing React Navigation V2
	Getting Ready
	How to do it...
	How it works...

	Appendix: Most Common React Interview Questions
	Other Books You May Enjoy
	Index

