
React Native for
Mobile Development

Harness the Power of React Native
to Create Stunning iOS and
Android Applications
—
Second Edition
—
Akshat Paul
Abhishek Nalwaya

www.allitebooks.com

http://www.allitebooks.org

React Native for Mobile
Development

Harness the Power of React Native to
Create Stunning iOS and Android

Applications

Second Edition

Akshat Paul
Abhishek Nalwaya

www.allitebooks.com

http://www.allitebooks.org

React Native for Mobile Development

ISBN-13 (pbk): 978-1-4842-4453-1		 ISBN-13 (electronic): 978-1-4842-4454-8

https://doi.org/10.1007/978-1-4842-4454-8

Copyright © 2019 by Akshat Paul and Abhishek Nalwaya

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484244531. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Akshat Paul
Gurgaon, Haryana, India

Abhishek Nalwaya
Jaipur, Rajasthan, India

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4454-8
http://www.allitebooks.org

iii

Table of Contents

Chapter 1: Learning the Basics: A Whistle-Stop Tour of React���������������������������������� 1

Why React?�� 2

Virtual DOM�� 3

One-Way Data Flow�� 5

Installation and Setup�� 8

Create a Hello World Application�� 9

Introduction to Components��� 10

Deep-Dive into Components�� 13

Properties��� 13

State��� 16

Summary��� 20

Chapter 2: The Simplest Program: Hello World with React Native�������������������������� 21

What Is React Native?�� 22

Installation��� 22

Installing Node and npm��� 23

Installing the React Native Package��� 23

Updating React Native�� 23

Your First App��� 24

Creating a Basic Skeleton�� 25

About the Authors��� ix

About the Technical Reviewer�� xi

Acknowledgments�� xiii

Introduction��xv

www.allitebooks.com

http://www.allitebooks.org

iv

Prerequisites for Running App on a Simulator��� 33

Running the App on a Simulator��� 34

It’s Not a UIWebView�� 34

Enabling Live Reload�� 36

What Makes React Native Different?��� 36

Ejecting a React Native Application��� 37

Debugging�� 42

Reload�� 43

Debugging in Chrome��� 43

Debugging in Safari�� 44

Showing Performance Monitor��� 45

The Inspect Element��� 46

Summary��� 47

Chapter 3: Solving Problems Differently with Flux and Redux�������������������������������� 49

MVC Pattern��� 50

Flux�� 51

Success of Flux�� 54

Flux Deep Dive��� 54

The Dispatcher��� 54

The Need for Dispatcher [dispatch() and waitFor()]�� 55

Stores��� 55

Actions�� 56

Redux��� 56

Redux Core Concepts��� 57

Action��� 58

Reducer�� 58

Store��� 59

Redux with React Native�� 59

Working with the Components��� 63

Summary��� 67

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

v

Chapter 4: Canvas, Brush, and Paint: Working with the User Interface������������������ 69

React Navigation�� 70

NavigatorIOS�� 76

Flexbox��� 77

flexDirection��� 80

Flex��� 82

Images��� 86

TouchableHighlight�� 88

ListView��� 94

ScrollView�� 98

<ScrollView> vs. <FlatList>�� 99

Animations��� 99

Summary��� 101

Chapter 5: Exploring Device Capabilities��� 103

MapView and GeoLocation��� 103

Reviewing the GeoLocationMap Code�� 106

Adding Annotation on a Map�� 108

Displaying the Latitude and Longitude of the Current Location�� 110

AsyncStorage��� 116

Reviewing the AsyncStorage Code��� 120

Native Alert�� 123

Reviewing the NativeAlert Code��� 126

Extending the NativeAlert Example�� 127

WebView�� 130

Reviewing the WebView Code�� 132

Deep Linking�� 133

Summary��� 139

Table of Contents

vi

Chapter 6: Communicating with Servers��� 141

XMLHttpRequest�� 142

WebSocket��� 142

Fetch�� 143

Getting Data from a Server�� 145

Saving Data to a Server��� 149

Summary��� 163

Chapter 7: Native Bridging in React Native��� 165

Native Bridge��� 166

Prerequisites for the Example�� 166

Native Bridge for Android��� 179

Summary��� 186

Chapter 8: Testing�� 187

Flow��� 187

Benefits of Using Flow�� 188

Jest�� 188

Jest with React Native�� 189

Snapshot Testing with Jest�� 192

Summary��� 197

Chapter 9: Getting Ready for the World��� 199

Apple Developer Account��� 199

Google Play Console��� 200

iOS Build Process��� 201

Create a CSR File�� 203

Generating iOS .ipa(iPhone Application Archive)�� 208

Generating Android .apk(Android application package)��� 219

Beta Testing with TestFlight��� 222

Summary��� 223

Table of Contents

vii

Chapter 10: The Ecosystem: Extending React Native�� 225

Popular React Native Libraries��� 225

UI�� 226

Forms��� 226

Type Checking and Linting��� 227

Testing�� 227

Interacting with APIs and Back End�� 228

Routing��� 229

Utilities��� 229

Where to Get Help�� 230

React Native Repository��� 230

Stack Overflow��� 231

Stay Updated with React Native�� 231

React Native Communities��� 231

Knowledge�� 232

Discussions and Proposals��� 232

Summary��� 232

Index�� 233

Table of Contents

ix

About the Authors

Akshat Paul is a software architect and author of

the books React Native for iOS Development and

RubyMotion iOS Development Essentials. He is also a

seasoned technical reviewer for books on the topics

of React, React Native, and Microservices with top

publishers. He has extensive experience in DevOps,

mobile, and Web development.

In other avatars, Akshat frequently speaks at

conferences and meetups on various technologies. He was

an invited speaker at the React Native Conference EU, Devops@scale Amsterdam,

TheDevTheory Conference, RubyConfIndia, and the #inspect-RubyMotion

Conference Brussels. He was also the keynote speaker at technology leadership

events in Bangkok and Kuala Lumpur on TDD. Besides writing code, Akshat spends

time with his family, is an avid reader, and is obsessive about healthy eating. More

information about Akshat can be found at https://www.akshatpaul.com/.

Abhishek Nalwaya is the author of three books and

has spoken at many conferences and meetups, such as

RubyConf India and the RubyMotion conference. He

has extensive experience in DevOps, Web, and mobile

development. Besides programming, Abhishek loves to run

and cook healthy food. More information about Abhishek

can be found at http://www.nalwaya.com/. 

https://www.akshatpaul.com/
http://www.nalwaya.com/#_blank

xi

About the Technical Reviewer

Alexander Chinedu Nnakwue has a background in

mechanical engineering from the University of Ibadan in

Nigeria and has been a front-end developer for more than

three years working on both Web and mobile technologies.

He also has experience as a technical author, writer,

and reviewer. He enjoys programming for the web, and

occasionally, you can also find him playing soccer. He was

born in Benin City and is currently based in Lagos, Nigeria. 

xiii

Acknowledgments

We would like to thank our families, who saw us through this book, talked things over,

offered constructive feedback and provided support through our strenuous schedule

without which conceiving this book wouldn’t have been possible.

Also, we would like to thank Louise Corrigan, James Markham and the entire team at

Apress. And especially Nancy Chen who gave us complete creative freedom to do things

over the course of this book which some time took more time then expected. Writing a

book is a long and arduous journey, but you all made it so easy for us.

xv

Introduction

React is one of the most popular JavaScript framework as of 2019. It took web

development by storm when first introduced and its popularity has been increasing

among the developer community ever since.

React Native took this one step further when first introduced in 2015 and helped

build Native iOS apps with common knowledge of web technologies like JavaScript.

In just a few years, React Native has become an important player in native mobile

development, and extending its support for both Apple iOS and Google Android was a

game changer. This required us to write second edition of this book, which covers both

platforms end to end to help you create stunning React Native apps.

This book is divided into ten chapters and each one teaches a unique aspect of

building React Native applications. By end of this journey we believe you will be a

master developer with React Native and will be able to publish your app to the Apple

App Store or Google Play Store. We commence our journey with an introduction to

React in Chapter 1, where you learn about core React concepts like Virtual DOM,

one-way data flows, props, and state, and also build a small React application. In

Chapter 2 we cover how to set up React Native and start building a simple Hello

World program. This chapter also cover the anatomy of a React Native project and

how to debug the application. In Chapter 3 we discuss design patterns like MVC,

as well as new programming paradigms such as Flux and Redux. In this chapter

you learn about Redux core concepts, how to use Redux with React Native, and the

benefits of including it in a React Native application. Chapter 4 covers how to build

a user interface (UI) with the help of Flexbox, navigation with React Navigation,

and few critical UI components, such as touchable highlight, listview, scrollview,

and more. In Chapter 5 we address how to implement device capabilities, including

creating apps to use features like GeoLocation, MapView, Native Alert, WebView,

and deep linking.

Chapter 6 covers a key feature that is essential to any real-world application:

communication with back-end servers. In this chapter you learn how to make requests

to get data from a server and post data back to a server using various available React

Native options. In Chapter 7, we discuss how to access native application programming

xvi

interfaces (APIs) that do not have a corresponding JavaScript library; this is building

Native Bridge. This skill helps us harness all the features of native iOS and Android

development. Chapter 8 covers how to write tests for our React Native application

using Jest, and also introduces snapshot testing. This chapter also introduces a static

type check commonly used in the React Native world, called Flow. In Chapter 9, once

you have learned how to create a full-featured React Native application, it is equally

important to test it with users and push it onto the Apple App Store and Google Play

Store. This chapter describes how to beta test a React Native application with the

distribution systems available for iOS and Android. We also cover how to create builds

for iOS and Android, which is essential for submitting an application to the Apple App

Store and Google Play Store. In the final chapter, Chapter 10, you learn about some

popular React Native libraries and where to go next, how to get help, and how to stay in

touch with the amazing React Native community.

In all, we hope that by end of this book you are confident in building your next

mobile application with React Native and launching it for both iOS and Android. All

the best!

Introduction

1
© Akshat Paul and Abhishek Nalwaya 2019
A. Paul and A. Nalwaya, React Native for Mobile Development, https://doi.org/10.1007/978-1-4842-4454-8_1

CHAPTER 1

Learning the Basics:
A Whistle-Stop Tour
of React

The journey of a thousand miles begins with one step.

—Lao Tzu

Before you embark on your React Native journey, you must know a little bit about React

(also known as ReactJS or React.js). In this chapter, we quickly look at the core concepts

of React, which will help you to work on React Native. This chapter introduces the

following topics:

•	 Introduction to React

•	 Virtual Document Object Model (DOM)

•	 One-way data flow

•	 React installation and setup

•	 Creating a first React Hello World app

•	 Introduction to components

•	 Props and state

Let’s get started! React is different from most popular web technologies, and you will

learn why as you move through this chapter. Its core concepts will open your mind to

a new way of thinking if you have spent a considerable amount of time with traditional

2

frameworks; this new way of thinking is sometimes called the React way of thinking. You

might have heard the phrase “Write once, run everywhere,” but dismissed it as nearly

impossible due to the explosion of different form factors (web, mobile, tablets). React has

a different guiding principle: “Learn once, write anywhere.” That seems quite different,

and liberating. We begin this first chapter with a quick tour of React, which will help

prepare you for React Native. If you have an elementary knowledge of React, you can skip

this chapter and move on to Chapter 2.

According to the official documentation, React is a JavaScript (JS) library (not

framework) for creating user interfaces (UIs). It was built in a combined effort by teams

from Facebook and Instagram. React was first introduced to the world in 2013, and

has taken it by storm, with community-wide acceptance and the benefit of being the

technology at the heart of Facebook. According to official documentation, some consider

React to be the V in a model-view-controller (MVC) framework, because React makes

no assumptions about the rest of the technology stack used. You can use whatever

technology you wish and you can create a single section of your app with React or React

Native; you can also conveniently make changes in an already created application by

incrementally adding React to it.

�Why React?
Do we really need another JavaScript library in a world full of JavaScript libraries and

frameworks? There is hardly a month that goes by without a new JavaScript framework

introduced.

React came into existence because its creators were faced with a significant problem:

how to build large applications in which data change frequently. This problem occurs

in almost any real-world application and React was created from the ground up to

solve it. As you know, many popular frameworks are MVC or model-view-wildcard

(MV*), but here’s a point to be noted and reiterated: React is not an MV* framework.

It’s a just a library for building composable UIs for UI components with data that change

over time. Unlike popular JS frameworks, React does not use templates or Hypertext

Markup Language (HTML) directives. React builds UIs by breaking the UI into many

components. That’s it, nothing else. This means that React uses the full features of

programming languages to build and render views.

Chapter 1 Learning the Basics: A Whistle-Stop Tour of React

3

The following are some of the advantages of choosing React for your next project:

•	 React uses JavaScript extensively: Traditionally the views in HTML

are separated from the functionality in JavaScript. With React,

components are created and there is one monolithic section where

JavaScript has intimate knowledge of your HTML.

•	 Extendable and maintainable: Components are formed by a unified

markup with its view logic, which actually makes the UI easy to

extend and maintain.

•	 Virtual DOM: React applications are blazing fast. The credit for this

goes to the virtual DOM and its diffing algorithm.

•	 One-way data flow: Two-way data binding is a great idea, but in real-

world applications it produces more pain than benefit. One of the

common drawbacks with two-way data binding is that you have no

idea how your data get updated. With one-way data flow, things are

simple: You know exactly where data are mutating, which makes it

easier to maintain and test your app.

To have a strong foundation with a new technology, it’s necessary to understand

its core concepts. The next section explores a few unique concepts of React, which will

bring you one step closer to understanding this amazing technology.

�Virtual DOM
In all web applications one of the most expensive operations from which an app

suffers is mutating the DOM. To solve this problem, React maintains a virtual

representation of the DOM (as shown in Figure 1-1), which is called Virtual DOM

(VDOM). Along with a diffing algorithm, React is able to compute the data against

the actual DOM and only update the part of the DOM that is changed. The amount

of change is therefore less, which leads to a blazing fast application. In the beginning

of your application you might not see it, but as your project balloons to greater

complexity (which usually happens in real-world apps), you will begin to see the

benefits of a snappy experience for users.

Chapter 1 Learning the Basics: A Whistle-Stop Tour of React

4

Manual DOM manipulation is messy, and keeping track of the previous state of

the DOM is very hard. As shown in Figure 1-1, React solves this problem by keeping

two copies of a VDOM. Next, a diffing algorithm is applied on these two VDOMs,

which essentially checks for the changes that occurred and returns a stream of DOM

operations. These DOM operations are then applied to the actual browser DOM.

Let’s now understand in terms of components how a VDOM works. In React, every

component has a state; this state is likely observable. Whenever there is a change in

state, React essentially knows that this change requires a rerender. When the application

state changes, it generates a new VTree; once again the diffing algorithm shares the

DOM paths for required changes, as shown in Figure 1-2. This results in keeping manual

DOM manipulation to a minimum.

Figure 1-1.  Virtual DOM and diffing algorithm operations

Chapter 1 Learning the Basics: A Whistle-Stop Tour of React

5

This feature of VDOM is not just important, but a killer feature of React. DOM access

is super slow, and honestly speaking, the world has made it worse by hitting the DOM

again and again in most applications. To make your application fast, you should access

the DOM as little as possible, and this is beautifully handled by the implementation of

VDOM. You won’t notice this with a small and trivial application, but once your app

grows to include thousands of DOM elements all trying to get updated, React will not let

your performance suffer.

�One-Way Data Flow
React is primarily the V in an MVC pattern, but before you dive into the idea of one-way

data flow in React, you must understand the challenges of MVC frameworks. One of the

biggest challenges of an MVC framework is managing the view. As you know, the view

component of the MVC framework is mainly the DOM representation. It is simple when

you write code that interacts with the DOM, but it is very complicated for the framework

to handle various DOM manipulations.

Traditional MVC views generally encompass a lot of heavy UI, and as the data

change even for a tiny element, it eventually rerenders the app again, and the cycle

continues. The reason for this is that typically most of these MVC frameworks follow

two-way data binding (see Figure 1-3).

C1

Before (Components) After (Components)

C2

C4 C5 C6 C7 C4 C5 C6 C7

C3 C2 C3

C1

Figure 1-2.  Components with virtual VDOM

Chapter 1 Learning the Basics: A Whistle-Stop Tour of React

6

In JavaScript, data change in memory and they are bound to a view in the UI,

which means that when data are modified in JavaScript, which is in memory, the data

will be changed in the UI as well. In return, when data change in the UI (i.e., the DOM)

by clicking a button or any other event, they get updated in memory also, keeping

the two in sync. In theory, this works flawlessly and the idea is romantically perfect.

However, in real-world applications, problems arise when you have a fairly complex

and large application with multiple views representing data in one of your models.

As you add more models and more views, this two-way data binding ends up as

spaghetti with every change in data added to the pot, which sometimes even ends up

in an infinite event loop where one view updates a model, which in turn updates a

view, and so on, as shown in Figure 1-4.

MODEL VIEW

Data modifies view

View modifies data

Figure 1-3.  Two-way data binding

Chapter 1 Learning the Basics: A Whistle-Stop Tour of React

7

Another issue with this system is that making changes comes at a very high cost.

When you introduce a new developer to an application that is this complex, it’s tough to

understand the impact one change might have in this abyss of spaghetti relationships.

React follows one-way data flow to keep things simple, as shown in Figure 1-5. It is

based on the concept of separation of concerns (SoC). This is a design principle in

computer science in which an application or program is divided into distinct sections,

each addressing a single or specific concern. The value of this design principle is that

MODEL

MODEL

MODEL

Complex application

VIEW

VIEW

VIEW

VIEW

Figure 1-4.  Unwanted spaghetti relationship

Chapter 1 Learning the Basics: A Whistle-Stop Tour of React

8

it simplifies development to create a maintainable and scalable application. This

leads to modularized code where an individual section can be reused, developed,

and modified independently. This makes so much sense and is indeed an example of

intelligent thinking.

�Installation and Setup
To understand practical examples, you must first set up your environment to run your

React code. Because React is just a node module, there are lot of different ways to set

up a React project. We can include React in existing projects using npm or yarn and start

using it. If you are starting a new project, we recommend using the create-react-app

npm package. It is an out-of-the-box command-line interface (CLI) created by Facebook

that creates a basic structure for the React app and takes care of ES7+ translation

though Babel and Webpack. You don’t need to focus on configuration; instead you can

focus on writing React code. You can find more details about this module on its official

npm page. If it interests you, you can also check its github repo from here to look at its

documentation: https://www.npmjs.com/package/create-react-app.

VIEW
MAIN

COMPONENT

Data Flow

Data Flow

Event

Event

CHILD
COMPONENT

Figure 1-5.  React Native’s one-way data flow

Chapter 1 Learning the Basics: A Whistle-Stop Tour of React

https://www.npmjs.com/package/create-react-app

9

For our purposes, we simply set it up for our development environment with the

following command to install create-react-app:

npm install -g create-react-app

This command installs create-react-app globally.

Note I f you want to use the multiple-node version on the same machine, we can
use nvm: https://github.com/creationix/nvm

Now that we have installed create-react-app globally, navigate to the directory

where you want to create a project and run the following command:

create-react-app <application_name>

where application name is the desired name of the application. We need to use npm

naming conventions, so the name should be in lowercase and cannot start with a dot

or underscore.

We are all set to start working with React, but before we create our first app we

recommend that you install React Developer Tools, a very useful Chrome extension that

allows you to inspect the React component hierarchy in the Chrome browser. This tool

can help boost your productivity. To install this extension, search for React Developer

Tools in the Chrome app or open the following link in the Chrome browser:

https://chrome.google.com/webstore/detail/react-developer-tools/

fmkadmapgofadopljbjfkapdkoienihi

�Create a Hello World Application
Now let’s create a Hello World project. This command will install the essential packages

and set up our React project.

> create-react-app hello-world

Running that command installs the dependencies needed to build your project,

and it generates the initial project structure. Create React App installs the latest version

of React and React-DOM, as well as the latest version of react-scripts, a development

Chapter 1 Learning the Basics: A Whistle-Stop Tour of React

https://github.com/creationix/nvm

10

dependency that manages all other development dependencies that include starting,

testing, and building your app. Create React App uses Webpack and Babel under the

hood, but it generates only the files you need to work on your React project.

Traverse into the directory using your terminal or command prompt to play around

with this application using the following commands:

cd hello-world

yarn start

It will automatically open http://localhost:3000/ in your default web browser and

you can see the first page of our app.

yarn is a package manager like npm. It was created by Facebook and is the default that

comes packaged with create-react-app. It is up to you to choose whether you want to

use yarn or npm.

One of the advantages of yarn over npm is that npm always requires an Internet

connection, whereas yarn can be used offline if you have installed it at some point in

the past. Yarn is also very fast when it comes to package installations, which saves a lot of

time in day-to-day development.

�Introduction to Components
Components are the smallest units in React application development; they are indeed

the most fundamental part of React. React is a library for building UIs and components

are the key for creating any UI in React. You might think of it as widgets (like in Flutter)

that you can plug in anywhere. These components define how DOM elements are

created and how users can interact with them. The whole concept of components is that

they are totally encapsulated, making them easy to test and reuse.

Creating reusable components is a work of art, and React provides many features for

you. We will do a deep dive into them soon, but first let’s open the hello world app we

created.

Navigate to App.js in the project folder.

import React, { Component } from 'react';

import logo from './logo.svg';

import './App.css';

Chapter 1 Learning the Basics: A Whistle-Stop Tour of React

11

class App extends Component {

 render() {

 return (

 <div className="App">

 <header className="App-header">

 <h1 className="App-title">Welcome to React</h1>

 </header>

 <p className="App-intro">

 To get started, edit <code>src/App.js</code> and save to reload.

 </p>

 </div>

);

 }

}

export default App;

This is the main App component. As you can see, it’s just a JavaScript file that

contains some HTML code. If you have been building software for some time, you know

it is a best practice to keep your HTML and JavaScript code separate. Looking at this

example, it goes against this fundamental best practice. The reason this best practice

exists is to decrease coupling and increase cohesion, which means we write the UI in

HTML and logic in JavaScript. The challenge with this approach is that we can only

attach behavior to HTML through HTML elements (like ID, class, etc.). A library like

jQuery is a good example of this. As your files grow, it becomes difficult to manage and

test your code. React components solve this problem very well.

It lets you create JavaScript objects using HTML syntax. Components serve two

purposes: templates and display logic. Therefore, markup and code are tied together

intimately. Display logic often is quite complex and to express it using template

languages does become difficult. The best way to solve this problem is to generate HTML

and components from JavaScript itself. React JSX solves these problems with its HTML-

type syntax by creating React tree nodes.

Going back to the preceding code snippet, App is a JavaScript class that is inherited

from the React Component class API. Components can be created in two ways: one

using class and the other using function. Components created using function are also

called stateless components. We discuss this in detail in later chapters.

Chapter 1 Learning the Basics: A Whistle-Stop Tour of React

12

The App class has a render function or method. As the name suggests, it is used for

rendering of our content, JSX markup. render is always a pure function, which means it

is immutable. It’s like a single frame in a movie, as it represents the UI at a certain point

in time. Updating the state inside a render will again call the render function, which

once again, triggers render(), which then does the same thing, infinitely.

We are also importing Cascading Style Sheets (CSS) in the App component. Create

React App uses Webpack, which takes care of importing CSS in the final bundle.

Now let’s create a new component Message.js in the project folder and update it

with the following code:

import React, { Component } from 'react';

class Message extends Component {

 render() {

 return (

 <div>

 Hello to React World

 </div>

);

 }

}

export default Message;

Now, we can import the component into the main component App.js file and render

it in the render method with the following code:

import React, { Component } from 'react';

import Message from './Message';

class App extends Component {

 render() {

 return (

 <Message />

);

 }

}

export default App;

Chapter 1 Learning the Basics: A Whistle-Stop Tour of React

13

Now browse http://localhost:3000/, as shown in Figure 1-6.

Before we dive deeper into this component, let’s create a component using the

functional approach:

import React, { Component } from 'react';

const StatelessComponent = () => (

 <div> Hello to StatelessComponent </div>

);

export default StatelessComponent;

This is the preferred way of creating a component if your state is not changing. It

eliminates the class-related extra code like extends And constructors and makes the

code more testable.

�Deep-Dive into Components
In this section, we explore the vital concepts of components, which will help you work

with them easily. We will learn about Props and State, which help manage the flow of

data or state. The Props and State objects have one important difference. Inside a class

component, the State object can be changed, whereas the Props object cannot. Now

let’s take a deeper look into both Props and State.

�Properties
Props is simply shorthand for properties. Props are how components talk to each other

and the data flow is immutable. Props are passed down the component tree from parent

to children and vice versa. One key point to remember is that props cannot be mutated

when referenced from a parent component.

Figure 1-6.  Browsing for the default message

Chapter 1 Learning the Basics: A Whistle-Stop Tour of React

14

Let’s update our Hello World example to use props. Open App.js and add the

following line:

<Message text="Hello to React World" />

Here we are initializing the Message component with a prop named text. Let’s

update the Message component to display the text:

import React, { Component } from 'react';

class Message extends Component {

 render() {

 return (

 <div>

 {this.props.text}

 </div>

);

 }

}

export default Message;

If you refresh your browser, you will see a message from the property for your inner

HTML.

As your application grows, you need to make sure your components are correctly

created in the first place. In the case of a property, you can specify a kind of property with

a range of validators. This ensures and validates the kind of data received. Let’s take look

at this by updating our Hello World example. The Message components that we created

accept prop text, so this string will always be required to render a Message component.

Let’s update our Message component.

import React, { Component } from 'react';

import PropTypes from 'prop-types';

class Message extends Component {

 render() {

 return (

 <div>

 {this.props.text}

Chapter 1 Learning the Basics: A Whistle-Stop Tour of React

15

 </div>

);

 }

}

Message.propTypes = {

 text: PropTypes.string.isRequired

};

export default Message;

Now to test this, go to App.js and temporarily remove prop from Message:

<Message />

Now check the console log in your browser, as shown in Figure 1-7.

Prop validation is a great module that can help developers to hunt down bugs. Here,

the propType keyword signifies a hash of prop names and their types.

There are many other property types. Note that you can add isRequired to the end of

any propType to make it required.

//some specific JS primitive

 optionalArray: PropTypes.array,

 optionalBool: PropTypes.bool,

 optionalFunc: PropTypes.func,

 optionalNumber: PropTypes.number,

 optionalObject: PropTypes.object,

 optionalString: PropTypes.string,

 optionalSymbol: PropTypes.symbol,

//if a value of a prop is necessary

 numberType: React.PropTypes.number.isRequired

Figure 1-7.  Checking the console log

Chapter 1 Learning the Basics: A Whistle-Stop Tour of React

16

There is also a default type in properties via the keyword getDefaultProps.

For example, in the same component, you can mention default types for your text

properties:

static defaultProps = {

 text: 'Default Hello World'

}

The defaultProps will be used to ensure that this.props.text will have a value if it

was not specified by the parent component.

�State
In the last section, you learned about properties, which are static values that are

passed into your component. State, on the other hand, is maintained and updated by

the component. State is used so that a component can keep track of information in

between any renders that it does. When you setState it updates the state object and

then rerenders the component. We can think of props variables used for component

initialization, whereas state is like internal data that affects the rendering of components

and is considered private data.

Let’s understand this concept by updating our example, creating a new component

Welcome.js in the project folder.

import React, { Component } from 'react';

import PropTypes from 'prop-types';

class Welcome extends Component {

 constructor(props) {

 super(props);

 this.handleChange = this.handleChange.bind(this);

 this.state = { text: '' };

 }

 handleChange(e) {

 this.setState({ text: e.target.value });

 }

Chapter 1 Learning the Basics: A Whistle-Stop Tour of React

17

 render() {

 return (

 <div>

 <input

 id="text"

 onChange={this.handleChange}

 value={this.state.text}

 />

 Welcome {this.state.text}

 </div>

);

 }

}

Welcome.propTypes = {

 text: PropTypes.string.isRequired

};

export default Welcome;

Update the App.js with this:

import React, { Component } from 'react';

import Message from './Message';

import Welcome from './Welcome';

class App extends Component {

 render() {

 return (

 <div>

 <Welcome />

 <Message text= "Hello to React World"/>

 </div>

);

 }

}

export default App;

Chapter 1 Learning the Basics: A Whistle-Stop Tour of React

18

If you run this snippet, you will see the result shown in Figure 1-8 in your browser.

Now when you add some name in the text box, it will automatically reflect in label, as

shown in Figure 1-9.

Let’s look at the code. In the same component, you initialized the state in

constructor, in which you set up the initial state of the message and also bind the

handleChange function we have created:

constructor(props) {

 super(props);

 this.handleChange = this.handleChange.bind(this);

 this.state = { text: '' };

 }

Figure 1-8.  Resulting message using state

Figure 1-9.  Autopopulating the label

Chapter 1 Learning the Basics: A Whistle-Stop Tour of React

19

Like any other language, JavaScript class has constructors, a function that will get

called whenever a new object is created. It’s important to call a super if we want to

update the constructors. Calling this function will call the constructor of our parent class

and allows it to initialize itself.

Note T he constructor is only the place where you can change or set the state by
directly overwriting the this.state fields. In all other instances you have to use
this.setState.

Next, unlike the last example, you access this state using this.state.text, which

prints the initial text of the message state:

{this.state.text}

Now, display a text box above your message statement. As you type in the text box,

the message gets updated in real time using the concept of state:

<input

 id="text"

 onChange={this.handleChange}

 value={this.state.text}

 />

Let’s see what you added to your component. First, you introduced a function named

handleChange:

handleChange(e) {

 this.setState({ text: e.target.value });

}

This new function, handleChange, takes an event called (e) and updates the value

text state.

The input box has an onChange event that calls your custom method handleChange

whenever the state gets updated. As you type in the text box, your printed message gets

updated instantaneously.

Chapter 1 Learning the Basics: A Whistle-Stop Tour of React

20

�Summary
This chapter provided a quick tour of React. Before you begin with the next chapter,

let’s recap what you have learned so far. We introduced the React library and the

reasons behind its invention. Then you learned how to install and set up React. You

studied the fundamentals of this technology, such as VDOM, one-way data flow, and

JSX. You also got an introduction to components, and took a closer look at components,

understanding how to use states and props with components.

Now that you are equipped to code and work in the React ecosystem, the your

journey begins in the next chapter as we start working with React Native.

Chapter 1 Learning the Basics: A Whistle-Stop Tour of React

21
© Akshat Paul and Abhishek Nalwaya 2019
A. Paul and A. Nalwaya, React Native for Mobile Development, https://doi.org/10.1007/978-1-4842-4454-8_2

CHAPTER 2

The Simplest Program:
Hello World with React
Native

Big things have small beginnings.

—Prometheus

In the last chapter, you got a good overview of the React ecosystem. Now it’s time to get

your hands dirty with React Native. In this chapter, you will set up your development

environment by installing the prerequisites and then you will create your first React

Native application.

The best way to learn is through practical examples. We continue this theme

throughout the book, as you will follow simple examples to learn React Native by

programming yourself to understand the key concepts.

This chapter explores the following topics:

•	 An introduction to React Native

•	 The essentials of React Native

•	 The installation of React Native

•	 Your first application

•	 The anatomy of a React Native application

•	 How to debug your application

22

Note  You might face a situation where different projects work on different
Node versions. Therefore, it’s recommended you install Node Version Manager
(NVM) to help keep multiple node versions that can be switched between
projects.

�What Is React Native?
React Native is an open source platform for developing native mobile applications; it was

developed largely by a team at Facebook. The cool part of working with React Native is

that your program uses standard web technologies like JavaScript (JSX), CSS, and HTML,

yet your application is fully native. In other words, your application is fast and smooth,

and it is equivalent to any native application built using traditional iOS technologies

like Objective-C and Swift. However, React Native does not compromise in terms of

performance and overall experience, like popular hybrid frameworks that use web

technologies to build iOS apps.

React Native aims to bring the power of React, which was explained in Chapter 1,

to mobile development. In the words of the React team, “Learn once, write anywhere.”

Working with React and React Native, you will see how many of your components built

for the Web using React can be easily ported to your React Native iOS apps with little or

no modification. React Native introduces a highly functional approach to constructing

UIs that is very different from the traditional iOS development approach.

Although React Native was built by Facebook developers, it’s an open source project.

The code is available at https://github.com/facebook/react-native.

�Installation
Let’s do a quick, one-time setup of React Native. React Native is an assortment of

JavaScript and Swift code, so you need tools that create, run, and debug your native

application written in JavaScript. Let’s go one by one.

Chapter 2 The Simplest Program: Hello World with React Native

https://github.com/facebook/react-native

23

�Installing Node and npm
Node.js is an open source platform built on Chrome’s JavaScript runtime; it offers a way to

easily build fast, scalable programs. Node.js allows you to run JavaScript in terminal, and

helps create modules. If you are using nvm, which is the suggested way of using node type:

> nvm install node

If you don’t want to use nvm, you can also install Node.js by running the following

command in terminal:

>brew install node.

Homebrew is the package manager for Mac. You can also download the Node

installer from https://nodejs.org and install it manually if you are using another

operating system. For Windows operating systems you can visit https://nodejs.org

and install Node using a wizard.

npm is also installed along with node, which is a package manager for Node.js. If

you’re from the iOS world, it’s similar to CocoaPods.

Check your Node installation by running the following command in terminal:

>> node –v

v10.8.0

>> npm –v

6.2.0

�Installing the React Native Package
To use React Native, starting your project from scratch using create-reactive-app by

Facebook is the best way to start. It is an npm module:

npm install -g create-react-native-app

�Updating React Native
Both React Native and iOS are fast-moving frameworks. It is recommended that you

update them every time a new release is available. Upgrading React Native is simple.

First install module react-native-git-upgrade:

$ npm install -g react-native-git-upgrade

Chapter 2 The Simplest Program: Hello World with React Native

https://brew.sh/
https://brew.sh/

24

Next, run the following command to start the process of upgrading to the latest

version:

$ react-native-git-upgrade

For more information on React Native upgrades, you can refer to the Facebook

official documentation at https://facebook.github.io/react-native/docs/

upgrading.

Note  You should only need to update the global installation of create-react-
native-app very rarely, and ideally never.

�Your First App
Now that you are all charged up about React Native and have your system set up,

it’s time to create your first application. To keep things simple, in the beginning just

follow along. Sometimes you might feel disconnected by monotonously typing in the

code, but following along is enough for now. Remember that mimicry is a powerful

form of learning; it’s how we learned most of our skills, such as talking, reading, and

writing, and it’s how you will learn to program with React Native. As you proceed,

this method will help you understand thoroughly why you authored certain pieces

of code.

Throughout the book, you will create one application and take it from just Hello

World to a full-blown, distribution-level application, except in a few places, where we

need to digress to explore a concept independently. Before you set it up, then, let’s

talk about the problem you plan to solve. The app you will create during the course

of this book plans to solve a few housing problems; it will be a very primitive version

of any popular property search application. Let’s call it HouseShare. It will have some

rudimentary features like listings, creating an entry, geolocating a property, and a few

more. As you move along, you will see how various React Native features fit with your

application.

That’s quite a lot, but in this chapter you just create the basic structure for your

project using React Native and some Hello World code.

Chapter 2 The Simplest Program: Hello World with React Native

https://facebook.github.io/react-native/docs/upgrading
https://facebook.github.io/react-native/docs/upgrading

25

�Creating a Basic Skeleton
Fire up your terminal and type in the following command:

create-react-native-app HouseShare

...

...

...

Success! Created HouseShare at /Users/abhisheknalwaya/Documents/book/

HouseShareInside that directory, you can run several commands:

yarn start

Starts the development server so you can open your React Native app in the Expo

application on your phone.

yarn run ios

 (Mac only, requires Xcode)

Starts the development server and loads your app in an iOS simulator.

yarn run android

 (Requires Android build tools)

Starts the development server and loads your app on a connected Android device or

emulator.

yarn test

Starts the test runner.

yarn run eject

Removes this tool and copies build dependencies, configuration files, and scripts

into the app directory. If you do this, you can’t go back!

We suggest that you begin by typing this:

cd HouseShare

yarn start

Happy hacking!

Chapter 2 The Simplest Program: Hello World with React Native

26

So far we have used Expo a few times, so what is Expo? Expo is an open source

tool chain that is built around React Native to help build iOS and Android apps. Expo

is the fastest way to kickstart your React Native development. Because it comes out

of the box with React Native, you don’t need to perform any additional setup on your

machine. The only extra thing you need to do is to install the Expo application from

the Apple App Store for iOS and the Google Play Store for Android. Using this app,

you will be able to test and interact with the application you are building during the

development stages.

This code uses the CLI tool to construct a React Native project that is ready to build

and run as is. This command creates the basic folder structure for your React Native

iOS project.

> cd HouseShare

> yarn start

You should see output similar to Figure 2-1.

This will start a development server for us and print a QR code in your terminal.

Chapter 2 The Simplest Program: Hello World with React Native

27

To use this QR code, download the Expo app (https://expo.io/) for iOS or Android

on your device.

If you are using Android, just scan the QR code in your terminal from the Expo app

and your app we automatically load. If you are using iOS, select “s” in your terminal, as

shown in Figure 2-2.

Now open the e-mail, shown in Figure 2-3:

Figure 2-1.  Terminal output when we build a React Native application

Chapter 2 The Simplest Program: Hello World with React Native

https://expo.io/

28

Note  Your mobile device needs to be connected to the same wireless network as
your computer. Otherwise you will not able to open the app.

Figure 2-2.  Press the s key if you are using iOS

Figure 2-3.  Expo link received in e-mail

Chapter 2 The Simplest Program: Hello World with React Native

29

If the Expo app is already installed on your device and you click the link it will

automatically run the React Native app in the Expo app, as shown in Figure 2-4.

That was really quick and easy. Without installing the iOS and Android software

development kit (SDK), we can run the app on our device using Expo.

Thanks to a single command, the basic structure of your project is in place and your

application is loaded in the device. Also note that the terminal always needs to be open.

This is the Node package manager for React Native. If you kill this, the app will stop

working.

Terminal is opened to start the React Native Packager and a server to handle the

preceding request. The React Native Packager is responsible for reading and building the

JSX (you’ll look at this later) and JavaScript code.

Set up your project in any editor you prefer. React Native does not force you to use

nor does it have a preference for any specific editor, so you can continue to use your

favorites.

Figure 2-4.  React Native application opened in Expo app

Chapter 2 The Simplest Program: Hello World with React Native

30

Now let’s update some code in our application. Add the following code in App.js:

import React from 'react';

import { StyleSheet, Text, View } from 'react-native';

export default class App extends React.Component {

 render() {

 return (

 <View style={styles.container}>

 <Text>

 Hello World

 </Text>

 </View>

);

 }

}

const styles = StyleSheet.create({

 container: {

 flex: 1,

 backgroundColor: '#fff',

 alignItems: 'center',

 justifyContent: 'center',

 },

});

Just save the file, and then check the Expo app on your device. It automatically

reloads the page and shows you the screen shown in Figure 2-5.

Chapter 2 The Simplest Program: Hello World with React Native

31

That was quick! In a fraction of a second you can see the changes you applied. You

don’t need to compile the code and restart the simulator for React Native changes. If you

have done any native iOS app development before, pressing Refresh to see the changes

might seem like a miracle.

Now, let’s understand the code. At the top of the file are the following lines:

import React from 'react';

import { StyleSheet, Text, View } from 'react-native';

This loads the React module and assigns it to a React variable that can be used in

your code. React Native uses the same module-loading technology as Node.js; this is

roughly equivalent to linking and importing libraries in Swift.

Figure 2-5.  Updated text component appears on the screen on save

Chapter 2 The Simplest Program: Hello World with React Native

32

You are assigning multiple object properties to a single variable; this is called

destructuring the assignment. This cool feature is in there in versions of JavaScript

after ES6. Although it is optional, it’s very beneficial; otherwise, every time you use a

component in your code, you would have to use a fully qualified name for it, such as

React.Stylesheet, and so on. This saves quite a bit of time.

Next, you create a view:

export default class App extends React.Component {

 render() {

 return (

 <View style={styles.container}>

 <Text>

 Hello World

 </Text>

 </View>

);

 }

}

React basic building blocks are called components. You can use the React.

Component method to create custom component classes. This class has just one function,

render(), which is responsible for what is shown on the screen. You use JavaScript

syntax extensions (JSX) for rendering the UI. JSX is a JavaScript syntax extension that

looks similar to XML.

Now you define the styling of your app. Here you will use Flexbox; it is similar to what

CSS is to HTML. For now, you can type this code. We explain styling in the next chapter.

const styles = StyleSheet.create({

 container: {

 flex: 1,

 backgroundColor: '#fff',

 alignItems: 'center',

 justifyContent: 'center',

 },

});

You can see that this styling is very similar to CSS; you can define font size,

alignment, and so on.

Chapter 2 The Simplest Program: Hello World with React Native

33

�Prerequisites for Running App on a Simulator
Using the Expo iOS or Android application to test your app, there is a downside: You

can’t always carry your devices for testing your application. For such purpose there

are simulators provided by both iOS and Android to be set up on your development

machine. The following are few prerequisites to set them up.

iOS

•	 iOS apps can be developed only on an Apple Mac with OSX installed.

You need OSX version 11 or above.

•	 You need Xcode 9 or above, which includes the iOS SDK and

simulators. React Native only supports iOS7 or above. Xcode can be

downloaded from the Apple App Store.

•	 It’s helpful if you are enrolled in the Apple iOS Developer Program. If

you’re not in the iOS Developer Program, you won’t be able to do the

following:

•	 Test applications on actual devices.

•	 Access beta OS releases.

•	 Test flight for beta testing.

•	 Submit your app to the App Store.

Android

•	 React Native requires a recent version of the Java SE Development Kit

(JDK).

•	 Download and install Android Studio. Choose a Custom setup when

prompted to select an installation type. Make sure the check boxes

next to all of the following are selected:

•	 Android SDK

•	 Android SDK Platform

•	 Performance (Intel ® HAXM)

•	 Android Virtual Device

•	 Install Android Virtual Devices (AVDs) by opening the AVD Manager

from within Android Studio. You can also use genymotion.

Chapter 2 The Simplest Program: Hello World with React Native

34

�Running the App on a Simulator
Now let’s go back to our application and start the app (see Figure 2-6):

yarn start

This will install Expo client on the emulator and run your React Native app. You can

also use commands like yarn ios or yarn android to start the simulator with the app

installed in it rather than loading the app inside the Expo simulator app.

�It’s Not a UIWebView
You are using web technologies, but your app does not have a web component; it has

a native component. Open Debug ➤ View Debugging ➤ Capture View Hierarchy

(see Figure 2-7).

Figure 2-6.  Running demo application on simulator

Chapter 2 The Simplest Program: Hello World with React Native

35

As you traverse through the tree of UIWindow, you’ll see that there is no UIWebView in

the code, and “Hello World !!” is the call of RCTText, as shown in Figure 2-8.

Figure 2-7.  Using the Native component

Chapter 2 The Simplest Program: Hello World with React Native

36

�Enabling Live Reload
Another cool feature of React Native is live reload. It reloads your application view

inside the iOS simulator the moment there is a change. By default it is active. To

deactivate this option, you need to access the developer menu from the application

opened in the iOS simulator by shaking the device and then selecting the Disable Live

Reload option.

�What Makes React Native Different?
Before you dive deeper into the React Native world, you must understand why there

was a need for another framework to build mobile apps. We already live in a world full

of frameworks and tool chains that are capable of building mobile apps. Prior to the

inception of React Native, building mobile apps using web technologies was possible via

two strategies:

•	 WebView-based: These frameworks use common web technologies

like HTML and JavaScript and use WebView to load the application.

An example is the popular framework Phonegap.

Figure 2-8.  “Hello World !!” is the call of RCTText

Chapter 2 The Simplest Program: Hello World with React Native

37

•	 Native apps using web technologies: These frameworks again use

common web technologies like HTML and JavaScript (to be precise,

they imitate using JavaScript and HTML) to create native apps. An

example is the popular framework Titanium Appcelerator.

Apps created using these strategies have performance issues. WebView-based

apps are slow because they use the DOM, and DOM manipulations are expensive,

which leads to performance issues. As stated in a blog post at Flipboard (see http://

engineering.flipboard.com/2015/02/mobile-web/), “You cannot build a 60fps

scrolling list view with DOM.” This is one of the fundamental problems with apps

developed through this technique: Although development time might be quick, you end

up with a sluggish experience.

The other strategy, where the framework imitates JavaScript and HTML, and

converts them to native code, has other challenges. Although the final app is native in

nature, there is a basic issue during this conversion from JavaScript to native: It runs on

the main thread. In these apps, you interface directly with native objects all the time,

which leads once again to a slow and sluggish experience.

React Native is fundamentally different from these two approaches. It runs all layouts

on separate threads, and your main thread is free to update the UI, which makes the

animation and UI rendering smooth, just like 100 percent pure native apps.

React Native uses the JavaScriptCore framework to run JavaScript. In iOS 7, Apple

introduced a native Objective-C API for JavaScriptCore. This framework allows JavaScript

and Objective-C to talk to each other. This means you can create and call JavaScript functions

from Objective-C or call back into Objective-C from JavaScript. It all works like a charm.

React Native is different in one more aspect. As seen in your Hello World example,

you write a component in JavaScript just like you would with React, except that instead

of using an HTML div, you use tags like View and Text. In the case of an iOS application,

a View is basically a UIView.

�Ejecting a React Native Application
Before we get into exploring the application structure, we have to eject our application

from the Expo project (see Figure 2-9). You should not eject an app from the Expo

environment until it is needed. We are doing this here to understand how create-

react-native works.

yarn eject

Chapter 2 The Simplest Program: Hello World with React Native

http://engineering.flipboard.com/2015/02/mobile-web/
http://engineering.flipboard.com/2015/02/mobile-web/

38

This will create two folders for iOS and Android in the repository. If you open the

project HouseShare, it looks like a normal Xcode project. It has the following folder

structure:

|ios

 |- HouseShare

 |- HouseShare.xcodeproj

 |- HouseShareTests

|android

node_modules

App.js

App.test.js

Figure 2-9.  Ejecting Expo application

Chapter 2 The Simplest Program: Hello World with React Native

39

index.js

package.json

yarn.lock

Note  The folder structure defined here might be changed or modified as the
framework evolves, but the majority of the functionality remains the same.

If you open the project in Xcode, it will have a different folder structure. The

“folders” in Xcode are actually groups and are not necessarily linked to a folder like we

see in Finder.

•	 iOS: The iOS folder has two folders and one file. As seen earlier, there

is a HouseShare folder, which has all the Objective-C code, such as

AppDelegate, Images.xcassets, Info.plistLaunchScreen.xib,

and other files. Another folder is HouseShareTests, which is where

all your test cases reside. Finally, there is your Xcode project file,

HouseShare.xcodeproj, which is used to load into Xcode to build

your application.

•	 package.json: This folder contains metadata about your app, and it

will install all dependencies when you run the npm install. If you’re

familiar with Ruby, it’s similar to a Gemfile.

•	 node_modules: All of the Node modules mentioned in package.json

will be downloaded to this folder. This folder also contains the code

for the React Native framework.

•	 App.js: This is the file where you begin programming your

application.

•	 AppDelegate.m: This is the starting point of any iOS app.

•	 Android: React Native also supports development for Android. All

your native Android code resides in this folder.

Let’s open the AppDelegate.m file from HouseShare/ios/HouseShare/

AppDelegate.m:

#import "AppDelegate.h"

Chapter 2 The Simplest Program: Hello World with React Native

40

#import <React/RCTBundleURLProvider.h>

#import <React/RCTRootView.h>

@implementation AppDelegate

- �(BOOL)application:(UIApplication ∗)application didFinishLaunchingWith
Options:(NSDictionary ∗)launchOptions

{

 NSURL ∗jsCodeLocation;

 �jsCodeLocation = �[[RCTBundleURLProvider sharedSettings] jsBundleURLFor

BundleRoot:@"index" fallbackResource:nil];

 �RCTRootView ∗rootView = �[[RCTRootView alloc] initWithBundleURL:jsCode
Location

 moduleName:@"HouseShare"

 initialProperties:nil

 launchOptions:launchOptions];

 �rootView.backgroundColor = �[[UIColor alloc] initWithRed:1.0f green:1.0f

blue:1.0f alpha:1];

 �self.window = [[UIWindow alloc] initWithFrame:[UIScreen mainScreen].bounds];

 UIViewController ∗rootViewController = [UIViewController new];
 rootViewController.view = rootView;

 self.window.rootViewController = rootViewController;

 [self.window makeKeyAndVisible];

 return YES;

}

@end

RCTRootView is a Swift class provided by React Native, which is inherited from the

iOS UIView Class. It takes your JavaScript code and executes it. It also loads the index

bundle URL, which has your code written in App.js and also a program added by the

React Native framework.

Chapter 2 The Simplest Program: Hello World with React Native

41

Note A fter ejection, you need to use Xcode to run the iOS app and Android Studio
to run the Android app.

To start, run yarn start on terminal, as shown in Figure 2-10.

Now open HouseShare.xcodeproj. This Xcode project file will open your project in

Xcode. Next, let’s load your application in the iOS simulator. To build your application

and load it in the simulator, simply click the Run button at the top left (or execute

Command + R), as shown in Figure 2-11. This will compile, build, and fire up your

project in the iOS simulator

This will open the simulator and you can see the app running.

Figure 2-10.  Starting the application without Expo

Figure 2-11.  Building the application using Xcode

Chapter 2 The Simplest Program: Hello World with React Native

42

�Debugging
Debugging with React Native is in line with how we debug web apps; in short, it’s really

simple. To access debugging options, share the simulator by selecting Share Gesture

from the Hardware menu. This will open a menu that provides several debugging

options, as shown in Figure 2-12.

You must disable this menu for the final build because your end user should not see

these options. To disable it, open the project in Xcode and select Product ➤ Scheme ➤

Edit Scheme (or press Command + <). Then select Run from the menu on the left and

change the Build Configuration to Release.

Let’s review each of the options shown in Figure 2-12.

Figure 2-12.  Debugging options for React Native applications

Chapter 2 The Simplest Program: Hello World with React Native

43

�Reload
The Reload option refreshes the screen in the simulator with the latest React Native code

without compiling the project again. This can be done in two ways: selecting the Reload

option from the menu or pressing Command + R. This will reload all the changes made

in the JavaScript code.

Any changes made in your Swift or Objective-C files will not be reflected because

these changes require recompilation. Also, if you add any assets like images, the app

needs to be restarted.

�Debugging in Chrome
This is one of the best and most frequently used options for debugging your

JavaScript code written in React Native. As with web apps, you can debug your React

Native application in Chrome. When you click Debug in Chrome, it opens http://

localhost:8081/debugger-ui in Chrome (Figure 2-13).

Install the React Developer Tools, which is a Chrome extension for debugging both

your React application and React Native code. It allows you to inspect the React Native

component hierarchies in the Chrome Developer Tools. To install it, please visit the

Chrome webstore or go to https://chrome.google.com/webstore/detail/react-

developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en.

Once the extension is installed, press Command + Option + J or select View ➤

Developer ➤ Developer Tools in your Chrome browser to access the Developer Tools

console.

Figure 2-13.  Debugging in Chrome

Chapter 2 The Simplest Program: Hello World with React Native

https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en.
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en.

44

You will see a new tab called React in your Chrome DevTools. This shows

you the root React components that have been rendered on the page, as well as

the subcomponents that they ended up rendering. You can also see props, state,

components, and event listeners, as shown in Figure 2-14.

Look at Figure 2-15 and you can see a similar hierarchy to your Xcode: Hello World is

wrapped in RCTText and that is in turn wrapped in RCTview.

�Debugging in Safari
If you do not have Chrome, you can also use Safari for debugging, but Chrome is

preferred for debugging React Native apps.

Figure 2-14.  Debugging in Chrome DevTools

Figure 2-15.  Debugging the app with the React tab in Chrome DevTools

Chapter 2 The Simplest Program: Hello World with React Native

45

�Showing Performance Monitor
Many applications use a lot of animations and graphics. The smoothness of these

animations for your application is defined in frames per second (FPS); this is used

extensively in gaming apps. When you select Show FPS Monitor from the menu, it shows

a few properties for your app in the simulator (see Figure 2-16). Although you might not

find much use for these properties in your Hello World app, they are great for animation-

intensive apps to prevent them lethargic performance, which can create a bumpy user

experience.

Figure 2-16.  Additional properties in the simulator

Chapter 2 The Simplest Program: Hello World with React Native

46

�The Inspect Element
You can also inspect a React Native element from the simulator, somewhat similar to

how you inspect an element in a browser, although you can’t currently change live

values of properties as you can in a browser. For now, you can see your stylesheet

properties for any object. Click the HelloReact!! text (Figure 2-17) and it will open the

details of that element.

Figure 2-17.  Click the text to see element details

The details of that element are shown in Figure 2-18 at the bottom left.

Chapter 2 The Simplest Program: Hello World with React Native

47

You can see that the font size for Hello World is 25 and it is center aligned.

�Summary
In this chapter, you were introduced to React Native. You learned how to set up the React

Native development environment and you wrote your first application. You also learned

about Expo and the folder structure of React Native applications and how to debug. You

are now all set to explore creating a UI with React Native for your iOS application.

Chapter 3 introduces about Flux and Redux, a pair of very important design patterns

that are commonly used with React Native applications.

Figure 2-18.  Font details

Chapter 2 The Simplest Program: Hello World with React Native

49
© Akshat Paul and Abhishek Nalwaya 2019
A. Paul and A. Nalwaya, React Native for Mobile Development, https://doi.org/10.1007/978-1-4842-4454-8_3

CHAPTER 3

Solving Problems
Differently with Flux
and Redux

Simplicity is prerequisite for reliability.

—Djikstra

Flux is an application architecture introduced by Facebook for building client-side

applications. It complements the React paradigm of composable view components by

using a unidirectional data flow. It’s more of a pattern than a framework, and one can

start using Flux immediately without an excess load of code. Redux is a predictable state

container for JavaScript applications, which means it helps us to write applications that

behave consistently in different environments: client, server, or native. It also makes your

applications easy to debug and test.

Before we delve into its details, it is important to know one of the most popular,

commonly used MVC patterns. We can then learn about what challenges we face with

MVC and how Flux and Redux can solve these challenges.

This chapter covers the following topics:

•	 MVC pattern

•	 MVC problem

•	 Flux

•	 Flux deep dive

•	 Redux

50

•	 Redux core concepts

•	 Redux with React Native

•	 Benefits of using Redux

�MVC Pattern
Historically, an MVC pattern separates code into three distinct parts: model, view, and

controller. The main purpose of this pattern is to isolate representation of information

from user interaction. Let’s describe each of these parts individually.

•	 Model: This element manages the behavior and data of an

application.

•	 View: This is the representation layer of the model in the UI.

•	 Controller: This element takes user input and makes necessary

manipulations to the model, which causes the view layer to get

updated.

MVC is legendary and it’s an amazing way to structure your code. Things get a bit

ugly, though, when your source code begins to grow and get complex. Although MVC

is a very popular pattern to design applications, it comes with its own set of problems.

Figure 3-1 shows how MVC works.

Figure 3-1.  Simple MVC pattern

Chapter 3 Solving Problems Differently with Flux and Redux

51

Figure 3-1 shows the simplest implementation of MVC, and this works pretty well

with small applications. As your application grows, though, so does the demand for

new features, and there should be room to accommodate more models and views.

Let’s look at what happens when our model and view increase in an actual application

(Figure 3-2).

Wow! That is an explosion of arrows. Welcome to the real world where many models

and views interact with each other. A controller triggers another model and this goes on

like spaghetti, which often ends up in an infinite loop. The worst part is that it’s really

difficult to debug code in such a situation, eventually making the system fragile. Well,

Facebook faced a similar problem with this pattern and solved it with a new pattern

called Flux.

�Flux
Flux abjures MVC in favor of a unidirectional data flow. Flux works well because the

single directional data flow makes it easy to understand and modify an application as it

grows and becomes more complex. Earlier we found that two-way data bindings lead to

Figure 3-2.  MVC pattern for a large application

Chapter 3 Solving Problems Differently with Flux and Redux

52

cascading updates, where change in one data model leads to an update in another data

model, making it very difficult to predict what would change as the result of a single user

interaction.

Flux applications have three major parts: the dispatcher, the store, and the view

(where we use React components). These should not be compared with the model, view,

and controller of the MVC pattern (Figure 3-3).

Although controllers do exist in a Flux application, these are controller views, where

views are found at the top of the hierarchy that retrieve data from the stores and forward

these data to their children.

If we look at the Flux architecture, the most important part is the dispatcher, which

is a singleton that directs the flow of data and ensures that updates do not cascade

(Figure 3-4).

Web
API

Dispatcher

React
Views

Web
API Utils

Action
Creators

Actions

User
Interactions

Store

Callbacks

Change
Events +

Store
Queries

Figure 3-3.  React App data flow

Chapter 3 Solving Problems Differently with Flux and Redux

53

As an application grows, eventually the dispatcher becomes more vital, as it is

responsible for managing dependencies between stores by invoking the registered

callbacks in a specific order.

When a user interacts with a React view, the view sends an action (usually

represented as a JavaScript object with some fields) through the dispatcher, which

notifies the various stores that hold the application’s data and business logic. When

the stores change state, they notify the views that something has updated. This works

especially well with React’s declarative model, which allows the stores to send updates

without specifying how to transition views between states.

The following are some of the key benefits of using Flux:

•	 It improves data consistency.

•	 It is easier to pinpoint the bugs.

•	 You can perform more meaningful unit tests. Because all the states

of a module are there in the same place, we can test a module

independently.

•	 It includes predictable code.

With predictable code, great things follow, as shown in Figure 3-5.

Figure 3-4.  Flux data flow

Chapter 3 Solving Problems Differently with Flux and Redux

54

�Success of Flux
One of Facebook’s most popular features was its chat functionality. However, it was

extremely buggy and had a high rate of negative user feedback. The new chat system that

Facebook implemented is using a Flux pattern that provides a seamless experience. You

can have look at example chat code in a Facebook React example at https://github.

com/facebook/flux/tree/master/examples.

�Flux Deep Dive
As we now know what Flux is, let’s look into and understand the concepts like dispatcher,

store, and action

�The Dispatcher
The dispatcher is the central hub that manages all data flow in a Flux application. It is

essentially a registry of callbacks into the stores and has no real intelligence of its own;

in essence, it is a simple mechanism for distributing the actions to the stores. Each store

registers itself and provides a callback. When an action creator provides the dispatcher

with a new action, all stores in the application receive the action via the callbacks in the

registry. Dispatcher also acts like a traffic controller. If it gets an action even when the

Figure 3-5.  Predictable code

Chapter 3 Solving Problems Differently with Flux and Redux

https://github.com/facebook/flux/tree/master/examples
https://github.com/facebook/flux/tree/master/examples

55

data layer is still processing, it makes sure to run the action. With the dispatcher, you

know where your action starts and what changes it makes to the data layer. There are

cascading effects that build up in between. You are indeed in full control of your system.

�The Need for Dispatcher [dispatch() and waitFor()]
As an application grows, dependencies across different stores also increase. Imagine, for

example, we have a situation where Store A needs Store B to update itself first, so that it can

itself know how to update, too. We need the dispatcher to be able to invoke the callback

for Store B and finish that callback before moving forward with Store A. To assert this

dependence, a store needs to communicate with the dispatcher to first complete the action

to update Store B. The dispatcher provides this functionality through the waitFor() method.

The dispatch() method provides a simple, synchronous iteration through the

callbacks, invoking each in turn. When waitFor() is encountered within one of the

callbacks, execution of that callback stops and waitFor() provides us with a new

iteration cycle over the dependencies. After the entire set of dependencies has been

fulfilled, the original callback then continues to execute.

Further, the waitFor() method can be used in different ways for different actions, within

the same store’s callback. In one case, Store A might need to wait for Store B. In another

case, though, it might need to wait for Store C. Using waitFor() within the code block that is

specific to an action allows us to have fine-grained control of these dependencies.

Problems arise, however, if we have circular dependencies; that is, if Store A needs to

wait for Store B, and Store B needs to wait for Store A. This could wind up in an endless

loop. The dispatcher now available in the Flux repo protects against this by throwing an

informative error to alert the developer that this problem has occurred. The developer

can then create a third store and resolve the circular dependency.

�Stores
Stores contain the application state and logic. Their role is somewhat similar to a model

in a traditional MVC, but they manage the state of many objects—they do not represent a

single record of data like ORM (Object Relational Mapping) models do. More than simply

managing a collection of ORM-style objects, stores manage the application state for a

particular domain within the application.

As mentioned earlier, a store registers itself with the dispatcher and provides it with

a callback. This callback receives the action as a parameter. Within the store’s registered

Chapter 3 Solving Problems Differently with Flux and Redux

56

callback, a switch statement based on the action’s type is used to interpret the action

and to provide the proper hooks into the store’s internal methods. This allows an action

to result in an update to the state of the store via the dispatcher. After the stores are

updated, they broadcast an event declaring that their state has changed, so the views can

query the new state and update themselves.

�Actions
When new data enter the system, whether through a person interacting with the

application or through a web API call, those data are packaged into an action—an object

literal containing the new fields of data and a specific action type. We often create a

library of helper methods called action creators that not only create the action object,

but also pass the action to the dispatcher.

Different actions are identified by a type attribute. When all of the stores receive the

action, they typically use this attribute to determine if and how they should respond to it.

In a Flux application, both stores and views control themselves; external objects do not

act on them. Actions flow into the stores through the callbacks they define and register,

not through setter methods.

Letting the stores update themselves eliminates many entanglements typically found

in MVC applications, where ascading updates between models can lead to unstable state

and make accurate testing very difficult. The objects within a Flux application are highly

decoupled, and adhere very strongly to the Law of Demeter, the principle that each

object within a system should know as little as possible about the other objects in the

system. This results in software that is more maintainable, adaptable, testable, and easier

for new engineering team members to understand.

�Redux
Now that we have read about Flux, next we discuss another pattern called Redux. Redux

can be considered a predecessor to the Flux architecture, and it is also inspired by the

functional programming language Elm. Redux was created by Dan Abramov in mid-

2015. During that time, the React world was going through major changes and new

things were coming every other day. No one, though, could imagine that a small library

of just 2 KB would create such a tectonic shift in the way we interact with and create

React applications.

Chapter 3 Solving Problems Differently with Flux and Redux

57

Redux was built on top of functional programming concepts. Functional

programming by design allows us to write clean and modular code that is easier to

test, debug, and maintain. With functional programming, code is in the form of small

functions that are isolated in scope and logic, thus making the code reusable. Because

small pieces of code are isolated in nature, there is hardly any coupling and these tiny

functions can be used as modules in an app. In functional JavaScript you will see pure

functions, anonymous functions, and higher order functions used very often. Redux uses

pure functions a lot, so a good understanding of this concept is important.

Pure functions return a value based on arguments passed to them. They do not

modify or mutate existing objects, but they return new ones. These functions do not

depend on the state from which they are called, but they return only one and the same

result for any provided argument. That’s why they are very predictable. Because pure

functions do not modify any value, they don’t have any observable side effects. Redux

uses something called reducers, which are pure functions. We will learn in detail about

reducers and other Redux code concepts in the next section.

�Redux Core Concepts
Redux has three core pillars: action, store, and reducers (Figure 3-6). These words might

sound complicated, but they are actually very simple.

View

ActionStore

Update new state

Dispatch

User Interaction

Reducer

Figure 3-6.  Redux data flow

Chapter 3 Solving Problems Differently with Flux and Redux

58

�Action
Actions are events that send data from the application (user interactions, API calls,

form submissions, etc.) to the store. The store always gets the information from actions.

Internal actions are simple JavaScript objects that have a type property (usually

constant), describing the type of action and payload of information being sent to the

store. To send them to the store we use store.dispatch().

Action creators, as the name suggests, are the functions that create actions. It is easy

to conflate the terms action and action creator, so do your best to use the proper term. To

call these action creator functions anywhere in the app we use dispatch. As mentioned

earlier, the dispatch() function can be accessed directly from the store as store.

dispatch(), but more likely you’ll access it using a helper like react-redux’s connect()

method. You can use bindActionCreators() to automatically bind many action creators

to a dispatch() function.

Note A ction creators can also be asynchronous and have side effects. This is an
advanced topic, so we don’t need to go in-depth right now.

�Reducer
Reducers specify how the application’s state changes in response to actions sent to the

store. Remember that actions only describe what has happened, but do not tell anything

about state change in the application. Understanding how reducers work is important

in an application using Redux because they are responsible for most of the work. Let’s

describe this with a simple example.

function appAuth(state, action) {

 return Object .assign({}, state, {

 authType: action.payload

 });

}

This is a very simple reducer that takes the current state and an action as arguments

and then returns the next state. In the case of complex applications, we will be using the

combineReducers() utility that is provided by Redux. It combines all the reducers of the

Chapter 3 Solving Problems Differently with Flux and Redux

59

app into a single index reducer. Every reducer is responsible for its own part of the app’s

state, and the state parameter is different for every reducer. The combineReducers()

utility makes the file structure much easier to maintain.

�Store
Thus far we have learned that actions represent what happened and the reducers update

the state according to those actions. The store is the object that brings them all together.

The store holds the application state and provides a few helper methods to access the

state, dispatch actions, and register listeners. The entire state is represented by a single

store. Any action returns a new state via reducers. The following are few helper methods:

•	 getState(): Allows access to state.

•	 dispatch(action): Allows state to be updated.

•	 subscribe(listener): Registers listeners.

•	 replaceReducer(nextReducer): Replaces the reducer currently used

by the store to calculate the state.

�Redux with React Native
To understand how Redux works with React Native, let’s create a simple Todo application

in React Native including how Redux makes things simple for us. To proceed, use the

source code available for this chapter. Inside the project directory, run yarn install to

install two new packages.

redux

react-redux

The Redux module is required so that you can use Redux with your application.

React-redux is going to help you connect your React native app to Redux once you have

both of these installed. Figure 3-7 shows our application folder structure.

Chapter 3 Solving Problems Differently with Flux and Redux

60

You would have to create all these folders: components, containers, reducers,

store, and a TodoApp.js file. Within these folders we would have more JavaScript

files reside inside our action, stores, reducers, and components. This way our code

stays modularized and the logic remains isolated. Here, the Redux part is managed

under the action, reducer, and the store folder, but we would need components that

will use them.

Hence, we have two folders here: components, which consists of plain dumb

components, which are the presentational components of the app having no idea that

Redux exists or not in the app. Second, we have smart components that interact with

Redux, and they reside in the containers folder.

Figure 3-7.  List of project folder structure

Chapter 3 Solving Problems Differently with Flux and Redux

61

First, let’s create a store. Inside the store folder create an index.js file and paste the

following code:

import { createStore } from 'redux'

import rootReducer from '../reducers'

export default store = createStore(rootReducer)

Here, we have imported something called createStore from redux. Here we are

combining all our reducers with rootReducer and exporting the same. Soon you will see

how we have created two reducers that we plan to use with our store using rootReducer.

Next, this store is imported into the application by adding the following code in our

App.js.

import store from './src/store'

import { Provider } from 'react-redux'

export default class App extends React.Component {

 render() {

 return (

 <Provider store={store}>

 <TodoApp />

 </Provider>

);

 }

}

Here, we have imported our store and also used something called Provider from

react-redux. Once we pass our Provider and store within that, it can be accessed

anywhere in TodoApp no matter how many levels deep it is. Great! With this our store is

set up.

Although our store is setup, we require some UI components. If you look at the

containers folder, we have an addTodo component, which is a simple TextInput that

will be used to create a new todo. Therefore, on this text input field there will be some

action that will trigger it to create a new todo.

Before we create our action and reducer, we must think about what states we can

have in this application. As per our design, there should be two states: one Todo and one

for visibility. Therefore, in the reducers folder, you will find two files: one for the todo

reducer and other for the visibilityFilter reducer.

Chapter 3 Solving Problems Differently with Flux and Redux

62

const visibilityFilter = (state = "SHOW_ALL", action) => {

 return state

}

Here the visibility filter reducer takes the state SHOW_ALL and based on the action, it

gives the expected outcome and returns the state. In this case, it is responsible to show

all the todo records. Next, let’s look at the todo reducer:

const todos = (state = [], action) => {

 switch (action.type) {

 case 'ADD_TODO':

 return [

 ...state, {

 id: action.id,

 text: action.text,

 completed: false

 }

]

 case 'TOGGLE_TODO':

 return state.map(todo =>

 (todo.id === action.id)

 ? { ...todo, completed: !todo.completed } :

 todo)

 default:

 return state

 }

}

export default todos

Here we have two actions—ADD_TODO and TOGGLE_TODO—that are responsible for

adding a new record in the list and marking a record complete using their respective

actions. We are able to determine the type of actions using action.type.

At this point, both the reducers are independent, so we need a way to combine them,

which you can find in the third file in the reducers folder, index.js. Let’s look at the

code inside reducers/index.js.

Chapter 3 Solving Problems Differently with Flux and Redux

63

import { combineReducers } from 'redux'

import todos from './todos'

import visibilityFilter from './visibilityFilter'

export default combineReducers({

 todos,

 visibilityFilter

})

Here we are using something called CombineReducers from redux. This helps is keep

the logical part separate but use it such in a way that we have only one reducer.

�Working with the Components
Now that we have seen our reducers, let’s see how all this so far works with our

components. Open the containers/AddTodo.js file.

import { connect } from 'react-redux '

import { addTodo } from '../actions'

class AddTodo extends Component {

 state = {

 text: ' '

 }

 addTodo = (text) => {

 // redux store

 this.props.dispatch(addTodo(text))

 this.setState({ text: '' })

 }

 render() {

 return (

 <View style={{ flexDirection: 'row', marginHorizontal: 20 }}>

 <TextInput

 onChangeText={(text) => this.setState({ text })}

 value={this.state.text}

Chapter 3 Solving Problems Differently with Flux and Redux

64

 placeholder="E.g. Create New Video"

 �style={{ borderWidth: 1, borderColor: '#f2f2e1',

backgroundColor: '#eaeaea', height: 50, flex: 1,

padding: 5 }}

 />

 �<TouchableOpacity onPress={() => this.addTodo(this.state.

text)}>

 �<View style={{ height: 50, backgroundColor: '#eaeaea',

alignItems: 'center', justifyContent: 'center' }}>

 �<Ionicons name="md-add" size={30} style={{ color:

'#de9595', padding: 10 }} />

 </View>

 </TouchableOpacity>

 </View>

);

 }

}

export default connect()(AddTodo);

Here, we first have to set up the initial local state:

state = {

 text: ''

 }

This is just an empty string for the text input to stay empty. Next, we have to update

the text from text input when a user types. This is done using onChangeText where the

state is updated with the text entered by the user.

onChangeText={(text) => this.setState({ text })}

 value={this.state.text}

Once the user submits the todo it must be updated to our store. For this, we use a

helper method, connect, from react-redux.

import { connect } from 'react-redux'

Chapter 3 Solving Problems Differently with Flux and Redux

65

In addition, the connect helper method should be passed with the component that is

going to get connected to the Redux store. In this case, use AddTodo:

export default connect()(AddTodo);

We also have to import the action we plan to use; in this case, it is addTodo:

import { addTodo } from '../actions'

Great! Now that we have connected our store to the component, let’s trigger it

onPress to add the todo in a list:

<TouchableOpacity onPress={() => this.addTodo(this.state.text)}>

Because this component is connected to the Redux store, we can dispatch the action

to the respective store:

addTodo = (text) => {

 this.props.dispatch(addTodo(text))

 this.setState({ text: '' })

 }

This will update the todo list and also the text input state with an empty string so that

new values can be added later.

To display the data, we use a dumb component whose only purpose is to display

the to-do list. This component has nothing to do with Redux. You can find this dumb

component inside component/TodoList.js

Finally, when we run our application, we will find the result shown in Figure 3-8 in

the simulator.

Chapter 3 Solving Problems Differently with Flux and Redux

66

As you saw, there is some work involved in using Redux along with your application,

and as with any new piece of technology or new pattern, developers should always ask

this: Why should I use it in the first place?”

It might be a little complicated to understand and implement something with

Redux, but once you understand the fundamentals, it provides many advantages,

including these:

•	 Expected outcomes: With Redux there is no confusion about where to

locate our one source of truth; that will always be the store.

Figure 3-8.  Showing the to-do list on an iPhone

Chapter 3 Solving Problems Differently with Flux and Redux

67

•	 Maintainability and organization of code: With a strict structure in

place and predictable outcomes, maintaining the code becomes

easier. Redux is also particular about how the code should be

organized, and this becomes pivotal in maintaining the source code

as an application becomes large.

•	 Tools: With developer tools, developers can track what’s happening in

the application in real time.

•	 Community: Redux is not something that has just appeared; it has

indeed passed the test of time. The community is flourishing, and you

can easily get support and regular updates for the library.

•	 Ease of testing: Redux functions by design are small, pure, and

isolated, which makes them perfect candidates to for which to

write tests. Redux apps automatically make testing easy for the

application.

�Summary
In this chapter you learned about the Flux pattern, how it differs, and how it solves a

fundamental problem differently from the traditional MVC pattern. We also looked

closer at Flux core concepts. Next, you learned about the successor of Flux, Redux, its

core concepts, benefits, and how to use it with React Native applications, which will be

useful in real-world applications and in the upcoming chapters. Chapter 4 covers how to

create UIs and navigation in React Native apps. Finally, you learn how to use animation

in your views.

Chapter 3 Solving Problems Differently with Flux and Redux

69
© Akshat Paul and Abhishek Nalwaya 2019
A. Paul and A. Nalwaya, React Native for Mobile Development, https://doi.org/10.1007/978-1-4842-4454-8_4

CHAPTER 4

Canvas, Brush, and Paint:
Working with the User
Interface

A user interface is the process of shifting from chaotic complexity to elegant
simplicity.

—Akshat Paul

Chapter 3 introduced React Native state management using Flux and Redux, and you

created your first React Native application. Now that you have a skeleton for your project,

let’s fill it out with a stunning UI. This chapter covers the following topics:

•	 React Navigation

•	 Flexbox

•	 TouchableHighlight

•	 ListView

•	 ScrollView

•	 Animations

Any experienced software professional will agree: The success of an app depends on

the fact that it not only works flawlessly, but also looks great. Therefore, a great UI can

make a huge difference in the success of your app.

70

The layout system is a fundamental concept that needs to be mastered to create

great applications. Let’s begin by understanding how to navigate within iOS and Android

applications using React Native.

�React Navigation
React Navigation is one of the popular JavaScript libraries for handling routing in React

Native applications. iOS and Android have different ways to handle navigation, and

react-navigation takes care of this for both platforms.

To start, we need to install the react-navigation npm module. Let’s build on the

HouseShare application we created in Chapter 2:

yarn add react-navigation

Let’s create a screen that we will use to render through react-navigation. We

will create a new folder with the name screens in the root directory and create a

HomeScreen.js file inside the same folder. Add the following code in Homescreen.js:

import React from 'react';

import { StyleSheet, Text, View, Button } from 'react-native';

export default class HomeScreen extends React.Component {

 render() {

 return (

 <View style={styles.home}>

 <Text>Home Screen</Text>

 </View>

);

 }

}

const styles = StyleSheet.create({

 home: {

 flex: 1,

 alignItems: 'center',

 justifyContent: 'center',

 },

});

Chapter 4 Canvas, Brush, and Paint: Working with the User Interface

71

We just created a HomeScreen React component, which shows text that is center

aligned. Because this component exported from App.js is the entry point for your app

and other components descend from it, we need to update App.js to include Navigation.

Let’s import the HomeScreen component in App.js and update the following code:

import React from 'react';

import { StyleSheet, Text, View } from 'react-native';

import { createStackNavigator } from 'react-navigation';

import HomeScreen from './screens/HomeScreen';

const AppNavigator = createStackNavigator({

 Home: {

 screen: HomeScreen

 },

});

export default class App extends React.Component {

 render() {

 return <AppNavigator />;

 }

}

Now run the app in a simulator:

$ yarn start

Figure 4-1 shows a HomeScreen rendered using react-navigation. We have used

createStackNavigator, which returns a React component.

Chapter 4 Canvas, Brush, and Paint: Working with the User Interface

72

createStackNavigator takes a route configuration object and because it returns

a React component, we can use this in the App component. It provides a way for your

app to transition between components and manage navigation history, gestures, and

animations, which is natively provided in Android and iOS.

Right now, we have used just the HomeScreen component. Let’s add one more screen

and use react-navigation to route to this new screen.

Let’s create the AboutScreen.js component inside the screens folder and add the

following code in it:

import React from 'react';

import { StyleSheet, Text, View } from 'react-native';

Figure 4-1.  HomeScreen React component loaded

Chapter 4 Canvas, Brush, and Paint: Working with the User Interface

73

export default AboutScreen = () => {

 return (

 <View style={styles.about}>

 <Text>About Screen</Text>

 </View>

);

}

const styles = StyleSheet.create({

 about: {

 flex: 1,

 alignItems: 'center',

 justifyContent: 'center',

 },

});

Here we have created a stateless React component, which shows text that is center

aligned. Now we update StackNavigator to add this screen to the stack. Open App.js

and add this route:

const AppNavigator = createStackNavigator({

 Home: {

 screen: HomeScreen

 },

 About: {

 screen: AboutScreen

 }},

 {

 initialRouteName: 'Home',

 }

);

export default class App extends React.Component {

 render() {

 return <AppNavigator />;

 }

}

Chapter 4 Canvas, Brush, and Paint: Working with the User Interface

74

We have also defined an initalRouteName, which will be opened as the first screen

of the application. Now let’s add a button to HomeScreen. The purpose of this button will

be to traverse to AboutScreen when clicked. We will do this by using react-navigation

prop this.props.navigation.navigate('TargetRoute'), which is automatically

injected into your component. Let’s update HomeScreen.js with the following code:

import React from 'react';

import { StyleSheet, Text, View, Button } from 'react-native';

export default class HomeScreen extends React.Component {

 static navigationOptions = {

 title: 'Welcome',

 };

 render() {

 const { navigate } = this.props.navigation;

 return (

 <View style={styles.home}>

 <Text>Home Screen</Text>

 <Button

 title="Go About Page"

 onPress={() =>

 navigate('About')

 }

 />

 </View>

);

 }

}

const styles = StyleSheet.create({

 home: {

 flex: 1,

 alignItems: 'center',

 justifyContent: 'center',

 },

});

Chapter 4 Canvas, Brush, and Paint: Working with the User Interface

75

Let’s test our app in in the simulator:

$ yarn start

Figure 4-2 shows the two screens and how users can navigate between them.

We have used createStackNavigator, which has created screens as a stack that can

be navigated with the back button at the top. It manages a stack of screens to provide a

drill-down interface for hierarchical content.

Let’s customize the header next. You can do this on a global level as well as at the

screen level. We start with the global level. Update App.js with

Figure 4-2.  Navigating using React Navigation

Chapter 4 Canvas, Brush, and Paint: Working with the User Interface

76

}

 }

}

);

Run the app. Figure 4-3 shows the updated header styling for all the screens, but you

can override this for a specific screen by adding this in a component as a static variable.

�NavigatorIOS
If you are only targeting iOS you can also use NavigatorIOS. It wraps UIKit navigation and

allows you to add a backswipe feature to your app. NavigatorIOS manages a stack of view

controllers to provide a drill-down interface for hierarchical content. Now that we know

what NavigatorIOS does, let’s implement it in our project.

Figure 4-3.  Header styling updated

Chapter 4 Canvas, Brush, and Paint: Working with the User Interface

77

Note N avigatorIOS helps with the most basic iOS routing. A route is an object
that describes each view in the navigator.

<NavigatorIOS

 initialRoute={{

 component: HomeScreen,

 title: 'Title for screen',

 passProps: {myProp: 'foo'},

 }}

/>

We have done a little bit of styling in this section, which might be something new for

you if you come from a grid-layout background. React Native uses Flexbox for styling,

which is discussed in detail next.

�Flexbox
In creating the layout in the previous example, you must have seen the flex property

mentioned in the styles. This appears because React Native apps use the Flexbox

layout model.

The React Native Flexbox layout model is inspired by the CSS Flex Box Layout from

CSS3. The React Native team has rewritten this feature specifically for iOS. The main idea

behind Flexbox is being able to create a layout without worrying about different screen

sizes or device orientation. A flex container expands items to fill available free space or

shrinks them to prevent overflow. Let’s get some basic knowledge of Flexbox to expedite

our layout development. First, let’s update the view in HomeScreen.js:

Houseshare/screens/HomeScreen.js

export default class HomeScreen extends React.Component {

 static navigationOptions = {

 title: 'House Share',

 };

 render() {

 const { navigate } = this.props.navigation;

Chapter 4 Canvas, Brush, and Paint: Working with the User Interface

78

 return (

 <View style={styles.container}>

 <View style={styles.topBox} />

 <View style={styles.bottomBox} />

 </View>

);

 }

}

We have created one main view with a style container and two subviews with the

styles topBox and bottomBox. Now, let’s create the styles:

var styles = StyleSheet.create({

 container: {

 flex: 1,

 flexDirection: 'column'

 },

 topBox: {

 flex: 2,

 backgroundColor: '#CCE5FF'

 },

 bottomBox: {

 flex: 1,

 backgroundColor: '#FFFFCC'

 }

});

Turn back to the simulator and refresh the view using Command + R. Now, rotate

the simulator, and you will see it automatically adjust the size of these colored boxes.

Figure 4-4 shows the simulator in portrait mode.

Chapter 4 Canvas, Brush, and Paint: Working with the User Interface

79

Let’s change the simulator to landscape mode (see Figure 4-5). This can be done

easily using Command + Right/Left arrow key (⌘ + Left Arrow). You can see how the box

has adjusted its size, and how the title adjusted its width to use all the available space.

Thanks to Flexbox, a pretty laborious task is simplified.

Figure 4-4.  Screen in portrait mode

Chapter 4 Canvas, Brush, and Paint: Working with the User Interface

80

Now, let’s review the flex properties Flex-direction and flex.

�flexDirection
Flexbox is a single-direction layout concept. flexDirection allows you to define the

direction in which the child elements are going to flow. It can have two values, row and

column. In the previous example we used column. Let’s change it to row here:

container: {

 flex: 1,

 flexDirection: 'row'

}

Turn back to the simulator and refresh the view with Command + R (see Figure 4-6).

Figure 4-5.  Screen in landscape mode

Chapter 4 Canvas, Brush, and Paint: Working with the User Interface

81

You can see how the orientation of the box has changed. Now change the property

flexDirection to column (see Figure 4-7).

Figure 4-6.  Changing the orientation of the box

Chapter 4 Canvas, Brush, and Paint: Working with the User Interface

82

�Flex
You must have seen the flex value in the stylesheet; it can be either integers or decimals,

indicating the relative size of the box:

container: {

 flex: 1,

 flexDirection: 'column'

 },

topBox: {

 flex: 2,

 backgroundColor: '#CCE5FF',

 },

Figure 4-7.  Changing the property to column

Chapter 4 Canvas, Brush, and Paint: Working with the User Interface

83

 bottomBox: {

 flex: 1,

 backgroundColor: '#FFFFCC'

 }

Our view says:

 <View style={styles.container}>

 <View style={styles.topBox} />

 <View style={styles.bottomBox} />

 </View>

flex thus defines the size percentage for the box. We can see that the container has

two views inside, topBox and bottomBox, with flex values of 2 and 1, respectively (see

Figure 4-8).

Figure 4-8.  Container in 2:1 ratio

Chapter 4 Canvas, Brush, and Paint: Working with the User Interface

84

Now, update the view and add one topBox view inside the container view:

 <View style={styles.container}>

 <View style={styles.topBox} />

 <View style={styles.bottomBox} />

 <View style={styles.topBox} />

 </View>

Refresh the view. The container has three views now: topBox, bottomBox, and then

topBox again (see Figure 4-9).

This will divide the view into a 2:1:2 ratio, because their flex values are in the

ratio 2:1:2.

Figure 4-9.  Container with three views

Chapter 4 Canvas, Brush, and Paint: Working with the User Interface

85

To get a better sense of how this works, let’s change the flex values and see how that

changes our screen. Let’s change the flex value of topBox to 1. Update the CSS to:

 container: {

 flex: 1,

 flexDirection: 'column'

 },

topBox: {

 flex: 1,

 backgroundColor: '#CCE5FF',

 },

 bottomBox: {

 flex: 1,

 backgroundColor: '#FFFFCC'

 }

Refresh the view to see the changes, as shown in Figure 4-10.

Figure 4-10.  View in 1:1:1 ratio

Chapter 4 Canvas, Brush, and Paint: Working with the User Interface

86

We can see that now the screen is divided in a ratio of 1:1:1, because the flex values

of the views are in a ratio of 1:1:1. With Flexbox, it is easy to create layouts that can resize

according to screen size and orientation. This is just an introduction to Flexbox; we

explain more properties throughout the book as and when needed. You can also find

more options at https://facebook.github.io/react-native/docs/flexbox.html.

�Images
React Native has a built-in component, Image, that will help us to display images,

including network images, temporary local images, and also images from a local disk,

such as the Camera Roll. To start, we display local images.

Copy a home image from the assets folder and update HomeScreen.js:

import React from 'react';

import { StyleSheet, Text, View, Button, Image} from 'react-native';

export default class HomeScreen extends React.Component {

 static navigationOptions = {

 title: 'House Share',

 };

 render() {

 const { navigate } = this.props.navigation;

 return (

 <View style={styles.container}>

 <View style={styles.topBox} >

 <Image

 style={styles.homeBanner}

 source={require('../assets/house.png')}

 />

 </View>

 <View style={styles.bottomBox} />

 </View>

);

 }

}

Chapter 4 Canvas, Brush, and Paint: Working with the User Interface

https://facebook.github.io/react-native/docs/flexbox.html

87

const styles = StyleSheet.create({

 container: {

 flex: 1,

 flexDirection: 'column'

 },

 topBox: {

 flex: 1,

 backgroundColor: '#C0C0C0'

 },

 bottomBox: {

 flex: 2,

 backgroundColor: '#fff'

 },

 homeBanner: {

 bottom:0,

 flex: 1,

 alignSelf: 'stretch',

 width: undefined,

 height: undefined,

 }

});

Now run the simulator. The results are shown in Figure 4-11.

Chapter 4 Canvas, Brush, and Paint: Working with the User Interface

88

We can also give any server image URL as the source, and the Image component

will take care of loading it from the network. For a different screen size you can also give

images of a different density by using the @2x and @3x suffixes in the same folder. We will

load an image from a server later in this chapter.

�TouchableHighlight
Touch is one of the ways to interact with a view in an application. TouchableHighlight

is a React Native component that helps us create clickable views that give a proper

response in the event of a touch. To understand TouchableHighlight with an example,

let’s continue building our app by adding one more view to list the housing options.

This will be done by clicking on the show house image, which will redirect to another

component.

Figure 4-11.  Adding images

Chapter 4 Canvas, Brush, and Paint: Working with the User Interface

89

Let’s add the TouchableHighlight component, making the image we have added

into a clickable view. Update the view, remove View, and add TouchableHighlight in

HomeScreen.js:

<View style={styles.container}>

 <TouchableHighlight style={styles.topBox} onPress={() =>

 navigate('HomeListScreen')}>

 <Image

 style={styles.homeBanner}

 source={require('../assets/house.png')}

 />

 </TouchableHighlight>

 <View style={styles.bottomBox} />

 </View>

Let us review what we have done here; we have added an onPress attribute to our

TouchableHighlight component for the List Properties section. Whenever someone

presses the List Properties image, it calls navigate('HomeListScreen').

We have also created a HomeListScreen.js page in the screens folder:

import React from 'react';

import { Text, View} from 'react-native';

export default HomeListScreen = () => {

 return (

 <View>

 <Text> Home List Screen </Text>

 </View>

);

}

Finally, update this page in App.js:

import HomeListScreen from './screens/HomeListScreen';

const AppNavigator = createStackNavigator({

 Home: {

 screen: HomeScreen

 },

Chapter 4 Canvas, Brush, and Paint: Working with the User Interface

90

 About: {

 screen: AboutScreen

 },

 HomeListScreen: {

 screen: HomeListScreen

 }

 },

 {

 initialRouteName: 'Home',

 navigationOptions: {

 headerStyle: {

 backgroundColor: '#48BBEC',

 },

 headerTintColor: '#fff',

 headerTitleStyle: {

 fontWeight: 'bold',

 }

 }

}

);

Refresh the app in the simulator and you’ll see the image. When you click that image

the new page shown in Figure 4-12 appears.

Chapter 4 Canvas, Brush, and Paint: Working with the User Interface

91

Now we will load the image from a server and then create a nice-looking property

view. This will look something like Figure 4-13.

Figure 4-13.  Property name and address

Figure 4-12.  Clickable View with TouchableHighlight

Chapter 4 Canvas, Brush, and Paint: Working with the User Interface

92

Create a components folder in the root folder and create HouseItem.js inside the

components folder:

import React from 'react';

import { StyleSheet, Text, View, Image } from 'react-native';

export default HomeItem = (props) => {

 return (<View style={styles.row} >

 <Image

 source={{uri: props.images}}

 style={styles.thumbnail}/>

 <View style={styles.rightBox}>

 <Text style={styles.name}>{props.name}</Text>

 <Text style={styles.address}>{props.address}</Text>

 </View>

 </View>

);

}

const styles = StyleSheet.create({

 row: {

 flex: 1,

 flexDirection: 'row',

 alignItems: 'center',

 backgroundColor: '#F5FCFF',

 borderWidth: 1,

 borderColor: '#d6d7da',

 },

 thumbnail: {

 width: 53,

 height: 81,

 },

 rightBox: {

 flex: 1,

 },

Chapter 4 Canvas, Brush, and Paint: Working with the User Interface

93

 name: {

 fontSize: 20,

 marginBottom: 8,

 textAlign: 'center',

 },

 address: {

 textAlign: 'center',

 },

});

Now open HomeListScreen.js:

HouseShare/screens/HomeScreen.js

import React from 'react';

import { Text, View} from 'react-native';

import HouseItem from '../components/HouseItem';

export default HomeListScreen = () => {

 return (

 �<HouseItem name=" Mr. Johns Conch house" address=" 12th Street,

Neverland" images='http://hmp.me/ol5'/>

);

}

Let’s refresh our application in the iOS simulator to see the changes (see Figure 4-14).

Chapter 4 Canvas, Brush, and Paint: Working with the User Interface

94

�ListView
In the previous section, we populated one element. In this section, we populate a

list of data using ListView. Before we embark on that, let’s learn a bit more about a

different way to show the ListView component in React Native. React Native has two

components: FlatList and SectionList.

FlatList is a component designed for populating vertically scrolling lists of dynamic

data. The minimal steps are to create a FlatList data source and populate it with an

array of data similar to the native TableView data source.

ListView looks very similar to TableView, but the implementation doesn’t actually

use TableView. Rather, it uses ScrollView behind the scenes. Features like swipe to

delete, reordering, and so on, cannot be used directly through ListView.

Figure 4-14.  Thumbnail image with property name and address

Chapter 4 Canvas, Brush, and Paint: Working with the User Interface

95

We will show the list of house address, as an example of the most common

representation of data in mobile devices. With our HouseShare app, we will create a table

view showing a list of properties, each of which has a thumbnail image to the left side.

The rest of the details should appear next to it.

To keep things simple for this chapter, we mock up data instead of pulling them

from some external service (later, you will learn how to pull the same data from an

external API). With these data, we will show the name of the property, its address, and a

thumbnail picture. Replace the following code in HouseListScreen.js:

HouseShare/screens/HomeListScreen.js

import React from 'react';

import { Text, View, FlatList } from 'react-native';

import HouseItem from '../components/HouseItem';

const MOCK_DATA = [

 �{ name: 'Mr. Johns Conch house', address: '12th Street, Neverland',

images: 'http://hmp.me/ol5'},

 �{name: 'Mr. Pauls Mansion', address: '625, Sec-5, Ingsoc',

images: 'http://hmp.me/ol6'},

 �{name: 'Mr. Nalwayas Villa', address: '11, Heights, Oceania',

images: 'http://hmp.me/ol7'},

 �{name: 'Mr. Johns Conch house', address: '12th Street, Neverland',

images: 'http://hmp.me/ol5'},

 �{name: 'Mr. Pauls Mansion', address: '625, Sec-5, Ingsoc', images:

'http://hmp.me/ol6'},

 �{name: 'Mr. Nalwayas Villa', address: '11, Heights, Oceania', images:

'http://hmp.me/ol7'},

 �{name: 'Mr. Johns Conch house', address: '12th Street, Neverland',

images: 'http://hmp.me/ol5'},

 �{name: 'Mr. Pauls Mansion', address: '625, Sec-5, Ingsoc', images:

'http://hmp.me/ol6'},

 �{name: 'Mr. Nalwayas Villa', address: '11, Heights, Oceania', images:

'http://hmp.me/ol7'}

];

Chapter 4 Canvas, Brush, and Paint: Working with the User Interface

96

export default HomeListScreen = () => {

 return (

 <FlatList

 data={MOCK_DATA}

 renderItem={({item}) => <HouseItem {...item}/>}

 keyExtractor={(item, index) => index.toString()}

 />

);

}

Refresh your application in the simulator to see the updated view, as shown in

Figure 4-15.

Figure 4-15.  Scrollable addresses

Chapter 4 Canvas, Brush, and Paint: Working with the User Interface

97

Great! Now we have a list of properties that we can scroll through. Let’s review the

implementation now:

import { Text, View, FlatList } from 'react-native';

import HouseItem from '../components/HouseItem';

We have once again specified what all components will be using in this section.

There is a new component added, FlatList .

Next, we created MOCK_DATA, which is an array of hashes with property details:

var MOCK_DATA =[

 �{name: 'Mr. Johns Conch house', address: '12th Street, Neverland',

images: {thumbnail: 'http://hmp.me/ol5'}},

 �{name: 'Mr. Pauls Mansion', address: '625, Sec-5, Ingsoc', images:

{thumbnail: 'http://hmp.me/ol6'}},

 �{name: 'Mr. Nalwayas Villa', address: '11, Heights, Oceania', images:

{thumbnail: 'http://hmp.me/ol7'}},

 �{name: 'Mr. Johns Conch house', address: '12th Street, Neverland',

images: {thumbnail: 'http://hmp.me/ol5'}},

 �{name: 'Mr. Pauls Mansion', address: '625, Sec-5, Ingsoc', images:

{thumbnail: 'http://hmp.me/ol6'}},

 �{name: 'Mr. Nalwayas Villa', address: '11, Heights, Oceania', images:

{thumbnail: 'http://hmp.me/ol7'}},

 �{name: 'Mr. Johns Conch house', address: '12th Street, Neverland',

images: {thumbnail: 'http://hmp.me/ol5'}},

 �{name: 'Mr. Pauls Mansion', address: '625, Sec-5, Ingsoc', images:

{thumbnail: 'http://hmp.me/ol6'}},

 �{name: 'Mr. Nalwayas Villa', address: '11, Heights, Oceania', images:

{thumbnail: 'http://hmp.me/ol7'}}

];

In this code we added more entries to create a FlatList view. Now, let’s look at the

changes we made in our component:

<FlatList

 data={MOCK_DATA}

 renderItem={({item}) => <HouseItem {...item}/>}

 keyExtractor={(item, index) => index.toString()}

 />

Chapter 4 Canvas, Brush, and Paint: Working with the User Interface

98

We have passed three props in the FlatList component: data, renderItem, and

keyExtractor:

•	 data is the source of information for the list.

•	 renderItem takes one item from the source and returns a formatted

component to render.

•	 keyExtractor tells the list to use the IDs for the React keys instead of

the default key property.

�ScrollView
Although we are not using ScrollView in our HouseShare application, it can be used as

an alternate way to populate a list just like we used ListView. ScrollView is one of the

most versatile and useful controls, as it is a great way to list content that is greater in size

than the screen size.

We can add a basic ScrollView by using the following code:

 <ScrollView>

 <Text>Scroll me plz</Text>

 <Image source={{uri: "'http://hmp.me/ol5", width: 64, height: 64}} />

 �<Image source={{uri: "'http://hmp.me/ol5", width: 64,

height: 64}} />

 �<Image source={{uri: "'http://hmp.me/ol5", width: 64, height: 64}} />

 <Image source={{uri: "'http://hmp.me/ol5", width: 64, height: 64}} />

 <Image source={{uri: "'http://hmp.me/ol5", width: 64, height: 64}} />

 <Image source={{uri: "'http://hmp.me/ol5", width: 64, height: 64}} />

 <Image source={{uri: "'http://hmp.me/ol5", width: 64, height: 64}} />

</ScrollView>

This is basic ScrollView; if we want to scroll horizontally and we want to lock that

direction, we can do so with the following:

 <ScrollView

 horizontal={true}

 directionalLockEnabled={true}

 >

Chapter 4 Canvas, Brush, and Paint: Working with the User Interface

99

There are many other options available with ScrollView; for documentation

and examples, you can visit https://facebook.github.io/react-native/docs/

scrollview.html.

�<ScrollView> vs. <FlatList>
ScrollView is easy to use and it simply renders all its React child components at once,

whereas FlatList renders items lazily, just when they are about to appear, and removes

items that scroll far off screen to save memory and processing time.

�Animations
Animations are crucial when it comes to creating a good user experience. If you think

of any popular mobile app, you will likely find animation at the center of an immersive

user experience. React Native provides an animation API to perform different types of

animations with ease.

There are many different Animated methods that you can use to create animations,

including these:

•	 Animated.timing(): Animation based on time range.

•	 Animated.decay(): Animation starts with an initial velocity and

gradually slows to a stop.

•	 Animated.spring(): This is a simple single-spring physics model that

tracks velocity state to create fluid motions as the toValue updates,

and can be chained together.

•	 Animated.parallel(): This starts an array of animations all at the

same time.

•	 Animated.sequence():  We can perform an array of animations in

order, waiting for each to complete before starting the next.

Let’s add some animation in our HouseShare app. Create a file FadeInView.js in the

components folder and add the following code:

HouseShare/components/FadeInView.js

import React from 'react';

import { Animated, Text, View } from 'react-native';

Chapter 4 Canvas, Brush, and Paint: Working with the User Interface

https://facebook.github.io/react-native/docs/scrollview.html
https://facebook.github.io/react-native/docs/scrollview.html

100

export default class FadeInView extends React.Component {

 state = {

 fadeAnim: new Animated.Value(0),

 }

 componentDidMount() {

 Animated.timing(

 this.state.fadeAnim,

 {

 toValue: 1,

 duration: 4000,

 }

).start();

 }

 render() {

 let { fadeAnim } = this.state;

 return (

 <Animated.View

 style={{

 ...this.props.style,

 opacity: fadeAnim,

 }}

 >

 {this.props.children}

 </Animated.View>

);

 }

}

We have defined a state this.state.fadeAnim, which is the opacity value. We

have defined this value from 0 as initial state. The opacity property on the View is

then mapped to this animated value. We have used Animated.timing to increase the

Chapter 4 Canvas, Brush, and Paint: Working with the User Interface

101

opacity from 0 to 1 in 4,000 ms. Next we wrap FadeInView with any View and it can

FadeIn that View for 4,000 ms. Let’s open HomeItem.js and replace the root View with

FadeInView, as shown:

HouseShare/components/HomeItem.js

<FadeInView style={styles.row} >

 <Image

 source={{uri: props.images}}

 style={styles.thumbnail}/>

 <View style={styles.rightBox}>

 <Text style={styles.name}>{props.name}</Text>

 <Text style={styles.address}>{props.address}</Text>

 </View>

 </FadeInView>

Run the app and you can see the FadeIn animation on the Home List page. There are

several different configurations available, which are documented at https://facebook.

github.io/react-native/docs/animated#configuring-animations.

�Summary
In this chapter, we learned some of the fundamentals that are essential for creating a

stunning user experience. We covered the following:

•	 React Navigation

•	 NavigatorIOS for back-swipe functionality across apps

•	 The Flexbox layout model

•	 TouchableHighlight, a wrapper for making views respond properly

to touches

•	 Using ListView for efficient scrolling of vertical lists

•	 Using ScrollView for listing content larger than the screen size

•	 Using the Animate API of React Native to animate a View.

The next chapter covers different device capabilities like MapView, AsyncStorage,

Native Alert, WebView, and deep linking.

Chapter 4 Canvas, Brush, and Paint: Working with the User Interface

https://facebook.github.io/react-native/docs/animated#configuring-animations
https://facebook.github.io/react-native/docs/animated#configuring-animations

103
© Akshat Paul and Abhishek Nalwaya 2019
A. Paul and A. Nalwaya, React Native for Mobile Development, https://doi.org/10.1007/978-1-4842-4454-8_5

CHAPTER 5

Exploring Device
Capabilities

Software will give you respect, but hardware will give you the power.

—Akshat Paul

Mobile devices are not just limited to making phone calls; they are some of the most

advanced pieces of consumer technology ever invented. Their real power lies in the

various capabilities that reside in a smartphone. The iOS and Android platforms allow us

to use various device features to make a more captivating application experience for our

users. This chapter explores the following device capabilities:

•	 MapView and GeoLocation

•	 AsyncStorage

•	 Native Alert

•	 WebView

•	 Deep linking

�MapView and GeoLocation
In this section, we will learn how to use iOS and Android location services with a

React Native application. Location services are used very often in many popular apps,

especially in travel, navigation, ride sharing, and so on. This single feature significantly

improves the user experience and the bonus is that it’s very easy to implement.

104

Before we learn about GeoLocation, though, we need to learn about MapView, which

is essentially designed to show a location on a map. We use the react-native-maps npm

module(https://www.npmjs.com/package/react-native-maps), which is a component

for iOS and Android to show maps. Access your terminal to create an application to

implement this capability:

$ expo init GeoLocationMaps

This creates a React Native app with Expo CLI. Next, add the react-native-maps

npm module, using yarn:

$ yarn add react-native-maps

react-native-maps (https://github.com/react-community/react-native-maps)

is one of the best modules for map views. It includes numerous customization options

available to help you design the best possible experience with maps.

Because App.js is the entry point in a React Native app, update the following code in

that file:

GeoLocationMaps/App.js

import React from 'react';

import { StyleSheet, Text, View } from 'react-native';

import MapView from 'react-native-maps';

export default class App extends React.Component {

 constructor(props) {

 super(props);

 this.state = {

 region: {

 latitude: 37.3230,

 longitude: -122.0322,

 latitudeDelta: 0.0922,

 longitudeDelta: 0.0922,

 }

 };

 }

Chapter 5 Exploring Device Capabilities

https://www.npmjs.com/package/react-native-maps
https://github.com/react-community/react-native-maps)

105

 render() {

 return (

 <MapView

 style={styles.container}

 initialRegion={this.state.region}

 / >

);

 }

}

const styles = StyleSheet.create({

 container: {

 flex: 1,

 },

});

Now build your application by executing following the command, and open an iOS

or Android simulator:

$ yarn start

You will see the map shown in Figure 5-1.

Chapter 5 Exploring Device Capabilities

106

�Reviewing the GeoLocationMap Code
Let’s now understand what we have done in this part of our program.

import React from 'react';

import { StyleSheet, Text, View } from 'react-native';

import MapView from 'react-native-maps';

We have imported the MapView component from react-native-maps. Next, we used

the MapView component to plot a map:

export default class App extends React.Component {

 constructor(props) {

 super(props);

 this.state = {

Figure 5-1.  GeoLocation MapView

Chapter 5 Exploring Device Capabilities

107

 region: {

 latitude: 37.3230,

 longitude: -122.0322,

 latitudeDelta: 0.0922,

 longitudeDelta: 0.0922,

 }

 };

 }

 render() {

 return (

 <MapView

 style={styles.container}

 initialRegion={this.state.region}

 / >

);

 }

}

Here, we have set the initial state for the region with certain latitude, longitude,

latitudeDelta, and longitudeDelta parameters, which will be later set when we

render the function with the MapView component. In the MapView component, we are

using the region state, which is supplied with latitude, longitude, longitudeDelta,

and latitudeDelta. These should always be numbers (integer or float), as they help

us plot a specific region on the map. Finally, we have added some style with Flex and

registered our component.

iOS devices show Apple Maps by default. We can choose to use a different provider

like Google. Update provider to google with this code:

 <MapView

 style={styles.container}

 provider="google"

 initialRegion={this.state.region}

 / >

Now run the application. You can see that instead of Apple Maps, it loads Google

Maps (Figure 5-2).

Chapter 5 Exploring Device Capabilities

108

There are numerous customization options available. You can check https://github.

com/react-community/react-native-maps/blob/master/docs/mapview.md for

more details.

�Adding Annotation on a Map
Annotations provide a way to highlight specific coordinates on a map. This valuable

information is commonly added for any mobile application using a geolocation feature.

Let’s add an annotation marker to our application and update initial state with the new

state annotations, with parameters latitude and longitude for the marker.

 constructor(props) {

 super(props);

 this.state = {

Figure 5-2.  GeoLocation with Google Maps

Chapter 5 Exploring Device Capabilities

https://github.com/react-community/react-native-maps/blob/master/docs/mapview.md
https://github.com/react-community/react-native-maps/blob/master/docs/mapview.md

109

 region: {

 latitude: 37.3230,

 longitude: -122.0322,

 latitudeDelta: 0.0922,

 longitudeDelta: 0.0922,

 },

 coordinate: {

 latitude: 37.3230,

 longitude: -122.0322,

 },

 };

 }

Now update the MapView component with the new prop called coordinate:

 <MapView

 style={styles.container}

 provider="google"

 initialRegion={this.state.region}

 >

 <Marker coordinate={this.state.coordinate} />

 </MapView>

Refresh and observe the changes. You will see something like the screen shown in

Figure 5-3.

Chapter 5 Exploring Device Capabilities

110

�Displaying the Latitude and Longitude of
the Current Location
In this final part of our geolocation application, we will display our present latitude

and longitude on the screen. In the previous example, we had a constant location; in

this part, we will move to our current location in real time. That sounds like something

exciting, so let’s start building it. There are two ways to check for the current location on

our maps. One is to simply add showsUserLocation={true} to the MapView component.

Another way is to use NSLocationWhenInUseUsageDescription geolocation. Let’s try

the first option. If you are using gelocation on an existing project, you need to update

NSLocationWhenInUseUsageDescription in info.plist for iOS and <uses-permission

android:name="android.permission.ACCESS_FINE_LOCATION" />

Figure 5-3.  MapView with added parameters

Chapter 5 Exploring Device Capabilities

111

in AndroidManifest.xml for Android. Because we have created a project with Expo,

which initially uses react-native init, gelocation is enabled by default.

Update the App.js Marker component with the following code:

 <MapView

 style={styles.container}

 provider="google"

 showsUserLocation={true}

 initialRegion={this.state.region}

 >

 <Marker coordinate={this.state.coordinate} />

 </MapView>

Now refresh the application to load it on the iOS simulator and you will see

something similar to Figure 5-4.

Figure 5-4.  Access location prompt

Chapter 5 Exploring Device Capabilities

112

If we allow this request, the map will move to the location we specified in our code;

in this case it’s Apple’s headquarters in Cupertino, California (Figure 5-5).

Now let’s use the other method to get the user’s current location, using the

Geolocation API, which is extended from the Geolocation web spec (https://

developer.mozilla.org/en-US/docs/Web/API/Geolocation). Let’s first update

the ref for MapView to this.map, so that we can use it:

 <MapView

 ref={ref => { this.map = ref; }}

 style={styles.container}

 provider="google"

 showsUserLocation={true}

Figure 5-5.  Moving to a specified map location in the code

Chapter 5 Exploring Device Capabilities

https://developer.mozilla.org/en-US/docs/Web/API/Geolocation
https://developer.mozilla.org/en-US/docs/Web/API/Geolocation

113

 followUserLocation={true}

 loadingEnabled={true}

 initialRegion={this.state.region}

 >

 <Marker coordinate={this.state.coordinate} />

 </MapView>

Now add navigator.geolocation.watchPosition in the same file:

 componentDidMount() {

 navigator.geolocation.watchPosition(

 (position) => {

 console.log(position);

 this.map.animateToRegion({

 latitude: position.coords.latitude,

 longitude: position.coords.longitude,

 latitudeDelta: 0.005,

 longitudeDelta: 0.005

 });

 },

 (error) => console.log(error.message),

 { enableHighAccuracy: false, timeout: 200000, maximumAge: 1000 },

);

 }

Here, in componentDidMount, we get the current position from the watchPosition

function in navigator.geolocation, which continuously checks for location

because we’ll need to get the location coordinates as the user moves. The Google

Maps geolocation API has a watchPosition method that will help us get the location

coordinates whenever they change. There are also other functions available like

getCurrentPosition, which checks the current location just once when the app is

refreshed (Figure 5-6).

Chapter 5 Exploring Device Capabilities

114

Because we have a console log, we can see the position as it appears in the console,

as shown in Figure 5-7.

Figure 5-7.  Current location displayed in the console log

Figure 5-6.  Map showing the current location

Chapter 5 Exploring Device Capabilities

115

We can now see the current location. Next, let’s try to change the location. To change

a location, from the Simulator menu bar, select Debug ➤ Location ➤ Freeway Drive (see

Figure 5-8). Freeway Drive will continuously change the simulator location.

We can see that the location is changed dynamically in the app. Because we chose

to use Freeway Drive, we can see that the location and maps continuously move along a

freeway (Figure 5-9).

Figure 5-8.  Change location using Simulator

Chapter 5 Exploring Device Capabilities

116

�AsyncStorage
AsyncStorage is a key/value-based storage system. It can be easily implemented and is

globally available to the app. This persistence system is simple and asynchronous, and

also a recommended way to store data. To create an AsyncStorage example application,

execute the following command:

$expo init AsyncStorage

Add the following code in App.js:

import React from 'react';

import { StyleSheet, Text, View, TextInput, Button, AsyncStorage } from

'react-native';

Figure 5-9.  Location changed to freeway

Chapter 5 Exploring Device Capabilities

117

export default class App extends React.Component {

 constructor(props) {

 super(props);

 this.state = {storedText: '', inputBoxText: ''}

}

 async componentDidMount() {

 this.setState({storedText: await this.retrieveData()});

 }

 onPressSave = async () => {

 try {

 �await AsyncStorage.setItem('@AsyncStorageExample:someKey', this.

state.inputBoxText);

 this.setState({storedText: this.state.inputBoxText})

 } catch (error) {

 console.log("Error in saving data");

 }

 }

 retrieveData = async () => {

 try {

 �const value = await AsyncStorage.getItem('@AsyncStorageExample:someKey');

 return value;

 } catch (error) {

 console.log("Error in Fetching Data")

 }

 }

 render() {

 return (

 style={styles.textField}

 placeholder="Type here!"

 onChangeText={(text) => this.setState({inputBoxText: text})}

 />

 onPress={this.onPressSave}

 title="Save"

 color="blue"

Chapter 5 Exploring Device Capabilities

118

 accessibilityLabel="Click will save to database"

 />

 Text from local Storage:

 {this.state.storedText}

);

 }

}

const styles = StyleSheet.create({

 container: {

 flex: 1,

 backgroundColor: '#fff',

 alignItems: 'center',

 justifyContent: 'center',

 },

 header: {

 fontFamily: 'Georgia',

 fontSize: 20,

 fontWeight: 'bold',

 paddingTop: 40,

 },

 text: {

 fontFamily: 'Georgia',

 fontSize: 18,

 fontStyle: 'italic',

 paddingTop: 10,

 },

 textField: {

 height: 40,

 width: 300,

 borderColor: '#C0C0C0',

 borderBottomWidth: 1,

 }

});

Let’s build our application to see the results. You can enter the text in a text box as

shown in Figure 5-10 and then click Save.

Chapter 5 Exploring Device Capabilities

119

Once that is done, refresh for the result shown in Figure 5-11.

Figure 5-10.  Storage is updated

Chapter 5 Exploring Device Capabilities

120

This time the text below, “This text is from local storage,” is coming from the

AsyncStorage mechanism that we have put in place.

�Reviewing the AsyncStorage Code
In this example, we have included the AsyncStorage default component in our list of

components to be used for the sample application. Let’s go through how exactly the code

for this example works.

import React from 'react';

import { StyleSheet, Text, View, TextInput, Button, AsyncStorage } from

'react-native';

We use this AsyncStorage React component within our App component. Previously,

we also specified a key that we will use with AsyncStorage.

Figure 5-11.  Text from the AsyncStorage mechanism

Chapter 5 Exploring Device Capabilities

121

Inside our App component we have set up constructor and componentDidMount

methods and also created onPressSave and retrieveData methods. Let’s discuss them

one by one.

 constructor(props) {

 super(props);

 this.state = {storedText: '', inputBoxText: ''}

 }

In constructor we have specified blank values for storedText and inputBoxText,

which we will keep updating as and when their state changes.

 async componentDidMount() {

 this.setState({storedText: await this.retrieveData()});

 }

componentDidMount is invoked only at the .time of initial rendering and is

responsible for showing the text below “This text is from local storage,” once we have

updated the storage and refreshed the app again. We have used async and await

for calling retrieveData, which means the execution will wait until the function is

completely executed.

 retrieveData = async () => {

 try {

 const value = await AsyncStorage.getItem('@AsyncStorageExample:someKey');

 return value;

 } catch (error) {

 console.log("Error in Fetching Data")

 }

 }

The method retrieveData is used to retrieve the value stored in local storage.

Calling AsyncStorage.getItem retrieves the value stored in local storage.

 onPressSave = async () => {

 try {

 �await AsyncStorage.setItem('@AsyncStorageExample:someKey', this.

state.inputBoxText);

 this.setState({storedText: this.state.inputBoxText})

Chapter 5 Exploring Device Capabilities

122

 } catch (error) {

 console.log("Error in saving data");

 }

 }

Updating storage updates AsyncStorage values, which are persisted permanently.

 render() {

 return (

 <View style={styles.container}>

 <TextInput

 style={styles.textField}

 placeholder="Type here!"

 onChangeText={(text) => this.setState({inputBoxText: text})}

 />

 <Button

 onPress={this.onPressSave}

 title="Save"

 color="blue"

 accessibilityLabel="Click will save to database"

 />

 <Text style={styles.header}>Text from local Storage: </Text>

 <Text style={styles.text}>{this.state.storedText}</Text>

 </View>

);

 }

}

The preceding code sets up various sections of our AsyncStorageExample

component. Here, we can change a text input field to update the textInputMessage

state. We also have an onPress prop for the TouchableHighlight component, which

calls the updatedStorage method and persists the values permanently. In the end, we

display the saved message by accessing the present state of the message.

const styles = StyleSheet.create({

 container: {

 flex: 1,

Chapter 5 Exploring Device Capabilities

123

 backgroundColor: '#fff',

 alignItems: 'center',

 justifyContent: 'center',

 },

 header: {

 fontFamily: 'Georgia',

 fontSize: 20,

 fontWeight: 'bold',

 paddingTop: 40,

 },

 text: {

 fontFamily: 'Georgia',

 fontSize: 18,

 fontStyle: 'italic',

 paddingTop: 10,

 },

 textField: {

 height: 40,

 width: 300,

 borderColor: '#C0C0C0',

 borderBottomWidth: 1,

 }

});

Finally, we set up a UI style with some self-explanatory Flex settings and register our

AsyncStorageExample component.

�Native Alert
Alerts are used to provide important information to application users. Basic alerts

consist of a dialog box with a specific title, message, and buttons. Occasionally alert

boxes appear in an application to display a piece of important information. The buttons

for an alert could either be a simple OK to proceed with the app, or OK, Cancel, Ask Me

Later, and so on, which require the user to make a decision. Tapping this button could

be linked to execute an inPress callback to execute a piece of code. By default an alert

dialog box will have one button.

Chapter 5 Exploring Device Capabilities

124

Let’s create a project to understand more about Native Alert:

$ expo init NativeAlertApp

React Native provides the component Alert that works for both iOS and Android.

Let’s add a button that will open an alert box when clicked. Update App.js with the

following code:

import React from 'react';

import { StyleSheet, Text, View, Button, Alert } from 'react-native';

export default class App extends React.Component {

 onPressButton1() {

 Alert.alert(

 'Alert Title',

 'Alert Message',

)

 }

 render() {

 return (

 <View style={styles.container}>

 <Button

 onPress={this.onPressButton1}

 title="Button 1"

 color="#841584"

 accessibilityLabel="Learn more about Button 1"

 />

 </View>

);

 }

}

const styles = StyleSheet.create({

 container: {

 flex: 1,

 backgroundColor: '#fff',

Chapter 5 Exploring Device Capabilities

125

 alignItems: 'center',

 justifyContent: 'center',

 },

});

Let’s build this application and test it in the simulator. Figure 5-12 shows the result.

Tap the Button 1 button to see an alert box, as shown in the example in Figure 5-13.

Figure 5-12.  A button that will open an alert dialog box when clicked

Chapter 5 Exploring Device Capabilities

126

�Reviewing the NativeAlert Code
Now that you have created a new NativeAlert project, create a new NativeAlert

component:

export default class App extends React.Component {

 onPressButton1() {

 Alert.alert(

 'Alert Title',

 'Alert Message',

)

 }

 render() {

 return (

Figure 5-13.  An alert dialog box

Chapter 5 Exploring Device Capabilities

127

 <View style={styles.container}>

 <Button

 onPress={this.onPressButton1}

 title="Button 1"

 color="#841584"

 accessibilityLabel="Learn more about Button 1"

 />

 </View>

);

 }

}

In the component NativeAlert, we have used onPress callback. The Alert method

passes the strings 'Alert Title' and 'Alert Message', which produce an alert dialog

box containing a title, a message, and a button. Alert provides two methods, alert and

prompt, as shown next. Alert creates and displays an alert, whereas prompt creates and

displays a prompt to enter some text.

static alert(title: string, message?: string, buttons?: Array<{ text:

?string; onPress?: ?Function; }>, type?: string)

static prompt(title: string, value?: string, buttons?: Array<{ text:

?string; onPress?: ?Function; }>, callback?: Function)

�Extending the NativeAlert Example
Now, to add some more buttons to the application, replace the following code for your

NativeAlert component in App.js:

export default class App extends React.Component {

 onPressButton1() {

 Alert.alert(

 'Alert Title',

 'Alert Message',

)

 }

 onPressButton2() {

Chapter 5 Exploring Device Capabilities

128

 Alert.alert(

 'Alert Title',

 'Alert Message with Buttons',

 [

 {text: 'Button 1', onPress: () => console.log('Button 1 pressed')},

 {text: 'Button 2', onPress: () => console.log('Button 2 pressed')},

 �{text: 'Cancel', onPress: () => console.log('Cancel Pressed'), style:

'cancel'},

],

)

 }

 render() {

 return (

 <View style={styles.container}>

 <Button

 onPress={this.onPressButton1}

 title="Button 1"

 color="#841584"

 accessibilityLabel="Learn more about Button 1"

 />

 <Button

 onPress={this.onPressButton2}

 title="Button 2"

 color="#841584"

 accessibilityLabel="Learn more about Button 2"

 />

 </View>

);

 }

}

Let’s refresh our view to see the changes made in Figure 5-14.

Chapter 5 Exploring Device Capabilities

129

Click Button 2 to view the result shown in Figure 5-15.

Figure 5-14.  Two buttons added on the screen

Chapter 5 Exploring Device Capabilities

130

Tapping Button 2 fires an onPress callback that uses the alert method of Alert

to set title, message, and buttons for our alert box. In this part of the NativeAlert

component we have three buttons.

�WebView
WebView is responsible for rendering web content in a Native view. That simply means

WebView is an environment for loading a web URL inside your React Native application.

WebView allows you to display web content as part of your app, but it lacks some of the

features of fully developed browsers. Let’s begin by generating an application for this:

$ react-native init WebViewApp

$yarn add react-native-webview

$react-native link react-native-webview

Figure 5-15.  Select Button 1, Button 2, or Cancel

Chapter 5 Exploring Device Capabilities

131

Now use one of the following commands to build the app. The first command is for

an iOS simulator and the second one is for an Android simulator.

$react-native run-ios

$react-native run-android

Next, open App.js and replace its code with the following code:

import React, {Component} from 'react';

import {StyleSheet, SafeAreaView} from 'react-native';

import { WebView } from "react-native-webview";

export default class App extends Component<Props> {

 render() {

 return (

 <WebView

 style={{marginTop: 20}}

 source={{ uri: "https://www.wikipedia.org" }}

 />);

 }

}

const styles = StyleSheet.create({

 container: {

 flex: 1,

 backgroundColor: '#F5FCFF',

 },

});

Let’s build the application by running:

react-native run-ios

The result is shown in Figure 5-16.

Chapter 5 Exploring Device Capabilities

132

�Reviewing the WebView Code
In this example, we have created a component App that returns a WebView. The following

code creates a view with our desired URL loaded in the WebView.

export default class App extends Component<Props> {

 render() {

 return (

 <WebView

 style={{marginTop: 20}}

 source={{ uri: "https://www.wikipedia.org" }}

Figure 5-16.  WebView with a URL

Chapter 5 Exploring Device Capabilities

133

 />

);

 }

}

�Deep Linking
Deep linking is a technique that allows an app to be opened to a specific UI or resource,

in response to some external event. The deep refers to the depth of the page in an app’s

hierarchical structure of pages. This is a very important feature for user engagement, as

it also makes an app more responsive and capable of navigation to arbitrary content in

response to external events like push notifications, e-mails, web links, and so on.

There are two ways of implementing deep linking: using a URL scheme or universal

links. Although URL schemes are a well-known way of using deep linking, universal links

are the new method Apple has implemented to easily connect your web page and your

app under the same link. We implement URL schemes in our example that will handle

external URIs. Let’s suppose that we want a URI like myapp://article/4 to open our app

and link straight into an article screen that shows article number 1.

We are using The React Native CLI instead of Expo CLI because we want to use

customization in iOS and Android code. We can create the project using Expo and can

then eject also.

$ react-native init DeepLinkApp

$ yarn add react-navigation

$ react-native link react-native-gesture-handler

After creating the project, we will add React Navigation and then use the link

command to link React Native gesture handling. Create an src folder in the root folder

and add the Article.js and Home.js files. Next, add following code in Home.js:

import React from 'react';

import { Text } from 'react-native';

class Home extends React.Component {

 static navigationOptions = {

 title: 'Home',

 };

Chapter 5 Exploring Device Capabilities

134

 render() {

 return <Text>Hello from Home!</Text>;

 }

}

export default Home;

We have created a simple React component that rendered Text Hello from Home!.

We next create a file Article.js in the src folder and add the following code:

import React from 'react';

import { Text } from 'react-native';

class Article extends React.Component {

 static navigationOptions = {

 title: 'Article',

 };

 render() {

 const { id } = this.props.navigation.state.params;

 return <Text>Hello from Article {id}!</Text>;

 }

}

export default Article;

We have now created two components, Home.js and Article.js, and we can add

this in React Navigation routes. Open App.js and update the following code:

import React, {Component} from 'react';

import {Platform, StyleSheet, Text, View} from 'react-native';

import { createAppContainer, createStackNavigator} from "react-navigation";

import Home from './src/Home';

import Article from './src/Article';

const AppNavigator = createStackNavigator({

 Home: { screen: Home },

 Article: { screen: Article, path: 'article/:id', },

},

Chapter 5 Exploring Device Capabilities

135

{

 initialRouteName: "Home"

 }

);

const prefix = Platform.OS == 'android' ? 'myapp://myapp/' : 'myapp://';

const App = createAppContainer(AppNavigator)

const MainApp = () => <App uriPrefix={prefix} />;

export default MainApp;

We have thus far created React Navigation and created routes for two pages. We

have configured our navigation container to extract the path from the app’s incoming

URI. On Android, the URI prefix typically contains a host in addition to the scheme, so

we have used myapp://myapp/.

Now we have to write custom code for iOS and Android. First, open the iOS project in

the iOS folder by clicking DeepLinkApp.xcodeproj. Select the project title from the folder

list and navigate to the Info tab as shown in Figure 5-17. Scroll down to the URL Types

section and add one. For the new URL type, set the Identifier to mychat and the URL

Scheme to mychat.

Figure 5-17.  Deep linking using Xcode

Chapter 5 Exploring Device Capabilities

136

Open AppDelegate.m in the root folder and add the following code before @end.

- (BOOL)application:(UIApplication ∗)application openURL:(NSURL ∗)url
 sourceApplication:(NSString ∗)sourceApplication annotation:(id)annotation
{

 return [RCTLinkingManager application:application openURL:url

 �sourceApplication:sourceApplication

annotation:annotation];

}

Now let’s update the code for Android. To configure the external linking in Android,

we need to create a new intent in the manifest. Open /src/main/AndroidManifest.xml

to add the new intent-filter inside the MainActivity entry with a VIEW type action:

 <intent-filter>

 <action android:name="android.intent.action.VIEW" />

 <category android:name="android.intent.category.DEFAULT" />

 <category android:name="android.intent.category.BROWSABLE" />

 <data android:scheme="myapp" android:host="myapp" />

 </intent-filter>

Let’s start running the app, first with iOS:

$react-native run-ios

The result is shown in Figure 5-18.

Chapter 5 Exploring Device Capabilities

137

To test the DeepLink, open the Safari browser and type myapp://article/4. That

will automatically open the app and open Article 4 (Figure 5-19).

Figure 5-18.  Running the app with iOS

Chapter 5 Exploring Device Capabilities

138

You can also open the DeepLink page by running this command on your terminal

(Figure 5-20):

xcrun simctl openurl booted myapp://article/3

Figure 5-19.  Traversing to the DeepLink page

Chapter 5 Exploring Device Capabilities

139

�Summary
This chapter covered various capabilities of iOS and Android devices using React

Native. These capabilities helped us build features beyond just a UI. We learned how to

use GeoLocation and loading maps for your app, AsyncStorage to persist data, Native

alerts to share important info in your app, WebView to load HTML5 content, and finally

deep linking.

Chapter 6 discusses how to interact with a back-end server because no real-world

application is complete without connecting to a back end and consuming APIs.

Figure 5-20.  Traversing to the DeepLink page

Chapter 5 Exploring Device Capabilities

141
© Akshat Paul and Abhishek Nalwaya 2019
A. Paul and A. Nalwaya, React Native for Mobile Development, https://doi.org/10.1007/978-1-4842-4454-8_6

CHAPTER 6

Communicating with
Servers

Communication is everyone’s panacea for everything.

—Tom Peters

After learning about the powers of device capabilities with many examples, it’s time

to get back to our SmartHouse application. So far, you have been populating your app

locally with some dummy data, but no application can survive without communicating

with a server. This chapter covers how to interact with network APIs. You will explore the

following topics:

•	 XMLHttpRequest

•	 WebSocket

•	 Fetch

•	 Getting data from a server

•	 Posting data to a server

Earlier you were getting all the data from a dummy data object, which was static

within your application. It’s rare that any production application will work entirely with

static data. Fortunately, React Native provides many ways to interact with network APIs.

The following sections cover the ways the network stack is supported in React Native.

142

�XMLHttpRequest
XMLHttpRequest is an API that provides the ability to transfer data between a client

and a server. It provides an easy way to retrieve data from a URL without having to do a

full-page refresh. In React Native, the XMLHttpRequest API is applied on top of the iOS

networking APIs. This is the code snippet to use XMLHttpRequest.

var request = new XMLHttpRequest();

request.onreadystatechange = (e) => {

 if (request.readyState !== 4) {

 return;

 }

 if (request.status === 200) {

 console.log('success', request.responseText);

 } else {

 console.warn('error');

 }

};

request.open('GET', 'https://backendwebsite.com/endpointapi/');

request.send();

Using XMLHttpRequest is quite tedious. However, because it is compatible with

the browser API, it lets you use third-party libraries directly from npm (e.g., Parse). For

more information on this API, please refer to its documentation at https://developer.

mozilla.org/en-US/docs/Web/API/XMLHttpRequest.

�WebSocket
WebSocket is a protocol that provides full-duplex communication channels over a single

Transmission Control Protocol (TCP) connection. With the WebSocket API it is possible

to open two-way interactive communication. With this API, you can send messages to

a server and receive event-driven responses without having to poll the server again and

again for a reply. This is how the code looks for a WebSocket:

var ws = new WebSocket('ws://example.com/path');

Chapter 6 Communicating with Servers

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest

143

ws.on('open', function() {

 // connection opened

 ws.send('example data');

});

ws.on('message', function(e) {

 // a message received

 console.log(e.data);

});

ws.on('error', function(e) {

 // an error occurred

 console.log(e.message);

});

ws.on('close', function(e) {

 // connection closed

 console.log(e.code, e.reason);

});

�Fetch
Fetch is a popular networking API. It was created by a standard committee and has well-

defined requests, responses, and the process to bind them. The following is an example

of a post request with fetch:

fetch('https://example.com/endpoint/', {

 method: 'POST',

 headers: {

 'Accept': 'application/json',

 'Content-Type': 'application/json',

 },

 body: JSON.stringify({

 firstParam: 'yourValue',

 secondParam: 'otherValue',

 })

})

Chapter 6 Communicating with Servers

144

Fetch returns a promise because networking is an async operation, which means it

will not wait for execution, so we can resolve using a then and catch block. We can get a

response and error like this:

fetch('https:// example.com/endpoint')

 .then((response) => response.text())

 .then((responseText) => {

 console.log(responseText);

 })

 .catch((error) => {

 console.warn(error);

 });

Now that you know how to interact with network APIs, let’s use one of the options,

fetch, to get and post data to a server. To keep things simple, we have hosted a simple

back-end server with restful APIs that you can consume for your application.

We will be using following the URLs to get and post data to a back-end server. For a

quick test, you can use curl to see the response you get from making a request to these

URLs.

Use this code to get an initial seed list of properties:

$curl 'http://www.akshatpaul.com/list-all-properties'

[

{

name: "Mr. Johns Conch house",

address: "12th Street, Neverland",

images: {

thumbnail: "http://hmp.me/ol5"

}

},

{

name: "Mr. Pauls Mansion",

address: "625, Sec-5, Ingsoc",

images: {

thumbnail: "http://hmp.me/ol6"

}

},

Chapter 6 Communicating with Servers

https://github.com/curl/curl

145

{

name: "Mr. Nalwayas Villa",

address: "11, Heights, Oceania",

images: {

thumbnail: "http://hmp.me/ol7"

}

}

]

To get the list of properties that the users have saved, run

$curl 'http://www.akshatpaul.com/list-properties'

You might see few results here that are created by other readers of this book.

To post data to the server to save a property we use the following API:

url: 'http://www.akshatpaul.com/properties'

�Getting Data from a Server
First, let’s get get some data from our back-end server that we use to populate the list of

properties we have already added in our back-end server. So far this is getting populated

from the JavaScript Object Notation (JSON) we have stored on our client application

itself. Insert the following code into the HomeListScreen.js component:

import React from 'react';

import { FlatList } from 'react-native';

import HouseItem from '../components/HouseItem';

export default class HomeListScreen extends React.Component {

 constructor(props) {

 super(props);

 this.state = {

 dataSource: null,

 }

 }

Chapter 6 Communicating with Servers

146

 componentDidMount() {

 return fetch("https://www.akshatpaul.com/list-properties")

 .then ((response) => response.json())

 .then ((responseJson) => {

 this.setState({

 dataSource: responseJson,

 })

 })

 .catch((error) => {

 console.log(error)

 });

 }

render(){

 return (

 <FlatList

 data={this.state.dataSource}

 renderItem={({item}) => <HouseItem {...item}/>}

 keyExtractor={(item, index) => index.toString()}

 />

);

 }

}

Now, build or refresh the application and navigate to the of list of all the properties.

Figure 6-1 shows it loaded on an iOS simulator.

Chapter 6 Communicating with Servers

147

All these data are coming from a back-end server. Let’s walk through this code. Here,

we first removed the MOCK_DATA, which is no longer required. We then modified the

component type:

export default HomeListScreen = () => {

...

}

To

export default class HomeListScreen extends React.Component {

...

}

Earlier we had created a stateless component, but because we would like to use life

cycle methods and maintain state, we have modified our stateless component to a state

component.

Figure 6-1.  Populating the app with static data fetched from a server

Chapter 6 Communicating with Servers

148

Next, we added the following code in our HomeListScreen state component:

 constructor(props) {

 super(props);

 this.state = {

 dataSource: null,

 }

 }

 componentDidMount() {

 return fetch("https://www.akshatpaul.com/list-properties")

 .then ((response) => response.json())

 .then ((responseJson) => {

 this.setState({

 dataSource: responseJson,

 })

 })

 .catch((error) => {

 console.log(error)

 });

 }

Here, we have created a constructor that sets the initial state for the dataSource

property as null. This is the property that will store the data we will pull from a back-end

server.

Next, we use a life cycle method componentDidMount(). We are making use of this life

cycle method because we assume we would only be required to make a get call to the

back-end API to get the list of properties once.

The structure of this request is straightforward: We use fetch to make a call that

returns a promise. This promise is then resolved and we pass the response JSON to

dataSource using the setState object.

Finally we have the placed catch() method to log any error. To load the data received

from the back-end server, we are not making any changes in the earlier component

except replacing MOCK_DATA with this.state.dataSource.

Chapter 6 Communicating with Servers

149

render(){

 return (

 <FlatList

 data={this.state.dataSource}

 renderItem={({item}) => <HouseItem {...item}/>}

 keyExtractor={(item, index) => index.toString()}

 />

);

 }

�Saving Data to a Server
In your housing application, so far you are able to get data from a back-end server.

This section shows you how to save data to a back-end API. For this we will create a

component to add new properties and make request to a back-end API to save the data.

For this purpose, we already have a back-end API ready to be consumed:

URL : http://www.akshatpaul.com/properties

Let’s first add a button to HomeScreen that will navigate us to the Addproperty page.

Add the following code along with styling:

import React from 'react';

import { StyleSheet, Text, View, Image, TouchableHighlight } from

'react-native';

export default class HomeScreen extends React.Component {

 static navigationOptions = {

 title: 'House Share',

 };

 render() {

 const { navigate } = this.props.navigation;

Chapter 6 Communicating with Servers

150

 return (

 <View style={styles.container}>

 <TouchableHighlight style={styles.topBox} onPress={() =>

 navigate('HomeListScreen')}>

 <Image

 style={styles.homeBanner}

 source={require('../assets/house.png')}

 />

 </TouchableHighlight>

 <TouchableHighlight style={styles.button}

 onPress={()=> navigate('AddNewProperty')}

 underlayColor='#99d9f4'>

 <Text style={styles.buttonText}>Add New Property</Text>

 </TouchableHighlight>

 <View style={styles.bottomBox} />

 </View>

);

 }

}

const styles = StyleSheet.create({

 container: {

 flex: 1,

 flexDirection: 'column'

 },

 topBox: {

 flex: 1,

 backgroundColor: '#C0C0C0'

 },

 bottomBox: {

 flex: 2,

 backgroundColor: '#fff'

 },

Chapter 6 Communicating with Servers

151

 homeBanner: {

 bottom:0,

 flex: 1,

 alignSelf: 'stretch',

 width: undefined,

 height: undefined,

 },

 button: {

 flex: 1,

 backgroundColor: '#48BBEC',

 borderColor: '#48BBEC',

 borderWidth: 1,

 borderRadius: 8,

 alignSelf: 'stretch',

 justifyContent: 'center',

 margin: 10

 },

 buttonText: {

 fontSize: 18,

 color: 'white',

 alignSelf: 'center'

 }

});

Here, we have added a new button using the following code along with its styling:

<TouchableHighlight style={styles.button}

 onPress={()=> navigate('AddNewProperty')}

 underlayColor='#99d9f4'>

 <Text style={styles.buttonText}>Add New Property</Text>

 </TouchableHighlight>

Chapter 6 Communicating with Servers

152

 button: {

 flex: 1,

 backgroundColor: '#48BBEC',

 borderColor: '#48BBEC',

 borderWidth: 1,

 borderRadius: 8,

 alignSelf: 'stretch',

 justifyContent: 'center',

 margin: 10

 },

 buttonText: {

 fontSize: 18,

 color: 'white',

 alignSelf: 'center'

 }

We must also add a corresponding navigation route in App.js createStackNavigator:

const AppNavigator = createStackNavigator({

.

.

.

AddNewProperty: {

 screen: AddNewProperty

 }

.

.

};

Let’s refresh to see the changes on the home screen (Figure 6-2).

Chapter 6 Communicating with Servers

153

If we click Add New Property it will take us to a new screen that will be empty. Let’s

create a new file in the screens folder, AddNewProperty.js, and add the following code in it:

import React from 'react';

import { StyleSheet, Text, View, TouchableHighlight, TextInput, AlertIOS }

from 'react-native';

import HouseItem from '../components/HouseItem';

export default class AddNewProperty extends React.Component {

 constructor(props) {

 super(props);

 this.state = {

Figure 6-2.  Showing the Add New Property button on the home page

Chapter 6 Communicating with Servers

154

 name: "",

 address: ""

 }

 }

 onPressButtonPOST() {

 fetch('https://www.akshatpaul.com/properties', {

 method: 'POST',

 headers: {

 Accept: 'application/json',

 'Content-Type': 'application/json',

 },

 body: JSON.stringify({

 property: {

 name: this.state.name,

 address: this.state.address,

 }

 }),

 })

 .then((responseData) => {

 AlertIOS.alert(

 "Created"

)

 })

 .done();

 }

render(){

 return (

 <View style={styles.container}>

 �<TextInput style={styles.textBox} placeholder='name'

onChangeText={(name) => this.setState({name})}

value={this.state.name} />

 �<TextInput style={styles.textBox} placeholder='address'

onChangeText={(address) => this.setState({address})}

value={this.state.address} />

Chapter 6 Communicating with Servers

155

 <TouchableHighlight style={styles.button}

 onPress= {this.onPressButtonPOST.bind(this)}

 underlayColor='#99d9f4'>

 <Text style={styles.buttonText}>Add House</Text>

 </TouchableHighlight>

 </View>

);

 }

}

var styles = StyleSheet.create({

 container: {

 flex: 1,

 flexDirection: 'column',

 justifyContent: 'center',

 alignItems: 'center',

 backgroundColor: '#F5FCFF',

 },

 textBox: {

 width:300,

 height:60,

 borderColor: 'gray',

 borderWidth: 1,

 alignSelf: 'center',

 marginTop: 10,

 },

 button: {

 height: 60,

 backgroundColor: '#48BBEC',

 borderColor: '#48BBEC',

 borderWidth: 1,

 borderRadius: 8,

 alignSelf: 'stretch',

 justifyContent: 'center',

 margin: 10

 },

Chapter 6 Communicating with Servers

156

 buttonText: {

 fontSize: 18,

 color: 'white',

 alignSelf: 'center'

 }

 });

Let’s step through this piece of code in detail. We created a new component,

AddNewProperty, and added a constructor with two properties, name and address

instantiated with an empty string:

constructor(props) {

 super(props);

 this.state = {

 name: "",

 address: ""

 }

 }

Next, we created the following component:

 <View style={styles.container}>

 �<TextInput style={styles.textBox} placeholder='name'

onChangeText={(name) => this.setState({name})} value={this.state.

name} />

 �<TextInput style={styles.textBox} placeholder='address'

onChangeText={(address) => this.setState({address})} value={this.

state.address} />

 <TouchableHighlight style={styles.button}

 onPress= {this._onPressButtonPOST.bind(this)}

 underlayColor='#99d9f4'>

 <Text style={styles.buttonText}>Add House</Text>

 </TouchableHighlight>

 </View>

This is a simple form having two input fields, name and address, along with styling,

which we added at the end. Just as in constructor, the state for these two properties

was set to an empty string. We update the state with setState once the user fills in the

form and pass it to the function onPressButtonPost.

Chapter 6 Communicating with Servers

157

You should notice we added a bind in render here. Because we are using ES6 while

declaring React components, React no longer autobinds. Therefore we must resolve this

by explicitly calling bind in render.

Note T here are other binding patterns to handle this. Here are a few popular
ones in React:

1.  Binding in render (the one we have used in our application)

onChange={this.handleChange.bind(this)}

2. U sing an arrow function in render

onPress={e => this.handleChange(e)}

3.  Binding in constructor itself

constructor(props) {

 super(props);

 this.handleChange = this.handleChange.bind(this);

}

4. U sing an arrow function in call property

handleChange = () => {

 // call this function from render

 // and this.whatever in here works fine.

};

Chapter 6 Communicating with Servers

158

Next, we created a method onPressButtonPost where the post request is made to a

back-end post API.

 onPressButtonPOST() {

 fetch('https://www.akshatpaul.com/properties', {

 method: 'POST',

 headers: {

 Accept: 'application/json',

 'Content-Type': 'application/json',

 },

 body: JSON.stringify({

 property: {

 name: this.state.name,

 address: this.state.address,

 }

 }),

 })

 .then((responseData) => {

 AlertIOS.alert(

 "Created"

)

 })

 .done();

 }

Here, we are using the updated values of the name and address properties and

making a post request using fetch. Once our request is completed we get an alert box

with a Created message.

This was simple. Now let’s try our code on a simulator. Once we navigate from the

home screen to the add new property screen, we get the form shown in Figure 6-3.

Chapter 6 Communicating with Servers

159

Figure 6-3.  Form to submit a record

Chapter 6 Communicating with Servers

160

Let’s fill in some values to submit to our back-end API (Figure 6-4).

Once we submit the data to the back-end API we get the Created message in an alert

box (Figure 6-5).

Figure 6-4.  Page to add new house

Chapter 6 Communicating with Servers

161

If you curl this URL, you will get something like this JSON of user-added properties:

$curl 'http://www.akshatpaul.com/list-properties'

[

{

name: "Mr. Paul's Mansion",

address: "11, Golden View, San Francisco",

Figure 6-5.  Alert after successful submission

Chapter 6 Communicating with Servers

162

images: {

thumbnail: "http://hmp.me/ol7"

}

}

]

Note T his API shows data submitted by various readers of this book. Your data
set might differ.

Refresh the app and go to the List of Properties section (Figure 6-6).

Figure 6-6.  Output showing Mr. Paul’s Mansion address

Chapter 6 Communicating with Servers

163

Note  By default, iOS will block any request that’s not encrypted using Secure
Sockets Layer (SSL). If you need to fetch from a clear text URL (one that begins
with http) you will first need to add an App Transport Security (ATS) exception.
If you know ahead of time what domains you will need access to, it is more secure
to add exceptions just for those domains; if the domains are not known until
runtime you can disable ATS completely. Note, however, that since January 2017,
Apple’s App Store review requires reasonable justification for disabling ATS.

�Summary
This chapter covered various network APIs that are reimplemented from the ground up

by the React Native team. You also learned about various options like XMLHttpRequest,

WebSocket, and Fetch. Because no application is complete without making server calls,

you added this capability into your housing application and learned how to get data from

a server, add new records, and save them to a server.

In Chapter 7 we explore Native Bridge for iOS and Android. By using Native Bridge

we can access Native iOS or Android APIs from JavaScript.

Chapter 6 Communicating with Servers

165
© Akshat Paul and Abhishek Nalwaya 2019
A. Paul and A. Nalwaya, React Native for Mobile Development, https://doi.org/10.1007/978-1-4842-4454-8_7

CHAPTER 7

Native Bridging in
React Native

Learn the rules like a pro, so you can break them like an artist.

—Pablo Picasso

So far, you have learned how to build applications using modules and APIs available

out of the box with React Native. There are times, however, when an application has

to access a native iOS or Android API and its corresponding React Native module is

not yet available. Perhaps you will have to reuse some existing bespoke Swift, Kotlin,

or Objective-C code with your React Native application. In such scenarios we create

something called Native modules, which allow us to write code in the native language of

a platform. This chapter covers the following topics:

•	 What is Native Bridge

•	 Preprequisite for Native Bridge

•	 Native Bridge for iOS

•	 Native Bridge for Android

The concept of Native modules is a bit advanced, but in our experience every

production-quality application at some point requires you to delve into a little bit of

native programming. Therefore, we consider this an essential skill to know in your

journey to becoming a master in React Native.

166

�Native Bridge
To better undersand Native modules, we will create a Counter example in Swift for iOS

and Java in Android, and this will be used in our React app. This will be a cross-platform

example, so the same React code will work in both iOS and Android.

Because many readers of this book might not have worked in Swift or Java, we

have tried to keep the use of both these languages very basic, so it should be easily

understandable.

�Prerequisites for the Example
Because we are writing some code in Native, you should have the following development

setup installed on your computer.

•	 Xcode for running the app for iOS

•	 Android Studio for running the app for Android

•	 React Native

We will first create a React Native app with the React Native CLI. We could also use

the Expo CLI, but then we would have to eject it to build a Native bridge.

$ react-native init CounterNativeModuleApp

$ cd CounterNativeModuleApp

This will create the basic structure of the React Native app. It also contains two

folders, iOS and android, which have native code in Objective-C and Java, respectively.

We first learn about bridging in iOS, and then use same repo to build for Android.

�iOS Native Bridge

We will create a Counter class in Swift, which will have a static class variable count

and two methods: one for incrementing the count and the other for getting the count

value. We will then access this Swift class from JavaScript. Let’s start by opening the

CounterNativeModuleApp.xcodeproj file in the ios folder. It should open Xcode with

your iOS code.

Create a new file by going to File ➤ New ➤ File and selecting Swift, as shown in

Figure 7-1.

Chapter 7 Native Bridging in React Native

167

Now give the file the name Counter and remember to select

CounterNativeModuleApp for the Group setting, as shown in Figure 7-2.

Figure 7-1.  Creating a new file in Swift

Figure 7-2.  Selecting proper group in Xcode

Chapter 7 Native Bridging in React Native

168

As we are writing code in Swift and the repo, which is generated in Objective-C, we

need a bridge to communicate between them. Click Create Bridging Header (Figure 7-3).

Figure 7-3.  Creating a bridging header

We can see that two files, Counter.swift and CounterNativeModuleApp-Bridging-

Header.h, are created by Xcode.

Counter.swift is where we will write our Counter class and

CounterNativeModuleApp-Bridging-Header.h will have header details. Remember that

in a project we have only one bridging header file, so if we add new files, we can reuse this

file. Update the following code in the CounterNativeModuleApp-Bridging-Header.h file:

#import "React/RCTBridgeModule.h"

Now let’s add a Swift class:

import Foundation

@objc(Counter)

class Counter: NSObject {

 @objc

 static var count = 0

 @objc

 func increment() {

 Counter.count += 1

 print("count is \(Counter.count)")

 }

}

Chapter 7 Native Bridging in React Native

169

In the preceding code we have created class Counter, which is inherited from

NSObject. The root class of most Objective-C class hierarchies is NSObject, from which

subclasses inherit a basic interface to the runtime system and the ability to behave as

Objective-C objects.

You can see that we have used @objc before a function and class. This will make that

class, function, or object available to Objective-C

Note T he @objc attribute makes your Swift API available in Objective-C and the
Objective-C runtime.

Now create a new file from File ➤ New ➤ File and select Objective-C File. Name the

file Counter (Figure 7-4).

Figure 7-4.  Creating an Objective-C file

Chapter 7 Native Bridging in React Native

170

This will create a file Counter.m, which will expose the Swift class to React Native:

#import "React/RCTBridgeModule.h"

@interface RCT_EXTERN_MODULE(Counter, NSObject)

RCT_EXTERN_METHOD(increment)

@end

React Native will not expose any function of Counter to React JavaScript unless

explicitly done. To do so we can use the RCT_EXPORT_METHOD() macro. We therefore have

to expose the Counter class and increment the method to our JavaScript code. Because

the Swift object is converted to JSON, there is a type conversion. RCT_EXPORT_METHOD

supports all standard JSON object types:

•	 string (NSString)

•	 number (NSInteger, float, double, CGFloat, NSNumber)

•	 boolean (BOOL, NSNumber)

•	 array (NSArray) of any types from this list

•	 object (NSDictionary) with string keys and values of any type from

this list

•	 function (RCTResponseSenderBlock)

Now let’s update the JavaScript code and access this Counter class from our React

component. To do so, open App.js and update it with the following code:

import React, {Component} from 'react';

import {StyleSheet, Text, View, NativeModules, Button} from 'react-native';

export default class App extends Component {

 increment = () => {

 NativeModules.Counter.increment();

 }

 render() {

 return (

 <View style={styles.container}>

 <Button

 onPress={this.increment}

Chapter 7 Native Bridging in React Native

171

 title="Increment"

 color="#841584"

 />

 </View>

);

 }

}

const styles = StyleSheet.create({

 container: {

 flex: 1,

 justifyContent: 'center',

 alignItems: 'center',

 backgroundColor: '#F5FCFF',

 }

});

We need to import NativeModule from react-native. The Counter method

increment can be accessed using NativeModules.Counter.increment(). We have

created a Button and clicking on that button calls the increment method.

Now let’s run the app from Xcode by pressing Command + R. Make sure React Native

code is running. If it is not, then run npm start.

We can see an Increment button and a warning message at the bottom as shown

in Figure 7-5. For now, ignore the warning message. We will talk about that later in the

chapter.

Chapter 7 Native Bridging in React Native

172

Now open the Xcode and check the console log. Try clicking the Increment button

three times and you will see the output shown in the logs, as displayed in Figure 7-6.

Figure 7-5.  App running in a simulator

Chapter 7 Native Bridging in React Native

173

We can see that we have called a Swift class method from a JavaScript React

component.

Note R emember, if you change any code in iOS Swift or Objective-C or Android
Java, you need to rebuild the project. Only then will changes be reflected.

Figure 7-6.  Increment displayed in console log

Chapter 7 Native Bridging in React Native

174

Now let’s fix the warning shown at the bottom of the simulator and in the browser

console:

Module Counter requires main queue setup since it overrides ‘init’ but
doesn’t implement ‘requiresMainQueueSetup’ . In a future release React
Native will default to initializing all native modules on a background
thread unless explicitly opted-out of.

To understand that better, let’s understand the thread React Native runs on:

•	 Main thread: Where UIKit works.

•	 Shadow queue: Where the layout happens.

•	 JavaScript thread: Where your JavaScript code is actually running.

•	 Every native module has its own GCD (Grand Central Dispatch)

Queue unless it specifies otherwise.

Now because this Native module will run on a different thread and our main thread

is dependent on it, it is showing this warning. To make this code to run on MainQueue,

open Counter.swift and add the following function:

 @objc

 static func requiresMainQueueSetup() -> Bool {

 return true

 }

Now run the app again. Remember that because we have changed the Swift class,

we need to rebuild the code. You will see the app running without the warning now, as

shown in Figure 7-7.

Chapter 7 Native Bridging in React Native

175

Now let’s add the count value to our React screen. To do so we will add the getCount

function to counter.swift and call that method from JavaScript code. We will create this

method as a callback.

Note R eact Native Bridge is asynchronous, so the only way to pass a result to
JavaScript is by using callbacks or emitting events.

Figure 7-7.  Application running without warning

Chapter 7 Native Bridging in React Native

176

Open counter.swift and add the getCount method:

import Foundation

@objc(Counter)

class Counter: NSObject {

 @objc

 static var count = 0

 @objc

 func increment() {

 Counter.count += 1

 print("count is \(Counter.count)")

 }

 @objc

 func getCount(_ callback: RCTResponseSenderBlock) {

 callback([NSNull(), Counter.count])

 }

 @objc

 static func requiresMainQueueSetup() -> Bool {

 return true

 }

The getCount() method receives a callback parameter that we will pass from your

JavaScript code. We have called callback with an array of values, which will be exposed

in JavaScript. We have passed NSNull() as the first element, which we consider an error

in callback.

We need to expose this method to counter.m:

#import "React/RCTBridgeModule.h"

@interface RCT_EXTERN_MODULE(Counter, NSObject)

RCT_EXTERN_METHOD(increment)

RCT_EXTERN_METHOD(getCount: (RCTResponseSenderBlock)callback)

@end

Chapter 7 Native Bridging in React Native

177

Let’s update the React code to take the count from the getCount method that we just

created. Update App.js with following code:

import React, {Component} from 'react';

import {StyleSheet, Text, View, NativeModules, Button} from 'react-native';

export default class App extends Component {

 constructor(props) {

 super(props);

 this.state = { count: 0 };

 this.updateCount();

 }

 increment = () => {

 NativeModules.Counter.increment();

 this.updateCount();

 }

 updateCount = () => {

 NativeModules.Counter.getCount((error, count)=>{

 this.setState({ count: count});

 })

 }

 render() {

 return (

 <View style={styles.container}>

 <Text>Counter from Native Code:</Text>

 <Text>{this.state.count}</Text>

 <Button

 onPress={this.increment}

 title="Increment"

 color="#841584"

 />

 </View>

);

 }

}

Chapter 7 Native Bridging in React Native

178

const styles = StyleSheet.create({

 container: {

 flex: 1,

 justifyContent: 'center',

 alignItems: 'center',

 backgroundColor: '#F5FCFF',

 }

});

Rebuild the source code and run the app. You can then see the counter value and

when you click Increment, it will increase the count as show, in Figure 7-8.

Figure 7-8.  Application demo in simulator

Try to refresh the page by pressing Command + R. The count value will be the same

and does not reset to 0. If you rebuild the code, however, then the value will be reset to 0.

Chapter 7 Native Bridging in React Native

179

�Native Bridge for Android
In this section we will make the same JavaScript code work with Android. This time

we will create a Counter class in java and expose the same functions, increment and

getCount, to Javascript.

Open Android Studio (Figure 7-9) and select Open an existing Android Studio

project, and then select the android folder inside our CounterNativeModuleApp.

Figure 7-9.  Open the React Native app in Android Studio

Once the project is opened and it has downloaded all gradle dependency (gradle is

the dependency manager of Java), we will create a class Counter. Click Menu ➤ File ➤

New ➤ Java Class. Name the file Counter and then click OK (Figure 7-10).

Chapter 7 Native Bridging in React Native

180

Add the following code in Counter.java file:

package com.counternativemoduleapp;

import com.facebook.react.bridge.NativeModule;

import com.facebook.react.bridge.ReactApplicationContext;

import com.facebook.react.bridge.ReactContext;

import com.facebook.react.bridge.ReactContextBaseJavaModule;

import com.facebook.react.bridge.ReactMethod;

import com.facebook.react.bridge.Callback;

public class Counter extends ReactContextBaseJavaModule {

 private static Integer count = 0;

 public Counter(ReactApplicationContext reactContext) {

 super(reactContext);

 }

 @ReactMethod

 public void increment() {

Figure 7-10.  Creating a Counter class

Chapter 7 Native Bridging in React Native

181

 count++;

 System.out.println(count);

 }

 @ReactMethod

 public void getCount(

 Callback successCallback) {

 successCallback.invoke(null, count);

 }

 @Override

 public String getName() {

 return "Counter";

 }

}

We have created the Native module Counter, which is a Java class that is inherited

from ReactContextBaseJavaModule. ReactContextBaseJavaModule requires that the

function getName is called; this is always implemented. The purpose of this method is to

return the string name of the Native module, which represents this class in JavaScript.

Here we will call this Counter so that we can access it through React.NativeModules.

Counter in JavaScript. Instead of Counter, you could also use a different name.

Not all functions are exposed to JavaScript. To expose a function to JavaScript, a Java

method must be annotated using @ReactMethod. The return type of bridge methods is

always void, so we create a function increment with @ReactMethod where we have to

increase the value of the static variable count and then print the value in the console:

 @ReactMethod

 public void increment() {

 count++;

 System.out.println(count);

 }

We have also created a getCount function that has callback as a parameter. It

returns a callback and passes the value of count.

Chapter 7 Native Bridging in React Native

182

 @ReactMethod

 public void getCount(

 Callback successCallback) {

 successCallback.invoke(null, count);

 }

The next step is to register the module, because if a module is not registered it will

not be available from JavaScript. To create a file, click Menu ➤ File ➤ New ➤ Java Class.

Name the file CustomCounterPackage and then click OK (Figure 7-11).

Figure 7-11.  Creating a new Java class

Now add the following code in CustomCounterPackage:

package com.counternativemoduleapp;

import com.facebook.react.ReactPackage;

import com.facebook.react.bridge.NativeModule;

import com.facebook.react.bridge.ReactApplicationContext;

import com.facebook.react.uimanager.ViewManager;

Chapter 7 Native Bridging in React Native

183

import java.util.ArrayList;

import java.util.Collections;

import java.util.List;

public class CustomCounterPackage implements ReactPackage {

 @Override

 �public List<ViewManager> createViewManagers(ReactApplicationContext

reactContext) {

 return Collections.emptyList();

 }

 @Override

 public List<NativeModule> createNativeModules(

 ReactApplicationContext reactContext) {

 List<NativeModule> modules = new ArrayList<>();

 modules.add(new Counter(reactContext));

 return modules;

 }

}

We need to override the createNativeModules function and add the Counter object

to the modules array. If this is not added there, it will not be available in JavaScript.

A CustomCounterPackage package needs to be provided in the getPackages method

of the MainApplication.java file. This file exists in the android folder in your react-

native application directory. Update the following code in android/app/src/main/

java/com/CounterNativeModuleApp /MainApplication.java:

package com.counternativemoduleapp;

import android.app.Application;

import com.facebook.react.ReactApplication;

import com.facebook.react.ReactNativeHost;

import com.facebook.react.ReactPackage;

import com.facebook.react.shell.MainReactPackage;

import com.facebook.soloader.SoLoader;

Chapter 7 Native Bridging in React Native

184

import java.util.Arrays;

import java.util.List;

import com.counternativemoduleapp.CustomCounterPackage;

public class MainApplication extends Application implements

ReactApplication {

 �private final ReactNativeHost mReactNativeHost = new

ReactNativeHost(this) {

 @Override

 public boolean getUseDeveloperSupport() {

 return BuildConfig.DEBUG;

 }

 @Override

 protected List<ReactPackage> getPackages() {

 return Arrays.<ReactPackage>asList(

 new MainReactPackage(),

 new CustomCounterPackage()

);

 }

 @Override

 protected String getJSMainModuleName() {

 return "index";

 }

 };

 @Override

 public ReactNativeHost getReactNativeHost() {

 return mReactNativeHost;

 }

 @Override

 public void onCreate() {

 super.onCreate();

 SoLoader.init(this, /* native exopackage */ false);

 }

}

Chapter 7 Native Bridging in React Native

185

We don’t need to change any JavaScript code written in iOS, as we have exposed the

same class name and function. If you skipped the iOS section earlier, you need to copy

the React JavaScript code from App.js.

Now run the app through Android Studio or from react-native run-android

(Figure 7-12).

Figure 7-12.  Run the application from Android Studio

This will launch the Android emulator with the app (Figure 7-13). If you don’t find an

emulator in the list, you need to download a few by clicking Create New Virtual Device.

Chapter 7 Native Bridging in React Native

186

Figure 7-13.  Application running in Android emulator

We can see the counter change when we click Increment and the JavaScript code is

calling the Java code.

�Summary
This chapter covered Native Bridge for both iOS and Android. You created a class in Swift

and Java and through NativeBridge you were able to access these classes in JavaScript code.

In Chapter 8 you learn about testing in React Native, including type checking using

Flow, using Jest with React Native, and understanding how to use snapshot testing.

Chapter 7 Native Bridging in React Native

187
© Akshat Paul and Abhishek Nalwaya 2019
A. Paul and A. Nalwaya, React Native for Mobile Development, https://doi.org/10.1007/978-1-4842-4454-8_8

CHAPTER 8

Testing

Testing is not the point. The point is about responsibility.

—Kent Beck

We do agree with Kent Beck here that testing your code is your responsibility. However,

React Native makes it really simple to write tests for your application in comparison to

traditional native code for iOS and Android. This chapter covers the following topics:

•	 Static type checking with Flow

•	 Jest with React Native

•	 Snapshot testing

�Flow
Flow is a static type checker for JavaScript. It’s not essential to use Flow, but it really

enhances your development efficiency. Type checking allows you to detect possible

issues early by running tests on your project code base. In short, we would say Flow is a

productivity module for developers.

To set up Flow for React Native applications, first open your terminal and simply

install the following npm module:

$ npm install -g flow-bin

This will install the flow module globally. Navigate to your React Native application

folder and from the root directory, execute the following command:

$ flow init

This will create a .flowconfig file where all your Flow configurations will reside.

188

Now, check your application for any errors with the following command:

$ flow check

Found 0 errors

Typically, at the beginning of any project, you will find no errors. As you proceed

with day-to-day development, however, you can find issues right away and resolve them.

�Benefits of Using Flow
Although Flow is a great addition to any React Native application, it’s not mandatory.

However, we recommend that you include it in your React Native project to experience

the following benefits:

•	 You can code faster without the hassle of running the source code

every time to find any issues or bugs.

•	 It is especially helpful for extensive projects with multiple team

members working in parallel. Refactoring can become a nightmare,

and Flow helps you focus only on your changes and eliminates worry

about breaking other parts of the source code.

•	 Flow helps developers to understand idiomatic JavaScript. It

understands and provides feedback on common JavaScript patterns,

which helps developers to create elegent solutions.

•	 Flow provides real-time feedback, hence saving a great deal of time

and improving code quality.

•	 Flow provides easy integration. As seen earlier, it takes only a few

minutes to set up Flow with your project.

�Jest
Jest is a unit test framework that is built on top of Jasmine. React Native supports testing

of components using Jest (it’s also the recommended framework used at Facebook for

React Native). Besides React Native, you can also use Jest for other JavaScript projects

built using TypeScript, Node, Angular, React for Web, Vue, and many more.

Chapter 8 Testing

189

Key featues of the Jest testing framework include the following:

•	 Snapshot testing: Jest allows you to create tests that keep track of large

objects. This helps you to write better test cases of UI elements.

•	 Zero configuration: Jest works out of the box and is configuration free.

•	 Fast and isolated: Tests are parallelized by running them in their own

processes, which helps maximize performance. Jest runs previous

failed tests first and reorganizes the runs based on how long it took to

execute the tests.

•	 Simple APIs: Jest makes use of simple conventions that

developers are used to. Jest covers the entire toolkit, with updated

documentation that is well maintained.

•	 Code coverage: No additional setup is required to pull a built-in code

coverage report.

�Jest with React Native
Jest is included out of the box with the React Native framework for versions 0.38 and

later. You are not required to use Jest, though. Instead, you can also use a Mocha testing

framework. When you set up the project initially, create a new project with the following

command:

$ react-native init jestBasics

You will get Jest preloaded, and the following package.json code will already be

present:

 "scripts": {

 ...

 "test": "jest"

 ...

 },

 "devDependencies": {

 ...

 "jest": "24.1.0",

Chapter 8 Testing

190

"react-test-renderer": "16.6.3"

 ...

 },

 "jest": {

 ...

 "preset": "react-native"

 ...

 }

There will be a folder created, __tests__, which includes only one file for now, App.js:

/∗∗
 ∗ @format
 ∗ @lint-ignore-every XPLATJSCOPYRIGHT1
 ∗/

import 'react-native';

import React from 'react';

import App from '../App';

// Note: test renderer must be required after react-native.

import renderer from 'react-test-renderer';

it('renders correctly', () => {

 renderer.create(<App />);

});

If you run yarn test or npm test, your tests will run. Because is there nothing much

there yet, you should get the following result:

$ yarn test

yarn run v1.9.4

$ jest

 PASS __tests__/App.js

 ✓ renders correctly (2650ms)

Test Suites: 1 passed, 1 total

Tests: 1 passed, 1 total

Snapshots: 0 total

Chapter 8 Testing

191

Time: 5.756s

Ran all test suites.

This was the case if you generated your project using the React Native CLI, but what

about Expo? In previous chapters we used Expo to speed up our development process.

With Expo the setup process is slightly different because the Expo CLI does not come

with Jest out of the box.

For this you would have to set up Jest manually with an include jest-expo, which is

not very complicated. You could try this in an existing Expo application you created in a

previous chapter or set up a new one.

Navigate to your project folder and add jest-expo to your project using the following

command:

$ yarn add jest-expo --dev or $ npm i jest-expo --save-dev

Open package.json and add the following code:

"scripts": {

 "test": "node_modules/.bin/jest"

},

"jest": {

 "preset": "jest-expo"

}

Also, create a __test__ folder and add at least one test file with the following

sample test:

it('works', () => {

 expect(1).toBe(1);

});

Open the terminal and run the following code:

$ yarn test OR npm test

yarn test

yarn run v1.9.4

$ node_modules/.bin/jest

 PASS __tests__/Example-test.js

 ✓ works (3ms)

Chapter 8 Testing

192

Test Suites: 1 passed, 1 total

Tests: 1 passed, 1 total

Snapshots: 0 total

Time: 2.288s

Ran all test suites.

 Done in 3.75s.

�Snapshot Testing with Jest
Snapshotting is a really useful technique in UI development that helps ensure that there are

no unexpected changes in the UI during development. With Jest we can capture snapshots of

React trees, which help us to compare if there was a breaking change in subsequent changes.

A snapshot test case for a mobile app will render a UI component, take a snapshot,

and then compare it to a reference point in the past by storing a snapshot alongside the

test case. If the test fails, that means two snapshots did not match due to an unexpected

change in the UI. Snapshots should be updated to a new version when a satisfactory UI

component is ready.

Let’s add our first snapshot test and check the report. Add the following test in the

same App.js file. For ease of understanding we are using a project created with the React

Native CLI named jestBasics.

test("component renders correctly", () => {

 const tree = renderer.create(<App />).toJSON();

 expect(tree).toMatchSnapshot();

});

Run the Jest report again with the following command:

npm test

> jestBasics@0.0.1 test /Users/akshatpaul/myapps/react-native-second-edition/

chapter8/jestBasics

> jest

 PASS __tests__/App.js

 ✓ renders correctly (132ms)

 ✓ component renders correctly (5ms)

Chapter 8 Testing

193

 › 1 snapshot written.

Snapshot Summary

 › 1 snapshot written from 1 test suite.

Test Suites: 1 passed, 1 total

Tests: 2 passed, 2 total

Snapshots: 1 written, 1 total

Time: 1.114s, estimated 2s

Ran all test suites.

Great! Our test passed and created a snapshot of the render output of our

component. This snapshot is saved in a new folder, __snapshots__, which resides inside

the __test__ folder. You will find a snapshot file App.js.snap. Open that file if you want

to see what’s inside a snapshot.

// Jest Snapshot v1, https://goo.gl/fbAQLP

exports['component renders correctly 1'] = '

<View

 style={

 Object {

 "alignItems": "center",

 "backgroundColor": "#F5FCFF",

 "flex": 1,

 "justifyContent": "center",

 }

 }

>

 <Text

 style={

 Object {

 "fontSize": 10,

 "margin": 10,

 "textAlign": "center",

 }

 }

 >

Chapter 8 Testing

194

 Welcome to React Native!

 </Text>

 <Text

 style={

 Object {

 "color": "#333333",

 "marginBottom": 5,

 "textAlign": "center",

 }

 }

 >

 To get started, edit App.js

 </Text>

 <Text

 style={

 Object {

 "color": "#333333",

 "marginBottom": 5,

 "textAlign": "center",

 }

 }

 >

 Press Cmd+R to reload,

Cmd+D or shake for dev menu

 </Text>

</View>

`;

Do not modify this snapshot. Instead, make some change in your App.js component

and see how the snapshot changes and the report fails. Let’s make the following change

in our styling:

const styles = StyleSheet.create({

 container: {

 flex: 1,

 justifyContent: 'center',

Chapter 8 Testing

195

 alignItems: 'flex-start',

 backgroundColor: '#F5FCFF',

 },

 welcome: {

 fontSize: 10,

 textAlign: 'center',

 margin: 10,

 },

 instructions: {

 textAlign: 'center',

 color: '#333333',

 marginBottom: 5,

 },

});

Here we have only made one small change in alignItems, changing the setting from

center to flex-start. Run the report again and see if the test fails:

npm test

> jestBasics@0.0.1 test /Users/akshatpaul/myapps/react-native-second-edition/

chapter8/jestBasics

> jest

 FAIL __tests__/App.js

 ✓ renders correctly (135ms)

 × component renders correctly (9ms)

 ● component renders correctly

 expect(value).toMatchSnapshot()

 Received value does not match stored snapshot "component renders correctly 1".

 - Snapshot

 + Received

Chapter 8 Testing

196

 @@ -1,9 +1,9 @@

 <View

 style={

 Object {

 - "alignItems": "center",

 + "alignItems": "flex-start",

 "backgroundColor": "#F5FCFF",

 "flex": 1,

 "justifyContent": "center",

 }

 }

 18 | const tree = renderer.create(<App />).toJSON();

 19 |

 > 20 | expect(tree).toMatchSnapshot();

 | ^

 21 | });

 22 |

 at Object.toMatchSnapshot (__tests__/App.js:20:16)

 › 1 snapshot failed.

Snapshot Summary

 › 1 snapshot failed from 1 test suite. Inspect your code changes or run

'npm test -- -u' to update them.

Test Suites: 1 failed, 1 total

Tests: 1 failed, 1 passed, 2 total

Snapshots: 1 failed, 1 total

Time: 0.886s, estimated 1s

Ran all test suites.

npm ERR! Test failed. See above for more details.

Perfect! Our test failed, and this shows how snapshot testing with Jest really helps

during development of a substantial React Native application if one developer makes a

change, for example, that might hinder the UI build by someone else.

Chapter 8 Testing

197

�Summary
Testing is a crucial component in any mobile app development. In this chapter you

learned about using Flow to keep your code type checked to assist in detecting issues

with your code early and resolving them before they become bugs. Next, you learned

about testing with Jest and how to set it up for both React Native CLI apps and those

generated using the ExpoCLI. In the end, we introduced the powerful technique of

snapshot testing with Jest, which makes building UIs and maintaining them much easier.

Chapter 9 covers iOS and Android app submission to the Apple App Store and

Google Play Store, respectively.

Chapter 8 Testing

199
© Akshat Paul and Abhishek Nalwaya 2019
A. Paul and A. Nalwaya, React Native for Mobile Development, https://doi.org/10.1007/978-1-4842-4454-8_9

CHAPTER 9

Getting Ready for
the World

The last 10 percent to launch something takes as much energy as the first
90 percent.

—Rob Kalin

That’s a strong quote, but it usually proves quite right. However, when it comes to

launching our application with React Native, it is a piece of cake. This chapter covers

how you can create a build to distribute your React Native application for both iOS

and Android. We also introduce some third-party platforms that are available to make

distribution totally stress free. Here are the topics covered in this chapter:

•	 The Apple and Google Play distribution systems

•	 Creating a build for iOS or Android

•	 Beta testing

�Apple Developer Account
To create builds for iOS devices for testing or to distribute applications to actual users on

the Apple App Store, you must first create and pay for an Apple Developer Account. An

individual developer account costs around US$99 and works perfectly for independent

developers, or even for developers who are part of a small organization. However, if your

company policy requires you to be a member of a team, then your company can go open

Enterprise account. Table 9-1 lists the differences so you can determine what works best

for your organization.

200

To create your Apple Developer Account, visit https://developer.apple.com/.

�Google Play Console
In the case of Android, you explicitly do not need to have a paid account from Google

Play at the time of development or testing. However, eventually when you have to

distribute your application (i.e., publish it to the Google Play Store) you would have to

pay a one-time registration fee of US$25. However, this will only be required toward the

Table 9-1.  Selecting Your Options

Only Apple ID Apple Developer Program Enterprise Program

Xcode developer tools ✓ ✓ ✓

Xcode beta releases ✓ ✓ ✓

Test on device ✓ ✓ ✓

Developer forums ✓ ✓ ✓

OS beta releases × ✓ ✓

Advanced app capabilities × ✓ ✓

Code-level support × ✓ ✓

Distribution outside Apple App

Store

× ✓ ✓

App Store distribution × ✓ ×

App Store connect × ✓ ×

Safari extensions × ✓ ×

Offering custom apps × ✓ ×

Distribution of custom apps to

your employees

× ✓ ×

Distribution of your proprietary

apps to your employees

× × ✓

Cost Free US$99 (annually) US$299 (annually)

Chapter 9 Getting Ready for the World

https://developer.apple.com/

201

end of the chapter if you wish to publish your app to the Play Store.To learn more about

the Google Play Console visit https://play.google.com/apps/publish/.

�iOS Build Process
To get ready, we must set up our Apple Developer Profile. Apple has a specific way of

setting up certificates, IDs, and profiles. Not to worry; we’ll learn about them all by

setting them up for our React Native app. Once you have your paid Developer account,

log in into https://developer.apple.com/. You’ll have two options, as shown in

Figure 9-1.

The first option is Certificates, Identifiers & Profiles and the second one is App Store

Connect. The App Store is the place where we will upload our application build to be

submitted to Apple for publishing our app to the App Store and also for beta testing our

application using TestFlight.

Open the Certificates, Identifiers & Profiles page, select Development on the left, and

then click the plus (+) button on the right to begin the development and distribution

certificate process (Figure 9-2).

Figure 9-1.  Apple Developer console

Chapter 9 Getting Ready for the World

https://play.google.com/apps/publish/
https://developer.apple.com/

202

You will then have the option to create either a development or distribution

certificate (Figure 9-3).

We will require both because we plan to publish our application to the App Store

and the process is the same for both. Select iOS App Development and continue to the

next step. There you will see instructions how to generate the certificate on your Mac

machine, which will be then uploaded. For this you will make use of the Keychain utility.

Figure 9-2.  Beginning the development and distribution process

Figure 9-3.  Selecting development and distribution certificates

Chapter 9 Getting Ready for the World

203

�Create a CSR File
In the Applications folder on your Mac, open the Utilities folder and launch

Keychain Access. From the Keychain Access drop-down menu, select Keychain Access

➤ Certificate Assistant ➤ Request a Certificate from a Certificate Authority. In the

Certificate Information window, enter the following information:

	 1.	 In the User Email Address field, enter your e-mail address.

	 2.	 In the Common Name field, create a name for your private key

(e.g., John Doe Dev Key).

	 3.	 The CA Email Address field should be left empty.

	 4.	 In the Request is group, select Saved to disk.

Click Continue within Keychain Access to complete the CSR generating process.

Once this is complete, click Continue and you see an option to upload the CSR file in

your developer portal (Figure 9-4).

Figure 9-4.  Certificate upload page on Apple Developer portal

Chapter 9 Getting Ready for the World

204

Once the CSR file is uploaded, click Continue. At the last step you will have the option

to download the certificate. Double-click it and it will get loaded in your Keychain.

Next, follow the same steps and set up distribution certification. On successful

completion you can check both your installed certificates in Keychain ➤ My Certifications.

We next create an App ID that will be unique for every application. Under Identifiers,

select App IDs and then click the plus (+) button (Figure 9-5).

That will open the screen shown in Figure 9-6.

Figure 9-5.  List of App ID page on Developer portal

Chapter 9 Getting Ready for the World

205

Figure 9-6.  Registering an App ID in the Apple Developer portal

Chapter 9 Getting Ready for the World

206

Make a note of the Bundle ID, as it’s the same ID that we have to use in our App ID. We

will use this once we open our code to create the build for our application. In our example

we have named it com.sampleRN.app, but you can use any nomenclature you desire. Click

Continue, and your App ID will be listed within the App IDs section (Figure 9-7).

Next, we create a Development and Distribution profile for the sampleReactNative

application. Scroll down to the Provisioning Profiles section and select Development,

then click the plus (+) button (Figure 9-8).

Figure 9-7.  App ID shown in the Apple Developer portal

Chapter 9 Getting Ready for the World

207

Select the appropriate App ID from the drop-down list. In our case it will be the App

ID we created in the previous section for our sampleReactNative app (Figure 9-9).

Figure 9-8.  iOS Provisioning Profiles list page in the Apple Developer portal

Chapter 9 Getting Ready for the World

208

Click Continue. Your Development Provisioning profile will be generated. Double-

click it and it will be loaded in your Xcode automatically. Before proceeding to the next

section, create a Distribution Provisioning profile for our sampleReactNative app using

the same process.

Now that all our basic setup is completed, in the next section you learn how we create

a build for our application and distribute it among our team members using TestFlight.

�Generating iOS .ipa(iPhone Application Archive)
Before we create our build and host it on TestFlight for testing, we should load our

source code in Xcode. From the root of your React Native source code, navigate to the

appropriate folder and click the Xcode project file (Figure 9-10).

Figure 9-9.  Add iOS Provisioning Profiles page on the Apple Developer portal

Chapter 9 Getting Ready for the World

209

Double-click this to load your application in Xcode. Click the General tab for the

application to add the settings shown in Figure 9-11.

Figure 9-10.  Folder structure of iOS project

Chapter 9 Getting Ready for the World

210

Use the App ID you had created in previous section as the Bundle Identifier. This has

to be same, as mentioned in the Developer console, and unique for every application

you create. It is essentially a unique identifier for your app in Apple’s system.

Next, let’s add some app icons and a launch screen for our sample application. It’s

fine to keep your launch screen simple, with just text that comes out of the box when

you initialize a React Native application. However, we must add all types of icons for our

build to be successful and submitted to Apple for both App Store release and testing with

TestFlight.

To add icons to your application, select Images.xcassets ➤ AppIcon folder from the

project directory from Xcode (Figure 9-12).

Figure 9-11.  Xcode General tab settings for the project

Chapter 9 Getting Ready for the World

211

The icons shown here represent the same icon for your application to be used at

different places; in short, they represent your application icon in various sizes. We won’t

get into a tutorial here about how to create these icons, because that’s a designer’s area of

expertise. For our work, we can use some application—we suggest downloading Icon Set

Creator for your Macintosh—to generate all sizes of icons for iOS devices (Figure 9-13).

There are many online sites that can help you perform the same task.

Figure 9-12.  Icon image set screen in Xcode

Chapter 9 Getting Ready for the World

212

Next drag and drop your icons into the AppIcon pane, as shown in Figure 9-14.

Figure 9-13.  An app for creating an icon set on Mac

Chapter 9 Getting Ready for the World

213

Once this is done, you will see all your icons automatically set up and you’re ready

for the next step, which is setting up your launch screen.

Select LaunchScreen.xib to add or modify the launch screen for your application. In

our sample application, we will keep the same default launch screen because it won’t

break our build or stop us from uploading it. However, for a real-world application that is

supposed to be published to the App Store, it is better to have a proper launch screen.

Next, let’s create our build, which is actually done using the Archive command.

Before we create the build, please select Generic iOS Device as the target, as shown in

Figure 9-15. The reason for changing this from a simulator to Generic iOS Device is that

Figure 9-14.  Icon image set screen in Xcode

Chapter 9 Getting Ready for the World

214

your Archive command will be disabled if you don’t make this change. On the XCode

menu bar, select Product ➤ Archive and the build process will begin.

When successfully built, you’ll get the window shown in Figure 9-16 with a list of all

your Archives. If this window does not appear for some reason, even after a successful

build or by mistake you close it, you can reopen it. This is Xcode Organizer.

Figure 9-15.  Xcode archive generation

Figure 9-16.  Xcode Organizer

Chapter 9 Getting Ready for the World

215

Click Distribute App and you will be presented with a few options. Select iOS App

Store and after few steps your ipa will be ready to be uploaded to App Store Connect

(Figure 9-17).

Before clicking Upload, you need to first create the application on the App Store

Connect. Go to https://developer.apple.com/account and select the App Store

Connect icon or visit https://appstoreconnect.apple.com/. There you’ll find several

options. Select My Apps, as shown in Figure 9-18.

Figure 9-17.  Xcode Organizer detail screen

Chapter 9 Getting Ready for the World

https://developer.apple.com/account
https://appstoreconnect.apple.com/

216

Inside My Apps you will see all your iOS applications. Click the plus (+) button and

select New App to create new App Store app for our React Native application (Figure 9-19).

Figure 9-18.  App Store Connect home page

Figure 9-19.  App Store Connect create new app

Chapter 9 Getting Ready for the World

217

Once selected, the form displayed in Figure 9-20 will appear.

Fill it out with the proper details for your application. You can select the appropriate

Bundle ID from the drop-down list. A SKU has to be added, which can be different

from the Bundle ID. This SKU is not visible to App Store users. For user access, if you

have created any specific user group already you can select it. If not, select Full Access,

especially if this is your first application.

Figure 9-20.  App Store Connect form to create a new app

Chapter 9 Getting Ready for the World

218

Click Create and your empty app will be created on App Store Connect. Go back to

Xcode and continue where we left off. Click Upload and shortly your application build

will be uploaded on App Store Connect (Figure 9-21).

You can check your application build on App Store Connect in a few. From App Store

Connect, you can submit your application to Apple for review. After a successful review

of your application without issues and errors, your app will be live on the Apple App

Store for users in two to five days.

Before you publish your application for end users, it must be thoroughly tested. This

process is called beta testing and can be achieved using TestFlight.

Figure 9-21.  Organizer success screen

Chapter 9 Getting Ready for the World

219

�Generating Android .apk(Android application
package)
Just like Apple, Google expects all Android apps to be signed with a certificate before

they get installed on a device either for testing or publishing in the Google Play Store.

To begin this process, first navigate to the folder where your Java Development

Kit (JDK) is installed. In the case of Macintosh, if you are not sure where your JDK is

installed, type the following command in your terminal:

$ /usr/libexec/java_home

This will print the path to the jdk folder. Navigate to that directory and type the

following command:

$ sudo keytool -genkey -v -keystore my-release-key.keystore -alias my-key-

alias -keyalg RSA -keysize 2048 -validity 10000

When you execute this command, it will ask few questions and require a password

to be set for your keys. Please remember the password because it will be used later when

applying these settings for your React Native application.

Copy the my-release-key.keystore file in the android/app directory in your React

Native application folder (Figure 9-22).

Chapter 9 Getting Ready for the World

220

Figure 9-22.  Android folder structure of app

Chapter 9 Getting Ready for the World

221

Note  Always make sure to keep your keys private and never commit in the
project directory.

Next, we need to add some configurations in two files. First open android/gradle.

properties and add the following settings:

MYAPP_RELEASE_STORE_FILE=my-release-key.keystore

MYAPP_RELEASE_KEY_ALIAS=my-key-alias

MYAPP_RELEASE_STORE_PASSWORD=∗∗∗∗∗
MYAPP_RELEASE_KEY_PASSWORD=∗∗∗∗∗

As mentioned earlier, provide the password you set when you were generating

your keys.

Next, open android/app/build.gradle. In signingConfigs ➤ release section, add

the following config:

signingConfigs {

 release {

 if (project.hasProperty('MYAPP_RELEASE_STORE_FILE')) {

 storeFile file(MYAPP_RELEASE_STORE_FILE)

 storePassword MYAPP_RELEASE_STORE_PASSWORD

 keyAlias MYAPP_RELEASE_KEY_ALIAS

 keyPassword MYAPP_RELEASE_KEY_PASSWORD

 }

 }

 }

In the same file inside the buildTypes ➤ release section, add the following config:

buildTypes {

 release {

 ...

 signingConfig signingConfigs.release

 }

 }

Chapter 9 Getting Ready for the World

222

Finally, to generate an apk, go to the android folder in your React Native application

and execute the following command:

$ gradlew assembleRelease

This will generate the apk build that can you can find at android/app/build/

outputs/apk/release/app-release.apk. This apk can be distributed to users and

submitted to the Google Play Store.

�Beta Testing with TestFlight
TestFlight is a utility that is included when you set up your Apple Developer Account.

It allows you to invite users to test your application, provide you with feedback, and

provide you with valuable test information like crashes, and so on.

Each build is active for 90 days and you can invite up to 25 internal testers (which

does not require App Store review) and up to 10,000 external testers, which is only

applicable after App Store review.

Let’s also set up our sample React Native application for TestFlight. The process is

pretty simple. Inside App Store Connect, select your application and click the TestFlight

tab (Figure 9-23).

You will see the recently uploaded build available. It will mention missing

compliance. Under App Information, select Test Information from the menu pane. Click

the Missing Compliance message again and click Start Internal Testing.

Figure 9-23.  App Store Connect TestFlight tab

Chapter 9 Getting Ready for the World

223

You can invite up to 25 users to participate in internal testing. To add users, return to

the App Store Connect home screen and select Users and Access. From there, you can

add your testing users and segregate them into groups if required.

Your testers would have to install the TestFlight application from the Apple App Store

to access the build, which will be installed separately on your iOS device.

TestFlight is a good option, but it is limited to only iOS device testing. Besides

TestFlight we would recommend TestFairy and HockeyApp as alternatives that can

be used for both iOS and Android. Whereas TestFairy is a paid utility, HockeyApp is

completely free (at the time of this writing).

�Summary
In this chapter we finally reached the end of the development cycle for a mobile

application, creating a build that can be tested by users and submitted to the Apple App

Store or the Google Play Store. You learned about the signing process for both systems:

Whereas Apple has specific steps in its signing process, the Google Android process

is fairly quick. Both, though, are designed to keep the rights and devices of users from

being misused. You also learned about beta testing with TestFlight and some other

popular options.

Chapter 9 Getting Ready for the World

225
© Akshat Paul and Abhishek Nalwaya 2019
A. Paul and A. Nalwaya, React Native for Mobile Development, https://doi.org/10.1007/978-1-4842-4454-8_10

CHAPTER 10

The Ecosystem:
Extending React Native

Civilization advances by extending the number of operations which we can
perform without thinking about them.

—Alfred North Whitehead

If you have come this far, you can proudly say you have become a React Native developer.

In this final chapter you learn how expedite your React Native development by using

some very useful, stable, and popular libraries. These are designed to make your life a bit

easier and help you create your apps faster. This chapter covers the following topics:

•	 Popular React Native libraries

•	 Community, Help, and where to go from here

�Popular React Native Libraries
From the time of its inception the React Native ecosystem has grown by leaps and

bounds. The React Native community is vibrant and exceptionally productive: With

every passing week, something new is always coming up to untangle the complications

of development. By the time you have reached this chapter and we have completed

this book, a lot more must have happened (later in this chapter we share ways to stay

updated with the community). However, this chapter provides a curated list of libraries

organized based on categories to help you increase the velocity of your React Native

development.

226

�UI
�Styled-components

Styled-components allows you to write actual CSS code to style your components. It

removes the mapping between components and styles: Using components as a low-level

styling construct makes it easy. See https://github.com/styled-components/styled-

components.

�Lottie-react-native

Lottie is a mobile library for Android and iOS that parses Adobe After Effects animations

exported as JSON with bodymovin (an After Effects extension to export anmations for

the Web) and renders them natively on mobile platforms. Access the Lottie mobile

library here: https://github.com/react-native-community/lottie-react-native.

�React-native-vector-icons

This library is perfect for buttons, logos, and navigation and tab bars. It is easy to extend,

style, and integrate into your project. It provides customizable icons for React Native

with support for NavBar/TabBar/Toolbar, image source, and full styling. See https://

github.com/oblador/react-native-vector-icons.

�Forms
�Formik

Formik is a simple library that helps you with the three parts that make forms in React

complicated: getting values in and out of form state, validation and error messages, and

handling form submission. See https://github.com/jaredpalmer/formik.

�Redux-form

Redux-form is the most convenient way to manage a form state in Redux. To make use of

this module you must have some idea about the Redux state container and higher order

components. See https://github.com/erikras/redux-form/.

Chapter 10 The Ecosystem: Extending React Native

https://github.com/styled-components/styled-components
https://github.com/styled-components/styled-components
https://github.com/react-native-community/lottie-react-native
https://github.com/oblador/react-native-vector-icons
https://github.com/oblador/react-native-vector-icons
https://github.com/jaredpalmer/formik
https://github.com/erikras/redux-form/

227

�Type Checking and Linting
�ESLint

ESLint is an open source project that has as its ultimate goal to provide a pluggable

linting utility for JavaScript. There are many popular ESLint configurations available

from popular projects that can import for your application while also creating new

custom linting rules based on your requirement. See https://eslint.org/.

�Prop-types

Prop-types is a library that helps in runtime type checking for React props and similar

objects. See https://www.npmjs.com/package/prop-types.

�Flow

Flow is a static type checker for JavaScript that helps identify problems with your code

early instead of guessing and checking. Flow provides real-time feedback as you code

and make your changes. See https://flow.org/.

�Testing
�Jest

Jest is a testing framework that is simple to use and integrate with your React Native

application. It comes out of the box with React Native versions 0.38 and above. Jest also

allows for snapshot testing, which is a brilliant way to manage changes in the UI. See

url: https://jestjs.io/.

�Enzyme

Enzyme is a testing tool that was created and open sourced by Airbnb. It supports tons

of features like shallow rendering, full DOM rendering, and static rendered markup. It

is a great add-on, along with Jest. Enzyme APIs are intuitive and flexible as they imitate

Jquery APIs for DOM manipulations. See https://github.com/airbnb/enzyme.

Chapter 10 The Ecosystem: Extending React Native

https://eslint.org/
https://www.npmjs.com/package/prop-types
https://flow.org/
https://jestjs.io/
https://github.com/airbnb/enzyme

228

�Chai

Chai is an assertion testing library based on test-driven and behavior-driven

development. Just like Enzyme, Chai also enahances other testing frameworks. See

https://www.chaijs.com/.

�Mocha

Mocha is a JavaScript testing framework that helps make asynchronous testing simple.

Mocha runs test serially and provides accurate reporting, while mapping uncaught

exceptions to the correct test cases. See https://mochajs.org/.

�Interacting with APIs and Back End
�Axios

Axios is an HTTP client for JavaScript that helps make HTTP requests to REST endpoints

and perform CRUD operations. Axois supports Promise API, intercept request and

response, helps transform request and response data, and has many more features. See

https://github.com/axios/axios.

�Apollo

If you plan to use GraphQL you will end up using Apollo, which is an implementation of

GraphQL that helps manage data in the cloud. Apollo includes two open source libraries

for the client and server, in addition to developer tools that provide everything you need

to run a graph API in production with confidence. See https://www.apollographql.

com/docs/react/recipes/react-native.html.

�React-native-firebase

React-native-firebase is a collection of official React Native modules connecting you to

Firebase services; each module is a lightweight JavaScript layer connecting you to the

native Firebase SDKs for both iOS and Android. See https://github.com/invertase/

react-native-firebase.

Chapter 10 The Ecosystem: Extending React Native

https://www.chaijs.com/
https://mochajs.org/
https://github.com/axios/axios
https://www.apollographql.com/docs/react/recipes/react-native.html
https://www.apollographql.com/docs/react/recipes/react-native.html
https://github.com/invertase/react-native-firebase
https://github.com/invertase/react-native-firebase

229

�Routing
�React Router

React Router is a collection of navigational components that compose declaratively with

your application. Whether you want to have URLs that can be bookmarked for your web

app or a composable way to navigate in React Native, React Router works perfectly. See

https://reacttraining.com/react-router.

�React Navigation

React Navigation was born from the React Native community’s need for an extensible

yet easy-to-use navigation solution written entirely in JavaScript (so you can read

and understand all of the source), on top of powerful native primitives. See https://

reactnavigation.org/.

�Utilities
�Lodash

Lodash is a JavaScript library that provides utility functions for common programming

tasks using the functional programming paradigm. Lodash is the most commonly used

library in any application and it is very popular in the JavaScript world. See https://

lodash.com/docs/4.17.11.

�Ramda

Ramda is a library designed specifically for a functional programming style, one that

makes it easy to create functional pipelines and never mutates user data. See https://

ramdajs.com/.

�Moment

Moment.js is brilliant for managing dates in JavaScript, which is something you will

always stumble on when developing an application. See https://momentjs.com/.

Chapter 10 The Ecosystem: Extending React Native

https://reacttraining.com/react-router
https://reactnavigation.org/
https://reactnavigation.org/
https://lodash.com/docs/4.17.11
https://lodash.com/docs/4.17.11
https://ramdajs.com/
https://ramdajs.com/
https://momentjs.com/

230

�Reselect

Reselect is a simple “selector” library with Redux. Having key features like selectors can

compute derived data, allowing Redux to store the minimal possible state. Selectors are

efficient; a selector is not recomputed unless one of its arguments changes. They are also

composable, and they can be used as input to other selectors. See https://github.com/

reduxjs/reselect.

�Validate.js

Validation is part of any application. Validate.js serves this purpose by providing a

declarative way of validating JavaScript objects. With Validate.js, validation constraints

can be declared in JSON and shared between clients and the server. See https://

validatejs.org/.

�React-native-device-info

This is a simple library, and as its name suggests, it provides device information for React

Native for iOS and Android. It has a long list of APIs to provide in-depth information

about the device on which an application is running. See https://github.com/

rebeccahughes/react-native-device-info.

�Where to Get Help
This section provides some suggestions on where to get help in the React Native

community.

�React Native Repository
The React Native repository is maintained by a full-time Facebook React Native core

team, but there is huge community that is always contributing to keeping this framework

stable. You can always raise an issue if you find one with the framework in the GitHub

repository, and there you can also find solutions to past issues. See https://github.

com/facebook/react-native/issues. To report a bug in the framework you can use the

bug report format available at https://github.com/facebook/react-native/issues/

new?template=bug_report.md.

Chapter 10 The Ecosystem: Extending React Native

https://github.com/reduxjs/reselect
https://github.com/reduxjs/reselect
https://validatejs.org/
https://validatejs.org/
https://github.com/rebeccahughes/react-native-device-info
https://github.com/rebeccahughes/react-native-device-info
https://github.com/facebook/react-native/issues
https://github.com/facebook/react-native/issues
https://github.com/facebook/react-native/issues/new?template=bug_report.md
https://github.com/facebook/react-native/issues/new?template=bug_report.md

231

�Stack Overflow
Stack Overflow is a place where people across the React Native community help each

other. You can post questions and get answers pretty quickly. You can also help fellow

developers as you proceed in your journey toward becoming an expert in React Native

(or any other technology). By giving answers to various questions, your score on Stack

Overflow increases, which is a kind of motivation for helping others. Many developers

actually boast about their Stack Overflow stats. See https://stackoverflow.com/

questions/tagged/react-native?sort=frequent for a list of exisiting questions on

React Native. To ask a question with a React Native tag, go to https://stackoverflow.

com/questions/ask?tags=react-native.

�Stay Updated with React Native
You should also stay in tune with the latest happenings in React Native with the official

documentation available at https://github.com/facebook/react-native-website.

The official blog of React Native maintained at https://facebook.github.io/react-

native/blog/ will keep you updated on what is new. You can also connect with the

official React Native Twitter account, which keeps updated with both React Native and

Reactjs. See https://twitter.com/reactjs.

�React Native Communities
Sometimes if you don’t get an answer quickly on GitHub issues or Stack Overflow, it’s

a good idea to get in touch with the larger community instantly. For that you can join

the React Discord channel and connect with fellow developers. Incidentally, it’s not

necessary for you have questions; you can always share your discovery or maybe your

next open source React Native project. This is a good way to get some visibility. See

https://discordapp.com/invite/0ZcbPKXt5bZjGY5n.

Another way to interact with the React Native developer community is to be part of

various online groups and forums. Here are a few recommended ones you can join:

•	 React Native Spectrum: https://spectrum.chat/react-native

•	 React Native Facebook group: https://www.facebook.com/groups/

react.native.community

•	 Expo forum: https://forums.expo.io/

Chapter 10 The Ecosystem: Extending React Native

https://stackoverflow.com/questions/tagged/react-native?sort=frequent
https://stackoverflow.com/questions/tagged/react-native?sort=frequent
https://stackoverflow.com/questions/ask?tags=react-native
https://stackoverflow.com/questions/ask?tags=react-native
https://github.com/facebook/react-native-website
https://facebook.github.io/react-native/blog/
https://facebook.github.io/react-native/blog/
https://twitter.com/reactjs
https://discordapp.com/invite/0ZcbPKXt5bZjGY5n
https://spectrum.chat/react-native
https://www.facebook.com/groups/react.native.community
https://www.facebook.com/groups/react.native.community
https://forums.expo.io/

232

�Knowledge
Besides the official React Native blog, there are some amazing posts written on other

blogs by community members that can further enhance your knowledge. Here are two

recommended ones:

•	 DevTo community: https://dev.to/t/reactnative

•	 React Native on Medium: https://medium.com/tag/react-native

�Discussions and Proposals
React Native, although very powerful, is still a young framework and its core team is

always looking for great proposals, improvements, and discussions. Be part of this

problem-solving effort and contribute to this thriving community. You can do this

by following the formal channel at https://github.com/react-native-community/

discussions-and-proposals.

�Summary
Now we have reached the end of our book and our last summary. In this chapter

we provided information about various React Native libraries that can expedite our

development time and give access to the enormous treasure trove of features built over

time by the React Native community. You also learned about how to stay updated on this

fast-moving framework by getting information from the right sources.

Although you have learned a lot during the course of this book, to truly master this

topic you have to keep practicing and creating apps. There is no better way to become

an expert at a technology than learning on your own in a real-world scenario. You can

contribute to the developer community by creating a module that still does not exist or

by contributing to existing open source React Native repos. We are very excited about

React Native, just like you, and look forward to seeing your work making a mark in the

mobile development and React Native world.

Chapter 10 The Ecosystem: Extending React Native

https://dev.to/t/reactnative
https://medium.com/tag/react-native
https://github.com/react-native-community/discussions-and-proposals
https://github.com/react-native-community/discussions-and-proposals

233
© Akshat Paul and Abhishek Nalwaya 2019
A. Paul and A. Nalwaya, React Native for Mobile Development, https://doi.org/10.1007/978-1-4842-4454-8

Index

A
Alert method, 127, 128
Android Virtual Devices (AVDs), 33
Animations, 99–101
Apple Developer Account

Beta testing with test flight, 222
generating android apk, 219–222
generating iOS ipa

App Store connect, 215–218
icons, 211, 213
settings, 210
Xcode archive generation, 214
Xcode Organizer, 214
Xcode project file, 208, 209

iOS build process, 201
add provisioning

profiles, 207, 208
App ID, 204–206
certificate uploaded on Apple

Developer portal, 204
create development and

distribution process, 202
Keychain Access, 203
Select development, 202

populated list with options, 200
AsyncStorage, 116, 119–123

B
Beta testing, 218, 222–223

C
catch() method, 148
Communication, 141

fetch, 143
server

get data, 145–148
saving data

(see Data saving, server)
WebSocket, 142, 143
XMLHttpRequest, 142

componentDidMount() method, 121, 148

D, E
Data saving, server

AddNewProperty, 153–155
Addproperty page, 149
alert box message, 160, 161
back-end API, 149
list of properties, 162
navigation route, 152
post request, 158
setState, 156
simulator, 158

Debugging, React Native, 42
in Chrome, 43, 44
FPS Monitor, 45
inspect element, 46, 47
reload option, 43
in Safari, 44

https://doi.org/10.1007/978-1-4842-4454-8

234

Deep linking
Android, 136
defined, 133
iOS, 136
navigation container, 135
React component, 134
Safari browser, 137
universal links, 133
URL schemes, 133

Device capabilities
AsyncStorage, 116

addMessage method, 121
getInitialState, 121
retrieveData, 121
updatedStorage

method, 122
Update Storage, 118, 119

GeoLocation, 103
annotations, 108–110
Google Maps, 107
latitude and

longitude, 110–113, 115, 116
MapView component, 106

NativeAlert
add buttons, 127, 128, 130
alert and prompt method, 127
Button, 124, 125
new component, 126

WebView, 130
code review, 132, 133
with URL, 132

Dispatcher, 54–55

F
Fetch, 143

list of properties, 144, 145
network APIs, 144

Flexbox, 77
flexDirection, 80–82
flex values, 82–86
landscape mode screen, 80
NavigatorIOS, 76
portrait mode screen, 79
styles, 78, 79

Flux
actions, 56
benefits, 53
data flow, 53
definition, 49
dispatcher, 54
dispatch() method, 55
predictable code, 53
stores, 55
waitFor() method, 55

Freeway Drive, 115, 116

G
GeoLocation, 103, 104
getCount() method, 176
getCurrentPosition function, 113

H, I
_handleListProperty function, 89

J, K
Java Development Kit (JDK), 219
JavaScript Object Notation (JSON), 145
Jest, 227

definition, 188
features, 189
React Native framework, 189–192
Snapshot testing, 192–196

INDEX

235

L
ListView, 94–98
Lodash, 229

M
MapView component, 106, 107, 109
Mocha, 189, 228
Model-view-controller (MVC)

framework, 2, 49
MVC pattern, 50–51

N, O, P, Q
NativeAlert component, 126, 127, 130
Native Bridge

for Android
creating Counter class, 180, 181
creating Java class, 182
CustomCounterPackage, 183–184
open app, 179
run application, 185, 186

development setup, 166
iOS

Counter class, 170
Counter.swift, 168, 169
creating bridging header, 168
creating file in Swift, 167
creating Objective-C file, 169
getCount method, 176–178
NativeModules.Counter.

increment(), 171, 173
open Xcode, 166
RCT_EXPORT_METHOD(), 170
selecting proper group, 167
thread, 174

NSLocationWhenInUse
UsageDescription, 110

R
Ramda, 229
RCT_EXPORT_METHOD(), 170
React, 1, 2

advantages, 3
components, 10–12

HTML properties, 14
property types, 15, 16
state, 16–19

creating Hello World
project, 9, 10

installation, 8, 9
MVC, 2
one-way data flow, 5, 7
problems, 2
spaghetti relationship, 6
two-way data binding, 5
VDOM, 3

components, 5
working principle, 4

React Native, 21, 22
communities, 231
create basic structure project

CLI tool, 26
Expo app, 26, 29, 30
terminal output, 27

debugging, 42
in Chrome, 43
FPS Monitor, 45
inspect element, 46
reload option, 43
in Safari, 44

Hello World
application, 24

destructuring, 32
iOS simulator, 41
render function, 32
Xcode editor, 29

Index

236

HouseShare project, 38
Android, 39
AppDelegate.m, 39
index.ios.js, 39
iOS folder, 39
node_modules, 39
package.json, 39
RCTRootView, 40

installation, 22
cli module, 23
Node and npm, 23

JavaScriptCore framework, 37
live reload, 36
prerequisites, 33
RCTText, 34, 36
repository, 230
running app on simulator, 34
Stack Overflow, 231
TouchableHighlight, 88–91
web technologies, 37
WebView-based, 36

React Native application, 103
React Native CLI, 133
React-native-firebase, 228
React Native libraries

forms, 226
routing, 229
testing, 227, 228
type checking, linting, 227
UI, 226
utilities, 229, 230

react-native-maps, 104
react-native-maps npm module, 104
React Navigation

createStackNavigator, 75

creating HomeScreen React
component, 71–74

creating screen, 70
definition, 70

Reducers, 58
Redux

actions, 58
advantages, 66, 67
data flow, 57
definition, 49
functional programming, 57
with React Native

components, 63–65
folder structure, 59–61
reducer code, 62, 63
todo reducer, 62
visibilityFilter reducer, 61

reducers, 58
store, 59

Reflux
populated list with options, 200

S
ScrollView, 98, 99

animations, 99–101
code, 98

Separation of concerns (SoC), 7
Server

get data, 145
HomeListScreen, 148
iOS simulator, 146
MOCK_DATA, 147, 148
setState object, 148

iOS simulator, 147
saving data, (see Data saving, server)

React Native (cont.)

INDEX

237

Snapshot testing, 189, 192, 227
Stack Overflow, 231
Static type checking

flow, 187, 188
flow, benefits, 188

Swift class method, 173

T
TestFlight, 201, 218, 222, 223
TouchableHighlight, 88–91, 122

U
User interface

add images, 86–88
Flexbox (see Flexbox)
ListView component, 94–98

ScrollView, 98, 99
TouchableHighlight, 88–91

V
Virtual DOM (VDOM), 3

components, 5
working principle, 4

W
watchPosition method, 113
WebSocket, 142, 143
WebView, 130–132

X, Y, Z
XMLHttpRequest, 142

Index

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Learning the Basics: A Whistle-Stop Tour of React
	Why React?
	Virtual DOM
	One-Way Data Flow
	Installation and Setup
	Create a Hello World Application

	Introduction to Components
	Deep-Dive into Components
	Properties

	State
	Summary

	Chapter 2: The Simplest Program: Hello World with React Native
	What Is React Native?
	Installation
	Installing Node and npm
	Installing the React Native Package
	Updating React Native

	Your First App
	Creating a Basic Skeleton

	Prerequisites for Running App on a Simulator
	Running the App on a Simulator
	It’s Not a UIWebView
	Enabling Live Reload

	What Makes React Native Different?
	Ejecting a React Native Application
	Debugging
	Reload
	Debugging in Chrome
	Debugging in Safari
	Showing Performance Monitor
	The Inspect Element

	Summary

	Chapter 3: Solving Problems Differently with Flux and Redux
	MVC Pattern
	Flux
	Success of Flux

	Flux Deep Dive
	The Dispatcher
	The Need for Dispatcher [dispatch() and waitFor()]
	Stores
	Actions

	Redux
	Redux Core Concepts
	Action
	Reducer
	Store

	Redux with React Native
	Working with the Components

	Summary

	Chapter 4: Canvas, Brush, and Paint: Working with the User Interface
	React Navigation
	NavigatorIOS
	Flexbox
	flexDirection
	Flex

	Images
	TouchableHighlight
	ListView
	ScrollView
	<ScrollView> vs. <FlatList>

	Animations
	Summary

	Chapter 5: Exploring Device Capabilities
	MapView and GeoLocation
	Reviewing the GeoLocationMap Code
	Adding Annotation on a Map
	Displaying the Latitude and Longitude of the Current Location

	AsyncStorage
	Reviewing the AsyncStorage Code

	Native Alert
	Reviewing the NativeAlert Code
	Extending the NativeAlert Example

	WebView
	Reviewing the WebView Code

	Deep Linking
	Summary

	Chapter 6: Communicating with Servers
	XMLHttpRequest
	WebSocket
	Fetch
	Getting Data from a Server
	Saving Data to a Server
	Summary

	Chapter 7: Native Bridging in React Native
	Native Bridge
	Prerequisites for the Example
	iOS Native Bridge

	Native Bridge for Android

	Summary

	Chapter 8: Testing
	Flow
	Benefits of Using Flow

	Jest
	Jest with React Native

	Snapshot Testing with Jest
	Summary

	Chapter 9: Getting Ready for the World
	Apple Developer Account
	Google Play Console
	iOS Build Process
	Create a CSR File

	Generating iOS .ipa(iPhone Application Archive)
	Generating Android .apk(Android application package)
	Beta Testing with TestFlight
	Summary

	Chapter 10: The Ecosystem: Extending React Native
	Popular React Native Libraries
	UI
	Styled-components
	Lottie-react-native
	React-native-vector-icons

	Forms
	Formik
	Redux-form

	Type Checking and Linting
	ESLint
	Prop-types
	Flow

	Testing
	Jest
	Enzyme
	Chai
	Mocha

	Interacting with APIs and Back End
	Axios
	Apollo
	React-native-firebase

	Routing
	React Router
	React Navigation

	Utilities
	Lodash
	Ramda
	Moment
	Reselect
	Validate.js
	React-native-device-info

	Where to Get Help
	React Native Repository
	Stack Overflow

	Stay Updated with React Native
	React Native Communities
	Knowledge
	Discussions and Proposals

	Summary

	Index

