

With Early Release ebooks, you get books in their earliest
form—the author’s raw and unedited content as they write—
so you can take advantage of these technologies long before

the official release of these titles.

Stoyan Stefanov

React: Up & Running
Building Web Applications

SECOND EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-05146-6

[LSI]

React: Up & Running
by Stoyan Stefanov

Copyright © 2022 Stoyan Stefanov. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Jennifer Pollock
Development Editor: Angela Rufino
Production Editor: Kristen Brown
Copyeditor:
Proofreader:

Indexer:
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

July 2016: First Edition
November 2021: Second Edition

Revision History for the Early Release
2020-04-23: First Release
2021-02-03: Second Release
2021-05-14: Third Release
2021-08-06: Fourth Release
2021-09-23: Fifth Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492051466 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. React: Up & Running, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492051466

To Eva, Zlatina, and Nathalie

Table of Contents

Preface. xi

1. Hello World. 1
Setup 1
Hello React World 2
What Just Happened? 3
React.createElement() 4
JSX 6

Setup Babel 7
Hello JSX world 7
On Transpilation 8

Next: Custom Components 9

2. The Life of a Component. 11
A Custom Function Component 11

A JSX Version 12
A Custom Class Component 12

Which Syntax to Use? 13
Properties 14

Properties in Function Components 15
Default Properties 16

State 17
A Textarea Component 18
Make it Stateful 19
A Note on DOM Events 21

Event Handling in the Olden Days 21
Event Handling in React 22
Event-Handling Syntax 23

v

Props Versus State 24
Props in Initial State: An Anti-Pattern 24
Accessing the Component from the Outside 25
Lifecycle Methods 26
Lifecycle Example: Log It All 27

Paranoid State Protection 29
Lifecycle Example: Using a Child Component 30
Performance Win: Prevent Component Updates 32
Whatever Happened to Function Components? 33

3. Excel: A Fancy Table Component. 35
Data First 35
Table Headers Loop 36
Table Headers Loop, a terse version 37
Debugging the Console Warning 39
Adding <td> Content 40

Prop types 42
Can You Improve the Component? 44

Sorting 44
Can You Improve the Component? 47

Sorting UI Cues 47
Editing Data 48

Editable Cell 49
Input Field Cell 51
Saving 51
Conclusion and Virtual DOM Diffs 52

Search 53
State and UI 54
Filtering Content 57
Update the save() method 59
Can You Improve the Search? 60

Instant Replay 60
Cleaning up event handlers 62
Cleaning solution 63
Can You Improve the Replay? 64
An Alternative Implementation? 64

Download the Table Data 64
Fetching data 66

4. Functional Excel. 69
A quick refresher: Function vs Class components 69
Rendering the data 70

vi | Table of Contents

The state hook 71
Sorting the table 73
Editing data 75
Searching 76
Lifecycles in a world of hooks 77

Troubles with lifecycle methods 77
useEffect() 78
Cleaning up side effects 79
Trouble-free lifecycles 80
useLayoutEffect() 81

A custom hook 83
Wrapping up the replay 85
useReducer 86

Reducer functions 87
Actions 87
An example reducer 88
Unit testing reducers 91

Excel with a reducer 91

5. JSX. 95
A couple of tools 95
Whitespace in JSX 97
Comments in JSX 99
HTML Entities 100

Anti-XSS 101
Spread Attributes 101

Parent-to-Child Spread Attributes 102
Returning Multiple Nodes in JSX 104

A Wrapper 104
A fragment 105
An Array 105

JSX Versus HTML Differences 106
No class, What for? 107
style Is an Object 107
Closing Tags 107
camelCase Attributes 108

Namespaced components 108
JSX and Forms 109

onChange Handler 109
value Versus defaultValue 111
<textarea> Value 111
<select> Value 112

Table of Contents | vii

Controlled and uncontrolled components 113
Uncontrolled example 113
Uncontrolled example with an onSubmit handler 116
Controlled example 117

6. Setting Up for App Development. 119
Create-React-App 119

Node.js 119
Hello CRA 120
Build and deploy 122
Mistakes were made 123

package.json and node_modules 123
Poking around the code 124

Indices 124
JavaScript: Modernized 124
CSS 125

Moving On 126

7. Building the App’s Components. 127
Setup 127
Start Coding 127
Refactoring Excel 129
Version 0.0.1 of the new app 130
CSS 131
Local storage 132
The Components 133

Discovery 134
A logo and a body 136

Logo 136
Body 136
All discoverable 137

<Button> Component 137
Button.js 138

Forms 140
<Suggest> 140
<Rating> Component 143
A <FormInput> “Factory” 145
<Form> 148

<Actions> 153
Dialogs 154
Header 159
App Config 159

viii | Table of Contents

<Excel>: New and Improved 161
The overall structure 163
Rendering 164
React.Strict and reducers 168
Excel’s little helpers 170

8. The Finished App. 175
Updated App.js 178
DataFlow component 179
DataFlow body 180

Job done 182
Whinepad v2 184

Context 184
Next steps 185

Curricular data 186
Providing context 186
Consuming context 189

Context in the header 189
Context in the data table 193

Updating Discovery 195
Routing 197

Route context 197
Using the filter URL 199
Consuming the route context in the header 201
Consuming the route context in the data table 203
useCallback() 204

The End 206

Table of Contents | ix

Preface

It’s yet another wonderful warm California night. The faint ocean breeze only helping
you feel 100% “aaah!” The place: Los Angeles; the time: 2000-something. I was just
getting ready to FTP my new little web app called CSSsprites.com to my server and
release it to the world. I contemplated a problem on the last few evenings I spent
working on the app: why on earth did it take 20% effort to wrap up the “meat” of the
app and then 80% to wrestle with the user interface? How many other tools could I
have made if I didn’t have to getElementById() all the time and worry about the state
of the app? (Is the user done uploading? What, an error? Is this dialog still on?) Why
is UI development so time consuming? And what’s up with all the different browsers?
Slowly, the “aaah” was turning into “aarrggh!”

Fast forward to March 2015 at Facebook’s F8 conference. The team I’m part of is
ready to announce a complete rewrite of two web apps: our third-party comments
offering and a moderation tool to go with it. Compared to my little CSSsprites.com
app, these were fully fledged web apps with tons more features, way more power, and
insane amounts of traffic. Yet, the development was a joy. Teammates new to the app
(and some even new to JavaScript and CSS) were able to come and contribute a fea‐
ture here and an improvement there, picking up speed quickly and effortlessly. As
one member of the team said, “Ah-ha, now I see what all the love is all about!”

What happened along the way? React.

React is a library for building UIs—it helps you define the UI once and for all. Then,
when the state of the app changes, the UI is rebuilt to react to the change and you
don’t need to do anything extra. After all, you’ve defined the UI already. Defined?
More like declared. You use small manageable components to build a large powerful
app. No more spending half of your function’s body hunting for DOM nodes; all you
do is maintain the state of your app (with a regular old JavaScript object) and the
rest just follows.

xi

Learning React is a sweet deal—you learn one library and use it to create all of the
following:

• Web apps
• Native iOS and Android apps
• TV apps
• Native desktop apps

You can create native apps with native performance and native controls (real native
controls, not native-looking copies) using the same ideas of building components and
UIs. It’s not about “write once, run everywhere” (our industry keeps failing at this),
it’s about “learn once, use everywhere.”

To cut a long story short: learn React, take 80% of your time back, and focus on the
stuff that matters (like the real reason your app exists).

About This Book
This book focuses on learning React from a web development point of view. For the
first three chapters, you start with nothing but a blank HTML file and keep building
up from there. This allows you to focus on learning React and not any of the new
syntax or auxiliary tools.

Chapter 5 focuses more on JSX, which is a separate and optional technology that is
usually used in conjunction with React.

From there you learn about what it takes to develop a real-life app and the additional
tools that can help you along the way. The book uses create-react-app to get off the
ground quickly and limit the discussions about auxiliary technologies to a minimum.
The goal is to focus on React above all.

A controversial decision was the inclusion of class components in addition to function
components. Function components are likely the way forward, however the reader is
likely to encounter existing code and tutorials that onLy talk about class components.
Knowing both syntaxes doubles the chances of reading andf understanding code in
the wild.

Good luck on your journey toward learning React—may it be a smooth and fruitful
one!

Conventions Used in This Book
The following typographical conventions are used in this book:

xii | Preface

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/stoyan/reactbook2.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting

Preface | xiii

https://github.com/stoyan/reactbook2
mailto:bookquestions@oreilly.com

example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require per‐
mission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “React: Up & Running, 2nd edition, by
Stoyan Stefanov (O’Reilly). Copyright 2022 Stoyan Stefanov, 978-1-492-05146-6.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/reactUR_2e.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

xiv | Preface

mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com
https://oreil.ly/reactUR_2e
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xv

http://www.youtube.com/oreillymedia

CHAPTER 1

Hello World

Let’s get started on the journey to mastering application development using React. In
this chapter, you will learn how to set up React and write your first “Hello World”
web app.

Setup
First things first: you need to get a copy of the React library. There are various ways to
go about it. Let’s go with the simplest one that doesn’t require any special tools and
can get you learning and hacking away in no time.

Create a folder for all the code in the book in a location where you’ll be able to find it.

For example:

mkdir ~/reactbook

Create a react folder to keep the React library code separate.

mkdir ~/reactbook/react

Next, you need to add two files: one is React itself, the other is the ReactDOM add-
on. You can grab the latest 17.* versions of the two from the unpkg.com host, like so:

curl -L https://unpkg.com/react@17/umd/react.development.js > ~/reactbook/react/
react.js
curl -L https://unpkg.com/react-dom@17/umd/react-dom.development.js > ~/react-
book/react/react-dom.js

Note that React doesn’t impose any directory structure; you’re free to move to a dif‐
ferent directory or rename react.js however you see fit.

1

You don’t have to download the libraries, you can use them directly from unpkg.com
but having them locally makes it possible to learn anywhere and without an internet
connection.

The @17 in the URLs above gets you a copy of the latest React 17,
which is current at the time of writing this book. Omit @17 to get
the latest available React version. Alternatively, you can explicitly
specify the version you require, for example @17.0.2.

Hello React World
Let’s start with a simple page in your working directory (~/reactbook/
01.01.hello.html):

<!DOCTYPE html>
<html>
 <head>
 <title>Hello React</title>
 <meta charset="utf-8">
 </head>
 <body>
 <div id="app">
 <!-- my app renders here -->
 </div>
 <script src="react/react.js"></script>
 <script src="react/react-dom.js"></script>
 <script>
 // my app's code
 </script>
 </body>
</html>

You can find all the code from this book in the accompanying
repository.

Only two notable things are happening in this file:

• You include the React library and its DOM add-on (via <script src> tags)
• You define where your application should be placed on the page (<div
id="app">)

2 | Chapter 1: Hello World

https://github.com/stoyan/reactbook2/
https://github.com/stoyan/reactbook2/

You can always mix regular HTML content as well as other Java‐
Script libraries with a React app. You can also have several React
apps on the same page. All you need is a place in the DOM where
you can point React to and say “do your magic right here.”

Now let’s add the code that says “hello” - update 01.01.hello.html and replace // my
app's code with:

ReactDOM.render(
 React.createElement('h1', null, 'Hello world!'),
 document.getElementById('app')
);

Load 01.01.hello.html in your browser and you’ll see your new app in action
(Figure 1-1).

Figure 1-1. Hello World in action

Congratulations, you’ve just built your first React application!

Figure 1-1 also shows the generated code in Chrome Developer Tools where you can
see that the contents of the <div id="app"> placeholder was replaced with the con‐
tents generated by your React app.

What Just Happened?
There are a few things of interest in the code that made your first app work.

First, you see the use of the React object. All of the APIs available to you are accessi‐
ble via this object. The API is intentionally minimal, so there are not a lot of method
names to remember.

What Just Happened? | 3

You can also see the ReactDOM object. It has only a handful of methods, render()
being the most useful. ReactDOM is responsible for rendering the app in the browser.
You can, in fact, create React apps and render them in different environments outside
the browser—for example in canvas, or natively in Android or iOS.

Next, there is the concept of components. You build your UI using components and
you combine these components in any way you see fit. In your applications, you’ll
end up creating your custom components, but to get you off the ground, React pro‐
vides wrappers around HTML DOM elements. You use the wrappers via the
React.createElement function. In this first example, you can see the use of the h1
element. It corresponds to the <h1> in HTML and is available to you using a call to
React.createElement('h1').

Finally, you see the good old document.getElementById('app') DOM access. You
use this to tell React where the application should be located on the page. This is the
bridge crossing over from the DOM manipulation as you know it to React-land.

Once you cross the bridge from DOM to React, you don’t have to worry about DOM
manipulation anymore, because React does the translation from components to the
underlying platform (browser DOM, canvas, native app). In fact, not worrying about
the DOM is one of the great things about React. You worry about composing the
components and their data—the meat of the application—and let React take care of
updating the DOM most efficiently. No more hunting for DOM nodes, firstChild,
appendChild() and so on.

You don’t have to worry about DOM, but that doesn’t mean you
cannot. React gives you “escape hatches” if you want to go back to
DOM-land for any reason you may need.

Now that you know what each line does, let’s take a look at the big picture. What hap‐
pened is this: you rendered one React component in a DOM location of your choice.
You always render one top-level component and it can have as many children (and
grandchildren, etc.) components as you need. Even in this simple example, the h1
component has a child—the “Hello World!” text.

React.createElement()
As you know now, you can use a number of HTML elements as React components via
the React.createElement() method. Let’s take a close look at this API.

Remember the “Hello World!” app looks like this:

4 | Chapter 1: Hello World

ReactDOM.render(
 React.createElement('h1', null, 'Hello world!'),
 document.getElementById('app')
);

The first parameter to createElement is the type of element to be created. The sec‐
ond (which is null in this case) is an object that specifies any properties (think DOM
attributes) that you want to pass to your element. For example, you can do:

React.createElement(
 'h1',
 {
 id: 'my-heading',
 },
 'Hello world!'
),

The HTML generated by this example is shown in Figure 1-2.

Figure 1-2. HTML generated by a React.createElement() call

The third parameter ("Hello World!" in this example) defines a child of the compo‐
nent. The simplest case is just a text child (a Text node in DOM-speak) as you see in
the preceding code. But you can have as many nested children as you like and you
pass them as additional parameters. For example:

React.createElement(
 'h1',
 {id: 'my-heading'},
 React.createElement('span', null, 'Hello'),
 ' world!'
),

Another example, this time with nested components (result shown in Figure 1-3) is as
follows:

React.createElement(
 'h1',
 {id: 'my-heading'},
 React.createElement(
 'span',
 null,

React.createElement() | 5

 'Hello ',
 React.createElement('em', null, 'Wonderful'),
),
 ' world!'
),

Figure 1-3. HTML generated by nesting React.createElement() calls

You can see in Figure 1-3 that the DOM generated by React has the element as a
child of the which is in turn a child of the <h1> element (and a sibling of the
“world” text node).

JSX
When you start nesting components, you quickly end up with a lot of function calls
and parentheses to keep track of. To make things easier, you can use the JSX syntax.
JSX is a little controversial: people often find it repulsive at first sight (ugh, XML in
my JavaScript!), but indispensable after.

Here’s the previous snippet but this time using JSX syntax:

ReactDOM.render(
 <h1 id="my-heading">
 Hello Wonderful world!
 </h1>,
 document.getElementById('app')
);

This is much more readable. This syntax looks very much like HTML and you
already know HTML. However it’s not valid JavaScript that browsers can understand.
You need to transpile this code to make it work in the browser. Again, for learning
purposes, you can do this without special tools. You need the Babel library which
translates cutting-edge JavaScript (and JSX) to old school JavaScript that works in
ancient browsers.

6 | Chapter 1: Hello World

Setup Babel
Just like with React, get a local copy of Babel:

curl -L https://unpkg.com/babel-standalone/babel.min.js > ~/reactbook/react/
babel.js

Then you need to update your learning template to include Babel. Create a file
01.04.hellojsx.html like so:

<!DOCTYPE html>
<html>
 <head>
 <title>Hello React+JSX</title>
 <meta charset="utf-8">
 </head>
 <body>
 <div id="app">
 <!-- my app renders here -->
 </div>
 <script src="react/react.js"></script>
 <script src="react/react-dom.js"></script>
 <script src="react/babel.js"></script>
 <script type="text/babel">
 // my app's code
 </script>
 </body>
</html>

Note how <script> becomes <script type="text/babel">. This
is a trick where by specifying an invalid type, the browser ignores
the code. This gives Babel a chance to parse and transform the JSX
syntax into something the browser can run.

Hello JSX world
With this bit of setup out of the way, let’s try JSX. Replace the // my app's code part
in the HTML above with:

ReactDOM.render(
 <h1 id="my-heading">
 Hello JSX world!
 </h1>,
 document.getElementById('app')
);

The result of running this in the browser is shown on Figure 1-4.

JSX | 7

Figure 1-4. Hello JSX world

On Transpilation
It’s great that you got the JSX and Babel to work, but maybe a few more words won’t
hurt, especially if you’re new to Babel and the process of transpilation. If you’re
already familiar, feel free to skip this part where we familiarize a bit with the terms
JSX, Babel, and transpilation.

JSX is a separate technology from React and is completely optional. As you see, the
first examples in this chapter didn’t even use JSX. You can opt into never coming any‐
where near JSX at all. But it’s very likely that once you try it, you won’t go back to
function calls.

It’s not quite clear what the acronym JSX stands for, but it’s most
likely JavaScriptXML or JavaScript Syntax eXtension. The official
home of the open-source project is http://facebook.github.io/jsx/.

The process of transpilation is a process of taking source code and rewriting it to
accomplish the same results but using syntax that’s understood by older browsers. It’s
different than using polyfills. An example of a polyfill is adding a method to
Array.prototype such as map(), which was introduced in ECMAScript5, and making
it work in browsers that only support ECMAScript3. A polyfill is a solution in pure
JavaScript-land. It’s a good solution when adding new methods to existing objects or
implementing new objects (such as JSON). But it’s not sufficient when new syntax is

8 | Chapter 1: Hello World

http://facebook.github.io/jsx/

introduced into the language. Any new syntax in the eyes of browser that does not
support it is just invalid and throws a parse error. There’s no way to polyfill it. New
syntax, therefore, requires a compilation (transpilation) step so it’s transformed before
it’s served to the browser.

Transpiling JavaScript is getting more and more common as programmers want to
use the latest JavaScript (ECMAScript) features without waiting for browsers to
implement them. If you already have a build process set up (that does e.g., minifica‐
tion or any other code transformation), you can simply add the JSX step to it. Assum‐
ing you don’t have a build process, you’ll see later in the book the necessary steps of
setting one up.

For now, let’s leave the JSX transpilation on the client-side (in the browser) and move
on with learning React. Just be aware that this is only for education and experimenta‐
tion purposes. Client-side transforms are not meant for live production sites as they
are slower and more resource intensive that serving already transpiled code.

Next: Custom Components
At this point, you’re done with the bare-bones “Hello World” app. Now you know
how to:

• Set up the React library for experimentation and learning (it’s really just a ques‐
tion of a few <script> tags)

• Render a React component in a DOM location of your choice (e.g., React
DOM.render(reactWhat, domWhere))

• Use built-in components, which are wrappers around regular DOM elements
(e.g., React.createElement(element, attributes, content, children))

The real power of React, though, comes when you start using custom components to
build (and update!) the user interface (UI) of your app. Let’s learn how to do just that
in the next chapter.

Next: Custom Components | 9

CHAPTER 2

The Life of a Component

Now that you know how to use the ready-made DOM components, it’s time to learn
how to make some of your own.

There are two ways to define a custom component, both accomplishing the same
result but using different syntax:

• Using a function (components created this way are referred to as function compo‐
nents)

• Using a class that extends React.Component (commonly referred to as class com‐
ponents)

A Custom Function Component
Here’s an example of a function component:

const MyComponent = function() {
 return 'I am so custom';
};

But wait, this is just a function! Yes, the custom component is just a function that
returns the UI that you want. In this case, the UI is only text but often you’ll need a
little bit more, most likely a composition of other components. Here’s an example of
using a span to wrap the text:

const MyComponent = function() {
 return React.createElement('span', null, 'I am so custom');
};

Using your new shiny component in an application is similar to using the DOM com‐
ponents from Chapter 1, except you call the function that defines the component:

11

ReactDOM.render(
 MyComponent(),
 document.getElementById('app')
);

The result of rendering your custom component is shown in Figure 2-1.

Figure 2-1. Your first custom component (02.01.custom-functional.html in the
book’s repository)

A JSX Version
The same example using JSX would look a little easier to read. Defining the compo‐
nent looks like this:

const MyComponent = function() {
 return I am so custom;
};

Using the component the JSX way looks like the following, regardless of how the
component itself was defined (with JSX or not).

ReactDOM.render(
 <MyComponent />,
 document.getElementById('app')
);

Notice that in the self-closing tag <MyComponent /> the slash is not
optional. That applies to HTML elements used in JSX too.
 and
 are not going to work, you need to close them like
 and
.

A Custom Class Component
The second way to create a component is to define a class that extends React.Compo
nent and implements a render() function:

12 | Chapter 2: The Life of a Component

class MyComponent extends React.Component {
 render() {
 return React.createElement('span', null, 'I am so custom');
 // or with JSX:
 // return I am so custom;
 }
}

Rendering the component on the page:

ReactDOM.render(
 React.createElement(MyComponent),
 document.getElementById('app')
);

If you use JSX, you don’t need to know how the component was defined (using a class
or a function), in both cases using the component is the same:

ReactDOM.render(
 <MyComponent />,
 document.getElementById('app')
);

Which Syntax to Use?
You may be wondering: with all these options (JSX vs. pure JavaScript, a class compo‐
nent vs. a function one), which one to use? JSX is the most common. And, unless you
dislike the XML syntax in your JavaScript, the path of least resistance and of less typ‐
ing is to go with JSX. This book uses JSX from now on, unless to illustrate a concept.
Why then even talk about a no-JSX way? Well, you should know that there is another
way and also that JSX is not some special voodoo but rather a thin syntax layer that
transforms XML into plain JavaScript function calls such as React.createElement()
before sending the code to the browser.

What about class vs function components? This is a question of preference. If you’re
comfortable with object-oriented programming (OOP) and you like how classes are
laid out, then by all means, go for it. Function components are a little lighter on the
computer’s CPU and a little less typing. They also feel more native to JavaScript.
Actually classes didn’t exist in early versions of the JavaScript language, they are an
afterthought and merely a syntax sugar on top of functions and prototypes.

Historically, as far as React is concerned, function components were not able to
accomplish everything that classes could. Until the invention of hooks, that is, which
you’ll get into in due time. As for the future, one can only speculate, but it’s likely that
React will move more and more towards function components. However it’s highly
unlikely that class components are going to be deprecated any time soon.

This book teaches you both ways and doesn’t decide for you, though you may sense a
slight preference towards function components. Then why do we even bother with

A Custom Class Component | 13

classes in this book, you may ask as did most technical editors of the manuscript? The
thing is that there is a lot of code out there in the real world written with classes and a
lot of online tutorials. In fact, at the time of writing, even React’s official documenta‐
tion shows most examples as class components. Therefore it’s the author’s opinion
that the readers should be familar with both syntaxes so they can read and under‐
stand all the code presented to them and not be confused as soon as a non-function
component shows up.

Properties
Rendering hard-coded UI in your custom components is perfectly fine and has its
uses. But the components can also take properties and render or behave differently,
depending on the values of the properties. Think about the <a> element in HTML
and how it acts differently based on the value of the href attribute. The idea of prop‐
erties in React is similar (and so is the JSX syntax).

In class components all properties are available via the this.props object. Let’s see an
example:

class MyComponent extends React.Component {
 render() {
 return My name is {this.props.name};
 }
}

As demonstrated in this example, you can open curly braces and
sprinkle JavaScript values (and expressions too) within your JSX.
You’ll learn more about this behavior as you progress with the
book.

Passing a value for the name property when rendering the component looks like this:

ReactDOM.render(
 <MyComponent name="Bob" />,
 document.getElementById('app')
);

The result is shown in Figure 2-2.

14 | Chapter 2: The Life of a Component

Figure 2-2. Using component properties (02.05.this.props.html)

It’s important to remember that this.props is read-only. It’s meant to carry on con‐
figuration from parent components to children, it’s not a general-purpose storage of
values. If you feel tempted to set a property of this.props, just use additional local
variables or properties of your component’s class instead (meaning use this.thing as
opposed to this.props.thing).

Properties in Function Components
In function components, there’s no this (in JavaScript’s strict mode), or this refers to
the global object (in non-strict, dare we say sloppy, mode). So instead of this.props,
you get a props object passed to your function as the first argument.

const MyComponent = function(props) {
 return My name is {props.name};
};

A common pattern is to use JavaScript’s destructuring assignment and assign the prop‐
erty values to local variables. In other words the example above becomes:

// 02.07.props.destructuring.html
const MyComponent = function({name}) {
 return My name is {name};
};

You can have as many properties as you want. If, for example, you need two proper‐
ties (name and job), you can use them like:

// 02.08.props.destruct.multi.html
const MyComponent = function({name, job}) {
 return My name is {name}, the {job};
};

Properties | 15

ReactDOM.render(
 <MyComponent name="Bob" job="engineer"/>,
 document.getElementById('app')
);

Default Properties
Your component may offer a number of properties, but sometimes a few of the prop‐
erties may have default values that work well for the most common cases. You can
specify default property values using defaultProps property for both function and
class components.

Function component:

const MyComponent = function({name, job}) {
 return My name is {name}, the {job};
};
MyComponent.defaultProps = {
 job: 'engineer',
};
ReactDOM.render(
 <MyComponent name="Bob" />,
 document.getElementById('app')
);

Class component:

class MyComponent extends React.Component {
 render() {
 return (
 My name is {this.props.name},
 the {this.props.job}
);
 }
}
MyComponent.defaultProps = {
 job: 'engineer',
};
ReactDOM.render(
 <MyComponent name="Bob" />,
 document.getElementById('app')
);

In both cases, the result is the output: “My name is Bob, the engineer”

16 | Chapter 2: The Life of a Component

Notice how the render() method’s return statement wraps the
returned value in parentheses. This is just because of JavaScript’s
automatic semi-colon insertion (ASI) mechanism. A return state‐
ment followed by a new line is the same as return; which is the
same as return undefined; which is definitely not what you want.
Wrapping the returned expression in parentheses allows for better
code formatting while retaining the correctness.

State
The examples so far were pretty static (or “stateless”). The goal was just to give you an
idea of the building blocks of composing your UI. But where React really shines (and
where old-school browser DOM manipulation and maintenance gets complicated) is
when the data in your application changes. React has the concept of state, which is
any data that components want to use to render themselves. When state changes,
React rebuilds the UI in the DOM without you having to do anything. After you
build your UI initially in your render() method (or in the rendering function in case
of a function component) all you care about is updating the data. You don’t need to
worry about UI changes at all. After all, your render method/function has already
provided the blueprint of what the component should look like.

“Stateless” is not a bad word, not at all. Stateless components are
much easier to manage and think about. In fact, whenever you can,
prefer to go stateless. But applications are complicated and you do
need state. So let’s proceed.

Similarly to how you access properties via this.props, you read the state via the
object this.state. To update the state, you use this.setState(). When this.set
State() is called, React calls the render method of your component (and all of its
children) and updates the UI.

The updates to the UI after calling this.setState() are done using a queuing mech‐
anism that efficiently batches changes. Updating this.state directly can have unex‐
pected behavior and you shouldn’t do it. Just like with this.props, consider the
this.state object read-only, not only because it’s semantically a bad idea, but
because it can act in ways you don’t expect. Similarly, don’t ever call this.render()
yourself—instead, leave it to React to batch changes, figure out the least amount of
work, and call render() when and if appropriate.

State | 17

A Textarea Component
Let’s build a new component—a textarea that keeps count of the number of characters
typed in (Figure 2-3).

Figure 2-3. The end result of the custom textarea component

You (as well as other future consumers of this amazingly reusable component) can
use the new component like so:

ReactDOM.render(
 <TextAreaCounter text="Bob" />,
 document.getElementById('app')
);

Now, let’s implement the component. Start first by creating a “stateless” version that
doesn’t handle updates; this is not too different from all the previous examples:

class TextAreaCounter extends React.Component {
 render() {
 const text = this.props.text;
 return (
 <div>
 <textarea defaultValue={text}/>
 <h3>{text.length}</h3>
 </div>
);
 }
}
TextAreaCounter.defaultProps = {
 text: 'Count me as I type',
};

18 | Chapter 2: The Life of a Component

You may have noticed that the <textarea> in the preceding snippet
takes a defaultValue property, as opposed to a text child node, as
you’re accustomed to in regular HTML. This is because there are
some slight differences between React and old-school HTML when
it comes to form elements. These are discussed further in the book,
but rest assured, there are not too many of them. Additionally,
you’ll find that these differences make sense and make your life as a
developer easier.

As you can see, the TextAreaCounter component takes an optional text string prop‐
erty and renders a textarea with the given value, as well as an <h3> element that dis‐
plays the string’s length. If the text property is not supplied, the default “Count me
as I type” value is used.

Make it Stateful
The next step is to turn this stateless component into a stateful one. In other words,
let’s have the component maintain some data (state) and use this data to render itself
initially and later on update itself (re-render) when data changes.

First, you need to set the initial state in the class constructor using this.state. Bear
in mind that the constructor is the only place where it’s ok to set the state directly
without calling this.setState().

Initializing this.state is required, if you don’t do it, consecutive access to
this.state in the render() method will fail.

In this case it’s not necessary to initialize this.state.text with a value as you can
fallback to the property this.prop.text (try 02.12.this.state.html in the book’s
repo):

class TextAreaCounter extends React.Component {
 constructor() {
 super();
 this.state = {};
 }
 render() {
 const text = 'text' in this.state ? this.state.text : this.props.text;
 return (
 <div>
 <textarea defaultValue={text} />
 <h3>{text.length}</h3>
 </div>
);
 }
}

Make it Stateful | 19

Calling super() in the constructor is required before you can use
this.

The data this component maintains is the contents of the textarea, so the state has
only one property called text, which is accessible via this.state.text. Next you
need a way to update the state. You can use a helper method for this purpose:

onTextChange(event) {
 this.setState({
 text: event.target.value,
 });
}

You always update the state with this.setState(), which takes an object and merges
it with the already existing data in this.state. As you might guess, onTextChange()
is an event handler that takes an event object and reaches into it to get the contents of
the textarea input.

The last thing left to do is update the render() method to set up the event handler:

render() {
 const text = 'text' in this.state ? this.state.text : this.props.text;
 return (
 <div>
 <textarea
 value={text}
 onChange={event => this.onTextChange(event)}
 />
 <h3>{text.length}</h3>
 </div>
);
}

Now whenever the user types into the textarea, the value of the counter updates to
reflect the contents (Figure 2-4).

Note that before yo had <teaxarea defaultValue...> which is now <textarea
value...> in the code above. This is because of the way inputs work in HTML where
their state is maintained by the browser. But React can do better. In this example
implementing onChange means that the textarea is now controlled by React. More on
controlled components is coming further in the book.

20 | Chapter 2: The Life of a Component

Figure 2-4. Typing in the textarea (02.12.this.state.html)

A Note on DOM Events
To avoid any confusion, a few clarifications are in order regarding the line:

onChange={event => this.onTextChange(event)}

React uses its own synthetic events system for performance, as well as convenience
and sanity reasons. To help understand why, you need to consider how things are
done in the pure DOM world.

Event Handling in the Olden Days
It’s very convenient to use inline event handlers to do things like this:

<button onclick="doStuff">

While convenient and easy to read (the event listener is right there with the UI code),
it’s inefficient to have too many event listeners scattered like this. It’s also hard to have
more than one listener on the same button, especially if said button is in somebody
else’s “component” or library and you don’t want to go in there and “fix” or fork their
code. That’s why in the DOM world it’s common to use element.addEventListener
to set up listeners (which now leads to having code in two places or more) and event
delegation (to address the performance issues). Event delegation means you listen to
events at some parent node, say a <div> that contains many buttons, and you set up
one listener for all the buttons, instead of one listener per button. Hence you delegate
the event handling to a parent authority.

With event delegation you do something like:

<div id="parent">
 <button id="ok">OK</button>
 <button id="cancel">Cancel</button>

A Note on DOM Events | 21

</div>

<script>
document.getElementById('parent').addEventListener('click', function(event) {
 const button = event.target;

 // do different things based on which button was clicked
 switch (button.id) {
 case 'ok':
 console.log('OK!');
 break;
 case 'cancel':
 console.log('Cancel');
 break;
 default:
 new Error('Unexpected button ID');
 };
});
</script>

This works and performs fine, but there are drawbacks:

• Declaring the listener is further away from the UI component, which makes code
harder to find and debug

• Using delegation and always switch-ing creates unnecessary boilerplate code
even before you get to do the actual work (responding to a button click in this
case)

• Browser inconsistencies (omitted here) actually require this code to be longer

Unfortunately, when it comes to taking this code live in front of real users, you need a
few more additions if you want to support old browsers:

• You need attachEvent in addition to addEventListener
• You need const event = event || window.event; at the top of the listener
• You need const button = event.target || event.srcElement;

All of these are necessary and annoying enough that you end up using an event
library of some sort. But why add another library (and study more APIs) when React
comes bundled with a solution to the event handling nightmares?

Event Handling in React
React uses synthetic events to wrap and normalize the browser events, which means
no more browser inconsistencies. You can always rely on the fact that event.target
is available to you in all browsers. That’s why in the TextAreaCounter snippet you
only need event.target.value and it just works. It also means the API to cancel

22 | Chapter 2: The Life of a Component

events is the same in all browsers; in other words, event.stopPropagation() and
event.preventDefault() work even in old versions of Internet Explorer.

The syntax makes it easy to keep the UI and the event listeners together. It looks like
old-school inline event handlers, but behind the scenes it’s not. Actually, React uses
event delegation for performance reasons.

React uses camelCase syntax for the event handlers, so you use onClick instead of
onclick.

If you need the original browser event for whatever reason, it’s available to you as
event.nativeEvent, but it’s unlikely that you’ll ever need to go there.

And one more thing: the onChange event (as used in the textarea example) behaves as
you’d expect: it fires when the user types, as opposed to after they’ve finished typing
and have navigated away from the field, which is the behavior in plain DOM.

Event-Handling Syntax
The example above used an arrow function to call the helper onTextChange event:

onChange={event => this.onTextChange(event)}

This is because the shorter onChange={this.onTextChange} wouldn’t have worked.

Another option is to bind the method, like so:

onChange={this.onTextChange.bind(this)}

And yet another option, and a common pattern, is to bind all the event handling
methods in the constructor:

constructor() {
 super();
 this.state = {};
 this.onTextChange = this.onTextChange.bind(this);
}
//
<textarea
 value={text}
 onChange={this.onTextChange}
/>

It’s a bit of necessary boilerplate, but this way the event handler is bound only once, as
opposed to every time the render() method is called, which helps reduce the mem‐
ory footprint of your app.

This common pattern was largely superceded once it became possible to use func‐
tions as class properties in JavaScript. Before:

class TextAreaCounter extends React.Component {
 constructor() {

A Note on DOM Events | 23

 // ...
 this.onTextChange = this.onTextChange.bind(this);
 }

 onTextChange(event) {
 // ...
 }
}

After:

class TextAreaCounter extends React.Component {
 constructor() {
 // ...
 }

 onTextChange = (event) => {
 // ...
 };
}

See 02.12.this.state2.html in the book’s repo for a complete example.

Props Versus State
Now you know that you have access to this.props and this.state when it comes to
displaying your component in your render() method. You may be wondering when
you should use one versus the other.

Properties are a mechanism for the outside world (users of the component) to config‐
ure your component. State is your internal data maintenance. So if you consider an
analogy with object-oriented programming, this.props is like a collection of all the
arguments passed to a class constructor, while this.state is a bag of your private
properties.

In general, prefer to split your application in a way that you have fewer stateful com‐
ponents and more stateless ones.

Props in Initial State: An Anti-Pattern
In the textarea example above it’s tempting to use this.props to set the initial
this.state:

// Warning: Anti-pattern
this.state = {
 text: props.text,
};

This is considered an anti-pattern. Ideally, you use any combination of this.state
and this.props as you see fit to build your UI in your render() method. But some‐

24 | Chapter 2: The Life of a Component

times you want to take a value passed to your component and use it to construct the
initial state. There’s nothing wrong with this, except that the callers of your compo‐
nent may expect the property (text in the preceding example) to always have the lat‐
est value and the code above would violate this expectation. To set the expectation
straight, a simple naming change is sufficient—for example, calling the property
something like defaultText or initialValue instead of just text:

Chapter 4 illustrates how React solves this for its implementation of
inputs and textareas where people may have expectations coming
from their prior HTML knowledge.

Accessing the Component from the Outside
You don’t always have the luxury of starting a brand-new React app from scratch.
Sometimes you need to hook into an existing application or a website and migrate to
React one piece at a time. Luckily, React was designed to work with any pre-existing
codebase you might have. After all, the original creators of React couldn’t stop the
world and rewrite an entire huge application (Facebook.com) completely from
scratch, especially in the early days when React was young.

One way to have your React app communicate with the outside world is to get a refer‐
ence to a component you render with ReactDOM.render() and use it from outside of
the component:

const myTextAreaCounter = ReactDOM.render(
 <TextAreaCounter text="Bob" />,
 document.getElementById('app')
);

Now you can use myTextAreaCounter to access the same methods and properties you
normally access with this when inside the component. You can even play with the
component using your JavaScript console (Figure 2-5).

Figure 2-5. Accessing the rendered component by keeping a reference

Accessing the Component from the Outside | 25

In this example, myTextAreaCounter.state checks the current state (empty initially),
myTextAreaCounter.props checks the properties and this line sets a new state:

myTextAreaCounter.setState({text: "Hello outside world!"});

This line gets a reference to the main parent DOM node that React created:

const reactAppNode = ReactDOM.findDOMNode(myTextAreaCounter);

This is the first child of the <div id="app">, which is where you told React to do its
magic.

You have access to the entire component API from outside of your
component. But you should use your new superpowers sparingly, if
at all. It may be tempting to fiddle with the state of components you
don’t own and “fix” them, but you’d be violating expectations and
cause bugs down the road because the component doesn’t antici‐
pate such intrusions.

Lifecycle Methods
React offers several so-called lifecycle methods. You can use the lifecycle methods to
listen to changes in your component as far as the DOM manipulation is concerned.
The life of a component goes through three steps:

• Mounting - the component is added to the DOM initially
• Updating - the component is updated as a result of calling setState() and/or a

prop provided to the component has changed
• Unmounting - the component is removed from the DOM

React does part of its work before updating the DOM, this is also called the rendering
phase. Then it updates the DOM and this phase is called a commit phase. With this
background let’s consider some lifecycle methods:

• After the initial mounting and after the commit to the DOM, the method compo
nentDidMount() of your component is called, if it exists. This is the place to do
any initialization work that requires the DOM. Any initialization work that does
not require the DOM should be in the constructor. And most of your initializa‐
tion shouldn’t require the DOM. But in this method you can, for example, meas‐
ure the height of the component that was just rendered, add any event listeners
(e.g. addEventListener('resize')), or fetch data from the server.

• Right before the component is removed from the DOM, the method component
WillUnmount() is called. This is the place to do any cleanup work you may need.

26 | Chapter 2: The Life of a Component

Any event handlers, or anything else that may leak memory, should be cleaned
up here. After this, the component is gone forever.

• Before the component is updated, e.g. as a result of setState(), you can use getS
napshotBeforeUpdate(). This method receives the previous properties and state
as arguments. And it can return a “snapshot” value, which is any value you want
to pass over to the next lifecycle method called componentDidUpdate().

• componentDidUpdate(previousProps, previousState, snapshot). This is
called whenever the component was updated. Since at this point this.props and
this.state have updated values, you get a copy of the previous ones. You can
use this information to compare the old and the new state and potentially make
more network requests if necessary.

• And then there’s shouldComponentUpdate(newProps, newState) which is an
opportunity for an optimization. You’re given the state-to-be which you can
compare with the current state and decide not to update the component, so its
render() method is not called.

Of these, componentDidMount() and componentDidUpdate() are the most common
ones.

Lifecycle Example: Log It All
To better understand the life of a component, let’s add some logging in the TextArea
Counter component. Simply implement all of the lifecycle methods to log to the con‐
sole when they are invoked, together with any arguments:

class TextAreaCounter extends React.Component {
 // ...

 componentDidMount() {
 console.log('componentDidMount');
 }
 componentWillUnmount() {
 console.log('componentWillUnmount');
 }
 componentDidUpdate(prevProps, prevState, snapshot) {
 console.log('componentDidUpdate ', prevProps, prevState, snapshot);
 }
 getSnapshotBeforeUpdate(prevProps, prevState) {
 console.log('getSnapshotBeforeUpdate', prevProps, prevState);
 return 'hello';
 }
 shouldComponentUpdate(newProps, newState) {
 console.log('shouldComponentUpdate ', newProps, newState);
 return true;
 }

Lifecycle Example: Log It All | 27

 // ...
}

After loading the page, the only message in the console is “componentDidMount”.

Next, what happens when you type “b” to make the text “Bobb”? (See Figure 2-6.)
shouldComponentUpdate() is called with the new props (same as the old) and the
new state. Since this method returns true, React proceeds with calling getSnapshot
BeforeUpdate() passing the old props and state. This is your chance to do something
with them and with the old DOM and pass any resulting information as a snapshot to
the next method. For example this is an opportunity to do some element measure‐
ments or a scroll position and snapshot them to see if they change after the update.
Finally, componentDidUpdate() is called with the old info (you have the new one in
this.state and this.props) and any snapshot defined by the previous method.

Figure 2-6. Updating the component

Let’s update the textarea one more time, this time typing “y”. The result is shown on
Figure 2-7.

Figure 2-7. One more update to the component

Finally, to demonstrate componentWillUnmount() in action (using the example
02.14.lifecycle.html from this book’s GitHub repo) you can type in the console:

ReactDOM.render(React.createElement('p', null, 'Enough counting!'), app);

This replaces the whole textarea component with a new <p> component. Then you
can see the log message “componentWillUnmount” in the console (Figure 2-8).

28 | Chapter 2: The Life of a Component

Figure 2-8. Removing the component from the DOM

Paranoid State Protection
Say you want to restrict the number of characters to be typed in the textarea. You
should do this in the event handler onTextChange(), which is called as the user types.
But what if someone (a younger, more naive you?) calls setState() from the outside
of the component? (Which, as mentioned earlier, is a bad idea.) Can you still protect
the consistency and well-being of your component? Sure. You can do the validation
in componentDidUpdate() and if the number of characters is greater than allowed,
revert the state back to what it was. Something like:

componentDidUpdate(prevProps, prevState) {
 if (this.state.text.length > 3) {
 this.setState({
 text: prevState.text || this.props.text,
 });
 }
}

The condition prevState.text || this.props.text is in place for the very first
update when there’s no previous state.

This may seem overly paranoid, but it’s still possible to do. Another way to accom‐
plish the same protection is by leveraging shouldComponentUpdate():

shouldComponentUpdate(_, newState) {
 return newState.text.length > 3 ? false : true;
}

See 02.15.paranoid.html in the book’s repo to play with these concepts.

In the code above using _ as a name of a function argument is a
convention signaling to a future reader of the code “I know there’s
another argument in the function’s signature, but I’m not going to
use it”.

Lifecycle Example: Log It All | 29

Lifecycle Example: Using a Child Component
You know you can mix and nest React components as you see fit. So far you’ve only
seen ReactDOM components (as opposed to custom ones) in the render() methods.
Let’s take a look at another simple custom component to be used as a child.

Let’s isolate the counter part into its own component. After all, divide and conquer is
what it’s all about!

First, let’s isolate the lifestyle logging into a separate class and have the two compo‐
nents inherit it. Inheritance is almost never warranted when it comes to React
because for UI work composition is preferable and for non-UI work a regular Java‐
Script module would do. But this is just for education and for demonstration that it is
possible. And also to avoid copy-pasting the logging methods.

This is the parent:

class LifecycleLoggerComponent extends React.Component {
 static getName() {}
 componentDidMount() {
 console.log(this.constructor.getName() + '::componentDidMount');
 }
 componentWillUnmount() {
 console.log(this.constructor.getName() + '::componentWillUnmount');
 }
 componentDidUpdate(prevProps, prevState, snapshot) {
 console.log(this.constructor.getName() + '::componentDidUpdate');
 }
}

The new Counter component simply shows the count. It doesn’t maintain state, but
displays the count property given by the parent.

class Counter extends LifecycleLoggerComponent {
 static getName() {
 return 'Counter';
 }
 render() {
 return <h3>{this.props.count}</h3>;
 }
}
Counter.defaultProps = {
 count: 0,
};

The textarea component sets up a static getName() method:

class TextAreaCounter extends LifecycleLoggerComponent {
 static getName() {
 return 'TextAreaCounter';
 }

30 | Chapter 2: The Life of a Component

 //
}

And finally, the textarea’s render() gets to use <Counter/> and use it conditionally; if
the count is 0, nothing is displayed.

render() {
 const text = 'text' in this.state ? this.state.text : this.props.text;
 return (
 <div>
 <textarea
 value={text}
 onChange={this.onTextChange}
 />
 {text.length > 0
 ? <Counter count={text.length} />
 : null
 }
 </div>
);
}

Notice the conditional statement in JSX. You wrap the expression
in {} and conditionally render either <Counter/> or nothing
(null). And just for demonstration: another option is to move the
condition outside the return. Assigning the result of a JSX expres‐
sion to a variable is perfectly fine.

render() {
 const text = 'text' in this.state
 ? this.state.text
 : this.props.text;
 let counter = null;
 if (text.length > 0) {
 counter = <Counter count={text.length} />;
 }
 return (
 <div>
 <textarea
 value={text}
 onChange={this.onTextChange}
 />
 {counter}
 </div>
);
}

Now you can observe the lifecycle methods being logged for both components. Open
02.16.child.html from the book’s repo in your browser to see what happens when
you load the page and then change the contents of the textarea.

Lifecycle Example: Using a Child Component | 31

During initial load, the child component is mounted and updated before the parent.
You see in the console log:

Counter::componentDidMount
TextAreaCounter::componentDidMount

After deleting two characters you see how the child is updated, then the parent:

Counter::componentDidUpdate
TextAreaCounter::componentDidUpdate
Counter::componentDidUpdate
TextAreaCounter::componentDidUpdate

After deleting the last character, the child component is completely removed from the
DOM:

Counter::componentWillUnmount
TextAreaCounter::componentDidUpdate

Finally, typing a character brings back the counter component to the DOM:

Counter::componentDidMount
TextAreaCounter::componentDidUpdate

Performance Win: Prevent Component Updates
You already know about shouldComponentUpdate() and saw it in action. It’s espe‐
cially important when building performance-critical parts of your app. It’s invoked
before componentWillUpdate() and gives you a chance to cancel the update if you
decide it’s not necessary.

There is a class of components that only use this.props and this.state in their
render() methods and no additional function calls. These components are called
“pure” components. They can implement shouldComponentUpdate() and compare
the state and the properties before and after an update and if there aren’t any changes,
return false and save some processing power. Additionally, there can be pure static
components that use neither props nor state. These can straight out return false.

React offers a way to make it easier to use the common (and generic) case of checking
all props and state in shouldComponentUpdate(). Instead of repeating this work you
can have your components inherit React.PureComponent instead of React.Compo
nent. This way you don’t need to implement shouldComponentUpdate(), it’s done for
you. Let’s take advantage and tweak the previous example.

Since both components inherit the logger, all you need is:

class LifecycleLoggerComponent extends React.PureComponent {
 // ... no other changes
}

32 | Chapter 2: The Life of a Component

Now both components are pure. Let’s also add a log message in the render() meth‐
ods:

render() {
 console.log(this.constructor.getName() + '::render');
 // ... no other changes
}

Now loading the page (02.17.pure.html from the repo) prints out:

TextAreaCounter::render
Counter::render
Counter::componentDidMount
TextAreaCounter::componentDidMount

Changing “Bob” to “Bobb” gives us the expected result of rendering and updating.

TextAreaCounter::render
Counter::render
Counter::componentDidUpdate
TextAreaCounter::componentDidUpdate

Now if you paste the string “LOLz” replacing “Bobb” (or any string with 4 characters),
you see:

TextAreaCounter::render
TextAreaCounter::componentDidUpdate

As you see there’s no reason to re-render <Counter>, because its props have not
changed. The new string has the same number of characters.

Whatever Happened to Function Components?
You may have noticed that function components dropped out of this chapter by the
time this.state got involved. They come back later in the book, when you’ll also
learn the concept of hooks. Since there’s no this in functions, there needs to be
another way to approach the management of state in a component. The good news is
that once you understand the concepts of state and props, the function component
differences are just syntax.

As much “fun” as it was to spend all this time on a textarea, let’s move on to some‐
thing more interesting, before introducing any new concepts. In the next chapter,
you’ll see where React’s benefits come into play - namely focusing on your data and
having React take of any and all UI updates.

Whatever Happened to Function Components? | 33

CHAPTER 3

Excel: A Fancy Table Component

Now you know how to create custom react components, compose UI using generic
DOM components as well as your own custom ones, set properties, maintain state,
hook into the lifecycle of a component, and optimize performance by not rerendering
when not necessary.

Let’s put all of this together (and learn more about React while you’re at it) by creating
a more interesting component—a data table. Something like an early prototype of
Microsoft Excel that lets you edit the contents of a data table, and also sort, search,
and export the data as downloadable files.

Data First
Tables are all about the data, so the fancy table component (why not call it Excel?)
should take an array of data and an array of headers that describe each column of
data. For testing, let’s grab a list of best-selling books from Wikipedia:

const headers = ['Book', 'Author', 'Language', 'Published', 'Sales'];

const data = [
 [
 'A Tale of Two Cities', 'Charles Dickens',
 'English', '1859', '200 million',
],
 [
 'Le Petit Prince (The Little Prince)', 'Antoine de Saint-Exupéry',
 'French', '1943', '150 million',
],
 [
 "Harry Potter and the Philosopher's Stone", 'J. K. Rowling',
 'English', '1997', '120 million',
],

35

http://en.wikipedia.org/wiki/List_of_best-selling_books

 [
 'And Then There Were None', 'Agatha Christie',
 'English', '1939', '100 million',
],
 [
 'Dream of the Red Chamber', 'Cao Xueqin',
 'Chinese', '1791', '100 million',
],
 [
 'The Hobbit', 'J. R. R. Tolkien',
 'English', '1937', '100 million',
],
];

Now, how should you go about rendering this data in a table?

Table Headers Loop
The first step, just to get the new component off the ground, is to display only the
headers of the table. Here’s what a bare-bones implementation might look like
(03.01.table-th-loop.html in the book’s repository):

class Excel extends React.Component {
 render() {
 const headers = [];
 for (const title of this.props.headers) {
 headers.push(<th>{title}</th>);
 }
 return (
 <table>
 <thead>
 <tr>{headers}</tr>
 </thead>
 </table>
);
 }
}

Now that you have a working component, here’s how to use it:

ReactDOM.render(
 <Excel headers={headers} />,
 document.getElementById('app'),
);

The result of this get-off-the-ground example is shown in Figure 3-1. There’s a little
bit of CSS used, which is of no concern for the purposes of this discussion but you
can find it in 03.table.css in the book’s repo.

36 | Chapter 3: Excel: A Fancy Table Component

Figure 3-1. Rendering table headers

The return part of the component is fairly simple. It looks just like an HTML table
except for the headers array.

return (
 <table>
 <thead>
 <tr>{headers}</tr>
 </thead>
 </table>
);

As you’ve seen in the previous chapter you can open curly braces in your JSX and put
any JavaScript value or expression in there. If this value happens to be an array as in
the case above, the JSX parser treats it as if you passed each element of the array indi‐
vidually, like {headers[0]}{headers[1]}....

In this example the elements of the headers array contain more JSX content and this
is perfectly fine. The loop before the return populates the headers array with JSX
values which, if you were hardcoding the data, would look like so:

const headers = [
 <th>Book</th>,
 <th>Author</th>,
 // ...
];

You see how you can have JavaScript expressions in {} within JSX and you can nest
these {}-s as deep as you need. This is part of the beauty of React—you use JavaScript
to create your UI and all the power of JavaScript is available to you. Loops and condi‐
tions all work as usual and you don’t need to learn another “templating” language or
syntax to build the UI.

Table Headers Loop, a terse version
The example above worked fine (let’s call it v1 for Version 1) but let’s see how you can
accomplish the same with less code. Let’s move the loop inside the JSX returned at the
end. In essence the whole render() method becomes a single return (see
03.02.table-th-map.html).

Table Headers Loop, a terse version | 37

class Excel extends React.Component {
 render() {
 return (
 <table>
 <thead>
 <tr>
 {this.props.headers.map(title => <th>{title}</th>)}
 </tr>
 </thead>
 </table>
);
 }
}

Here you see how the array of header content is produced by calling map() on the
data passed via this.props.headers. A map() call takes an input array, executes a
callback function on each element and creates a new array.

In the example above the callback uses the tersest arrow functions syntax. If this is a
little too cryptic for your taste, let’s call it v2 and explore a few other options.

Here’s v3: a more verbose map() loop using generous indentation and a function
expression instead of an arrow function:

{
 this.props.headers.map(
 function(title) {
 return <th>{title}</th>;
 }
)
}

Next, a version (v4) which is a little less verbose version going back to using an arrow
function:

{
 this.props.headers.map(
 (title) => {
 return <th>{title}</th>;
 }
)
}

…which can be formatted with less indentation to v5:

{this.props.headers.map((title) => {
 return <th>{title}</th>;
})}

You can choose your preferred way of iterating over arrays to produce JSX context
based on personal preference and complexity of the content to be rendered. Simple
data is conveniently looped over inline in the JSX (v2 through v5). If the type of data
is a little too much for an inline map() you may find it more readable to have the con‐

38 | Chapter 3: Excel: A Fancy Table Component

tent generated at the top of the render function and keep the JSX simple, in a way
separating data from presentation (v1 is an example). Sometimes too many inline
expressions can be confusing when keeping track of all closing) and `}`s.

As to v2 vs. v5, they are the same except v5 has extra () around the callback argu‐
ments and {} wrapping the callback function body. While both of these are optional,
they make future changes a little easier to parse in a diff/code review context or while
debugging. For example adding a new line to the function body (maybe a temporary
console.log()) in v5 is just that - adding a new line. While in v2 a new line also
requires adding {} and reformatting and reindenting the code.

Debugging the Console Warning
If you look in the the browser console when loading the previous two examples
(03.01.table-th-loop.html and 03.01.table-th-map.html) you can see a warning.
It states:

Warning: Each child in a list should have a unique "key" prop.
Check the render method of `Excel`.

What is it about and how do you fix it? As the warning message says, React wants you
to provide a unique identifier for the array elements so it can update them more effi‐
ciently later on. To fix the warning, you add a key property to each header. The values
of this new property can be anything as long they are unique for each element. Here
you can use the index of the array element (0, 1, 2…):

// before
for (const title of this.props.headers) {
 headers.push(<th>{title}</th>);
}

// after - 03.03.table-th-loop-key.html
for (const idx in this.props.headers) {
 const title = this.props.headers[idx];
 headers.push(<th key={idx}>{title}</th>);
}

The keys only need to be unique inside each array loop, not unique in the whole
React application, so values of 0, 1 and so on are perfectly acceptable.

The same fix for the inline version (v5) takes the element index from the second
argument passed to the callback function:

// before
<tr>
 {this.props.headers.map((title) => {
 return <th>{title}</th>;
 })}
</tr>

Debugging the Console Warning | 39

// after - 03.04.table-th-map-key.html
<tr>
 {this.props.headers.map((title, idx) => {
 return <th key={idx}>{title}</th>;
 })}
</tr>

Adding <td> Content
Now that you have a pretty table head, it’s time to add the body. The data to be ren‐
dered is a two-dimentional array (rows and columns) that looks like:

const data = [
 [
 'A Tale of Two Cities', 'Charles Dickens',
 'English', '1859', '200 million',
],

];

To pass the data to the <Excel>, let’s use a new prop called initialData. Why “ini‐
tial” and not just “data”? As touched briefly in the previous chapter, it’s about manag‐
ing expectations. The caller of your Excel component should be able to pass data to
initialize the table. But later, as the table lives on, the data will change, because the
user is able to sort, edit, and so on. In other words, the state of the component will
change. So let’s use this.state.data to keep track of the changes and use
this.props.initialData to let the caller initialize the component.

Rendering a new Excel component would look like so:

ReactDOM.render(
 <Excel headers={headers} initialData={data} />,
 document.getElementById('app'),
);

Next you need to add a constructor to set the initial state from the given data. The
constructor receives props as an argument and also needs to call its parent’s construc‐
tor via super():

constructor(props) {
 super();
 this.state = {data: props.initialData};
}

On to rendering this.state.data. The data is two-dimensional, so you need two
loops: one that goes through rows and one that goes through the data (cells) for each
row. This can be accomplished using two of the same .map() loops you already know
how to use:

40 | Chapter 3: Excel: A Fancy Table Component

{this.state.data.map((row, idx) => (
 <tr key={idx}>
 {row.map((cell, idx) => (
 <td key={idx}>{cell}</td>
))}
 </tr>
))}

As you can see both loops need key={idx} and in this case the name idx was recycled
for use as local variables within each loop.

A complete implementation could look like this (result shown in Figure 3-2):

class Excel extends React.Component {
 constructor(props) {
 super();
 this.state = {data: props.initialData};
 }
 render() {
 return (
 <table>
 <thead>
 <tr>
 {this.props.headers.map((title, idx) => (
 <th key={idx}>{title}</th>
))}
 </tr>
 </thead>
 <tbody>
 {this.state.data.map((row, idx) => (
 <tr key={idx}>
 {row.map((cell, idx) => (
 <td key={idx}>{cell}</td>
))}
 </tr>
))}
 </tbody>
 </table>
);
 }
}

Adding <td> Content | 41

Figure 3-2. Rendering the whole table (03.05.table-th-td.html)

Prop types
The ability to specify the types of variables you work with - string, number, boolean,
etc. - doesn’t exist in the JavaScript language. But developers coming from other lan‐
guages, and those working on larger projects with many other developers, do miss it.
Two popular options exist that offer you to write JavaScript with types - Flow and
TypeScript. You can certainly use these to write React applications. But another
option exists, which is limitted to only specifying the types of props your component
expects: prop types. They were a part of React itself initially but at a point have been
moved to a separate library.

Prop types allow you to be more specific as to what data Excel takes and as a result
surface an error to the developer early on. You can setup the prop types like so
(03.06.table-th-td-prop-types.html):

Excel.propTypes = {
 headers: PropTypes.arrayOf(PropTypes.string),
 initialData: PropTypes.arrayOf(PropTypes.arrayOf(PropTypes.string)),
};

This means that headers prop is expected to be an array of strings and initialData
is expected to be an array where each element is another array of string elements.

To make this code work you need to grab the library which exposes the PropTypes
global variable, just like you did in the beginning of Chapter 1:

curl -L https://unpkg.com/prop-types/prop-types.js > ~/reactbook/react/prop-
types.js

Then in the HTML you include the new library together with the other ones:

<script src="react/react.js"></script>
<script src="react/react-dom.js"></script>
<script src="react/babel.js"></script>
<script src="react/prop-types.js"></script>

42 | Chapter 3: Excel: A Fancy Table Component

<script type="text/babel">
 class Excel extends React.Component {
 /* ... */
 }
</script>

Now you can test how it all works by changing headers, for example:

// before
const headers = ['Book', 'Author', 'Language', 'Published', 'Sales'];
// after
const headers = [0, 'Author', 'Language', 'Published', 'Sales'];

Now when you load the page (03.06.table-th-td-prop-types.html in the repo)
you can see in the console:

Warning: Failed prop type: Invalid prop `headers[0]` of type `number` supplied
to `Excel`, expected `string`.

Now that’s strict!

To explore what other PropTypes exist just type PropTypes in the console
(Figure 3-3).

Adding <td> Content | 43

Figure 3-3. Exploring PropTypes

Can You Improve the Component?
Allowing only string data is a bit too restrictive for a generic Excel spreadsheet. As an
exercise for your own amusement, you can change this example to allow more data
types (PropTypes.any) and then render differently depending on the type (e.g., align
numbers to the right).

Sorting
How many times have you seen a table on a web page that you wished was sorted
differently? Luckily, it’s trivial to do this with React. Actually, this is an example where
React shines, because all you need to do is sort the data array and all the UI updates
are handled for you.

44 | Chapter 3: Excel: A Fancy Table Component

For convenience and readability, all the sorting logic is in a sort() method in the
Excel class. Once you create it, two bits of plumbing are necessary. First, add a click
handler to the header row:

<thead onClick={this.sort}>

And then bind this.sort in the constructor as you did in Chapter 2:

class Excel extends React.Component {
 constructor(props) {
 super();
 this.state = {data: props.initialData};
 this.sort = this.sort.bind(this);
 }
 sort(e) {
 // TODO: implement me
 }
 render() { /* ...*/}
}

Now let’s implement the sort() method. You need to know which column to sort by,
which can conveniently be retrieved by using the cellIndex DOM property of the
event target (the event target is a table header <th>):

const column = e.target.cellIndex;

You may have rarely seen cellIndex used in app development. It’s
a property defined as early as DOM Level 1 (circa 1998) as “The
index of this cell in the row” and later on made read-only in DOM
Level 2.

You also need a copy of the data to be sorted. Otherwise, if you use the array’s sort()
method directly, it modifies the array. Meaning that calling this.state.data.sort()
will modify this.state. As you know already, this.state should not be modified
directly, but only through setState().

Various ways exist in JavaScript to make a shallow copy of an object or an array
(arrays are obects in JavaScript), e.g. Object.assign() or using the spread operator
{...state}. However there in no built-in way to do a deep copy of an object. A quick
way to implement a solution is to encode an object to a JSON string and then decode
it back to an object. Let’s use this approach for brevity, though be aware that it fails if
your object/array contains Date objects.

function clone(o) {
 return JSON.parse(JSON.stringify(o));
}

Sorting | 45

With the handy clone() utility function you make a copy of the array before you
start manipulating it:

// copy the data
const data = clone(this.state.data);

The actual sorting is done via a callback to array’s sort() method:

data.sort((a, b) => {
 if (a[column] === b[column]) {
 return 0;
 }
 return a[column] > b[column] ? 1 : -1;
});

Finally, this line sets the state with the new, sorted data:

this.setState({
 data,
});

Now, when you click a header, the contents get sorted alphabetically (Figure 3-4).

Figure 3-4. Sorting by book title (03.07.table-sort.html)

And this is it—you don’t have to touch the UI rendering at all. In the render()
method, you’ve already defined once and for all how the component should look
given some data. When the data changes, so does the UI; however, this is no longer
your concern.

The example used the ECMAScript property value shorthands fea‐
ture where this.setState({data}) is a shorter way of expressing
this.setState({data: data}) by skipping the key when it has
the same name as a variable.

46 | Chapter 3: Excel: A Fancy Table Component

Can You Improve the Component?
The example above uses pretty simple sorting, just enough to be relevant to the React
discussion. You can go as fancy as you need, parsing the content to see if the values
are numeric, with or without a unit of measure and so on.

Sorting UI Cues
The table is nicely sorted, but it’s not clear which column it’s sorted by. Let’s update
the UI to show arrows based on the column being sorted. And while at it, let’s imple‐
ment descending sorting too.

To keep track of the new state, you need two new properties added to this.state:

this.state.sortby

The index of the column currently being sorted

this.state.descending

A boolean to determine ascending versus descending sorting

The constructor can now look like:

constructor(props) {
 super();
 this.state = {
 data: props.initialData,
 sortby: null,
 descending: false,
 };
 this.sort = this.sort.bind(this);
}

In the sort() function, you have to figure out which way to sort. Default is ascending
(A to Z), unless the index of the new column is the same as the current sort-by col‐
umn and the sorting is not already descending from a previous click on the header:

const column = e.target.cellIndex;
const data = clone(this.state.data);
const descending = this.state.sortby === column && !this.state.descending;

You also need a small tweak to the sorting callback:

data.sort((a, b) => {
 if (a[column] === b[column]) {
 return 0;
 }
 return descending
 ? a[column] < b[column]
 ? 1
 : -1
 : a[column] > b[column]

Sorting UI Cues | 47

 ? 1
 : -1;
});

And finally, you need to set the new state:

this.setState({
 data,
 sortby: column,
 descending,
});

At this point the descending ordering works. Clicking on the table headers sorts
ascending first, then descending and then keeps on toggling the two.

The only thing left is to update the render() function to indicate sorting direction.
For the currently sorted column, let’s just add an arrow symbol to the title. Now the
headers loop looks like:

{this.props.headers.map((title, idx) => {
 if (this.state.sortby === idx) {
 title += this.state.descending ? ' \u2191' : ' \u2193'
 }
 return <th key={idx}>{title}</th>
})}

Now the sorting is feature-complete—people can sort by any column, they can click
once for ascending and once more for descending ordering, and the UI updates with
the visual cue (Figure 3-5).

Figure 3-5. Ascending/descending sorting

Editing Data
The next step for the Excel component is to give people the option to edit the data in
the table. One solution could work like so:

48 | Chapter 3: Excel: A Fancy Table Component

1. You double-click a cell. Excel figures out which cell was clicked and turns its
content from simple text into an input field pre-filled with the content
(Figure 3-6).

2. You edit the content (Figure 3-7).
3. You hit Enter. The input field is gone, and the table is updated with the new text

(Figure 3-8).

Figure 3-6. Table cell turns into an input field on double-click

Figure 3-7. Edit the content

Figure 3-8. Content updated on pressing Enter

Editable Cell
The first thing to do is set up a simple event handler. On double-click, the component
“remembers” the selected cell:

<tbody onDoubleClick={this.showEditor}>

Note the friendlier, easier-to-read onDoubleClick, as opposed to
W3C’s ondblclick.

Editing Data | 49

Let’s see what showEditor looks like:

showEditor(e) {
 this.setState({
 edit: {
 row: parseInt(e.target.parentNode.dataset.row, 10),
 column: e.target.cellIndex,
 },
 });
}

What’s happening here?

• The function sets the edit property of this.state. This property is null when
there’s no editing going on and then turns into an object with properties row and
column, which contain the row index and the column index of the cell being
edited. So if you double-click the very first cell, this.state.edit gets the value
{row: 0, column: 0}.

• To figure out the column index, you use the same e.target.cellIndex as before,
where e.target is the <td> that was double-clicked.

• There’s no rowIndex coming for free in the DOM, so you need to do it yourself
via a data- attribute. Each row should have a data-row attribute with the row
index, which you can parseInt() to get the index back.

Let’s take care of a few prerequisites. First, the edit property didn’t exist before and
should also be initialized in the constructor. While dealing with the constructor, let’s
bind the showEditor() and save() methods. The save() is the one to do the data
update once the user is done editing. The updated constructor looks like this:

constructor(props) {
 super();
 this.state = {
 data: props.initialData,
 sortby: null,
 descending: false,
 edit: null, // {row: index, column: index}
 };
 this.sort = this.sort.bind(this);
 this.showEditor = this.showEditor.bind(this);
 this.save = this.save.bind(this);
}

The property data-row is something you need so you can keep track of row indexes.
You can get the index from the array index while looping. Previously you saw how
idx was reused as a local variable by both row and column loops. Let’s rename it and
use rowidx and columnidx for clarity.

The whole <tbody> construction could look like:

50 | Chapter 3: Excel: A Fancy Table Component

<tbody onDoubleClick={this.showEditor}>
 {this.state.data.map((row, rowidx) => (
 <tr key={rowidx} data-row={rowidx}>
 {row.map((cell, columnidx) => {

 // TODO - turn `content` into an input if the `columnidx`
 // and the `rowidx` match the one being edited;
 // otherwise, just show the text content

 return <td key={columnidx}>{cell}</td>;
 })}
 </tr>
))}
</tbody>

Finally, let’s do what the TODO says — make an input field when required. The whole
render() function is called again just because of the setState() call that sets the
edit property. React rerenders the table, which gives you the chance to update the
table cell that was double-clicked.

Input Field Cell
Let’s look at the code to replace the TODO comment. First, remember the edit state for
brevity:

const edit = this.state.edit;

Check if the edit is set and if so, whether this is the exact cell being edited:

if (edit && edit.row === rowidx && edit.column === columnidx) {
 // ...
}

If this is the target cell, let’s make a form and an input field with the content of the
cell:

cell = (
 <form onSubmit={this.save}>
 <input type="text" defaultValue={cell} />
 </form>
);

As you see, it’s a form with a single input and the input is pre-filled with the text con‐
tent. When the form is submitted, the submission event is trapped in the save()
method.

Saving
The last piece of the editing puzzle is saving the content changes after the user is done
typing and has submitted the form (via the Enter key):

Editing Data | 51

save(e) {
 e.preventDefault();
 // ... do the save
}

After preventing the default behavior (so the page doesn’t reload), you need to get a
reference to the input field. The event target e.target is the form and its first and
only child is the input:

const input = e.target.firstChild;

Clone the data, so you don’t manipulate this.state directly:

const data = clone(this.state.data);

Update the piece of data given the new value and the column and row indices stored
in the edit property of the state:

data[this.state.edit.row][this.state.edit.column] = input.value;

Finally, set the state, which causes rerendering of the UI:

this.setState({
 edit: null,
 data,
});

And with this, the table is now editable. For a complete listing see 03.09.table-
editable.html

Conclusion and Virtual DOM Diffs
At this point, the editing feature is complete. It didn’t take too much code. All you
needed was to:

• Keep track of which cell to edit via this.state.edit
• Render an input field when displaying the table if the row and column indices

match the cell the user double-clicked
• Update the data array with the new value from the input field

As soon as you setState() with the new data, React calls the component’s render()
method and the UI magically updates. It may look like it won’t be particularly effi‐
cient to render the whole table for just one cell’s content change. And in fact, React
only updates a single cell in the browser’s DOM.

If you open your browser’s dev tools, you can see which parts of the DOM tree are
updated as you interact with your application. In Figure 3-9, you can see the dev tools
highlighting the DOM change after changing The Hobbit’s language from English to
Elvish.

52 | Chapter 3: Excel: A Fancy Table Component

Behind the scenes, React calls your render() method and creates a lightweight tree
representation of the desired DOM result. This is known as a virtual DOM tree.
When the render() method is called again (after a call to setState(), for example),
React takes the virtual tree before and after and computes a diff. Based on this diff,
React figures out the minimum required DOM operations (e.g., appendChild(), text
Content, etc.) to carry on that change into the browser’s DOM.

Figure 3-9. Highlighting DOM changes

In Figure 3-9, there is only one change required to the cell and it’s not necessary to
rerender the whole table. By computing the minimum set of changes and batching
DOM operations, React “touches” the DOM lightly, as it’s a known problem that
DOM operations are slow (compared to pure JavaScript operations, function calls,
etc.) and are often the bottleneck in rich web applications’ rendering performance.

React has your back when it comes to performance and updating the UI by:

• Touching the DOM lightly
• Using event delegation for user interactions

Search
Next, let’s add a search feature to the Excel component that allows users to filter the
contents of the table. Here’s the plan:

• Add a button to toggle the new feature on and off (Figure 3-10)

Search | 53

• If the search is on, add a row of inputs where each one searches in the corre‐
sponding column (Figure 3-11)

• As a user types in an input box, filter the array of state.data to only show the
matching content (Figure 3-12)

Figure 3-10. Search button

Figure 3-11. Row of search/filter inputs

Figure 3-12. Search results

State and UI
The first thing to do is update the constructor by:

54 | Chapter 3: Excel: A Fancy Table Component

• Adding a search property to the this.state object to keep track of whether the
search feature is on

• Binding two new methods: this.toggleSearch() to turn search boxes on and
off and this.search() to do the actual searching

• Setting up a new class property this.preSearchData, more about it in just a sec‐
ond

• Update the incoming initial data with a consecutive ID, this will help identify the
rows when editing contents of filtered data

constructor(props) {
 super();
 const data = clone(props.initialData).map((row, idx) => {
 row.push(idx);
 return row;
 });
 this.state = {
 data,
 sortby: null,
 descending: false,
 edit: null, // {row: index, column: index}
 search: false,
 };

 this.preSearchData = null;

 this.sort = this.sort.bind(this);
 this.showEditor = this.showEditor.bind(this);
 this.save = this.save.bind(this);
 this.toggleSearch = this.toggleSearch.bind(this);
 this.search = this.search.bind(this);
}

The cloning and updating of the initialData changes the data used in the state by
adding a sort of record ID, this will prove useful when editing data that was already
filtered. You map() the data adding an additional column which is an integer ID.

const data = clone(props.initialData).map((row, idx) =>
 row.concat(idx),
);

As a result the state data now looks like:

 [
 'A Tale of Two Cities', ..., 0
],
 [
 'Le Petit Prince (The Little Prince)', ..., 1
],
 // ...

Search | 55

This change also requires changes in the render() method, namely to use this record
ID to identify rows, regardless if we’re looking at all the data or a filtered subset of it
(as a result of a search):

{this.state.data.map((row, rowidx) => {
 // the last piece of data in a row is the ID
 const recordId = row[row.length - 1];
 return (
 <tr key={recordId} data-row={recordId}>
 {row.map((cell, columnidx) => {
 if (columnidx === this.props.headers.length) {
 // do not show the record ID in the table UI
 return;
 }
 const edit = this.state.edit;
 if (
 edit &&
 edit.row === recordId &&
 edit.column === columnidx
) {
 cell = (
 <form onSubmit={this.save}>
 <input type="text" defaultValue={cell} />
 </form>
);
 }
 return <td key={columnidx}>{cell}</td>;
 })}
 </tr>
);
})}

Next comes updating the UI with a search button. Where before there was a <table>
as the root, now let’s have a <div> with a search button and the same table.

<div>
 <button className="toolbar" onClick={this.toggleSearch}>
 {this.state.search ? 'Hide search' : 'Show search'}
 </button>
 <table>
 {/* ... */}
 </table>
</div>

As you see, the search button label is dynamic to reflect whether the search is on or
off (this.state.search is true or false).

Next comes the row of search boxes. You can add it to the increasingly big chunk of
JSX or have it composed upfront and added to a constant which is to be included in
the main JSX. Let’s go the second route. If the search feature is not on, you don’t need

56 | Chapter 3: Excel: A Fancy Table Component

to render anything, so searchRow is just null. Otherwise a new table row is created
where each cell is an input element.

const searchRow = !this.state.search ? null : (
 <tr onChange={this.search}>
 {this.props.headers.map((_, idx) => (
 <td key={idx}>
 <input type="text" data-idx={idx} />
 </td>
))}
 </tr>
);

Using (_, idx) is an illustration of a convention where an unused
variable in a callback is named with an underscore _ to signal to the
reader of the code that it’s not used.

The row of search inputs is just another child node before the main data loop (the
one that creates all the table rows and cells), so you include searchRow right there.

<tbody onDoubleClick={this.showEditor}>
 {searchRow}
 {this.state.data.map((row, rowidx) => (....

At this point, that’s all for the UI updates. Let’s take a look at the meat of the feature,
the “business logic” if you will: the actual search.

Filtering Content
The search feature is going to be fairly simple: take the array of data, call the
Array.prototype.filter() method on it, and return a filtered array with the ele‐
ments that match the search string.

The UI still uses this.state.data to do the rendering, but this.state.data is a
reduced version of itself.

You need a reference to the data before the search, so that you don’t lose the data for‐
ever. This allows the user to go back to the full table or change the search string to get
different matches. Let’s call this reference this.preSearchData. Now that there’s data
in two places, the save() method will need an update, so both places are updated
should the user decide to edit the data, regardless if it’s been filtered or not.

When the user clicks the “search” button, the toggleSearch() function is invoked.
This function’s task is to turn the search feature on and off. It does its task by:

• Setting the this.state.search to true or false accordingly

Search | 57

• When enabling the search, “remembering” the current data
• When disabling the search, reverting to the remembered data

Here’s what this function can look like:

toggleSearch() {
 if (this.state.search) {
 this.setState({
 data: this.preSearchData,
 search: false,
 });
 this.preSearchData = null;
 } else {
 this.preSearchData = this.state.data;
 this.setState({
 search: true,
 });
 }
}

The last thing to do is implement the search() function, which is called every time
something in the search row changes, meaning the user is typing in one of the inputs.
Here’s the complete implementation, followed by some more details:

search(e) {
 const needle = e.target.value.toLowerCase();
 if (!needle) {
 this.setState({data: this.preSearchData});
 return;
 }
 const idx = e.target.dataset.idx;
 const searchdata = this.preSearchData.filter((row) => {
 return row[idx].toString().toLowerCase().indexOf(needle) > -1;
 });
 this.setState({data: searchdata});
}

You get the search string from the change event’s target (which is the input box). Let’s
call it “needle” as we’re looking for a needle in a haystack of data.

const needle = e.target.value.toLowerCase();

If there’s no search string (the user erased what they typed), the function takes the
original, cached data and this data becomes the new state:

if (!needle) {
 this.setState({data: this.preSearchData});
 return;
}

If there is a search string, filter the original data and set the filtered results as the new
state of the data:

58 | Chapter 3: Excel: A Fancy Table Component

const idx = e.target.dataset.idx;
const searchdata = this.preSearchData.filter((row) => {
 return row[idx].toString().toLowerCase().indexOf(needle) > -1;
});
this.setState({data: searchdata});

And with this, the search feature is complete. To implement the feature, all you
needed to do was:

• Add search UI
• Show/hide the new UI upon request
• The actual “business logic” - a simple array filter() call

As always, you only worry about the state of your data and let React take care of ren‐
dering (and all the grunt DOM work associated) whenever the state of the data
changes.

Update the save() method
Previously there was only state.data to be cloned and updated, but now you also
have the “remembered” preSearchData. If the user is editing (even while searching)
now the two pieces of data need an update. That’s the whole reason for adding a
record ID - so you can find the real row even in a filtered state.

Updating the preSearchData is just like in the previous save() implementation - just
find the row and column. Updating the state data requires one more step which is to
find the record ID of the row and match it to the row currently being edited
(this.state.edit.row).

save(e) {
 e.preventDefault();
 const input = e.target.firstChild;
 const data = clone(this.state.data).map((row) => {
 if (row[row.length - 1] === this.state.edit.row) {
 row[this.state.edit.column] = input.value;
 }
 return row;
 });
 this.logSetState({
 edit: null,
 data,
 });
 if (this.preSearchData) {
 this.preSearchData[this.state.edit.row][this.state.edit.column] =
 input.value;
 }
}

See 03.10.table-search.html in the book’s repo for the complete code.

Search | 59

Can You Improve the Search?
This was a simple working example for illustration. Can you improve the feature?

Try to implement an additive search in multiple boxes, meaning filter the already fil‐
tered data. If the user types “Eng” in the language row and then searches using a dif‐
ferent search box, why not search in the search results of the previous search only?
How would you implement this feature?

Instant Replay
As you know now, your components worry about their state and let React render and
rerender whenever appropriate. This means that given the same data (state and prop‐
erties), the application will look exactly the same, no matter what changed before or
after this particular data state. This gives you a great debugging-in-the-wild opportu‐
nity.

Imagine someone encounters a bug while using your app—they can click a button to
report the bug without needing to explain what happened. The bug report can just
send you back a copy of this.state and this.props, and you should be able to re-
create the exact application state and see the visual result.

An “undo” could be another feature based of the fact that React renders your app the
same way given the same props and state. And, in fact, the “undo” implementation is
somewhat trivial: you just need to go back to the previous state.

Let’s take that idea a bit further, just for fun. Let’s record each state change in the
Excel component and then replay it. It’s fascinating to watch all your actions played
back in front of you. The question of when the change occurred is not that important,
so let’s “play” the app state changes at 1-second intervals.

To implement this feature, you need add a logSetState() method which first logs
the new state to a this.log array and then calls setState(). And everywhere in the
code you called setState() should now be changed to call logSetState(). So first
search and replace all calls to setState() with calls to the new function.

So all calls to…

this.setState(...);

…become

this.logSetState(...);

Now let’s start with the constructor. You need to bind the two new functions: logSet
State() and replay() and also declare this.log array and initialize it with the ini‐
tial state.

60 | Chapter 3: Excel: A Fancy Table Component

constructor(props) {
 // ...

 // log the initial state
 this.log = [clone(this.state)];

 // ...
 this.replay = this.replay.bind(this);
 this.logSetState = this.logSetState.bind(this);
}

The logSetState needs to do two things: log the new state and then pass it over to
setState(). Here’s one example implementation where you make a deep copy of the
state and append it to this.log:

logSetState(newState) {
 // remember the old state in a clone
 this.log.push(clone(newState));
 // now set it
 this.setState(newState);
}

Now that all state changes are logged, let’s play them back. To trigger the playback,
let’s add a simple event listener that captures keyboard actions and invokes the
replay() function. The place for events listeners like this is in the componentDid
Mount() lifecycle method.

componentDidMount() {
 document.addEventListener('keydown', e => {
 if (e.altKey && e.shiftKey && e.keyCode === 82) {
 // ALT+SHIFT+R(eplay)
 this.replay();
 }
 });
}

Finally, consider the replay() method. It uses setInterval() and once a second it
reads the next object from the log and passes it to setState():

replay() {
 if (this.log.length === 1) {
 console.warn('No state changes to replay yet');
 return;
 }
 let idx = -1;
 const interval = setInterval(() => {
 if (++idx === this.log.length - 1) {
 // the end
 clearInterval(interval);
 }
 this.setState(this.log[idx]);

Instant Replay | 61

 }, 1000);
}

And with this, the new feature is complete (03.11.table-replay.html in the repo).
Play around with the component, sort, edit… Then press ALT+SHIFT+R (OPTION
+SHIFT+R on Mac) and see the past unfolding before you.

Cleaning up event handlers
The replay feature needs just a bit of cleanup. When this component is the only thing
hapenning on the page, that’s not necessary, but in a real application components get
added and removed from the DOM more frequently. When removing from the DOM
a “good citizen” component should take care of cleaning up after itself. In the example
above there are two items that need cleaning up: the keydown event listener and the
replay interval callback.

If you don’t clean up the keydown event listener function, it will linger on in memory
after the component is gone. And because it’s using this, the whole Excel instance
needs to be retained in memory. This is in effect a memory leak. Too many of those
and the user may run out of memory and your application may crash the browser tab.
As to the interval, well, the callback function will continue executing after the compo‐
nent is gone and cause another memory leak. The callback will also attempt to call
setState() on a non-existing component which React handles gracefully and gives
you a warning.

You can test the latter behavior by removing the component from the DOM while the
replay is still going. To remove the component from the DOM you can just replace it,
e.g. run the “Hello world” from Chapter 1 in the console:

ReactDOM.render(
 React.createElement('h1', null, 'Hello world!'),
 document.getElementById('app'),
);

You can also log a timestamp to the console in the interval callback to see that it keeps
on being executed.

const interval = setInterval(() => {
 // ...
 console.log(Date.now());
 // ...
}, 1000);

Now when you replace the component during replay, you see an error from React and
the timestamps of the interval callback still being logged as evidence that the callback
is still running (Figure 3-13).

62 | Chapter 3: Excel: A Fancy Table Component

Figure 3-13. Memory leak in action

Similarly, you can test the event listener memory leak by pressing ALT+SHIFT+R
after the component has been removed from the DOM.

Cleaning solution
Taking care of these memory leaks is fairly straightforward. You need to keep refer‐
ences to the handlers and intervals/timeouts you want to clean up. Then clean them
up in componentWillUnmount().

For the event handler, have it as a class method, as opposed to an inline function:

keydownHandler(e) {
 if (e.altKey && e.shiftKey && e.keyCode === 82) {
 // ALT+SHIFT+R(eplay)
 this.replay();
 }
}

Then componentDidMount() becomes the simpler:

Instant Replay | 63

componentDidMount() {
 document.addEventListener('keydown', this.keydownHandler);
}

For the interval replay ID, have it as a class property as opposed to a local variable:

this.replayID = setInterval(() => {
 if (++idx === this.log.length - 1) {
 // the end
 clearInterval(this.replayID);
 }
 this.setState(this.log[idx]);
}, 1000);

You need to, of course, bind the new method and add the new property in the con‐
structor:

constructor(props) {
 // ...
 this.replayID = null;

 // ...
 this.keydownHandler = this.keydownHandler.bind(this);
}

And, finally, the cleanup in the componentWillUnmount():

componentWillUnmount() {
 document.removeEventListener('keydown', this.keydownHandler);
 clearInterval(this.replayID);
}

Now all the leaks are plugged (03.12.table-replay-clean.html).

Can You Improve the Replay?
How about implementing an Undo/Redo feature? Say when the person uses the
ALT+Z keyboard combination, you go back one step in the state log and on ALT
+SHIFT+Z you go forward.

An Alternative Implementation?
Is there another way to implement replay/undo type of functionality without chang‐
ing all your setState() calls? Maybe use an appropriate lifecycle method (Chap‐
ter 2)? Try this on your own.

Download the Table Data
After all the sorting, editing, and searching, the user is finally happy with the state of
the data in the table. It would be nice if they could download the data, the result of all
their labor, to use at a later time.

64 | Chapter 3: Excel: A Fancy Table Component

Luckily, there’s nothing easier in React. All you need to do is grab the current
this.state.data and give it back—for example in JSON or CSV format.

Figure 3-14 shows the end result when a user clicks “Export CSV,” downloads the file
called data.csv (see the bottom left of the browser window), and opens this file in
Numbers (on a Mac, or Microsoft Excel on a PC or Mac).

Figure 3-14. Export table data to Numbers via CSV

The first thing to do is add new options to the toolbar (where the Search button is).
Let’s use some HTML magic that forces <a> links to trigger file downloads, so the new
“buttons” have to be links disguised as buttons with some CSS:

<div className="toolbar">
 <button onClick={this.toggleSearch}>
 {this.state.search ? 'Hide search' : 'Show search'}
 </button>

 Export JSON

 Export CSV

</div>

As you see, you need downloadJSON and downloadCSV() methods. These have some
repeating logic, so they can be done by a single download() function bound with the
format (meaning file type) argument. The download() method’s signature could be
like:

Download the Table Data | 65

download(format, ev) {
 // TODO: implement me
}

In the constructor you can bind this method twice, like so:

this.downloadJSON = this.download.bind(this, 'json');
this.downloadCSV = this.download.bind(this, 'csv');

All the React work is done, now for the download() function. While exporting to
JSON is trivial, CSV (comma-separated values) needs a little bit more work. In
essence, it’s just a loop over all rows and all cells in a row, producing a long string.
Once this is done, the function initiates the downloads via the download attribute and
the href blob created by window.URL:

download(format, ev) {
 const data = clone(this.state.data).map(row => {
 row.pop(); // drop the last column, the recordId
 return row;
 });
 const contents =
 format === 'json'
 ? JSON.stringify(data, null, ' ')
 : data.reduce((result, row) => {
 return (
 result +
 row.reduce((rowcontent, cellcontent, idx) => {
 const cell = cellcontent.replace(/"/g, '""');
 const delimiter = idx < row.length - 1 ? ',' : '';
 return `${rowcontent}"${cellcontent}"${delimiter}`;
 }, '') +
 '\n'
);
 }, '');

 const URL = window.URL || window.webkitURL;
 const blob = new Blob([contents], {type: 'text/' + format});
 ev.target.href = URL.createObjectURL(blob);
 ev.target.download = 'data.' + format;
}

The complete code is in 03.13.table-download.html in the repo.

Fetching data
All through the chapter the Excel component had access to the data in the same file.
But what if the data lives elsewhere, on a server, and needs to be fetched. There are
various solutions to this and you’ll see more further in the book, but let try one of the
simplest—fetching the data in componentDidMount().

Let’s say the Excel component is created with an empty initialData property:

66 | Chapter 3: Excel: A Fancy Table Component

ReactDOM.render(
 <Excel headers={headers} initialData={[]} />,
 document.getElementById('app'),
);

The component can gracefully render an intermendiate state to let the user know that
data is coming. In the render() method you can have a condition and render a dif‐
ferent table body if data is not there:

{this.state.data.length === 0 ? (
 <tbody>
 <tr>
 <td colSpan={this.props.headers.length}>
 Loading data...
 </td>
 </tr>
 </tbody>
) : (
 <tbody onDoubleClick={this.showEditor}>
 {/* ... same as before ...*/}
 </tbody>
)}

While waiting for the data the user sees a loading indicator (Figure 3-15), in this case
a simple text, but you can have an animation if you like.

Figure 3-15. Waiting for the data to be fetched

Now let’s fetch the data. Using the Fetch API (https://developer.mozilla.org/en-US/
docs/Web/API/Fetch_API), you make a request to a server and once the response
arrives, you set the state with the new data. You also need to take care of adding the
record ID which was previously the job of the contstructor. The updated component
DidMount() can look like so:

componentDidMount() {
 document.addEventListener('keydown', this.keydownHandler);
 fetch('https://www.phpied.com/files/reactbook/table-data.json')
 .then((response) => response.json())

Fetching data | 67

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

 .then((initialData) => {
 const data = clone(initialData).map((row, idx) => {
 row.push(idx);
 return row;
 });
 this.setState({data});
 });
}

The complete code is in 03.14.table-fetch.html in the repo.

68 | Chapter 3: Excel: A Fancy Table Component

CHAPTER 4

Functional Excel

Remember function components? At some point in Chapter 2, as soon as state came
into the picture, function components dropped out of the discussion. It’s time to
bring them back.

A quick refresher: Function vs Class components
In its simplest form a class component only needs one render() method. This is
where you build the UI, optionally using this.props and this.state:

class Widget extends React.Component {
 render() {
 let ui;
 // fun with this.props and this.state
 return <div>{ui}</div>;
 }
}

In a function component the whole component is the function and the UI is whatever
the function returns. The props are passed to the function when the component is
constructed:

function Widget(props) {
 let ui;
 // fun with props but where's the state?
 return <div>{ui}</div>;
}

Before React v16.8 that’s where the usefulness of function components ended: you
can only use them for components that don’t maintain state (stateless components).
But with the addition of hooks in v16.8, it’s now possible to use function components
everywhere. Through the rest of this chapter you’ll see how the Excel component
from Chapter 3 can be implemented as a function component.

69

Rendering the data
The first step is to just render the data passed to the component. How the component
is used doesn’t change, in other words a developer using your component doesn’t
need to know if it’s a class or a function component. The initialData and headers
props look the same. Even the propTypes definitions are the same.

function Excel(props) {
 // implement me...
}

Excel.propTypes = {
 headers: PropTypes.arrayOf(PropTypes.string),
 initialData: PropTypes.arrayOf(PropTypes.arrayOf(PropTypes.string)),
};

const headers = ['Book', 'Author', 'Language', 'Published', 'Sales'];

const data = [
 [
 'A Tale of Two Cities', 'Charles Dickens', // ...
],
 // ...
];

ReactDOM.render(
 <Excel headers={headers} initialData={data} />,
 document.getElementById('app'),
);

Implementing the body of the function component is largely just copy-pasting the
body of the render() method of the class component:

function Excel({headers, initialData}) {
 return (
 <table>
 <thead>
 <tr>
 {headers.map((title, idx) => (
 <th key={idx}>{title}</th>
))}
 </tr>
 </thead>
 <tbody>
 {initialData.map((row, idx) => (
 <tr key={idx}>
 {row.map((cell, idx) => (
 <td key={idx}>{cell}</td>
))}
 </tr>
))}
 </tbody>

70 | Chapter 4: Functional Excel

 </table>
);
}

In the code above you can see that instead of function Excel(props){} you can use
destructuring syntax function Excel({headers, initialData}){} to save typing of
props.headers and props.initialData later on.

Figure 4-1. Rendering the table in a function component (04.01.fn.table.html)

The state hook
To be able to maintain state in your function components, you need hooks. So what’s a
hook? It’s just a function prefixed with the word use* that lets you use various React
features, such as tools for managing state and component lifecycles. You can also cre‐
ate your own hooks. By the end of this chapter you’d learn how to use several built-in
hooks as well as write your own.

Let’s start with the state hook. It’s a function called useState() that’s available as a
property of the React object (React.useState()). It takes one value, the initial value
of a state variable (a piece of data you want to manage), and returns an array of two
elements (a tuple). The first element is the state variable and the second is a function
to change this variable. Let’s see an example.

In a class component, in the constructor() you define the initial value like so:

this.state = {
 data: initialData;
};

Later on, when you want to change the data state, you do:

this.setState({
 data: newData,
});

The state hook | 71

In a function component you define the initial state and at the same time get an
updater function:

const [data, setData] = React.useState(initialData);

Note the array destructuring syntax where you assign the two ele‐
ments of the array returned by useState() to two variables - data
and setData. It’s a shorter and cleaner way to get the two return
values, as opposed to, say:

const stateArray = React.useState(initialData);
const data = stateArray[0];
const setData = stateArray[1];

For rendering you can now use the variable data. And when you want to update this
variable you use:

setData(newData);

Rewriting the component to use the state hook can now look like:

function Excel({headers, initialData}) {
 const [data, setData] = React.useState(initialData);

 return (
 <table>
 <thead>
 <tr>
 {headers.map((title, idx) => (
 <th key={idx}>{title}</th>
))}
 </tr>
 </thead>
 <tbody>
 {data.map((row, idx) => (
 <tr key={idx}>
 {row.map((cell, idx) => (
 <td key={idx}>{cell}</td>
))}
 </tr>
))}
 </tbody>
 </table>
);
}

Even though this example (04.02.fn.table-state.html) doesn’t use setData() you
can see how it’s using the data state. Let’s move on to sorting the table, where you’ll
need the means to change the state.

72 | Chapter 4: Functional Excel

Sorting the table
In a class component, all the various bits of state go into the this.state object, a
grab-bag of often unrelated pieces of information. Using the state hook you can still
do the same, but you can also decide to keep pieces of state in different variables.
When it comes to sorting a table, the data contained in the table is one piece of infor‐
mation while the auxiliary sorting-specific information is another piece. In other
words, you can use the state hook as many times as you want.

function Excel({headers, initialData}) {
 const [data, setData] = React.useState(initialData);
 const [sorting, setSorting] = React.useState({
 column: null,
 descending: false,
 });

 //
}

The data is what you display in the table, the sorting object is a separate concern, it’s
about how you sort (ascending or descending) and by which column (title, author,
etc).

The function that does the sorting is now inline inside the Excel function.

function Excel({headers, initialData}) {

 // ..

 function sort(e) {
 // implement me
 }

 return (
 <table>
 {/* ... */}
 </table>
);
}

The sort() function figures out which column to sort by (using its index) and
whether the sorting is descending or not:

const column = e.target.cellIndex;
const descending = sorting.column === column && !sorting.descending;

Then it clones the data array because it’s still a bad idea to modify the state directly:

const dataCopy = clone(data);

Sorting the table | 73

A reminder that the clone() function is still the quick and dirty
JSON encode/decode way of deep copying:

function clone(o) {
 return JSON.parse(JSON.stringify(o));
}

The actual sorting is the same as before:

dataCopy.sort((a, b) => {
 if (a[column] === b[column]) {
 return 0;
 }
 return descending
 ? a[column] < b[column]
 ? 1
 : -1
 : a[column] > b[column]
 ? 1
 : -1;
});

And finally the sort() function needs to update the two pieces of state with the new
values:

setData(dataCopy);
setSorting({column, descending});

And that’s about it for the business of sorting. What’s left is just to update the UI (the
return value of the Excel() function) to reflect which column is used for sorting and
to handle clicks on any of the headers:

<thead onClick={sort}>
 <tr>
 {headers.map((title, idx) => {
 if (sorting.column === idx) {
 title += sorting.descending ? ' \u2191' : ' \u2193';
 }
 return <th key={idx}>{title}</th>;
 })}
 </tr>
</thead>

You can see the result with the sorting arrow in Figure 4-2.

74 | Chapter 4: Functional Excel

Figure 4-2. Sorting the data (04.03.fn.table-sort.html)

You may have noticed another nice thing about using state hooks: there’s no need to
bind any callback functions, like you do in the constructor of a class component.
None of this this.sort = this.sort.bind(this) business. No this, no construc
tor(), just a function is all you need to define a component.

Editing data
As you remember from the last chapter, the editing functionality consisted of the fol‐
lowing steps:

• You double-click a table cell and it turns into a text input in a form.
• You type in the text input.
• When done you press Enter to submit the form.

To keep track of this process, let’s add an edit state object. It’s null when there’s no
editing, otherwise it stores the row and column indices of the cell being edited.

const [edit, setEdit] = useState(null);

In the UI you need to handle double-clicks (onDoubleClick={showEditor}) and, if
the user is editing, show a form. Otherwise show just the data. When the user hits
Enter, you trap the submit event (onSubmit={save}).

<tbody onDoubleClick={showEditor}>
 {data.map((row, rowidx) => (
 <tr key={rowidx} data-row={rowidx}>
 {row.map((cell, columnidx) => {
 if (
 edit &&
 edit.row === rowidx &&
 edit.column === columnidx
) {
 cell = (

Editing data | 75

 <form onSubmit={save}>
 <input type="text" defaultValue={cell} />
 </form>
);
 }
 return <td key={columnidx}>{cell}</td>;
 })}
 </tr>
))}
</tbody>

Now there are two short functions left to be implemented: showEditor() and save().

The showEditor() is invoked on double-clicking a cell in the table body. There you
update the edit state (via setEdit()) with row and column indexes, so the rendering
knows which cells to replace with a form.

function showEditor(e) {
 setEdit({
 row: parseInt(e.target.parentNode.dataset.row, 10),
 column: e.target.cellIndex,
 });
}

The save() function traps the form submit event, prevents the submission and
updates the data state with the new value in the cell being edited. It also calls setE
dit() passing null as the new edit state, which means the editing is complete.

function save(e) {
 e.preventDefault();
 const input = e.target.firstChild;
 const dataCopy = clone(data);
 dataCopy[edit.row][edit.column] = input.value;
 setEdit(null);
 setData(dataCopy);
}

And with this, the editing functionality is finished. Consult 04.04.fn.table-
edit.html for the complete code.

Searching
Searching/filtering the data doesn’t pose any new challenges when it comes to React
and hooks. You can try to implement it yourself and you can check an example
implementation in the book’s repo, the file 04.05.fn.table-search.html.

You’ll need two new pieces of state:

• The boolean search to signify whether the user is filtering or just looking at the
data.

76 | Chapter 4: Functional Excel

• The copy of data as preSearchData because now data becomes a filtered subset
of all data.

const [search, setSearch] = useState(false);
const [preSearchData, setPreSearchData] = useState(null);

You also need to take care of keeping preSearchData updated as well, since data (the
filtered subset) can be updated when the user is editing while also filtering. Consult
the previous chapter as a refresher.

Let’s move on to implementing the replay feature which provides a chance to famili‐
arize with two new concepts:

• Using lifecycle hooks
• Writing your own hooks

Lifecycles in a world of hooks
The replay feature in Chapter 3 uses two lifecycle methods of the Excel class: compo
nentDidMount() and componentWillUnmount().

Troubles with lifecycle methods
If you revisit the 03.14.table-fetch.html example you may notice each of those has
two tasks, untrelated to each other.

componentDidMount() {
 document.addEventListener('keydown', this.keydownHandler);
 fetch('https://www...')
 .then(/*...*/)
 .then((initialData) => {
 /*...*/
 this.setState({data});
 });
}

componentWillUnmount() {
 document.removeEventListener('keydown', this.keydownHandler);
 clearInterval(this.replayID);
}

In componentDidMount() you setup a keydown listener to initiate the replay and also
fetch data from a server. In componentWillUnmount() you remove the keydown lis‐
tener and also clean up a setInterval() id. This illustrates two problems related to
the use of lifecycle methods in class components (spoiler: they are solved when using
hooks):

Lifecycles in a world of hooks | 77

• Unrelated tasks are implemented together. For example performing data fetching
and setting up event listeners in one place. This makes the lifecycle methods
grow in length while performing the unrelated tasks. In simple components this
is fine, but in larger ones you need to resort to code comments or moving pieces
of code to various other functions, so you can split up the unrelated tasks and
make the code more readable.

• Related tasks are spread out. For example adding and removing the same event
listener. As the lifesycle methods grow in size it’s harder to see at a glance the sep‐
arate pieces of the same concern.

useEffect()

The built-in hook that replaces both of the lifecycle methods above is React.useEf
fect().

The word “effect” stands for “side effect”, meaning a type of work
that happens around the same time as a main task, but it’s not
related to that main task. The main task of any React component is
to render something based on state and props. But at the same time
(in the same function) together with the rendering a few side jobs
may be necessary, such as fetching data from a server or setting up
event listeners.
In the Excel component for example, setting up a keydown han‐
dler is a side effect of the main task of rendering data in a table.

The hook useEffect() takes two arguments:

• A callback function which is called by React at the opportune time.
• An optional array of dependencies.

The list of dependencies contains variables that will be checked before the callback is
invoked and dictate whether the callback should even be invoked.

• If the values of the dependent variables have not changed, there’s no need to
invoke the callback.

• If the list of dependencies is an empty array, the callback is only called once, simi‐
lar to componentDidMount().

• If the dependencies are omitted, the callback is invoked on every re-render.

useEffect(() => {
 // logs only if `data` or `headers` have changed
 console.log(Date.now());

78 | Chapter 4: Functional Excel

}, [data, headers]);

useEffect(() => {
 // logs once, after initial render, like `componentDidMount()`
 console.log(Date.now());
}, []);

useEffect(() => {
 // called on every re-render
 console.log(Date.now());
}, /* no dependencies here */);

Cleaning up side effects
What about an equivalent to componentWillUnmount()? For this task you use the
return value form the callback function you pass to useEffect().

useEffect(() => {
 // logs once, after initial render, like `componentDidMount()`
 console.log(Date.now());
 return () => {
 // log when the component will be removed form the DOM
 // like `componentDidMount()`
 console.log(Date.now());
 };
}, []);

Let’s see a more complete example (04.06.useEffect.html in the repo):

function Example() {
 useEffect(() => {
 console.log('Rendering <Example/>', Date.now());
 return () => {
 // log when the component will be removed form the DOM
 // like `componentDidMount()`
 console.log('Removing <Example/>', Date.now());
 };
 }, []);
 return <p>I am an example child component.</p>;
}

function ExampleParent() {
 const [visible, setVisible] = useState(false);
 return (
 <div>
 <button onClick={() => setVisible(!visible)}>
 Hello there, press me {visible ? 'again' : ''}
 </button>
 {visible ? <Example /> : null}
 </div>
);
}

Lifecycles in a world of hooks | 79

Clicking the button once renders a child component and clicking it again removes it.
As you can see in Figure 4-3 the return value of useEffect() (which is a function) is
invoked when the component is removed from the DOM.

Figure 4-3. Using useEffect

Note that the cleanup (a.k.a. teardown) function was called when the component is
removed from the DOM because the dependency array is empty. If there was a value
in the dependecy array, the teardown function would be called whenever the depend‐
ency value changes.

Trouble-free lifecycles
If you consider again the use case of setting up and clearing event listeners, it can be
implemented like so:

useEffect(() => {
 function keydownHandler() {
 // do things
 }
 document.addEventListener('keydown', keydownHandler);
 return () => {
 document.removeEventListener('keydown', keydownHandler);
 };
}, []);

The pattern above solves the second problem with class-based lifecycle methods
mentioned previously - the problem of spreading related tasks all around the compo‐
nent. Here you can see how using hooks allows you to have the handler function, its
set up and its removal all in the same place.

As for the the first problem (having unrelated tasks in the same place), this is solved
by having multiple useEffect calls, each dedicated to a specific tasks. Similarly to
how you can have separate pieces of state intead of one grab-bag object, you can also

80 | Chapter 4: Functional Excel

have separate useEffect calls, each addressing a separate concern, as opposed to a
single class method that needs to take care of everything.

function Example() {
 const [data, setData] = useState(null);

 useEffect(() => {
 // fetch() and then call setData()
 });

 useEffect(() => {
 // event hanlers
 });

 return <div>{data}</div>;
}

useLayoutEffect()

To wrap up the discussion of useEffect() let’s consider another built-in hook called
useLayoutEffect().

There are just a few built-in hooks, so don’t worry about having to
memorize a long list of new APIs.

useLayoutEffect() works like useEffect(), the only difference is that it’s invoked
before React is done painting all the DOM nodes of a render. In general, prefer useEf
fect() unless you need to measure something on the page (maybe width/height of
the rendered component or calculate scrolling position after an update) and then
rerender based on this information. When none of this is required, useEffect() is
better as it’s asynchronous and also indicates to the reader of your code that DOM
mutations are not relevant to your component.

Because useLayoutEffect() is called sooner, you can recalculate and rerender and
the users sees only the last render. Otherwise they see the initial render and then the
second render. Depending on how complicated the layout use, the users may perceive
a flicker between the two renders.

The next example (04.07.useLayoutEffect.html) renders a long table with random
cell widths (just to make it harder for the browser). Then the width of the table is set
in an effect hook.

function Example({layout}) {
 if (layout === null) {
 return null;

Lifecycles in a world of hooks | 81

 }

 if (layout) {
 useLayoutEffect(() => {
 const table = document.getElementsByTagName('table')[0];
 console.log(table.offsetWidth);
 table.width = '250px';
 }, []);
 } else {
 useEffect(() => {
 const table = document.getElementsByTagName('table')[0];
 console.log(table.offsetWidth);
 table.width = '250px';
 }, []);
 }

 return (
 <table>
 <thead>
 <tr>
 <th>Random</th>
 </tr>
 </thead>
 <tbody>
 {Array.from(Array(10000)).map((_, idx) => (
 <tr key={idx}>
 <td width={Math.random() * 800}>{Math.random()}</td>
 </tr>
))}
 </tbody>
 </table>
);
}

function ExampleParent() {
 const [layout, setLayout] = useState(null);
 return (
 <div>
 <button onClick={() => setLayout(false)}>useEffect</button>{' '}
 <button onClick={() => setLayout(true)}>useLayoutEffect</button>{' '}
 <button onClick={() => setLayout(null)}>clear</button>
 <Example layout={layout} />
 </div>
);
}

Depending on whether you trigger the useEffect() or useLayoutEffect() path you
may see a flicker as the table is being resized from its random value (around 600px)
to the hardcoded 250px (Figure 4-4).

82 | Chapter 4: Functional Excel

Figure 4-4. Flickering rerender

Note that in both cases you’re able to get the geometry of the table (e.g. table.offset
Width), so if you only need this for information purposes and you’re not going to
rerender, you’re still better off with the asynchronous useEffect(). So useLayoutEf
fect() should be reserved for avoiding flicker in cases where you need to act (reren‐
der) based on something you measure, for example positioning a fancy tooltip
component based on the size of the element it’s pointing to.

A custom hook
Let’s go back to <Excel> and see how to go about implementing the replay feature. In
the case of class components, it was necessary to create a setLoggedState() and then
reaplce all this.setState() calls with this.setLoggedState(). With function com‐
ponents you can replace all calls to the useState() hook with useLoggedState().
This is even a bit more conveninet since there are just a few calls (for every independ‐
ent bit of state) and they are all at the top of the function.

// BEFORE
function Excel({headers, initialData}) {
 const [data, setData] = useState(initialData);
 const [edit, setEdit] = useState(null);
 // ... etc
}

// AFTER
function Excel({headers, initialData}) {
 const [data, setData] = useLoggedState(initialData, true);
 const [edit, setEdit] = useLoggedState(null);
 // ... etc
}

There is no built-in useLoggedState() hook but that’s ok, you can create your own
custom hooks.

A custom hook | 83

Like the built-in hooks, a custom one is just a function that starts with use*(). Here’s
an example:

function useLoggedState(initialValue, isData) {
 // ...
}

The signature of the hook can be anything you want. In this case there’s an additional
isData argument. Its purpose is to help differentiate data state vs non-data state. In
the class component example from the previous chapter all the state is a single object,
but here there are various pieces of the state. In the replay feature the main goal is to
show the data changes and then all the supporting info (sorting, descending, etc) is
secondary. Since the replay is updated every second it won’t be as fun to watch the
supporting data change individually, the replay would be too slow. So let’s have a
main log (dataLog array) and an auxiliary one (auxLog array). And a flag whether the
state changes because of user interaction or during replay:

let dataLog = [];
let auxLog = [];
let isReplaying = false;

The custom hook’s goal is not to interfere with the regular state updates, so it dele‐
gates this part to the original useState. The goal is just to log the state together with a
reference to function that knows how to update this state during replay. The function
looks something like this.

function useLoggedState(initialValue, isData) {
 const [state, setState] = useState(initialValue);

 // fun here...

 return [state, setState];
}

The code above is just using the default useState, nothing special. But now you have
the references to a piece of state and the means to update it and you need to log that.
Let’s benefit from the useEffect() hook here:

function useLoggedState(initialValue, isData) {
 const [state, setState] = useState(initialValue);

 useEffect(() => {
 // todo
 }, [state]);

 return [state, setState];
}

84 | Chapter 4: Functional Excel

This way the logging only happens when the value of state changes. The useLogged
State() function may be called a number of times during various rerenders but you
can ignore these calls unless they involve a change in an interesting piece of state.

In the callback of useEffect() you:

• Don’t do anything if the user is replaying
• Log every change to the data state to dataLog
• Log every change to supporting data to auxLog, indexed by the associated change

in data

useEffect(() => {
 if (isReplaying) {
 return;
 }
 if (isData) {
 dataLog.push([clone(state), setState]);
 } else {
 const idx = dataLog.length - 1;
 if (!auxLog[idx]) {
 auxLog[idx] = [];
 }
 auxLog[idx].push([state, setState]);
 }
}, [state]);

Why do custom hooks exist? Well, they help you isolate and package neatly a piece of
logic that is used in a component and often shared between components. The custom
useLoggedState() above can be dropped into any component that can benefit from
logging its state. Also custom hooks can call other hooks, which regular (non-hook
and non-component) functions cannot.

Wrapping up the replay
Now that you have a custom hook that logs the changes to various bit of state, it’s
time to plug in the replay feature.

The replay() function is not really interesting to the React discussion, the only thing
is that it sets up an interval ID. You need that ID so you can clean up the interval in
case Excel gets removed from the DOM while replaying. In the replay, the data
changes are replayed every second, while the auxiliary ones are flushed together.

function replay() {
 isReplaying = true;
 let idx = 0;
 replayID = setInterval(() => {
 const [data, fn] = dataLog[idx];
 fn(data);

Wrapping up the replay | 85

 auxLog[idx] &&
 auxLog[idx].forEach((log) => {
 const [data, fn] = log;
 fn(data);
 });
 idx++;
 if (idx > dataLog.length - 1) {
 isReplaying = false;
 clearInterval(replayID);
 return;
 }
 }, 1000);
}

The final bit of plumbing is to set up an effects hook when Excel renders where you
listen to the particular combination of keys to start the replay show. And this is also
the place to clean up when the component is being destroyed.

useEffect(() => {
 function keydownHandler(e) {
 if (e.altKey && e.shiftKey && e.keyCode === 82) {
 // ALT+SHIFT+R(eplay)
 replay();
 }
 }
 document.addEventListener('keydown', keydownHandler);
 return () => {
 document.removeEventListener('keydown', keydownHandler);
 clearInterval(replayID);
 dataLog = [];
 auxLog = [];
 };
}, []);

To see the code in its entirety, check 04.08.fn.table-replay.html in the book’s
repo.

useReducer
Let’s wrap up the chapter with one more built-in hook, called useReducer(). Using a
reducer is an alternative to useState(). Instead of various parts of the component
calling changing state, you can have all changes handled in a single location.

A reducer is just a JavaScript function that takes two inputs - the old state and an
action - and returns the new state. Think of the action as something that has hap‐
pened in the app. Maybe a click, data fetch, timeout. Something has happened and it
requires a change.

All of the three variables - new state, old state, action - can be of any type, thought
most commonly they are objects.

86 | Chapter 4: Functional Excel

Reducer functions
A reducer function in its simplest form looks like this:

function myReducer(oldState, action) {
 const newState = {};
 // do something with `oldState` and `action`
 return newState;
}

Imagine that the reducer function is responsible for making sense of the reality when
something happens in the world. The world is a mess, then an event happens. The
function that should makeSense() of the world reconciles the mess with the new
event and reduces all the complexity to a nice state or order.

function makeSense(mess, event) {
 const order = {};
 // do something with mess and event
 return order;
}

Another analogy could come from the world of cooking. Some sauces and soups are
called reductions too, produced by the process of reduction (thinkining, intensifying
the flavor), so the analogy could be even more appropriate. The initial state is a pot of
water, then various actions happen to it (boiling, adding potatos, stirring) and the
state of what’s in the pot changes with every action.

Actions
The action that the reducer function takes can be anything but a common implemen‐
tation is to think an event object with:

• a type (similar to e.g. click in the DOM world) and
• optionally some payload of other information about the event

Actions are then “dispatched”. When the action is dispatched, the appropriate reducer
function is called by React with the current state and your new event (action).

With useState you have:

const [data, setData] = useState(initialData);

Which can be replaced with the reducer:

const [data, dispatch] = useReducer(myReducer, initialData);

The data is still used the same way to render the component. But then when some‐
thing happens, instead of doing a bit of work followed by a call to setData(), you call
the dispatch() function returned by useReducer(). From there the reducer takes

useReducer | 87

over and returns the new version of data. There’s no other function to call to set the
new state, the new data is used by React to rerender the component.

Figure 4-5 shows a diagram of the process.

Figure 4-5. Component-dispatch-action-reducer flow

An example reducer
Let’s see a quick isolated example of using a reducer. Say you have a table of random
data together with buttons to refresh the data and to change the table’s background
and foreground colors to random ones (Figure 4-6).

88 | Chapter 4: Functional Excel

Figure 4-6. <RandomData/> component (04.09.random-table-reducer.html)

Initially there’s no data and black and white colors are used as defaults:

const initialState = {data: [], color: 'black', background: 'white'};

The reducer is initialized at the top of the component <RandomData>:

function RandomData() {
 const [state, dispatch] = useReducer(myReducer, initialState);
 // ...
}

Here we’re back to state being a grab-bag object of various state pieces. (But that
doesn’t need to be the case.) The rest of the compoment is business-as-usual, render‐
ing based on state. However, there’s one difference. Where before you’d have a but‐
ton onClick handler be a function that updates the state, now all handlers just call
dispatch() sending information about the event.

return (
 <div>
 <div className="toolbar">

useReducer | 89

 <button onClick={() => dispatch({type: 'newdata'})}>
 Get data
 </button>{' '}
 <button
 onClick={() => dispatch({type: 'recolor', payload: {what: 'color'}})}>
 Recolor text
 </button>{' '}
 <button
 onClick={
 () => dispatch({type: 'recolor', payload: {what: 'background'}})
 }>
 Recolor background
 </button>
 </div>
 <table style={{color, background}}>
 <tbody>
 {data.map((row, idx) => (
 <tr key={idx}>
 {row.map((cell, idx) => (
 <td key={idx}>{cell}</td>
))}
 </tr>
))}
 </tbody>
 </table>
 </div>
);

Every dispatched event/action object has a type property, so the reducer function can
indentify what needs to be done. And there may or may not be a payload specifying
further details of the event.

Finally, the reducer. It has a number of if/else statements (could be a switch, if that’s
your preference) that check what type of event it was sent. Then the data is manipu‐
lated according to the action and a new version of the state is returned.

function myReducer(oldState, action) {
 const newState = clone(oldState);

 if (action.type === 'recolor') {
 newState[action.payload.what] = `rgb(${rand(256)},${rand(256)},$
{rand(256)})`;
 } else if (action.type === 'newdata') {
 const data = [];
 for (let i = 0; i < 10; i++) {
 data[i] = [];
 for (let j = 0; j < 10; j++) {
 data[i][j] = rand(10000);
 }
 }
 newState.data = data;
 }

90 | Chapter 4: Functional Excel

 return newState;
}

// couple of helpers
function clone(o) {
 return JSON.parse(JSON.stringify(o));
}
function rand(max) {
 return Math.floor(Math.random() * max);
}

Note how the old state is being cloned using the quick-and-dirty clone() you already
know. With useState()/setState() this wasn’t strictly necessary in a lot of cases.
You could often get by with modyfying an existing variable and passing it as to set
State(). But here if you don’t clone and merely modify the same object in memory,
React will see old and new state as pointing to the same object and will skip the ren‐
der, thinking nothing has changed. You can try for yourself, remove the call to
clone() and then observe that the rerendering is not happening.

Unit testing reducers
Switching to useReducer() for state management makes it much easier to write unit
tests. You don’t need to set up the component and its properties and state, you don’t
need to get a browser involved or find another way to simulate click events. You don;t
even need to get React involved at all. To test the state logic all you do is pass the old
state and an action to the reducer funcion and check if the desired new state is
returned. All this is pure JavaScript - two objects in, one object out. The unit tests
should not be much more complicated than testing the cannonical example:

function add(a, b) {
 return a + b;
}

There’s a discussion on testing later in the book, but just to give you a taste a sample
test could look like so:

const initialState = {data: [], color: 'black', background: 'white'};

it('produces a 10x10 array', () => {
 const {data} = myReducer(initialState, {type: 'newdata'});
 expect(data.length).toEqual(10);
 expect(data[0].length).toEqual(10);
});

Excel with a reducer
For one more example of using reducers, let’s see how you can switch from useS
tate() to useReducer() in the Excel component.

Excel with a reducer | 91

In the example from the previous section, the state managed by the reducer was again
an object of unrelated data. It doesn’t have to be this way. You can have multiple
reducers to separate the concerns. You can even mix and match useState() with
useReducer(). Let’s try this with Excel.

Previously the data in the table was managed by useState():

const [data, setData] = useState(initialData);
// ...
const [edit, setEdit] = useState(null);
const [search, setSearch] = useState(false);

Switching to useReducer() for managing data while leaving the rest untouched looks
like:

const [data, dispatch] = useReducer(reducer, initialData);
// ...
const [edit, setEdit] = useState(null);
const [search, setSearch] = useState(false);

Since data is the same, there’s no need to change anything in the rendering section.
Changes are only required in the action handlers. For example filter() used to do
the filtering and call setData():

function filter(e) {
 const needle = e.target.value.toLowerCase();
 if (!needle) {
 setData(preSearchData);
 return;
 }
 const idx = e.target.dataset.idx;
 const searchdata = preSearchData.filter((row) => {
 return row[idx].toString().toLowerCase().indexOf(needle) > -1;
 });
 setData(searchdata);
}

The rewritten version dispatches an action instead. The event has a type of “search”
and some additional payload (what is the user searching for and where).

function filter(e) {
 const needle = e.target.value;
 const column = e.target.dataset.idx;
 dispatch({
 type: 'search',
 payload: {needle, column},
 });
 setEdit(null);
}

Another example would be toggling the search fields:

92 | Chapter 4: Functional Excel

// BEFORE
function toggleSearch() {
 if (search) {
 setData(preSearchData);
 setSearch(false);
 setPreSearchData(null);
 } else {
 setPreSearchData(data);
 setSearch(true);
 }
}

// AFTER
function toggleSearch() {
 if (!search) {
 dispatch({type: 'startSearching'});
 } else {
 dispatch({type: 'doneSearching'});
 }
 setSearch(!search);
}

Here you can see the mix of setSearch() and dispatch() to manage the state. The !
search toggle is a flag for the UI to show/hide input boxes, while the dispatch() is
for managing the data.

Finally, let’s take a look at the the reducer() function. This is where all the data filter‐
ing and manipulation happens now. It’s again a series of if-else blocks, each handling
a different action type:

let originalData = null;

function reducer(data, action) {
 if (action.type === 'sort') {
 const {column, descending} = action.payload;
 return clone(data).sort((a, b) => {
 if (a[column] === b[column]) {
 return 0;
 }
 return descending
 ? a[column] < b[column]
 ? 1
 : -1
 : a[column] > b[column]
 ? 1
 : -1;
 });
 }
 if (action.type === 'save') {
 data[action.payload.edit.row][action.payload.edit.column] =
 action.payload.value;

Excel with a reducer | 93

 return data;
 }
 if (action.type === 'startSearching') {
 originalData = data;
 return originalData;
 }
 if (action.type === 'doneSearching') {
 return originalData;
 }
 if (action.type === 'search') {
 return originalData.filter((row) => {
 return (
 row[action.payload.column]
 .toString()
 .toLowerCase()
 .indexOf(action.payload.needle.toLowerCase()) > -1
);
 });
 }
}

94 | Chapter 4: Functional Excel

CHAPTER 5

JSX

You’ve already seen JSX in action in the previous chapters. You know it’s all about
writing JavaScript expressions containing XML that looks very much like HTML. For
example:

const hi = <h1>Hello</h1>;

And you know you can always “interrupt the flow” of XML by including more Java‐
Script expressions wrapped in curly braces:

const planet = 'Earth';
const hi = <h1>Hello people of {planet}!</h1>;

And that’s true even if the expressions happen to be conditions, loops or more JSX:

const rock = 3;
const planet = {rock === 3 ? 'Earth' : 'Some other place'};
const hi = <h1>Hello people of {planet}!</h1>;

In this chapter, it is time to learn more about JSX and explore some of its features that
may surprise and/or delight you.

To see the examples above in action, load 05.01.hellojsx.html
from the book’s repo. The file is also an illustration of how you can
have several React applications on the same page.

A couple of tools
To experiment and get familiar with the JSX transforms, you can play with the live
editor at https://babeljs.io/repl/ (Figure 5-1). Make sure you check the “Prettify”
option for better readability of the result.

95

https://babeljs.io/repl/

Figure 5-1. Babel as a live JSX transformation tool

As you can see in Figure 5-2, the JSX transform is lightweight and simple: the JSX
source of “Hello World” from Chapter 1 becomes a series of calls to React.createEle
ment(), using the functional syntax React works with. It’s just JavaScript, so it’s easy to
read and understand.

Figure 5-2. “Hello World” transformed

Another online tool you may find helpful when learning JSX or transitioning an
existing app’s markup from HTML is the HTML-to-JSX compiler (Figure 5-3).

96 | Chapter 5: JSX

https://magic.reactjs.net/htmltojsx.htm

Figure 5-3. HTML-to-JSX tool

Now on to some of the particularities of JSX.

Whitespace in JSX
Whitespace in JSX is similar to HTML, but not quite. Say you have this JSX:

function Example1() {
 return (
 <h1>
 {1} plus {2} is {3}
 </h1>
);
}

When React renders it in the browser (you can inspect the resulting HTML in the
browser’s dev tools), the generated HTML looks like:

<h1>1 plus 2 is 3</h1>

This is in effect an h1 DOM node with five children which are text element nodes
with content: “1”, " plus “, “2”, " is " and “3”, which renders as “1 plus 2 is 3”. Exactly as
you’d expect in HTML, multiple spaces become one when rendered in the browser,
see Figure 5-4.

Whitespace in JSX | 97

Figure 5-4. Rendering whitespace (05.02.whitespace.html)

However, in this next example:

function Example2() {
 return (
 <h1>
 {1}
 plus
 {2}
 is
 {3}
 </h1>
);
}

…you end up with

<h1>
 1plus2is3
</h1>

As you can see, all the whitespace is trimmed, so the end result displayed in the
browser is “1plus2is3.”

You can always add space where you need it with {' '} or turn the literal strings into
expressions and add the space there. In other words, any of these work:

98 | Chapter 5: JSX

function Example3() {
 return (
 <h1>
 {/* space expressions */}
 {1}
 {' '}plus{' '}
 {2}
 {' '}is{' '}
 {3}
 </h1>
);
}

function Example4() {
 return (
 <h1>
 {/* space glued to string expressions */}
 {1}
 {' plus '}
 {2}
 {' is '}
 {3}
 </h1>
);
}

Comments in JSX
In the preceding examples, you see how a new concept sneaked in—adding com‐
ments to JSX markup.

Because the expressions wrapped in {} are just JavaScript, you can easily add multi‐
line comments using /* comment */. You can also add single-line comments
using // comment, but you have to make sure the closing } of the expression is on a
separate line so it’s not considered part of the comment:

<h1>
 {/* multiline comment */}
 {/*
 multi
 line
 comment
 */}
 {
 // single line
 }
 Hello!
</h1>

Comments in JSX | 99

Because {// comment} is not working (} is now commented out), there’s little benefit
to using single-line comments. You can keep your comments consistent and stick to
multiline comments in all cases.

HTML Entities
You can use HTML entities in JSX like so:

<h2>
 More info »
</h2>

This examples produces a “right-angle quote,” as shown on Figure 5-5.

Figure 5-5. HTML entity in JSX

However, if you use the entity as part of an expression, you will run into double-
encoding issues. In this example…

<h2>
 {"More info »"}
</h2>

…the HTML gets encoded and you see the result in Figure 5-6.

Figure 5-6. Double-encoded HTML entity

To prevent the double-encoding, you can use the Unicode version of the HTML
entity, which in this case is \u00bb (see https://dev.w3.org/html5/html-author/charref):

<h2>
 {"More info \u00bb"}
</h2>

For convenience, you can define a constant somewhere at the top of your module,
together with any common spacing. For example:

const RAQUO = ' \u00bb';

Then use the constant anywhere you need, like:

100 | Chapter 5: JSX

https://dev.w3.org/html5/html-author/charref

<h2>
 {"More info" + RAQUO}
</h2>
<h2>
 {"More info"}{RAQUO}
</h2>

Anti-XSS
You may be wondering why do you have to jump through hoops to use HTML enti‐
ties. There’s a good reason that outweighs the drawbacks: you need to fight cross-site
scripting (XSS).

React escapes all strings in order to prevent a class of XSS attacks. So when you ask
the user to give you some input and they provide a malicious string, React protects
you. Take this user input, for example:

const firstname =
 'John<scr'+'ipt src="https://evil/co.js"></scr'+'ipt>';

Under some circumstances, you may end up writing this into the DOM. For example:

document.write(firstname);

This is a disaster, because the page says “John”, but the <script> tag loads a poten‐
tially malicious JavaScript from a third-party web site, likely owned by a vilain. This
compromises your app and the users that trust you.

React protects you in cases like this out of the box. If you do:

function Example() {
 const firstname =
 'John<scr' + 'ipt src="https://evil/co.js"></scr' + 'ipt>';
 return <h2>Hello {firstname}!</h2>;
}

…then React escapes the content of firstname (Figure 5-7).

Figure 5-7. Escaping strings (05.05.antixss.html)

Spread Attributes
JSX borrows a useful feature from ECMAScript called the spread operator and adopts
it as a convenience when defining properties.

Imagine you have a collection of attributes you want to pass to an <a> component:

Spread Attributes | 101

const attr = {
 href: 'https://example.org',
 target: '_blank',
};

You can always do it like so:

return (
 <a
 href={attr.href}
 target={attr.target}>
 Hello

);

But this feels like a lot of boilerplate code. By using spread attributes, you can accom‐
plish this in just one line:

return <a {...attr}>Hello;

In the example above (05.06.spread.html), you have an object of attributes you
want to define ahead of time, maybe some of them conditionally. Another common
use for spread attributes is when you get this object of attributes from the outside—
often from a parent component. Let’s see how that case plays out.

Parent-to-Child Spread Attributes
Imagine you’re building a FancyLink component that uses a regular <a> behind the
scenes. You want your component to accept all the attributes that <a> does (href,
target, rel, etc.) plus some more that are not part of HTML proper (say variant).
People can use your component like so:

<FancyLink
 href="https://example.org"
 rel="canonical"
 target="_blank"
 variant="small">
 Follow me
</FancyLink>

How can your component take advantage of spread attributes and avoid redefining all
the properties of <a>?

Here’s one approach where your app may only allow 3 sizes for links and you let the
users of the component specify the desired size via the custom variant property. You
do the sizing magic with the help of a switch statement and CSS classes. Then you
pass all of the other properties to <a>.

function FancyLink(props) {
 const classes = ['link-core'];
 switch (props.variant) {

102 | Chapter 5: JSX

 case 'small':
 classes.push('link-small');
 break;
 case 'huge':
 classes.push('link-huge');
 break;
 default:
 classes.push('link-default');
 }

 return (
 <a {...props} className={classes.join(' ')}>
 {props.children}

);
}

Did you notice the use of props.children? This is a convenient
way of allowing any number of children to be passed over to your
component which you can then access when composing your UI.
In the case of the FancyLink component the following is perfectly
valid:

<FancyLink>
 Follow me
</FancyLink>

In the preceding snippet, you do your custom work based on the value of the variant
property, then simply carry over all the properties to <a>. This includes the variant
property which will appear in the resulting DOM, although the browser has no use
for it.

You can do a little better and not pass around unnecessary properties by cloning the
props passed to you and removing the ones the browser will ignore anyway. Some‐
thing like:

function FancyLink(props) {
 const classes = ['link-core'];
 switch (props.variant) {
 // same as before...
 }

 const attribs = Object.assign({}, props); // shallow clone
 delete attribs.variant;

 return (
 <a {...attribs} className={classes.join(' ')}>
 {props.children}

Spread Attributes | 103

);
}

Another way to do the shallow cloning is to use the JavaScript spread operator:

const attribs = {...props};

Additionally, you can clone only the props you’ll pass to the browser and at the same
time assign the other ones to local variables, thus removing the need to delete them
after. All in a single line:

const {variant, ...attribs} = props;

So the end result for the FancyLink could look like so (05.07.fancylink.html):

function FancyLink(props) {
 const {variant, ...attribs} = props;
 const classes = ['link-core'];
 switch (variant) {
 // same as before...
 }

 return (
 <a {...attribs} className={classes.join(' ')}>
 {props.children}

);
}

Returning Multiple Nodes in JSX
You always have to return a single node (or an array) from your render function.
Returning two nodes is not allowed. In other words, this is an error:

// Syntax error:
// Adjacent JSX elements must be wrapped in an enclosing tag
function InvalidExample() {
 return (

 Hello

 World

);
}

A Wrapper
The fix is easy—just wrap all the nodes in another component, say a <div> (and add a
space between the “Hello” and “World” while you’re at it):

104 | Chapter 5: JSX

function Example() {
 return (
 <div>
 Hello
 {' '}
 World
 </div>
);
}

A fragment
To remove the need for an extra wrapper element, newer versions of React added
fragments which are wrappers and do not add additional DOM nodes when the com‐
ponent is rendered.

function FragmentExample() {
 return (
 <React.Fragment>
 Hello
 {' '}
 World
 </React.Fragment>
);
}

Furthermore, the React.Fragment part can be omitted and these empty elements also
work:

function FragmentExample() {
 return (
 <>
 Hello
 {' '}
 World
 </>
);
}

At the time of writing this <></> syntax is not supported by the in-
browser version of Babel and you need to spell out React.Frag
ment.

An Array
Another option is to return an array of nodes, as long as the nodes in the array have
proper key attributes. Note the required commas after every element of the array.

Returning Multiple Nodes in JSX | 105

function ArrayExample() {
 return [
 Hello,
 ' ',
 World,
 '!'
];
}

As you see, you can also sneak in whitespace and other strings in the array, and these
don’t need a key.

In a way, this is similar to accepting any number of children passed from the parent
and propagating them over in your render function:

function ChildrenExample(props) {
 console.log(props.children.length); // 4
 return (
 <div>
 {props.children}
 </div>
);
}

ReactDOM.render(
 <ChildrenExample>
 Hello
 {' '}
 World
 !
 </ChildrenExample>,
 document.getElementById('app')
);

JSX Versus HTML Differences
JSX should look familiar—it’s just like HTML, except it’s stricter as it’s XML. And
with the added benefits of providing an easy way to add dynamic values, loops, and
conditions (just wrap them in {}).

To start with JSX, you can always use the HTML-to-JSX compiler, but the sooner you
start typing your very own JSX, the better. Let’s consider the few differences between
HTML and JSX that may surprise you at the beginning as you’re learning.

Some of these differences were touched upon in previous chapters, but let’s quickly
review them again.

106 | Chapter 5: JSX

https://magic.reactjs.net/htmltojsx.htm

No class, What for?
Instead of the class and for attributes (both reserved words in ECMAScript), you
need to use className and htmlFor:

// Warning: Invalid DOM property `class`. Did you mean `className`?
// Warning: Invalid DOM property `for`. Did you mean `htmlFor`?
const em = <em class="important" />;
const label = <label for="thatInput" />;

// OK
const em = <em className="important" />;
const label = <label htmlFor="thatInput" />;

style Is an Object
The style attribute takes an object value, not a semicolon-separated string as in reg‐
ular HTML. And the names of the CSS properties are camelCase, not dash-
delimited:

// Error: The `style` prop expects a mapping from style properties to values
function InvalidStyle() {
 return <em style="font-size: 2em; line-height: 1.6" />;
}

// OK
function ValidStyle() {
 const styles = {
 fontSize: '2em',
 lineHeight: '1.6',
 };
 return <em style={styles}>Valid style;
}

// inline is also OK
// note the double curly braces: one for the dynamic value in JSX, one for the
JS object
function InlineStyle() {
 return (
 <em style={{fontSize: '2em', lineHeight: '1.6'}}>Inline style
);
}

Closing Tags
In HTML some tags don’t need to be closed; in JSX (XML) they do:

// NO-NO
// no unclosed tags, even though they are fine in HTML
const gimmeabreak =
;
const list = item;

JSX Versus HTML Differences | 107

const meta = <meta charset="utf-8">;

// OK
const gimmeabreak =
;
const list = item;
const meta = <meta charSet="utf-8" />;

// or
const meta = <meta charSet="utf-8"></meta>;

camelCase Attributes
Did you spot the charset versus charSet in the preceding snippet? All attributes in
JSX need to be camelCase. This is a common source of confusion when you’re first
starting out—you might type onclick and notice that nothing happens until you go
back and change it to onClick:

// Warning: Invalid event handler property `onclick`. Did you mean `onClick`?
const a = ;

// OK
const a = ;

Exceptions to this rule are all data- and aria- prefixed attributes; these are just like
in HTML.

Namespaced components
Sometimes you may want to have a single object that returns several components.
This can be used for example to accomplish what sometimes referred to as namespac‐
ing where all components of a library have the same prefix. For example a Library
object can contain a Reader and Book components:

const Library = {
 Book({id}) {
 return `Book ${id}`;
 },
 Reader({id}) {
 return `Reader ${id}`;
 },
};

These are then referred to using a dot notation:

<Library.Reader id={456} /> is reading <Library.Book id={123} />

108 | Chapter 5: JSX

A short ECMAScript aside…
The Library object uses a few relatively new additions to ECMA‐
Script that are worth pointing out. You’ve seen these already in the
book but it’s worth spending a minute to avoid any confusion.
First, object shorthand notation like:

const a = {
 method() {},
 another() {},
};

…which is a shorter way to express
const a = {
 method: function() {},
 another: function() {},
};

Another syntax feature is destructuring assignment, like
Book({id}) {
}

…as a shorter version of:
Book(props) {
 const id = props.id;
}

And finally, template strings:
return `Book ${id}`;

…as opposed to string concatenation:
return 'Book ' + id;

In this case the template string is not any shorter, but it becomes
more convenient the more strings you need to concatenate.

JSX and Forms
There are some differences between JSX and HTML when working with forms. Let’s
take a look.

onChange Handler
When using form elements, users change the values of the input elements when inter‐
acting with them. In React, you can subscribe to such changes via the onChange
attribute. This is much more convenient than dealing with the various forms element
in pure DOM. Also when typing in textareas and <input type="text"> fields,
onChange fires as the user types, which is easier to work with rather than firing when
the element loses focus. This means no more subscribing to all sorts of mouse and
keyboard events just to monitor typing changes.

JSX and Forms | 109

Consider an example form that has a text input and two radio buttons. A change han‐
dler simply logs where the change happens and what is the new value of the element.
As you see you can also have an overall form handler that fires when anything in the
form changes. You can use this if you want to handle all the form’s changes in one
central location.

function changeHandler(which, event) {
 console.log(
 `onChange called on the ${which} with value "${event.target.value}"`,
);
}

function ExampleForm() {
 return (
 <form onChange={changeHandler.bind(null, 'form')}>
 <label>
 Type here:

 <input type="text" onChange={changeHandler.bind(null, 'text input')} />
 </label>
 <div>Make your pick:</div>
 <label>
 <input
 type="radio"
 name="pick"
 value="option1"
 onChange={changeHandler.bind(null, 'radio 1')}
 />
 Option 1
 </label>
 <label>
 <input
 type="radio"
 name="pick"
 value="option2"
 onChange={changeHandler.bind(null, 'radio 2')}
 />
 Option 2
 </label>
 </form>
);
}

You can play live with the example 05.11.forms.onchange.html in the book’s repo.
When you type “x” in the text input, the change handler is called twice because it’s
assigned once to the input and once to the form. In the console you’ll see:

onChange called on the text input with value "x"
onChange called on the form with value "x"

Same for the radio buttons. Clicking “Option 1” logs to the console:

110 | Chapter 5: JSX

onChange called on the radio 1 with value "option1"
onChange called on the form with value "option1"

value Versus defaultValue
In HTML, if you have <input id="i" value="hello" /> and then change the value
by typing “bye”, then…

i.value; // "bye"
i.getAttribute('value'); // "hello"

In React, the value property (accessible via event.target.value in an event han‐
dler) always has the up-to-date content of the text input. If you want to specify an
initial default value, you can use the defaultValue prop.

In the following snippet, you have an <input> component with a prefilled “hello”
content and onChange handler. Appending an “!” to the end of “hello” results in value
being “hello!” and defaultValue remaining “hello” (05.12.forms.value.html):

function changeHandler({target}) {
 console.log('value: ', target.value);
 console.log('defaultValue: ', target.defaultValue);
}

function ExampleForm() {
 return (
 <form>
 <label>
 Type here: <input defaultValue="hello" onChange={changeHandler} />
 </label>
 </form>
);
}

<textarea> Value
For consistency with text inputs, React’s version of <textarea> also takes a default
Value property. It keeps target.value up to date while defaultValue remains the
original. If you go HTML-style and use a child of the textarea to define a value (not
recommended and React will give you a warning), it will be treated as if it was a
defaultValue.

The whole reason HTML <textarea> (as defined by W3C) takes a child as its value is
so that developers can use new lines in the input. However React, being all JavaScript,
doesn’t suffer from this limitation. When you need a new line, you just use \n.

function ExampleTextarea() {
 return (
 <form>
 <label>

JSX and Forms | 111

 Type here:{' '}
 <textarea
 defaultValue={'hello\nworld'}
 onChange={changeHandler}
 />{' '}
 </label>
 </form>
);
}

Note that you need to use a JavaScript literal {'hello\nworld'}. Otherwise if you use
a literal string property value e.g. defaultValue="hello\nworld" you don’t have
access to the special new-line meaning of \n.

<select> Value
When you use a <select> input in HTML, you specify pre-selected entries using
<option selected>, like so:

<!-- old school HTML -->
<select>
 <option value="stay">Should I stay</option>
 <option value="move" selected>or should I go</option>
</select>

In React, you specify value or defaultValue property of the <select> element:

// React/JSX
function ExampleSelect() {
 return (
 <form>
 <select defaultValue="move" onChange={changeHandler}>
 <option value="stay">Should I stay</option>
 <option value="move">or should I go</option>
 </select>
 </form>
);
}

React warns you if you get mixed up and set the selected attribute
of an <option>.

Working with multiselects is similar, only you provide an array of pre-selected values:

function ExampleMultiSelect() {
 return (
 <form>
 <select

112 | Chapter 5: JSX

 defaultValue={['stay', 'move']}
 multiple={true}
 onChange={selectHandler}>
 <option value="stay">Should I stay</option>
 <option value="move">or should I go</option>
 <option value="trouble">If I stay it will be trouble</option>
 </select>
 </form>
);
}

One thing to keep in mind when working with multiselects—you don’t get event.tar
get.value in your change handlers. Instead, just as in HTML, you iterate over the
event.target.selectedOptions. For example a handler that logs the selected values
to the console could look like:

function selectHandler({target}) {
 console.log(
 Array.from(target.selectedOptions).map((option) => option.value),
);
}

Controlled and uncontrolled components
In the non-React world, the browser maintains the state of form elements, e.g. the
text in a text input. This state may even be restored if you navigate away from a page
and then come back. React supports this behavior but also allows you to step in and
take over the control of the form elements’ state.

When you leave the form elements to behave as the browser wishes, they are known
as uncontrolled components because React does not control them. The opposite—
when you take over with the help of React—results in controlled components.

How do you create one versus the other? A component is controlled when you set the
value property (of text inputs, textareas and selects) or the checked property (of
radio inputs and checkboxes).

When you don’t set these properties, the components are uncontrolled. You can still
initialize (prefill) the form element with a default value by using the property default
Value as you saw in several examples in this chapter. Or defaultChecked in case of
radio elements and checkboxes.

Let’s clarify these concepts with a few examples.

Uncontrolled example
Here’s an uncontrolled text input:

const input = <input type="text" name="firstname" />;

JSX and Forms | 113

If you want to have a prefilled text in the input, you use defaultValue:

const input = <input type="text" name="firstname" defaultValue="Jessie" />;

When you want to get the value the user has typed, you can have onChange handler
on the input or the whole form, as demonstrated in a previous example. Let’s consider
a more complete example. Say, you’re creating a profile editing form. Your data is:

const profile = {
 firstname: 'Jessie',
 lastname: 'Pinkman',
 gender: 'male',
 acceptedTOC: false,
};

The form needs two text inputs, two radio inputs and a checkbox:

function UncontrolledForm() {
 return (
 <form onChange={updateProfile}>
 <label>
 First name:{' '}
 <input type="text" name="firstname" defaultValue={profile.firstname} />
 </label>

 <label>
 Last name:{' '}
 <input type="text" name="lastname" defaultValue={profile.lastname} />
 </label>

 Gender:
 <label>
 <input
 type="radio"
 name="gender"
 defaultChecked={profile.gender === 'male'}
 value="male"
 />
 Male
 </label>
 <label>
 <input
 type="radio"
 name="gender"
 defaultChecked={profile.gender === 'female'}
 value="female"
 />
 Female
 </label>

 <label>
 <input
 type="checkbox"

114 | Chapter 5: JSX

 name="acceptTOC"
 defaultChecked={profile.acceptTOC === true}
 />
 I accept terms and things
 </label>
 </form>
);
}

The radio inputs do have value properties, but that does not make
them controlled. Radio buttons (and checkboxes) become con‐
trolled when their checked property is set.

The updateProfile() event handler should update the profile object. It can be
fairly simple and generic. For checkboxes (event.target.type === 'checkbox')
you look for the target.checked property. In all other cases, you need the tar
get.value.

function updateProfile({target}) {
 profile[target.name] =
 target.type === 'checkbox' ? target.checked === true : target.value;
 console.log(profile);
}

Figure 5-8 shows how the profile is updated after you change the gender, accept the
terms and update the first name (05.13.uncontrolled.html).

Figure 5-8. Uncontrolled component in action

JSX and Forms | 115

Why was it needed to treat checkboxes differently (look for checked property) but
not radio inputs? The radio inputs are a little special in HTML given that you have
several inputs with the same name and different values and you get the value by refer‐
ring to the name. You can still access target.checked on radio buttons if desired, but
in this case it’s not necessary. And it’s always true because the onChange callback is
called when you click an element and when you click a radio input, it’s always
checked.

Uncontrolled example with an onSubmit handler
What if you don’t want to (over)react on every change? You want to let the users play
with form and you only worry about the data when they submit the form. In this case
you have two options:

• use built-in DOM collections
• use React-created references

Let’s see how to use the DOM collections (05.14.uncontrolled.onsubmit.html).
The form is essentially the same, except for the onSubmit event handler and a new
submit button:

<form onSubmit={updateProfile}>
 {/* same thing as before ... */}
 <input type="submit" value="Save"/>
</form>

And here’s how the new updated updateProfile() could look like:

function updateProfile(ev) {
 ev.preventDefault();
 const form = ev.target;
 Object.keys(profile).forEach((name) => {
 const element = form[name];
 profile[name] =
 element.type === 'checkbox' ? element.checked : element.value;
 });
}

First, preventDefault() kills the propagation of the event and avoids the browser’s
default behavior of reloading the page. Then it’s a question of looping over the pro‐
file’s fields and finding the corresponding form element with the same name.

The DOM provides access to the collection of form elements by various means, one
of them being by name. For example:

form.elements.length; // 6
form.elements[0].value; // "Jessie", access by index
form.elements['firstname'].value; // "Jessie", access by name
form.firstname.value; // "Jessie", even shorter

116 | Chapter 5: JSX

It’s the last variant of this DOM form access that updateProfile() uses in its loop.

Controlled example
Once you assign a value property (to a text input, textarea ot select) or checked (to a
radio input or checkbox), it’s your responsibility to control the component. You need
to maintain the state of the inputs as part of your component state. So now the whole
form needs to be a stateful component. Let’s see how, using a class component.

class ControlledForm extends React.Component {
 constructor() {
 // ...
 }
 updateForm({target}) {
 // ...
 }
 render() {
 return (
 <form>
 {/* ... */}
 </form>
);
 }
}

Assuming there’s no other state to maintain but the form itself, you can clone the
profile object as part of the initial state of the component inside the constructor.
You also need to bind the updateForm() method:

constructor() {
 super();
 this.state = {...profile};
 this.updateForm = this.updateForm.bind(this);
}

The form elements now set value instead of defaultValue and all the values are
maintained in this.state. Additionally all inputs now need to have an onChange
handler because they are now being controlled. For example the first name input
becomes:

<input
 type="text"
 name="firstname"
 value={this.state.firstname}
 onChange={this.updateForm}
/>

And similarly for the other element except the submit button, as users don’t change
its value.

JSX and Forms | 117

Finally, the updateForm(). Using dynamic property names (the target.name in
square brackets), it can be simple. All it needs to do is read the form element value
and assign it to the state.

updateForm({target}) {
 this.setState({
 [target.name]:
 target.type === 'checkbox' ? target.checked : target.value,
 });
}

After the setState() call, the form is rerendered and the new form element values
are read from the updated state (e.g. value={this.state.firstname}).

And this is it for the controlled component. As you can see you need a bit of code just
to get off the ground. This is the bad news. The good news is now you can update the
form values from your state, which is the single source of truth. You’re in control.

So which is better - controlled or uncontrolled? It depends on your use case, there’s
not really a better option. Also consider that at the time of writing, the official React
documentation says: "In most cases, we recommend using controlled components to
implement forms”.

And can you mix and match controlled and uncontrolled components? Sure. In the
last two examples the “Save” button is always uncontrolled (<input type="submit"
value="Save" />) as there’s nothing to control, its value cannot be changed by the
user. So you can opt-in for a mix - control the components you need to and leave the
other ones to the browser.

118 | Chapter 5: JSX

CHAPTER 6

Setting Up for App Development

Now that you know a lot about React, JSX and state management in both class-based
and function components, it’s time to move on to creating and deploying a real-world
app. The next chapter will start this process, but there are just a few requirements you
need to take care of first.

For any serious development and deployment, outside of prototyping or testing JSX,
you need to set up a build process. The goals are to use JSX and any other modern
JavaScript without waiting on browsers to implement them. You need to set up a
transformation that runs in the background as you’re developing. The transformation
process should produce code that is as close to the code your end-users will run on
the live site (meaning no more client-side transforms). The process should also be as
unobtrusive as possible so you don’t need to switch between developing and building
contexts.

The JavaScript community and ecosystem offers plenty of options when it comes to
development and build processes. In the previous edition of this book there’s even a
description of a do-it-yourself approach. But one of the easiest and common
approaches is to use the Create-React-App (CRA) utility, so let’s go with that.

Create-React-App
CRA is a set of Node.js scripts and their dependencies that take the burden of setting
up everything you require to get off the ground. So first you need to install Node.js.
CRA also has great documentation at https://create-react-app.dev/.

Node.js
To install Node.js, go to https://nodejs.org and grab the installer for your operating
system. Follow the instructions of the installer and it’s all done. Now you can avail

119

https://create-react-app.dev/
https://nodejs.org

yourself of the services provided by the command-line npm (Node Package Manager)
utility.

To verify, type this in your terminal:

$ npm --version

Even if you have Node.js already installed, it’s a good idea to install again to make
sure you have the latest version.

If you don’t have experience using a terminal (a command prompt), now is a great
time to start! On Mac OS X, click the Spotlight search (the magnifying glass icon at
the top-right corner) and type Terminal. On Windows, find the Start menu (right-
click the windows icon at the bottom left of the screen), select Run, and type power
shell.

In this book, all the commands you type in your terminal are pre‐
fixed with $ just as a hint to differentiate from regular code. You
omit the $ when typing in your terminal.

Hello CRA
You can install CRA and have it available locally for future projects. But that means
updating it every once in a while. An even more convenient approach is to use the
npx utility that comes with Node.js. It allows you to execute (hence the “x”) Node
Package scripts. So you can run the CRA script once, it downloads and executes the‐
last version, sets up your app and it’s gone. Next time you need to start another
project, you run it again without worrying about updates.

To get started and just taste the waters, create a temporary directory and execute
CRA:

$ mkdir ~/reactbook/test
$ cd ~/reactbook/test
$ npx create-react-app hello

Give it a minute or two to complete the process and you’ll be greeted with the suc‐
cess/welcome message:

Success! Created hello at /[...snip...]/reactbook/hello
Inside that directory, you can run several commands:

 npm start
 Starts the development server.

 npm run build
 Bundles the app into static files for production.

120 | Chapter 6: Setting Up for App Development

 npm test
 Starts the test runner.

 npm run eject
 Removes this tool and copies build dependencies, configuration files
 and scripts into the app directory. If you do this, you can’t go back!

We suggest that you begin by typing:

 cd hello
 npm start

Happy hacking!

As the screen says, type:

$ cd hello
$ npm start

This opens your browser and points it to http://localhost:3000/ where you can
see a working React application (Figure 6-1)

Figure 6-1. A new React app

Now you can open ~/reactbook/test/hello/src/App.js and make a small change.
As soon as you save the changes, the browser will update with the new changes.

Create-React-App | 121

Build and deploy
Let’s say you’re happy with the changes and you’re ready to unleash the new App into
the world. Go to the teminal/console window and press CTRL+C. This kills the pro‐
cess and further changes will not auto-update in the browser. But you’re ready any‐
way. Type:

$ npm run build

This is the process of building and packaging the app, ready to be deployed. The build
is found in a /build folder (Figure 6-2).

Figure 6-2. A new build of the React app

Copy the contents of this folder to a web server, even a simple shared hosting will do,
and you’re ready to announce the new app. When inevitably you want to make a
change, you repeat the process.

$ npm start
// work, work, work...
// CTRL+C
$ npm run build

122 | Chapter 6: Setting Up for App Development

Mistakes were made
When it just so happens that you save a file with an error in it (say you forget to close
a JSX tag), the ongoing build fails and you get an error message in both the console
and the browser (Figure 6-3).

Figure 6-3. An error

And this is great, you get immediate feedback. “Fail early, fail often” are wise words to
live by.

package.json and node_modules
The file package.json found in the root directory of the app contains various config‐
urations about the app (https://create-react-app.dev/ has extensive documentation).
One of the configuration pieces deals with dependencies, such as React and React-
DOM. These dependencies are installed in node_modules folder in the root of the
app.

The dependencies there are for development and building the app, not for deploy‐
ment. And they should not be included if you share the code of your app with friends,
coworkers or the open-source community. For example, if you’re to share this app on

package.json and node_modules | 123

https://create-react-app.dev/

GitHub, you do not include node_modules. When someone esle wants to contribute
or you want to contribute to another app, you install the dependencies locally.

You can try now too. Delete the whole node_modules folder. Then go to the root of
the app and type:

$ npm i

The i is for “install”. This way all the dependecies listed in your package.json and
their dependencies are installed in a newly created node_modules directory.

Poking around the code
Let’s take a look around the code generated by CRA and note a few things.

Indices
In public/index.html you’ll find the old school HTML index page, the root of
everything rendered by the browser. This is where <div id="root"> is defined, the
place where React will render your top level component and all its children.

The file src/index.js is the main entry for the app as far as React is concerned. Note
the top part:

import React from 'react';
import ReactDOM from 'react-dom';
import './index.css';
import App from './App';

JavaScript: Modernized
The examples in the book so far only worked with simple components and made sure
React and ReactDOM were available as global variables. As you move toward more
complicated apps with multiple components, you need a better organization. Sprin‐
kling globals is dangerous (they tend to cause naming collisions) and relying on glob‐
als to always be present is flaky at best.

You need modules. Modules are a way to split up the different pieces of functionality
that make up your app into small manageable files. In general you have a one-to-one
relationship: one concern, one module. Some modules can be individual React com‐
ponents, some can be just utilities related or unrelated to React, for example a
reducer, a custom hook, or just a library that deals with formatting dates or curren‐
cies.

The general template for a module is: declare requirements up top, export at the bot‐
tom, implement the “meat” in between. In other words these three tasks:

• Require/import dependencies

124 | Chapter 6: Setting Up for App Development

• Provide an API in the form of a function/class/object
• Export the API

For a React component, the template could look like:

import React from 'react';
import MyOtherComponent from './MyOtherComponent';

function MyComponent() {
 return <div>Hello</div>;
}

export default MyComponent;

Again, a convention that can prove helpful is: one module exports
one React component.

Did you notice the difference in importing React versus MyOtherComponent: from
'react' and from './MyOtherComponent'? The latter looks like a directory path and
it is—you’re telling the module to pull the dependency from a file location relative to
the module, whereas the former is pulling a dependency from a shared place
(node_modules).

CSS
In src/index.js you can see how CSS is treated just like another module:

import './index.css';

The src/index.css should contain general styles, such as body, html and so on.
Styles that are applicable to the whole page.

Other than the app-wide styles, you need specific styles for each component. Under
the convention of having one CSS file (and one JS file) per React component, it’s a
good idea to have MyComponent.css containing the styles only related to MyCompo
nent.js and nothing else. Also a good idea could be to prefix all class names used in
MyComponent.js with MyComponent-. For example:

.MyComponent-table {
 border: 1px solid black;
}

.MyComponent-table-heading {
 border: 1px solid black;
}

Poking around the code | 125

While there are many other ways to author CSS, let’s keep it simple and old-school,
anything that will just run in the browser without any transpilation.

Moving On
Now you have an example of a simple writing, building and deployment pipeline.
With all this behind you it’s time to move on to more entertaining topics: building
and testing a real app, while taking advantage of the many features modern JavaScript
has to offer.

At this point you can delete the hello app or keep it around for exploration and try‐
ing out ideas.

126 | Chapter 6: Setting Up for App Development

CHAPTER 7

Building the App’s Components

Now that you know all the basics of creating custom React components (and using
the built-in ones), using JSX to define the user interfaces, and using create-react-
app (CRA) for building and deploying the results, it’s time to start building a more
complete app.

The app is called “Whinepad,” and it allows users to keep notes and rate the wines
they are trying. It doesn’t have to be wines, really; it could be anything they’d like to
whine about. It should do all you would expect from a create, read, update, and delete
(CRUD) application. It also should be a client-side app, storing the data on the client.
The goal is to learn React, so the non-React parts (e.g., server-side storage, CSS pre‐
sentation) of the narrative are to be kept to a minimum.

When building an app, it’s a good idea to start with small, reusable components and
combine them together to form the whole. And the more independent and reusable
these components are, the better. This chapter focuses on creating the components,
one at a time and the next one puts them all together.

Setup
First, initialize and start the new CRA app:

$ cd ~/reactbook/
$ npx create-react-app whinepad
$ cd whinepad
$ npm start

Start Coding
Just to verify that all is working as expected, open ~/reactbook/whinepad/public/
index.html and change the title of the document to match the new app:

127

// before
<title>React App</title>

//after
<title>Whinepad</title>

The browser auto-reloads and you can see the title change (Figure 7-1):

Figure 7-1. The beginning of a new app

Now, for the purposes of organization, let’s keep all the React components and their
corresponding CSS inside a new directory whinepad/src/components. Any other
code that is not strictly components, like various utilities you might need, can go in
whinepad/src/modules. The root src contains all the files CRA generated. You can
change them, of course, but any new code goes in either of the two new directories
components or modules.

whinepad/
├── public/
│ ├── index.html
└── src/
 ├── App.css // CRA-generated
 ├── App.js // CRA-generated
 ├── ...
 └── components/ // all components live here
 │ ├── Excel.js
 │ ├── Excel.css
 │ ├── ...
 │ └── ...
 └── modules/ // helper JS modules here
 ├── clone.js
 ├── ...
 └── ...

128 | Chapter 7: Building the App’s Components

Refactoring Excel
Let’s get Whinepad off the ground. It’s a rating app where you take notes. So how
about have the welcome screen be the list of stuff you’ve already rated in a nice table?
This means reusing the <Excel> component from Chapter 4.

Let’s grab a version of Excel (extracted from the file 04.10.fn.table-reducer.html
as it appears towards the end of Chapter 4) and copy it over to whinepad/src/compo
nents/Excel.js

Excel can now be a reusable standalone component that doesn’t know anything
about where data is coming from and how the content is inserted into an HTML
page. It’s just a React component, one of the building blocks of the app. And you
already know that there are three jobs for a component to be useable.

• Import dependencies
• Do the work
• Export the component

Ignoring the dependencies part for a minute, now Excel can look like so:

// dependencies go here

// do the work
function Excel({headers, initialData}) {
 // same as before
}

// export
export default Excel;

Now back to the dependencies. Before, when dealing with pure HTML, React was a
global variable and so was PropTypes. Now you import them:

import React from 'react';
import PropTypes from 'prop-types';

Now you can use the state hook via React.useState(). However it’s often convenient
to assign some of the React properties using the named import syntax:

import {useState, useReducer} from 'react';

And now you can use the state hook with the shorter useState().

Finally, let’s move the object cloning helper into its own module, since it’s not really
Excel’s job and also moving it will make it easier to replace the quick-and-dirty
implementation with a proper library at any time later on. This means importing a
new clone module from Excel:

Refactoring Excel | 129

import clone from '../modules/clone.js';

The implementation of the clone module lives in modules/ directory, the place
designed for modules. In other words it’s a JavaScript file with no dependencies
named whinepad/src/modules/clone.js that looks like so:

function clone(o) {
 return JSON.parse(JSON.stringify(o));
}

export default clone;

When importing JavaScript files, you can omit the .js extension.
You can use:

import clone from '../modules/clone';

Instead of:
import clone from '../modules/clone.js';

And so the new Excel looks like:

import {useState, useReducer} from 'react';
import PropTypes from 'prop-types';
import clone from '../modules/clone';

// do the work
function Excel({headers, initialData}) {
 // same as before
}

// export
export default Excel;

Version 0.0.1 of the new app
Now you have a standalone reusable component. So let’s use it. The App.js file that
was generated by CRA is the top-level component for the application and you can
import Excel there. Deleting the CRA-generated code and replacing with Excel and
some temporary data, you get:

import './App.css';
import Excel from './components/Excel';

function App() {
 return (
 <div>
 <Excel
 headers={['Name', 'Year']}
 initialData={[
 ['Charles', '1859'],

130 | Chapter 7: Building the App’s Components

 ['Antoine', '1943'],
]}
 />
 </div>
);
}

export default App;

And with this you have a working app (Figure 7-2), it’s fairly modest, but it can still
search and edit data.

Figure 7-2. A new app is born

CSS
As discussed in the previous chapter, let’s have one CSS file per component. So
Excel.js component should come (if needed) with an Excel.css. Any class names
in Excel.js should be prefixed with Excel-. In the current implementation from
Chapter 4, elements are styled using the HTML selectors (e.g. table th {...}), but
in a real app consisting of reusable elements, the styles should be scoped to compo‐
nents so they don’t interfere with other components.

There are many options when it comes to styling your app. But for
the purposes of this discussion, let’s focus on the React parts. A
simple CSS naming convention will do the trick.

CSS | 131

Any “global” styles can go in the CRA-created App.css but these should be limited to
a small set of really generic styles, for example the fonts for the whole app. CRA also
generates an index.css but to avoid confusion about which global styles go where
let’s just go ahead and delete it.

So the top-level <div> that Excel renders becomes:

return (
 <div className="Excel">
 {/* everything else */}
 <div>
);

Now you can scope the styles only to apply to this component by using the Excel
prefix:

.Excel table {
 width: 100%;
}

.Excel td {
 /* etc. */
}

.Excel th {
 /* etc. */
}

Local storage
To keep the discussion limited to React as much as possible, let’s keep all the data in
the browser and not worry about the server-side parts. But instead of hardcoding the
data in the app, let’s use localStorage. If the storage is empty, one default should be
enough to hint the user of the purpose of the app.

The data retrieval can happen in the top-level App.js

const headers = localStorage.getItem('headers');
const data = localStorage.getItem('data');

if (!headers) {
 headers = ['Title', 'Year', 'Rating', 'Comments'];
 data = [['Red whine', '2021', '3', 'meh']];
}

Let’s also just remove the “search” button from Excel, it should become a part of its
own component, better separated from the Excel component.

And with that, you’re on a path to a great new app (Figure 7-3).

132 | Chapter 7: Building the App’s Components

Figure 7-3. An app with style

The Components
Now that you know the setup is working, it’s time to build all the components that
make up the app. Figure 7-4 and Figure 7-5 show screenshots of the app-to-be.

Figure 7-4. The Whinepad app to be build

Figure 7-5. Editing items

The Components | 133

Reusing the existing <Excel> component is an easy way to get started; however, this
component is doing too much. It’s better to “divide and conquer” by splitting it into
small, reusable components. For example, the buttons should be their own compo‐
nents so they can be reused outside of the context of the Excel table.

Additionally, the app needs some other specialized components such as a rating
widget that shows emojis instead of just a number, a dialog component and so on.

Before getting started with new components, let’s add one more helper—a component
discovery tool. It’s goals are to:

• Let you develop and test components in isolation. Often using a component in an
app leads you to “marry” the component to the app and reduce its reusability.
Having the component by itself forces you to make better decisions about decou‐
pling it from the environment.

• Let other team members discover and reuse existing components. As your app
grows, so does the team. To minimize the risk of two people working on strik‐
ingly similar components and to promote component reuse (which leads to faster
app development), it’s a good idea to have all components in one place, together
with examples of how they are meant to be used.

There are tools available that allow for component discovery and testing but let’s not
introduce another dependency. Instead, let’s take a small do-it-yourself approach.

Discovery
A discovery tool can be implemented as a new component which lives together with
the app.

This task can be as simple as creating a new component src/components/Discov
ery.js where you list all your components. You can even render the same compo‐
nent with different props to demonstrate various uses of a component. For example:

import Excel from './Excel';
// more imports here...

function Discovery() {
 return (
 <div>
 <h2>Excel</h2>
 <Excel
 headers={['Name', 'Year']}
 initialData={[
 ['Charles', '1859'],
 ['Antoine', '1943'],
]}
 />
 {/* more components here */}

134 | Chapter 7: Building the App’s Components

 </div>
);
}

export default Discovery;

Now you can load the discovery component instead of the real app, by using the URL
as a condition in your App.js:

const isDiscovery = window.location.pathname.replace(/\//g, '') === 'discovery';

function App() {
 if (isDiscovery) {
 return <Discovery />;
 }
 return (
 <div>
 <Excel headers={headers} initialData={data} />
 </div>
);
}

Now if you load http://localhost:3000/discovery instead of http://localhost:3000/ you
can see all the components you’ve added to the <Discovery>. At this point there’s
only a single component, but this page will grow soon enough.

Figure 7-6. Whinepad’s component discovery tool

Your new component discovery tool (Figure 7-6) is the place to start playing with
your new components as they come to life. Let’s get to work and build them—one at a
time.

The Components | 135

http://localhost:3000/discovery
http://localhost:3000/

A logo and a body
Starting with a few simple components gives you a way to verify that things are work‐
ing and to get excited as you see quick progress. Here are two new components that
every app needs:

Logo
A components/Logo.js doesn’t need much. And just to show it’s possible, let’s use an
arrow function to define this component:

import logo from './../images/whinepad-logo.svg';

const Logo = () => {
 return ;
};

export default Logo;

The image files you need you can store in src/images/, siblings to the components
found in src/components/.

Body
The body is also a simple place for a few styles and it merely renders the children
passed to it:

import './Body.css';

const Body = ({children}) => {
 return <div className="Body">{children}</div>;
};

export default Body;

In the Body.css you refer to images the same way as in a JavaScript file - relative to
where the CSS is located. The build process then takes care to extract the images
referred to in the code and package them with the rest of the app the build/ direc‐
tory (as you can see in the previous chapter).

.Body {
 background: url('./../images/back.jpg') no-repeat center center fixed;
 background-size: cover;
 padding: 40px;
}

136 | Chapter 7: Building the App’s Components

All discoverable
These are really simple components (and maybe unnecessary, you may argue, but
apps do tend to grow) and they illustrate how you start assembling the app from little
puzzle pieces. And since they exist, they should be in the discovery tool (Figure 7-7):

import Logo from './Logo';
import Header from './Header';
import Body from './Body';

function Discovery() {
 return (
 <div className="Discovery">
 <h2>Logo</h2>
 <div style={{background: '#f6f6f6', display: 'inline-block'}}>
 <Logo />
 </div>

 <h2>Body</h2>
 <Body>I am content inside the body</Body>

 {/* and so on */}

 </div>
);
}

Figure 7-7. Starting to build the library of components

<Button> Component
It’s not an exaggeration to generalize (phew, long words!) that every app needs a but‐
ton. It’s often a nicely styled vanilla HTML <button>, but sometimes it may have to
be an <a>, as was necessary in Chapter 3 for the download buttons. How about mak‐

<Button> Component | 137

ing the new shiny <Button> take an optional href property? If present, it renders an
<a> underneath it all.

In the spirit of test-driven development (TDD), you can start backwards by defining
example usage of the component in the <Discovery> component.

import Button from './Button';

// ...

<h2>Buttons</h2>
<p>
 Button with onClick:{' '}
 <Button onClick={() => alert('ouch')}>Click me</Button>
</p>
<p>
 A link: <Button href="https://reactjs.org/">Follow me</Button>
</p>
<p>
 Custom class name:{' '}
 <Button className="Discovery-custom-button">I do nothing</Button>
</p>

(Should we call it discovery-driven development, or DDD, then?)

Button.js

Let’s see components/Button.js in its entirety:

import classNames from 'classnames';
import PropTypes from 'prop-types';
import './Button.css';

const Button = (props) =>
 props.href ? (
 <a {...props} className={classNames('Button', props.className)}>
 {props.children}

) : (
 <button {...props} className={classNames('Button', props.className)} />
);

Button.propTypes = {
 href: PropTypes.string,
};

export default Button;

This component is short but there are a few of things to note:

• Using the classnames module (more below).

138 | Chapter 7: Building the App’s Components

• Using a function expression syntax (const Button = () => {} vs function But
ton() {}). There’s really no reason to use this syntax in this context, it’s up to
you which syntax you like better. It’s just nice to know it’s possible.

• Using the spread operator ...props as a convenient way to say: whatever proper‐
ties were passed to Button, carry them over to the underlying HTML element.

classnames package
import classNames from 'classnames';

The classnames package gives you a helpful function when dealing with CSS class
names. It helps with the common task of having your component use its own classes
but also be flexible enough to allow customization via class names passed by the par‐
ent.

Bringing in the package to your CRA setup involves just running:

cd ~/reactbook/whinepad
npm i classnames

You can notice that your package.json is updated with the new dependency.

Using the package’s only function:

const cssclasses = classNames('Button', props.className);

This means merge the Button class name with any (if any) class names passed as
properties when creating the component (Figure 7-8).

You can always do it yourself and concatenate class names, but
classnames is a tiny package that makes it more convenient to do
this common task. It also lets you set class names conditionally,
which is convenient too, like:

<div className={classNames({
 'mine': true, // unconditional
 'highlighted': this.state.active, // dependent on the
 // state...
 'hidden': this.props.hide, // ... or properties
})} />

<Button> Component | 139

Figure 7-8. <Button> with a custom class name

Forms
Let’s move on to the next task, which is essential to any data-entry app: dealing with
forms. As app developers, we’re rarely satisfied with the look and feel of the browser’s
built-in form inputs and we tend to create our own versions. The Whinepad app
could not possibly be an exception.

Let’s have a generic <FormInput> component, a factory, if you will. Depending on its
type property, this component should delegate the input creation to more specialized
components, for example, <Suggest> input, <Rating> input, and so on.

Let’s start with the lower level components.

<Suggest>
Fancy auto-suggest (aka typeahead) inputs are common on the Web, but let’s keep it
simple (Figure 7-9) and piggyback on what the browser already provides—namely, a
<datalist> HTML element (https://developer.mozilla.org/en-US/docs/Web/HTML/
Element/datalist).

First things first—update the discovery app:

<h2>Suggest</h2>
<p>
 <Suggest options={['eenie', 'meenie', 'miney', 'mo']} />
</p>

Now off to implementing the component in components/Suggest.js:

140 | Chapter 7: Building the App’s Components

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/datalist
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/datalist
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/datalist

import PropTypes from 'prop-types';

function Suggest({id, defaultValue = '', options=[]}) {

 const randomid = Math.random().toString(16).substring(2);
 return (
 <>
 <input
 id={id}
 list={randomid}
 defaultValue={defaultValue}
 />
 <datalist id={randomid}>
 {options.map((item, idx) => (
 <option value={item} key={idx} />
))}
 </datalist>
 </>
);
}

Suggest.propTypes = {
 defaultValue: PropTypes.string,
 options: PropTypes.arrayOf(PropTypes.string),
};

export default Suggest;

As the preceding code demonstrates, there’s nothing really special about this compo‐
nent; it’s just a wrapper around an <input> and a <datalist> attached to it (via the
randomid).

Forms | 141

Figure 7-9. The <Suggest> input in action

In terms of JavaScript syntax, this example shows how it’s possible to use the destruc‐
turing assignment to assign more than one property to a variable and at the same time
define default values:

// before
function Suggest(props) {
 const id = props.id;
 const defaultValue = props.defaultValue || '';
 const options = props.options || [];
 // ...
}

// after
function Suggest({id, defaultValue = '', options=[]}) {}

142 | Chapter 7: Building the App’s Components

<Rating> Component
The app is about taking notes of things you try. The laziest way to take notes is by
using star ratings, say 1 to 5.

This highly reusable component can be configured to:

• Use any number of “stars”. Default is 5, but why not, say, 11?
• Be read-only, because sometimes you don’t want accidental clicks on the stars to

change that all-important rating data.

Test the component in the discovery tool (Figure 7-10):

<h2>Rating</h2>
<p>
 No initial value: <Rating />
</p>
<p>
 Initial value 4: <Rating defaultValue={4} />
</p>
<p>
 This one goes to 11: <Rating max={11} />
</p>
<p>
 Read-only: <Rating readonly={true} defaultValue={3} />
</p>

Figure 7-10. A rating widget

Forms | 143

The bare necessities of the implementation include setting up properties, their types
and default values as well as the state to be maintained:

import classNames from 'classnames';
import {useState} from 'react';
import PropTypes from 'prop-types';
import './Rating.css';

function Rating({id, defaultValue = 0, max = 5, readonly = false}) {
 const [rating, setRating] = useState(defaultValue);
 const [tempRating, setTempRating] = useState(defaultValue);

 // TODO the rendering goes here...

}

Rating.propTypes = {
 defaultValue: PropTypes.number,
 readonly: PropTypes.bool,
 max: PropTypes.number,
};

export default Rating;

Properties are self-explanatory: max is the number of stars, and readonly makes the
widget, well, read-only. The state contains rating, which is the current value of stars
assigned, and tempRating, which is to be used when the user moves the mouse
around the component, but is not yet ready to click and commit to a rating.

Next comes the rendering. It has:

• A loop to make stars between 1 and props.max. The stars are just the emoji sym‐
bol 😂. When the RatingOn style is not applied, the stars become grey
with the help of a CSS filter (filter: grayscale(0.9);).

• A hidden input to act as a real form input and let the value be harvestable in a
generic fashion (just like any old <input>):

const stars = [];
for (let i = 1; i <= max; i++) {
 stars.push(
 <span
 className={i <= tempRating ? 'RatingOn' : null}
 key={i}
 onClick={() => (readonly ? null : setRating(i))}
 onMouseOver={() => (readonly ? null : setTempRating(i))}>
 😂
 ,
);
}
return (

144 | Chapter 7: Building the App’s Components

 <span
 className={classNames({
 Rating: true,
 RatingReadonly: readonly,
 })}
 onMouseOut={() => setTempRating(rating)}>
 {stars}
 <input id={id} type="hidden" value={rating} />

);

When the user moves the mouse over the component, the tempRating state is getting
updated which changes the RatingOn class name. When the user clicks, the real rat
ing state is getting updated which also updates the hidden input. Leaving the compo‐
nent (on mouse out) abandons the tempRating making it the same as the rating.

Here you can also see an example of using conditional CSS class names with the
classNames function. The class Rating is always applied while the RatingReadonly is
only applied when the readonly prop is set to true.

And here’s the relevant part of the CSS which deals with readonly and mouseover
behaviors:

.Rating {cursor: pointer;}

.Rating.RatingReadonly {cursor: auto;}

.Rating span {filter: grayscale(0.9);}

.Rating .RatingOn {filter: grayscale(0);}

A <FormInput> “Factory”
Next comes a generic <FormInput> that is capable of producing different inputs based
on the given properties. This will allow you to generalize the whole app and turn it
from taking wine notes to, say, managing your personal book library via a simple
configuration. More on this in a moment.

Testing the <FormInput> in the discovery app (Figure 7-11):

<h2>Form inputs</h2>
<table className="Discovery-pad">
 <tbody>
 <tr>
 <td>Vanilla input</td>
 <td><FormInput /></td>
 </tr>
 <tr>
 <td>Prefilled</td>
 <td><FormInput defaultValue="with a default" /></td>
 </tr>
 <tr>
 <td>Year</td>
 <td><FormInput type="year" /></td>

Forms | 145

 </tr>
 <tr>
 <td>Rating</td>
 <td><FormInput type="rating" defaultValue={4} /></td>
 </tr>
 <tr>
 <td>Suggest</td>
 <td>
 <FormInput
 type="suggest"
 options={['red', 'green', 'blue']}
 defaultValue="green"
 />
 </td>
 </tr>
 <tr>
 <td>Vanilla textarea</td>
 <td><FormInput type="textarea" /></td>
 </tr>
 </tbody>
</table>

146 | Chapter 7: Building the App’s Components

Figure 7-11. Form inputs

The implementation of <FormInput> (found in components/FormInput.js) requires
the usual boilerplate of import, export, and propTypes for validation:

import PropTypes from 'prop-types';
import Rating from './Rating';
import Suggest from './Suggest';

function FormInput({type = 'input', defaultValue = '', options = [], ...rest}) {
 // TODO rendering goes here...
}

FormInput.propTypes = {
 type: PropTypes.oneOf(['textarea', 'input', 'year', 'suggest', 'rating']),
 defaultValue: PropTypes.oneOfType([PropTypes.string, PropTypes.number]),
 options: PropTypes.array,
};

export default FormInput;

Forms | 147

Note PropTypes.oneOfType([]) in the prop types, it allows the component to accept
either strings or numbers for default values.

The rendering is one big switch statement, which delegates the individual input cre‐
ation to a more specific component or falls back to the built-in DOM elements
<input> and <textarea>:

switch (type) {
 case 'year':
 return (
 <input
 {...rest}
 type="number"
 defaultValue={
 (defaultValue && parseInt(defaultValue, 10)) ||
 new Date().getFullYear()
 }
 />
);
 case 'suggest':
 return (
 <Suggest defaultValue={defaultValue} options={options} {...rest} />
);
 case 'rating':
 return (
 <Rating
 {...rest}
 defaultValue={defaultValue ? parseInt(defaultValue, 10) : 0}
 />
);
 case 'textarea':
 return <textarea defaultValue={defaultValue} {...rest} />;
 default:
 return <input defaultValue={defaultValue} type="text" {...rest} />;
}

As you can see, not much going on here, this component is just a convenience wrap‐
per that allows for implementation-agnostic definition of forms.

<Form>
Now you have:

• Custom inputs (e.g., <Rating>)
• Built-in inputs (e.g., <textarea>)
• <FormInput>—a factory that makes inputs based on the type property

It’s time to make them all work together in a <Form> (Figure 7-12).

148 | Chapter 7: Building the App’s Components

Figure 7-12. Forms

The form component should be reusable and there shouldn’t be anything hardcoded
about the wine rating app. (To take it one step further, nothing about wine is to be
hardcoded, so the app can be repurposed to whine about anything). The <Form> com‐
ponent can be configured via an array of fields, where each field is defined by:

Forms | 149

• Input type, default is “input”
• id, so that the input can be found later
• label to put next to the input
• Optional options to pass to the auto-suggest input

The <Form> also takes a map of default values and is capable of rendering read-only,
so the user cannot edit the fields.

Starting with the boilerplate:

import {forwardRef} from 'react';
import PropTypes from 'prop-types';
import Rating from './Rating';
import FormInput from './FormInput';
import './Form.css';

const Form = forwardRef(({fields, initialData = {}, readonly = false}, ref) => {
 return (
 <form className="Form" ref={ref}>
 {/* more rendering here */}
 </form>
);
});

Form.propTypes = {
 fields: PropTypes.objectOf(
 PropTypes.shape({
 label: PropTypes.string.isRequired,
 type: PropTypes.oneOf(['textarea', 'input', 'year', 'suggest', 'rating']),
 options: PropTypes.arrayOf(PropTypes.string),
 }),
).isRequired,
 initialData: PropTypes.object,
 readonly: PropTypes.bool,
};

export default Form;

Before moving on, let’s review a few new things in this code.

Types: shape, objectOf, arrayOf

Note the use of PropTypes.shape in the prop types. It lets you be specific in what you
expect in a map/object. It’s more strict than just generalizing like PropTypes.object
and is certain to catch more errors before they occur as other developers start using
your components. Also note the use of the PropTypes.objectOf. It’s similar to
arrayOf which lets you define that you expect an array containing certain types of
data. Here objectOf means that the component expects a fields prop which is an

150 | Chapter 7: Building the App’s Components

object. And for every key-value pair in fields, the value is expected to be another
object that has label, type and options properties. Something similar to:

<Form
 fields={{
 name: {label: 'Rating', type: 'input'},
 comments: {label: 'Comments', type: 'textarea'},
 }}
/>

To summarize: PropTypes.object is any object, PropTypes.shape is an object with
predefined key (property) names and PropTypes.objectOf is an object with
unknown keys but known types of values.

Refs

And what about that ref business? Ref (short for reference) allows you to to access
the underlying DOM element from React. It’s not recommended to overuse this but
rather rely on React. However in this case we want to allow code outside the form to
do a generic loop over form inputs and collect the form data. And there’s a bit of
chain or parents-children to get there. For example we want the Discovery compo‐
nent to collect the form data. So the chain looks like:

<Discovery>
 <Form>
 <form>
 <FormInput>
 <input />

Refs allows Discovery to get the input’s value in this way:

• A ref object is created in <Discovery> using the hook useRef()
• The ref is then passed to <Form> which grabs it thanks to the forwardRef() hook
• The ref is then forwarded to the HTML/DOM <form> element
• As a result <Discovery> now has access to the underlying form DOM element

via the .current property of the ref object

Here’s an example of using <Form> in the discovery tool:

const form = useRef();
// ...

<Form
 ref={form}
 fields={{
 rateme: {label: 'Rating', type: 'rating'},
 freetext: {label: 'Greetings'},
 }}

Forms | 151

 initialData={{rateme: 4, freetext: 'Hello'}}
/>

Now you can add a button that collects the data in the form using the form ref and its
property form.current. Because form.current gives you access to the native form
DOM node and native forms contain an array-like collection of inputs, this means
you can convert the form to an array (with Array.from()) and iterate over this array.
Each element in the array is a native DOM input element and you can grab the value
of the inputs using their value property. That was also the reason why even “fancy”
form inputs such as Rating also contain (and update the value of) a hidden input ele‐
ment.

<Button
 onClick={() => {
 const data = {};
 Array.from(form.current).forEach(
 (input) => (data[input.id] = input.value),
);
 alert(JSON.stringify(data));
 }}>
 Submit
</Button>

Clicking the button shows message with a JSON string like {"rateme":"4","free
text":"Hello"}.

Wrapping up <Form>

Now back to the rendering part of the <Form>. It’s a loop over the fields prop and
either renders a read-only version of the initialData prop or a working form by
passing each field info to <FormInput>

<form className="Form" ref={ref}>
 {Object.keys(fields).map((id) => {
 const prefilled = initialData[id];
 const {label, type, options} = fields[id];
 if (readonly) {
 if (!prefilled) {
 return null;
 }
 return (
 <div className="FormRow" key={id}>
 {label}
 {type === 'rating' ? (
 <Rating
 readonly={true}
 defaultValue={parseInt(prefilled, 10)}
 />
) : (
 <div>{prefilled}</div>

152 | Chapter 7: Building the App’s Components

)}
 </div>
);
 }
 return (
 <div className="FormRow" key={id}>
 <label className="FormLabel" htmlFor={id}>
 {label}
 </label>
 <FormInput
 id={id}
 type={type}
 options={options}
 defaultValue={prefilled}
 />
 </div>
);
 })}
</form>

You can see it’s relatively simple, the only complexity comes from rendering the
readonly rating widget instead of a simple value.

<Actions>
Next to each row in the data table there should be actions (Figure 7-13) you can take
on each row: delete, edit, view (when not all the information can fit in a row).

Here’s the Actions component being tested in the Discovery tool:

<Actions onAction={(type) => alert(type)} />

Figure 7-13. Actions

And the component in its entirety:

import PropTypes from 'prop-types';
import './Actions.css';

<Actions> | 153

import deleteImage from './../images/close.svg';
import editImage from './../images/edit.svg';

import Button from './Button';

const Actions = ({onAction = () => {}}) => (

 <Button
 className="ActionsInfo"
 title="More info"
 onClick={() => onAction('info')}>
 View Details
 </Button>
 <Button
 title="Edit"
 onClick={() => onAction('edit')}>

 </Button>
 <Button
 tabIndex="0"
 title="Delete"
 onClick={onAction.bind(null, 'delete')}>

 </Button>

);

Actions.propTypes = {
 onAction: PropTypes.func,
};

export default Actions;

As you can see the actions are implemented as buttons. The component takes a call‐
back function as its onAction prop. When the user clicks a button the callback is
invoked passing a string identifying which button was clicked: 'info', 'edit' or
'delete'. This is a simple pattern for a child to inform its parent of a change within
the component. As you see, custom events (like onAction, onAlienAttack, etc.) are
just that simple.

Next chapter is all about the data flow in your React app, but you already know two
ways to exchange data between parents and children: callback properties (like onAc
tion) and refs.

Dialogs
Next, let’s build a generic dialog component to be used for any sort of messages
(instead of alert()) or popups (Figure 7-14). For example, all add/edit forms could
be presented in a modal dialog on top of the data table.

154 | Chapter 7: Building the App’s Components

Figure 7-14. Dialogs

To test the dialogs in the Discovery component, just a bit of state is required to man‐
age if they are open or closed:

function DialogExample() {
 const [example, setExample] = useState(null);
 return (
 <>
 <p>
 <Button onClick={() => setExample(1)}>Example 1</Button>{' '}
 <Button onClick={() => setExample(2)}>Example 2</Button>
 </p>
 {example === 1 ? (
 <Dialog
 modal
 header="Out-of-the-box example"
 onAction={(type) => {
 alert(type);
 setExample(null);
 }}>
 Hello, dialog!
 </Dialog>
) : null}

 {example === 2 ? (
 <Dialog
 header="Not modal, custom dismiss button"
 hasCancel={false}
 confirmLabel="Whatever"
 onAction={(type) => {
 alert(type);
 setExample(null);
 }}>
 Anything goes here, like a <Button>a button</Button> for example

Dialogs | 155

 </Dialog>
) : null}
 </>
);
}

The implementation of a dialog doesn’t need to be too complicated but let’s make it
interesting and add a few nice-to-have features:

• There’s a header with a title string coming from the the header prop.
• There’s a body that is simply the children passed to <Dialog>.
• The footer has ok/cancel buttons, let’s call them confirm and dismiss. Sometimes

a dialog is merely an info message and you only need one button. The prop has
Cancel can define this. If it’s false only the OK button is shown.

• The confirm button can change the label via confirmLabel prop. The dismiss
button always says “Cancel”.

• The dialog may be “modal” meaning it takes over the whole app and nothing
really happens until it’s dismissed.

• An onAction prop (similar to the <Actions> component) can pass the user’s
action to the parent component.

• The user can dismiss the dialog by hitting Escape or clicking outside the dialog.
This is a nice and expected feature but sometimes may not be desirable. E.g. you
type and type in a dialog producing some of your best prose and suddenly you
hit Escape and all is lost. The decision about the behavior of the dialog should be
left to the developer using the component. The Dialog can merely enable this
extended behavior (hitting Escape or clicking outside) if requested by the devel‐
oper via the extendedDismiss prop.

The import/export/props setup could looks like so:

import {useEffect} from 'react';
import PropTypes from 'prop-types';
import Button from './Button';
import './Dialog.css';

function Dialog(props) {
 const {
 header,
 modal = false,
 extendedDismiss = true,
 confirmLabel = 'ok',
 onAction = () => {},
 hasCancel = true,
 } = props;

156 | Chapter 7: Building the App’s Components

 // rendering here...

}

Dialog.propTypes = {
 header: PropTypes.string.isRequired,
 modal: PropTypes.bool,
 extendedDismiss: PropTypes.bool,
 confirmLabel: PropTypes.string,
 onAction: PropTypes.func,
 hasCancel: PropTypes.bool,
};

export default Dialog;

The rendering is not too complicated, a conditional CSS when the dialog is modal
and some conditional buttons display:

return (
 <div className={modal ? 'Dialog DialogModal' : 'Dialog'}>
 <div className={modal ? 'DialogModalWrap' : null}>
 <div className="DialogHeader">{header}</div>
 <div className="DialogBody">{props.children}</div>
 <div className="DialogFooter">
 {hasCancel ? (
 <Button className="DialogDismiss" onClick={() => onAction('dismiss')}>
 Cancel
 </Button>
) : null}
 <Button onClick={() => onAction(hasCancel ? 'confirm' : 'dismiss')}>
 {confirmLabel}
 </Button>
 </div>
 </div>
 </div>
);

And finally, the extended functionality where the user can interact with Escape key or
clicks outside the dialog body is implemented in a useEffect() hook. This hook will
be executed only once, when the dialog renders and is responsible for setting up (and
cleaning up) DOM event listeners. As you already know, the general useEffect()
template is:

useEffect(() => {
 // setup
 return () => {
 // cleanup
 };
 },
 [] // dependencies
)

Dialogs | 157

Armed with this template, the implementation could be something like:

useEffect(() => {
 function dismissClick(e) {
 if (e.target.classList.contains('DialogModal')) {
 onAction('dismiss');
 }
 }

 function dismissKey(e) {
 if (e.key === 'Escape') {
 onAction('dismiss');
 }
 }

 if (modal) {
 document.body.classList.add('DialogModalOpen');
 if (extendedDismiss) {
 document.body.addEventListener('click', dismissClick);
 document.addEventListener('keydown', dismissKey);
 }
 }
 return () => {
 document.body.classList.remove('DialogModalOpen');
 document.body.removeEventListener('click', dismissClick);
 document.removeEventListener('keydown', dismissKey);
 };
}, [onAction, modal, extendedDismiss]);

Alternative ideas:

• Instead of a single onAction, another option is to provide onConfirm (user clicks
OK) and onDismiss.

• The wrapper div has a conditional and a non-conditional class name. The com‐
ponent could possibly benefit from the classnames module, as follows.

Before:

<div className={modal ? 'Dialog DialogModal' : 'Dialog'}>

After:

<div className={classNames({
 'Dialog': true,
 'DialogModal': modal,
 })}>

158 | Chapter 7: Building the App’s Components

Header
At this point all the lowest-level components are done. Before tackling the big one,
Excel, let’s add a convenient Header component made up of logo, search box and an
“Add” button to add new records to the data table.

import Logo from './Logo';
import './Header.css';

import Button from './Button';
import FormInput from './FormInput';

function Header({onSearch, onAdd, count = 0}) {
 const placeholder = count > 1 ? `Search ${count} items` : 'Search';
 return (
 <div className="Header">
 <Logo />
 <div>
 <FormInput placeholder={placeholder} id="search" onChange={onSearch} />
 </div>
 <div>
 <Button onClick={onAdd}>
 ＋ Add whine
 </Button>
 </div>
 </div>
);
}

export default Header;

As you can see the header doesn’t do any searching or adding to the data, but it offers
callbacks for its parent to do the data management.

App Config
It would be a good idea to divorce the Whinepad app from the wine-specific subject
matter and make it a reusable CRUD way of managing any sort of data. There should
be no hardcoded data fields. Instead a schema object can be a description of the type
of data you want to deal with in the app.

Here’s an example (src/config/schema.js) to get you off the ground with a wine-
oriented app:

import classification from './classification';

const schema = {
 name: {
 label: 'Name',
 show: true,

Header | 159

 samples: ['$2 Chuck', 'Chateau React', 'Vint.js'],
 align: 'left',
 },
 year: {
 label: 'Year',
 type: 'year',
 show: true,
 samples: [2015, 2013, 2021],
 },
 grape: {
 label: 'Grape',
 type: 'suggest',
 options: classification.grapes,
 show: true,
 samples: ['Merlot', 'Bordeaux Blend', 'Zinfandel'],
 align: 'left',
 },
 rating: {
 label: 'Rating',
 type: 'rating',
 show: true,
 samples: [3, 1, 5],
 },
 comments: {
 label: 'Comments',
 type: 'textarea',
 samples: ['Nice for the price', 'XML in my JS, orly??!', 'Lodi? Again!'],
 },
};

export default schema;

This is an example of one of the simplest ECMAScript modules you can imagine—
one that exports a single variable. It also imports another simple module that contains
some lengthy options to prefill in the forms (src/config/classification.js). Just a way to
keep the schema shorter and easier to read:

const classification = {
 grapes: [
 'Baco Noir',
 'Barbera',
 'Cabernet Franc',
 'Cabernet Sauvignon',
 // ...
],
};

export default classification;

With the help of the schema module, you can now configure what type of data you
want to manage in the app.

160 | Chapter 7: Building the App’s Components

<Excel>: New and Improved
And now comes the meat of the app, the data table that does most of the work, every‐
thing in CRUD, except the C (create).

Using the new <Excel> in <Discovery> so it can be tested independently of the whole
app:

import schema from '../config/schema';

// ...

<h2>Excel</h2>

<Excel
 schema={schema}
 initialData={schema.name.samples.map((_, idx) => {
 const element = {};
 for (let key in schema) {
 element[key] = schema[key].samples[idx];
 }
 return element;
 })}
 onDataChange={(data) => {
 console.log(data);
 }}
/>

As you can see all the data configuration comes from the schema including 3 samples
of the data being passed as initialData prop to be used for testing. And then there’s
the onDataChange callback prop so the parent of the component can manage the data
as a whole and e.g. write it to a database or localStorage. For the purposes of discov‐
ery and testing, console.log() is enough.

Figure 7-15, Figure 7-16, Figure 7-17 and Figure 7-18 show how Excel looks like and
behaves in the Discovery tool.

<Excel>: New and Improved | 161

Figure 7-15. Excel component rendered in Discovery with sample data coming from
schema

Figure 7-16. Editing an item using Form in a Dialog

162 | Chapter 7: Building the App’s Components

Figure 7-17. Viewing details for an item: same Form but rendered readonly

Figure 7-18. Confirmation when clicking the delete Action

The overall structure
The familiar structure is imports at the top, export at the end and an Excel function
for the rendering. Additionally the component manages a bit of state:

<Excel>: New and Improved | 163

• Is the data sorted and how?
• Is there a dialog open and what’s in it?
• Is the user editing inline in the table?
• The data!

The data state is managed by a reducer and for everything else, there’s useState().

Inline in the Excel function there are a few helper functions to help isolate some of
the state handling code.

import {useState, useReducer, useRef} from 'react';
// more imports...

function reducer(data, action) {/*...*/}

function Excel({schema, initialData, onDataChange, filter}) {
 const [data, dispatch] = useReducer(reducer, initialData);
 const [sorting, setSorting] = useState({
 column: '',
 descending: false,
 });
 const [edit, setEdit] = useState(null);
 const [dialog, setDialog] = useState(null);
 const form = useRef(null);

 function sort(e) {/*...*/}

 function showEditor(e) {/*...*/}

 function save(e) {/*...*/}

 function handleAction(rowidx, type) {/*...*/}

 return (<div className="Excel">{/*...*/}</div>);
}

Excel.propTypes = {
 schema: PropTypes.object,
 initialData: PropTypes.arrayOf(PropTypes.object),
 onDataChange: PropTypes.func,
 filter: PropTypes.string,
};
export default Excel;

Rendering
Let’s start with the rendering portion of the component. There’s an overall div to help
with the styling and in it there’s a table and (optionally) a dialog, the content of
which comes from the dialog state. Which means that when calling setDialog()

164 | Chapter 7: Building the App’s Components

(given by useState()) you pass the content of the dialog to be rendered, e.g. setDia
log(<Dialog />).

 return (
 <div className="Excel">
 <table>
 {/* ... */}
 </table>
 {dialog}
 </div>
);

Rendering the table head
The table head is similar to what you’ve seen in previous chapters except now the
header labels come from schema passed as a prop to Excel:

<thead onClick={sort}>
 <tr>
 {Object.keys(schema).map((key) => {
 let {label, show} = schema[key];
 if (!show) {
 return null;
 }
 if (sorting.column === key) {
 label += sorting.descending ? ' \u2191' : ' \u2193';
 }
 return (
 <th key={key} data-id={key}>
 {label}
 </th>
);
 })}
 <th className="ExcelNotSortable">Actions</th>
 </tr>
</thead>

The sorting variable comes from the state and affects which headers get a sorting
arrow and in which direction. The whole header (<thead>) has an onClick handler
which calls the sort() helper function.

function sort(e) {
 const column = e.target.dataset.id;
 if (!column) { // The last "Action" column is not sortable
 return;
 }
 const descending = sorting.column === column && !sorting.descending;
 setSorting({column, descending});
 dispatch({type: 'sort', payload: {column, descending}});
}

<Excel>: New and Improved | 165

Rendering the table body

The table body (<tbody>) consists of table rows (<tr>) with table cells within them
(<td>). The last cell in each row is reserved for <Actions>. You need two loops, one
for rows and one for cells (columns) within the row.

After some tweaking of the content of each cell (you’ll see it in next), you’re ready to
define the <td>.

<tbody onDoubleClick={showEditor}>
 {data.map((row, rowidx) => {

 // TODO: data filtering comes here...

 return (
 <tr key={rowidx} data-row={rowidx}>
 {Object.keys(row).map((cell, columnidx) => {

 const config = schema[cell];
 let content = row[cell];

 // TODO: content tweaks go here...

 return (
 <td
 key={columnidx}
 data-schema={cell}
 className={classNames({
 [`schema-${cell}`]: true,
 ExcelEditable: config.type !== 'rating',
 ExcelDataLeft: config.align === 'left',
 ExcelDataRight: config.align === 'right',
 ExcelDataCenter:
 config.align !== 'left' && config.align !== 'right',
 })}>
 {content}
 </td>
);
 })}
 <td>
 <Actions onAction={handleAction.bind(null, rowidx)} />
 </td>
 </tr>
);
 })}
</tbody>

Most of the effort goes to defining CSS class names. They are conditional on the
schema, for example how the various data is aligned in the cells (left of center).

The oddest-looking class name definition is the schema-${cell}. This is optional but
a nice touch that provides an extra CSS class name for each data type in case the

166 | Chapter 7: Building the App’s Components

developer needs something specific. The syntax may look odd but it’s the ECMA‐
Script way of defining dynamic (computed) object property names using the [] in
combination with a template string

In the end, the resulting DOM of an example cell would look something like this:

<td
 data-schema="grape"
 class="schema-grape ExcelEditable ExcelDataLeft">
 Bordeaux Blend
</td>

All the cells are editable except the hard-coded actions and the ratings because you
don’t want accidental clicks to change the rating.

Tweaking and filtering of content

Let’s address the two TODO comments in the table rendering. First the tweaking of
content which happens in the inner loop.

const config = schema[cell];
if (!config.show) {
 return null;
}
let content = row[cell];
if (edit && edit.row === rowidx && edit.column === cell) {
 content = (
 <form onSubmit={save}>
 <input type="text" defaultValue={content} />
 </form>
);
} else if (config.type === 'rating') {
 content = (
 <Rating
 id={cell}
 readonly
 key={content}
 defaultValue={Number(content)}
 />
);
}

You have a boolean show config coming from the schema. It’s helpful when you have
too many columns to show in a single table. In this case, the comments for each item
in the table may be too long and make the table hard to parse by the user. So it’s not
shown in the table, though it’s still available (in the View Details action) and editable
via the Edit action.

Next, if the user has double-clicked to edit the data inline bringing the table into an
edit state, you show a form. Otherwise just the text content. Unless it’s the rating cell.

<Excel>: New and Improved | 167

It’s friendlier to show the “star” rating component, rather then simple text (e.g. 5 or 2)
like all other cells.

As for the second TODO, it’s the filtering of the data as a result of the user’s search
string. In the previous chapter there were separate input fields for filtering per col‐
umn. In the real app, let’s have a single search input in the header and pass what the
user types to the data table. The implementation is about going through each column
is a row and attempting to match with the search string passed as a filter prop. If no
match is found, the whole row is removed from the table.

if (filter) {
 const needle = filter.toLowerCase();
 let match = false;
 const fields = Object.keys(schema);
 for (let f = 0; f < fields.length; f++) {
 if (row[fields[f]].toString().toLowerCase().includes(needle)) {
 match = true;
 }
 }
 if (!match) {
 return null;
 }
}

And why is this filtering done here, as opposed to the reducer function? It’s a personal
choice dictated to an extent by the double-calling of the reducer which React does in
“strict” mode.

React.Strict and reducers
Excel uses a reducer() for various data manipulations. At the end of every manipu‐
lation, it invokes the onDataChange callback passed to the component. That’s how
parents of Excel can be notified about data changes.

function reducer(data, action) {
 // ...
 setTimeout(() => action.payload.onDataChange(data));
 return data;
}

And this is what was in <Discovery>:

<Excel
 schema={schema}
 initialData={/* ... */}
 onDataChange={(data) => {
 console.log(data);
 }}
/>

168 | Chapter 7: Building the App’s Components

If you test the component with the console open, you’ll see that for every change
there are two identical entries in the log (Figure 7-19).

Figure 7-19. Two console messages after editing “$2 Chuck”

This happens because in strict mode while in development, React calls your reducer
twice. If you look back to index.js generated by CRA, the whole app is wrapped in
<React.StrictMode>:

ReactDOM.render(
 <React.StrictMode>
 <App />
 </React.StrictMode>,
 document.getElementById('root')
);

You can remove the wrapper:

ReactDOM.render(
 <App />,
 document.getElementById('root')
);

Now the console will have only one log message.

This double-invokation is React helping you uncover impurities in your reducer. The
reducer must be pure meaning given the same data, it should return the same results.
Which is a great (again, development-only) feature and you should be on a lookout
for impurities. Once you build your app, there’s no more double-calling.

In this case (logging changes) the impurity is tolerable. But in other cases, it may not
be. For example let’s say you pass an array to the reducer and it removes the last array
element before returning the array. The returned array is the same object in memory
and if you pass it again to the reducer, it will remove yet another element. This is not
the expected behavior.

<Excel>: New and Improved | 169

In the next chapter you’ll see a different way (using contexts) to communicate
between parents and children components, not only via callback props as you’ve seen
so far in the book. There this double-calling problem is going to go away. Still for
education purposes and for simple callbacks (e.g. <Dialog onAction...>) callbacks
are fine, so let’s continue with them for just a bit longer.

What’s with the timeout, you may ask. Anytime there’s a setTime
out with no 0 milliseconds actual timeout, chances are there’s a bit
of a workaround going on. This code is no exception and it has to
do, again, with the parent-child communication. Next chapter dis‐
cusses and fixes this.

As you can see, we uncovered the interesting problem that comes with reducers and
strict mode. And in the future you’ll know where to look for potential reducer prob‐
lems in your apps. If you see something off and it looks like something is happening
twice, a quick debug exercise is to remove <React.StrictMode> and see if the prob‐
lem goes away. If so, time for another look in your reducers.

Excel’s little helpers
Now back to Excel. At this point the rendering is done. Time to take a look at a few
functions that you saw commented out in the initial code listing, namely the
reducer() function and the helpers sort(), showEditor(), save(), and handleAc
tion().

sort()

In fact, there was already a discussion of sort(). It’s a callback for clicking on table
headers:

function sort(e) {
 const column = e.target.dataset.id;
 if (!column) {
 return;
 }
 const descending = sorting.column === column && !sorting.descending;
 setSorting({column, descending});
 dispatch({type: 'sort', payload: {column, descending}});
}

The general task is to figure out what happened (user clicked a header, which one?),
then update the state (call setSorting() provided by useState() to draw the sorting
arrows) and dispatch() an event to be handled by the reducer. The reducer’s task is
to do the actual sorting.

170 | Chapter 7: Building the App’s Components

showEditor()

Another short helper function is showEditor(). It’s called when the user double-
clicks a cell and changes the state so an inline input field is shown:

function showEditor(e) {
 const config = e.target.dataset.schema;
 if (!config || config === 'rating') {
 return;
 }
 setEdit({
 row: parseInt(e.target.parentNode.dataset.row, 10),
 column: config,
 });
}

Because this function is called for all clicks anywhere in the table (<tbody onDouble
Click={showEditor}>) you need to filter out cases where no inline form is desirable.
Namely the rating (no inline rating of items) and anywhere in the action column.
Action columns don’t have associated schema configuration so !config takes care of
this case. For all other cells, setEdit() is called which updates the state identifying
which cell is to be edited. Since this is a rendering-only change, the reducer doesn’t
get involved and so no dispatch() is necessary.

save()

Next, the save() helper. It’s invoked when the user is done with inline editing and
submits the inline form by hitting Enter (<form onSubmit={save}>). Similarly to
sort(), save() needs to know what happened (what was submitted) and then update
the state (setEdit()) and dispatch() an event for the reducer to update the data.

function save(e) {
 e.preventDefault();
 const value = e.target.firstChild.value;
 const valueType = schema[e.target.parentNode.dataset.schema].type;
 dispatch({
 type: 'save',
 payload: {
 edit,
 value,
 onDataChange,
 int: valueType === 'year' || valueType === 'rating',
 },
 });
 setEdit(null);
}

Figuring out the valueType helps the reducer write integers versus strings in the data,
since all form values come as strings from the DOM.

<Excel>: New and Improved | 171

handleAction()

Next, the handleAction() method, it’s the longest but not too complex. It needs to
deal with three types of actions - delete, edit and view info. Edit and info are close in
implementation as the info is just a readonly form. Let’s start with deleting:

function handleAction(rowidx, type) {
 if (type === 'delete') {
 setDialog(
 <Dialog
 modal
 header="Confirm deletion"
 confirmLabel="Delete"
 onAction={(action) => {
 setDialog(null);
 if (action === 'confirm') {
 dispatch({
 type: 'delete',
 payload: {
 rowidx,
 onDataChange,
 },
 });
 }
 }}>
 {`Are you sure you want to delete "${data[rowidx].name}"?`}
 </Dialog>,
);
 }

 // TODO: edit and info
}

Clicking the Delete action brings up a <Dialog> saying “Are you sure?” by updating
the state with setDialog() and passing a <Dialog> component as the dialog state.
Regardless of the answer (the dialog’s onAction) the dialog is dismissed by passing a
null dialog (setDialog(null)). But if the action was “confirm”, then an event is dis‐
patched to the reducer.

If the user’s action is for editing or viewing a data row, a new <Dialog> is created, one
that has a form for editing. The form is readonly when simply viewing the data. The
user can then dismiss the dialog abandoning any changes (which is the only option
when viewing) or save the changes. Saving means another dispatch which includes a
ref to the form, so the reducer can harvest the form data.

const isEdit = type === 'edit';
if (type === 'info' || isEdit) {
 const formPrefill = data[rowidx];
 setDialog(
 <Dialog
 modal

172 | Chapter 7: Building the App’s Components

 extendedDismiss={!isEdit}
 header={isEdit ? 'Edit item' : 'Item details'}
 confirmLabel={isEdit ? 'Save' : 'ok'}
 hasCancel={isEdit}
 onAction={(action) => {
 setDialog(null);
 if (isEdit && action === 'confirm') {
 dispatch({
 type: 'saveForm',
 payload: {
 rowidx,
 onDataChange,
 form,
 },
 });
 }
 }}>
 <Form
 ref={form}
 fields={schema}
 initialData={formPrefill}
 readonly={!isEdit}
 />
 </Dialog>,
);

reducer()

Finally, the almighty reducer. It’s similar to what you already saw towards the end of
Chapter 4. The sorting and inine editing parts are pretty much the same, the search‐
ing/filtering is gone and moved to the rendering of the table and there’s now a way to
delete rows and to save the editing form.

function reducer(data, action) {
 if (action.type === 'sort') {
 const {column, descending} = action.payload;
 return data.sort((a, b) => {
 if (a[column] === b[column]) {
 return 0;
 }
 return descending
 ? a[column] < b[column]
 ? 1
 : -1
 : a[column] > b[column]
 ? 1
 : -1;
 });
 }
 if (action.type === 'save') {
 const {int, edit} = action.payload;
 data[edit.row][edit.column] = int

<Excel>: New and Improved | 173

 ? parseInt(action.payload.value, 10)
 : action.payload.value;
 }
 if (action.type === 'delete') {
 data = clone(data);
 data.splice(action.payload.rowidx, 1);
 }

 if (action.type === 'saveForm') {
 Array.from(action.payload.form.current).forEach(
 (input) => (data[action.payload.rowidx][input.id] = input.value),
);
 }

 setTimeout(() => action.payload.onDataChange(data));
 return data;
}

The last two lines were already discussed above, the rest is all about array manipula‐
tion. The reducer is called with the current data and some payload describing what
happened and it acts on that information.

One thing to note is how the delete action is the only one doing the cloning of the
original array. This goes back to the discussion above about the double-calling of the
reducer. All other actions can get away with modifying the array as they have exact
row/column to modify. Or, in the case of sorting, no data pieces are being modified.
So asking twice “please update column 1 row 2 with value 2018” has the same effect
every time. However all the rows are just 0-indexed array elements. When you have
elements 0, 1 and 2 and you delete 1, then you have 0, 1. And so deleting id 1 twice
deletes two elements. Cloning the array before deletion solves this by producing a
new array object. The double-calling happens both times with the original data not
with the data returned by the first call, so removing id 1 from 0, 1, 2 and again from
0, 1, 2. Tiny details like this when it’s a combination of React strict and the way
objects (and arrays are objects too) work in JavaScript may cause trouble. So be extra
diligent when modifying with arrays and objects in your reducers.

And with this, the last component in the app is done and it’s time to put them all
together to create a working app.

174 | Chapter 7: Building the App’s Components

CHAPTER 8

The Finished App

All the components of the new app are done and testable in the discovery tool (http://
localhost:3000/discovery). Now it’s time to put them all together into a working appli‐
cation (available in the browser as http://localhost:3000/). Figure 8-1 shows the
desired result when the user loads the app for the first time. There is a single row of
default data coming from schema’s samples to demonstrate the purpose of the app to
the user.

Figure 8-1. Loading the finished app for the first time

Figure 8-2 shows the dialog that pops up when the user clicks the +Add whine button.

175

http://localhost:3000/discovery
http://localhost:3000/discovery
http://localhost:3000/

Figure 8-2. Adding a new record

Figure 8-3 shows the state of the app after the user has added one more row.

Figure 8-3. Two records in the table

Since you already have the header, body, the table component Excel and the dialog
component, the rendering is merely a question of assembling them, like so:

<div>
 <Header/>
 <Body>
 <Excel/>

176 | Chapter 8: The Finished App

 <Dialog>
 <Form/>
 </Dialog>
 </Body>
</div>

Then the main task is about providing the correct props to these components and
about taking care of the data flow between them. Let’s create a component called Data
Flow to take care of all this. DataFlow should have all the data, it can pass it to
<Excel> and to <Header> (which needs to know the number of records for the search
field’s placeholder). When the user changes the data in the table, Excel notifies the
parent DataFlow via the onDataChange prop. When the user adds a new record using
the Dialog in DataFlow, then the updated data is passed to Excel thanks to the onAc
tion callback. Figure 8-4 shows this flow of data as a diagram.

Figure 8-4. Flow of data

Another bit of information to be passed around by DataFlow is the search (filter)
string typed in the header’s search box. DataFlow takes it from the Header’s onSearch
callback and passes it to Excel as the filter property (Figure 8-5).

The Finished App | 177

Figure 8-5. Passing the search (filter) string

And finally DataFlow is also responsible for updating the localStorage which should
always have the latest data.

Updated App.js
The <App> component needs a bit of an update. It imports the schema, then looks for
data in localStorage. If there is none, it takes the first sample from the schema and
uses it as initial data. Then it renders the new component-to-be DataFlow passing the
data and the schema.

import './App.css';
import Discovery from './components/Discovery';
import DataFlow from './components/DataFlow';
import schema from './config/schema';

const isDiscovery = window.location.pathname.replace(/\//g, '') === 'discovery';

let data = JSON.parse(localStorage.getItem('data'));

// default example data, read from the schema
if (!data) {
 data = [{}];
 Object.keys(schema).forEach((key) => (data[0][key] = schema[key].samples[0]));
}

function App() {
 if (isDiscovery) {
 return <Discovery />;
 }
 return <DataFlow schema={schema} initialData={data} />;
}

178 | Chapter 8: The Finished App

export default App;

DataFlow component
Now that the goals of the <DataFlow> component are clear and you see how it’s been
used in the <App> component, let’s see how to go about implementing it.

The overall structure, as you’d expect, is about import/export and prop types:

import {useState, useReducer, useRef} from 'react';
import PropTypes from 'prop-types';

import Header from './Header';
import Body from './Body';
import Dialog from './Dialog';
import Excel from './Excel';
import Form from './Form';
import clone from '../modules/clone';

function commitToStorage(data) {
 // TODO
}

function reducer(data, action) {
 // TODO
}

function DataFlow({schema, initialData}) {
 // TODO
}

DataFlow.propTypes = {
 schema: PropTypes.object.isRequired,
 initialData: PropTypes.arrayOf(PropTypes.object).isRequired,
};

export default DataFlow;

Now let’s see about these TODO comments.

The first one is a just a one-liner that takes whatever is passed to it (the latest data,
the whole point of the app) and writes it to localStorage to be used in the next ses‐
sion in case the user closes the browser tab.

function commitToStorage(data) {
 localStorage.setItem('data', JSON.stringify(data));
}

Next, the reducer. It’s only responsible for two types of events (actions):

DataFlow component | 179

• save - adding a new record to data which is created when the user clicks “+Add
whine” button.

• excelchange - handling any data change coming from Excel. This action doesn’t
modify the data, just commits it to storage and returns it as-is.

function reducer(data, action) {
 if (action.type === 'save') {
 data = clone(data);
 data.unshift(action.payload.formData);
 commitToStorage(data);
 return data;
 }
 if (action.type === 'excelchange') {
 commitToStorage(action.payload.updatedData);
 return action.payload.updatedData;
 }
}

Why is it necessary to clone the data before adding to it (via array’s unshift())? It’s
because the reducer is called twice in development (see Chapter 7) and the same
record would be added twice otherwise.

With such a simple reducer, is it really a good idea to opt for a
reducer as opposed to state when it comes to data management?
Probably not. In fact, an alternative implementation using only
state is available in the book’s code repo as DataFlow1.js and it’s a
bit shorter in terms of lines of code. The potential benefit of using a
reducer is that it’s simpler to expand on if future new actions are
expected.

Let’s dive into the body of the function that defines the DataFlow component.

DataFlow body
Similarly to how Excel manages its state, let’s try a combination of useState() and
useReducer(). Let’s have a reducer for data since it’s potentially more involved and
for everything else, stick with state. The addNew state is a toggle whether or not to
show an Add dialog and filter is for the string the user types in the search box.

function DataFlow({schema, initialData}) {
 const [data, dispatch] = useReducer(reducer, initialData);
 const [addNew, setAddNew] = useState(false);
 const [filter, setFilter] = useState(null);

 const form = useRef(null);

 function saveNew(action) {/* TODO */}

180 | Chapter 8: The Finished App

 function onExcelDataChange(updatedData) {/* TODO */}

 function onSearch(e) {/* TODO */}

 return (
 // TODO: render
);
}

The form ref is used similarly to Excel in Chapter 7 to harvest the data from the form
shown in the Add dialog.

Next, let’s address the rendering TODO. Its task is to combine all the main components
(<Header>, <Excel>, etc.) and pass around the data and callbacks. Conditionally, if
the user clicks the Add button, a <Dialog> is constructed too.

return (
 <div className="DataFlow">
 <Header
 onAdd={() => setAddNew(true)}
 onSearch={onSearch}
 count={data.length}
 />
 <Body>
 <Excel
 schema={schema}
 initialData={data}
 key={data}
 onDataChange={(updatedData) => onExcelDataChange(updatedData)}
 filter={filter}
 />
 {addNew ? (
 <Dialog
 modal={true}
 header="Add new item"
 confirmLabel="Add"
 onAction={(action) => saveNew(action)}>
 <Form ref={form} fields={schema} />
 </Dialog>
) : null}
 </Body>
 </div>
);

The other three TODO comments are about the inline helper function, none of which
should look complicated at this point.

onSearch() takes the search string from the header and updates the filter state,
which then by way of rerendering is passed to Excel where it’s used to only show
matching data records:

DataFlow component | 181

function onSearch(e) {
 setFilter(e.target.value);
}

onExcelDataChange() is another one-liner. It’s a callback that takes any data updates
from Excel and dispatches an action to be handled by the reducer:

function onExcelDataChange(updatedData) {
 dispatch({
 type: 'excelchange',
 payload: {updatedData},
 });
}

Finally, the saveNew() helper that handles dialog actions. It closes the dialog uncon‐
ditionally (by setting the addNew state) and if the dialog wasn’t simply dismissed, it
collects the form data from the dialog and dispatches the appropriate save action for
the reducer to handle.

function saveNew(action) {
 setAddNew(false);
 if (action === 'dismiss') {
 return;
 }

 const formData = {};
 Array.from(form.current).forEach(
 (input) => (formData[input.id] = input.value),
);

 dispatch({
 type: 'save',
 payload: {formData},
 });
}

Job done
And with that the app is now complete. You can build it and deploy it to a server near
you and make it available to the world.

As you can see the task was to create all necessary components (Chapter 7) keeping
them as small and general-purpose as possible and then make them all work together
by rendering the top-level ones (Header, Body, Excel) and making sure the data flows
between children and parents.

In this chapter you saw one way of passing data around using props and callbacks.
This is a valid way but it can reach a point of becoming difficult to maintain for two
main reasons:

182 | Chapter 8: The Finished App

• Children can become deeply nested resulting in long and clumsy chains of pass‐
ing props and callbacks.

• When you pass several callbacks to a component (when a lot happens in this
component), defining all these callbacks soon loses its elegance.

Props and callbacks were the original way of communication between components in
earlier React applications. And it’s still a valid way for many cases. Later on developers
started thinking of other ways once they saw the resulting complexity. One idea that
sprung and gained popularity has many different implementations but they all boil
down to using a more global storage of data and then providing an API for compo‐
nents to read and write the data.

Consider this example of a deeply nested child using callback for communication:

// index.js
let data = [];
function dataChange(newData) {
 data = newData
}
<App data={data} onDataChange={dataChange} />

// <App> in app.js
<Body data={props.data} onDataChange={props.onDataChange} />

// <Body>
<Table
 data={props.data}
 onDataChange={props.onDataChange}
 onSorting={/* ... */}
 onPaging={/* ... */}
/>

// In <Table>
props.data.forEach((row) => {/* render */});
// later in <Table>
props.onDataChange(newData);

Now with some sort of Storage module:

// index.js
<App />

// <App> in app.js
<Body />

// <Body>
<Table />

// In <Table>
const data = Storage.get('data');

Job done | 183

data.forEach((row) => {/* render */});
// later in <Table>
Storage.set('data', newData);

You can agree that the second option looks much cleaner and with much less typing.

Initially this idea of global storage came under the name of Flux and a lot of imple‐
mentations appeared in the open-source world. One of the implementations, a library
called Redux, won a significant developer mind-share. A different implementation
was part of the first edition of this book. And now the same idea is part of React’s
core, implemented as Context.

Let’s see how the Whinepad app can transition to its version 2 and move away from
callbacks in favor of Context.

Whinepad v2
To start with v2 you need a copy of the whinepad directory without the node_mod
ules/ directory (where all npm-downloaded dependencies are stored) and without
the package-lock.json.

cd ~/reactbook/whinepad
rm -rf node_modules/
rm package-lock.json

These two are artifacts of installing your app, so when you distribute the app (e.g.
sharing with others on GitHub or just putting it in source control) you don’t need
them.

Copy the whinepad (v1) and you’re ready for v2:

cd ~/reactbook/
cp -r whinepad whinepad2

Installing the dependencies in the new location:

cd ~/reactbook/whinepad2
npm i

Starting the CRA for development:

npm start .

And now let’s rewrite the app so it uses contexts.

Context
The first step is to create a context. That’s best done in a separate module so it can be
shared between components. And since chances are you may have more than one
context, you can store them in a separate directory, sibling to /components and /
modules.

184 | Chapter 8: The Finished App

cd ~/reactbook/whinepad2/src
mkdir contexts
touch contexts/DataContext.js

Not much is happening in DataContext.js, just a call to create the context:

import React from 'react';

const DataContext = React.createContext();

export default DataContext;

The call to createContext() accepts a default value. Its purpose is mostly for testing,
documentation and type-safety. Let’s indeed provide the default value:

const DataContext = React.createContext({
 data: [],
 updateData: () => {},
});

You can have any value stored in a context, but a common pattern is to have an object
with two properties: a piece of data and a function that can update the data.

Next steps
Now that a context is created, the next steps are to use the context where required in
the components. The data is used in Excel and in Header, so these two components
need an update. Also passing the data around was done in DataFlow and that’s where
the most changes are to be done.

But first, an update and simplification to App.js is in order. In v1 that’s where the
initial (or default) data was being figured out and then passed as props to <Data
Flow>. In v2 let’s have any and all data management happen in <DataFlow>. The
updated App.js looks a little bare-bone:

import './App.css';
import Discovery from './components/Discovery';
import DataFlow from './components/DataFlow';

const isDiscovery = window.location.pathname.replace(/\//g, '') === 'discovery';

function App() {
 if (isDiscovery) {
 return <Discovery />;
 }
 return <DataFlow />;
}

export default App;

Next steps | 185

The job of DataFlow is to figure out the initial data when the app is loaded, update
that data in the context and make sure the children <Excel> and <Header> can get the
data from the context. The children should also be able to update the data. That’s sur‐
prisingly uncomplicated as you’ll see shortly, but first a word on how the data flow in
v2 is going to be different than v1.

Curricular data
In v1 (also see Figure 8-4) Excel manages the data in its state. This is a great way to
build standalone components that can be dropped anywhere in any app. But the par‐
ent DataFlow also keeps the data in its state because the data needs to be shared
between Header and Excel. So there are two “sources of truth” which need to be
synchronized. This was done by passing data prop from DataFlow to Excel and with
onDataChange callback to communicate from the child Excel to the parent DataFlow.
That creates a circular flow of data which may lead to an infinite rendering loop -
data changes in Excel which means it’s rerendered. DataFlow receives the new data
via onDataChange and updates its state, which means it’s rerendered, which causes a
new render of Excel (it’s a child).

React prevents this by refusing to update state during a rendering phase. That’s why
the setTimeout hack was required in Excel when invoking the onDataChange call‐
back in the reducer:

function reducer(data, action) {
 // ...
 setTimeout(() => action.payload.onDataChange(data));
 return data;
}

This works just fine. The timeout allows the React to finish rendering before updating
the state again. This hack is the price paid to have a completely standalone Excel that
manages its own data.

Let’s change this in v2 and have a single source of truth (data in DataFlow). This
avoids the hack but comes with the drawback that Excel now needs someone else to
manage the data. That’s not difficult, but it is a change and it requires the test area
<Discovery> to be a bit more involved.

Providing context
Let’s see how the context DataContext created by React.createContext() can be
used. The heavy lifting enabling this happens in DataFlow, so let’s examine its v2.

Requiring the context in DataFlow.js:

186 | Chapter 8: The Finished App

import schema from '../config/schema';
import DataContext from '../contexts/DataContext';

Figuring out the initial state of the world, either from the storage or from schema
samples can happen at the top of the module, not even in the body of the DataFlow
function:

let initialData = JSON.parse(localStorage.getItem('data'));

// default example data, read from the schema
if (!initialData) {
 initialData = [{}];
 Object.keys(schema).forEach(
 (key) => (initialData[0][key] = schema[key].samples[0]),
);
}

The data is kept in the state just like before:

function DataFlow() {
 const [data, setData] = useState(initialData);
 // ...
}

The data is going to be a part of the context. The context also needs a function to
update the data. This function is defined inline in DataFlow:

function updateData(newData) {
 newData = clone(newData);
 commitToStorage(newData);
 setData(newData);
}

The three steps of updating the data are:

• Clone the data so it’s always immutable
• Save it to localStorage for the next time the app is loaded
• Update the state

Armed with data and updateData, the last step is to wrap any children (Excel and
Header) that require the context in a provider component.

<DataContext.Provider value={{data, updateData}}>
 <Header onSearch={onSearch} />
 <Body>
 <Excel filter={filter} />
 </Body>
</DataContext.Provider>

The provider component <DataContext.Provider> is available thanks to the call to
createContext() which created the DataContext:

Providing context | 187

const DataContext = React.createContext({
 data: [],
 updateData: () => {},
});

The provider must set a value prop, which could be anything. Here the value is the
common pattern: “data plus a way to change the data”.

Now any child of <DataContext.Provider> such as <Excel> or <Header> can be a
consumer of the context value set by the provider. The way to consume is either via a
<DataContext.Consumer> component or via a useContext() hook.

Before taking a look at consuming the context, below is a complete listing of the new
DataFlow.js. For the complete code of the v2 of Whinepad consult the whinepad2
directory in the book’s repo.

import {useState} from 'react';

import Header from './Header';
import Body from './Body';
import Excel from './Excel';
import schema from '../config/schema';
import DataContext from '../contexts/DataContext';
import clone from '../modules/clone';

let initialData = JSON.parse(localStorage.getItem('data'));

// default example data, read from the schema
if (!initialData) {
 initialData = [{}];
 Object.keys(schema).forEach(
 (key) => (initialData[0][key] = schema[key].samples[0]),
);
}

function commitToStorage(data) {
 localStorage.setItem('data', JSON.stringify(data));
}

function DataFlow() {
 const [data, setData] = useState(initialData);
 const [filter, setFilter] = useState(null);

 function updateData(newData) {
 newData = clone(newData);
 commitToStorage(newData);
 setData(newData);
 }

 function onSearch(e) {
 const s = e.target.value;
 setFilter(s);

188 | Chapter 8: The Finished App

 }

 return (
 <div className="DataFlow">
 <DataContext.Provider value={{data, updateData}}>
 <Header onSearch={onSearch} />
 <Body>
 <Excel filter={filter} />
 </Body>
 </DataContext.Provider>
 </div>
);
}

export default DataFlow;

As you can see, filter is still passed as a prop to <Excel>. Even though you’re using
a context, prop passing is still an option, it could be the preferred approach for many
scenarios when components need to communicate.

Consuming context
If you consult the v1 of DataFlow from earlier in this chapter, you may notice that the
reducer() is gone in v2. The reducer’s job was to handle data changes from Excel
and adding new records from the header. These tasks can now be performed in each
responsible child. Excel can handle any changes and then update the context using
the provided updateData(). And Header can handle adding new records and use the
same function to update the data in the context. Let’s see how.

Context in the header
The new header is going to be responsible for more of the UI, namely the Form in a
Dialog to add new records, so the list of imports is a little longer. Note also that the
new DataContext is imported too:

import Logo from './Logo';
import './Header.css';
import {useContext, useState, useRef} from 'react';

import Button from './Button';
import FormInput from './FormInput';
import Dialog from './Dialog';
import Form from './Form';
import schema from '../config/schema';

import DataContext from '../contexts/DataContext';

function Header({onSearch}) {
 // TODO

Consuming context | 189

}

export default Header;

The pieces of data needed to render the header are:

• data coming from the context
• addNew flag whether or not the add dialog is shown (when the user clicks the

“add” button)

function Header({onSearch}) {
 const {data, updateData} = useContext(DataContext);
 const [addNew, setAddNew] = useState(false);

 const form = useRef(null);

 const count = data.length;
 const placeholder = count > 1 ? `Search ${count} items` : 'Search';

 function saveNew(action) {
 // TODO
 }

 function onAdd() {
 // TODO
 }

 // TODO: render
}

The addNew state is copied verbatim from the v1 of DataFlow. The new code is the
consumption of the DataContext. You can see how using the hook useContext() you
get access to the value prop passed by the <DataContext.Provider>. It’s an object
that has a data property and a function updateData().

In v1 there was a count prop passed to the <Header>. Now the header can access all of
the data and get the count from there (data.length);

Now all the pieces required for rendering are available, so it’s time to work on the
rendering:

function Header({onSearch}) {

 //

 return (
 <div>
 <div className="Header">
 <Logo />
 <div>
 <FormInput

190 | Chapter 8: The Finished App

 placeholder={placeholder}
 id="search"
 onChange={onSearch}
 />
 </div>
 <div>
 <Button onClick={onAdd}>
 ＋ Add whine
 </Button>
 </div>
 </div>
 {addNew ? (
 <Dialog
 modal={true}
 header="Add new item"
 confirmLabel="Add"
 onAction={(action) => saveNew(action)}>
 <Form ref={form} fields={schema} />
 </Dialog>
) : null}
 </div>
);
}

The main difference with the previous version is that now the Dialog and the Form it
contains are implemented here in the header.

The last two things to take a look at are the helper functions onAdd() and saveNew().
The first one merely updates the addNew state:

function onAdd() {
 setAddNew(true);
}

The job of saveNew() is to gather the new record from the form and add it to data.
Then comes the key moment: invoking updateData() with the updated data. This is
the function that comes from the <DataContext.Provider> and was defined in Data
Flow as:

function updateData(newData) {
 newData = clone(newData);
 commitToStorage(newData);
 setData(newData);
}

What happens here is the parent DataFlow receives the new data, updates the state
(with setData()) and this causes React to rerender. Which means Excel and Header
are going rerender but this time having the latest data. So the new record appears in
the Excel table and the search box in the header has an accurate count of the records.

Here’s the Header.js in its entirety:

Consuming context | 191

import Logo from './Logo';
import './Header.css';
import {useContext, useState, useRef} from 'react';

import Button from './Button';
import FormInput from './FormInput';
import Dialog from './Dialog';
import Form from './Form';
import schema from '../config/schema';

import DataContext from '../contexts/DataContext';

function Header({onSearch}) {
 const {data, updateData} = useContext(DataContext);
 const count = data.length;

 const [addNew, setAddNew] = useState(false);

 const form = useRef(null);

 function saveNew(action) {
 setAddNew(false);
 if (action === 'dismiss') {
 return;
 }

 const formData = {};
 Array.from(form.current).forEach(
 (input) => (formData[input.id] = input.value),
);
 data.unshift(formData);
 updateData(data);
 }

 function onAdd() {
 setAddNew(true);
 }

 const placeholder = count > 1 ? `Search ${count} items` : 'Search';
 return (
 <div>
 <div className="Header">
 <Logo />
 <div>
 <FormInput
 placeholder={placeholder}
 id="search"
 onChange={onSearch}
 />
 </div>
 <div>
 <Button onClick={onAdd}>

192 | Chapter 8: The Finished App

 ＋ Add whine
 </Button>
 </div>
 </div>
 {addNew ? (
 <Dialog
 modal={true}
 header="Add new item"
 confirmLabel="Add"
 onAction={(action) => saveNew(action)}>
 <Form ref={form} fields={schema} />
 </Dialog>
) : null}
 </div>
);
}

export default Header;

Context in the data table
The last thing before v2 is fully operational is to update Excel so it doesn’t maintain
its own state but uses the data from the <DataContext.Provider>. There are no ren‐
dering changes required, only the data management.

Since there’s no need for a data state in Excel anymore, the reducer() is no longer
required. However the idea of all data manipulation happening in a central place is
too appealing not to adopt. So let’s just rename reducer() to dataMangler().

Before:

function reducer(data, action) {
 if (action.type === 'sort') {
 const {column, descending} = action.payload;
 // ...
 }
 // ...
}

After:

function dataMangler(data, action, payload) {
 if (action === 'sort') {
 const {column, descending} = payload;
 // ...
 }
 // ...
}

As you can see dataMangler() doesn’t need to follow the reducer API, so the action
can now be a string and the payload can be a separate argument to the function. This

Consuming context | 193

is just a little less typing and also hopefully avoids any confusion: dataMangler() is
not a reducer, just a convenient helper function.

The complete dataMangler():

function dataMangler(data, action, payload) {
 if (action === 'sort') {
 const {column, descending} = payload;
 return data.sort((a, b) => {
 if (a[column] === b[column]) {
 return 0;
 }
 return descending
 ? a[column] < b[column]
 ? 1
 : -1
 : a[column] > b[column]
 ? 1
 : -1;
 });
 }
 if (action === 'save') {
 const {int, edit} = payload;
 data[edit.row][edit.column] = int
 ? parseInt(payload.value, 10)
 : payload.value;
 }
 if (action === 'delete') {
 data = clone(data);
 data.splice(payload.rowidx, 1);
 }
 if (action === 'saveForm') {
 Array.from(payload.form.current).forEach(
 (input) => (data[payload.rowidx][input.id] = input.value),
);
 }
 return data;
}

Note the missing setTimeout(() => action.payload.onDataChange(data) at the
end of the function, there’s no need for onDataChange prop anymore. And no need
for the setTimeout hack.

When using a reducer, returning data was enough to cause a rerendering of Excel.
Now you need the updateData() from the provider, so the parent DataFlow can be
responsible for rerendering. Additionally there are no more calls to dispatch()
which magically call the reducer. All the dispatch() callsites now have two tasks: call
the dataMangler() and then pass its return value to updateData().

Before:

194 | Chapter 8: The Finished App

dispatch({type: 'sort', payload: {column, descending}});

After:

const newData = dataMangler(data, 'sort', {column, descending});
updateData(newData);

Or a one-liner:

updateData(dataMangler(data, 'sort', {column, descending}));

Replace all the 4 dispatch() callsites and v2 of Whinepad is complete and opera‐
tional. For a full code listing consult the book’s code repo.

Updating Discovery
At this point the changes to Excel and Header have affected the Discovery tool too.
While not technically broken, it’s a little crippled. For example, the data table is empty
and the search input doesn’t show a count. To use Discovery to its full potential you
need to setup the environment where Excel and Header live. And “environment”
means a <DataConsumer.Provider> wrapper around the examples.

Before (inline example and sample data coming from the schema and passed as a
prop):

<h2>Excel</h2>
<Excel
 schema={schema}
 initialData={schema.name.samples.map((_, idx) => {
 const element = {};
 for (let key in schema) {
 element[key] = schema[key].samples[idx];
 }
 return element;
 })}
 onDataChange={(data) => {
 console.log(data);
 }}
/>

After (a whole new example component):

<h2>Excel</h2>
<ExcelExample />

The example component gets the sample data from the schema too and then uses it to
maintain state. A simpler updateData() is created and passed as part of the context in
the context provider:

function ExcelExample() {
 const initialData = schema.name.samples.map((_, idx) => {
 const element = {};

Updating Discovery | 195

 for (let key in schema) {
 element[key] = schema[key].samples[idx];
 }
 return element;
 });
 const [data, setData] = useState(initialData);
 function updateData(newData) {
 setData(newData);
 }
 return (
 <DataContext.Provider value={{data, updateData}}>
 <Excel />
 </DataContext.Provider>
);
}

Now the Excel example is fully operational in the Discovery tool. Without this
update, when Excel tries to use the context, it gets the default data and update
Data() as defined in createContext():

// In DataContext.js
const DataContext = React.createContext({
 data: [],
 updateData: () => {},
});

// In Excel.js
const {data, updateData} = useContext(DataContext);

// `data` is now an empty array and `updateData` is a no-op function

Updating the <Header> example in <Discovery> can be simpler since you know that
Header only worries about the data.length count.

Before:

<h2>Header</h2>
<Header
 onSearch={(e) => console.log(e)}
 onAdd={() => alert('add')}
 count={3}
/>

After:

<h2>Header</h2>
<DataContext.Provider value={{data: [1, 2, 3]}}>
 <Header onSearch={(e) => console.log(e)} />
</DataContext.Provider>

Wrapping the Header in a provider now causes the value to be used in the context
and not the defaults from createContext(). As a result if you test the “Add” button

196 | Chapter 8: The Finished App

in the header, you’ll get an error, because updateData() doesn’t exist. To fix the error
and make the button testable, a no-op updateData() is sufficient:

<h2>Header</h2>
<DataContext.Provider value={{data: [1, 2, 3], updateData: () => {}}}>
 <Header onSearch={(e) => console.log(e)} />
</DataContext.Provider>

Now you have a working v2 of Whinepad as well as a working discovery area for
playing with the components individually.

Routing
It’s time to wrap up the chapter and the book by implementing one more feature -
bookmarkable URLs - and along the way learn about multiple contexts and the use
Callback() hook.

Single Page Apps (SPAs) such as Whinepad do not refresh the page so the URLs to
different states of the app don’t need to change. But it’s nice when they do as this
allows users to share links and have the app already in a certain state. For example it’s
friendlier to pass a URL to a co-worker such as https://whinepad.com/filter/merlot
rather than instructions like “Go to https://whinepad.com/ and type merlot in the
search box at the top”.

The ability of an app to recreate a state from a URL is often called routing and there
are a number of third-party libraries that can offer you routing in one way or another.
But let’s take a do-it-yourself approach one more time and come up with a custom
solution.

Let’s offer 4 types of bookmarkable URLs:

• /filter/merlot to bookmark searches for “merlot”
• /add to have an open “Add” dialog for adding records
• /info/1 to show the info (non-editable) dialog for record with ID 1
• /edit/1 for an editable version

The first URL is to be handled in DataFlow since this is where the filtering is passed
around, the second in Header and the last two in Excel. Since various components
need to know the URL, a new context seems appropriate.

Route context
The new context lives in contexts/RouteContext.js:

import React from 'react';

Routing | 197

https://whinepad.com/filter/merlot
https://whinepad.com/

const RouteContext = React.createContext({
 route: {
 add: false,
 edit: null,
 info: null,
 filter: null,
 },
 updateRoute: () => {},
});

export default RouteContext;

Again you see a familiar pattern - the context consists of a piece of data (route) and a
way to update it (updateRoute).

As before, the job of replacing the context defaults with working values falls to the
parent component DataFlow. It requires the new context and attempts to read the
routing information from the URL (window.location.pathname):

// ...
import RouteContext from '../contexts/RouteContext';
//...

// read state from the URL "route"
const route = {};
function resetRoute() {
 route.add = false;
 route.edit = null;
 route.info = null;
 route.filter = null;
}
resetRoute();
const path = window.location.pathname.replace(/\//, '');
if (path) {
 const [action, id] = path.split('/');
 if (action === 'add') {
 route.add = true;
 } else if (action === 'edit' && id !== undefined) {
 route.edit = parseInt(id, 10);
 } else if (action === 'info' && id !== undefined) {
 route.info = parseInt(id, 10);
 } else if (action === 'filter' && id !== undefined) {
 route.filter = id;
 }
}

// ...

function DataFlow() {
 // ...
}

198 | Chapter 8: The Finished App

Now if the app is loaded with the URL /filter/merlot, then route becomes:

{
 add: false,
 edit: null,
 info: null,
 filter: 'merlot',
};

If the app is loaded with the URL /edit/1, route becomes:

{
 add: false,
 edit: 1,
 info: null,
 filter: null,
};

It’s also up to DataFlow to define a function that updates the route:

function DataFlow() {

 // ...

 function updateRoute(action = '', id = '') {
 resetRoute();
 if (action) {
 route[action] = action === 'add' ? true : id;
 }
 id = id !== '' ? '/' + id : '';
 window.history.replaceState(null, null, `/${action}${id}`);
 }

 // ...
}

In the History API (https://developer.mozilla.org/en-US/docs/Web/API/History), using
replaceState() is an alternative to pushState() that doesn’t create history entries
(for the use with the browser’s Back button). This is preferable in this case as the URL
is going to be updated frequently and has the potential to pollute the history stack.
For example having 6 history entries (/filter/m, /filter/me, /filter/mer, etc) as the user
types “merlot” renders the Back button unusable.

Using the filter URL
As you already know, the next step is to wrap any consumers of the new context in a
provider component (<RouteContext.Provider> in this case) and that’s coming. But
for the purposes of the filtering, it’s not yet necessary, because all filtering happens in
DataFlow.

Routing | 199

https://developer.mozilla.org/en-US/docs/Web/API/History

To use the new routing functionality only two changes are necessary. One is in the
onSearch callback which is invoked whenever the user types in the search box.

Before:

function onSearch(e) {
 const s = e.target.value;
 setFilter(s);
}

After:

function onSearch(e) {
 const s = e.target.value;
 setFilter(s);
 if (s) {
 updateRoute('filter', s);
 } else {
 updateRoute();
 }
}

Now when the user types “m” in the search box, the URL changes to /filter/m.
When the user deletes the search string, the URL goes back to /.

Updating the URL is half the job. The other half is pre-filling the search box and
doing the searching when the app is loaded. Doing the searching means making sure
the correct filter prop is passed to Excel. Luckily, this is trivial:

Before:

function DataFlow() {
 const [filter, setFilter] = useState(null);
 // ...
}

After:

function DataFlow() {
 const [filter, setFilter] = useState(route.filter);
 // ...
}

And this is sufficient. Now whenever DataFlow renders, it’s passing <Excel fil
ter={filter}> where the filter value comes from the route. And as a result, Excel
only shows the matching rows. If there’s no filter in the route object then the filter
prop is null and Excel shows everything.

To also prefill the search box (which is found in the Header), you need to wrap the
header in a route context provider. This happens in the DataFlow rendering.

Before:

200 | Chapter 8: The Finished App

function DataFlow() {
 // ...
 return (
 <div className="DataFlow">
 <DataContext.Provider value={{data, updateData}}>
 <Header onSearch={onSearch} />
 <Body>
 <Excel filter={filter} />
 </Body>
 </DataContext.Provider>
 </div>
);
}

After:

function DataFlow() {
 // ...
 return (
 <div className="DataFlow">
 <DataContext.Provider value={{data, updateData}}>
 <RouteContext.Provider value={{route, updateRoute}}>
 <Header onSearch={onSearch} />
 <Body>
 <Excel filter={filter} />
 </Body>
 </RouteContext.Provider>
 </DataContext.Provider>
 </div>
);
}

As you can see, it’s ok to have as many context provider wrappers as you need. They
can be nested as you see above, or they can wrap different components, only where
they are needed.

Consuming the route context in the header
The Header component can gain access to the route via the RouteContext. Before:

// ...
import DataContext from '../contexts/DataContext';

function Header({onSearch}) {
 const {data, updateData} = useContext(DataContext);
 const [addNew, setAddNew] = useState(false);
 // ...

And after:

// ...
import DataContext from '../contexts/DataContext';
import RouteContext from '../contexts/RouteContext';

Routing | 201

function Header({onSearch}) {
 const {data, updateData} = useContext(DataContext);
 const {route, updateRoute} = useContext(RouteContext);
 const [addNew, setAddNew] = useState(route.add);

Note how passing route.add as a default to the addNew state makes the /add URL
work automatically. Setting addNew to true makes the rendering part of the compo‐
nent show a Dialog.

Making sure the search box has a prefilled value coming from the route is also a one-
liner. Before:

<FormInput
 placeholder={placeholder}
 id="search"
 onChange={onSearch}
/>

After:

<FormInput
 placeholder={placeholder}
 id="search"
 onChange={onSearch}
 defaultValue={route.filter}
/>

The other thing the header needs to do is update the routing context whenever a user
makes an appropriate action. When the user clicks the “Add” button, the URL should
change to /add. This is done by calling the updateRoute() from the context. Before:

function onAdd() {
 setAddNew(true);
}

After:

function onAdd() {
 setAddNew(true);
 updateRoute('add');
}

And when the user dismisses the dialog (or submits the form and the dialog disap‐
pears), the /add should be removed from the URL. Before:

function saveNew(action) {
 setAddNew(false);
 // ...
}

After:

202 | Chapter 8: The Finished App

function saveNew(action) {
 setAddNew(false);
 updateRoute();
 // ...
}

Consuming the route context in the data table
Using the routing context in Excel looks familiar:

// ...
import RouteContext from '../contexts/RouteContext';

function Excel({filter}) {
 const {route, updateRoute} = useContext(RouteContext);
 // ...
}

A lot in this component happens in the handleAction() helper (see Chapter 7). It’s
responsible for opening and closing dialogs as well as for the content of the dialogs.
This helper can be used for the purposes of routing so long as it’s invoked with the
correct arguments.

With the help of useEffect() this helper can be called when the data table renders
and the result is opening a dialog whenever the URL is /edit/[ID] or /info/[ID].
Here is how:

useEffect(() => {
 if (route.edit !== null && route.edit < data.length) {
 handleAction(route.edit, 'edit');
 } else if (route.info !== null && route.info < data.length) {
 handleAction(route.info, 'info');
 }
}, [route, handleAction, data]);

Here route, handleAction and data are the effect’s dependencies, so it’s not invoked
too often. A quick check for data.length prevents opening the dialog with IDs that
are out of range (cannot edit ID 5 when only 3 records exist). Then handleAction()
is invoked, for example handleAction(2, 'info') when the URL is /info/2.

So handleAction() is responsible for reading the routing info and creating the cor‐
rect dialog. But it’s also responsible for updating the URL on user actions. This part is
simple. Closing the dialog before:

setDialog(null);

And after:

setDialog(null);
updateRoute(); // clean up the URL

Opening the dialog before:

Routing | 203

const isEdit = type === 'edit';
if (type === 'info' || isEdit) {
 const formPrefill = data[rowidx];
 setDialog(
 <Dialog ...
// ...

And after:

const isEdit = type === 'edit';
if (type === 'info' || isEdit) {
 const formPrefill = data[rowidx];
 updateRoute(type, rowidx); // makes the URL e.g. /edit/3
 setDialog(
 <Dialog ...
// ...

With that the functionality should be done, however there’s just one more step.

useCallback()

When setting up useEffect, handleAction() was passed as a dependency:

useEffect(() => {
 if (route.edit !== null && route.edit < data.length) {
 handleAction(route.edit, 'edit');
 } else if (route.info !== null && route.info < data.length) {
 handleAction(route.info, 'info');
 }
}, [route, handleAction, data]);

But since handleAction() is an inline function inside Excel(), this means every time
Excel() is invoked to rerender, a new handleAction() is created. And useEffect()
sees the updated dependency. This is not efficient, there’s no point of having a func‐
tion dependency that changes every time even though the function does the same
thing.

React provides a useCallback() hook to help with just that. It memoizes a callback
function with its dependencies. So if a new handleAction() is created on a rerender
of Excel, but its dependencies have not changed, then there’s no need for useEf
fect() to see a new dependency. The old memoized handleAction should do the
trick.

Wrapping the handleAction with a useCallback() should look somewhat familiar to
useEffect() where the pattern is: first argument is a function, the second is an array
of dependencies.

Before:

204 | Chapter 8: The Finished App

function handleAction(rowidx, type) {
 // ...
}

After:

const handleAction = useCallback(
 (rowidx, type) => {
 // ...
 },
 [data, updateData, updateRoute],
);

The dependencies data, updateData and updateRoute are the only external pieces of
info that handleAction requires to work properly. So if these do not change between
rerenders, an older memoized handleAction is sufficient. Here’s the complete and
final version of handleAction() after all the routing changes:

const handleAction = useCallback(
 (rowidx, type) => {
 if (type === 'delete') {
 setDialog(
 <Dialog
 modal
 header="Confirm deletion"
 confirmLabel="Delete"
 onAction={(action) => {
 setDialog(null);
 if (action === 'confirm') {
 updateData(
 dataMangler(data, 'delete', {
 rowidx,
 updateData,
 }),
);
 }
 }}>
 {`Are you sure you want to delete "${data[rowidx].name}"?`}
 </Dialog>,
);
 }
 const isEdit = type === 'edit';
 if (type === 'info' || isEdit) {
 const formPrefill = data[rowidx];
 updateRoute(type, rowidx);
 setDialog(
 <Dialog
 modal
 extendedDismiss={!isEdit}
 header={isEdit ? 'Edit item' : 'Item details'}
 confirmLabel={isEdit ? 'Save' : 'ok'}
 hasCancel={isEdit}
 onAction={(action) => {

Routing | 205

 setDialog(null);
 updateRoute();
 if (isEdit && action === 'confirm') {
 updateData(
 dataMangler(data, 'saveForm', {
 rowidx,
 form,
 updateData,
 }),
);
 }
 }}>
 <Form
 ref={form}
 fields={schema}
 initialData={formPrefill}
 readonly={!isEdit}
 />
 </Dialog>,
);
 }
 },
 [data, updateData, updateRoute],
);

The End
I’m happy you got this far, dear reader. This is Stoyan, your author. I hope you’re a
more confident programmer now, someone who knows how to get a new React
project off the ground or join an existing one and take it into the future.

A programming book is like a snapshot in time. Technologies change and evolve
while the book remains the same. I did my best to focus on evergreen content and let
the evolution take its place. But it is my goal to attempt and bring new additions to
this book (in the form of PDF appendices) before a new edition is due. If you’d like to
keep up with the new content please join the mailing list at https://react.stoyanstefa
nov.com.

206 | Chapter 8: The Finished App

https://react.stoyanstefanov.com
https://react.stoyanstefanov.com

About the Author
Stoyan Stefanov is an enterpreneur, a web performance consultant and occasionally a
technical writer. He was an early Facebook engineer who spent 10 years building vari‐
ous developer-facing parts of the company. Previously at Yahoo, he was the creator of
the smush.it online image-optimization tool and architect of the YSlow 2.0. perfor‐
mance tool. Stoyan is the author of JavaScript Patterns (O’Reilly) and Object-Oriented
JavaScript (Packt Publishing), among other titles. He runs perfplanet.com, has a pod‐
cast, a blog, and speaks at conferences around the world.

Colophon
The animal on the cover of React: Up & Running is an ‘i’iwi (pronounced ee-EE-vee)
bird, which is also known as a scarlet Hawaiian honeycreeper. The author’s daughter
chose this animal after doing school report on it. The ‘i’iwi is the third most common
native land bird in the Hawaiian Islands, though many species in its family, Fringilli‐
dae, are endangered or extinct. This small, brilliantly colored bird is a recognizable
symbol of Hawai’i, with the largest colonies living on the islands of Hawai’i, Maui, and
Kaua’i.

Adult ‘i’iwis are mostly scarlet, with black wings and tails and a long, curved bill. The
bright red color easily contrasts with the surrounding green foliage, making the ‘i’iwi
very easy to spot in the wild. Though its feathers were used extensively to decorate
the cloaks and helmets of Hawaiian nobility, it avoided extinction because it was con‐
sidered less sacred than its relative, the Hawaiian mamo.

The ‘i’iwi’s diet consists mostly of nectar from flowers and the 'ōhiʻa lehua tree,
though it will occasionally eat small insects. It is also an altitudinal migrator; it fol‐
lows the progress of flowers as they bloom at increasing altitudes throughout the year.
This means that they are able to migrate between islands, though they are rare on
O’ahu and Moloka’i due to habitat destruction, and have been extinct from Lānaʻi
since 1929.

There are several efforts to preserve the current ‘i’iwi population; the birds are very
susceptible to fowlpox and avian influenza, and are suffering from the effects of
deforestation and invasive plant species. Wild pigs create wallows that harbor mos‐
quitos, so blocking off forest areas has helped to control mosquito-borne diseases,
and there are projects underway that attempt to restore forests and remove nonnative
plant species, giving the flowers that ‘i’iwis prefer the chance to thrive.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

https://shop.oreilly.com/product/9780596806767.do
https://podcast.perfplanet.com
https://podcast.perfplanet.com
https://phpied.com

The cover image is from Wood’s Illustrated Natural History. The cover fonts are Gil‐
roy Semibold and Guardian Sans. The text font is Adobe Minion Pro; the heading
font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Cover
	Copyright
	Table of Contents
	Preface
	About This Book
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us

	Chapter 1. Hello World
	Setup
	Hello React World
	What Just Happened?
	React.createElement()
	JSX
	Setup Babel
	Hello JSX world
	On Transpilation

	Next: Custom Components

	Chapter 2. The Life of a Component
	A Custom Function Component
	A JSX Version

	A Custom Class Component
	Which Syntax to Use?

	Properties
	Properties in Function Components
	Default Properties

	State
	A Textarea Component
	Make it Stateful
	A Note on DOM Events
	Event Handling in the Olden Days
	Event Handling in React
	Event-Handling Syntax

	Props Versus State
	Props in Initial State: An Anti-Pattern
	Accessing the Component from the Outside
	Lifecycle Methods
	Lifecycle Example: Log It All
	Paranoid State Protection

	Lifecycle Example: Using a Child Component
	Performance Win: Prevent Component Updates
	Whatever Happened to Function Components?

	Chapter 3. Excel: A Fancy Table Component
	Data First
	Table Headers Loop
	Table Headers Loop, a terse version
	Debugging the Console Warning
	Adding <td> Content
	Prop types
	Can You Improve the Component?

	Sorting
	Can You Improve the Component?

	Sorting UI Cues
	Editing Data
	Editable Cell
	Input Field Cell
	Saving
	Conclusion and Virtual DOM Diffs

	Search
	State and UI
	Filtering Content
	Update the save() method
	Can You Improve the Search?

	Instant Replay
	Cleaning up event handlers
	Cleaning solution
	Can You Improve the Replay?
	An Alternative Implementation?

	Download the Table Data
	Fetching data

	Chapter 4. Functional Excel
	A quick refresher: Function vs Class components
	Rendering the data
	The state hook
	Sorting the table
	Editing data
	Searching
	Lifecycles in a world of hooks
	Troubles with lifecycle methods
	useEffect()
	Cleaning up side effects
	Trouble-free lifecycles
	useLayoutEffect()

	A custom hook
	Wrapping up the replay
	useReducer
	Reducer functions
	Actions
	An example reducer
	Unit testing reducers

	Excel with a reducer

	Chapter 5. JSX
	A couple of tools
	Whitespace in JSX
	Comments in JSX
	HTML Entities
	Anti-XSS

	Spread Attributes
	Parent-to-Child Spread Attributes

	Returning Multiple Nodes in JSX
	A Wrapper
	A fragment
	An Array

	JSX Versus HTML Differences
	No class, What for?
	style Is an Object
	Closing Tags
	camelCase Attributes

	Namespaced components
	JSX and Forms
	onChange Handler
	value Versus defaultValue
	<textarea> Value
	<select> Value
	Controlled and uncontrolled components
	Uncontrolled example
	Uncontrolled example with an onSubmit handler
	Controlled example

	Chapter 6. Setting Up for App Development
	Create-React-App
	Node.js
	Hello CRA
	Build and deploy
	Mistakes were made

	package.json and node_modules
	Poking around the code
	Indices
	JavaScript: Modernized
	CSS

	Moving On

	Chapter 7. Building the App’s Components
	Setup
	Start Coding
	Refactoring Excel
	Version 0.0.1 of the new app
	CSS
	Local storage
	The Components
	Discovery

	A logo and a body
	Logo
	Body
	All discoverable

	<Button> Component
	Button.js

	Forms
	<Suggest>
	<Rating> Component
	A <FormInput> “Factory”
	<Form>

	<Actions>
	Dialogs
	Header
	App Config
	<Excel>: New and Improved
	The overall structure
	Rendering
	React.Strict and reducers
	Excel’s little helpers

	Chapter 8. The Finished App
	Updated App.js
	DataFlow component
	DataFlow body

	Job done
	Whinepad v2

	Context
	Next steps
	Curricular data

	Providing context
	Consuming context
	Context in the header
	Context in the data table

	Updating Discovery
	Routing
	Route context
	Using the filter URL
	Consuming the route context in the header
	Consuming the route context in the data table
	useCallback()

	The End

	About the Author
	Colophon

