

Praise for Reactive Systems in Java

Convinced Reactive is right for your project? This is the book that will
take your project from Reactive in theory to Reactive in production.

Make sure every member of your team reads this book.
—K. Scott Morrison, CTO

Clement and Ken wrote, by far, the most up-to-date book on reactive
systems that is interwoven with theories and practical code examples. It
is a must-read for anyone who wants to get a deep understanding of
reactive systems, event-driven architecture, and asynchronous messaging
in today’s complex cloud native environments.

—Mary Grygleski, Senior Developer Advocate, IBM

As someone new to reactive programming and Quarkus, I found this book
fascinating and extremely helpful. Its hands-on approach and illustrative
examples were ideal for getting up to speed quickly.

—Chris Mayfield, Associate Professor, James Madison
University

If you know where to look, reactive computer systems have been around
for decades, but it’s in recent times, with the advent of serverless and
event-driven architectures, that we’ve really seen them elevated to the
point where most application developers need to be aware of them. For
Java developers, this book is the perfect way to find out what a reactive
system is, how to reason about it, and how to build them in a reliable and
scalable manner using the most popular Kubernetes-native framework
out there, Quarkus. The added advantage is that the authors speak from
years of real-world product experience.

—Mark Little, VP Engineering, Red Hat

Reactive Systems in Java
Resilient, Event-Driven Architecture with Quarkus

Clement Escoffier and Ken Finnigan

Reactive Systems in Java
by Clement Escoffier and Ken Finnigan

Copyright © 2022 Clement Escoffier and Ken Finnigan. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Suzanne McQuade

Development Editor: Jill Leonard

Production Editor: Caitlin Ghegan

Copyeditor: Sharon Wilkey

Proofreader: Kim Cofer

Indexer: WordCo Indexing Services, Inc.

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

November 2021: First Edition

Revision History for the First Edition

http://oreilly.com/

2021-11-09: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492091721 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
Reactive Systems in Java, the cover image, and related trade dress are
trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not
represent the publisher’s views. While the publisher and the authors have
used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the authors disclaim
all responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at
your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

978-1-492-09172-1

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781492091721

Dedication
To Déborah, Flore, and Néo, who left us too early.

To Erin, Lorcán, and Daire.

Preface

In the IT world, the limits of today are the gateways of tomorrow. In the last
50 years, the IT world has continuously evolved, tirelessly, always pushing
the limits. These changes are due to not only technical progress, but also us,
the consumers. As consumers, we continue to demand more and more from
the software we interact with every day. In addition, our way of interacting
with software has entirely changed. We can’t live without mobile
applications and devices and now accept receiving notifications all day
long. The Internet of Things (IoT) is an emerging market promising many
more innovations, increasing the number of events and data processed
uninterruptedly. The cloud and Kubernetes have not only changed our usage
but also radically transformed the way we design, develop, deploy, and
maintain applications.

But don’t be mistaken; all these revolutions come with a price. While they
have enabled new uses and applications, they have also introduced massive
complexity. Most software systems today are distributed systems. And
distributed systems are hard to design, build, and operate, especially on the
scale we need to implement these new modern applications. We need to
handle failures, asynchronous communication, an ever-changing topology,
the dynamic availability of resources, and so on. While the cloud promises
unlimited resources, money is a limiting factor, and increasing the
deployment density, meaning running more on fewer resources, becomes a
stringent concern.

So, what about Reactive? It is not a library you use in your code or a magic
framework. Reactive is a set of principles, tools, methodologies, and
frameworks that lead to building better distributed systems. How much
better? It depends on the system, but applications following the Reactive
principles embrace distributed systems’ challenges and focus on elasticity,
resilience, and responsiveness, as explained in The Reactive Manifesto.

https://oreil.ly/fO6n0

In this book, we use the noun Reactive, with an uppercase R, to aggregate
all the various facets of the reactive landscape, such as reactive
programming, reactive systems, reactive streams, and so on. With this book,
you’ll learn how Reactive will help us face these new concerns and how it
fits in cloud environments. After reading this book, you will be able to build
reactive systems—resilient, adaptable, event-driven distributed systems.

Who Should Read This Book?
This book targets intermediate and advanced Java developers. It would be
best if you were reasonably comfortable with Java; however, prior
knowledge of reactive programming or even Reactive in general are not
required. Many concepts in this book relate to distributed systems, but you
do not need to be familiar with them either.

Reactive systems often rely on message brokers such as Apache Kafka or
Advanced Message Queuing Protocol (AMQP). This book introduces the
basic knowledge you need to understand how such brokers help in
designing and implementing reactive systems.

Three distinct groups can benefit from this book:

Developers who are building cloud native applications or
distributed systems

Architects seeking to understand the role of reactive and event-
driven architectures

Curious developers who have heard about Reactive and want a
better understanding of it

With this book, you will start a journey toward understanding, designing,
building, and implementing reactive architectures. You will not only learn
how it helps to build better distributed systems and cloud applications, but
also see how you can use reactive patterns to improve existing systems.

What About Quarkus?
Attentive readers would have noticed the mention of Quarkus in the subtitle
of this book. But, so far, we haven’t mentioned it. Quarkus is a Java stack
tailored for the cloud. It uses build-time techniques to reduce the amount of
memory used by the application and provide a fast startup time.

But Quarkus is also a reactive stack. At its core, a reactive engine enables
the creation of concurrent and resilient applications. Quarkus also provides
all the features you need to build distributed systems that can adapt to
fluctuating loads and inevitable failures.

Throughout this book, we use Quarkus to demonstrate the benefits of the
reactive approach and introduce various patterns and best practices. Don’t
panic if you don’t have prior knowledge or experience with it. We will
accompany you on the journey, guiding you at every step.

This book focuses on creating reactive applications and systems that
leverage Quarkus capabilities and provides all the knowledge required to
build such systems. We do not cover the complete Quarkus ecosystem, as
this book concentrates on the Quarkus components that help in the
construction of reactive systems.

Navigating This Book
If you are just discovering Reactive and want to know more about it,
reading this book from cover to cover will leave you with an understanding
of Reactive and how it can help you. If you are a seasoned reactive
developer interested in Quarkus and its reactive features, you may want to
skip the first part of this book and jump to the chapters that interest you the
most.

Part I is a brief introduction, setting the context:

Chapter 1 provides a brief overview of the reactive landscape,
including its benefits and drawbacks.

Chapter 2 presents Quarkus and its build-time approach to
reducing startup time and memory usage.

Part II covers Reactive in general:

Chapter 3 explains the complexities of distributed systems and the
misconceptions; these are the reasons for being reactive.

Chapter 4 presents the characteristics of reactive systems.

Chapter 5 covers the various forms of asynchronous development
models, with a focus on reactive programming.

Part III explains how to build reactive applications with Quarkus:

Chapter 6 discusses the reactive engine and bridging imperative
and reactive programming.

Chapter 7 is a deep dive on SmallRye Mutiny, the reactive
programming library used in Quarkus.

Chapter 8 explains HTTP request characteristics and how we can
be reactive with HTTP.

Chapter 9 explains how you can use Quarkus to build highly
concurrent and efficient applications interacting with a database.

The final part, Part IV, connects the dots and presents how you can build
reactive systems with Quarkus:

Chapter 10 dives into the integration of Quarkus applications with
messaging technologies, an essential ingredient of reactive
systems.

Chapter 11 focuses on the integration with Apache Kafka and
AMQP, and how to build reactive systems with them.

Chapter 12 explores the various ways to consume HTTP endpoints
from a Quarkus application and how to enforce resilience and
responsiveness.

Chapter 13 covers observability concerns in reactive systems, such
as self-healing, tracing, and monitoring.

Getting You Ready
Throughout this book, you will see many examples of code. These
examples illustrate the concepts covered in this book. Some are basic and
run in an IDE, and others require a couple of prerequisites.

We cover these examples, one by one, throughout this book. Now, maybe
you’re not one for suspense. Or, more likely, maybe you’re already tired of
hearing us blather on at length and just want to see this working. If that’s
the case, simply point your browser to
https://github.com/cescoffier/reactive-systems-in-java and feel free to kick
the tires a bit. You can retrieve the code with Git using git clone
https://github.com/cescoffier/reactive-systems-in-
java.git. Alternatively, you can download a ZIP file and unzip it.

The code is organized by chapter. For example, the code related to
Chapter 2 is available in the chapter-2 directory (Table P-1). Depending on
the chapter, the code may be split into multiple modules. For examples that
are available in the code repository, the code snippet title in the book
indicates the location of the file in the repository.

https://github.com/cescoffier/reactive-systems-in-java
https://oreil.ly/Ey74z

T
a
b
l
e

P
-
1
.
C
o
d
e

l
o
c
a
t
i
o
n

p
e
r
c
h
a
p
t
e
r

Chapter Title Path

Chapter 2 Introduction to Quarkus https://github.com/cescoffier/reactive-
systems-in-java/tree/master/chapter-2

Chapter 3 The Dark Side of Distributed
Systems

https://github.com/cescoffier/reactive-
systems-in-java/tree/master/chapter-3

Chapter 4 Design Principles of Reactive
Systems

https://github.com/cescoffier/reactive-
systems-in-java/tree/master/chapter-4

Chapter 5 Reactive Programming: Taming
the Asynchronicity

https://github.com/cescoffier/reactive-
systems-in-java/tree/master/chapter-5

Chapter 7 Mutiny: An Event-Driven
Reactive Programming API

https://github.com/cescoffier/reactive-
systems-in-java/tree/master/chapter-7

Chapter 8 HTTP with Reactive in Mind https://github.com/cescoffier/reactive-
systems-in-java/tree/master/chapter-8

Chapter 9 Accessing Data Reactively https://github.com/cescoffier/reactive-
systems-in-java/tree/master/chapter-9

Chapter 10 Reactive Messaging: The
Connective Tissue

https://github.com/cescoffier/reactive-
systems-in-java/tree/master/chapter-10

Chapter 11 The Event Bus: The Backbone https://github.com/cescoffier/reactive-
systems-in-java/tree/master/chapter-11

Chapter 12 Reactive REST Client:
Connecting with HTTP
Endpoints

https://github.com/cescoffier/reactive-
systems-in-java/tree/master/chapter-12

Chapter 13 Observing Reactive and Event-
Driven Architectures

https://github.com/cescoffier/reactive-
systems-in-java/tree/master/chapter-13

The examples from the code repository use Java 11, so be sure to have a
suitable Java Development Kit (JDK) installed on your machine. They also
use Apache Maven as the build tool. You don’t have to install Maven, as the
repository uses the Maven Wrapper (provisioning Maven automatically).

https://github.com/cescoffier/reactive-systems-in-java/tree/master/chapter-2
https://github.com/cescoffier/reactive-systems-in-java/tree/master/chapter-3
https://github.com/cescoffier/reactive-systems-in-java/tree/master/chapter-4
https://github.com/cescoffier/reactive-systems-in-java/tree/master/chapter-5
https://github.com/cescoffier/reactive-systems-in-java/tree/master/chapter-7
https://github.com/cescoffier/reactive-systems-in-java/tree/master/chapter-8
https://github.com/cescoffier/reactive-systems-in-java/tree/master/chapter-9
https://github.com/cescoffier/reactive-systems-in-java/tree/master/chapter-10
https://github.com/cescoffier/reactive-systems-in-java/tree/master/chapter-11
https://github.com/cescoffier/reactive-systems-in-java/tree/master/chapter-12
https://github.com/cescoffier/reactive-systems-in-java/tree/master/chapter-13
https://oreil.ly/0oKc9

However, if you prefer installing it, download it from the Apache Maven
Project website, and follow the instructions on the Installing Apache Maven
page.

To build the code, run mvn verify from the root of the project. Maven is
going to download a set of artifacts, so be sure to have an internet
connection.

This book covers Quarkus, a Kubernetes-native Java stack. You don’t need
to install anything to use Quarkus, as long as you have Java and Maven. It
will download everything else automatically.

You will need Docker. Docker is used to create containers for our
applications. Install Docker by following the instructions at the Get Docker
page.

Finally, several chapters illustrate the deployment of our reactive
applications in Kubernetes. To deploy to Kubernetes, you first need
kubectl, a command-line tool to interact with Kubernetes. Install it by
following the instructions from the Kubernetes Install Tools page. Unless
you have a Kubernetes cluster handy, we also recommend minikube be
installed on your machine, to provide a Kubernetes environment. Follow
the instructions at the minikube website to install it.

Why do we need all these tools? You will see in this book that being
reactive adds constraints to your application but also to your infrastructure.
Kubernetes provides the primitives we need to deploy applications, create
replicas, and keep our system on track. On the other side, Quarkus provides
the set of features we need to implement reactive applications, including
nonblocking I/O, reactive programming, reactive APIs, and messaging
capabilities. Quarkus also provides integration with Kubernetes for easing
the deployment and configuration of applications.

Table P-2 lists the tools we are going to use in the book.

https://oreil.ly/XgiCr
https://oreil.ly/nwJV9
https://oreil.ly/DjBnj
https://oreil.ly/4SA4J
https://oreil.ly/vuCs1

T
a
b
l
e

P
-
2
.
T
o
o
l
s
u
s
e
d

i
n

t
h
i
s
b
o
o
k

Tool Website Description

Java 11 https://adoptopenjdk.ne
t

Java Virtual Machine (JVM) and Java Development
Kit (JDK)

Apache Maven https://maven.apache.or
g/download.cgi

Build automation tool, based on the project object
model (POM)

Quarkus https://quarkus.io A Kubernetes-native stack that optimizes Java for
containers

Docker https://www.docker.com
/get-started

Container creation and execution

Kubernetes https://kubernetes.io A container orchestration platform, also known as
K8s

minikube https://minikube.sigs.k8
s.io/docs/start

A local distribution of Kubernetes

GraalVM https://www.graalvm.or
g

Provides, among others tools, a compiler to create
native executables from Java code

Node.js https://nodejs.org/en A JavaScript runtime engine

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

https://adoptopenjdk.net/
https://maven.apache.org/download.cgi
https://quarkus.io/
https://www.docker.com/get-started
https://kubernetes.io/
https://minikube.sigs.k8s.io/docs/start
https://www.graalvm.org/
https://nodejs.org/en

Constant width italic

Shows text that should be replaced with user-supplied values or by
values determined by context.

TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.

O’Reilly Online Learning

NOTE
For more than 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform.
O’Reilly’s online learning platform gives you on-demand access to live
training courses, in-depth learning paths, interactive coding environments,
and a vast collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit http://oreilly.com.

http://oreilly.com/
http://oreilly.com/

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at
https://oreil.ly/ReactiveSysJava.

Email bookquestions@oreilly.com to comment or ask technical questions
about this book.

For news and information about our books and courses, visit
http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Acknowledgments
Writing a book is never easy. It’s a long and demanding task, taking lots of
energy and eating quite a lot of family time. Therefore, our first thanks go
to our families who supported us during this marathon.

https://oreil.ly/ReactiveSysJava
mailto:bookquestions@oreilly.com
http://oreilly.com/
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia

We are also grateful to be working with exceptional people at Red Hat.
Countless people helped us during this journey; it’s impossible to cite all of
them. A special thank you to Georgios Andrianakis, Roberto Cortez, Stuart
Douglas, Stéphane Epardaud, Jason Greene, Sanne Grinovero, Gavin King,
Martin Kouba, Julien Ponge, Erin Schnabel, Guillaume Smet, Michal
Szynkiewicz, Ladislav Thon, and Julien Viet. Their work is not only
brilliant, but also breathtaking. It’s a privilege for us to work with such top-
notch developers.

Finally, we thank all the reviewers who have provided fantastic and
constructive feedback: Mary Grygleski, Adam Bellemare, Antonio
Goncalves, Mark Little, Scott Morrison, Nick Keune, and Chris Mayfield.

Part I. Reactive and Quarkus
Introduction

Chapter 1. Reactive in a
Nutshell

Reactive is an overloaded word. You may have searched for reactive with a
search engine to understand what it’s all about. If you haven’t, no worries—
you’ve saved yourself a lot of confusion. There are many reactive things:
Reactive Systems, Reactive Programming, Reactive extensions, Reactive
messaging. Every day new ones pop up. Are all these “reactives” the same
reactive? Are they different?

These are the questions we are going to answer in this chapter. We are going
to sneak a peek at the reactive landscape to identify and help you
understand the various nuances of reactive, what they mean, the concepts
associated with them, and how they relate to one another. Because yes,
without spoiling too much, all these “reactives” are related.

NOTE
As noted in the preface, we use the noun Reactive, with an uppercase R, to aggregate all
the various facets of the reactive landscape, such as reactive programming, reactive
systems, reactive streams, and so on.

What Do We Mean by Reactive?
Let’s start at the beginning. Forget about software and IT for a few minutes,
and use an old-fashioned approach. If we look for reactive in the Oxford
English Dictionary, we find the following definition:

https://oreil.ly/nL7Fp

reactive (adjective)

Showing a response to a stimulus. 1.1 Acting in response to a situation
rather than creating or controlling it. 1.2 Having a tendency to react
chemically. 1.3 (Physiology) Showing an immune response to a specific
antigen. 1.4 (Of a disease or illness) Caused by a reaction to something.
1.5 (Physics) Relating to reactance.

Among these definitions, two are relevant in our context. The first
definition, showing a response to a stimulus, refers to some kind of
reaction. Being reactive means reacting to stimuli, whatever they are.
Subdefinition 1.1 says that being reactive is also about facing unexpected
and uncontrolled situations. You will see throughout this book that cloud
native applications, and distributed systems in general, face plenty of these
kinds of situations. While these definitions are interesting, they don’t apply
to software. But we can take these definitions into account to make a new
one specific to software:

1.6 (Software) An application reacting to stimuli, such as user events,
requests, and failures.

Yet, as you will see in this book, today’s reactive goes beyond this. Reactive
is an approach to designing, implementing, and reasoning about your
system in terms of events and flows. Reactive is about building responsive,
resilient, and elastic applications. Reactive is also about resource utilization
through efficient management of resources and communication. To put it
another way: Reactive is about designing and building better distributed
systems—more robust and more efficient. We call them reactive systems.

Reactive Software Is Not New
But wait, the definition (1.6) we just gave is not groundbreaking. On the
contrary, you may feel some déjà vu, no? Isn’t the nature of software to
react to user inputs and operating system signals? How does software
behave when you hit a keystroke? It reacts. So, why are there so many

books, talks, and debates about Reactive if it’s just regular software?
Please be patient; there is a bit more to it.

But you are right; Reactive is not new. It’s actually pretty old. We can track
the foundation of the ideas behind reactive software to just after the
appearance of computers in the ’50s. The DYSEAC, a first-generation
computer (in operation in 1954), was already using hardware interrupts as
an optimization, eliminating waiting time in polling loops. This computer
was one of the first systems to use reactive and event-driven architecture!

Reacting to events implies being event-driven. Event-driven software
receives and produces events. The received events determine the flow of the
program. A fundamental aspect of being event-driven is asynchronicity:
you don’t know when you are going to receive events. That is precisely
definition 1.1 from the previous section. You cannot plan when you will
receive events, are not in control of which events you will get, and you need
to be prepared to handle them. That’s the essence of being reactive: being
asynchronous.

The Reactive Landscape
From this idea of being asynchronous and event-driven, many forms of
Reactive have emerged. The reactive landscape is broad and crowded.
Figure 1-1 depicts an excerpt of this landscape and the relationships among
the main reactive things.

1

2

https://oreil.ly/ehP7l

Figure 1-1. The reactive landscape

But don’t forget our objective: building better distributed systems—reactive
systems. The other “reactives” are here to help us implement these systems.

The reasons for Reactive, and reactive systems in particular, come from
distributed systems. As you will see in Chapter 3, building distributed

systems is hard. In 2013, distributed system experts wrote the first version
of “The Reactive Manifesto” and introduced the concept of reactive
systems.

Yes, you can build distributed systems without applying reactive principles.
Reactive provides a blueprint to ensure that no significant known concerns
were overlooked while architecting and developing your system. On the
other hand, you can apply these principles on nondistributed systems.

A reactive system is first and foremost responsive. It must handle requests
in a timely fashion even under load or when facing failures. To achieve this
responsiveness, the manifesto proposes using asynchronous message
passing as the primary way to communicate between the components
forming the system. You will see in Chapter 4 how this communication
method enables elasticity and resilience, two essential attributes of solid
distributed systems. The objective of this book is to show you how to build
such reactive systems with Quarkus. So, building reactive systems is our
primary goal.

Infusing asynchronous message passing at the core of distributed systems
does not come without consequences. Your application needs to use
asynchronous code and nonblocking I/O, the ability provided by the
operating system to enqueue I/O interactions without having to actively
wait for the completion. (We cover nonblocking I/Os in Chapter 4). The
latter is essential to improve resource utilization, such as CPU and memory,
another important aspect of Reactive. Today, many toolkits and
frameworks, such as Quarkus, Eclipse Vert.x, Micronaut, Helidon, and
Netty, are using nonblocking I/O for this very reason: doing more with
limited resources.

Yet having a runtime leveraging nonblocking I/O is not enough to be
reactive. You also need to write asynchronous code embracing the
nonblocking I/O mechanics. Otherwise, the resource utilization benefits
would vanish. Writing asynchronous code is a paradigm shift. From the
traditional (imperative), do x; do y;, you are now going to shape your
code as on event(e) do x; on event(f) do y;. In other

https://oreil.ly/6z8mt
https://vertx.io/
https://micronaut.io/
https://helidon.io/
https://netty.io/

words, to be reactive, not only is your system an event-driven architecture,
but also your code is going to become event-driven. One of the most
straightforward approaches to implementing such code is callbacks: you
register functions invoked when events are received. Like futures, promises,
and coroutines, every other approach is based on callbacks and offers
higher-level APIs.

NOTE
You may wonder why spreadsheets are in the landscape. Spreadsheets are reactive.
When you write a formula in a cell and change a value read (in another cell) by the
formula, the result of this formula is updated. The cell reacts to the update of a value
(event), and the outcome (reaction) is the new result. Yes, your manager may be a better
reactive developer than you are! But don’t worry, this book will change this.

Reactive programming, addressed in Chapter 5, is also an approach to
writing asynchronous code. It uses data streams to structure your code. You
observe the data transiting in these streams and react to it. Reactive
programming provides a powerful abstraction and APIs to shape event-
driven code.

But using data streams comes with an issue. If you have a fast producer
directly connected to a slow consumer, you may flood the consumer. As you
will see, we can buffer or use a message broker in between, but imagine
flooding a consumer without them. That would be against the
responsiveness and anti-fragile ideas promoted by Reactive. To help us with
that particular issue, Reactive Streams proposes an asynchronous and
nonblocking backpressure protocol where the consumer signals to the
producer its availability. As you can imagine, this may not be applicable
everywhere, as some data sources cannot be slowed down.

The popularity of Reactive Streams has increased over the past few years.
For example, RSocket is a network protocol based on Reactive Streams.
R2DBC proposes asynchronous database access using Reactive Streams.
Also, RxJava, Project Reactor, and SmallRye Mutiny adopted reactive

https://oreil.ly/5c275
https://rsocket.io/
https://r2dbc.io/
https://oreil.ly/QNEOJ
https://oreil.ly/eUHAL
https://oreil.ly/A17fF

streams to handle backpressure. Finally, Vert.x allows mapping the Vert.x
backpressure model to Reactive Streams.

That concludes our quick tour of the reactive landscape. As we said, it’s
crowded with many terms, and many tools. But never lose sight of the
overall objective of Reactive: to build better distributed systems. That’s the
primary focus of this book.

Why Are Reactive Architectures So Well-
Suited for Cloud Native Applications?
The cloud—public, private, or hybrid—has put Reactive in the spotlight.
The cloud is a distributed system. When you run your application on the
cloud, that application faces a high degree of uncertainty. The provisioning
of your application can be slow, or fast, or even fail. Communication
disruptions are common, because of network failures or partitions. You may
hit quota restrictions, resource shortages, and hardware failures. Some
services you are using can be unavailable at times or moved to other
locations.

While the cloud provides outstanding facilities for the infrastructure layer, it
covers only half of the story. The second half is your application. It needs to
be designed to be a part of a distributed system. It needs to understand the
challenges of being part of such a system.

The reactive principles we cover in this book help to embrace the inherent
uncertainty and challenges of distributed systems and cloud applications. It
won’t hide them—to the contrary, it embraces them.

As microservices and serverless computing are becoming prominent
architectural styles, the reactive principles become even more important.
They can help ensure that you design your system on a solid foundation.

Reactive Is Not a Silver Bullet

3

https://oreil.ly/IH6wY

As with everything, Reactive has pros and cons. It’s not a magic weapon.
No solution works everywhere.

Remember microservices in the late 2010s? They quickly became
exceedingly popular, and many organizations implemented them in areas
for which they may not have been well-suited. This often traded one set of
problems for another. Much like microservice architectures, reactive
architectures have areas in which they are well-suited. They shine for
distributed and cloud applications but can be disastrous on more monolithic
and computation-centric systems. If your system relies on remote
communication, event processing, or high efficiency, Reactive will be
interesting. If your system uses mostly in-process interactions, handles just
a few requests per day, or is computation-intensive, then Reactive won’t
bring anything but complexity.

With Reactive, you put the notion of events at the core of your system. If
you are used to the traditional synchronous and imperative way of building
applications, the path to become reactive can be steep. The need to become
asynchronous disrupts most traditional frameworks. We are moving away
from the well-known Remote Procedure Call (RPC) and HTTP endpoints.
So, with that disclaimer, it’s time to start our journey!

1 You can find a plethora of talks about Reactive on YouTube.

2 Asynchronous is the opposite of synchronous. Being asynchronous means happening at a
different point in time, while being synchronous means happening at the same time.

3 See Vert.x Reactive Streams Integration for more details.

https://oreil.ly/SyGxB
https://oreil.ly/t2noI

Chapter 2. Introduction to
Quarkus

Before continuing with understanding Reactive, let’s take a few moments to
learn more about Quarkus. So what is Quarkus?

Quarkus is a Kubernetes-native Java stack. It has been tailored for
Kubernetes, containers, and the cloud, but works perfectly well on bare
metal and virtual machines. Quarkus applications require less memory and
start faster than applications using traditional frameworks. They also have
the capability to be compiled into native executables, which make them
consume even less memory and start instantly.

One exciting, and central, aspect of Quarkus is the reactive engine. When
running in containers or virtualized environments, a reactive engine is
essential to reducing memory and CPU consumption. The engine makes
any Quarkus application efficient while also enabling the creation of
reactive applications and systems.

In this chapter, you will see the main characteristics of Quarkus and learn to
create an application, deploy it to Kubernetes, and create native builds. In
Chapter 6, we cover the reactive engine in detail and show how to develop
on Quarkus with a unified reactive and imperative programming model.

Java on the Cloud
Java is now 25 years old! That’s hard to imagine sometimes. From the era
of three-tier and client/server architecture, Java has evolved with many
changes in architecture over the years. However, when a language is 25
years old, there will be pieces lingering that may not be suited to modern
development.

1

What do we mean by that? When the initial versions of Java came out,
clouds, containers, microservices, serverless, and any other term associated
with computing today had not been imagined yet. There is no way we can
expect the Java language created in the era of three-tier and client/server
architecture to perform as we need in containers today.

Yes, many advancements have occurred over the years in Java, especially
over the last couple of years with a new and faster release cadence. At the
same time, Java prides itself on not breaking backward compatibility for
developers and users. A large cost of that approach is that Java still retains
pieces that were conceived without the benefits and knowledge of
containers and what they provide.

For many applications, Java will continue to work fine, and as is, for many
more years to come. However, over the last few years, with the explosion of
microservices, and most recently the evolution to serverless, Java does not
fit these deployment models naturally.

Only a few years ago, Java’s lack of suitability in containers became
apparent for all as we found out Java ignored cgroups. For containers, this
created a huge problem. Java, unable to see the amount of memory
allocated to a container, could only see the memory of the entire physical
machine.

WHAT ARE CGROUPS?
The term cgroups is shorthand for control groups, a kernel feature
allowing the allocation of specific amounts of resources, such as CPU
time, memory, and bandwidth, to processes. In our situation, cgroups
are used to limit the amount of resources a container can use from the
entire system.

In an environment where each container needs to work within a constrained
amount of memory, Java didn’t play nice. Java was greedy. In addition, Java
would create application threads based on the number of CPU cores. This

https://oreil.ly/Mbux3

caused many more threads to be allocated in a memory- and CPU-
constrained container.

Is it a big deal? You might get lucky with your Java applications deployed
in containers, if deploying to a Kubernetes node with other containers
staying well within their memory limits. Then one day there’s a load spike,
along with a spike in the memory consumed by the Java Virtual Machine
(JVM), and then boom! Kubernetes kills the container for using too much
memory.

This specific problem with Java and cgroups has been fixed since Java 10,
and since Java Development Kit (JDK) 8u131 options are available for
enabling the same behavior. Check out the “Java Inside Docker” article on
the Red Hat Developer’s site by Rafael Benevides with all the details.

You might be thinking that Java should now be good in containers or in the
cloud, right? Though this fix is available with an appropriate JDK version,
many enterprises are using JDK 8 or older, and quite possibly not using a
JDK 8 with the flags available. And Java’s issue in the cloud is more than
cgroups alone.

Containers not being killed for grabbing more memory than the container
expected is great. However, Java in containers raises concerns about the
speed with which applications start receiving requests and the amount of
memory they consume while running. Neither of these are great for Java
applications, compared with other languages running in containers. Maybe
startup speed isn’t a concern for many applications running today, but it can
impact microservices needing to scale quickly for large traffic spikes, or the
cold start time for serverless applications.

What do we mean by start receiving requests? While it’s common for
frameworks used in building applications to log their startup time, it refers
to the amount of time taken for a framework to start. The time does not
represent the time taken by an application before being able to start
receiving requests. This time is a critical indicator with containers and the
cloud!

https://oreil.ly/L5Yh7

The time to start receiving requests can also be called time to first request.
Whether a framework can start in half a second doesn’t mean much, if
another 2–3 seconds passes before any traffic can be received and processed
by the application. In such an example, it could be anywhere from 2.5 to 3.5
seconds before a new application instance can begin receiving user
requests.

Granted, time to start receiving requests and memory consumption may not
be a concern for a monolithic application with a few hundred, or even
thousand, internal users. Monolithic applications can be developed with
Quarkus, though the benefits we talk of for Quarkus will not be as
prominent when developing monoliths. However, for microservices, and
especially serverless, both these factors impact the costs of running a
service and the availability to users.

WARNING
Frameworks can often have low startup times by delaying work until receiving the first
request. The remainder of any startup tasks are performed before processing the first
request. Lazy initialization is another name for this behavior, offering a false indication
on when an application is really ready. The time to start receiving requests is the best
measure of application startup time. Having a low time to first request is essential in
serverless workloads, as well as any kind of mechanism using a scale-to-zero approach,
where the services are started only when needed. In more common architectures, such
fast startup time reduces the recovery time after a crash.

How can we measure startup time? Many approaches are possible,
including modification of endpoints to output a timestamp when they’re
accessed. To make our lives a bit simpler, we’re going to use a Node.js
script developed by John O’Hara from Red Hat. The script uses the
application start command, and the URL to access it, to start the application
in another process. The script waits for the URL to return 200, meaning
success, before computing the time to first request.

2

NOTE
For ease of use, we included the contents of the GitHub repository along with the code
in the chapter-2/startup-measurement directory. Ensure that you have Node.js installed,
and run npm install request to install the script dependencies.

Right now you might be thinking that this discussion about startup speed
and memory consumption is a very hand wavy topic that’s too subjective.
We totally agree, which is why we’re now going to use a traditional Java
EE stack, in this case Thorntail, to illustrate these concepts in practice. We
chose Thorntail for the comparison as the first microservice framework
from Red Hat, while Quarkus is the latest. Though the Thorntail project is
no longer maintained, sadly, the good news is Quarkus incorporates lots of
ideas from Thorntail.

One last thing before we get coding and running applications. Memory can
be a somewhat vague term, as there are many types of memory. When
we’re talking about memory, we’re referring to resident set size (RSS), and
not the JVM heap size, as heap is only part of the total memory that a Java
application consumes. When running an application on the JVM, the total
allocated memory can include the following:

Heap space

Class metadata

Thread stacks

Compiled code

Garbage collection

RSS represents the amount of memory that a process is occupying from
main memory (RAM). RSS includes all the memory that the JVM requires
to run an application, providing a more accurate value for the amount of
memory actually occupied. As we’re running a single application in a single

https://github.com/cescoffier/reactive-systems-in-java
https://thorntail.io/
https://oreil.ly/o4TzC

JVM process, we can easily ensure that we’re not measuring memory
consumption of nonapplication processes.

NOTE
All performance numbers are from our MacBook computer. As such, the results you see
in this chapter may differ slightly, depending on your particular hardware configuration.
If you happen to have an Apple M1, you could see even better results!

Okay, time to run some code and see what we’re talking about with startup
speed and memory consumption.

Thorntail Example
We start by creating a traditional application with Thorntail to provide a
comparison of the memory, or RSS, and time-to-first-request metrics. For
anyone not familiar with Thorntail, the project focused on the idea of a
customizable WildFly server. Thorntail takes only the bits you need for a
specific application, removing everything else.

The Thorntail application requires a Java API for RESTful Web Services
(JAX-RS) application, and a simple resource endpoint for us to make
requests against. The Thorntail example needs a JAX-RS application, and a
JAX-RS resource with a single method returning a greeting for an HTTP
GET request. All the source code for the Thorntail example can be found in
the /chapter-2/thorntail-hello directory.

There’s nothing special about the classes. They’re the bare minimum
required to provide an HTTP endpoint with JAX-RS to make requests
against. Let’s build the Thorntail application and then start it, as shown in
Example 2-1.

Example 2-1. Build and run the Thorntail Hello World application
> mvn verify
> java -jar target/thorntail-hello-world-thorntail.jar

https://wildfly.org/
https://oreil.ly/eYjXF

Once the application has started, hit the http://localhost:8080/hello endpoint
with curl or a browser. After you’ve made a few requests, or more if you
prefer, it’s time to take a look at the RSS memory used by the process.
Accessing the endpoint before measuring RSS is important because an
application may not have loaded all classes during startup, meaning we
could see a misleading figure.

To be able to find out the memory used, we need the ID of the process the
Thorntail application is running in. On Linux-based systems, including
Mac, we can use ps -e | grep thorntail, which lists all the active
processes and restricts the results to those containing thorntail in the
name. With the process ID in hand, we can now find out how much RSS the
process is using (as seen in Example 2-2).

Example 2-2. Measure the RSS usage of the Thorntail application
> ps -o pid,rss,command -p 4529 | awk '{$2=int($2/1024)"M";}{
print;}'

PID RSS COMMAND
4529 441M java -jar target/thorntail-hello-world-thorntail.jar

ps retrieves the RSS and command, and awk converts the RSS value to
megabytes.

You will see something like the preceding terminal output, showing the
process ID, RSS converted to megabytes (M), and the command. Full details
on how to find RSS for a process can be found on the Quarkus website.

We can see that a “Hello World” style application with a single endpoint
returning a string uses 441 megabytes (MB). Whoa! That’s a lot of memory
for a single JAX-RS endpoint returning a fixed string!

We should caution we’re running these tests on OpenJDK 11 without any
customization for limiting the amount of memory the JVM captures, or any
other tuning available to the JVM. We can limit what the JVM is able to
grab and see how that affects the overall RSS (Example 2-3).

Example 2-3. Start the Thorntail application to configure the heap size

3

http://localhost:8080/hello

> java -Xmx48m -XX:MinHeapFreeRatio=10 -XX:MaxHeapFreeRatio=20 \
 -jar target/thorntail-hello-world-thorntail.jar

Now we get the output in Example 2-4.

Example 2-4. Measure the RSS usage
> ps -o pid,rss,command -p 5433 | awk '{$2=int($2/1024)"M";}{
print;}'
PID RSS COMMAND
5433 265M java -Xmx48m -XX:MinHeapFreeRatio=10 -
XX:MaxHeapFreeRatio=20 \
 -jar target/thorntail-hello-world-thorntail.jar

That dropped the memory usage down to 265 MB! We saved nearly 200
MB of RSS by limiting the amount of heap the JVM grabbed to 48 MB.
Maybe 48 MB isn’t quite the sweet spot in terms of throughput, but that’s
something to verify with your own applications, to find the balance between
reduced memory consumption and increased throughput.

We’ve shown the RSS usage, and now we need to calculate the time to first
request. Ensure that all previous instances of the Thorntail application are
stopped before continuing. Let’s check out time to first request, as shown in
Example 2-5.

Example 2-5. Measure the time to first request of the Thorntail application
> node time.js "java \
 -jar [fullPathToDir]/thorntail-hello/target/
 thorntail-hello-world-thorntail.jar" \
 "http://localhost:8080/hello"

We see a bunch of 404 messages fly past in the console until the
application returns a 200 response, and then we see the time taken. In our
case, it was 6,810 milliseconds (ms)! That’s not exactly fast in the world of
microservices and functions. You can run it a few times to see whether the
time varies much or not really at all. With a 7-second startup time, scaling
microservices can’t meet traffic spikes quick enough, causing user delays
and possibly errors. From a serverless perspective, we’re even worse off as
we’d expect a serverless function to be started, run, and stopped well before
7 seconds elapsed.

NOTE
The time to first request captured with time.js may be fractionally longer than it actually
is, as a very small amount of time will be included as the child process spawns but
before the JVM starts. We’re not too worried about such a small amount, as the impact
applies to each runtime we test in the same manner.

So, we’ve seen what a traditional application consumes for RSS, and how
long it can take to reach time to first request. Now it’s time to see how
Quarkus compares.

Quarkus Example
We’re going to create an identical Hello World endpoint, though it doesn’t
say “Hello from Thorntail!” With Quarkus, we don’t need the JAX-RS
application class; we need only the JAX-RS resource that has the same
content as the Thorntail version, except for the message. The source code
for the Quarkus example can be found in the /chapter-2/quarkus-hello
directory.

In “Create Your First Quarkus Application”, we cover how to create a
Quarkus application. Now build and run the Quarkus Hello World
application, as shown in Example 2-6.

Example 2-6. Build and start the Quarkus Hello World application
> mvn verify
> java -jar target/quarkus-hello-world-1.0-SNAPSHOT-runner.jar

As with Thorntail, we’re not optimizing the JVM to see what raw RSS
usage we see. Hit http://localhost:8080/hello a few times as we did with
Thorntail. Hopefully, you’re seeing the message “Hello from Quarkus!”
Otherwise, you’re still running the Thorntail application.

Go find the process ID for the Quarkus application and check out the RSS
(Example 2-7).

Example 2-7. Measure the RSS usage of the Quarkus Hello World
application

4

http://localhost:8080/hello

> ps -o pid,rss,command -p 6439 | awk '{$2=int($2/1024)"M";}{
print;}'
PID 0M COMMAND
6439 133M java -jar target/quarkus-hello-world-1.0-SNAPSHOT-
runner.jar

Here we see Quarkus using 133 MB of RSS, over 300 MB less than the 441
MB with Thorntail! That’s an astonishing improvement for what is
essentially the same application.

If we limit the maximum heap size to 48 MB, as we did for Thorntail, how
much of an improvement do we get? Review Example 2-8. Don’t forget to
use the endpoint once the application is started.

Example 2-8. Constrain the heap usage and measure the RSS usage
> java -Xmx48m -XX:MinHeapFreeRatio=10 -XX:MaxHeapFreeRatio=20 \
 -jar target/quarkus-hello-world-1.0-SNAPSHOT-runner.jar
> ps -o pid,rss,command -p 7194 | awk '{$2=int($2/1024)"M";}{
print;}'
PID 0M COMMAND
7194 114M java -Xmx48m -XX:MinHeapFreeRatio=10 -
XX:MaxHeapFreeRatio=20 \
 -jar target/quarkus-hello-world-1.0-SNAPSHOT-runner.jar

That got it down to 114 MB, but let’s see how far we can push Quarkus into
smaller heap sizes! Refer to Example 2-9. Once again, don’t forget to use
the endpoint once started.

Example 2-9. Constrain the heap usage of the Quarkus application even
more and measure the RSS usage
> java -Xmx24m -XX:MinHeapFreeRatio=10 -XX:MaxHeapFreeRatio=20 \
 -jar target/quarkus-hello-world-1.0-SNAPSHOT-runner.jar
> ps -o pid,rss,command -p 19981 | awk '{$2=int($2/1024)"M";}{
print;}'
PID 0M COMMAND
19981 98M java -Xmx24m -XX:MinHeapFreeRatio=10 -
XX:MaxHeapFreeRatio=20 \
 -jar target/quarkus-hello-world-1.0-SNAPSHOT-runner.jar

With a max heap of 24 MB, we’re down to 98 MB of RSS! More
importantly, the application still works! See how low you can reduce the
maximum heap before Quarkus is unable to start. Although for regular
applications, and even microservices, you wouldn’t be setting the maximum

heap so low, being able to set it this low is critical for serverless
environments.

TIP
Setting the heap size to a very low value may penalize the performance of the
application, especially if the application does a lot of allocations. Don’t aim for the
smallest value as possible, but verify the value according to your expected performance
and deployment density gain. Note that the Quarkus architecture tries to avoid having
such a penalty. However, we highly recommend you check with your application.

Time for startup speed (see Example 2-10).

Example 2-10. Measure the time to first request for the Quarkus application
> node time.js "java \
 -jar [fullPathToDir]/quarkus-hello/target/
 quarkus-hello-world-1.0-SNAPSHOT-runner.jar" \
 "http://localhost:8080/hello"

If your hardware is similar to ours, you should see a time to first request of
around 1,001 ms! That’s nearly seven times faster than the traditional
application!

All this is really great, but what’s the point? Recalling our earlier discussion
about Java in containers, let’s see the impact when running in containers.
Assuming we have a node with 2 GB of RAM available, how many
containers of each application can fit? Take a look at Figure 2-1.

Figure 2-1. Java memory in containers: Quarkus allows increasing the deployment density

Container density is a key characteristic of cloud deployments with
Kubernetes. Given a specific node size, such as 2 GB of RAM, the more
containers that can run in that single node, the greater container density we
can provide. Improving container density enables better utilization of the
resources available. From the example in Figure 2-1, will more throughput
be achieved with 4 instances or 14? If each of the 14 containers supports
less throughput, or requests per second, compared with one of the
traditional containers, it doesn’t matter. A minor reduction in throughput in
a container is more than offset by supporting 14 containers instead of 4.

Container density is an important metric in determining the number of
instances that are required. What a developer needs to determine is their
expected, or desired, throughput to be supported. Maybe fewer containers
with larger memory requirements are fine for today’s needs, but keep in
mind that things change, and you could easily need more than four to
support your users!

You’ve now seen the amount of RSS memory and time to first request with
traditional applications on the JVM, and how Quarkus can significantly
reduce these aspects for an application. Quarkus wants to tackle the
challenge of improving Java in containers with a new approach. This
approach improves the startup speed and the memory consumption of Java
in a container.

The next section explains the details of how Quarkus makes this possible,
and more importantly, how it differs from a traditional framework approach.

The Quarkus Way
We’re sure you want to know all the intricate details of how Quarkus starts
faster and consumes less memory than a traditional framework, right? We
need to slow down a bit first, by explaining how traditional frameworks
work, so you can understand what changes with Quarkus.

Some well-known features of traditional frameworks are depicted in
Figure 2-2:

Annotations within code defining expected behavior, with many
examples of this we’ve all used over the years. Typical ones
include @Entity, @Autowired, @Inject, and many, many
more.

Configuration files of various kinds. These files do everything
from defining how classes should be wired together to configuring
persistent data sources, and everything in between.

Classes used only during startup for creating runtime metadata and
classes for the application to function.

Utilizing reflection in determining methods to invoke, setting
values into objects, and dynamically loading classes by name only.

Figure 2-2. The Quarkus way

We’re certainly not saying that Quarkus doesn’t have annotations,
configuration files, or any other features of traditional frameworks. We are
saying Quarkus handles them in a very different manner.

Why would these features of traditional frameworks be considered “bad”?
That’s a good question, and the answer requires some understanding of how
these frameworks handle the preceding features. When there’s any type of

configuration to be parsed or annotations to be discovered, framework
classes are required to perform this work. Depending on how complex the
process might be, anywhere from dozens to hundreds of classes could be
needed to perform the task. In addition, each class would typically be
holding state within itself representing intermediate states as startup occurs,
or a final desired state after everything is processed.

There’s nothing particularly special about this; frameworks have worked
this way for years, decades even. What you may not realize, though, is that
any classes used to perform these startup tasks are still present, even if the
JVM process has been running for six months without a restart! While any
memory those classes grabbed should be eventually garbage collected,
provided the classes properly released their hold on the memory when work
was complete, the class metadata for them is still present in the JVM, even
on the latest Java versions. It may not seem like much, but a couple of
hundred classes that are no longer needed can impact the amount of
memory required by the JVM.

This problem impacts all JVMs today, without special handling by a
framework. All the classes used during startup, and never again, can be
garbage collected by the JVM only if all objects of the class can be garbage
collected, all references to the class are removed, and most importantly, all
other classes in the same classloader are also no longer referenced. To
facilitate the garbage collection of startup classes, a framework would need
to utilize a classloader for startup classes and another classloader for
runtime classes. It can be difficult to enable garbage collection for startup
classes when thread pools are used, especially ForkJoinPool, and when
thread-local variables are set during startup.

Why should we retain classes in JVM memory if they will never be used
again? Ideally, we shouldn’t, as it’s wasteful. This is where Quarkus shines.
Quarkus extensions are designed and built to separate the various pieces of
the traditional framework startup processing into smaller chunks of work.
Doing this enables the build process, with Maven or Gradle, to take
advantage of those smaller chunks and execute them during the build,
instead of waiting until the runtime start. Utilizing startup classes during

build time means those classes don’t need to be included in the JVM at
runtime! This saves us memory and startup time.

How does it help to do this at build time, and where does the output go
that’s needed during runtime? Extensions use bytecode recorders to do
everything from setting static values on classes for runtime, to creating new
classes to hold metadata that’s needed for runtime. What do we mean by
that? Earlier we talked about frameworks doing a lot of work during startup,
and Quarkus is able to create the output of that work during build time and
write bytecode equating to the same result as with traditional frameworks at
startup. At runtime, instead of performing the startup work, the JVM loads
the class written by a Quarkus extension into memory as if all that startup
work just happened without the cost of the memory and classes to do the
work.

Looking at some steps a traditional framework performs at startup, we can
see in Figure 2-3 how Quarkus handles them differently.

Figure 2-3. Framework startup phases in traditional frameworks versus Quarkus

While Quarkus reads the configuration at build time, some properties, such
as locations and credentials, are still configured and read at runtime.
However, everything application-centric that can be decided at build time is
handled during the build process. So far, we’ve been using build time to
describe when Quarkus completes these typically startup-related tasks, but
there is another term: ahead-of-time (AOT) compilation. You’ve seen that
Quarkus differs from traditional frameworks in the way it approaches

optimizing your application code and dependencies. Yes, this approach
reduces the variability that is generally handled at runtime.

However, modern workloads deployed in the cloud or in containers do not
need such variability, as almost everything is known at build time. We hope
you now have a clearer understanding of what Quarkus offers with this
innovative approach, and why it is bringing excitement to Java development
in the cloud again.

Create Your First Quarkus Application
There are quite a few ways to create a Quarkus application for the first
time:

Manually creating the project pom.xml or build.gradle file, adding
Quarkus dependencies, setting up and configuring the plug-ins, and
defining the source folders. Pretty messy and tedious, in our view!

Using Maven and the Quarkus plug-in to construct the project
skeleton.

Browsing to https://code.quarkus.io and selecting the dependencies
that are needed. This is the simplest, quickest way to get started,
and the method we’ll use.

It’s time to dive into creating a project! Head over to
https://code.quarkus.io, and you will be presented with the page in
Figure 2-4. We’ve circled some key parts to explain them in detail.

At the very top of the page is the Quarkus version of the generated project.
Just below it to the left, you can customize the group and artifact names that
will be set for the project. These can be changed later if desired as well;
you’re not stuck with org.acme if you forget to customize it.

To the right, users can decide whether they want starter code added to the
project. The default is yes, so if you select any extensions with the CODE
marker, such as RESTEasy JAX-RS, starter code for that extension will be

https://code.quarkus.io/
https://code.quarkus.io/

generated for the project. Below the top part of the page is the list of all
available Quarkus extensions. A lot of extensions are available; the
screenshot shows only the ones that would fit on a single page. Use each
checkbox to select specific extensions to include in your project.

Figure 2-4. Quarkus project selection

Lastly, if you don’t want to scroll through all the extensions, start typing
terms into the search box above all the extensions. As you type, the list of
extensions below it will filter, showing only the extensions matching your
search criteria. As extensions are selected, they appear under the Selected
Extensions area next to “Generate your application.”

Figure 2-5 shows how the screen looks when we’re about to generate the
application.

Figure 2-5. Quarkus project generation

You can see we’ve chosen not to generate any starter code, and the
RESTEasy JAX-RS extension is selected. We’re sticking with plain JAX-
RS for now. We will explore a more reactive JAX-RS in Chapter 8.

As we hover over “Generate your application,” we can decide to download
the project as a ZIP file or publish it to a GitHub repository. Right now, we
will download as a ZIP file. The file will be automatically downloaded,
with a name matching the artifact name. Once the download is finished,
extract the ZIP file to a directory.

With that done, we open a terminal window and change to the directory
where the generated project was extracted. Let’s dive into using live reload
(Example 2-11) and experience real Developer Joy!

Example 2-11. Run the application in dev mode
> mvn quarkus:dev

The preceding command starts Quarkus in live reload, enabling us to
quickly iterate with code and instantly see the impact. A successful start
will have the terminal output, shown in Example 2-12.

Example 2-12. Output the Quarkus application
__ ____ __ _____ ___ __ ____ ______
 --/ __ \/ / / / _ | / _ \/ //_/ / / / __/
 -/ /_/ / /_/ / __ |/ , _/ ,< / /_/ /\ \
--________/_/ |_/_/|_/_/|_|____/___/
INFO [io.quarkus] (Quarkus Main Thread) code-with-quarkus 1.0.0-
SNAPSHOT on JVM \

 (powered by Quarkus 2.2.0.Final) started in 0.937s. \
 Listening on: http://localhost:8080
INFO [io.quarkus] (Quarkus Main Thread) Profile dev activated.
 Live Coding activated.
INFO [io.quarkus] (Quarkus Main Thread) Installed features: [cdi]

We’re off and running. Open http://localhost:8080 in a browser, and you
will see Resource not found. Oh, no! What went wrong?

Actually, nothing went wrong. Eagle-eyed readers might have noticed the
startup log listed only cdi as an installed feature. What about RESTEasy?
We selected the extension for it when creating the project. Have a look
inside pom.xml, and you will see the dependencies (Example 2-13).

Example 2-13. Quarkus extension dependencies of generated project
(chapter-2/code-with-quarkus/pom.xml)
<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-resteasy</artifactId>
</dependency>
<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-arc</artifactId>
</dependency>
<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-junit5</artifactId>
 <scope>test</scope>
</dependency>

RESTEasy is definitely there as a dependency, so what’s going on? During
the build process, Quarkus recognized there wasn’t actually any code
present utilizing RESTEasy, making the feature uninstalled and available
for removal to save memory. Let’s fix that now.

With Quarkus still running, create the org.acme package within
/src/main/java. Now create a class named MyResource within the
package and the content in Example 2-14.

Example 2-14. JAX-RS MyResource (chapter-2/code-with-
quarkus/src/main/java/org/acme/MyResource.java)

http://localhost:8080/

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;

@Path("/")
@Produces({MediaType.TEXT_PLAIN})
public class MyResource {
 @GET
 public String message() {
 return "Hi";
 }
}

NOTE
You may wonder why in the preceding snippet none of the import lines are Quarkus
specific. Quarkus provides a cohesive full-stack framework by leveraging a growing list
of over 50 best-of-breed libraries. In the preceding example, we use JAX-RS, a simple
but efficient and flexible approach to building HTTP and REST APIs.

Refresh http://localhost:8080. Wow, we now see Hi in the browser; what
happened? Take a look in the terminal window (Example 2-15).

Example 2-15. Automatic restart of the application after a code change
INFO [io.qua.dep.dev.RuntimeUpdatesProcessor] (vert.x-worker-
thread-7) \
 Changed source files detected, recompiling \
 [{pathToProject}/code-with-
quarkus/src/main/java/org/acme/MyResource.java]
INFO [io.quarkus] (Quarkus Main Thread) code-with-quarkus stopped
in 0.037s
__ ____ __ _____ ___ __ ____ ______
 --/ __ \/ / / / _ | / _ \/ //_/ / / / __/
 -/ /_/ / /_/ / __ |/ , _/ ,< / /_/ /\ \
--________/_/ |_/_/|_/_/|_|____/___/
INFO [io.quarkus] (Quarkus Main Thread) code-with-quarkus 1.0.0-
SNAPSHOT on JVM \
 (powered by Quarkus 1.11.1.Final) started in 0.195s. \
 Listening on: http://localhost:8080
INFO [io.quarkus] (Quarkus Main Thread) Profile dev activated.
Live Coding activated
INFO [io.quarkus] (Quarkus Main Thread) Installed features: [cdi,

http://localhost:8080/

resteasy]
INFO [io.qua.dep.dev.RuntimeUpdatesProcessor] (vert.x-worker-
thread-7) \
 Hot replace total time: 0.291s

We can see Quarkus noticed modifications to MyResource.java, stopped,
and then restarted itself. Looking at the installed features, we see it now
includes resteasy. How cool is that? Even better, the server stopped and
restarted in just over 300 ms.

Why don’t we explore live reload some more to have a better feel of the
real Developer Joy! With mvn quarkus:dev still running, open
http://localhost:8080/welcome in a browser (Figure 2-6).

Figure 2-6. Resource not found

http://localhost:8080/welcome

We got an error. Oh no!

Don’t fear too much; we did expect it because we don’t have anything to
respond to the /welcome endpoint yet. However, Quarkus offers us some
links to help diagnose the problem based on what it knows about the
application. We are shown the list of valid endpoints—in this case, there is
only an HTTP GET on /.

Under “Additional endpoints,” there are endpoints to assist while
developing applications. In this example, we have endpoints related to ArC,
which is the bean container based on Contexts and Dependency Injection
(CDI) for Quarkus, as well as a link to the developer console. Clicking the
developer console link will bring you to its main page (Figure 2-7).

Figure 2-7. Quarkus Dev console

There isn’t a lot there now, but we need to remember that the only extension
we’ve added is RESTEasy. As we enhance an application with more
extensions, more options and abilities will be available from the developer
console. We went down a side track there, so let’s get back to resolving our
failed page load! With the /welcome page open to the failure in the browser,
go back to the source and create a new class called WelcomeResource
(Example 2-16).

Example 2-16. JAX-RS WelcomeResource (chapter-2/code-with-
quarkus/src/main/java/org/acme/WelcomeResource.java)
@Path("/welcome")
public class WelcomeResource {
 @GET
 public String welcomeMessage() {
 return "Welcome to Quarkus!";
 }
}

With the class written, head back to the browser and click Refresh.

Triggering an HTTP request causes Quarkus to check whether any files
were modified since the last request, as we’re running with live reload.
Quarkus notices the presence of WelcomeResource, compiles it, and
then restarts the server. If you’re like us, you may not have realized
everything happening behind the scenes because the browser gave the
expected response without much delay.

Are you exhausted yet? We are.

That was a lot of information on creating a Quarkus project for the first
time with https://code.quarkus.io, and experiencing the ease of
development that live reload with Quarkus brings. It does have drawbacks,
including less chance to get a coffee during a compile and restart. We will
continue to explore everything that live reload can do as we work through
the chapters, but take it for a spin yourself, adding new extensions and
seeing what can be done without stopping it!

Kubernetes with Quarkus in 10 Minutes

https://code.quarkus.io/

In the previous section, we had lots of fun changing code and seeing the
application update on the fly. We hope you had fun; we know we did!

While that’s great for developing the code, can we use live coding in
production? Well, maybe you could, but we really don’t think you want to
do that!

For deploying to production, we want to use immutable containers, which
requires container orchestration, which for most means Kubernetes. “The
New Kids on the Block: Cloud Native and Kubernetes Native Applications”
covers cloud native and Kubernetes applications in further detail.

Why is Quarkus great for the cloud and, in particular, Kubernetes? Quarkus
applications are designed to run efficiently in containers and have built-in
health checks and monitoring capabilities. Quarkus also provides a great
user experience, including the ability to deploy in a Kubernetes cluster in a
single command, without having to write Kubernetes resource descriptors.

Kubernetes introduces its own specific jargon, which may be confusing.
This section introduces its main concepts.

What are the steps to take our Quarkus application from the previous
section and deploy it to Kubernetes? Let’s extend the application we
generated in the previous section. The first thing we do is add the extension
for Kubernetes to our application, as shown in Example 2-17.

Example 2-17. Kubernetes extension dependency (chapter-2/code-with-
quarkus/pom.xml)
<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-kubernetes</artifactId>
</dependency>

With this new dependency, the build can generate the necessary resource
files for deploying the application to Kubernetes, as well as enable us to
deploy the application. What a time-saver! Let’s see how it works!

Before we can see how it works, we need to choose the preferred
containerization mechanism. With Quarkus, we can choose between
Docker, Jib, and Source-to-Image (S2I). We will choose Jib, as all

https://oreil.ly/Ybxcs

dependencies are cached in a layer separate from the application, making
subsequent container builds much faster. Let’s add the Jib container
dependency, as shown in Example 2-18.

Example 2-18. Jib container extension dependency (chapter-2/code-with-
quarkus/pom.xml)
<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-container-image-jib</artifactId>
</dependency>

We’re nearly there! But first, we need a Kubernetes cluster! The easiest is to
use minikube, but you can also use Docker Desktop, or MicroK8s. In this
book, we will use minikube, as it’s one of the most straightforward
solutions. Minikube is not a complete Kubernetes cluster but provides
enough features for us.

Follow the instructions from the minikube documentation to download and
install minikube. With minikube installed, start it (Example 2-19).

Example 2-19. Start minikube
> minikube start

The default configuration of minikube will be used unless we have specific
configuration options set. Right now, the default is fine, which is two CPUs
and 4 GB RAM for a virtual machine. If this is the first time minikube is
being run, there will be a short delay while minikube downloads the
necessary images.

Quarkus provides an additional extension for use with minikube, to tailor
the Kubernetes resources specifically for minikube. A big advantage to this
approach is not requiring a Kubernetes Ingress to access services inside
Kubernetes; instead, we can access them through a NodePort service.
This allows us to see localhost-accessible URLs for our services when
running minikube services list. To activate localhost-accessible
URLs, we need another dependency (Example 2-20).

Example 2-20. Minikube extension dependency (chapter-2/code-with-
quarkus/pom.xml)

https://microk8s.io/
https://oreil.ly/Vn7Jf

<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-minikube</artifactId>
</dependency>

Before deploying our application, let’s play a bit with Kubernetes to
understand some concepts. You can interact with Kubernetes clusters by
using the kubectl command; see Example 2-21.

Example 2-21. Retrieve the nodes
> kubectl get nodes
NAME STATUS ROLES AGE VERSION
minikube Ready master 2m45s v1.18.3

This command prints the nodes managed by Kubernetes. You should not be
surprised to see that we have a single node here, named master. That’s
your machine, or virtual machine, depending on your operating system.

Unlike other systems such as Docker, Kubernetes doesn’t run containers
directly. Instead, it wraps one or more containers into a higher-level
structure called a pod. Pods are used as the unit of replication. If your
application is getting too many requests, and a single pod instance can’t
carry the load, you can ask Kubernetes to instantiate new replicas. Even
when not under heavy load, it is a good idea to have multiple replicas of a
pod, to allow load balancing and fault-tolerance. You can get the list of pods
by using kubectl get pods (Example 2-22).

Example 2-22. Use the kubectl command to list the running pods
> kubectl get pods
No resources found in default namespace.

Not a big surprise, our cluster is empty.

In “Java on the Cloud”, we talked a lot about wanting to reduce the amount
of memory for services written in Java within a container. To be able to
determine that in minikube, we need to install an add-on before deploying
our service (Example 2-23).

Example 2-23. Add the metric server to the minikube cluster
> minikube addons enable metrics-server

To create pods, we need a deployment. Deployments have two primary
purposes:

Indicate which containers need to run in the pod

Indicate the number of instances of the pod that should be running
at a time

Generally, to create a deployment, you need the following:

A container image accessible to your Kubernetes cluster

A YAML document describing your deployment

Quarkus provides facilities to avoid having to create the image and write
the deployment manually, such as the Kubernetes, minikube, and Jib
container extensions we mentioned earlier.

With all the pieces in place, it’s time for us to build and deploy the
application to Kubernetes in minikube! Open a terminal window and
change to the directory of the project. Because we don’t want to run our
own Docker daemon for building the containers, we can run eval
$(minikube -p minikube docker-env) to expose the Docker
daemon from minikube to the local terminal environment.

TIP
eval $(minikube -p minikube docker-env) must be run in every terminal
window we use to access minikube. Without, it any Docker commands we execute will
use the local Docker daemon, which we don’t want.

Next we build and deploy the container (as shown in Example 2-24).

Example 2-24. Deploy a Quarkus application to Kubernetes
> mvn verify -Dquarkus.kubernetes.deploy=true

Package the application, create the container image, create the
deployment descriptor, and deploy it to our cluster.

5

Execute the kubeclt get pods command to verify (Example 2-25).

Example 2-25. List running pods with kubectl
> kubectl get pods
code-with-quarkus-66769bd48f-l65ff 1/1 Running 0
88s

Yeah! Our application is running!

Quarkus creates a deployment for us, as shown in Example 2-26.

Example 2-26. List the installed deployments
> kubectl get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
code-with-quarkus 1/1 1 1 6m23s

You can check the created deployment in target/kubernetes/minikube.yml,
or review Example 2-27.

Example 2-27. The generated deployment
apiVersion: apps/v1
kind: Deployment
metadata:
 # ...
 name: code-with-quarkus
spec:
 replicas: 1
 #...
 template:
 metadata:
 # ...
 spec:
 containers:
 image: your_name/code-with-quarkus:1.0.0-SNAPSHOT
 imagePullPolicy: IfNotPresent
 name: code-with-quarkus
 ports:
 - containerPort: 8080
 name: http
 protocol: TCP
 # ...

The number of replicas

The container image name

As you can see, the deployment YAML indicates the number of replicas and
the set of containers running in the pod (here, a single one).

If you look carefully at the generated descriptor, you will see service:

apiVersion: v1
kind: Service
metadata:
 # ...
 name: code-with-quarkus
spec:
 ports:
 - name: http
 nodePort: 31995
 port: 8080
 targetPort: 8080
 selector:
 app.kubernetes.io/name: code-with-quarkus
 app.kubernetes.io/version: 1.0.0-SNAPSHOT
 type: NodePort

Random local port number we can access the service on

A service is a channel of communication delegating to a set of pods
(selected using labels). In our example, the service is named code-with-
quarkus. This name can be used by other applications to discover the
functionality we expose. This service delegates the port 8080 on pods with
matching labels (app.kubernetes.io/name and app.kubernetes.io/version).
The good news is that our pod is configured with these labels. As a result,
calling this code-with-quarkus on port 8080 delegates to port 8080 of
our container.

NOTE
Quarkus generates multiple descriptors. The minikube.yml descriptor is tailored for
minikube. The kubernetes.yml descriptor is more generic. The main difference is the
type of service that gets created.

So, let’s invoke our service! We need to ask minikube to give us the service
URL, as shown in Example 2-28.

Example 2-28. Retrieve the service URL
> minikube service code-with-quarkus --url

🏃 Starting tunnel for service code-with-quarkus.
|-----------|-------------------|-------------|--------------------
----|
| NAMESPACE | NAME | TARGET PORT | URL
|
|-----------|-------------------|-------------|--------------------
----|
| default | code-with-quarkus | |
http://127.0.0.1:31995 |
|-----------|-------------------|-------------|--------------------
----|
http://127.0.0.1:31995
❗ Because you are using a Docker driver on darwin, the terminal
needs
 to be open to run it.

Open a browser and use the URL of the service to access it, or curl if you
prefer. If deployment worked, we see Hi as a response on the root path.
Add /welcome to see Welcome to Quarkus! We deployed a
Quarkus service to Kubernetes!

We’ve verified that our Quarkus service deployed and works as expected,
but what about the memory situation? Let’s check it out in Example 2-29.

Example 2-29. Measure resource usage using kubectl top
> kubectl top pods
NAME CPU(cores) MEMORY(bytes)
code-with-quarkus-66769bd48f-l65ff 1m 80Mi

Wow, only 80 MB is really nice and compact! That’s a large improvement
over traditional frameworks in containers.

You’ve just seen how to take a Quarkus application and add the ability to
deploy it to Kubernetes or, in this case, to minikube. There are certainly
potential gotchas in defining the Kubernetes resources we need for
deployment, but that’s why we use the Kubernetes extension with Quarkus

to handle all that for us. We prefer not to handcode YAML or JSON,
inadvertently making an error with indentation, and then watching
deployment fail!

Going Native
What does going native mean? We’re referring to the ability to build native
executables for an environment. Many applications we use every day on our
machines are native executables, meaning the code of the application was
compiled down to low-level instructions for a specific operating system, in
our case macOS.

Developing Java applications has always required the presence of a JVM
for execution. However, the ability to build a native executable from Java
code has recently been made possible with releases from the GraalVM
project. In this section, we explain how to utilize the GraalVM project with
Quarkus to generate a native executable for your Java code!

In “The Quarkus Way”, we discussed how Quarkus utilizes AOT
compilation to perform actions during build time instead of on application
start.

Quarkus extensions achieve this by breaking all the work into three separate
phases:

Augmentation

Build steps process descriptors and annotations, and augment the
application classes by generating bytecode containing any required
metadata. This phase is always executed within the build process on a
JVM.

Static initialization

Runs any steps intended to have their resulting output captured in
bytecode. There are restrictions on what these steps can do, as they
should not open ports for listening or start threads.

https://www.graalvm.org/

Runtime initialization

These steps are run as part of the application’s main method during
startup. Tasks should be kept to a minimum to take the most advantage
of AOT.

Static and runtime initialization both occur at startup when executing on a
JVM. However, with native executables we have an extra benefit. With
initialization separated into two phases, we’re able to perform static
initialization during the native executable build process. This allows the
output from the static initialization phase to be serialized directly into the
native executable, allowing any classes used in this phase to be dropped
from the native executable as they’re no longer needed. This provides
benefits in native executable startup time and reduction in memory
requirements.

As part of the native executable build process with GraalVM, all execution
paths are evaluated. Any classes, methods, or fields deemed to not be on the
execution path are removed from the resulting native executable. This is
why reflection, dynamic class loading, and other features of JVM usage are
disallowed without special flags, because the goal is to not retain every
piece of code within a native executable. If we were to attempt to build a
native executable for the earlier Thorntail example, it would require flags to
be set to allow reflection, dynamic class loading, and possibly others. The
design of Thorntail is not suitable for a native executable build, whereas
Quarkus has the goal of code reduction in mind from the beginning.

Let’s see what’s needed to actually build a native executable. Creating the
project with https://code.quarkus.io means a Maven profile was already
added to the project for us. Example 2-30 shows what that looks like.

Example 2-30. Native image generation Maven profile (chapter-2/code-
with-quarkus/pom.xml)
<profile>
 <id>native</id>
 <activation>
 <property>

6

https://code.quarkus.io/

 <name>native</name>
 </property>
 </activation>
 <properties>
 <quarkus.package.type>native</quarkus.package.type>
 </properties>
</profile>

We now have the ability to build a native executable for Quarkus, but
without GraalVM installed we won’t get very far! Check the “Building a
Native Executable” guide for all the details on installing GraalVM for
building native executables.

Once GraalVM is installed, let’s build a native executable; see Example 2-
31.

Example 2-31. Compile a Quarkus application into a native executable
> mvn verify -Pnative

Unfortunately, building a native executable does take longer than usual
JVM builds. For this reason, we suggest not building a native executable
regularly, and recommend doing these builds as part of a CI pipeline.

Running these builds is our new opportunity for coffee breaks!

NOTE
As the number of classes grows in an application, a native executable build takes longer
to complete. This longer time is caused by the larger number of execution paths
requiring evaluation.

With the native executable built, we can run it with ./target/code-
with-quarkus-1.0.0-SNAPSHOT-runner. Relish in the speed with
which it starts, and be sure to verify that the two endpoints we created still
work.

We’ve now built a native executable for our local environment, but unless
we’re using a Linux operating system, our native executable won’t work

https://oreil.ly/HFtW1

inside a container! As native executables are specific to an operating
system, we need to specially build one for use in a Linux container.

To build a native executable for containers, we need to utilize Docker. Once
Docker is installed, ensure that it’s started. As the current terminal has been
switched to use the Docker daemon inside minikube, we need to open a
new terminal so we can use local Docker for a build. Navigate to the project
directory and run Example 2-32.

Example 2-32. Compile a Quarkus application into a Linux 64-bit native
executable
> mvn verify -Pnative -Dquarkus.native.container-build=true

What we’ve done is utilized our local Docker environment to build a native
executable for a Linux operating system. If we tried to run the native
executable, and our local operating system is not Linux, we see an error
(Example 2-33).

Example 2-33. Format error when we start an application not compiled for
the host operating system
zsh: exec format error: ./target/code-with-quarkus-1.0.0-SNAPSHOT-
runner

We need to go back to the previous terminal now, as we want to interact
with the Docker daemon in minikube. Let’s run a Docker build inside
minikube, as shown in Example 2-34.

Example 2-34. Build a container running a Quarkus application compiled
into a native executable
> docker build -f src/main/docker/Dockerfile.native \
 -t <_your_docker_username_>/code-with-quarkus:1.0.0-SNAPSHOT .

TIP
Don’t forget to replace <your_docker_username> with your local Docker
username.

https://docker.com/

We now have a container available inside minikube, so let’s create the
application deployment; see Example 2-35.

Example 2-35. Deploy the Quarkus application into minikube
> kubectl apply -f target/kubernetes/minikube.yml

We used the minikube-specific Kubernetes YAML from an earlier build to
create the deployment. This version creates the NodePort service we need
to access a service from our local environment, but also modifies the
imagePullPolicy of the container to IfNotPresent instead of
Always. This last change prevents minikube from trying to check for a
newer container image from Docker Hub, which is good because it
wouldn’t find one there!

With the deployment done, grab the URL from minikube service
list and test out the endpoints again. Everything should be good, and we
get the same messages as before.

Now for the interesting part! Earlier we installed the metrics server into
minikube to track memory utilization, and now it’s time to see what our
native executable looks like. Though we’ve made requests and the
deployment is present, it can be a few minutes before the metrics are
available. Keep trying until they appear. You should see something similar
to Example 2-36.

Example 2-36. Measure resource usage in Kubernetes
> kubectl top pods
NAME CPU(cores) MEMORY(bytes)
code-with-quarkus-fd76c594b-48b98 0m 7Mi

That’s fantastic! Only 7 MB of RAM used!

This is where the combination of Quarkus and native executables really
shines. We can also check the logs of the pod to see how quickly the
container started; we would expect it to be around 10–20 ms.

NOTE
We attempted to build a native image for Thorntail to provide a comparison. However,
we experienced issues building a usable native image and were stopped by an
UnsatisfiedLinkError.

Summary
We’ve covered a great deal about Quarkus in a short amount of time, and
there’s still plenty more to go through in the remainder of the book.
Quarkus is a Kubernetes-native Java stack, focused on minimizing memory
requirements with AOT, and amping up the memory reduction even further
when we want a native executable. With the Kubernetes and container
extensions, Quarkus takes the hassle out of handwriting YAML deployment
files, doing it all for us!

In this chapter, you learned about the following:

Understanding the problems with Java in containers

Understanding how Quarkus differs from traditional frameworks in
moving runtime startup tasks to buildtime with AOT

Creating a Quarkus project with https://code.quarkus.io

Using Kubernetes and minikube extensions to generate the
required deployment configuration

Building a native executable for Quarkus with GraalVM

Using the Kubernetes extension to deploy Quarkus applications to
a container environment

In the next chapters, we will briefly take a step back to detail distributed
systems, reactive systems, reactive programming, and how they relate to
each other.

https://oreil.ly/hxcqo
https://code.quarkus.io/

1 In this book, container refers to a form of operating system virtualization, not to Java EE
containers.

2 You can find the script to measure startup time on GitHub.

3 See Platform Specific Memory Reporting on the Quarkus website.

4 Quarkus offers multiple ways to implement HTTP endpoints. JAX-RS is one of them. You
can also use controller classes with Spring MVC annotation or reactive routes if you prefer
more programmatic approaches.

5 YAML (Yet Another Markup Language) is the most used format to describe Kubernetes
resources. Wikipedia provides a gentle introduction.

6 GraalVM is not the first tool to build native executables from Java code. Dalvik, Avian, GNU
Compiler for Java (GCJ,) and Excelsior JET predate GraalVM.

https://github.com/cescoffier/reactive-systems-in-java
https://oreil.ly/eYjXF
https://oreil.ly/mZOTT

Part II. Reactive and Event-
Driven Applications

Chapter 3. The Dark Side of
Distributed Systems

Now that you have a better understanding of Reactive and had a brief
overview of Quarkus, let’s focus on why you would want to use them and,
more specifically, build reactive systems. The reason emanates from the
cloud and, more generally, the need to build better distributed systems. The
cloud has been a game changer. It’s making the construction of distributed
systems easier. You can create virtual resources on the fly and use off-the-
shelf services. However, easier does not mean straightforward. Building
such systems is a considerable challenge. Why? Because the cloud is a
distributed system, and distributed systems are complicated. We need to
understand the kind of animal we are trying to tame.

What’s a Distributed System?
There are many definitions of distributed systems. But let’s start with a
loose one, written by professor emeritus Andrew Tanenbaum, and see what
we can learn:

A distributed system is a collection of independent computers that
appears to its users as a single coherent system.

This definition highlights two important aspects of distributed systems:

A distributed system is composed of independent machines that are
autonomous. They can be started and stopped at any time. These
machines operate concurrently and can fail independently without
affecting the whole system’s uptime (in theory, at least).

Consumers (users) should not be aware of the system’s structure. It
should provide a consistent experience. Typically, you may use an

HTTP service, which is served by an API gateway (Figure 3-1),
delegating requests to various machines. For you, the caller, a
distributed system behaves as a single coherent system: you have a
single entry point and ignore the underlying structure of the
system.

Figure 3-1. Example of an HTTP service delegating calls to other machines/services

To achieve this level of coherence, the autonomous machines must
collaborate one way or another. This collaboration and the need for good
communications that arise from it are the heart of distributed systems but
also their primary challenge. But that definition does not explain why we
are building distributed systems. Initially, distributed systems were
workarounds. The resources of each machine were too limited. Connecting
multiple machines was a smart way to extend the whole system’s capacity,
making resources available to the other members of the network. Today, the
motivations are slightly different. Using a set of distributed machines gives
us more business agility, eases evolution, reduces the time to market, and
from an operational standpoint, allows us to scale more quickly, improves
resilience via replication, and so on.

Distributed systems morphed from being a workaround to being the norm.
Why? We can’t build a single machine powerful enough to handle all the
needs of a major corporation, while also being affordable. If we could, we’d
all use the giant machine and deploy independent applications on it. But this
necessity for distribution draws new operational and business boundaries
based on physical system boundaries. Microservices, serverless
architecture, service-oriented architecture (SOA), REST endpoints, mobile
applications—all are distributed systems.

This distribution is stressing, even more, the need for collaboration among
all the components forming the system. When an application (for instance,
implemented in Java), needs to interact locally, it just uses a method call.
For example, to collaborate with a service exposing a hello method,
you use service.hello. We stay inside the same process. Calls can be
synchronous; no network I/O is involved.

However, the dispersed nature of distributed systems implies interprocess
communication, and most of the time, crossing the network (Figure 3-2).
Dealing with I/O and traversing the network makes these interactions
considerably different. A lot of middleware tried to make the distribution
transparent, but, don’t be mistaken, complete transparency is a lie, as
explained in “A Note on Distributed Computing” by Jim Waldo et al. It
always backfires one way or another. You need to understand the unique
nature of remote communications and realize how distinctive they are in
order to build robust distributed systems.

https://oreil.ly/iCz3c

Figure 3-2. Remote interactions leave one process space and cross into another process space via a
network connection

The first difference is the duration. A remote call is going to take much
more time than a local call. That time is several degrees of magnitude
higher. When everything is fine, sending a request from New York City to
Los Angeles takes around 72 ms. Calling a local method takes less than a
nanosecond.

A remote call also leaves the process space, so we need an exchange
protocol. This protocol defines all the aspects of the exchange, such as who
is initiating the communication, how the information is written to the wire
(serialization and deserialization), how the messages are routed to the
destination, and so on.

When you develop your application, most of these choices are hidden from
you but present under the hood. Let’s take a REST endpoint you want to
call. You will use HTTP and most probably some JSON representation to

1

send data and interpret the response. Your code is relatively simple, as you
can see in Example 3-1.

Example 3-1. Invoke an HTTP service using a Java built-in client (chapter-
3/http-client-example/src/main/java/http/Main.java)
HttpClient client = HttpClient.newHttpClient();
HttpRequest request = HttpRequest.newBuilder()
 .uri(URI.create("https://httpbin.org/anything"))
 .build();

HttpResponse<String> response = client.send(request,
 HttpResponse.BodyHandlers.ofString());

System.out.println(response.body());

Let’s describe what’s happening when you execute it:

1. Your application creates an HTTP request (request).

2. It establishes an HTTP connection with the remote server.

3. It writes the HTTP request following the protocol.

4. The request travels to the server.

5. The server interprets the request and looks for the resource.

6. The server creates an HTTP response with the representation of the
resource state in JSON.

7. It writes the response following the protocol.

8. The application receives the response and extracts the body (as
String in this example).

It’s the role of middleware (HTTP server and client, JSON mappers…) to
make these interactions easy for us developers. In our previous example,
steps 2 to 8 are all hidden in the send method. But we need to be aware of
them. Especially today, with the cloud, distributed systems and distributed
communications are everywhere. It becomes rare to build an application
that is not a distributed system. As soon as you call a remote web service,

print a document, or use an online collaboration tool, you are creating a
distributed system.

The New Kids on the Block: Cloud Native
and Kubernetes Native Applications
The role of the cloud can’t be overstated, and it’s a significant factor in the
popularization of distributed systems. If you need a new machine, database,
API gateway, or persistent storage, the cloud can enable the delivery of
these on-demand computing services. As a reminder, though, for as much as
the cloud improves efficiencies, you must never forget that running your
application on the cloud is equivalent to running on someone else’s
machine. Somewhere there are CPUs, disks, and memory used to execute
your application, and while cloud providers are responsible for maintaining
these systems and have built a reputation around reliability, the hardware is
outside your control.

Cloud providers provide fantastic infrastructure facilities, making running
applications much more straightforward. Thanks to dynamic resources, you
can create many instances of your application and even autotune this
number based on the current load. It also offers failover mechanisms such
as routing requests to a healthy instance if another instance crashed. The
cloud helps to reach high availability by making your service always
available, restarting unhealthy parts of your systems, and so on. This is a
first step toward elastic and resilient systems.

That being said, it’s not because your application can run in the cloud that it
will benefit from it. You need to tailor your application to use the cloud
efficiently, and the distributed nature of the cloud is a big part of it. Cloud
native is an approach to building and running applications that exploit the
cloud computing delivery model. Cloud native applications should be easy
to deploy on virtual resources, support elasticity through application
instances, rely on location transparency, enforce fault-tolerance, and so on.
The Twelve-Factor App lists some characteristics to become a good cloud
citizen:

https://12factor.net/

Codebase

One codebase tracked in version control, many deploys.

Dependencies

Explicitly declare and isolate dependencies.

Config

store config in the environment.

Backing services

Treat backing services as attached resources.

Build, release, run

Strictly separate build and run stages.

Processes

Execute the app as one or more stateless processes.

Port binding

Export services via port binding.

Concurrency

Scale out via the process model.

Disposability

Maximize the robustness with fast startup and graceful shutdown.

Dev/prod parity

Keep development, staging, and production as similar as possible.

Logs

Treat your logs as event streams.

Admin processes

Run admin/management tasks as one-off processes.

Implementing these factors helps to embrace the cloud native ideology. But
achieving cloud native is not an easy task. Each factor comes with technical
challenges and architectural constraints.

In addition, each cloud provider provides its own set of facilities and APIs.
This heterogeneity makes cloud native applications nonportable from one
cloud provider to another. Very quickly, you end up in some kind of vendor
lock-in, because of a specific API or services, or tooling, or even
description format. It may not be an issue for you right now, but having the
possibility to move and combine multiple clouds improves your agility,
availability, and user experience. Hybrid cloud applications, for example,
run on multiple clouds, mixing private and public clouds, to reduce
response time and prevent global unavailability.

Fortunately, both public and private clouds tend to converge around
Kubernetes, a container orchestration platform. Kubernetes abstracts the
differences between providers using standard deployment and runtime
facilities.

To use Kubernetes, you package and run your application inside a container.
A container is a box in which your application is going to run. So, your
application is somewhat isolated from the other applications running in
their own box.

To create containers, you need an image. A container image is a
lightweight, executable software package. When you deploy a container,
you actually deploy an image, and this image is instantiated to create the
container.

The image includes everything needed to run an application: code, runtime,
system libraries, and configuration. You can create container images by
using various tools and descriptors such as Dockerfile. As you have seen in

Chapter 2, Quarkus offers image creation facilities without having to write a
single line of code.

To distribute your image, you push it to an image registry such as Docker
Hub. Then you can pull it and finally instantiate it to start your application
(Figure 3-3).

Figure 3-3. Creation, distribution, and execution of containers

While containerization is a well-known technique, when you start having
dozens of containers, their management becomes complicated. Kubernetes
provides facilities to reduce this burden. It instantiates containers and
monitors them, making sure your application is still running. As you can
imagine, this can be useful for implementing the responsiveness and
resilience characteristics from reactive systems.

NOTE
Though Kubernetes facilitates reactive systems through responsiveness and resilience,
that does not mean you cannot implement a reactive system outside of Kubernetes. It’s
definitely possible. In this book, we use Kubernetes to avoid having to implement the
underlying infrastructure features such as deployment, replication, and fault detection.

Under the hood, Kubernetes pulls container images, instantiates containers,
and monitors them. To achieve this, Kubernetes needs to have access to
nodes to run the containers. This set of nodes forms a cluster. Thinking of a
machine as a node allows us to insert a layer of abstraction. Whether these

2

https://hub.docker.com/

machines are Amazon Elastic Compute Cloud (EC2) instances, physical
hardware from a data center, or virtualized is irrelevant. Kubernetes
controls these nodes and decides which part of the system will run where.

Once Kubernetes has access to your container image, you can instruct
Kubernetes to instantiate the image so that it becomes a running container.
Kubernetes decides on which node the container is executed. It may even
move it later to optimize resource utilization, another characteristic that fits
with reactive architectures.

Just as applications need to be cloud native to benefit from the cloud, they
need to be Kubernetes native to benefit from Kubernetes. That includes
supporting Kubernetes service discovery, exposing health checks used for
monitoring, and, more importantly, running efficiently in a container. You
will see in the next chapter how these three characteristics are essential
from a Reactive point of view. You can wrap almost any application in a
container. But it may not be a good idea.

When running in a container, your application lives in a shared
environment. Multiple containers share the resources from the host, the
machine executing them. They share the CPU, the memory, and so on. If
one container is too greedy, it penalizes the other containers, which may
starve. Of course, you can use quotas, but how would the greedy container
behave under resource restrictions? So, yes, containers provide isolation,
and enable resource sharing.

One role of containers and Kubernetes is to increase the deployment
density: running more using the finite set of available resources.
Deployment density is becoming essential to many organizations because of
the economic benefits. It allows reducing costs, either by reducing the
monthly cloud bill or by running more applications on the current in-house
infrastructure.

Table 3-1 summarizes concepts presented so far around containers and
Kubernetes.

T
a
b
l
e
3
-
1
.
I
m
p
o
r
t
a
n
t
c
o
n
c
e
p
t
s
a
r
o
u
n
d
c
o

n
t
a
i
n
e
r
s
a
n
d
K
u
b
e
r
n
e
t
e
s

Name Description Associated command

Container image Lightweight, executable software
package

docker build -f my-docker
-file -t my-image:version

Container A box in which your application is
going to run

docker run my-image:versi
on

Pod The unit of replication in Kubernetes,
composed of one or more containers

kubectl get pods

Deployment Describes the content of a pod and
number of pod instances we need

kubectl get deployments

Service A channel of communication kubectl get services

delegating to a set of pods, selected
by labels

If you missed it, check out “Kubernetes with Quarkus in 10 Minutes”,
where we deployed a Quarkus service to Kubernetes!

The Dark Side of Distributed Systems
Our system is simple, but even such a basic system can illustrate the hard
reality of distributed systems. Cloud providers and Kubernetes provide
excellent infrastructure facilities, but the laws of distributed systems still
rule the system you are building. The technical complexity around
provisioning and delivery has been replaced with fundamental issues from
the nature of distributed systems. The size and complexity of modern
applications make them undeniable.

At the beginning of this chapter, you saw a first definition of distributed
systems. It was capturing the need for collaboration and communication to
provide a consistent experience. Leslie Lamport, a computer scientist and
Turing Award winner, gives a different definition that describes the dark
nature of distributed systems: “A distributed system is one in which the
failure of a computer you didn’t even know existed can render your own
computer unusable.”

In other words, failures are inevitable. They are an inherent component of
distributed systems. No matter how your system is built, it is going to fail.
As a corollary, the bigger the distributed system, the higher the level of
dynamism (the fluctuating availability of the surrounding services) and the
greater the chance of failure.

What kind of failures can we encounter? There are three types:

Transient failure

Occurs once and then disappears, like a temporary network disruption

http://www.lamport.org/

Intermittent failure

Occurs, then vanishes and then reappears, like a failure happening once
in a while for no apparent reason

Permanent failure

Continues to exist until the faulty component (either software or
hardware) is fixed

Each type of failure can have two kinds of consequences. First, it can crash
the application. We call these fail-stop failures. There are bad, of course,
but we can easily detect them and repair the system. Second, a failure may
introduce unpredictable responses at random times. We call them Byzantine
failures. They are much harder to detect and to circumvent.

Fallacies of Distributed Computing in a
Kubernetes World
As developers, imagining and planning for all the types of failure and
consequences can be challenging. How would you detect them? How would
you handle them gracefully? How can you continue to provide a consistent
experience and service if anything can fall apart? Building and maintaining
distributed systems is a complex topic full of pitfalls and landmines. The
“Eight Fallacies of Distributed Computing” list, created by L. Peter Deutsch
along with others at Sun Microsystems, walks us through many false
assumptions around distributed systems:

1. The network is reliable.

2. Latency is zero.

3. Bandwidth is infinite.

4. The network is secure.

5. Topology doesn’t change.

https://oreil.ly/0g3lL

6. There is one administrator.

7. Transport cost is zero.

8. The network is homogeneous.

These fallacies were published in 1997, long before the era of the cloud and
Kubernetes. But these fallacies are still relevant today—even more relevant.
We won’t discuss all of them but focus on the ones related to the cloud and
Kubernetes:

The network is reliable

The developer often assumes that the network is reliable on the cloud or
Kubernetes. Indeed, it’s the role of the infrastructure to handle the
network and make sure things work. Health checks, heartbeats,
replications, automatic restart—a lot of mechanisms are built in at the
infrastructure layer. The network will do its best, but sometimes, bad
things happen, and you need to be prepared for that. Data centers can
fall apart; parts of the system can become unreachable, and so on.

Latency is zero

The second fallacy seems obvious: a network call is slower than a local
call, and the latency of any given call can vary significantly, even from
one invocation to the next. We already discussed this. The latency is not
limited to that aspect; it can change over time for various reasons.

Bandwidth is infinite and the network is homogeneous

You may reach the bandwidth limit, or parts of the system may use a
faster network than some other parts because they are running on the
same node. Estimating latency is not trivial. Many capacity-planning
techniques and time-out computation are based on network latency.

Topology doesn’t change

On the cloud or on Kubernetes, services, applications, and containers
move. Kubernetes can move containers from one node to another

3

anytime. Containers are frequently moving because of the deployment
of new applications, updates, rescheduling, optimization, and so on.
Mobility is a great benefit as it allows optimizing the whole system, but
interacting with services always on the move can be challenging. You
may interact with multiple instances of your service, while, for you, it
acts as one. Some instances can be close to you (and provide a better
response time), while some may be farther or just slower because of
limited resources.

There is one administrator

Managing systems has drastically changed over the past few years. The
old-school system administration processes and maintenance downtimes
are becoming less common. DevOps philosophies and techniques such
as continuous delivery and continuous deployment are reshaping the
way we manage applications in production. Developers can easily
deploy small incremental changes throughout the day. DevOps tools and
site reliability engineers (SREs) work hard to provide an almost
constant availability, while a continuous stream of updates provides new
features and bug fixes. The administration role is shared among SREs,
software engineers, and software. For example, Kubernetes operators
are programs deployed on Kubernetes and responsible for installing,
updating, monitoring, and repairing parts of the system automatically.

Transport cost is zero

Considering the network to be free is not only a fallacy, but also an
economic mistake. You must pay attention to the cost of network calls
and look for optimization. For example, crossing cloud regions,
transferring large amounts of data, or (especially) communicating to
separate cloud providers can be expensive.

So, not that simple, right? When you build a distributed system, consider all
these issues and take them into account in your architecture and application
code. Those are just some of the issues. Another one is the inability to reach

4

https://oreil.ly/cX8nN

a consensus. In addition, the CAP theorem prevents a distributed data store
from simultaneously providing more than two out of the following three
guarantees:

Consistency

Every read receives the most recent write.

Availability

Every request receives a response.

Partition tolerance

The system continues to operate despite an arbitrary number of
messages being dropped (or delayed) by the network.

Can things get even darker? Oh yes, distributed systems can be wonderfully
imaginative to drive us crazy.

A Question of Timing: The Synchronous
Communication Drawback
Time is an often misunderstood issue. When two computers communicate
and exchange messages, we make the natural assumption that the two
machines are both available and reachable. We often trust the network
between them. Why wouldn’t it be entirely operational? Why can’t we
invoke remote services as we would for a local service?

But that may not be the case, and not considering this possibility leads to
fragility. What happens if the machine you want to interact with is not
reachable? Are you prepared for such a failure? Should you propagate the
failure? Retry?

In a hypothetical microservices-based example, it’s common to use
synchronous HTTP as the main communication protocol between services.
You send a request and expect a response from the service you invoked.

5

6

Your code is synchronous, waiting for the response before continuing its
execution. Synchronous calls are simpler to reason about. You structure
your code sequentially, you do one thing, then the next one, and so on. This
leads to time-coupling, one of the less considered and often-misunderstood
forms of coupling. Let’s illustrate this coupling and the uncertainty that
derives from it.

In the chapter-3/quarkus-simple-service directory of the GitHub repository,
you will find a simple Hello World Quarkus application. This application is
similar to the one built in Chapter 2. It contains a single HTTP endpoint, as
shown in Example 3-2.

Example 3-2. JAX-RS simple service (chapter-3/quarkus-simple-
service/src/main/java/org/acme/reactive/SimpleService.java)
package org.acme.reactive;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;

@Path("/")
@Produces(MediaType.TEXT_PLAIN)
public class SimpleService {

 @GET
 public String hello() {
 return "hello";
 }
}

Hard to have code simpler than this, right? Let’s deploy this application to
Kubernetes. Make sure minikube is started. If it’s not, start it as shown in
Example 3-3.

Example 3-3. Start minikube
> minikube start
...
> eval $(minikube docker-env)

Don’t forget to connect the Docker socket to minikube.

https://oreil.ly/vZR3j

Verify that everything is fine by running the kubectl get nodes
command (Example 3-4).

Example 3-4. Get the node names and roles
> kubectl get nodes
NAME STATUS ROLES AGE VERSION
minikube Ready control-plane,master 30s v1.20.2

Now, navigate in the chapter-3/simple-service directory and run Example 3-
5.

Example 3-5. Deploy a Quarkus application to Kubernetes
> mvn verify -Dquarkus.kubernetes.deploy=true

Wait for the pod to be ready, as shown in Example 3-6.

Example 3-6. Get the list of running pods
> kubectl get pods
NAME READY STATUS
RESTARTS AGE
quarkus-simple-service-7f9dd6ddbf-vtdsg 1/1 Running 0
42s

Then expose the service by using Example 3-7.

Example 3-7. Retrieve the URL of the service
> minikube service quarkus-simple-service --url
🏃 Starting tunnel for service quarkus-simple-service.
|-----------|------------------------|-------------|---------------
---------|
| NAMESPACE | NAME | TARGET PORT | URL
|
|-----------|------------------------|-------------|---------------
---------|
| default | quarkus-simple-service | |
http://127.0.0.1:63905 |
|-----------|------------------------|-------------|---------------
---------|
http://127.0.0.1:63905
❗ Because you are using a Docker driver on darwin, the terminal
needs to be open to
 run it.

Don’t forget that the port is assigned randomly, so you will need to replace
the port in the following commands.

Finally, let’s invoke our service by running Example 3-8 in another
terminal.

Example 3-8. Invoke the service
> curl http://127.0.0.1:63905
hello%

So far, so good. But this application contains a mechanism to simulate
distributed system failures to illustrate the problem of synchronous
communication. You can look at the implementation in chapter-3/quarkus-
simple-service/src/main/java/org/acme/reactive/fault/FaultInjector.java. It’s
basically a Quarkus route (a kind of interceptor) that monitors the HTTP
traffic and allows simulating various failures. It intercepts the incoming
HTTP request and outgoing HTTP response and introduces delays, losses,
or application failures.

When we call our service in a synchronous way (expecting a response, such
as with curl or a browser), three types of failure can happen:

The request between the caller and the service can be lost. This
results in the service not being invoked. The caller waits until a
time-out is reached. This simulates a transient network partition.
This type of failure can be enabled by using the
INBOUND_REQUEST_LOSS mode.

The service receives the request but fails to handle it correctly. It
may return an incorrect response or maybe no response at all. In
the best case, the caller would receive the failure or wait until a
time-out is reached. This simulates an intermittent bug in the called
service. This type of failure can be enabled by using the
SERVICE_FAILURE mode.

The service receives the request, processes it, and writes the
response, but the response is lost on its way back, or the
connection is closed before the response reaches the caller. The

service got the request, handled it, and produced the response. The
caller just doesn’t get it. As in the first type of failure noted
previously, the response is in a transient network partition but
happening after the service invocation. This type of failure can be
enabled using the OUTBOUND_RESPONSE_LOSS mode.

TIP
Don’t forget to update the port in the previous and following commands, as minikube
randomly picks a port.

To illustrate how the system behaves when facing failures, let’s inject some
request losses (Example 3-9).

Example 3-9. Configure the system to lose 50% of the incoming requests
> curl http://127.0.0.1:63905/fault?mode=INBOUND_REQUEST_LOSS
Fault injection enabled: mode=INBOUND_REQUEST_LOSS, ratio=0.5

This command configures FaultInjector to randomly lose 50% of the
incoming requests. The caller waits for a response that will never arrive half
of the time, and will eventually time out. Try the command in Example 3-10
until you experience a time-out.

Example 3-10. Invoke the service with a configured time-out
> curl --max-time 5 http://127.0.0.1:63905/
hello%
> curl --max-time 5 http://127.0.0.1:63905/
curl: (28) Operation timed out after 5004 milliseconds with 0 bytes
received

--max-time 5 configures a time-out of 5 seconds. Again, do not
forget to update the port.

To simulate the second type of failure, execute the command in Example 3-
11.

Example 3-11. Configure the system to inject faulty responses
> curl http://127.0.0.1:63905/fault?mode=SERVICE_FAILURE

You have now a 50% chance of receiving a faulty response; see Example 3-
12.

Example 3-12. Invoke the faulty application
> curl http://127.0.0.1:63905
hello%
> curl http://127.0.0.1:63905
FAULTY RESPONSE!%

Finally, let’s simulate the last type of failure. Execute the commands in
Example 3-13.

Example 3-13. Configure the system to lose responses
> curl http://127.0.0.1:63905/fault?mode=OUTBOUND_RESPONSE_LOSS
> curl http://127.0.0.1:63905
curl: (52) Empty reply from server

Now, the caller has a 50% chance of getting no response. The connection is
closed abruptly before the response reaches the caller. You don’t get a valid
HTTP response.

The purpose of these examples is to illustrate the strong coupling and
uncertainty arising from synchronous communication. This type of
communication, often used because of simplicity, hides the distributed
nature of the interaction. However, it makes the assumption that everything
(including the services and the network) is operational. But that’s not
always the case. As a caller using synchronous communication, you must
gracefully handle faulty responses and the absence of response.

So, what can we do? We immediately think about a time-out and retries.
With curl, you can specify a time-out (-max-time) and retries (--
retry), as shown in Example 3-14.

Example 3-14. Invoke the application by using a time-out and retry
> curl --max-time 5 --retry 100 --retry-all-errors
http://127.0.0.1:63905/
curl: (28) Operation timed out after 5003 milliseconds with 0 bytes
received
Warning: Transient problem: time-out Will retry in 1 seconds. 100
retries left.
hello%

There is a good chance that we can reach our service with 100 tries.
However, bad luck and random numbers may decide otherwise, and even
100 may not be enough. Note that during the time that the caller (you) is
waiting, that’s a rather bad user experience.

Yet, do we know for sure that if we get a time-out, the service was not
invoked? Maybe the service or the network was just slow. What would be
the ideal duration of the time-out? It depends on many factors: where the
service is located, the latency of the network, and the load of the service.
Maybe there isn’t a single instance of this service but several, all with
different characteristics.

Retries are even more sneaky. As you can’t know for sure whether the
service was invoked, you can’t assume it was not. Retrying may reprocess
the same request multiple times. But you can retry safely only if the service
you are calling is idempotent.

IDEMPOTENCE
Idempotence is used to describe the reliability of messages in a
distributed system, specifically about the reception of duplicated
messages. Because of retries or message broker features, a message sent
once can be received multiple times by consumers.

A service is idempotent if processing the same event multiple times
results in the same state and output as processing that event just a single
time. The reception of a duplicated event does not change the
application state or behavior.

Most of the time, an idempotent service detects these events and
ignores them. Idempotence can be implemented using unique
identifiers. Each event has a unique ID. Duplicated events have the
same ID. Then, the service needs storage to save all processed IDs.
When a duplicated event arrives, the service checks in this storage, and
if the event is a duplicate, ignores it. Otherwise, the service processes
the event.

Setting up this kind of storage is not as simple as it looks. There are
many concerns to address, because the storage is ruled by the CAP
theorem. You will need to understand the characteristics you need and
pick the right infrastructure. Possibilities include an in-memory data
grid such as Infinispan or Hazelcast, an inventory service such as
Apache ZooKeeper or etcd), or a dedicated database such as Redis.
However, never forget that all these solutions come with trade-offs.

So, what can we do? It’s essential to understand the impact of the time and
decouple our communication. Complex exchanges involving multiple
services cannot expect all the participants and the network to be operational
for the complete duration of that exchange. The dynamic nature of the cloud
and Kubernetes stresses the limit of synchronous communications. Bad
things happen: partitions, data loss, crashes…

https://infinispan.org/
https://hazelcast.com/

In Chapter 4, you will see how Reactive addresses this issue. By using
message passing, and spatial and time decoupling, a reactive system not
only is more elastic and resilient, but also improves the overall
responsiveness. In other words, reactive systems are distributed systems
done right. Also, in Chapter 5, you will see the approaches Reactive is
proposing to embrace the asynchronous nature of distributed systems and
how we can elegantly develop event-driven and asynchronous code. The
result not only is concurrent and efficient applications, but also paves the
road to new classes of applications such as data streaming, API gateways,
and so on.

Summary
Distributed systems are challenging. To build distributed systems, you need
to understand their nature and always plan for the worst-case scenario.
Hiding the nature of distributed systems to seek simplicity does not work. It
results in fragile systems.

This chapter covered the following:

The erratic nature of distributed systems

The evolution of distributed systems from a workaround to the
norm

Use of the cloud and Kubernetes to simplify the construction of
distributed systems

Potential failures of distributed communications caused by network
disruptions, or slowness

But we won’t stop on a failure! Time to rebound! Let’s look a bit more into
Reactive and see how it proposes to address these issues.

1 You can check the latency between the main American cities at the Current Network Latency
site.

https://oreil.ly/ws4Xd

2 Kubernetes provides health checks that constantly verify the state of the application. In
addition, Prometheus is becoming the standard framework for metric collection.

3 In 2018, a power loss incident in AWS US-East-1 caused many Amazon service disruptions.

4 Kubernetes may move containers to achieve a higher deployment density, but also be
instructed to move interacting applications on the same node to reduce the response time.

5 See “Distributed Consensus Revised” by Heidi Howard for a discussion on the problem of
consensus in modern distributed system.

6 “Perspectives on the CAP Theorem” by Seth Gilbert and Nancy A. Lynch explains the
technical implications of the CAP theorem in future distributed systems.

https://prometheus.io/
https://oreil.ly/qRVeD
https://oreil.ly/p33qM

Chapter 4. Design Principles of
Reactive Systems

In Chapter 3, we looked at the challenges behind distributed systems. It’s
now time to see what Reactive has to offer. Reactive can be seen as a set of
principles for building distributed systems, a kind of checklist to verify that
no major known concern was overlooked while architecting and building a
system. These principles focus on the following:

Responsiveness

The ability to handle requests when facing failures or peaks of load

Efficiency

The ability to do more with fewer resources

In this chapter, we cover the principles promoted by reactive systems.

Reactive Systems 101
In 2013, a group of distributed systems experts gathered and wrote the first
version of “The Reactive Manifesto.” They assembled in this whitepaper
their experience building distributed systems and cloud applications. While
in 2013 the cloud was not precisely what it is today, the dynamic creation of
ephemeral resources was already a well-known mechanism.

“The Reactive Manifesto” defines reactive systems as distributed systems
having four characteristics:

Responsive

Able to handle requests in a timely fashion

Resilient

Able to manage failures gracefully

Elastic

Able to scale up and down according to the load and resources

Message driven

Using asynchronous message-based communication among the
components forming the system

These four characteristics are represented in Figure 4-1.

Figure 4-1. Reactive systems characteristics

If you’re seeing this picture for the first time, you may be confused by all
the arrows. It can look like a well-tailored marketing campaign. It’s not, and
let’s explain why these pillars make a lot of sense when building cloud
native and Kubernetes-native applications. Let’s start with the bottom of the
figure.

Instead of trying to make distributed systems simpler than they are, reactive
systems embrace their asynchronous nature. They use asynchronous
message passing to establish the connective tissue among the components.
Asynchronous message passing ensures loose coupling, isolation, and

location transparency. In a reactive system, interactions rely on messages
sent to abstract destinations. These messages carry everything—data as well
as failures. Asynchronous message passing also improves resource
utilization. Employing nonblocking communication (we cover that part later
in this chapter) allows idle components to consume almost no CPU and
memory. Asynchronous message passing enables elasticity and resilience,
as depicted by the two bottom arrows in Figure 4-1.

Elasticity means that the system can adapt itself, or parts of itself, to handle
the fluctuating load. By looking at the messages flowing among the
components, a system can determine which parts reach their limits and
create more instances or route the messages elsewhere. Cloud infrastructure
enables creating these instances quickly at runtime. But elasticity is not
only about scaling up; it’s also about scaling down. The system can decide
to scale down underused parts to save resources. At runtime, the system
adjusts itself, always meeting the current demand, avoiding bottlenecks,
overflows, and overcommitted resources. As you can imagine, elasticity
requires observability, replication, and routing features. Observability is
covered in Chapter 13. In general, the last two are provided by the
infrastructure such as Kubernetes or cloud providers.

Resilience means handling failure gracefully. As explained in Chapter 3,
failures are inevitable in distributed systems. Instead of hiding them,
reactive systems consider failures first-class citizens. The system should be
able to handle them and react to them. Failures are contained within each
component, isolating components from one another. This isolation ensures
that parts of the system can fail and recover without jeopardizing the whole
system. For instance, by replicating components (elasticity), the system can
continue to handle incoming messages even if some elements are failing.
The implementation of resilience is shared between the application (which
needs to be aware of failures, contain them, and, if possible, handle them
gracefully) and the infrastructure (which monitors the systems and restarts
fallen components).

The last characteristic is the whole purpose of reactive systems: being
responsive. Your system needs to stay responsive—to respond in a timely

fashion—even under fluctuating load (elasticity) and when facing failure
(resilience). Relying on message passing enables these characteristics and
much more, such as flow control by monitoring the messages in the system
and applying backpressure when necessary.

In a nutshell, reactive systems are exactly what we want to build:
distributed systems able to handle the uncertainty, failures, and load
efficiently. Their characteristics meet the requirement for cloud native and
Kubernetes-native applications perfectly. But don’t be mistaken; building a
reactive system is still making a distributed system. It’s challenging.
However, by following these principles, the resulting system will be more
responsive, more robust, and more efficient. The rest of this book details
how we can easily implement such systems with Quarkus and messaging
technologies.

Commands and Events
Now that we’ve covered many of the foundational principles, you might be
confused. In Chapter 1, we said that being reactive is related to being event
driven, but in the previous section, we explicitly mentioned asynchronous
message passing. Does that mean the same thing? Not completely.

But first, we need to discuss the differences between commands and events.
As complicated as a distributed system design can be, the concepts of
commands and events are fundamental. Nearly all interactions between
individual components involve one or the other.

Commands
Every system issues commands. Commands are actions that a user wishes
to perform. Most HTTP-based APIs pass commands: the client asks for an
action to happen. It’s important to understand that the action has not yet
happened. It may happen in the future, or not; it may complete successfully
or fail. In general, commands are sent to a specific recipient, and a result is
sent back to the client.

Take the simple HTTP application we used in Chapter 3. You emitted a
simple HTTP request. As we’ve said, that was a command. The application
receives that command, handles it, and produces a result.

Events
Events are actions that have successfully completed. An event represents a
fact, something that happened: a keystroke, a failure, an order, anything
important to the organization or system at hand. An event can be the result
of work done by a command.

Let’s go back to the preceding HTTP request example. Once the response
has been written, it becomes an event. We have seen an HTTP request and
its response. That event can be written in a log or broadcast to interested
parties so they can be aware of what happened.

Events are immutable. You cannot delete an event. Admittedly, you can’t
change the past. If you want to refute a previously sent fact, you need to fire
another event invalidating the fact. The carried facts are made irrelevant
only by another fact establishing the current knowledge.

Messages
But, how to publish these events? There are many ways. These days,
solutions like Apache Kafka or Apache ActiveMQ (we cover both in
Chapter 11) are popular. They act as brokers between the producers and
consumers. Essentially, our events are written into topics or queues. To
write these events, the application sends a message to the broker, targeting a
specific destination (the queue or the topic).

A message is a self-contained data structure describing the event and any
relevant details about the event, such as who emitted it, at what time it was
emitted, and potentially its unique ID. It’s generally better to keep the event
itself business-centric and use additional metadata for the technical aspects.

On the other side, to consume events, you subscribe to the queue or topic
containing the events you are interested in and receive the messages. You

unwrap the event and can also get the associated metadata (for example,
when the event happened, where it happened, and so forth). The processing
of an event can lead to the publication of other events (again, packaged in
messages and sent to a known destination) or to the execution of
commands.

Brokers and messages can also convey commands. In this case, the message
contains the description of the action to execute, and another message
(potentially multiple messages) would carry the outcome if needed.

Commands Versus Events: An Example
Let’s take a look at an example to highlight the differences between
commands and events. Imagine an ecommerce shop, like the one depicted
in Figure 4-2. The user picks a set of products and finalizes the order
(process to payment, get the delivery date, etc.).

Figure 4-2. Simplified architecture of an ecommerce shop

The user sends a command (using an HTTP request, for example) to the
shop service with the items the user wishes to receive. In a traditional
application, once ShopService receives the command, it would call
OrderService and invoke an order method with the username, the list
of items (basket), and so on. Calling the order method is a command.
That makes ShopService dependent on OrderService and reduces
the component autonomy: ShopService cannot operate without
OrderService. We are creating a distributed monolith, a distributed
application that would collapse as soon as one of its parts fails.

Let’s see the difference if, instead of using a command between
ShopService and OrderService, we publish an event. Once the user
finalizes the order, the application still sends a command to

1

ShopService. However, this time, ShopService transforms that
command into an event: a new order has been placed. The event contains
the user, the basket, and so on. The event is a fact written in a log, or
wrapped into a message and sent to a broker.

On the other side, OrderService observes the a new order has been
placed event, by reading where these events are stored. When
ShopService emits the event, it receives it and can process it.

With this architecture, ShopService does not depend on
OrderService. In addition, OrderService does not depend on
ShopService, and it would process any observed event, regardless of the
emitter. For example, a mobile application can emit the same event when
the user validates an order from a mobile phone.

Multiple components can consume events (Figure 4-3). For example, in
addition to OrderService, StatisticsService keeps track of the
most ordered items. It consumes the same event, without having to modify
ShopService to receive them.

A component observing events can derive new ones from them. For
instance, StatisticsService could analyze the order and compute
recommendations. These recommendations could be seen as another fact,
and so communicate as an event. ShopService could observe these
events and process them to influence item selection. However,
StatisticsService and ShopService are independent of each
other. The knowledge is cumulative and occurs by receiving new events and
deriving, as done by StatisticsService, new facts from the received
events.

As depicted in Figure 4-3, we can use message queues to transport our
events. These events are wrapped into messages, sent to known destinations
(orders and recommendations). OrderService and
StatisticsService consume and process the messages
independently.

Figure 4-3. Architecture of the ecommerce shop with events and message queues

It’s important for these destinations to persist the events as an ordered
sequence. By keeping that sequence, the system can go back in time and
reprocess the events. Such a replay mechanism, popular in the Kafka world,
has multiple benefits. You can restart with a clean state after a disaster by
reprocessing all the stored events. Then, if we change the recommendation
algorithm from the statistic services, for example, it would be able to re-
accumulate all the knowledge and derive new recommendations.

While the event emission sounds explicit in this example, that’s not always
the case. For instance, events can be created from database writes.2

INDEPENDENCE
Using messages increases the independence of the components forming
the system. This independence is relative. While the components don’t
know one another, the emitted events and receivers need to share a
common vocabulary. This vocabulary is often business related but can
be technical too.

In the case of business events, they obviously arise from the analysis of
the domain. By looking at your system in terms of commands and
events, you focus on the behavior instead of the structure (we focus on
structure most of the time). Focusing on behavior puts primary attention
on the communications and the workflows, and allows determining who
is responsible for what and the kind of interactions (commands or
events) that are the most appropriate. From this analysis, you can
determine the type of interactions, the data they must encapsulate, and
how they flow in your system.

Workshops and techniques—such as event storming and the ones listed
on the Domain-Driven Design Crew page—can ease that analysis.
These techniques will let you extract the events, the commands, the
components, and, most importantly, highlight the communications.

Commands and events are the basis of most of the interactions. While we
use mostly commands, events come with significant benefits. Events are
facts. Events tell a story, the story of your system, a narrative that describes
your system’s evolution. In reactive systems, events are wrapped into
messages, and these messages are sent to destinations, transported by
message brokers such as AMQP or Kafka (Figure 4-4). Such an approach
solves two important architectural issues arising from the distributed
systems. First, it naturally handles real-world asynchronicity. Second, it
binds together services without relying on strong coupling. At the edge of
the system, this approach uses commands most of the time, often relying on
HTTP.

https://oreil.ly/IutZ7
https://oreil.ly/jBh1r

Figure 4-4. Overview of a reactive system

This asynchronous message-passing aspect of reactive systems forms the
connective tissue. It not only grants the applications forming the system
more autonomy and independence, but also enables resilience and elasticity.
You may wonder how, and you will get the beginning of our response in the
next section.

Destinations and Space Decoupling
The reactive applications, forming a reactive system, communicate using
messages. They subscribe to destinations and receive the messages sent by
other components to these destinations. These messages can carry
commands or events, though as described in the previous section, events
provide interesting benefits. These destinations are not bound to specific
components or instances. They are virtual. Components must know only the
name (generally business related, such as orders) of the destination, not
who’s producing or consuming. It enables location transparency.

LOCATION TRANSPARENCY
Location transparency refers to the use of names to identify resources,
rather than their actual location. For example, you would use
https://www.oreilly.com/ and not the 23.43.200.127 IP address. The
main benefit of location transparency is that it no longer matters where
the resource is located. In reactive systems, destinations provide
location transparency. Reactive systems use these identifiable
destinations instead of the exact location of the consumer.

If you are using Kubernetes, you may consider location transparency as
already managed for you. Indeed, you can use Kubernetes services to
implement location transparency. You have a single endpoint delegating to a
group of selected pods. But this location transparency is somewhat limited
and often tied to HTTP or request/reply protocols. Other environments can
use service discovery infrastructure such as HashiCorp Consul or Netflix
Eureka.

Using messages sent to a destination allows you, as the sender, to ignore
who precisely is going to receive the message. You don’t know if someone
is currently available or if multiple components or instances are waiting for
your message. This number of consumers can evolve at runtime; more
instances can be created, moved, or destroyed, and new components
deployed. But for you, as a sender, you don’t need to know. You just use a
specified destination. Let’s illustrate the advantages of this addressability
by using the example from the previous section. ShopService emits
order placed events carried inside messages sent to the orders
destination (Figure 4-3). It is likely possible that during a quiet period, only
a single instance of OrderService runs. If there are not many orders,
why bother having more? We could even imagine having no instance, and
instantiating one when we receive an order. Serverless platforms are
offering this scale-from-zero ability. However, over time, your shop gets
more customers, and a single instance may not be enough. Thanks to
location transparency, we can start other instances of OrderService to

https://www.oreilly.com/
https://consul.io/
https://oreil.ly/H9Ygn

share the load (Figure 4-5). ShopService is not modified and ignores
this new topology.

Figure 4-5. Elasticity provided by the use of message passing

The way the load is shared among the consumers is also irrelevant for the
sender. It can be a round-robin, a load-based selection, or something more
clever. When the load returns to normal, the system can reduce the number
of instances and save resources. Note that this kind of elasticity works
perfectly for stateless services. For stateful services, it may be harder, as the
instances may have to share the state. However, solutions exist (though not
without caveats), like the Kubernetes StatefulSet or an in-memory
data grid, to coordinate state among instances of the same service. Message
passing also enables replication. Following the same principle, we can
shadow the active OrderService instance and take over if the primary
instance fails (Figure 4-6). This approach avoids service disruption. That
kind of failover may also require state sharing.

https://oreil.ly/kVRID
https://oreil.ly/wNUIQ

Figure 4-6. Resilience provided by the use of message passing

By using message passing, our system becomes not only asynchronous, but
also elastic and resilient. When you architect your system, you list the
destinations that implement the communication pattern you want. In
general, you would use one destination per type of event, but that’s not
necessarily the case. However, avoid at all costs having a destination per
component instance. It introduces coupling between the sender and the
receiver, discarding the benefits. It also reduces the extensibility. Finally,
it’s important to keep the set of destinations stable. Changing a destination
would break the components using it or would force you to handle
redirections.

Time Decoupling
Location transparency is not the only benefit. Asynchronous message
passing also enables time decoupling.

Modern message backbones, such as AMQP 1.0, Apache Kafka, and even
Java Message Service (JMS), enable time decoupling. With these event
brokers, events are not lost if there are no consumers. The events are stored
and delivered later. Each broker has its own way. For instance, AMQP 1.0
uses persistent messages and durable subscribers to ensure message

https://amqp.org/
https://kafka.apache.org/

delivery. Kafka stores records in a durable, fault-tolerant, ordered log. The
records can be retrieved so long as they remain stored within the topic.

If our ShopService emits the finalized orders as events, it does not need
to know whether OrderService is available. It knows that it’s going to
be processed eventually. If, for example, no instances of OrderService
are available when ShopService emits the event, it’s not lost. When an
instance gets ready, it receives the pending orders and processes them. The
user is then notified asynchronously with an email.

Of course, the message broker must be available and reachable. Most
message brokers have replication abilities preventing unavailability issues
and message loss.

NOTE
It is becoming common to store events in an event log. Such ordered and append-only
structure represents the full history of your system. Every time the state changes, the
system appends the new state to the log.

Time decoupling increases the independence of our components. Time
decoupling, combined with other features enabled by asynchronous
message passing, achieves a high level of independence among our
components and keeps coupling to a minimum.

The Role of Nonblocking Input/Output
At this point, you may wonder what the difference is between an
application using Kafka or AMQP and a reactive system. Message passing
is the essence of reactive systems, and most of them rely on some sort of
message broker. Message passing enables resilience and elasticity, which
lead to responsiveness. It promotes space and time decoupling, making our
system much more robust.

But reactive systems are not only exchanging messages. Sending and
receiving messages must be done efficiently. To achieve this, Reactive
promotes the use of nonblocking I/Os.

Blocking Network I/O, Threads, and Concurrency
To understand the benefits of nonblocking I/O, we need to know how
blocking I/Os work. Let’s use a client/server interaction to illustrate. When
a client sends a request to a server, the server processes it and sends back a
response. HTTP, for instance, follows this principle. For this to happen,
both the client and the server need to establish a connection before the
interaction starts. We will not go into the depths of the seven-layer model
and the protocol stack involved in this interaction; you can find plenty of
articles online about that topic.

NOTE
Examples from this section can be run directly from your IDE. Use chapter-4/non-
blocking-io/src/main/java/org/acme/client/EchoClient.java to invoke the started server.
Be sure to avoid running multiple servers concurrently as they all use the same port
(9999).

To establish that connection between the client and the server, we use
sockets, as shown in Example 4-1.

Example 4-1. A single-threaded echo server using blocking I/O (chapter-
4/non-blocking-
io/src/main/java/org/acme/blocking/BlockingEchoServer.java)
int port = 9999;

// Create a server socket
try (ServerSocket server = new ServerSocket(port)) {
 while (true) {

 // Wait for the next connection from a client
 Socket client = server.accept();

 PrintWriter response = new

https://oreil.ly/kcTBH

PrintWriter(client.getOutputStream(), true);
 BufferedReader request = new BufferedReader(
 new InputStreamReader(client.getInputStream()));

 String line;
 while ((line = request.readLine()) != null) {
 System.out.println("Server received message from
client: " + line);
 // Echo the request
 response.println(line);

 // Add a way to stop the application.
 if ("done".equalsIgnoreCase(line)) {
 break;
 }
 }
 client.close();
 }
}

The client and server have to bind themselves to a socket forming the
connection. The server listens to its socket for the client to connect. Once
established, the client and server can both write and read data from the
socket bound to that connection.

Traditionally, because it’s simpler, applications are developed using a
synchronous development model. Such a development model executes
instructions sequentially, one after the other. So when such applications
interact across the network, they expect to continue using a synchronous
development model even for I/O. This model uses synchronous
communication and blocks the execution until the operation completes. In
Example 4-1, we wait for a connection and handle it synchronously. We
read and write using synchronous APIs. It’s simpler, but it leads to the use
of blocking I/O.

With blocking I/O, when the client sends a request to the server, the socket
processing that connection and the corresponding thread that reads from it
is blocked until some read data appears. The bytes are accumulated in the
network buffer until everything is read and ready for processing. Until the
operation is complete, the server can do nothing more but wait.

The consequence of this model is that we cannot serve more than one
connection within a single thread. When the server receives a connection, it
uses that thread to read the request, process it, and write the response. That
thread is blocked until the last byte of the response is written on the wire. A
single client connection blocks the server! Not very efficient, right?

To execute concurrent requests with this approach, the only way is to have
multiple threads. We need to allocate a new thread for each client
connection. To handle more clients, you need to use more threads and
process each request on a different worker thread; see Example 4-2.

Example 4-2. Principles behind multithreaded server using blocking I/O
while (listening) {
 accept a connection;
 create a worker thread to process the client request;
}

To implement this principle, we need a thread pool (worker pool). When the
client connects, we accept the connection and offload the processing to a
separate thread. Thus, the server thread can still accept other connections, as
shown in Example 4-3.

Example 4-3. A multithreaded echo server using blocking I/O (chapter-
4/non-blocking-
io/src/main/java/org/acme/blocking/BlockingWithWorkerEchoServer.java)
int port = 9999;
ExecutorService executors = Executors.newFixedThreadPool(10);

// Create a server socket
try (ServerSocket server = new ServerSocket(port)) {
 while (true) {

 // Wait for the next connection from a client
 Socket client = server.accept();

 executors.submit(() -> {

 try {
 PrintWriter response =
 new PrintWriter(client.getOutputStream(), true);
 BufferedReader request = new BufferedReader(
 new

InputStreamReader(client.getInputStream()));

 String line;
 while ((line = request.readLine()) != null) {

System.out.println(Thread.currentThread().getName() +
 " - Server received message from
client: " + line);
 // Echo the request
 response.println(line);

 // Add a way to stop the application.
 if ("done".equalsIgnoreCase(line)) {
 break;
 }
 }
 client.close();
 } catch (Exception e) {
 System.err.println("Couldn't serve I/O: " +
e.toString());

 }
 });
 }
}

Create a worker thread pool to handle the request.

Offload the processing of the request to a thread from the thread pool.
The rest of the code is unchanged.

That’s the model used, by default, in traditional Java frameworks such as
Jakarta EE or Spring. Even if these frameworks may use nonblocking I/O
under the hood, they use worker threads to handle the requests. But this
approach has many drawbacks, including:

Each thread requires a stack of memory allocated to it. With the
increasing number of connections, spawning multiple threads and
switching between them will consume not only memory but also
CPU cycles.

At any given point in time, multiple threads could be waiting for
the client requests. That’s a massive waste of resources.

3

Your concurrency (the number of requests you can handle at a
given time—10 in the previous example) is limited by the number
of threads you can create.

On public clouds, the blocking I/O approach inflates your monthly bill; on
private clouds, it reduces the deployment density. Therefore, this approach
is not ideal if you have to handle many connections or implement
applications dealing with a lot of I/O. In the realm of distributed systems,
that’s often the case. Luckily, there’s an alternative.

How Does Nonblocking I/O Work?
The alternative is nonblocking I/O. The difference is evident from its name.
Instead of waiting for the completion of the transmission, the caller is not
blocked and can continue its processing. The magic happens in the
operating system. With nonblocking I/O, the operating system queues the
requests. The system processes the actual I/O in the future. When the I/O
completes, and the response is ready, a continuation, often implemented as
a callback, happens and the caller receives the result.

CONTINUATIONS
The term continuation comes from functional programming.
Continuation-passing style (CPS) is a style of programming in which
control is passed explicitly in the form of a continuation. It contrasts
with the imperative style, which is the usual style of programming that
executes each instruction in order.

To better understand the benefits and see how these continuations work, we
need to look under the hood: how is nonblocking I/O implemented? We
already mentioned a queue. The system enqueues I/O operations and returns
immediately, so the caller is not blocked while waiting for the I/O
operations to complete. When a response comes back, the system stores the
result in a structure. When the caller needs the result, it interrogates the
system to see whether the operation completed (Example 4-4).

Example 4-4. An echo server using nonblocking I/O (chapter-4/non-
blocking-io/src/main/java/org/acme/nio/NonBlockingServer.java)
InetSocketAddress address = new InetSocketAddress("localhost",
9999);
Selector selector = Selector.open();
ServerSocketChannel channel = ServerSocketChannel.open();
channel.configureBlocking(false);

channel.socket().bind(address);
// Server socket supports only ACCEPT
channel.register(selector, SelectionKey.OP_ACCEPT);

while (true) {
 int available = selector.select(); // wait for events
 if (available == 0) {
 continue; // Nothing ready yet.
 }

 // We have the request ready to be processed.
 Set<SelectionKey> keys = selector.selectedKeys();
 Iterator<SelectionKey> iterator = keys.iterator();
 while (iterator.hasNext()) {
 SelectionKey key = iterator.next();
 if (key.isAcceptable()) {
 // -- New connection --
 SocketChannel client = channel.accept();
 client.configureBlocking(false);
 client.register(selector, SelectionKey.OP_READ);
 System.out.println("Client connection accepted: "
 + client.getLocalAddress());
 } else if (key.isReadable()) {
 // -- A client sent data ready to be read and we can
write --
 SocketChannel client = (SocketChannel) key.channel();
 // Read the data assuming the size is sufficient for
reading.
 ByteBuffer payload = ByteBuffer.allocate(256);
 int size = client.read(payload);
 if (size == -1) { // Handle disconnection
 System.out.println("Disconnection from "
 + client.getRemoteAddress());
 channel.close();
 key.cancel();
 } else {
 String result = new String(payload.array(),
 StandardCharsets.UTF_8).trim();
 System.out.println("Received message: " + result);

 if (result.equals("done")) {
 client.close();
 }
 payload.rewind(); // Echo
 client.write(payload);
 }
 }
 // Be sure not to handle it twice.
 iterator.remove();
 }
}

Nonblocking I/O introduces a few new concepts:

We don’t use InputStream or OutputStream (which are
blocking by nature), but Buffer, which is a temporary storage.

Channel can be viewed as an endpoint for an open connection.

Selector is the cornerstone of nonblocking I/O in Java.

Selector manages multiple channels, either server or client channels.
When you use nonblocking I/O, you create Selector. Each time you deal
with a new channel, you register this channel on the selector with the events
you are interested in (accept, ready to read, ready to write).

Then your code polls Selector with only one thread to see if the channel
is ready. When the channel is ready to read or write, you can start to read
and write. We don’t need to have a thread for every channel at all, and a
single thread can handle many channels.

The selector is an abstraction of the nonblocking I/O implementation
provided by the underlying operating system. Various approaches,
depending on the operating systems, are available.

First, select was implemented in the 1980s. It supports the registration of
1,024 sockets. That was certainly enough in the ’80s, but not anymore.

poll is a replacement for select introduced in 1997. The most
significant difference is that poll no longer limits the number of sockets.
However, as with select, the system tells you only how many channels

are ready, not which ones. You need to iterate over the set of channels to
check which ones are ready. When there are few channels, it is not a big
problem. Once the number of channels is more than hundreds of thousands,
the iteration time is considerable.

Then, epoll appeared in 2002 in the Linux Kernel 2.5.44. Kqueue
appeared in FreeBSD in 2000 and /dev/poll in Solaris around the same
time. These mechanisms return the set of channels that are ready to be
processed—no more iteration over every channel! Finally, Windows
systems provide IOCP, an optimized implementation of select.

What’s important to remember is that regardless of how the operating
systems implement it, with nonblocking I/O, you need only a single thread
to handle multiple requests. This model is much more efficient than
blocking I/O, as you don’t need to create threads to handle concurrent
requests. Eliminating these extra threads makes your application much
more efficient in terms of memory consumption (about 1 MB per thread)
and avoids wasting CPU cycles because of context switches (1–2
microseconds per switch).

Reactive systems recommend the use of nonblocking I/O to receive and
send messages. Thus, your application can handle more messages with
fewer resources. Another advantage is that an idle application would
consume almost no memory or CPUs. You don’t have to reserve resources
up front.

Reactor Pattern and Event Loop
Nonblocking I/O gives us the possibility to handle multiple concurrent
requests or messages with a single thread. How could we handle these
concurrent requests? How do we structure our code when using
nonblocking I/O? The examples given in the previous section are not
scaling well; we can quickly see that implementing a REST API with such a
model will be a nightmare. Besides, we would like to avoid using worker
threads, as it would discard the advantages of nonblocking I/O. We need
something different: the reactor pattern.

4

The reactor pattern, illustrated in Figure 4-7, allows associating I/O events
with event handlers. The reactor, the cornerstone of this mechanism,
invokes the event handlers when the expected event is received.

The purpose of the reactor pattern is to avoid creating a thread for each
message, request, and connection. This pattern receives events from
multiple channels and sequentially distributes them to the corresponding
event handlers.

Figure 4-7. The reactor pattern

Implementation of the reactor pattern uses an event loop (Figure 4-7). It’s a
thread iterating over the set of channels, and when data is ready to be
consumed, the event loop invokes the associated event handler sequentially,
in a single-threaded manner.

When you combine nonblocking I/O and the reactor pattern, you organize
your code as a set of event handlers. That approach works wonderfully with
reactive code as it exposes the notion of events, the essence of Reactive.

The reactor pattern has two variants:

The multireactor pattern uses multiple event loops (generally one
or two per CPU core), which increase the concurrency of the
application. Multireactor pattern implementations, such as Eclipse

Vert.x, call the event handlers in a single-threaded manner to avoid
deadlock or state visibility issues.

The proactor pattern can be seen as an asynchronous version of the
reactor pattern. Long-running event handlers invoke a continuation
when they complete. Such mechanisms allow mixing nonblocking
and blocking I/O (Figure 4-8).

Figure 4-8. The proactor pattern

You can integrate nonblocking event handlers, as well as blocking ones, by
offloading their execution to separate threads when it’s inevitable. When
their execution completes, the proactor pattern invokes the continuation. As
you will see in Chapter 6, this is the pattern used by Quarkus.

Anatomy of Reactive Applications
In the last few years, many frameworks have popped up, offering reactive
application support. Their goal is to simplify the implementation of reactive
applications. They achieve this by providing higher-level primitives and
APIs to handle events and abstract nonblocking I/O.

Indeed, and you may have recognized this already, using nonblocking I/O is
not that simple. Combining this with a reactor pattern (or a variant) can be
convoluted. Fortunately, alongside frameworks, libraries and toolkits are
doing the heavy lifting. Netty is an asynchronous event-driven network
application framework leveraging nonblocking I/O to build highly
concurrent applications. It’s the most used library to handle nonblocking

I/O in the Java world. But Netty can be challenging. Example 4-5
implements the echo TCP server using Netty.

Example 4-5. An echo server using Netty (chapter-4/non-blocking-
io/src/main/java/org/acme/netty/NettyEchoServer.java)
public static void main(String[] args) throws Exception {
 new NettyServer(9999).run();
}

private final int port;

public NettyServer(int port) {
 this.port = port;
}

public void run() throws Exception {
 // NioEventLoopGroup is a multithreaded event loop that handles
I/O operation.
 // The first one, often called 'boss', accepts an incoming
connection.
 // The second one, often called 'worker', handles the traffic
of the accepted
 // connection once the boss accepts the connection and
registers the
 // accepted connection to the worker.
 EventLoopGroup bossGroup = new NioEventLoopGroup();

 EventLoopGroup workerGroup = new NioEventLoopGroup();
 try {
 // ServerBootstrap is a helper class that sets up a server.
 ServerBootstrap b = new ServerBootstrap();
 b.group(bossGroup, workerGroup)
 // the NioServerSocketChannel class is used to
instantiate a
 // new Channel to accept incoming connections.
 .channel(NioServerSocketChannel.class)
 .childHandler(new ChannelInitializer<SocketChannel>
() {
 // This handler is called for each accepted
channel and
 // allows customizing the processing. In this
case, we
 // just append the echo handler.
 @Override
 public void initChannel(SocketChannel ch) {
 ch.pipeline().addLast(new

EchoServerHandler());
 }
 });

 // Bind and start to accept incoming connections.
 ChannelFuture f = b.bind(port).sync();

 // Wait until the server socket is closed.
 f.channel().closeFuture().sync();
 } finally {
 workerGroup.shutdownGracefully();
 bossGroup.shutdownGracefully();
 }
}

private static class EchoServerHandler extends
ChannelInboundHandlerAdapter {

 @Override
 public void channelRead(ChannelHandlerContext ctx, Object msg)
{
 // Write the received object, and flush
 ctx.writeAndFlush(msg);
 }
}

The Vert.x toolkit, based on top of Netty, provides higher-level features to
build reactive applications such as HTTP clients and servers, messaging
clients, etc. Typically, the same echo TCP server using Vert.x looks like
Example 4-6.

Example 4-6. An echo server using Vert.x (chapter-4/non-blocking-
io/src/main/java/org/acme/vertx/VertxEchoServer.java)
Vertx vertx = Vertx.vertx();
// Create a TCP server
vertx.createNetServer()
 // Invoke the given function for each connection
 .connectHandler(socket -> {
 // Just write the content back
 socket.handler(buffer -> socket.write(buffer));
 })
 .listen(9999);

Most Java frameworks offering Reactive capabilities are based on Netty or
Vert.x. As shown in Figure 4-9, they all follow the same type of blueprint.

Figure 4-9. The common architecture of reactive frameworks

At the bottom, you have the nonblocking I/O. Generally, frameworks use
Netty or Vert.x. This layer handles client connections, outbound requests,
and response writing. In other words, it manages the I/O part. Most of the
time, this layer implements the reactor pattern (or a variant), and so
provides an event-loop-based model.

Then, in the second layer, you have the reactive framework per se. The role
of this layer is to provide high-level APIs that are easy to use. You use these
APIs to write your application code. Instead of having to handle
nonblocking I/O channels, this layer provides high-level objects such as
HTTP requests, responses, Kafka messages, and so on. Much easier!

Finally, in the top layer, you have your application. Your code does not need
to touch nonblocking I/O concepts, thanks to the reactive framework. It can
focus on incoming events and handle them. Your code is just a collection of
event handlers. It can use the features provided by the reactive framework
to interact with other services or middleware.

But there is a catch. The event handler from your code is invoked using the
event loop thread (an I/O thread). If your code blocks this thread, no other
concurrent events can be processed. It would be a disaster in terms of
responsiveness and concurrency. The consequence of such an architecture is
clear: your code must be nonblocking. It must never block the I/O threads,
as they are rare and are used to handle multiple concurrent requests. To
achieve this, you could offload the processing of some events to a worker
thread (using the proactor pattern). While it can discard some of the benefits
of nonblocking I/O, it is sometimes the most rational choice (Figure 4-10).
Nevertheless, we should not abuse this as it would discard the reactive
benefits and make the application slow. The multiple context switches
required to handle an event on a worker thread penalizes the response time.

Figure 4-10. Running some event handlers on worker threads

Typically, our applications from Chapter 2 and Chapter 3 rely on such a
mechanism.

Another possibility is to rely only on nonblocking code, relying on
asynchronous APIs provided by the reactive framework. These APIs would
be nonblocking, and if the business logic involved I/O, it uses nonblocking
I/O. Every time an event handler executes an asynchronous operation,
another handler (the continuation) is registered, and when the expected
event arrives, the event loop invokes it. Thus, the processing is divided into

smaller handlers running asynchronously. That model is the most efficient
and embraces the concepts entirely behind Reactive.

Summary
Reactive systems are about building better distributed systems. They don’t
aim to hide the nature of distributed systems but, on the contrary, embrace
it.

In this chapter, you learned the following:

The four pillars of reactive systems (asynchronous message
passing, elasticity, resilience, and responsiveness)

How asynchronous message passing enables elasticity and
resilience, and increases the autonomy of each individual
component

The role of commands and events in a distributed system

How nonblocking I/O improves resource utilization in reactive
applications

But this last point has a significant drawback, as we need to write
nonblocking code. What a coincidence! The next chapter is precisely about
that!

1 “Don’t Build a Distributed Monolith” by Ben Christensen is an interesting talk about
distributed monoliths and why you should avoid them.

2 This pattern is called Change Data Capture. Frameworks such as Debezium are a key element
of reactive systems when using databases, as the events are emitted without any impact on the
application code.

3 We are referring to the traditional Spring Framework. Reactive Spring is based on
nonblocking I/O.

4 “Measuring Context Switching and Memory Overheads for Linux Threads” by Eli Bendersky
provides interesting data about the cost of threads on Linux.

https://oreil.ly/CtY3x
https://oreil.ly/Umhs9
https://debezium.io/
https://oreil.ly/hv2Uy

Chapter 5. Reactive
Programming: Taming the
Asynchronicity

In the previous chapter, we introduced reactive systems and how they
elegantly handle the challenges of distributed systems. Although never
forget that nothing comes for free in the IT world. One of the characteristics
of reactive systems is the use of nonblocking I/O. Nonblocking I/O
improves the concurrency, responsiveness, and resource utilization of
reactive applications. To fully benefit from nonblocking I/O, you must
design and develop the code in a nonblocking manner, and that is a not-so-
easy challenge.

This chapter explores approaches to writing nonblocking and asynchronous
Java code such as callbacks and reactive programming. We also cover flow
control and Reactive Streams, which is an essential part of modern reactive
applications.

Asynchronous Code and Patterns
How does nonblocking lead to asynchronous code? Remember the design
of nonblocking I/O from the preceding chapter. It allows using a few
threads to handle concurrent network interactions. That particular
architecture reduces memory consumption but also CPU usage. As a
consequence, the application code gets executed by one of these I/O
threads, and there are scarce resources. If your code unconsciously blocks
one of these threads, it would reduce your application’s concurrency and
increase the response time, as fewer threads are available to handle the
requests. In the worst-case scenario, all the I/O threads get blocked, and the

application cannot handle requests anymore. In other words, the benefits
from nonblocking I/O would vanish.

Let’s illustrate this with an example. Imagine a greeting service, which
takes a name as a parameter and produces a greeting message. With a
synchronous model, you would invoke that service as shown in Example 5-
1.

Example 5-1. Example of synchronous code
String greetings = service.greeting("Luke");
System.out.println(greetings);

You call the service, synchronously get the result, and use it on the next
line.

Now, let’s imagine that the greeting service is a remote service. You
could still call it synchronously, but, in this case, you are going to block the
thread until the response is received, as depicted in Figure 5-1.

Figure 5-1. Synchronous invocation

If your code runs on the I/O thread, you block that thread. As a
consequence, the service cannot handle any other requests while waiting for
the response. Blocking the I/O thread discards all the advantages of
nonblocking I/O.

What can we do? That’s simple: we must not block the thread. We call the
method, and it returns immediately, not waiting for the response. But, there
is a small problem with this approach: how would you get this response?
You need to pass some continuation, invoked when the response is received,
as shown in Example 5-2.

Example 5-2. Example of asynchronous code
service.greeting("Luke", greeting -> {
 System.out.println(greeting);
});

In this code snippet, we pass a continuation implemented using a callback,
a function invoked with the received result. It embraces well the event-
driven nature of this code: on result, call that function.
With this asynchronous model, we release the I/O thread. When the
response is received, it calls the function with that response and continues
the execution. During that time, this I/O thread can be used to handle more
requests (Figure 5-2).

Figure 5-2. Asynchronous invocation

Let’s have a deeper look at the preceding code snippet and add some traces
by using the good old System.out statements (Example 5-3).

Example 5-3. Asynchronous code and ordering
System.out.println("Before");
service.greeting("Luke", greeting -> {
 System.out.println(greeting);
});
System.out.println("After");

What would be the output of this program? For sure, Before is printed
first, but what about the greeting message and After? Which one would
be first? There is a good chance that After is printed first because
invoking the greeting service takes at least a few milliseconds
(remember, it’s a remote service). This means that with asynchronous code,
the next line often is executed before the continuation.

What does that mean in practice? Let’s imagine you want to call the
greeting service twice, once for Luke and once for Leia; see Example 5-
4.

Example 5-4. Calling asynchronous methods twice

service.greeting("Leia", greeting -> {
 System.out.println("Leia: " + greeting);
});
service.greeting("Luke", greeting -> {
 System.out.println("Luke: " + greeting);
});

In this code, we can’t anticipate which message is going to appear first. It
depends on many factors such as latency, speed, and number of instances of
the greeting service. However, both calls run concurrently, which is an
attractive benefit.

If you want or need a strict order (for example, to call the service for Leia
first and then Luke), we need to compose the asynchronous calls
(Example 5-5).

Example 5-5. Sequential composition pattern
service.greeting("Leia", greeting1 -> {
 System.out.println("Leia: " + greeting1);
 service.greeting("Luke", greeting2 -> {
 System.out.println("Luke: " + greeting2);
 });
});

With this code, we first call the service with Leia, and when we get the
response, call it with Luke. The calls don’t run concurrently anymore, but
at least we know the order. We call this pattern sequential composition. It’s
quite common, as you can imagine.

Let’s continue our investigation with another type of useful composition:
parallel composition. We want to execute the calls concurrently this time,
but we need to pass a continuation invoked when both calls are complete
(Example 5-6).

Example 5-6. Simplified parallel composition pattern
String resultForLeia = null;
String resultForLuke = null;
BiConsumer<String, String> continuation = ...;

service.greeting("Leia", greeting -> {
 resultForLeia = greeting;
 if (resultForLuke != null) {

 continuation.accept(resultForLeia, resultForLuke);
 }
});
service.greeting("Luke", greeting -> {
 resultForLuke = greeting;
 if (resultForLeia != null) {
 continuation.accept(resultForLeia, resultForLuke);
 }
 });
});

It starts to be a bit more convoluted, and this code is not totally correct, as
you can have race conditions if both callbacks are invoked concurrently. We
need to store the results, check if they are non-null, and invoke the
continuation function.

We have slightly forgotten another aspect: failures. It’s not because it’s an
asynchronous API that failures don’t happen. You cannot use try/catch
blocks anymore, as the failure can also happen asynchronously; see
Example 5-7.

Example 5-7. Would this try/catch work as intended?
try {
 service.greeting("Luke", greeting -> {
 System.out.println(greeting);
 });
} catch (Exception e) {
 // does not handle the exception thrown by the remote service
}

The catch block would catch only synchronous exceptions. If the service
produces a failure asynchronously, like the inability to produce the greeting
message, this try/catch is useless. To handle failures, we need to have a
proper construct for it. We can imagine two simple ways:

Use an asynchronous result construct encapsulating both the result
and the failure.

Have a second callback for failures.

With the first approach, you would need something like Example 5-8.

Example 5-8. Use asynchronous result encapsulating both result and failure
service.greeting("Luke", greeting -> {
 if (greeting.failed()) {
 System.out.println("D'oh! " +
greeting.failure().getMessage());
 } else {
 System.out.println(greeting.result());
 }
});

greeting is not a String anymore but a type encapsulating the
operation’s outcome. You need to check whether the operation failed or
succeeded and act accordingly. You can quickly imagine how this would
impact our previous composition examples. At that level, it’s not
challenging; it’s a nightmare!

The second approach uses two callbacks: the first one when the operation
succeeded, and the second one when it failed (Example 5-9).

Example 5-9. Use different continuations for each outcome
service.greeting("Luke",
 greeting -> {
 System.out.println(greeting);
 },
 failure -> {
 System.out.println("D'oh! " + failure.getMessage());
 }
);

This approach clearly distinguishes the two cases, but again, it makes
composition harder (Example 5-10).

Example 5-10. Use multiple continuations and compositing actions
service.greeting("Leia",
 greeting1 -> {
 System.out.println(greeting1);
 service.greeting("Luke",
 greeting2 -> System.out.println(greeting2),
 failure2 -> System.out.println("D'oh! " +
failure2.getMessage())
);
 },
 failure1 -> {
 System.out.println("D'oh! " + failure1.getMessage());

1

 }
);

It’s not simple, right? However, this second approach has an advantage. If
we imagine having a greeting service accepting multiple names, it is
well suited to handle sequential responses (Example 5-11).

Example 5-11. Multiple results for a single operation
service.greeting(Arrays.asList("Leia", "Luke"),
 greeting -> { // Called once for Leia, and once for Luke
 System.out.println(greeting);
 },
 failure -> {
 System.out.println("D'oh! " + failure.getMessage());
 }
);

This example starts exhibiting a new construct: streams of data. You will
see a lot more of these in this book. These streams can be internal to the
application or convey messages coming from a message broker. In this
chapter, we consider only streams internal to the reactive applications. We
will cover how these streams can be connected to various message brokers
in Chapter 11.

In Java, to express your continuation using callbacks, we often use Java 8
Lambdas. They are well integrated in the language, but we have also seen
the limit of that approach. Callbacks do not compose well. So we need a
higher-level construct. Any seasoned developers would say future!

Using Futures
A future is a placeholder for a value resolved later. By nature, it’s
asynchronous; you don’t know when the future will get the value. It’s just
later. When the value gets set, the future allows reacting on it—for
example, transforming the value, implementing side effects, and so forth.

How does it help our asynchronous code concern? In Java,
CompletableFuture, or CompletionStage, the associated
interface, can represent the result of an asynchronous action. Your API

returns a CompletionStage object, which gets the result when the
operation completes. The method returning the CompletionStage
object returns immediately, and so does not block the caller thread, and the
continuation can be attached to the returned CompletionStage; see
Example 5-12.

Example 5-12. Example of CompletionStage (chapter-5/reactive-
programming-examples/src/main/java/org/acme/future/Futures.java)
CompletionStage<String> future = service.greeting("Luke");

NOTE
The full examples from this section are located in chapter-5/reactive-programming-
examples/src/main/java/org/acme/future/Futures.java.

The continuation can be divided into a set of stages to process, consume,
and transform the results, as shown in Example 5-13.

Example 5-13. Chaining operation with CompletionStage (chapter-
5/reactive-programming-
examples/src/main/java/org/acme/future/Futures.java)
service.greeting("Luke")
 .thenApply(response -> response.toUpperCase())
 .thenAccept(greeting -> System.out.println(greeting));

Futures also ease the implementation of sequential composition. With the
CompletionStage API, you can use thenCompose to invoke a
second operation (as seen in Example 5-14).

Example 5-14. Sequential composition with CompletionStage
(chapter-5/reactive-programming-
examples/src/main/java/org/acme/future/Futures.java)
service.greeting("Luke")
 .thenCompose(greetingForLuke -> {
 return service.greeting("Leia")
 .thenApply(greetingForLeia ->
 Tuple2.of(greetingForLuke, greetingForLeia)
);

 })
 .thenAccept(tuple ->
 System.out.println(tuple.getItem1() + " " +
tuple.getItem2())
);

The allOf method allows implementing parallel composition; see
Example 5-15.

Example 5-15. Parallel composition with CompletableFuture
(chapter-5/reactive-programming-
examples/src/main/java/org/acme/future/Futures.java)
CompletableFuture<String> luke =
service.greeting("Luke").toCompletableFuture();
CompletableFuture<String> leia =
service.greeting("Leia").toCompletableFuture();

CompletableFuture.allOf(luke, leia)
 .thenAccept(ignored -> {
 System.out.println(luke.join() + " " + leia.join());
 });

Futures make composing asynchronous actions much more straightforward
than callbacks. Besides, futures encapsulate both the result and failure. In
CompletionStage, specific methods handle failure and recover, as you
can see in Example 5-16.

Example 5-16. Recover from failure with the CompletionStage API
(chapter-5/reactive-programming-
examples/src/main/java/org/acme/future/Futures.java)
service.greeting("Leia")
 .exceptionally(exception -> "Hello");

When using CompletionStage, we start seeing the creation of
pipelines: a sequence of operations handling events and asynchronous
results.

You may be wondering, what’s missing? Futures seem to tick all the boxes.
But one tick is missing: streams. Futures do not handle streams of data well.
They can be used for operations returning single values, but they won’t
work for functions returning sequences as in Example 5-11.

Project Loom: Virtual Threads and Carrier
Threads
If you follow the news around Java, you may have heard about Project
Loom. Loom adds the concept of virtual threads into Java. Unlike regular
threads, virtual threads are lightweight. A single carrier thread, a regular OS
thread, can execute many virtual threads, potentially millions. Loom (the
JVM) manages the scheduling of these virtual threads, while the operating
system manages the carrier thread’s scheduling.

One benefit is that you can execute blocking code in a virtual thread; it does
not block the carrier thread. When a virtual thread executes a blocking call,
such as an I/O call, the Loom scheduler, managing the virtual threads, parks
that virtual thread and runs another virtual thread. So the carrier thread is
not blocked and is used to execute this other virtual thread. That does smell
good, right?

In other words, you can write blocking code using a synchronous syntax
without having to take care of the continuation. Loom handles that for you!
Even better: because virtual threads are lightweight, you don’t need thread
pools anymore; you can create new ones on the fly.

However, at the time of writing, the Loom project is still incubating. The
following code snippets may slightly change as the API is still evolving.
Besides, some concurrency or blocking constructs are not yet supported,
and you may unintentionally block the carrier threads, which, as you can
imagine, can be catastrophic.

But, to give some ideas, let’s see how we could use our greeting service
in a Loom world. First, the greeting service implementation can be
blocking and use blocking I/O to interact with a remote service. If the call is
executed on a virtual thread, it does not block the carrier thread, which can
execute another virtual thread. Loom replaces the blocking I/O calls with a
nonblocking I/O and parks the virtual thread until the response is received.
When the response is available, the parked virtual thread can continue its

2

https://oreil.ly/vuLzu

execution with the result. From the developer point of view, it’s all
synchronous, but under the hood it’s not; see Example 5-17.

Example 5-17. Create a virtual thread
Thread.startVirtualThread(() -> {
 // We are running on a virtual thread.
 // The service may use blocking I/O, the virtual thread would
be parked.
 String response = service.greeting("Luke");
 // Once the response is received, the virtual thread can
continue its execution.
 // The carrier thread has not been blocked.
 System.out.println(response);
});

As you can see, it’s pure synchronous code. As a consequence, the
sequential composition is remarkably simple (Example 5-18).

Example 5-18. Sequential composition with Loom
Thread.startVirtualThread(() -> {
 String response1 = service.greeting("Luke");
 String response2 = service.greeting("Leia");
 System.out.println("Luke: " + response1);
 System.out.println("Leia: " + response2);
});

It’s not different from what you would use in a traditional application.
Don’t forget that the virtual thread is suspended and resumes multiple
times. But, again, the carrier thread is not.

Failure management can use try/catch as, again, you use synchronous
code. If the call to the service fails, the failure is thrown as a regular
exception (Example 5-19).

Example 5-19. Exception handling with Loom
Thread.startVirtualThread(() -> {
 try {
 String response = service.greeting("Luke");
 System.out.println("Luke: " + response);
 } catch (Exception e) {
 System.out.println("Failed");
 }
});

Unfortunately, Loom does not offer any specific construct for parallel
composition. You need to use the same approach as for
CompletableFuture, as shown in Example 5-20.

Example 5-20. Parallel composition with Loom
ExecutorService executor =
Executors.newUnboundedVirtualThreadExecutor();
CompletableFuture<String> future1 = executor.submitTask(()
 -> service.greeting("Luke"));
CompletableFuture<String> future2 = executor.submitTask(()
 -> service.greeting("Leia"));

Thread.startVirtualThread(() -> {
 CompletableFuture.allOf(future1, future2).thenAccept(v -> {
 System.out.println("Luke: " + future1.join());
 System.out.println("Leia: " + future2.join());
 });
});

Sounds magic, right? But, you see it coming; there is a catch…

While you write synchronous code and do not block the carrier thread, I/Os
are still happening on I/O threads. The carrier threads are not I/O threads
(Figure 5-3). So, there are multiple thread switches that are not free, even if
optimized.

Figure 5-3. Thread switches happening under the hood

Also, the temptation to create a massive number of virtual threads can lead
to complicated execution. Even if virtual threads are lightweight, storing
their stacks in memory may lead to unexpected memory consumption. It’s
like any software using many threads; they can be hard to understand and
tune. That’s being said, Loom is promising. Does that make Reactive
pointless? It’s the opposite. Loom addresses only the development model,
not the architecture concepts behind reactive systems. Also, a synchronous
model looks attractive but does not accommodate every situation, especially
when you need to group events or implement stream-based logic. That’s
what we cover in the next section: reactive programming.

Reactive Programming
First, what is reactive programming? A common definition is:

Reactive programming combines functional programming, the observer
pattern, and the iterable pattern.

—The ReactiveX website

We never found that definition helpful—too many patterns, and it’s hard to
clearly convey what reactive programming is about. Let’s make another
definition, much more straightforward: “Reactive programming is about
programming with asynchronous streams.”

That’s it. Reactive programming is about streams and, especially, observing
them. It pushes that idea to its limit: everything is a stream. These streams
can be seen as a pipe in which events flow. We observe the events flowing
—such as items, failures, completion, cancellations—and implement side
effects (see Figure 5-4).

http://reactivex.io/

Figure 5-4. Reactive programming is about observing streams

Reactive programming is a specialization of the observer pattern in the
sense that you observe an object (the stream) and react. It’s asynchronous
by nature, as you don’t know when the event is going to be seen. Yet,

reactive programming goes beyond this. It provides a toolbox to compose
streams and process events.

Streams
When using reactive programming, everything—yes, everything—is a
stream of items. The stock market, user clicks, keystrokes, steps, ticks… All
these are streams, and it’s easy to see why: they are sequences of individual
events. So the stream carries every occurrence of this event, and the
observer can react.

But reactive programming also considers asynchronous actions, HTTP
requests, RPC method invocations, and database insertions or queries as
streams. So, a stream does not need to carry multiple items; it can contain a
single one or even none! That is a bit harder to imagine, but it can be
powerful.

With reactive programming, you structure your code around streams and
build chains of transformation, also called pipelines. The events flow from
the upstream source to the downstream subscriber, traversing each operator
and getting transformed, processed, filtered, and so on. Each operator
observes the upstream and produces a new stream. But, there is an
important point to not miss in this chain. You need a final subscriber that
subscribes to the last stream and triggers the whole computation. When this
subscription happens, the direct upstream of the final observer subscribes to
its own upstream, which subscribes to its upstream, until it reaches the root.

Let’s go back to the idea of a stream. As we’ve mentioned, we consider a
stream as only internal to the reactive applications. These streams are
sequences of events ordered in time. The order matters. You observe them
in the emission order.

A stream can emit three types of events (Figure 5-5):

Items

The type depends on the stream; it can be a step, a click, or a response
from a remote service.

Failures

Indicate that something bad happened, and no more items will be
emitted.

Completions

Indicate that there are no more items to emit.

Figure 5-5. Streams can emit three types of events: items, failures, and completions

Item is the most frequent type of event. As an observer, you get notified
every time a new item is transiting in the stream. You can react to it,
transform it, implement side effects, and so on.

Failure is an error signal. It indicates that something terrible happened, and
the observed stream cannot recover from it. If not handled properly, failures
are a terminal event, and no more items will be emitted after a failure. You
may wonder, why do we need to handle failure? Because streams are
asynchronous, and if something breaks the source of items, you should be

aware of it, and not wait for additional items, as they won’t come. As for the
other asynchronous development models, you cannot use a try/catch
block, so you need to observe failures and react to them. For example, you
can log an error or use a fallback item.

Finally, the completion event is emitted only when observing a bounded
stream, as unbounded streams never terminate. The event indicates the end
of the stream; the source (upstream) is not going to send any more items.

Every time one of these events transit in the observed stream, you, as the
observer, get notified. You attach functions handling each of them, as
shown in Example 5-21.

Example 5-21. Subscribe to a stream to receive the events (chapter-
5/reactive-programming-
examples/src/main/java/org/acme/reactive/StreamsExample.java)
stream
 .subscribe().with(
 item -> System.out.println("Received an item: " +
item),
 failure -> System.out.println("Oh no! Received a
failure: " + failure),
 () -> System.out.println("Received the completion
signal")
);

To observe a stream, you subscribe to it. It’s a key concept in reactive
programming, as streams are lazy by default. Subscribing indicates your
interest in the events. Without a subscription:

You won’t receive the items

You won’t tell the stream that it needs to operate

The second point is important. It means that, in general, if no one
subscribes to a stream, the stream won’t do anything. That may look odd
but allows you to save resources and to start the computation only when
everything is ready and you actually need the events.

Operators

Although reactive programming is about streams, it would be useless
without a toolbox to manipulate these streams. Reactive programming
libraries offer countless operators that let you create, combine, filter, and
transform the object emitted by streams. As depicted in Figure 5-6, a stream
can be used as input to another one.

Figure 5-6. Example of transform operator

It’s important to understand that operators return new streams. The operator
observes the previous stream (named upstream) and creates a new stream
by combining their logic and the received events. For example, the

transform operator from Figure 5-6 applies a function for each received
item and emits the result to its downstream subscriber (Example 5-22).

Example 5-22. Transform items (chapter-5/reactive-programming-
examples/src/main/java/org/acme/reactive/StreamsExample.java)
stream
 .onItem().transform(circle -> toSquare(circle))
 .subscribe().with(
 item -> System.out.println("Received a square: " +
item),
 failure -> System.out.println("Oh no! Received a
failure: " + failure),
 () -> System.out.println("Received the completion
signal")
);

As depicted in Figure 5-7 and Example 5-23, operators can also handle
failures; for example, to recover or retry.

3

file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_wcbd4i91/_glcsjg6_pdf_out/OEBPS/Images/#image-rp-stream-recover
file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_wcbd4i91/_glcsjg6_pdf_out/OEBPS/Images/#reactive-programming::recover

Figure 5-7. Recovering from failures

Example 5-23. Recover from failures (chapter-5/reactive-programming-
examples/src/main/java/org/acme/reactive/StreamsExample.java)
stream
 .onFailure().recoverWithItem(failure ->
getFallbackForFailure(failure))
 .subscribe().with(
 item -> System.out.println("Received a square: " +
item),
 failure -> System.out.println("Oh no! Received a
failure: " + failure),
 () -> System.out.println("Received the completion
signal")
);

You may wonder why the recover operator emits a completion event
after the recovery, as shown in Figure 5-7. When the operator receives the
failure event, it knows that the source is not going to emit any more items,
as failures are terminal. So, after emitting the fallback item, the operator
emits the completion event. For the downstream subscriber, it’s like the
failure did not happen and the stream completed successfully.

Operators are not limited to synchronous or single-in, single-out types of
transformations. Operators can transform a single item into a stream, or on
the flip side, discard items, as shown in Figure 5-8.

Figure 5-8. Example of operators emitting multiple items or discarding some items

Finally, operators can observe multiple upstreams, to merge them, for
example, as shown in Figure 5-9 and demonstrated in Example 5-24.

file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_wcbd4i91/_glcsjg6_pdf_out/OEBPS/Images/#image-rp-stream-recover

Figure 5-9. Merging multiple streams

Example 5-24. Merge multiple streams (chapter-5/reactive-programming-
examples/src/main/java/org/acme/reactive/StreamsExample.java)
Multi.createBy().merging().streams(circles, squares)
 .subscribe().with(
 item -> System.out.println("Received a square or circle: "
+ item),
 failure -> System.out.println("Oh no! Received a failure: "
+ failure),
 () -> System.out.println("Received the completion signal")
);

NOTE
In the preceding example, note when the observer received the completion event. The
merging operator waits for all the merged streams to complete before sending the
completion event, as at that point, no more items will be emitted. That illustrates the
coordination role of operators.

Reactive Programming Libraries
Java has many reactive programming libraries. In this book, we are using
SmallRye Mutiny, the reactive programming library integrated in Quarkus.
We will have a deeper look at Mutiny in Chapter 7. Project Reactor and
RxJava, two popular alternatives, propose similar concepts.

Reactive programming is not limited to Java. RX-JS is a reactive
programming library in JavaScript, often used in combination with Angular.
RxPY and RxGo offer the same type of constructs for Python and Go
applications, respectively.

Reactive Streams and the Need for Flow
Control
Using data streams as primary constructs does not come without issues.
One of the main problems is the need for flow control. Let’s imagine a fast
producer and a slow consumer. The producer sends events too quickly for
the consumer, which can’t keep up. Imagine that this producer emits an

https://oreil.ly/pF21o
https://oreil.ly/tlGl1
https://oreil.ly/Mg4Rj

item every 10 milliseconds, while a downstream consumer can consume
only one per second. Run the code in Example 5-25, and you’ll see how it
ends: badly.

Example 5-25. Example of backpressure failure (chapter-5/reactive-
programming-
examples/src/main/java/org/acme/streams/BackPressureExample.java)
// Ticks is a stream emitting an item periodically (every 10 ms)
Multi<Long> ticks =
Multi.createFrom().ticks().every(Duration.ofMillis(10))
 .emitOn(Infrastructure.getDefaultExecutor());

ticks

.onItem().transform(BackPressureExample::canOnlyConsumeOneItemPerSe
cond)
 .subscribe().with(
 item -> System.out.println("Got item: " + item),
 failure -> System.out.println("Got failure: " + failure)
);

If you run that code, you will see that the subscriber gets
MissingBackPressureFailure, indicating that the downstream
could not keep up (Example 5-26).

Example 5-26. Subscriber getting a BackPressureFailure
Got item: 0
Got failure: io.smallrye.mutiny.subscription.BackPressureFailure:
Could not
emit tick 16 due to lack of requests

NOTE
In Example 5-25, you may wonder about emitOn. This operator controls when a thread
is used to emit the events. Backpressure is required when multiple threads are involved
because in a single thread, blocking the thread would block the source.

So, what can we do to handle this case?

4

Buffering Items
The first natural solution uses buffers. The consumer can buffer the events,
so it does not fail (Figure 5-10).

Figure 5-10. Buffering to avoid overwhelming downstream consumers

Buffers allow handling small bumps, but they’re not a long-term solution. If
you update your code to use a buffer, as in Example 5-27, the consumer can
handle more events but eventually fails.

Example 5-27. Handle overflow with buffers (chapter-5/reactive-
programming-
examples/src/main/java/org/acme/streams/BufferingExample.java)
Multi<Long> ticks =
Multi.createFrom().ticks().every(Duration.ofMillis(10))
 .onOverflow().buffer(250)
 .emitOn(Infrastructure.getDefaultExecutor());

ticks

.onItem().transform(BufferingExample::canOnlyConsumeOneItemPerSecon
d)
 .subscribe().with(
 item -> System.out.println("Got item: " + item),
 failure -> System.out.println("Got failure: " + failure)
);

Here’s the output:
Got item: 0
Got item: 1
Got item: 2
Got failure: io.smallrye.mutiny.subscription.BackPressureFailure:
Buffer is full due to lack of downstream consumption

You can imagine increasing the buffer’s size, but it’s hard to anticipate the
optimal value. These buffers are local to the application, so, using large
buffers also increases your memory consumption and reduces your resource

utilization efficiency. Not to mention that unbounded buffers are a terrible
idea, as you may run out of memory.

Dropping Items
Another solution consists of dropping items. We can drop the newest
received items or oldest ones; see Example 5-28.

Example 5-28. Handle overflow by dropping items (chapter-5/reactive-
programming-
examples/src/main/java/org/acme/streams/DropExample.java)
Multi<Long> ticks =
Multi.createFrom().ticks().every(Duration.ofMillis(10))
 .onOverflow().drop(x -> System.out.println("Dropping item "
+ x))
 .emitOn(Infrastructure.getDefaultExecutor());

ticks

.onItem().transform(DropExample::canOnlyConsumeOneItemPerSecond)
 .transform().byTakingFirstItems(10)
 .subscribe().with(
 item -> System.out.println("Got item: " + item),
 failure -> System.out.println("Got failure: " +
failure)
);

Here’s the output:
//
Dropping item 997
Dropping item 998
Dropping item 999
Dropping item 1000
Dropping item 1001
Dropping item 1002
Dropping item 1003
Got item: 9

Dropping items provides a sustainable solution to our problem, but we are
losing items! As we can see in the preceding output, we may drop the
majority of items. In many cases, this is not acceptable.

We need another solution, one that adjusts the overall pace to satisfy the
pipeline’s slowest element. We need a backpressure protocol.

What Is Backpressure?
In mechanics, backpressure is a way to control the flow of fluid through
pipes, leading to a pressure drop. That control can use reducers or bends.
While this is great if you are a plumber, it’s not clear how it can help us
here.

We can see our streams as a flow of fluid, and the set of stages (operator or
subscriber) forms a pipe. We want to make the fluid flow as frictionless as
possible, without swirls and waves.

An interesting characteristic of fluid mechanics is the way a downstream
reduction of the throughput affects the upstream. Essentially, that’s what we
need: a way for the downstream operators and subscribers to reduce the
throughput, not only locally but also upstream.

Don’t be mistaken; backpressure is not something new in the IT world and
is not limited to Reactive. One of the most brilliant uses of backpressure is
in TCP. A reader receiving data can block the writer on the other side of
the wire if it does not read the sent data. That way, the reader is never
overwhelmed. But the consequences need to be understood: blocking the
writer may not be without side effects.

Introducing Reactive Streams
Let’s now focus on another backpressure protocol: Reactive Streams. This
asynchronous and backpressure protocol is suited to our fast producer/slow
consumer problem. With Reactive Streams, the consumer, named
Subscriber, requests items from the producer, named Publisher. As
depicted in Figure 5-11, Publisher cannot send more than the requested
number of items.

5

Figure 5-11. Using flow control to avoid overwhelming consumers

When the items are received and processed, the consumer can request more
items, and so on. Thus, the consumer controls the flow.

Note that Reactive Streams introduces a strong coupling between a
consumer and a producer. The producer must listen to the requests from the
consumer.

To implement that protocol, Reactive Streams defines a set of entities. First,
Subscriber is a consumer. It subscribes to a stream, called
Publisher, which produces items (Figure 5-12). Then Publisher
sends, asynchronously, a Subscription object to Subscriber. This
Subscription object is a contract. With Subscription,
Subscriber can request items and then cancel the subscription when it
does not want any more items. Each subscriber subscribing to a publisher
gets a different Subscription, and so emits independent requests. The
publisher implementation is in charge of the orchestration of the various
requests and the emission of the items to the multiple subscribers.

Figure 5-12. Example of interactions between Subscriber and Publisher

Publisher cannot send more items than requested to Subscriber, and
Subscriber can request more items at any time.

It is essential to understand that the requests and emissions are not
necessarily happening synchronously. Subscriber can request three
items, and Publisher will send them one by one when they are available.

Reactive Streams introduces another entity named Processor.
Processor is a subscriber and a publisher simultaneously. In other
words, it’s a link in our pipeline, as shown in Figure 5-13.

Figure 5-13. Example of interactions between Subscriber, Processor, and Publisher

Subscriber calls subscribe on Processor. Before receiving a
Subscription, Processor subscribes to its own upstream source
(Publisher in Figure 5-13). When that upstream provides

Subscription to our Processor, it can give Subscription to
Subscriber. All these interactions are asynchronous. When this
handshake completes, Subscriber can start requesting items.
Processor is responsible for mediating the Subscriber requests with
its upstream. For example, as illustrated in Figure 5-13, if Subscriber
requires two items, Processor also requests two items to its own
upstream. Of course, depending on the Processor code, it may not be
that simple. What’s fundamental is that each Publisher and
Processor enforces the flowing requests to never overload downstream
subscribers.

Be Warned: It’s a Trap!
If you look at the Reactive Streams API, you will find it simple: a few
classes, a couple of methods. It’s a trap! Behind this apparent simplicity,
implementing Reactive Streams entities yourself is a nightmare. The
problem is not the interfaces; it’s the protocol. Reactive Streams comes with
a broad set of rules, and a strict Technology Compatibility Kit (TCK) to
verify that your implementation enforces the protocol.

Fortunately, you don’t need to implement publishers, subscribers, or
processors yourself. Recent reactive programming libraries already
implement the protocol for you. Project Reactor, RxJava (versions 2 and 3),
and Mutiny implement the specification. For example, Mutiny’s Multi is a
publisher following the Reactive Streams protocol. All the subscription
handshakes and request negotiations are done for you.

Also, because all these libraries are using the same core concepts and API,
it allows smooth integration: you can consume a Reactor Flux by using a
Mutiny Subscriber and vice versa! Reactive Streams is the integration
layer between the various reactive programming libraries, in addition to
being a backpressure protocol.

Backpressure in Distributed Systems

6

Reactive Streams works perfectly within a local node, but what about
distributed systems? In such a system, it’s important that event producers do
not overflow the consumers. We need flow control. Fortunately, we have
many alternatives.

First, RSocket is proposing a distributed variant of Reactive Streams.
However, because of distributed systems’ challenges and potential
communication disruptions, the protocol requires a few adaptations.

AMQP 1.0 uses a flow control protocol based on credit. As a producer, you
get a certain amount of credit. When you run out of credit, you can’t send
messages anymore. The broker refills your credit according to the consumer
pace.

Apache Kafka consumers can also implement backpressure by using
pause/resume cycles and explicit polling. In this case, Kafka does not
prevent the production of messages. It stores the messages in the broker,
and uses it as a large buffer. The consumer polls the messages according to
its capacity.

The mechanism presented for AMQP 1.0 and Apache Kafka are not the
same as Reactive Streams. Frameworks, such as Quarkus, create bridges
between these mechanisms with the Reactive Streams protocol.

Summary
In this chapter, you have learned the following:

Asynchronous code is hard but is required to avoid discarding the
benefits of nonblocking I/O.

Reactive programming is one possibility for writing asynchronous
code.

Reactive programming uses data streams as primary constructs.
You write a processing pipeline reacting to events flowing from
upstream.

https://oreil.ly/ZKURr

Reactive Streams is an essential aspect of Reactive. It avoids
overwhelming fragile parts of your system.

Small cracks that ripple in your system can lead to dreadful consequences.

Now, you have enough knowledge about Reactive to build your own
reactive systems and appreciate the benefits. Wait! You may need some
more concrete details, no? That’s what we are going to cover in Part III,
where we explore how easy it is to build reactive systems with Quarkus.

1 The Vert.x 3 main development model uses callbacks. Many operations pass a callback
receiving AsyncResult. In Vert.x 4, an alternative model using futures has been introduced.

2 Check the Project Loom site for updates on the general availability.

3 In functional programming, transform is often called map.

4 More details about emitOn can be found in the Mutiny online guides.

5 We recommend reading “Using Backpressure to Improve TCP Performance with Many
Flows” by Carlos M. Pazos et al., which explains how TCP backpressure can be used to
improve performance.

6 For more information, see the Reactive Streams Javadoc.

https://oreil.ly/arP4E
https://oreil.ly/qrVdD
https://oreil.ly/JEbNh
https://oreil.ly/mcYRu

Part III. Building Reactive
Applications and Systems with

Quarkus

Chapter 6. Quarkus: Reactive
Engine

In Part II, you learned a lot about Reactive, in all its forms, meanings, and
variations! I know, you’re probably a bit tired of hearing the word reactive
right now, but it’s a key piece to accurately describing Quarkus. At the core
of Quarkus is its reactive engine, which we cover in “A Reactive Engine”.
Without its reactive engine core, Quarkus would not allow implementing
reactive applications and provide a seamless integration of reactive
programming.

Quarkus unifies two development models: imperative and reactive. In this
chapter, we review the main differences and show how Quarkus handles the
unification. Quarkus aims for them to be as alike as possible. If the APIs
feel similar, understanding a complex model such as Reactive becomes
seamless.

Before we can get into the reactive engine, we need to revisit the imperative
and reactive models. Doing so allows us an opportunity to appreciate how
they’re unified with Quarkus. For anyone already familiar with imperative
and reactive models, how they work, and the benefits and disadvantages of
each, feel free to skip ahead to “Unification of Reactive and Imperative”.

You might worry we’re repeating previously covered information. We
might be a little, but it’s all geared toward reinforcing how the two models
impact the way applications are developed—and as a result, how
frameworks differ depending on the model they offer.

First up is the imperative model, which most Java developers likely started
their careers using.

The Imperative Model

When using the imperative model, you may not even be aware of its name.
So what is the imperative model? It alters a program’s state with a defined
sequence of commands. One command is executed after another until all
commands are executed.

Figure 6-1 shows a sequence of mathematical commands, executed in
succession, until the result (in this case 10 if we start from 0, is produced).
As you can see in the imperative model, defining the proper sequence is
critical to achieving the desired result, 10.

Figure 6-1. Imperative commands with result 10

Figure 6-2 shows the exact same commands, but in a different sequence.

Figure 6-2. Imperative commands with result 7.5

As you see, the sequence of commands, in the imperative mode, is just as
important as the commands themselves. Modifying the sequence results in
an entirely different program output. An imperative program can be
considered the process of getting from A to B, when we already know what
A and B need to be. The developer needs to define only the steps between A
and B in the correct sequence to achieve the desired result.

In imperative programs, we have a defined input and output, and, in
addition, we know the steps needed to get from A to B. For these two
reasons, imperative programs are easily reasoned about. When we have a
defined input, what we know the output should be, and the defined steps to
get there, writing tests is a lot easier because the permutations of what can
happen are limited and determinable.

What are some other aspects of the imperative programming model we need
to be aware of? As imperative relies on a sequence of commands, resource
utilization will always be a primary concern. In the example shown in
Figure 6-1, we’re not going to need a large amount of resources to perform

basic mathematical calculations. However, if we replaced all those
operations with database calls retrieving a few hundred records each, the
impacts begin adding up quickly.

The impacts we’re talking about are related to the threading model for
imperative programming. If we have our sequence of database operations
using a single I/O thread, the same I/O thread handling the HTTP request
(not realistic but useful for illustrative purposes), only one request can be
processed at any point in time. We introduced the I/O thread in Chapter 5.
Moreover, as the sequence of the imperative program is fixed, each
command must complete before the next one can commence. What does
that look like?

Though contrived, Figure 6-3 illustrates how each step in the database
program must complete before the next can commence. More importantly,
any subsequent request can begin only when the one being processed is
finished. In this situation, the number of concurrent requests we can process
is limited by the number of I/O threads we give the application.

Figure 6-3. Database program on single I/O thread

Now, as depicted in Figure 6-4, we will be generous and provide the same
application two I/O threads!

Figure 6-4. Database program on multiple I/O threads

We can process two concurrent requests, but no more than that with only
two I/O threads. Being able to handle only a single request per I/O thread is
not great, so let’s dive deeper into what’s going on inside.

Both the Retrieve DB records and Write new DB records commands have
periods of time when the command itself is not performing any work,
shown as the lighter section in Figure 6-5. In between sending a request to
the database and receiving the response, what is the I/O thread doing? In
this situation, absolutely nothing! The I/O thread sits there waiting for the
response from the database.

Figure 6-5. Database program I/O thread delays

Why does it do nothing? Could an I/O thread perform other work while
waiting? As we mentioned earlier, imperative programming requires an
ordered sequence of commands. Because Retrieve DB records is still
running during the wait period, an I/O thread does not know there is time to
perform other work. This is why imperative programming is often tied with
synchronous execution, and by default synchronous is the execution model
for imperative programming.

Some might wonder whether an I/O thread waiting is a big deal. The time
an I/O thread waits for a command to complete could be several seconds or
longer. An imperative program taking about a second to complete all its
steps may be OK, but it doesn’t take many periods of I/O threads waiting to
explode the total response time to many seconds.

The expanded time to complete an imperative program has several effects.
Increased execution time on an I/O thread leads to a reduction in the
number of requests being processed in a given period of time. There are
additional impacts on the resources required to buffer in memory any
incoming requests that are waiting on I/O threads to become available to
begin processing. These resource impacts can cause significant issues with
the overall performance of an application. If an application is dealing with a
few hundred, or even thousand, users, it may not be noticeable, especially if
few are concurrent users. However, tens of thousands of users, many
concurrently, will show these problems to their users in failed connections,
time-outs, errors, and any number of possible problems.

There are other ways to break the synchronous and blocking nature of an
imperative program. We can use ExecutorService to move work from
the I/O thread onto a separate worker pool thread. Or we can use
@Suspended and AsyncResponse with JAX-RS Resources to delegate
work to a worker pool of threads, enabling the HTTP request to be
suspended from the I/O thread until a response is set on AsyncResponse.
Suspending HTTP requests waiting for a response facilitates processing of
additional HTTP requests on the I/O thread while others are waiting for a
processing response.

Though these approaches work, the complexity of code increases without a
significant benefit in throughput as we’re still I/O thread limited—not quite
to the level of a request per thread when using @Suspended, but not
significantly more either. How does the reactive model differ?

The Reactive Model

The reactive model is built around the notion of continuations and
nonblocking I/O, as we detailed in “Asynchronous Code and Patterns”. As
mentioned previously, this approach significantly increases the level of
concurrency, enabling many more requests to be processed in parallel.
However, it’s not a free ride because it requires additional thought on the
part of a developer to develop an application built around these principles.

Taking our previous database example, what would it look like to remove
the I/O thread wait times to improve the concurrency? Take a look at
Figure 6-6.

Figure 6-6. Reactive database program on I/O thread

Here, we can see that, instead of an I/O thread waiting, it begins processing
another incoming request. It continues to do so until it’s been notified that a
database response is ready for processing. How do we achieve this
separation? We provide a continuation to process the database response.
The continuation is added to the queue of methods to execute on the I/O
thread after the database response is received. Likewise, the single
command to process the database records is split into smaller methods to
help with the concurrency.

Figure 6-6 shows how a reactive model utilizing continuations can facilitate
the removal of I/O thread wait time and increase the number of requests
processed concurrently. As you’ve seen, we developers need to adjust how
programs are developed to align with the reactive model. We need to break
work into smaller chunks, but most importantly, modify interactions with
anything external to the application into separate request and response
handling.

In Figure 6-6, we approximated how pieces of a program could be
segmented to prevent the I/O thread from waiting or being blocked.
Quarkus uses an event loop, as discussed in “Reactor Pattern and Event
Loop”, to implement the reactive model. The event loop can visually be
represented as shown previously in Figure 4-7.

We’ve discussed some hugely beneficial aspects of the reactive model, but
nothing comes for free. With the reactive model needing to separate code
execution, as opposed to the imperative model in which everything is
sequential, complexity is introduced in the ability to understand the entirety
of a program.

A program is no longer a sequenced set of steps, but a series of handlers
executing at different points in time with no predetermined order. Though
continuations can be guaranteed to occur after they were triggered, there is
no ordering among various asynchronous invocations within a single
request, or among multiple requests. This shift requires an alteration in
thinking by developers toward event passing, with the triggering of
associated event handlers. No longer is it a sequence of commands called
one after another in code.

Unification of Reactive and Imperative
What do we mean by Quarkus unifying reactive and imperative? We don’t
mean being able to ignore the complexities of reactive or expecting
imperative to provide high levels of concurrency. We do mean the
following:

Quarkus’s reactive core nonblocking I/O is key to any extension
built on top.

Quarkus offers a framework of extensions built on the performance
of the Eclipse Vert.x toolkit, the reactive engine.

A developer’s choice of imperative or reactive is an API choice,
and not a framework one.

Often when choosing to develop an application, an up-front choice needs to
be made as to whether to use reactive or imperative programming. This
decision requires much forethought by developers and architects in terms of
the skills required by the team building the application, the current business
requirements for the application, as well as the final architecture of the
application. We developers find choosing a specific technology stack one of
the most difficult decisions to make. We always want to consider the future
needs of the application, even if we don’t know what those needs are
concretely. No matter how we try, there will always be new requirements or
unforeseen problems, requiring a change in architecture or even design.

We feel more comfortable about a decision when it doesn’t box us in,
offering ways to shift and alter the way an application works as needs
change. This is a huge advantage with Quarkus. When we choose Quarkus,
and the unification of imperative and reactive models, we’re free to pick
one or the other, a mix of the two, or even switch parts of an application
between the models over time.

QUARKUS, VERT.X, AND MUTINY
The Quarkus reactive core relies on Eclipse Vert.x. The Vert.x toolkit is
the reactive core of everything Quarkus does. Without this reactive
core, everything else Quarkus does would not be possible. Vert.x
provides the layer interacting with nonblocking I/O and a large
ecosystem of clients and servers.

In Quarkus, to ease the construction of reactive applications, we use
SmallRye Mutiny. Mutiny provides the API model we use.

Vert.x and Mutiny are independent, the first one dealing with the
network, and the second the API model. To ease the integration of
Vert.x in Quarkus, the SmallRye Mutiny Vert.x Bindings project
provides the complete Vert.x API using the Mutiny types.

How does Quarkus support reactive or imperative models seamlessly?
Supporting both models seamlessly is the key foundation to everything

https://oreil.ly/geseu

Quarkus offers. Built on the foundation of Vert.x, Quarkus has a routing
layer enabling either model. This is how the layers work together when
we’ve deployed reactive code, assuming an HTTP request is being
processed (Figure 6-7).

Figure 6-7. Quarkus reactive model

We see in Figure 6-7 how a request is received by the Vert.x HTTP server,
passes through the routing layer, and our reactive code executes. All these
interactions occur on the I/O thread; a worker thread is not needed. As

already mentioned, having code execute on the I/O thread provides the
highest level of concurrency.

NOTE
In Figure 6-7, only a single HTTP request is being processed. If there were multiple
requests, those executions would be interleaved on the I/O thread.

You might be wondering how executing imperative code alters the behavior
—take a look at Figure 6-8.

Figure 6-8. Quarkus imperative model

You can see that the model is not significantly different. The biggest change
is that our code, now imperative in nature, is executed on a worker thread
and not the I/O thread. In this way, Quarkus can execute imperative code, a
series of sequential commands, without impacting the concurrency of the
I/O thread. Quarkus has offloaded the imperative execution to a worker.

The process of offloading to a worker thread comes with a cost, however.
Every time we execute on a worker thread, a context switch, before and

after execution, is necessary. In Figure 6-8, we represent this switch as a
circle on the boundary between the I/O and worker threads. These context
switches cost time and resources to perform the switch and store the
information in a new thread.

We’ve seen how the two models operate on Quarkus, but what about when
we unify them? For example, if we have a reactive application needing to
execute a piece of blocking code, how can we do that without blocking the
I/O thread? In Figure 6-9, we see our code executing on both the I/O and
worker threads!

Figure 6-9. Quarkus reactive and imperative model

When reactive code is executed, it’s on the I/O thread, but any imperative
code is executed on a worker thread. Quarkus handles all of this for
developers without them needing to create Executors or Threads, or
needing to manage them.

Figure 6-9 is a visualization of the proactor pattern we defined in “Reactor
Pattern and Event Loop”. Nonblocking and blocking handlers can coexist,

as long as we offload blocking execution onto worker threads and invoke
continuations when a blocking handler completes.

The proactor pattern unifies imperative and reactive code in Quarkus.
Anyone familiar with developing reactive applications knows that
sometimes it’s necessary to write code in a blocking, or sequential, manner.
Quarkus’s unification allows us to delegate such execution onto a worker
thread, by using @Blocking, which we cover for HTTP in Chapter 8 and
Reactive Messaging in Chapter 10.

Utilizing the reactive model, and thus the I/O thread, for as much work as
possible has an added benefit. We minimize the amount of context
switching performed when delegating execution to a worker thread.
Anytime execution of the same request moves between threads, from the
I/O to worker thread, or vice versa, costs are associated with the switch.
Any objects associated with the request need to be available from the new
thread, costing time and resources to move them, as well as resource costs
for additional threads.

We’ve talked a lot about how the models are unified in Quarkus, but what
extensions use these models? RESTEasy Reactive, covered in Chapter 8,
and Reactive Messaging, in Chapter 10, both utilize the reactive model. The
classic RESTEasy and Spring controller both use the imperative model.

A Reactive Engine
If you have written reactive programs or done any research into Reactive,
you are likely aware of the Vert.x toolkit. As mentioned before, the Quarkus
reactive engine utilizes Vert.x. In addition to Vert.x, as well as Netty, the
routing layer of Quarkus forms the outer layer of the reactive engine. It’s
the integration piece for extensions, coordinating the offloading of blocking
handlers onto worker threads, and the execution of their continuations.

In addition, all the reactive clients are built on top of the reactive engine to
utilize the nonblocking handling. Reactive applications are no longer
reactive after they use blocking clients, a key aspect often overlooked by

developers. Quarkus endeavors to have all clients that an application might
need built on the reactive engine, for true reactive integration.

NOTE
By default, everything in Quarkus is reactive. Developers must decide whether they
want reactive or imperative. What do we mean by everything? It includes HTTP
handling, event-driven applications with AMQP and Kafka, and everything Quarkus
offers.

A Reactive Programming Model
SmallRye Mutiny is the reactive programming library of Quarkus. You
already learned about it in “Reactive Programming”, and we will learn even
more in Chapter 7, so we won’t cover too much detail here.

In short, Mutiny is built around three key aspects:

Event-driven

Listening to events from the stream and handling them appropriately.

Easily navigable API

Navigating the API is driven by an event type and the available options
for that event.

Only two types

Multi and Uni can handle any desired asynchronous actions.

One point to note is the laziness of the Mutiny types. Events won’t begin
flowing through the data streams until a subscriber requests them. This is a
fantastic feature to prevent streams from consuming resources if nothing is
listening, but developers do need to be aware of this, so we don’t forget to
subscribe!

All Quarkus reactive APIs use Multi and Uni. This approach facilitates
the seamless integration of Quarkus extensions with reactive programming
and Mutiny. Let’s see examples of using Mutiny.

A reactive application with Quarkus using the PostgreSQL reactive client
retrieves Fruit objects from the database with Multi, as shown in
Example 6-1.

Example 6-1. Reactive Mutiny client
client.query("SELECT id, name FROM fruits ORDER BY name
ASC").execute()
 .onItem().transformToMulti(rowSet ->
Multi.createFrom().iterable(rowSet))
 .onItem().transform(row -> convertRowToFruit(row));

client is an instance of PgPool, the PostgreSQL reactive client built
with Mutiny and Vert.x.

When a RowSet item is received, transform the single RowSet into a
Multi<Row>.

Convert each Row in Multi to a Fruit instance. The result of the
execution is Multi<Fruit>.

Given we’re writing about Reactive in this book, all the remaining chapters
have examples utilizing Mutiny in many situations. We present reactive
HTTP endpoints in Chapter 8 and their consumption in Chapter 12. We
cover reactive data access with Quarkus and Mutiny in Chapter 9, including
many examples.

Event-Driven Architecture with Quarkus
Though building reactive applications with Quarkus is great, performant,
and fun, we want to do more than build a single application. We need a
reactive system, as covered in Chapter 4, combining smaller applications
into a coordinated distributed system. To support such an architecture,

Quarkus must receive and produce events, an event-driven architecture!
Quarkus achieves this by using Reactive Messaging, as shown in
Example 6-2. Reactive Messaging integrates with various messaging
technologies, such as Apache Kafka, AMQP, and others, with annotations
for developers to specify whether a method receives or produces events.

Example 6-2. Reactive Messaging
@Incoming("prices")
@Outgoing("quotes")
public Quote generatePrice(Price p) {
 return new Quote(p, "USD");
}

Read messages from the prices channel.

Transform each Price into a Quote.

The offered development model allows consuming, transforming, and
generating messages easily. The @Incoming annotation denotes the
consumption of a channel. Reactive Messaging invokes the method for each
transiting Price from the configured channel. The @Outgoing
annotation indicates in which channel the results are written.

Full details of Reactive Messaging are covered in Chapter 10.

Summary
This chapter covered the imperative model, a series of sequential
commands, and the reactive model, utilizing continuations and nonblocking
I/O.

We have seen the following:

How the two models work with threads (in Figures 6-8, 6-7, and 6-
9), providing improved concurrency with the reactive model.

How Quarkus unifies these models to allow developers to grow
their applications, introducing reactive aspects, as it grows and

expands without the need to switch frameworks.

How we can use reactive programming in Quarkus.

In the coming chapters, we explore the various reactive aspects of Quarkus,
such as HTTP and RESTEasy Reactive in Chapter 8, and reactive data
access in Chapter 9. But first, let’s have a deeper look into the Mutiny
reactive programming API.

Chapter 7. Mutiny: An Event-
Driven Reactive Programming
API

In Chapter 5, we introduced reactive programming and how it helps
implement reactive applications. Then, in Chapter 6, we discussed how
Quarkus uses Mutiny to allow implementing reactive applications. This
chapter focuses on Mutiny itself.

This chapter presents Mutiny’s concepts and common patterns, which will
help you understand the next few chapters. Mutiny is the API used for
every reactive-related feature from Quarkus. You will see a lot more of it
when delving into the construction of reactive applications and systems
with Quarkus.

Why Another Reactive Programming
Library?
That’s a great question! As you have seen in Chapter 5, other popular
reactive programming libraries exist. So why another one?

In the past few years, we’ve observed how developers developed reactive
systems and used reactive programming libraries. Through this experience,
we observed the challenges faced by the developers. In a nutshell, reactive
programming is hard to learn and hard to read. Writing and maintaining
reactive code creates a significant burden, slowing the adoption of reactive
approaches.

When we look at reactive programming usage, we immediately see a steep
learning curve, which makes reactive programming limited to top-notch
developers. Indeed, the functional programming roots of reactive

1

programming are both elegant and limiting at the same time. Not every
developer has a functional background. We have seen developers lost in a
map and flatMap jungle, trying to find their way out of a maze made of
monads.

MONADS?
Monads come from category theory but are massively used in
functional programming. A monad represents a form of computation.
Monads enable the chaining of operations. With monads, each chained
operation takes as input the output of the previous one.

Even for seasoned developers, some concepts are abstract and confusing.
For example, the difference between flatMap and concatMap, two
prominent operators in traditional reactive programming libraries, leads to
many mistakes, including production failures. These reactive programming
libraries require a functional background and a good understanding of the
available operators. Mastering hundreds of operators requires time.

Another aspect is the API modeling. Existing libraries often implement
Reactive Extensions (ReactX) and provide Java classes with hundreds of
methods. Even with modern IDEs, finding the right method is like looking
for a needle in a haystack. It’s common to scroll through the list of methods
to find the right one, not even looking at the method names but at the
signature, hoping for the best.

Finally, and this is a more philosophical aspect, existing reactive
programming libraries do not reflect the event-driven nature of the reactive
principles. While it uses data streams, which are asynchronous constructs,
the API does not convey the idea of events. Reactive architectures should
help to implement event-based processes, and these approaches fall short
and require an additional mental-mapping between the business process and
its implementation.

To address these issues, we decided to create Mutiny, a new reactive
programming API focusing on readability, maintenance, and putting the

http://reactivex.io/

notion of event at the center.

What Makes Mutiny Unique?
Mutiny is an intuitive, event-driven reactive programming library for Java.
Mutiny uses the notion of an event to communicate that something
happened. This event-driven nature fits perfectly the asynchronous nature of
distributed systems, as described in Chapter 3. With Mutiny, you get
notified when an event occurs, and you react to it. As a result, Mutiny
structures itself around on methods such as onItem and onFailure.
Each method lets you express what you want to do when you receive an
event. For example, onItem.transform receives an item event and
transforms it, or onFailure.recoverWithItem recovers with a
fallback item after a failure event.

We wanted to address the API navigation and avoid the one class with
hundreds of methods pattern. We introduced the notion of method groups.
Each group handles a specific type of event. In the onItem group, you find
all the methods to handle an individual item event, such as to transform it
(onItem.transform), or invoke a method (onItem.invoke). In the
onFailure group, you find the methods to handle failures and recover,
such as onFailure.recoverWithItem or onFailure.retry.
The resulting API is more readable, understandable, and navigable. As a
user, you select the group and navigate across a limited number of methods.

Mutiny’s API is not concise. We favor readability and understandability
over conciseness. Over the years, we heard many times that reactive
programming was hard and usable only by senior developers or architects.
It was a key obstacle to the reactive adoption. When we designed Mutiny,
we wanted to avoid creating an elitist library. This is not to “dumb down”
the ideas behind reactive programming, but instead the goal is to strip away
mathematical jargon.

Mutiny Usage in Quarkus

To illustrate the common patterns you will see when using Mutiny, we need
an example. The application is a simple shop, handling users, products, and
orders (Figure 7-1). A user creates orders that contain a list of products.
How the application is implemented is not relevant for this chapter.
Chapters 8 and 9 will cover how Mutiny integrates on the HTTP and data
parts of Quarkus.

Figure 7-1. Shop application architecture

The application uses nonblocking database clients to avoid blocking when
integrating with the database. Thus, the APIs of OrderService,
UserService, and ProductService are asynchronous and use
Mutiny types. ShopResource, implementing the HTTP API, also uses
Mutiny to query the services and compose the response.

The code is available in the chapter-7/order-example directory, and can be
started with mvn quarkus:dev. The code uses port 8080 to expose the
HTTP API.

Uni and Multi
Mutiny provides two main classes: Uni and Multi. Uni represents an
asynchronous action or operation. It can emit a single item or failure, if the
represented action fails. Multi represents a stream of items. It can convey
multiple items, as well as a terminal failure or completion event.

Let’s look at two use cases to better understand the differences. Imagine
you want to retrieve a single user (represented by the UserProfile

2

class) from the database. You will use Uni<UserProfile>, as shown in
Example 7-1.

Example 7-1. Example of Uni (chapter-7/order-
example/src/main/java/org/acme/ShopResource.java)
Uni<UserProfile> uni = users.getUserByName(name);
return uni
 .onItem().transform(user -> user.name)
 .onFailure().recoverWithItem("anonymous");

You can attach logic to Uni, so you can react when it emits events. In the
previous snippet, when UserProfile becomes available, we extract the
name of the user. If a failure happened, we recover with a fallback value.
The onItem and onFailure groups form the center of the Uni API.

Multi can emit 0, 1, n, or an infinite number of items. It can also emit a
failure, which is a terminal event. Finally, when there are no more items to
emit, Multi emits the completion event. As a result, the API is slightly
different. Let’s now imagine we need all the users. For this case, you use
Multi, as shown in Example 7-2.

Example 7-2. Example of Multi (chapter-7/order-
example/src/main/java/org/acme/ShopResource.java)
Multi<UserProfile> users = this.users.getAllUsers();
return users
 .onItem().transform(user -> user.name);

As for Uni, you can handle events. In the snippet, you extract the name of
each user. So, unlike Example 7-1, the code can call the transformation
multiple times. While the API is somewhat similar, Multi proposes
specific groups to select, drop, and collect items; see Example 7-3.

Example 7-3. Example of code using Multi (chapter-7/mutiny-
examples/src/main/java/org/acme/MultiApi.java)
Multi<UserProfile> multi = users.getAllUsers();
multi
 .onItem().transform(user -> user.name.toLowerCase())
 .select().where(name -> name.startsWith("l"))
 .collect().asList()
 .subscribe().with(

 list -> System.out.println("User names starting
with `l`" + list)
);

As you can see, these two types are inherently event driven. However, the
set of events each handles differ. The API reflects these differences. Uni
and Multi do not offer the same set of groups, as some are specific to each
case (Table 7-1).

T
a
b
l
e
7
-
1
.
U

n

i
a
n
d
M

u

l

t

i
u
s
e
c
a
s
e
s

Events Use cases Implement Reactive Streams

Uni Item and failure Remote invocation, asynchronous
computation returning a single

No

result

Multi Item, failure,
completion

Data streams, potentially
unbounded (emitting an infinite
number of items)

Yes

An essential aspect of Uni and Multi is their laziness. Holding a
reference on Uni and Multi instances does nothing. In Example 7-3,
nothing will happen until someone explicitly subscribes (and so expresses
an interest), as shown in Example 7-4.

Example 7-4. Subscription to Uni and Multi (chapter-7/order-
example/src/main/java/org/acme/UniMultiExample.java)
Uni<UserProfile> uni = users.getUserByName("leia");
Multi<UserProfile> multi = users.getAllUsers();

uni.subscribe().with(
 user -> System.out.println("User is " + user.name),
 failure -> System.out.println("D'oh! " + failure)
);

multi.subscribe().with(
 user -> System.out.println("User is " + user.name),
 failure -> System.out.println("D'oh! " + failure),
 () -> System.out.println("No more user")
);

To subscribe (and thereby trigger the operation) you use the subscribe
group. In Quarkus, you may not need to subscribe, because if you return
Uni or Multi to Quarkus, it subscribes for you. For instance, you can
have the HTTP method shown in Example 7-5.

Example 7-5. Quarkus handles the subscription for HTTP methods
(chapter-7/order-example/src/main/java/org/acme/ShopResource.java)
@GET
@Path("/user/{name}")
public Uni<String> getUser(@PathParam("name") String name) {
 //tag::uni[]
 Uni<UserProfile> uni = users.getUserByName(name);
 return uni
 .onItem().transform(user -> user.name)

 .onFailure().recoverWithItem("anonymous");
 //end::uni[]
}

When a matching HTTP request arrives, Quarkus calls this method and
subscribes on the produced Uni. Quarkus will write the HTTP response
only when Uni emits an item or failure.

Mutiny and Flow Control
As indicated in Table 7-1, Multi implements the Reactive Streams
backpressure protocol. In other words, it implements the Reactive Streams
Publisher interface, and Multi’s consumers are the Reactive Streams
Subscriber. That’s not the case for Uni.

When dealing with a stream sending multiple items, so a Multi, having
backpressure support makes sense. Under the hood, the subscriber can
control the flow and the pace by requesting items when it can handle them.
It avoids flooding the subscribers with too many items.

When dealing with Uni, subscribing to it is enough to express your interest
and capacity to handle the emitted item. There’s no need to send another
request signal to express your interest.

But, as you have seen in Chapter 5, not every stream can support flow
control. Streams representing events from the physical world, such as user
clicks or time, can’t be slowed. In this case, there is a risk of sending too
many events to the subscriber. That’s why Multi provides the
onOverflow group. This group monitors the number of items emitted by
the upstream source as well as the number of items requested by the
downstream subscriber. When there are more incoming items than requests,
Multi emits an overflow event. The onOverflow group allows
configuring the desired behavior when this happens.

To illustrate this, let’s imagine a stream producing product
recommendations. Every second, it sends a new recommended product. But
time cannot be slowed, so we cannot apply backpressure. If the downstream

can’t keep up, we would have an overflow. To avoid that, if we can’t emit
the tick item because of the lack of request, we just drop it, as shown in
Example 7-6.

Example 7-6. Handle overflow with Multi (chapter-7/order-
example/src/main/java/org/acme/ShopResource.java)
public Multi<Product> getRecommendations() {
 return Multi.createFrom().ticks().every(Duration.ofSeconds(1))
 .onOverflow().drop()
 .onItem().transformToUniAndConcatenate(
 x -> products.getRecommendedProduct());
}

The onOverflow group provides other possibilities, such as buffering the
items.

Observing Events
Once you have a Uni or Multi instance, it’s natural to observe the events
emitted by these instances. For each type of event, an invoke method is
called when it sees a matching event; see Example 7-7.

Example 7-7. Observe events (chapter-7/mutiny-
examples/src/main/java/org/acme/MultiObserve.java)
multi
 .onSubscribe().invoke(sub ->
System.out.println("Subscribed!"))
 .onCancellation().invoke(() ->
System.out.println("Cancelled"))
 .onItem().invoke(s -> System.out.println("Item: " + s))
 .onFailure().invoke(f -> System.out.println("Failure: " +
f))
 .onCompletion().invoke(() ->
System.out.println("Completed!"))
 .subscribe().with(
 item -> System.out.println("Received: " + item)
);

The invoke method does not modify the event; you observe it without
changing it. The downstream receives the same event you did. This method
is handy when needed to implement side effects or trace your code. For

example, we can use it to log when a new user is created or if the creation
failed (see Example 7-8).

Example 7-8. Observe Uni events (chapter-7/order-
example/src/main/java/org/acme/ShopResource.java)
@POST
@Path("/users/{name}")
public Uni<Long> createUser(@QueryParam("name") String name) {
 return users.createUser(name)
 .onItem().invoke(
 l -> System.out.println("User created: " + name +
", id: " + l))
 .onFailure().invoke(t -> System.out.println(
 "Cannot create user " + name + ": " +
t.getMessage())
);
}

If you have the application running, you can run this code by using
Example 7-9.

Example 7-9. Invoke the users endpoint
> curl -X POST http://localhost:8080/shop/users?name=neo

Transforming Events
Most of the time, we need to transform the event. Let’s first see how we can
transform events synchronously. You receive the event, transform it, and
produce the result as a new event. For each type of event, a transform
method is called when it sees a matching event, as shown in Example 7-10.

Example 7-10. Transform events (chapter-7/mutiny-
examples/src/main/java/org/acme/MultiTransform.java)
Multi<String> transformed = multi
 .onItem().transform(String::toUpperCase)
 .onFailure().transform(MyBusinessException::new);

Unlike invoke, transform produces a new event. It invokes the passed
function and sends the result to the downstream subscriber.

The synchronous nature of transform is important. After receiving the
event, transform calls the transformation logic and emits the result
downstream. If the transformation logic takes a long time to complete,
transform waits until the logic terminates. So, use transform when
the transformation is fast enough.

For example, the following method retrieves the list of products, capitalizes
their names consistently, and builds the representation (ProductModel).
For each product, transform extracts the name and applies the
transformation. This synchronous process is fast. It emits the result
downstream immediately, as shown in Example 7-11.

Example 7-11. Transform products (chapter-7/order-
example/src/main/java/org/acme/ShopResource.java)
@GET
@Path("/products")
public Multi<ProductModel> products() {
 return products.getAllProducts()
 .onItem().transform(p ->
captializeAllFirstLetter(p.name))
 .onItem().transform(ProductModel::new);
}

Chaining Asynchronous Actions
The transform method can process events synchronously, but what if we
need to invoke an asynchronous process? Imagine that you receive an
event, and need to invoke a remote service or interact with a database. You
can’t use transform, as these methods should be asynchronous
(otherwise, they would block, which would be against the reactive
principles). You need to wait until the asynchronous computation
completes.

How can we express this using the Mutiny lingo? It would mean
transforming an event, but unlike transform returning a plain result, it
returns an asynchronous structure: another Uni or Multi. What does that
look like? Take a look at Example 7-12.

Example 7-12. Chain asynchronous actions (chapter-7/mutiny-
examples/src/main/java/org/acme/UniTransformAsync.java)
uni
 .onItem().transformToUni(item -> callMyRemoteService(item))
 .subscribe().with(s -> System.out.println("Received: " + s));

uni
 .onItem().transformToMulti(s -> getAMulti(s))
 .subscribe().with(
 s -> System.out.println("Received item: " + s),
 () -> System.out.println("Done!")
);

transformToUni and transformToMulti provide the ability to
produce a Uni or a Multi instance. When you receive an item, Mutiny
invokes the function returning Uni or Multi. Then, it emits the events
downstream from this Uni or Multi. In Example 7-13, we retrieve the list
of orders for a specific user (identified by its name).

Example 7-13. Retrieve order for a specific user (chapter-7/order-
example/src/main/java/org/acme/ShopResource.java)
@GET
@Path("/orders/{user}")
public Multi<Order> getOrdersForUser(@PathParam("user") String
username) {
 return users.getUserByName(username)
 .onItem().transformToMulti(user ->
orders.getOrderForUser(user));
}

This code retrieves the user, and when it receives the user, the code then
retrieves the orders. The getOrderForUser method returns
Multi<Order>, so the result is Multi<Order>.

If you look carefully at the preceding code, you will say, “Hey! You’re
forgetting something! How does that work when we chain from a Multi
and not a Uni?” You are right; we need to discuss the Multi case. How
would you transform each item of a Multi into another Uni or Multi?

Let’s illustrate the problem with an example. Imagine you need to retrieve
the orders for all the users. So, instead of having the username as in

3

Example 7-13, we need to retrieve all the users, and for each retrieve the
orders. Example 7-14 shows the resulting code.

Example 7-14. Retrieve the orders for each user using concatenate
(chapter-7/order-example/src/main/java/org/acme/ShopResource.java)
@GET
@Path("/orders")
public Multi<Order> getOrdersPerUser() {
 return users.getAllUsers()
 .onItem().transformToMultiAndConcatenate(
 user -> orders.getOrderForUser(user));

}

You can immediately spot a difference. Instead of transformToMulti,
we have transformToMultiAndConcatenate. But why
AndConcatenate? It relates to the order of the item sent downstream. It gets
the Multi for the first user, emits the items downstream, and then handles
the one for the next user, and so on. In other words, it takes the Multi
instances one by one and concatenates them. This approach preserves the
order, but also limits the concurrency as we retrieve the orders, one user at a
time.

If you don’t need to preserve the order, you can use the
transformToMultiAndMerge method. In this case, it invokes
getOrderForUser concurrently. It merges the items from the resulting
Multi as they come, and so may interleave the orders from different users
(Example 7-15).

Example 7-15. Retrieve the orders for each user by using merge
@GET
@Path("/orders")
public Multi<Order> getOrdersPerUser() {
 return users.getAllUsers()
 .onItem().transformToMultiAndMerge(user ->
orders.getOrderForUser(user));
}

4

NOTE
chapter-7/mutiny-examples/src/main/java/org/acme/MultiTransformAsync.java lets you
execute these examples. They highlight the ordering difference.

Recovering from Failure
As we said, failures are inevitable. We must handle them.

What can be done in such an unfortunate case? In the Mutiny world,
failures are events. So, you can observe and process them. You can use
invoke or transform as for any other events. But you can also handle
the failure and recover gracefully.

One of the most common approaches consists of recovering with a specific
fallback item. Let’s imagine we want to create a new user, but the insertion
fails because the name needs to be unique. We can return a message
indicating the failure, as shown in Example 7-16.

Example 7-16. Recover from failure with a fallback item (chapter-7/order-
example/src/main/java/org/acme/ShopResource.java)
public Uni<String> addUser(String name) {
 return users.createUser(name)
 .onItem().transform(id -> "New User " + name + "
inserted")
 .onFailure().recoverWithItem(
 failure -> "User not inserted: " +
failure.getMessage());
}

While a failure is an event, it’s a terminal one. That’s not a problem if you
are dealing with Uni; you won’t get the item, just the failure. So, the Uni
would replace the failure with the fallback item. With Multi, you won’t
get any more items after the failure. The recovery emits the fallback item
followed by the completion event.

Another common possibility is to retry. Remember, retry only if your
system can endure it. In this case (and only in this case), you can retry.

Retry resubscribing to the upstream source, as shown in Example 7-17.

Example 7-17. Retry on failure
public Uni<String> addUser(String name) {
 return users.createUser(name)
 .onItem().transform(id -> "New User " + name + "
inserted")
 .onFailure().retry().atMost(3);
}

You can limit the number of retries or introduce a delay between them by
using atMost and configuring the backoff; see Example 7-18.

Example 7-18. Retry on failure at most n times with delay between attempts
(chapter-7/mutiny-examples/src/main/java/org/acme/UniFailure.java)
Uni<String> retryAtMost = uni
 .onFailure().retry()
 .withBackOff(Duration.ofSeconds(3))
 .atMost(5);

NOTE
chapter-7/mutiny-examples/src/main/java/org/acme/UniFailure.java lets you execute
these examples to help you understand the various possibilities.

The onFailure group contains a lot more possibilities.

Combining and Joining Items
The next common pattern consists of combining the items from multiple
upstream sources. For example, imagine we want to generate
recommendations. We would pick a random user and a recommended
product. We could sequentially execute both, but they are independent, so
we can execute them concurrently, and when we have both results, generate
the recommendation (Example 7-19).

Example 7-19. Combine Uni instances (chapter-7/order-
example/src/main/java/org/acme/ShopResource.java)

@GET
@Path("/random-recommendation")
public Uni<String> getRecommendation() {
 Uni<UserProfile> uni1 = users.getRandomUser();
 Uni<Product> uni2 = products.getRecommendedProduct();
 return Uni.combine().all().unis(uni1, uni2).asTuple()
 .onItem().transform(tuple -> "Hello " +
tuple.getItem1().name +
 ", we recommend you "
 + tuple.getItem2().name);
}

This snippet gets two Unis. The first one retrieves a random user, and the
second one gets a recommended product. Then we combine both and
aggregate their results into a tuple. When both operations complete, Mutiny
collects the items into a tuple and emits this tuple downstream. We can
transform it and generate the recommendation. If the Uni fails, it
propagates the failure downstream.

Combining Uni operations is common when we want to execute operations
concurrently and join their results. But we can do the same with Multi
too. In this case, we associate the items from several Multi operations. For
example, we can generate a stream of recommendations, associating
random users and recommended products, as shown in Example 7-20.

Example 7-20. Join Multis (chapter-7/order-
example/src/main/java/org/acme/ShopResource.java)
@GET
@Path("/random-recommendations")
public Multi<String> getRandomRecommendations() {
 Multi<UserProfile> u = Multi.createFrom().
 ticks().every(Duration.ofSeconds(1)).onOverflow().drop()
 .onItem().transformToUniAndConcatenate(
 x -> users.getRandomUser());
 Multi<Product> p = Multi.createFrom().ticks().every(
 Duration.ofSeconds(1)).onOverflow().drop()
 .onItem().transformToUniAndConcatenate(
 x -> products.getRecommendedProduct());

 return Multi.createBy().combining().streams(u, p).asTuple()
 .onItem().transform(tuple -> "Hello "
 + tuple.getItem1().name
 + ", we recommend you "

 + tuple.getItem2().name);
}

When joining Multis, the resulting stream completes as soon as one of the
joined Multi sends the completion event. Indeed, it won’t be possible to
combine the items anymore.

Selecting Items
When dealing with Multi, you may want to select the items to propagate
downstream and discard the others. For example, we can retrieve all the
orders and then select only the orders containing more than three products
(see Example 7-21).

Example 7-21. Select items (chapter-7/order-
example/src/main/java/org/acme/OrderService.java)
public Multi<Order> getLargeOrders() {
 return getAllOrders()
 .select().where(order -> order.products.size() > 3);
}

The select.where operation lets you select the item. For each item, the
operation calls the predicates and decides whether the item should be
propagated downstream. It drops the items not passing the predicate.

An asynchronous variant of the select.when operator is also available.
It lets you select the items to keep, using an asynchronous predicate.
Example 7-22 shows how to select the orders for a specific username. For
each order, the code retrieves the associated user and selects only when the
username matches.

Example 7-22. Select items with an asynchronous predicate (chapter-
7/order-example/src/main/java/org/acme/OrderService.java)
public Multi<Order> getOrdersForUsername(String username) {
 return getAllOrders()
 .select().when(order ->
 users.getUserByName(username)
 .onItem().transform(u ->
u.name.equalsIgnoreCase(username))

);
}

Selection can also drop any duplicate items. In Example 7-23, we list the
ordered products.

Example 7-23. Select distinct items (chapter-7/order-
example/src/main/java/org/acme/ProductService.java)
public Multi<Product> getAllOrderedProducts() {
 return orders.getAllOrders()
 .onItem().transformToIterable(order -> order.products)
 .select().distinct();
}

For each order, we retrieve the products and generate Multi<Product>.
Then, we select only distinct items, dropping duplicates. Note that we can’t
use distinct on unbounded streams, as it needs to keep in memory all
the already seen items.

In addition to selection, Mutiny provides a skip group. It provides the
opposite functionality, and so allows skipping items matching predicates
and repetitions.

Collecting Items
Finally, when dealing with bounded Multi, you may want to accumulate
the items into a list or a collection. The resulting structure is emitted when
the Multi completes.

Let’s reuse the previous example. We know that the set of ordered products
is bounded, so, we can collect the product into a list, as shown in
Example 7-24.

Example 7-24. Collect items into a list (chapter-7/order-
example/src/main/java/org/acme/ProductService.java)
public Uni<List<Product>> getAllOrderedProductsAsList() {
 return getAllOrderedProducts()
 .collect().asList();
}

Note that the method returns Uni<List<Product>>. The method emits
the list (containing the products) when the Multi returned by
getAllOrderedProducts completes.

The collect group provides other methods to aggregate items into maps,
collections, or events, using your own collector (Example 7-25).

Example 7-25. Other collection methods
Uni<List<String>> itemsAsList = multi.collect().asList();
Uni<Map<String, String>> itemsAsMap = multi.collect().asMap(item ->
 getKeyForItem(item));
Uni<Long> count = multi.collect().with(Collectors.counting());

Summary
This chapter was a brief introduction to the Mutiny API. It did not provide a
complete overview of the possibilities but presented key patterns we will
use later in this book. Remember:

Mutiny is an event-driven reactive programming API.

You observe and transform events.

Mutiny provides two main classes: Uni and Multi.

The Mutiny API is navigable and offers you guidance to pick the
right operator.

With this in mind, we can now start using the reactive services and facilities
offered by Quarkus.

1 Quarkus integrates Mutiny, which is a separate project that can be embedded anywhere.

2 The Mutiny name comes from the contraction of Multi and Uni.

3 The transformToUni and transformToMulti operations are generally called
flatMap in traditional reactive programming libraries.

4 transformToMultiAndConcatenate is called concatMap in traditional reactive
programming libraries. transformToMultiAndMerge is generally named flatMap.

Chapter 8. HTTP with Reactive
in Mind

Even when building a reactive system, HTTP is unavoidable. HTTP is a
prevalent protocol, and REST, for instance, is a well-known approach to
designing services and APIs. The problem with HTTP, as mentioned in
Chapter 4, is the request/response interaction scheme that leads to
undesirable time coupling. Also, to implement space decoupling, you often
need proxies that would route the requests or advanced service discovery
and load-balancing mechanism.

But let’s face it: we need to be pragmatic, and HTTP has plenty of great
features. We recommend using HTTP at the edge of your system (the places
interacting with external entities), as shown in Figure 8-1 For example,
HTTP is often used on the front tier to expose an API easily consumable by
other external services. Besides, we often use HTTP at the various
integration points with other external services, such as consuming services
exposed using a REST API.

Integrating HTTP should not prevent or limit the responsiveness of the
reactive system you are building. As a consequence, we need to implement
this integration carefully. It’s not rare to see a system using a so-called
asynchronous HTTP client, which can do more harm than provide benefits
as it may rely on a hidden thread pool.

Figure 8-1. Using HTTP at the edge of a reactive system

This chapter explores the features Quarkus offers to expose HTTP
endpoints and the ways we can implement these endpoints. In Figure 8-1,
this part is circled with a dotted line; the right side, HTTP service
consumption, is covered in Chapter 12.

The Journey of an HTTP Request
To understand the benefits of using Quarkus to handle HTTP in a reactive
way, we need to look under the hood. As shown in Chapter 6, Quarkus is
based on a reactive engine, so every facet of Quarkus benefits from this
engine to provide asynchronous and nonblocking features. Naturally, that
also includes HTTP. However, while we implemented HTTP endpoints in
the previous Quarkus applications, the code was not benefiting from all the
features that engine provides. Let’s see how Quarkus handles HTTP
requests and where we can unleash the power of the reactive engine.

To handle HTTP requests, you need an HTTP server. This server listens on
a specific port (8080, in the case of Quarkus) and waits for incoming
connections. When the server receives a new connection, it reads the frame
and assembles the HTTP request. Typically, the server parses the HTTP
method (for example, GET or POST), the invoked path, the body, and so on.
Several frames can compose an HTTP request, and large bodies are split
among multiple frames.

Once the HTTP request is assembled, Quarkus determines how to handle it.
It checks for interceptors (to handle security or logging concerns) and looks

for the endpoint that can process the request. This lookup is based on the
path, but can also include content type negotiation. Once the endpoint
method is found, Quarkus invokes the method, and it’s up to the method to
process the request.

Let’s imagine that we call a synchronous method and that the result of the
method is the payload of the HTTP response. Quarkus captures that result
and builds an HTTP response. It then writes the response into the
appropriate HTTP connection, encoding content accordingly.

So far, so good—but not very reactive, right? One of the essential pieces in
this exchange is the HTTP service. The HTTP server used by Quarkus is
nonblocking, highly efficient, and concurrent. It’s powered by Vert.x and
handles the HTTP interaction by using the I/O thread. So, it follows the
reactive approach we explained previously in Figure 4-1 and can handle
multiple HTTP connections using few threads.

Once this HTTP server receives a request, the server delegates that request
to Quarkus to handle the lookup. This routing layer builds the chain of
responsibility that handles the request (typically the interceptors and the
endpoint) and invokes it. In the case of a JAX-RS endpoint, the routing
layer would delegate the lookup to the JAX-RS framework and wait for the
JAX-RS response to be computed.

But, wait—are we still on the I/O thread? If so, how can we prevent the user
endpoint from blocking the I/O thread inadvertently? Fortunately, Quarkus
has a routing layer that decides how the request must be handled (Figure 8-
2).

Figure 8-2. Quarkus routing layer

In the previous Quarkus application we used in Chapter 2, the requests were
always dispatched on a worker thread, avoiding any risk of blocking. It was
not ideal in terms of reactive principles. Let’s see what Quarkus can do to
improve this situation.

Say Hello to RESTEasy Reactive!
In the previous application we used in Chapter 2, we relied on classic
RESTEasy, which follows the old-school model of associating a thread to
each request. However, as we have seen before, that model does not scale
and lacks responsiveness. Fortunately, Quarkus offers an alternative:
RESTEasy Reactive. It’s the same development model, except that this
variant is aware of the reactive engine and relies on it.

Let’s have a look and experiment with the features offered by RESTEasy
Reactive. Go to https://code.quarkus.io and select the following extensions:

RESTEasy Reactive

RESTEasy Reactive Jackson

Then, click “Generate your application” and unzip it.

https://code.quarkus.io/

The reactive version is quite similar to the classic RESTEasy version.
Example 8-1 shows the generated HTTP endpoint. You may notice the
introduction of the @NonBlocking annotation. This is one of the essential
differences with classic RESTEasy; RESTEasy Reactive can dispatch the
requests on the I/O thread.

Example 8-1. An HTTP endpoint using RESTEasy Reactive
package org.acme;

import io.smallrye.common.annotation.NonBlocking;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;

@Path("/hello-resteasy-reactive")
public class ReactiveGreetingResource {

 @GET
 @Produces(MediaType.TEXT_PLAIN)
 @NonBlocking
 public String hello() {
 return "Hello RESTEasy Reactive";
 }
}

Let’s run this application using mvn quarkus:dev, and point your
browser to http://localhost:8080/hello-resteasy-reactive. You should see
this:

Hello RESTEasy Reactive

OK, well, that’s nothing fancy, and not very attractive so far.

First, let’s enhance our endpoint and, in addition to Hello RESTEasy
Reactive, add the name of the thread handling the request (Example 8-2).

Example 8-2. Requests are processed on the I/O thread
@GET
@Produces(MediaType.TEXT_PLAIN)
@NonBlocking
public String hello() {

http://localhost:8080/hello-resteasy-reactive

 return "Hello RESTEasy Reactive from " +
Thread.currentThread().getName();
}

Because Quarkus runs in dev mode, there is no need to restart the
application, as it will auto-update itself. Refresh your browser and you
should see something like Example 8-3.

Example 8-3. Output of the application indicating the thread used for the
processing
Hello RESTEasy Reactive vert.x-eventloop-thread-5

The endpoint method is invoked from the I/O thread! Much more reactive,
but…wait…how do we handle blocking logic now? With RESTEasy
Reactive, you can use the @NonBlocking and @Blocking annotations
to indicate on which thread you want the request to be handled. Let’s
illustrate this. Create another endpoint method with the same code as the
hello method, but target a different path and without the
@NonBlocking annotation, as illustrated in Example 8-4.

Example 8-4. Requests are processed on a worker thread when
@Blocking is used
@GET
@Produces(MediaType.TEXT_PLAIN)
@Path("/blocking")
public String helloBlocking() {
 return "Hello RESTEasy Reactive from " +
Thread.currentThread().getName();
}

Refresh your browser again, and voilà:

Hello RESTEasy Reactive executor-thread-198

WHAT HAPPENS IF I BLOCK THE I/O THREAD
INADVERTENTLY?

Quarkus will warn you if you attempt to block an I/O thread for too long or if you try to
execute a blocking operation from an I/O thread.

1

2

RESTEasy Reactive proposes a set of defaults to avoid having to use the
@NonBlocking annotation:

Method returning an object, such as String in the previous
example, is executed on a worker thread, except if the
@NonBlocking annotation is used. In this case, the method uses
an I/O thread.

Method returning Uni is executed on an I/O thread, except if the
method is annotated with @Blocking. In this case, the method
uses a worker thread.

Method returning Multi is executed on an I/O thread, except if
the method is annotated with @Blocking. In this case, the
method uses a worker thread.

What’s the Benefit?
By dispatching the request on the I/O thread, you are allowing the
application to handle the request in a reactive manner. You are not only
embracing the reactive principles, but also increasing the throughput of
your application.

Let’s have a deeper look at the throughput difference. We will compare
classic and reactive RESTEasy by using wrk. This benchmark is far from
being irreproachable (we run everything on the same machine); it’s there
just to illustrate the benefits. Also note that the result may differ from
machine to machine. The benchmark is just about calling a hello endpoint
concurrently and measuring the response time. In chapter-8/simple-
benchmark/classic, you get the version using RESTEasy classic. In
chapter-8/simple-benchmark/reactive, you get the RESTEasy reactive
variant.

First, go into chapter-8/simple-benchmark/classic, build the application
using mvn package, and run it using java -jar target/quarkus-

https://oreil.ly/kkvBU

app/quarkus-run.jar. Once the application is started in another terminal, run
Example 8-5.

Example 8-5. Use wrk to stress the application endpoint
> wrk -t 10 -c50 -d40s http://localhost:8080/hello
Running 40s test @ http://localhost:8080/hello

This command hammers the hello endpoint for 40 seconds, using 10 threads
and 50 connections. This is a simple test, but it will give us an idea of the
benefits. You should get a report with the result in the terminal. For us, we
got the result in Example 8-6.

Example 8-6. Benchmark result
 Thread Stats Avg Stdev Max +/- Stdev
 Latency 49.35ms 83.26ms 643.82ms 84.52%
 Req/Sec 2.97k 1.81k 10.66k 64.59%
 1167359 requests in 40.07s, 92.40MB read
Requests/sec: 29132.34
Transfer/sec: 2.31MB

Close the application, and build and run the version using RESTEasy
Reactive, as shown in Example 8-7.

Example 8-7. Build and run a reactive application
> cd chapter-8/simple-benchmark/reactive
> mvn package
> java -jar target/quarkus-app/quarkus-run.jar

Run the same wrk command in another terminal (Example 8-8).

Example 8-8. Use wrk to stress the application endpoint
> wrk -t 10 -c50 -d40s http://localhost:8080/hello
Running 40s test @ http://localhost:8080/hello
 10 threads and 50 connections
 Thread Stats Avg Stdev Max +/- Stdev
 Latency 600.42us 357.14us 26.17ms 98.24%
 Req/Sec 8.44k 606.47 15.90k 93.71%
 3364365 requests in 40.10s, 221.39MB read
Requests/sec: 83895.54
Transfer/sec: 5.52MB

Now, let’s compare the number of requests per second: 29,000 for classic
RESTEasy versus 84,000 for RESTEasy Reactive. RESTEasy Reactive

provides almost three times more throughput.

So far, we compared a reactive framework against a blocking one. But what
about the @Blocking annotation, which instructs Quarkus to call the
endpoint with a worker thread? Would @Blocking reduce the
performance gain? Well, let’s test it. In chapter-8/simple-
benchmark/reactive-blocking, a variant of the application uses RESTEasy
Reactive but without the @NonBlocking annotation. So, it invokes the
method on a worker thread. Let’s run our benchmark against that version, as
shown in Example 8-9.

Example 8-9. Build and run reactive blocking applications
> cd chapter-8/simple-benchmark/reactive-blocking
> mvn package
> java -jar target/quarkus-app/quarkus-run.jar

In another terminal, run the wrk command (Example 8-10).

Example 8-10. Stress the application endpoint by using wrk
> wrk -t 10 -c50 -d40s http://localhost:8080/hello
Running 40s test @ http://localhost:8080/hello
 10 threads and 50 connections
 Thread Stats Avg Stdev Max +/- Stdev
 Latency 35.99ms 66.23ms 783.62ms 85.87%
 Req/Sec 5.22k 3.53k 22.22k 71.81%
 2016035 requests in 40.05s, 132.66MB read
Requests/sec: 50339.41
Transfer/sec: 3.31MB

Even when using a worker thread, the application serves 50,000 requests
per second. That’s more than 1.5 times the throughput of RESTEasy classic.

RESTEasy Reactive offers a solid and highly concurrent alternative to the
traditional one-thread-per-request approach. And, thanks to the
@Blocking and @NonBlocking annotations, you can even use it when
dealing with asynchronous and synchronous logic. At the end of this
chapter, you will see how RESTEasy Reactive produces a reactive score of
your endpoint. Next, we will look at this integration because returning
Hello is nice, but it’s rarely enough.

Asynchronous Endpoints Returning Uni
One way to avoid the temptation to write blocking code is to design your
HTTP endpoint method to return a Uni instance. Uni represents an
asynchronous computation that may not have produced a result yet. When
an endpoint returns a Uni instance, Quarkus subscribes to it, and when the
Uni emits the result, it writes this result into the HTTP response. If,
unfortunately, the Uni emits a failure, the HTTP response conveys that
failure as an HTTP internal server error, bad request, or not found error,
depending on the failure. While waiting for the outcome of the Uni, the
thread can be used to handle other requests.

There’s no need to use @NonBlocking when returning a Uni. RESTEasy
Reactive recognizes it and automatically considers it nonblocking. Let’s see
how this works in practice. In this example, we will use the Vert.x
filesystem asynchronous API. Of course, Quarkus offers other more
convenient ways to serve files, but this is just to illustrate the purpose.

NOTE
You can find the related code in the chapter-8/mutiny-integration-examples directory.

As we said in Chapter 6, Quarkus is based on Vert.x. If you add the
quarkus-vertx extension, you get access to the managed Vert.x
instance, as shown in Example 8-11.

Example 8-11. Inject the Vert.x instance
@Inject Vertx vertx;

Be sure to import io.vertx.mutiny.core.Vertx. Note that we
inject the Mutiny variant of Vert.x. This variant exposes all the Vert.x API
using Mutiny, which is convenient in Quarkus. So, reading a file can be
done as in Example 8-12.

Example 8-12. Read a file with the Vert.x filesystem API

Uni<String> uni = vertx.fileSystem().readFile(path)
 .onItem().transform(buffer -> buffer.toString("UTF-8"));

Accessing the filesystem is, in most cases, a blocking operation. However,
thanks to the Vert.x API, we get a nonblocking variant, already providing a
Uni instance! But it’s a Uni<Buffer>, and to get String, we need to
transform the emitted result. In other words, Example 8-12 reads a file
specified with a path. This operation returns Uni. When the content is
ready to be consumed, Uni emits Buffer as an item, and we transform
Buffer into a String object. All this, without blocking the thread!

But that’s not all! We can return that Uni directly and let Quarkus subscribe
and handle the heavy lifting for us, as illustrated in Example 8-13.

Example 8-13. Return a file read with the Vert.x filesystem API (chapter-
8/mutiny-integration-
examples/src/main/java/org/acme/MutinyExampleResource.java)
package org.acme.reactive;

import io.smallrye.mutiny.Uni;
import io.vertx.core.file.FileSystemException;
import io.vertx.mutiny.core.Vertx;
import org.jboss.resteasy.reactive.server.ServerExceptionMapper;

import javax.inject.Inject;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.core.Response;
import java.time.Duration;

@Path("/")
public class MutinyExampleResource {

 @Inject
 Vertx vertx;

 @GET
 @Path("/lorem")
 public Uni<String> getLoremIpsum() {
 return vertx.fileSystem().readFile("lorem.txt")
 .onItem().transform(buffer -> buffer.toString("UTF-
8"));
 }

3

}

Quarkus subscribes to the returned Uni and sends the emitted item to the
HTTP response. If the Uni emits a failure, it sends an HTTP error.

Let’s see this in action. Start the application, located in chapter-8/mutiny-
integration-examples, with mvn quarkus:dev and invoke the endpoint
by using Example 8-14.

Example 8-14. Retrieve the lorem file
> curl http://localhost:8080/lorem
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do
eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim
veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse
cillum dolore
eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non
proident,
sunt in culpa qui officia deserunt mollit anim id est laborum.

Most Quarkus APIs have reactive variants using Mutiny, such as the mailer
service, database access (we will look at Hibernate Reactive in Chapter 9),
messaging, templating, gRPC, and so on. Besides, the Mutiny variant of
Vert.x gives you access to a vast reactive ecosystem ranging from network
protocols (DNS, TCP, UDP, HTTP), to messaging (Apache Kafka, AMQP,
RabbitMQ, MQTT) via data accesses and web utilities.

Dealing with Failure and Customizing the
Response
Just because a method is asynchronous doesn’t mean it cannot fail. For
example, the file we are trying to serve may not be available, so we need to
handle such a failure. But, first, let’s see what Quarkus does by default.

Let’s add an example with a failing operation with the following endpoint
(as shown in Example 8-15).

Example 8-15. Read a missing file with the Vert.x filesystem API (chapter-
8/mutiny-integration-
examples/src/main/java/org/acme/MutinyExampleResource.java)
@GET
@Path("/missing")
public Uni<String> getMissingFile() {
 return vertx.fileSystem().readFile("Oops.txt")
 .onItem().transform(buffer -> buffer.toString("UTF-
8"));
}

Invoke the endpoint by using Example 8-16.

Example 8-16. Propagation of failures
> curl -f -v http://localhost:8080/missing
* Trying ::1...
* TCP_NODELAY set
* Connection failed
* connect to ::1 port 8080 failed: Connection refused
* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 8080 (#0)
> GET /missing HTTP/1.1
> Host: localhost:8080
> User-Agent: curl/7.64.1
> Accept: */*
>
* The requested URL returned error: 500 Internal Server Error
* Closing connection 0
curl: (22) The requested URL returned error: 500 Internal Server
Error

Quarkus returns 500 Internal Server Error. This makes sense;
there’s clearly a bug in our code.

Let’s see what we can do. As you have seen in Chapter 7, Uni provides
failure-handling capabilities that we can use here. Example 8-17 shows how
we can recover with a simple message.

Example 8-17. Recover on failure (chapter-8/mutiny-integration-
examples/src/main/java/org/acme/MutinyExampleResource.java)
@GET
@Path("/recover")
public Uni<String> getMissingFileAndRecover() {

file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_wcbd4i91/_glcsjg6_pdf_out/OEBPS/Images/#rr::fs-recover

 return vertx.fileSystem().readFile("Oops.txt")
 .onItem().transform(buffer -> buffer.toString("UTF-8"))
 .onFailure().recoverWithItem("Oops!");
}

This returns oops, as you can see in Example 8-18.

Example 8-18. Failure recovery
> curl http://localhost:8080/recover
oops!

We can also customize the HTTP response and return a proper 404 Not
Found error (Example 8-19).

Example 8-19. Response customization (chapter-8/mutiny-integration-
examples/src/main/java/org/acme/MutinyExampleResource.java)
@GET
@Path("/404")
public Uni<Response> get404() {
 return vertx.fileSystem().readFile("Oops.txt")
 .onItem().transform(buffer -> buffer.toString("UTF-8"))
 .onItem().transform(content ->
Response.ok(content).build())
 .onFailure().recoverWithItem(

Response.status(Response.Status.NOT_FOUND).build());
}

The signature of the endpoint is a bit different. Instead of returning
Uni<String>, we return Uni<Response>. The emitted item
(Response) represents the HTTP response we want to send back. In
Example 8-20, we set that on any failure we return a 404 Not Found.

Example 8-20. Customize the HTTP response
 curl -v http://localhost:8080/404
* Trying ::1...
* TCP_NODELAY set
* Connection failed
* connect to ::1 port 8080 failed: Connection refused
* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 8080 (#0)
> GET /404 HTTP/1.1
> Host: localhost:8080

file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_wcbd4i91/_glcsjg6_pdf_out/OEBPS/Images/#failure-recovery-8-18

> User-Agent: curl/7.64.1
> Accept: */*
>
< HTTP/1.1 404 Not Found
< content-length: 0
<
* Connection #0 to host localhost left intact
* Closing connection 0

NOTE
You can use Response to customize the response—for example, by adding headers.

An alternative is to register an exception mapper for the
FileSystemException, as illustrated in Example 8-21.

Example 8-21. Declare an exception mapper (chapter-8/mutiny-integration-
examples/src/main/java/org/acme/MutinyExampleResource.java)
@ServerExceptionMapper
public Response mapFileSystemException(FileSystemException ex) {
 return Response.status(Response.Status.NOT_FOUND)
 .entity(ex.getMessage())
 .build();
}

With such a mapper defined, Quarkus captures the failure emitted by Uni
and invokes the mapper to produce the appropriate Response.

And what about time-out? While the chances of having a time-out when
reading from the filesystem are relatively low, it becomes much more
critical when dealing with a remote service. Handle time-out as shown in
Example 8-22.

Example 8-22. Handling timeout
return vertx.fileSystem().readFile("slow.txt")
 .onItem().transform(buffer -> buffer.toString("UTF-8"))
 .ifNoItem().after(Duration.ofSeconds(1)).fail();

You can specify the exception to emit in this case, and if you need, register
an exception mapper.

When implementing an HTTP endpoint with RESTEasy Reactive, ask
yourself if you can use the Mutiny integration to compose asynchronous
actions and fully benefit from the performance and efficiency of the
reactive engine of Quarkus. Of course, you can use @Blocking, but there
is a cost to consider.

Streaming Data
Returning Uni is perfect when we have a single piece of data to send into
the response. But what about streams?

In addition to Uni, Quarkus lets you return a Multi instance. Quarkus
subscribes to the returned Multi and writes the items emitted by this
Multi, one by one, into the HTTP response. It’s an efficient way to deal
with streams and limit the application’s memory consumption, as you don’t
have to buffer the entire content in memory. Indeed, Quarkus uses HTTP
chunked responses by setting the Transfer-Encoding header when
dealing with Multi. That feature from HTTP allows writing into the
response chunk after chunk.

As with Uni, a method retuning a Multi is considered nonblocking by
default. There’s no need to use @NonBlocking.

But when returning Multi, we need to ask ourselves: What envelope do
we want? Do we want to stream bytes? Do we want to send a JSON array
instead? Or maybe individual events using Server-Sent Events? Quarkus
supports all these, and that’s what we are going to see in this section.

Raw Streaming
Let’s start with raw streaming, basically no envelope. This model is great
for writing large payloads in response, as we can write them chunk by
chunk, in order.

Raw streaming is straightforward with Quarkus and RESTEasy Reactive:
just return Multi. Let’s look at an example. You have probably heard

https://oreil.ly/QcHFs

about the book War and Peace. It’s what we would call a brick, more than
1,200 pages! Let’s say that we want to accumulate the full content of War
and Peace and return it in an HTTP response as a single batch. It’s doable,
but let’s make the book easy to digest by streaming the content (Example 8-
23).

Example 8-23. Stream responses (chapter-8/mutiny-integration-
examples/src/main/java/org/acme/StreamResource.java)
@GET
@Path("/book")
@Produces(MediaType.TEXT_PLAIN)
public Multi<String> book() {
 return vertx.fileSystem().open("war-and-peace.txt",
 new OpenOptions().setRead(true))
 .onItem().transformToMulti(AsyncFile::toMulti)
 .onItem().transform(b -> b.toString("UTF-8"));
}

This code opens the book text from the filesystem, using the Vert.x
filesystem API, and reads it chunk by chunk. AsyncFile::toMulti is
responsible for reading the file (and AsyncFile) and emitting the content
chunk by chunk. As we did previously in Example 8-13, we transform the
content into UTF-8 strings.

You can find this code in chapter-8/mutiny-integration-examples. Run the
application by using mvn quarkus:dev and then test it with Example 8-
24.

Example 8-24. Consume chunked responses
> curl http://localhost:8080/book -N

-N instructs curl to read the response chunk by chunk (it disables the
buffering).

We get the content, but it’s hard to see that it was sent as a set of chunks.
Let’s update the endpoint to send a chunk every second (Example 8-25).

Example 8-25. Pace streamed responses (chapter-8/mutiny-integration-
examples/src/main/java/org/acme/StreamResource.java)

@GET
@Path("/book")
@Produces(MediaType.TEXT_PLAIN)
public Multi<String> bookWithTicks() {
 Multi<Long> ticks =
Multi.createFrom().ticks().every(Duration.ofSeconds(1));
 Multi<String> book = vertx.fileSystem().open("war-and-
peace.txt",
 new OpenOptions().setRead(true))
 .onItem().transformToMulti(AsyncFile::toMulti)
 .onItem().transform(b -> b.toString("UTF-8"));
 return
 Multi.createBy().combining().streams(ticks,
book).asTuple()
 .onItem().transform(Tuple2::getItem2);
}

Example 8-25 combines two streams. First, it creates a periodic stream,
emitting a tick every second (ticks). Then it retrieves the stream reading
the book (book). The combination creates a stream of tuples that will be
emitted every second. Each tuple contains a tick (getItem1) and the
chunk (getItem2). We just need to forward the chunk, dropping the tick.

Now, rerun the curl command, and you will see the content appearing
chunk by chunk every second. Don’t wait until the end because there are
many chunks; just hit Ctrl-C to interrupt.

Streaming JSON Array
The War and Peace example is interesting for binary content or simple text,
but you may want to send a more structured response, such as a JSON
array. Imagine you are building a response that is a JSON array, but a
potentially large one. Each item is a JSON object. You could build that
structure in memory and flush everything in a single batch, but it may be
more efficient to push the JSON objects one by one. First, that approach
would save some memory on our part, and the client receiving the data may
be able to start processing the items immediately. To stream a JSON array,
you need to adapt the produced content type. In the previous example, we
just used text/plain. To create a JSON array, we need to set it to
application/json.

TIP
We recommend using the MediaType class that provides constants for the most
common content types. A typo can quickly become a debugging nightmare.

Let’s imagine we have a bunch of books. Each Book has an ID, a title, and
a list of authors (Example 8-26).

Example 8-26. The Book structure (chapter-8/mutiny-integration-
examples/src/main/java/org/acme/StreamResource.java)
public static class Book {
 public final long id;
 public final String title;
 public final List<String> authors;

 public Book(long id, String title, List<String> authors) {
 this.id = id;
 this.title = title;
 this.authors = authors;
 }
}

Let’s imagine we have a service that lets us retrieve our collection of books
as a Multi. In other words, we have a service offering the API in
Example 8-27.

Example 8-27. Stream books API
Multi<Book> getBooks();

To build a JSON array from this method, we can return an instance of
Multi produced by the getBooks method (Example 8-28).

Example 8-28. Stream books (chapter-8/mutiny-integration-
examples/src/main/java/org/acme/StreamResource.java)
@Inject BookService service;

@GET
@Path("/books")
@Produces(MediaType.APPLICATION_JSON)
public Multi<Book> books() {

 return service.getBooks();
}

If you call this endpoint by using the command in Example 8-29, you will
get all the books.

Example 8-29. Consume the stream of books
> curl -N http://localhost:8080/books
[{"id":0,"title":"Fundamentals of Software Architecture","authors":
["Mark
Richards","Neal Ford"]},{"id":1,"title":"Domain-Driven
Design","authors":
["Eric Evans"]},{"id":2,"title":"Designing Distributed Systems",
"authors":["Brendan Burns"]},{"id":3,"title":"Building Evolutionary
Architectures","authors":["Neal Ford","Rebecca Parsons","Patrick
Kua"]},
{"id":4,"title":"Principles of Concurrent and Distributed
Programming",
"authors":["M. Ben-Ari"]},{"id":5,"title":"Distributed Systems
Observability",
"authors":["Cindy Sridharan"]},{"id":6,"title":"Event Streams in
Action",
"authors":["Alexander Dean","Valentin Crettaz"]},
{"id":7,"title":"Designing
Data-Intensive Applications","authors":["Martin Kleppman"]},
{"id":8,
"title":"Building Microservices","authors":["Sam Newman"]},{"id":9,
"title":"Kubernetes in Action","authors":["Marko Luksa"]},{"id":10,
"title":"Kafka - the definitive guide","authors":["Gwenn
Shapira","Todd Palino",
"Rajini Sivaram","Krit Petty"]},{"id":11,"title":"Effective Java",
"authors":["Joshua Bloch"]},{"id":12,"title":"Building Event-Driven
Microservices","authors":["Adam Bellemare"]}]

The result is a well-formed JSON array containing our books, serialized as
JSON objects. But, again, it’s hard to see that it was streamed. We can use
the same approach as we did before to limit the emission to one per second,
as in Example 8-30.

Example 8-30. Produce a book every second (chapter-8/mutiny-integration-
examples/src/main/java/org/acme/StreamResource.java)
@GET
@Path("/books")
@Produces(MediaType.APPLICATION_JSON)
public Multi<Book> booksWithTicks() {

 Multi<Long> ticks =
Multi.createFrom().ticks().every(Duration.ofSeconds(1));
 Multi<Book> books = service.getBooks();

 return
 Multi.createBy().combining().streams(ticks,
books).asTuple()
 .onItem().transform(Tuple2::getItem2);
}

With this code, if you rerun the curl command, you will see the items
appearing one by one.

Using Server-Sent-Events
Raw streams and JSON arrays are helpful for bounded streams. But,
sometimes, we have to deal with unbounded ones.

Server-Sent Events (SSE) was designed with this use case in mind. It
provides a way to stream potentially unbounded structured data using
HTTP.

To produce an SSE response, you set the produced content type to
text/event-stream. Let’s try this. Imagine we want to stream events
from a financial market. Each event is a Quote containing the name of a
company and the new stock value (Example 8-31).

Example 8-31. The Quote structure (chapter-8/mutiny-integration-
examples/src/main/java/org/acme/StreamResource.java)
public static class Quote {
 public final String company;
 public final double value;

 public Quote(String company, double value) {
 this.company = company;
 this.value = value;
 }
}

Now, let’s imagine a service emitting a Quote every second to represent
the fluctuation of the market. We can produce an SSE response by returning
that stream directly (Example 8-32).

https://oreil.ly/NjQNL

Example 8-32. Stream quotes (chapter-8/mutiny-integration-
examples/src/main/java/org/acme/StreamResource.java)
@Inject Market market;

@GET
@Path("/market")
@Produces(MediaType.SERVER_SENT_EVENTS)
public Multi<Quote> market() {
 return market.getEventStream();
}

By setting the produced content to SSE, Quarkus writes the response
accordingly. Each individual Quote is encoded to JSON automatically
(Example 8-33).

Example 8-33. Consume the SSE response
> curl -N http://localhost:8080/market
data:{"company":"MacroHard","value":0.9920107877590033}

data:{"company":"Divinator","value":16.086577691515345}

data:{"company":"Divinator","value":6.739227006693276}

data:{"company":"MacroHard","value":1.9383421237456742}

data:{"company":"MacroHard","value":38.723702725212156}

data:{"company":"Divinator","value":44.23789420202483}

data:{"company":"Black Coat","value":171.42142746079418}

data:{"company":"MacroHard","value":44.37699080288775}

data:{"company":"Black Coat","value":37.33849006264873}
...

A client reading SSE, such as a JavaScript EventSource, can process the
quotes one by one as they come.

Reactive Score

https://oreil.ly/scARA

So far, we have looked at various features of RESTEasy Reactive and
Quarkus. But what about tooling around Reactive?

We already experienced dev mode, which made us highly productive, but
there is more. RESTEasy Reactive produces a reactive score for your
endpoints, indicating how responsive the endpoints are.

To compute this score, RESTEasy Reactive looks at the execution model
(typically, an endpoint using worker threads will get a lower score),
instantiation scheme (favoring singleton over request-based instantiation),
the usage of marshaller and reflection-based mechanisms (such as object
mapper), and so on.

Let’s look at the score in an example. In chapter-8/reactive-scores, an
application contains a bunch of endpoints using various features. Launch
the application in dev mode by using mvn quarkus:dev, and then open
a browser.

TIP
This reactive score page is part of the Quarkus dev console. Each extension can
contribute to the dev console. In dev mode, access the dev console using
http://localhost:8080/q/dev. In our example, you can navigate to
http://localhost:8080/q/swagger-ui/ to try all the defined endpoints.

You can see scores going from 50/100 (rather bad) to 100/100 (excellent!)
in our application (Figure 8-3). You can click each method to understand
the given score. This feature is handy when trying to improve the
concurrency and the efficiency of your application. If you realize that you
have a bottleneck, check the score and try to improve it. The effect on your
application will be immediate.

http://localhost:8080/q/dev
http://localhost:8080/q/swagger-ui/

Figure 8-3. Endpoint scores

Summary
HTTP is unavoidable. Although it does not enforce reactive principles,
Quarkus offers a way to expose HTTP APIs without renouncing to those
reactive principles.

Thanks to RESTEasy Reactive, you get a familiar declarative development
model that is a lot more efficient and performant. We only scratched the
surface. RESTEasy Reactive also supports Bean Validation to automatically
validate the incoming payloads or OpenAPI to describe your API.

You may wonder how to consume HTTP endpoints. This is covered in
Chapter 12. But, there is one aspect we didn’t discuss yet: data and how to
reactively access data stores. This is the topic of the next chapter.

1 Vert.x event loop threads are I/O threads.

2 Methods returning instances of Multi or Uni are automatically considered nonblocking if
not specified otherwise.

3 Buffer is a convenient way to represent a bag of bytes in Vert.x.

Chapter 9. Accessing Data
Reactively

In Chapter 5, we explained the scalability and robustness problems in the
use of blocking I/O for applications. This chapter focuses on interacting
with databases and how Quarkus ensures that the data layers of an
application stack can be asynchronous and utilize nonblocking I/O too.

The Problem with Data Access
Accessing relational data previously involved blocking I/O while
communicating with a database. As already discussed in Chapter 5, we want
to avoid blocking I/O in our applications, at any level of the stack.
Interacting with a database often takes a non-trivial amount of time to
complete, depending on the number of records involved, creating an even
larger impact on our application with blocking I/O to access a database!
What do we mean by this? Let’s say we’ve developed a small database
application; we’ve all developed many of those over the years. We often
refer to them as CRUD applications because they provide create, read,
update, and delete operations for records in a database.

Every exposed endpoint in our API needs to interact with the database. We
will ignore caches and how they reduce the number of requests made to a
database in certain situations. With each endpoint method calling the
database, every execution performs blocking I/O, reducing concurrency.

Why are we forced to use blocking I/O when interacting with databases?
APIs for interacting with databases, such as Open Database Connectivity
(ODBC) and Java Database Connectivity (JDBC), were designed with a
synchronous and blocking approach. The Java Persistence API (JPA), which
came many years later, though coalescing the object-relational mapping

(ORM) landscape around a common API, was still designed on the existing
synchronous and blocking behavior of JDBC.

Without a reactive programming approach to data access, the entirety of an
application stack can never be truly reactive. An application could be
reactive only up to a point. Though still beneficial, concurrency and
throughput are still prevented from reaching their full potential concurrency.

That’s a lot of words explaining how database access with JDBC and JPA is
not reactive, and therefore blocking, but what does that access look like? As
you saw in “The Imperative Model” with application logic, it’s a similar
problem for the database interaction, as illustrated in Figure 9-1.

Figure 9-1. Blocking database client

When we’re communicating with a database over JDBC, or the higher
abstraction JPA, the JDBC driver uses a request-and-response interaction.
However, as shown in Figure 9-1, the JDBC driver blocks the thread until
any response is received. This blocking approach occupies an entire thread
for each database interaction. Depending on how you’ve configured
database connection pooling, it’s possible to run out of threads for an
application before reaching the maximum number of database connections.

When dealing with a large number of database records to search or retrieve,
and network latency between our application and the database, a problem
with thread starvation or resource utilization will likely occur.

Nonblocking Interactions with Relational
Databases
With recent work by various projects, such as Vert.x client APIs for
PostgreSQL, MySQL, IBM Db2, Oracle, and Microsoft SQL Server, Java
applications are now able to interact with databases in an asynchronous
manner with nonblocking I/O.

How are things different with these new clients compared to JDBC? When
using nonblocking database clients, we’re able to avoid a blocked thread, as
shown in Figure 9-2.

https://oreil.ly/GSE6G

Figure 9-2. Nonblocking database client

In addition, it’s now possible for the database client, instead of a worker, to
execute on the I/O thread. Now we have a compounded benefit of using
these new nonblocking clients: reducing the number of worker threads an
application might need, as database communication with these new clients
can occur on the same thread as any reactive application code!

In Figure 9-2, we see a single database connection being used for the
database client to communicate. However, when a client API and database
supports it, we can utilize pipelining to share a single database connection
for several requests. Figure 9-3 shows how pipelining in the database client
works.

Figure 9-3. Nonblocking database client with pipelining

Each color in Figure 9-3 is a separate database request. Though we have
different reactive handlers calling the database, the database client is able to
utilize a single connection to the database instead of, in this case, three. We
want to take advantage of nonblocking advancements such as this whenever
we can, to squeeze more and more out of the same amount of resources for
an application.

Using a Reactive ORM: Hibernate Reactive
Hibernate ORM enables developers to more easily write applications whose
data outlives the application process. As an ORM framework, Hibernate is
concerned with data persistence as it applies to relational databases.
Hibernate provides both imperative and reactive APIs.

These APIs support two facets: nonblocking database clients, covered in the
previous section, and reactive programming as a means of interacting with
relational databases. Most of the existing Hibernate internals are still
utilized, but Hibernate Reactive introduces a new layer for utilizing reactive
and nonblocking APIs to communicate with database clients. The reactive
APIs work in concert with JPA annotations, Hibernate annotations, and
Bean Validation as well.

It’s time to dive in and use Hibernate with reactive APIs! With Quarkus,
Hibernate Reactive is even better, because we have the option to use
Hibernate Reactive with Panache. This thin layer simplifies the use of the
Hibernate ORM. It provides two models. Your entities can be managed as
active records, as the entity class provides methods to retrieve, update, and
query instances of that entity class. You can also use a repository model, in
which a repository class provides these functions, keeping the entity
structure pure. See the chapter-9/hibernate-reactive directory for all
Hibernate Reactive project code. First we need the dependency for
Hibernate Reactive (Example 9-1).

Example 9-1. Hibernate Reactive dependency (chapter-9/hibernate-
reactive/pom.xml)

<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-hibernate-reactive-panache</artifactId>
</dependency>

Notice we used the Panache version of Hibernate Reactive. If we didn’t
want to use Panache, we could have used the quarkus-hibernate-
reactive dependency instead. As mentioned previously, we need a
reactive database client too. For this example, we will use the PostgreSQL
client (Example 9-2).

Example 9-2. PostgreSQL database client dependency (chapter-
9/hibernate-reactive/pom.xml)
<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-reactive-pg-client</artifactId>
</dependency>

With Dev Services, a Quarkus feature starting the required pieces of
infrastructure automatically, we don’t need the Docker Maven plug-in to
start a database for running tests. Quarkus will automatically start the
database for us! To take advantage of Dev Services, we need a database
driver, which we just added in Example 9-2, and to set db.kind for
informing Quarkus of the database type being used. Let’s set that up now in
application.properties (Example 9-3).

Example 9-3. PostgreSQL database client config (chapter-9/hibernate-
reactive/src/main/resources/application.properties)
quarkus.datasource.db-kind=postgresql
%prod.quarkus.datasource.username=quarkus_test
%prod.quarkus.datasource.password=quarkus_test
%prod.quarkus.datasource.reactive.url=vertx-reactive:postgresql://
 localhost/quarkus_test

With Dev Services, all the properties except db.kind are specified with
the prod configuration profile. We could also remove the properties from
the prod profile completely, preferring to set them with environment
variables, or a ConfigMap in Kubernetes.

https://oreil.ly/eKY8W

We have a Customer entity that extends PanacheEntity. We won’t
cover Customer in detail here, as it utilizes the usual annotations from
JPA, Bean Validation, and Hibernate Validator. The full source can be
viewed at chapter-9/hibernate-
reactive/src/main/java/org/acme/data/Customer.

Let’s take a look at the implementation of a CRUD application using
Hibernate Reactive and RESTEasy Reactive to expose a REST API. First
up is a method to retrieve all customers from the database (Example 9-4).

Example 9-4. Retrieve all customers (chapter-9/hibernate-
reactive/src/main/java/org/acme/data/CustomerResource.java)
public Multi<Customer> findAll() {
 return Customer.streamAll(Sort.by("name"));
}

We use streamAll on Customer, from Panache, to retrieve all
instances into Multi. Each customer can have orders associated with
them, and when we retrieve a single customer, we also want to retrieve their
orders. Though we have a single application, we will consider the orders to
be coming from an external service.

First we define Uni to retrieve Customer and throw an exception if one
was not found, as shown in Example 9-5.

Example 9-5. Find a customer (chapter-9/hibernate-
reactive/src/main/java/org/acme/data/CustomerResource.java)
Uni<Customer> customerUni = Customer.<Customer>findById(id)
 .onItem().ifNull().failWith(
 new WebApplicationException("Failed to find customer",
 Response.Status.NOT_FOUND)
);

Next the orders of a customer are retrieved as a List into a separate Uni
(see Example 9-6).

Example 9-6. Retrieve customer orders (chapter-9/hibernate-
reactive/src/main/java/org/acme/data/CustomerResource.java)
Uni<List<Order>> customerOrdersUni =
orderService.getOrdersForCustomer(id);

Lastly, the two are combined by a mapper, taking the results of each Uni to
set the orders on the customer. The resulting Uni is transformed into a
JAX-RS Response to complete the endpoint execution (Example 9-7).

Example 9-7. Combine customer and orders (chapter-9/hibernate-
reactive/src/main/java/org/acme/data/CustomerResource.java)
return Uni.combine()
 .all().unis(customerUni, customerOrdersUni)
 .combinedWith((customer, orders) -> {
 customer.orders = orders;
 return customer;
 })
 .onItem().transform(customer -> Response.ok(customer).build());

So far, everything we’ve done hasn’t required a transaction, as we’ve only
been reading database records. Example 9-8 shows how we can use
transactions to store a new customer.

Example 9-8. Create a customer (chapter-9/hibernate-
reactive/src/main/java/org/acme/data/CustomerResource.java)
return Panache
 .withTransaction(customer::persist)

.replaceWith(Response.ok(customer).status(Response.Status.CREATED).
build());

We use Panache.withTransaction to inform Panache that we want
a transaction to wrap the Uni Supplier we pass into it. In this instance,
we use customer.persist as the code to be wrapped with a
transaction. Though Uni<Void> is returned on success, we can use
replaceWith to create the necessary Uni<Response>.

Next we use withTransaction to update the customer name. First we
retrieve a customer by ID. Then, when we receive an item that is not null,
we invoke a runnable to update the name on the retrieved entity
(Example 9-9).

Example 9-9. Update a customer (chapter-9/hibernate-
reactive/src/main/java/org/acme/data/CustomerResource.java)

return Panache
 .withTransaction(
 () -> Customer.<Customer>findById(id)
 .onItem().ifNotNull().invoke(entity -> entity.name =
customer.name)
)

We then utilize onItem to generate an outcome of a successful response or
return a not found response if the item is null.

The last method we need for a CRUD application with Hibernate Reactive
provides the ability to delete a customer. Again we use
withTransaction, passing it the Panache method to delete a customer
by its ID. Deleting an entity returns Uni<Boolean>. We need to use map
to convert it to a JAX-RS response based on its success (Example 9-10).

Example 9-10. Delete a customer (chapter-9/hibernate-
reactive/src/main/java/org/acme/data/CustomerResource.java)
return Panache
 .withTransaction(() -> Customer.deleteById(id))
 .map(deleted -> deleted
 ? Response.ok().status(Response.Status.NO_CONTENT).build()
 : Response.ok().status(Response.Status.NOT_FOUND).build());

You’ve now seen how to create, retrieve, update, and delete entities with
Panache and Hibernate Reactive! To see how the endpoints can be tested,
take a look at /chapter-9/hibernate-
reactive/src/test/java/org/acme/data/CustomerEndpointTest in the book’s
code examples.

What About NoSQL?
We’ve shown how we can have reactive APIs with a traditional ORM such
as Hibernate, but what about NoSQL? Are we able to take advantage of
reactive APIs when an application needs a NoSQL database instead of a
relational one? Yes, we can!

Quarkus has several extensions for communicating with NoSQL databases,
including MongoDB, Redis, and Apache Cassandra. Do all these extensions

support reactive APIs? Currently, the MongoDB, Redis, and Cassandra
clients have support for reactive APIs.

In the next section, we will develop a CRUD application with the same
functionality as the Hibernate Reactive example in the previous section.

Interacting with Redis
Let’s develop a customer CRUD application with Redis! For this example,
we will extract interactions into a separate service we can inject into a
REST resource. Check out /chapter-
9/redis/src/main/java/org/acme/data/CustomerResource in the code
examples to see how the service is used.

First we need the Redis client dependency for the project; see Example 9-
11.

Example 9-11. Redis client dependency (chapter-9/redis/pom.xml)
<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-redis-client</artifactId>
</dependency>

As we did with the Hibernate Reactive example, we will utilize docker-
maven-plugin to run a Redis container for test execution. Check out
chapter-9/redis/pom.xml in the book source for the details.

Next we configure the Redis client as to where the host of the server is
located. Include the config in Example 9-12 in
application.properties.

Example 9-12. Redis client config (chapter-
9/redis/src/main/resources/application.properties)
quarkus.redis.hosts=redis://localhost:6379

To be able to use the Redis client, we need to @Inject it, as shown in
Example 9-13.

Example 9-13. Inject Redis client (chapter-
9/redis/src/main/java/org/acme/data/CustomerService.java)
@Inject
ReactiveRedisClient reactiveRedisClient;

So we don’t create an unintentional key clash in Redis, we will prefix a
customer ID, as shown in Example 9-14.

Example 9-14. Key prefix (chapter-
9/redis/src/main/java/org/acme/data/CustomerService.java)
private static final String CUSTOMER_HASH_PREFIX = "cust:";

Let’s start out with retrieving a list of all the customers from Redis
(Example 9-15).

Example 9-15. Retrieve all customers (chapter-
9/redis/src/main/java/org/acme/data/CustomerService.java)
public Multi<Customer> allCustomers() {
 return reactiveRedisClient.keys("*")
 .onItem().transformToMulti(response -> {
 return
Multi.createFrom().iterable(response).map(Response::toString);
 })
 .onItem().transformToUniAndMerge(key ->
 reactiveRedisClient.hgetall(key)
 .map(resp ->
 constructCustomer(
 Long.parseLong(

key.substring(CUSTOMER_HASH_PREFIX.length())),
 resp)
)
);
}

ReactiveRedisClient provides an API aligned with the commands
available with Redis, making it easier to use in Java if you are already
familiar with using Redis commands. In Example 9-15, we use keys with
a wildcard to retrieve all keys, which returns Uni<Response>. This
particular Response class represents the response from Redis.

On receiving the response (the item) from Redis, we use
transformToMulti to separate the single response into individual keys.
In the lambda, we create a Multi of string keys from the response directly,
as it’s an Iterable, and map the value to the string of the key. The result
of the execution is Multi<String>.

We’re not done just yet; we need to convert the stream of keys into a stream
of customers. Reading the code provides a good idea of what happens.
Starting with Multi<String>, on each item produced we call
transformToUniAndMerge. We use their key, or item, with the Redis
client to retrieve all the fields and values matching the key, or hash. The
response from hgetall is mapped to a Customer instance using
constructCustomer. Finally, the customer Unis instances are merged
into a Multi for returning.

To retrieve a single customer, we call hgetall and, depending on the size
of the response, either return null or use constructCustomer to
create a customer (Example 9-16). We need to check the size of the
response to find out whether any fields and values were returned. If the size
is zero, the response was empty because the key could not be found.

Example 9-16. Retrieve customer (chapter-
9/redis/src/main/java/org/acme/data/CustomerService.java)
public Uni<Customer> getCustomer(Long id) {
 return reactiveRedisClient.hgetall(CUSTOMER_HASH_PREFIX + id)
 .map(resp -> resp.size() > 0
 ? constructCustomer(id, resp)
 : null
);
}

To store a customer record into Redis, we use hmset to store multiple
fields and values for a single key. From a Redis perspective, it doesn’t
matter whether we’re storing a new customer or updating an existing one;
we use hmset for both. We should split the behavior into a separate
method to reuse it in both places, as shown in Example 9-17.

Example 9-17. Store customer (chapter-
9/redis/src/main/java/org/acme/data/CustomerService.java)
return reactiveRedisClient.hmset(
 Arrays.asList(CUSTOMER_HASH_PREFIX + customer.id, "name",
customer.name)
)
 .onItem().transform(resp -> {
 if (resp.toString().equals("OK")) {
 return customer;
 } else {
 throw new NoSuchElementException();
 }
 });

Using hmset, we need to ensure that an odd number of arguments are
passed to it. The first argument is the hash for the record, followed by
matching pairs of field and value for as many fields to be set. We get a
simple reply of OK if it succeeds, using transform to return the customer
on success or throw an exception.

With storeCustomer in place, let’s look at createCustomer; see
Example 9-18.

Example 9-18. Create customer (chapter-
9/redis/src/main/java/org/acme/data/CustomerService.java)
public Uni<Customer> createCustomer(Customer customer) {
 return storeCustomer(customer);
}

We have a nice clean method for createCustomer for responding with
Uni<Customer>! There wasn’t much to that one, so let’s look at
updateCustomer in Example 9-19.

Example 9-19. Update customer (chapter-
9/redis/src/main/java/org/acme/data/CustomerService.java)
public Uni<Customer> updateCustomer(Customer customer) {
 return getCustomer(customer.id)
 .onItem().transformToUni((cust) -> {
 if (cust == null) {
 return Uni.createFrom().failure(new NotFoundException());
 }
 cust.name = customer.name;

 return storeCustomer(cust);
 });
}

First we reuse getCustomer from the service to retrieve the existing
customer from Redis. When an item is returned from getCustomer, we
transform it into another Uni with a mapper. The mapper first checks
whether the item we received, the customer, is null, returning a Uni failure
containing an exception if it is. Then we set the new name onto the
customer before calling storeCustomer, creating the Uni the mapper
returns.

Lastly, we need a way to delete a customer. For this, we use hdel on the
Redis client, which returns the number of removed fields or 0 if the key
could not be found (Example 9-20). We map Uni<Response> to
Uni<Boolean>, checking whether one field was removed (in this case,
the customer name) to return true, or null if there were no responses.
On the produced item, we fail with NotFoundException if the item is
null, or succeed and transform the item into a null item.

Example 9-20. Delete a customer (chapter-
9/redis/src/main/java/org/acme/data/CustomerService.java)
public Uni<Void> deleteCustomer(Long id) {
 return
reactiveRedisClient.hdel(Arrays.asList(CUSTOMER_HASH_PREFIX + id,
"name"))
 .map(resp -> resp.toInteger() == 1 ? true : null)
 .onItem().ifNull().failWith(new NotFoundException())
 .onItem().ifNotNull().transformToUni(r ->
Uni.createFrom().nullItem());
}

This section gave a brief look into utilizing some methods of the reactive
client for Redis. There are many more methods we didn’t cover, but this
section provided guidance on how they can be generally used.

Data-Related Events and Change Data
Capture

Change data capture, or CDC, is an integration pattern for extracting events
from sources that don’t typically operate with events and messaging, such
as databases. CDC has many benefits, including being able to produce
change events from a legacy application without modifying the application.

Another benefit is that CDC doesn’t care about the languages an application
is developed in, as it interacts with the database. This approach can greatly
simplify the effort to produce a consistent-looking change event from a
database that has polyglot applications writing to it. Having to update
possibly dozens of applications written in different languages to produce a
consistent-looking change event from them all can be challenging and time-
consuming.

Writing to a database involves transactions, or usually should, and poses an
additional complexity when also writing an event to a messaging system. In
Figure 9-4, we need to make sure that if either the database update fails or
producing a message fails, everything rolls back and undoes any changes.

Figure 9-4. Writing to a database and message broker

Such a situation can be particularly complex when transaction rollback can
occur outside our application code because of a failure to return an HTTP
response, for instance. With CDC, this concern goes away because we
worry only about writing to the database itself.

Any change events can flow from the updated database with CDC, ensuring
that we’re never sending an event we shouldn’t because the transaction has
been committed before CDC sees the change, as shown in Figure 9-5.

Figure 9-5. Writing to a database, with CDC triggering message creation

One impact for developers to be aware of is that CDC does not provide
strong consistency. Strong consistency means that any data viewed
immediately after an update is consistent for all observers of the data,
regardless of whether the viewers are in parallel or distributed processes.
For relational databases, this is guaranteed as it’s part of the design of the
database. With CDC, there is a period of time between the update
happening in the database, and when the message of the update is received
and processed by the furthest downstream system consuming the messages.

The lack of strong consistency, or eventual consistency, is not a deterrent
for the use of CDC. We want developers to be aware of the consistency
guarantees of the CDC pattern, to bear it in mind during application design.

Using Debezium to Capture Change
Debezium is a distributed platform for CDC. Debezium is durable and fast,
enabling applications to respond promptly and never miss an event!

Figure 9-6 shows where Debezium fits in an application architecture using
CDC. Debezium provides Kafka Connect source connectors for several
databases, including MySQL, MongoDB, PostgreSQL, Oracle, Db2, and
SQL Server.

https://debezium.io/

Figure 9-6. CDC with Debezium

We will briefly show how we can enhance the Hibernate Reactive example
from the previous section with Debezium. Full details can be found in the
source code for the book.

Though this example includes a copy of the code from Hibernate Reactive,
it would also work by using the example directly, as the application code is
not impacted by the introduction of Debezium. The main piece to
understand is the docker-compose.yml file. This file starts the Kafka
containers, ZooKeeper as a dependency of Kafka, a PostgreSQL database,
and Kafka Connect. We will use the container images from the Debezium
project to simplify the deployment process. For example, the PostgreSQL
container image already includes the logical decoding plug-ins necessary to
communicate the change events to Kafka Connect.

Start all the containers with docker compose up, and then build and
start the application with java -jar target/quarkus-
app/quarkus-run.jar. Once all containers have started, we install the
Debezium source connector for PostgreSQL into Kafka Connect
(Example 9-21).

Example 9-21. Install the Debezium source connector
curl -i -X POST -H "Accept:application/json" -H "Content-
Type:application/json" \
 http://localhost:8083/connectors/ -d @register.json

Here, register.json is the data we’re passing to the Kafka Connect endpoint.
The file provides the details of the database to connect to and the Debezium
connector to use, as shown in Example 9-22.

https://oreil.ly/XTQQp

Example 9-22. Debezium source connector definition
{
 "name": "customer-connector",
 "config": {
 "connector.class":
"io.debezium.connector.postgresql.PostgresConnector",
 "tasks.max": "1",
 "database.hostname": "postgres",
 "database.port": "5432",
 "database.user": "quarkus_test",
 "database.password": "quarkus_test",
 "database.dbname": "quarkus_test",
 "database.server.name": "quarkus-db-server"
 }
}

The installation of the source connector will trigger the creation of Kafka
topics for the tables discovered by the connector. We can verify what topics
were created by running docker exec -ti kafka bin/kafka-
topics.sh --list --zookeeper zookeeper:2181.

Next we run an exec shell in the Kafka container to consume messages from
the topic for the customer database, quarkus-db-
server.public.customer (Example 9-23).

Example 9-23. Consume messages from Kafka
docker-compose exec kafka /kafka/bin/kafka-console-consumer.sh \
 --bootstrap-server kafka:9092 \
 --from-beginning \
 --property print.key=true \
 --topic quarkus-db-server.public.customer

Remove this setting to skip the initial four messages created when the
application started.

When Example 9-23 is done, create a new customer in a separate terminal
window, as shown in Example 9-24.

Example 9-24. Create a customer
curl -X POST -H "Content-Type:application/json"
http://localhost:8080/customer \

 -d '{"name" : "Harry Houdini"}'

In the terminal running Example 9-23, we see the JSON message created by
the connector (Example 9-25).

Example 9-25. CDC message from creating a customer
{
 "schema": {
 "type":"struct",
 "fields": [{
 "type":"int64",
 "optional":false,
 "field":"id"
 }],
 "optional":false,
 "name":"quarkus_db_server.public.customer.Key"
 },
 "payload": {
 "id":9
 }
}
{
 "schema": {
 // JSON defining the schema of the payload removed for brevity

 "optional": false,
 "name": "quarkus_db_server.public.customer.Envelope"
 },
 "payload": {
 "before": null,
 "after": {
 "id": 9,
 "name": "Harry Houdini"
 },
 "source": {
 "version": "1.5.0.Final",
 "connector": "postgresql",
 "name": "quarkus-db-server",
 "ts_ms": 1627865571265,
 "snapshot": "false",
 "db": "quarkus_test",
 "sequence": "[null,\"23870800\"]",
 "schema": "public",
 "table": "customer",
 "txId": 499,
 "lsn": 23871232,
 "xmin": null

 },
 "op": "c",
 "ts_ms": 1627865571454,
 "transaction": null
 }
}

The ID of the record created with the POST

Name of the created customer

Experiment with other HTTP commands, such as updating a customer
name, to compare the JSON received in the Kafka topic.

Summary
Data with reactive applications has been limited until recently, as there
weren’t reactive database clients available. With the introduction of Vert.x
client APIs for databases such as PostgreSQL, we can now create a reactive
application that is reactive for the entirety of the stack.

We don’t always want to utilize database client APIs directly. We like
simplified APIs such as that provided by Hibernate ORM. Hibernate
Reactive gives us such an ability, building on the maturity of Hibernate
ORM to add reactive-specific APIs.

Relational databases aren’t the only option either. We also have reactive
clients for Redis and MongoDB. With event-driven architecture, we want to
have the ability to create events from database interactions. This is where
CDC shines, with its ability to extract changes from database tables and
create change events to feed into Kafka.

We’ve now reached the end of Part III! We dove deeper into Quarkus and
saw that it unifies the imperative and reactive programming models,
offering greater flexibility for developers in choosing their application
stack. We then journeyed through Uni and Multi to learn about the
preferred reactive programming library in Quarkus, Mutiny. Continuing

with newer innovations in Quarkus, we explored RESTEasy Reactive to
develop JAX-RS resources in a completely nonblocking manner while still
providing the ability to block when needed, before finishing up with
reactive database clients with Hibernate Reactive and Redis.

In Part IV, we focus on typical patterns we need when developing reactive
applications, such as messaging with Kafka and AMQP. Then we delve into
aspects of the system’s underlying messaging to better appreciate the trade-
offs and their abilities. We take a look at communicating with external
services with HTTP clients, while still utilizing nonblocking I/O. Lastly,
though not necessarily an application pattern per se, we will look at
observability, as it is critical to understand and implement it for distributed
systems.

Part IV. Connecting the Dots

Chapter 10. Reactive
Messaging: The Connective
Tissue

In Part III, you saw many features to develop reactive applications with
Quarkus. But, as you remember from Part II, we don’t want to limit
ourselves to reactive applications; we want to build reactive systems. That’s
what we are going to do now.

Reactive systems use asynchronous message passing among their
components. However, while middleware and frameworks can sometimes
hide this message-passing aspect, we believe it’s far more efficient to make
it apparent. It not only helps you write event-driven code (on event x, do y),
but also helps decompose your application into a set of components
receiving and producing messages. Thus, Quarkus offers a message-driven
development model that is simple but powerful to consume, process, and
create messages. This chapter focuses on this model, how it relates to
Reactive Streams, and how it makes building message-driven and event-
driven applications straightforward.

From Reactive Applications to Reactive
Systems
When you talk to a Java developer about messaging, you can feel the
frustration. For years, JMS has been the de facto standard for messaging.
However, that API didn’t age well, and new messaging technologies such as
Kafka and Pulsar use concepts that do not work well with JMS. In addition,
JMS is a blocking API, which prevents us from implementing reactive
principles.

While Quarkus can use JMS, we are going to look at another approach
called Reactive Messaging. This MicroProfile specification builds reactive
and event-driven applications. Quarkus implements version 2.x of the
specification but also provides many extensions.

Applications using Reactive Messaging can send, consume, and process
messages in a protocol-agnostic way. For example, as you will see in
Chapter 11, you will be able to use Apache Kafka or AMQP or even
combine both. Reactive Messaging also provides a natural development
model for developers used to Contexts and Dependency Injection (CDI), a
standard dependency injection framework. Typically, you can summarize
Reactive Messaging to a couple of annotations. But before seeing it in
action, let’s describe a few concepts that it relies on.

Channels and Messages
When using Reactive Messaging, your applications and components
forming them interact using messages, represented with the
o r g.e c l i p s e.m i c r o p r o f i l e .
r e a c t i v e .m e s s a g i n g .M e s s a g e <T> class. A message is an envelope
that has a payload of type T. In addition, a message can have metadata and
provides acknowledgment methods to notify the framework of the
successful or failed processing of a message.

Messages transit on channels. You can picture channels as pipes. A channel
can be internal to an application or mapped, by a connector, to an external
message queue or topic (Figure 10-1).

Figure 10-1. Message-based application architecture

Your application reads from channels and writes to channels. You can split
your application into a set of components, with all of them reading and
writing to different channels. That’s it. Reactive Messaging binds
everything all together, and so constructs streams in which messages flow.

Producing Messages
Reactive Messaging provides multiple ways to produce messages, but let’s
start with the simplest and probably more natural one for developers
familiar with imperative programming: emitters. Emitter is an object that
is attached to a channel and emits messages to that channel. Example 10-1
illustrates the use of MutinyEmitter.

Example 10-1. Use an emitter to send messages
@Channel("my-channel")
MutinyEmitter<Person> personEmitter;

public Uni<Void> send(Person p) {
 return personEmitter.send(p);
}

1

To access an emitter, you just inject it in your CDI bean. The target channel
is indicated using the @Channel annotation.

TIP
There’s no need to use the @Inject annotation, as Quarkus detects the injection for
you.

In Example 10-1, we don’t produce a Message instance; we just send a
payload (Person), automatically wrapped into a message. Note that the
send method returns Uni<Void>. This Uni produces a null item when
the message processing completes successfully. Otherwise, it produces a
failure indicating why the processing failed.

An emitter can also send an instance of Message directly, as shown in
Example 10-2.

Example 10-2. Injection and use of an emitter
@Channel("my-second-channel")
MutinyEmitter<Person> messageEmitter;

public void sendMessage(Person p) {
 messageEmitter.send(
 Message.of(p,
 () -> {
 // Acknowledgment callback
 return
CompletableFuture.completedFuture(null);
 },
 failure -> {
 // Negative-acknowledgment callback
 return
CompletableFuture.completedFuture(null);
 })
);
}

When sending a Message, you can directly pass the acknowledgment
callbacks. We cover acknowledgment in “Acknowledgments”.

Emitters are convenient when you want to decide when to send a message.
They allow imperative code to emit messages that will be handled in a
reactive manner. For example, you can use an emitter in an HTTP endpoint
and send a message when you receive a request.

Another way to produce messages is with the @Outgoing annotation. It
instructs Reactive Messaging to send the output of the method to the
specified channel. Note that methods annotated with @Outgoing can’t be
called from your code; Reactive Messaging calls them for you. You may
wonder about the benefits. It looks a bit less flexible than emitters. But
there is a trick: @Outgoing allows producing streams (Multi) directly
(Example 10-3).

Example 10-3. Usage of @Outgoing
@Outgoing("my-channel")
Multi<Person> produceAStreamOfPersons() {
 return Multi.createFrom().items(
 new Person("Luke"),
 new Person("Leia"),
 new Person("Obiwan")
);
}

You can produce infinite streams every second, as demonstrated in
Example 10-4.

Example 10-4. Generate infinite streams by using @Outgoing
@Outgoing("ticks")
Multi<Long> ticks() {
 return Multi.createFrom().ticks()
 .every(Duration.ofSeconds(1))
 .onOverflow().drop();
}

When the application starts, Reactive Messaging connects all the elements
to the channels. Under the hood, it creates reactive streams (covered in
Chapter 5). So, your application is a set of reactive streams, enforcing the
backpressure protocol. The consumption rate is controlled by the
downstream subscribers. This is the reason we need onOverflow.drop

in the preceding example. Otherwise, if the downstream subscriber does not
consume fast enough, it would fail (you can’t apply backpressure in time).

As for Emitter, you can produce a stream of messages (Example 10-5).

Example 10-5. Produce a stream of messages by using @Outgoing
@Outgoing("my-channel")
Multi<Message<Person>> produceAStreamOfMessagesOfPersons() {
 return Multi.createFrom().items(
 Message.of(new Person("Luke")),
 Message.of(new Person("Leia")),
 Message.of(new Person("Obiwan"))
);
}

Here, our messages are just wrapping the payload. As we have seen in the
example, you can pass the acknowledgment callbacks.

Attentive readers may have observed a significant difference between the
emitter and the @Outgoing approaches. Reactive Messaging handles the
@Outgoing method completely (invoking it), so enforcing the
backpressure protocol is no problem. But with the emitter, Reactive
Messaging can’t. If your code uses an emitter to send messages faster than
the consumption rate, you may be in trouble!

Fortunately, to avoid this, you can configure an overflow strategy when
using an emitter. This strategy describes what happens when the
downstream does not consume fast enough. @OnOverflow offers six
strategies. The most common, demonstrated in Example 10-6, consists of
using a buffer.

Example 10-6. Usage of the @OnOverflow annotation
@Channel("channel")
@OnOverflow(value = OnOverflow.Strategy.BUFFER, bufferSize = 100)
MutinyEmitter<Person> emitterUsingABufferOnOverflow;

@Channel("channel")
@OnOverflow(value = OnOverflow.Strategy.UNBOUNDED_BUFFER)
MutinyEmitter<Person> emitterUsingAnUnboundedOnOverflow;

@Channel("channel")
@OnOverflow(value = OnOverflow.Strategy.DROP)

MutinyEmitter<Person> emitterDroppingMessageOnOverflow;

@Channel("channel")
@OnOverflow(value = OnOverflow.Strategy.LATEST)
MutinyEmitter<Person> emitterDroppingOlderMessagesOnOverflow;

@Channel("channel")
@OnOverflow(value = OnOverflow.Strategy.FAIL)
MutinyEmitter<Person> emitterSendingAFailureDownstreamOnOverflow;

@Channel("channel")
@OnOverflow(value = OnOverflow.Strategy.THROW_EXCEPTION)
MutinyEmitter<Person> emitterThrowingExceptionUpstreamOnOverflow;

The OnOverflow strategies are similar to those in Mutiny:

BUFFER, the default, uses a buffer to store the messages. The size
can be configured; the default is 256.

UNBOUNDED_BUFFER is like BUFFER but uses an unbounded
buffer. Be cautious when using this strategy as it can lead to
memory issues.

DROP and LATEST drop the newest and oldest message,
respectively.

FAIL sends a failure downstream. Remember, failures are terminal
for Reactive Streams. So, you can use the emitter after this.

THROW_EXCEPTION throws an exception upstream to the caller
of the send method. The caller can then react; for example, it
can’t wait until the downstream subscriber catches up.

Consuming Messages
Let’s have a look at the other side of the message pipe. To consume
messages, you can inject the stream by using the @Channel annotation, as
shown in Example 10-7.

Example 10-7. Inject a channel

@Channel("my-channel")
Multi<Person> streamOfPersons;

// ...

void init() {
 streamOfPersons
 .subscribe().with(
 person -> { /* ... */ },
 failure -> { /* ... */ }
);
}

As you can see, you must subscribe to the injected stream. Remember, if
you don’t subscribe, nothing will happen, and you won’t receive any
messages. Note that your code can inject multiple streams and consume
them.

You can also inject a stream of messages. In this case, you must
acknowledge the messages manually (Example 10-8).

Example 10-8. Inject a stream of messages
@Channel("my-channel")
Multi<Message<Person>> streamOfPersons;

// ...

void init() {
 streamOfPersons
 .subscribe().with(
 message -> {
 Person person = message.getPayload();
 try {
 // do something
 // acknowledge
 message.ack();
 } catch (Exception e) {
 message.nack(e);
 }
 },
 failure -> { /* ... */ }
);
}

Acknowledgment is automatically done for you when injecting a stream of
payloads. Messages give you more control on the acknowledgment, as well
as the possibility to reject a message by using nack. In addition, you can
access the message metadata. But, remember, with more power comes
greater responsibility.

The @Channel injection is convenient when you want to access the stream
directly or when you want to control the subscription.

Reactive Messaging also offers a more declarative way to consume
messages: the @Incoming annotation. This annotation is the opposite of
@Outgoing. Reactive Messaging invokes the annotated method for each
message transiting on the specified channel (Example 10-9).

Example 10-9. An example of a method using @Incoming
@Incoming("my-channel")
void consume(Person person) {
 // ...
}

Example 10-9 provides a convenient way to process every incoming
Person. You don’t need to worry about acknowledgment; it’s done for
you. You can also receive Message, as demonstrated in Example 10-10.

Example 10-10. An example of a method using @Incoming and receiving
messages
@Incoming("my-channel")
CompletionStage<Void> consume(Message<Person> person) {
 // ...
 return person.ack();
}

In this case, as for @Channel injecting a stream of messages, you need to
handle the acknowledgment yourself. Remember: more control, but more
responsibility.

Processing Messages

Now that you have seen the two ends, let’s look at the middle of the
pipeline: processing. To process messages, you combine @Incoming and
@Outgoing, as shown in Example 10-11.

Example 10-11. Method using @Incoming and @Outgoing
@Incoming("from")
@Outgoing("to")
Person process(String name) {
 return new Person(name);
}

In this snippet, we read strings from the from channel. For each received
string, we create a Person instance that is sent to the to channel. This
method is synchronous and accepts an individual payload and returns an
individual payload. That’s not the only supported signature. Reactive
Messaging supports more than 30 signatures, allowing asynchronous
processing (such as returning Uni), or even stream processing (where you
receive and return Multis), see Example 10-12.

Example 10-12. Example of stream manipulation
@Incoming("from")
@Outgoing("to")
Multi<Person> processStream(Multi<String> inputStream) {
 return inputStream
 .onItem().transform(Person::new);
}

In addition to payloads, you can process messages. But as for the
consumption of messages, you need to be more attentive. Indeed, you often
need to chain messages, or link the incoming message with the one you
produce, as shown in Example 10-13.

Example 10-13. Process messages
@Incoming("from")
@Outgoing("to")
Message<Person> processMessage(Message<String> msg) {
 return msg.withPayload(new Person(msg.getPayload()));
}

In this snippet, look at the withPayload method. The Message
interface provides various with methods that link messages together. You

2

may wonder why it’s so important to link them. It’s all about
acknowledgment. You have seen this word a couple of times already, so it’s
time to explain what it means.

Acknowledgments
Acknowledgment is an essential aspect of any messaging system. When you
use a message broker, the consumers, receiving and processing messages,
must indicate to the broker when the message processing completes
(successfully or not). Then the broker can decide to dispatch the next
message, or to redeliver the same one if the processing failed. While the
broker strategy is dependent on the broker itself, acknowledgment is a well-
known concept that most messaging protocols use one way or another.

In Reactive Messaging, each message must be acked (acknowledged
successfully) or nacked (acknowledged negatively, or not acked). The
Message interface offers the ack and nack methods to indicate the
successful or failed processing of the message, respectively. Both methods
are asynchronous and return CompletionStage<Void>. Indeed, when
using a remote broker, acknowledging a message means telling the broker
whether the message has been processed successfully. You will see in
Chapter 11 how these acknowledgments are integrated with Apache Kafka
and AMQP 1.0.

When using individual payloads, Reactive Messaging handles the
acknowledgment (positive or negative) for you. However, when you receive
messages, you need to call these methods or produce a message that is
linked to the incoming one. This link is essential. When the downstream
consumer receives your message and acknowledges it, that consumer also
acknowledges the linked message. These links form a chain of messages,
and acknowledgments go up the chain until they reach the top (generally, a
message produced by an emitter or from an external destination).

As depicted on Figure 10-2, the chain allows indicating the outcome of the
processing, even when the processing is composed of several steps,
potentially asynchronous ones.

Figure 10-2. Acknowledgment chain

Let’s consider an example to illustrate the behavior. Imagine receiving a
message from a broker, transforming the content, and then sending this
message to a remote service. For each message from the broker, this process
creates a chain:

[(a) message from broker] -> [(b) message with the transformed
content]

When everything is fine, the framework acknowledges the message (b),
which acknowledges the message (a). The successful acknowledgment
logic of the message is executed. However, if interacting with the remote
service fails, it calls the nack method on the message (b), which also
calls nack on the message (a). And so, it executes the negative
acknowledgment logic attached to the message (a).

In more advanced scenarios, this chain can be too rigid, and you’ll want
more control. Typically, you may want to decide when to acknowledge a
specific message, or decide to acknowledge before the processing instead of
after. When using Message, you have full control and can decide to
deliberately not chain messages or wait for a certain condition to
acknowledge. For example, when producing multiple messages from a
single one, you would acknowledge the message when all the produced
messages have been acknowledged. Regardless of the use case, when using
Message, don’t forget to call ack or nack. Alternatively, you can use the
@Acknowledgment annotation to decide where to split the chain in a
more declarative manner.

Acknowledgment is essential, and with Reactive Messaging, all messages
must be either acked or nacked. It’s vital to implement the elasticity and
resilience patterns from reactive systems. But how do we connect the
applications and message brokers? That’s what you are going to see in the
next section.

Connectors
Connectors are specific components that map a channel to something
managed externally, such as a queue or a topic. They are specific to a
particular protocol or technology. There are two kinds of connectors:

Inbound connectors

These receive messages and feed the channels. They must enforce the
Reactive Streams backpressure protocol and create messages with the
appropriate ack and nack logic.

Outbound connectors

These receive messages from within the application and send them to
external destinations. So they map internal messages to the external
format and track the outcome to call the ack or nack method on the
incoming messages.

Quarkus offers multiple connectors. Chapter 11 covers the Kafka and
AMQP connectors in detail. The HTTP connector allows binding HTTP
and WebSockets with your message processing. The Camel connector
allows integrating legacy systems. In your application configuration, you
need to specify a connector used for each channel mapped to an external
destination.

Building Message-Based Applications
Enough talking; it’s time to see Reactive Messaging in action. This example
is located in the chapter-10/hello-messaging directory. To use Reactive

Messaging, you need to have a dependency on quarkus-smallrye-
reactive-messaging in your pom.xml file; see Example 10-14.

Example 10-14. Dependency for the Reactive Messaging extension
(chapter-10/hello-messaging/pom.xml)
<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-smallrye-reactive-messaging</artifactId>
</dependency>

As you will see in the next chapter, you will also need to add dependencies
for the connectors. However, in this chapter, we won’t use connectors.

A Reactive Messaging application includes beans containing methods
annotated with @Incoming and @Outgoing. Example 10-15 contains a
single bean with three methods.

Example 10-15. Hello messaging application (chapter-10/hello-
messaging/src/main/java/org/acme/HelloMessaging.java)
package org.acme;

import io.smallrye.mutiny.Multi;
import org.eclipse.microprofile.reactive.messaging.Incoming;
import org.eclipse.microprofile.reactive.messaging.Outgoing;

import javax.enterprise.context.ApplicationScoped;
import java.time.Duration;

@ApplicationScoped
public class HelloMessaging {

 @Outgoing("ticks")
 public Multi<Long> ticks() {
 return Multi.createFrom().ticks()
 .every(Duration.ofSeconds(1))
 .onOverflow().drop();
 }

 @Incoming("ticks")
 @Outgoing("hello")
 public String hello(long tick) {
 return "Hello - " + tick;
 }

 @Incoming("hello")
 public void print(String msg) {
 System.out.println(msg);
 }

}

The methods form a processing pipeline. The first method, ticks,
generates messages on the ticks channel. The method returns a Multi
emitting a number every second. This number is wrapped into a simple
message automatically. Then, the method hello consumes these ticks and
produces a String, sent to the hello channel. Finally, the print
method receives these messages and displays them on the console. We get
the pipeline in Example 10-16.

Example 10-16. The processing pipeline
ticks() ---> [ticks] ---> hello() ----> [hello] ----> print()

If you go into the chapter-10/hello-messaging directory and run mvn
quarkus:dev, you will see Example 10-17.

Example 10-17. Hello messages
Hello - 1
Hello - 2
Hello - 3

As you can see, building a message-processing pipeline is pretty
straightforward. Beneath the hood, Reactive Messaging creates a reactive
stream and creates the acknowledgment chain. That’s what we are going to
illustrate in the next section.

Message and Acknowledgment
To better understand the message chain, let’s look at the chapter-
10/messages-example directory. In this module, we create a specific
implementation of Message (MyMessage), which displays on the
console when a message is acked or nacked (Example 10-18).

Example 10-18. An implementation of Message (chapter-10/messages-
example/src/main/java/org/acme/MyMessage.java)

public class MyMessage implements Message<String> {

 private final String payload;

 public MyMessage(String payload) {
 this.payload = payload;
 }

 public MyMessage(long l) {
 this(Long.toString(l));
 }

 @Override
 public String getPayload() {
 return payload;
 }

 @Override
 public Supplier<CompletionStage<Void>> getAck() {
 return () -> {
 System.out.println("Acknowledgment for " + payload);
 return CompletableFuture.completedFuture(null);
 };
 }

 @Override
 public Function<Throwable, CompletionStage<Void>> getNack() {
 return reason -> {
 System.out.println("Negative acknowledgment for "
 + payload + ", the reason is " + reason);
 return CompletableFuture.completedFuture(null);
 };
 }
}

The application itself, shown in Example 10-19, is similar to the one from
the previous section. We generate a message every second, but this time, it’s
an instance of MyMessage instead of a payload automatically wrapped
into a message. The hello method receives these messages and creates a
new one with a different payload. The print method is unchanged.

Example 10-19. Usage of messages (chapter-10/messages-
example/src/main/java/org/acme/MessageExample.java)
@Outgoing("ticks")
public Multi<MyMessage> ticks() {

 return Multi.createFrom().ticks().every(Duration.ofSeconds(1))
 .onOverflow().drop()
 .onItem().transform(MyMessage::new);
}

@Incoming("ticks")
@Outgoing("hello")
public Message<String> hello(Message<String> tick) {
 return tick.withPayload("Hello " + tick.getPayload());
}

@Incoming("hello")
public void print(String msg) {
 System.out.println(msg);
}

Look at the hello method. It returns a new message built from the
receiving one. The with methods link the two messages to form the chain.
When the returned message is acknowledged, the received message is also
acknowledged.

If you run mvn quarkus:dev from the chapter-10/messages-example
directory, you should see this:

Hello 1
Acknowledgment for 1
Hello 2
Acknowledgment for 2
Hello 3
Acknowledgment for 3

When the print method invocation completes for a specific message, it
acknowledges this message (created in the hello method), which also
acknowledges the one emitted by the tick method. That’s why you can
see “Acknowledgment for …” on the console.

Failures and Negative Acknowledgment
Message processing may fail, and in this case, we expect the failing
message to be nacked. To illustrate this, let’s update the code to throw an
exception when it processes the third message, as shown in Example 10-20.

Example 10-20. Throwing an exception acknowledges the message
negatively
@Incoming("hello")
public void print(String msg) {
 if (msg.contains("3")) {
 throw new IllegalArgumentException("boom");
 }
 System.out.println(msg);
}

Restart the application. Now the third message is nacked:

Hello 0
Acknowledgment for 0
Hello 1
Acknowledgment for 1
Hello 2
Acknowledgment for 2
2021-05-14 14:49:54,052 ERROR [io.sma.rea.mes.provider]
(executor-thread-1) SRMSG00200:
The method HelloMessaging#print has thrown an exception:
java.lang.IllegalArgumentException: boom
 at HelloMessaging.print(HelloMessaging.java:28)
 //
Negative acknowledgment for 3,
the reason is java.lang.IllegalArgumentException: boom
Hello 4
Acknowledgment for 4

Throwing an exception calls the nack method on the message and goes up
the chain to call nack on the MyMessage instance.

In this example, our ack and nack implementations are simplistic. But
they demonstrate how ack and nack can notify a message broker about
the processing outcome.

Stream Manipulation
Manipulating messages one by one is straightforward, but sometimes we
need to do more complicated processing. To achieve this, Reactive
Messaging allows manipulating the stream of messages directly. Instead of

an individual message or payload, the method receives a Multi and
produces another Multi (Example 10-21).

Example 10-21. Stream manipulation with Reactive Messaging (chapter-
10/stream-example/src/main/java/org/acme/StreamingExample.java)
@ApplicationScoped
public class StreamingExample {

 @Outgoing("ticks")
 public Multi<Long> ticks() {
 return
Multi.createFrom().ticks().every(Duration.ofSeconds(1))
 .onOverflow().drop();
 }

 @Incoming("ticks")
 @Outgoing("groups")
 public Multi<List<String>> group(Multi<Long> stream) {
 // Group the incoming messages into groups of 5.
 return stream
 .onItem().transform(l -> Long.toString(l))
 .group().intoLists().of(5);
 }

 @Incoming("groups")
 @Outgoing("hello")
 public String processGroup(List<String> list) {
 return "Hello " + String.join(",", list);
 }

 @Incoming("hello")
 public void print(String msg) {
 System.out.println(msg);
 }

}

You can find the complete code in the chapter-10/stream-example directory.
The method group takes the stream of ticks as input and groups the items
into lists of five elements. The processGroup method takes each group
and processes them:

Hello 0,1,2,3,4
Hello 5,6,7,8,9
Hello 10,11,12,13,14
...

Although this example uses just the group operator, you can use the whole
Mutiny API to orchestrate asynchronous calls, skip messages, handle failure
recovery, or apply complex manipulations.

Blocking Processing
Reactive Messaging implements the reactive principles. It avoids blocking
the caller thread, but sometimes it’s not possible to do otherwise. Imagine
lengthy processing or using a blocking API.

When facing such a situation, you can use the @Blocking annotation,
which automatically switches the processing to a worker thread and then
switches back to the I/O thread (see Example 10-22).

Example 10-22. Annotate methods with @Blocking (chapter-10/blocking-
example/src/main/java/org/acme/BlockingExample.java)
@Incoming("ticks")
@Outgoing("hello")
@Blocking
public String hello(long tick) {
 // Simulate a long operation
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 }
 return "Hello - " + tick;
}

In the blocking-example directory, you can find a modified version of our
simple pipeline simulating a long operation in the hello method. Using
Thread.sleep is blocking, so it cannot be executed on the I/O thread.
Fortunately, thanks to the @Blocking annotation, that method is invoked
on a worker thread. The @Blocking annotation is particularly interesting

when integrating with blocking APIs. However, please don’t abuse it, as it
reduces the concurrency of your application.

Retrying Processing
Intermittent failures happen. Network disruptions or temporary
unavailability are part of the life of any distributed system.

To handle this case, you can use the Mutiny API and use
onFailure.retry, but you can also use the SmallRye Fault-Tolerance
and its @Retry annotation. First, you need to declare a dependency on
Fault-Tolerance, as shown in Example 10-23.

Example 10-23. Dependency for the fault-tolerance support (chapter-
10/fault-tolerance-example/pom.xml)
<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-smallrye-fault-tolerance</artifactId>
</dependency>

Then, you can use the @Retry annotation that automatically catches
exceptions and retries the invocation. In chapter-10/fault-tolerance-
example, you can see the code in Example 10-24.

Example 10-24. Retry the processing of messages (chapter-10/fault-
tolerance-example/src/main/java/org/acme/FaultToleranceExample.java)
@Incoming("ticks")
@Outgoing("hello")
@Retry(maxRetries = 10, delay = 1, delayUnit = ChronoUnit.SECONDS)
public String hello(long tick) {
 maybeFaulty(); // Randomly throws an exception
 return "Hello - " + tick;
}

The maybeFaulty method throws exceptions randomly. So the @Retry
annotation is used to retry the processing of the message, hoping for a better
outcome. Remember, don’t retry if your processing is not idempotent! It can
have terrible consequences. It might be better to store the faulty messages
on a dead-letter queue (this is covered in the next chapter).

Putting Everything Together
The last few sections have demonstrated some features offered by Reactive
Messaging. These examples are simplistic on purpose. Let’s now work on a
more realistic pipeline where we receive HTTP requests, manipulate the
body, and write it into a database. We will use RESTEasy Reactive and
Hibernate Reactive, which we have seen in Chapters 8 and 9. While the
application could be perfectly implemented without Reactive Messaging,
we use it to illustrate how to build more complex pipelines.

The code of this application is in the chapter-10/database-example
directory. Four classes compose the application. First, the Person class is
a Hibernate Reactive Panache entity. This entity contains two fields: the
name (unique) and the age. In this application, the user posts Person
instances (sent as JSON), which are sent to the Reactive Messaging pipeline
(as illustrated in Example 10-25).

Example 10-25. The Person structure (chapter-10/database-
example/src/main/java/org/acme/Person.java)
package org.acme;

import io.quarkus.hibernate.reactive.panache.PanacheEntity;

import javax.persistence.Column;
import javax.persistence.Entity;

@Entity
public class Person extends PanacheEntity {

 @Column(unique = true)
 public String name;

 public int age;

}

The HTTPEndpoint class uses an emitter to send the received Person
instances to the upload channel. In addition, this class has two methods.
The upload method receives the Person sent by the user and emits it.
The getAll method returns the list of the stored Person instances from

the database. In Example 10-26, we use this method to verify that
everything works as expected. The upload method returns
Uni<Response>. It creates the HTTP response asynchronously when the
emitted message is acknowledged positively (then it returns a 202 -
Accepted response), or negatively (then it returns a 400 - Bad
Request response with the error message). So, when the processing is
successful, the user receives its response after the insertion in the database
completes.

Example 10-26. The HTTP endpoint (chapter-10/database-
example/src/main/java/org/acme/HttpEndpoint.java)
package org.acme;

import io.smallrye.mutiny.Uni;
import io.smallrye.reactive.messaging.MutinyEmitter;
import org.eclipse.microprofile.reactive.messaging.Channel;

import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.Path;
import javax.ws.rs.core.Response;
import java.util.List;

@Path("/")
public class HttpEndpoint {

 @Channel("upload")
 MutinyEmitter<Person> emitter;

 @POST
 public Uni<Response> upload(Person person) {
 return emitter.send(person)
 .replaceWith(Response.accepted().build())
 .onFailure()
 .recoverWithItem(t ->

Response.status(Response.Status.BAD_REQUEST)
 .entity(t.getMessage()).build());
 }

 @GET
 public Uni<List<Person>> getAll() {
 return Person.listAll();
 }

}

The Processing bean receives the uploaded Person instances and
validates and formats the input (Example 10-27).

Example 10-27. Process Person instances (chapter-10/database-
example/src/main/java/org/acme/Processing.java)
package org.acme;

import org.eclipse.microprofile.reactive.messaging.Incoming;
import org.eclipse.microprofile.reactive.messaging.Outgoing;

import javax.enterprise.context.ApplicationScoped;

@ApplicationScoped
public class Processing {

 @Incoming("upload")
 @Outgoing("database")
 public Person validate(Person person) {
 if (person.age <= 0) {
 throw new IllegalArgumentException("Invalid age");
 }

 person.name = capitalize(person.name);

 return person;
 }

 public static String capitalize(String name) {
 char[] chars = name.toLowerCase().toCharArray();
 boolean found = false;
 for (int i = 0; i < chars.length; i++) {
 if (!found && Character.isLetter(chars[i])) {
 chars[i] = Character.toUpperCase(chars[i]);
 found = true;
 } else if (Character.isWhitespace(chars[i])) {
 found = false;
 }
 }
 return String.valueOf(chars);
 }

}

It forwards the result to the database channel. The Database class
reads this channel and writes the received Person to the database. To
achieve this, we use the withTransaction and persist methods
offered by Panache, as shown in Example 10-28.

Example 10-28. Persist the entities in the database (chapter-10/database-
example/src/main/java/org/acme/Database.java)
package org.acme;

import io.quarkus.hibernate.reactive.panache.Panache;
import io.smallrye.mutiny.Uni;
import org.eclipse.microprofile.reactive.messaging.Incoming;

import javax.enterprise.context.ApplicationScoped;

@ApplicationScoped
public class Database {

 @Incoming("database")
 public Uni<Void> write(Person person) {
 return Panache.withTransaction(person::persist)
 .replaceWithVoid();
 }

}

This pipeline only passes payloads. So, when the last step completes, it
acknowledges the message, which, going through the chain of messages,
notifies the emitter.

Run the application with mvn quarkus:dev from the chapter-
10/database-example directory. No need to provision a database; Quarkus
starts a test database for you. Then, in a terminal, send a Person instance
by using Example 10-29.

Example 10-29. Upload a new person
> curl -v --header "Content-Type: application/json" \
 POST --data '{"name":"Luke", "age":19}' \
 http://localhost:8080

You should get a 202 - Accepted response. If you try to send an
invalid payload, as shown in Example 10-30, you will get a 400 response.

Example 10-30. Upload an invalid person
> curl -v --header "Content-Type: application/json" \
 POST --data '{"name":"Leia"}' \
 http://localhost:8080

You can use curl to check the stored instances.

Summary
In addition to having a reactive engine and providing asynchronous and
nonblocking ways to deal with HTTP and databases, Quarkus comes with a
message-based model called Reactive Messaging.

Remember:

Reactive Messaging allows receiving, processing, and consuming
messages transiting on channels.

The channel can be internal to the application, as you have seen in
this chapter, or mapped to external destinations, as you will see in
the next chapter.

Reactive Messaging supports positive and negative
acknowledgment. You can decide the amount of control you need.

Reactive Messaging allows handling messages individually or
supports the Mutiny API to implement more complex
transformations.

In the next chapter, we will look at two connectors that will allow
interacting with Apache Kafka and AMQP to build reactive systems.

1 In this book, we use MutinyEmitter, but you can use plain Emitter instead, providing a
slightly different API.

2 You can find the list of supported signatures on GitHub.

https://oreil.ly/hewBO

Chapter 11. The Event Bus: The
Backbone

In Chapter 10, we discussed Reactive Messaging and utilizing its
annotations to produce, consume, and process messages, as well as to
bridge imperative and reactive programming. This chapter dives deeper into
the backbone of a reactive system built with Reactive Messaging, focusing
on Apache Kafka and Advanced Message Queuing Protocol (AMQP).

Kafka or AMQP: Picking the Right Tool
Plenty of messaging solutions let you implement event-driven architecture,
event streaming, and reactive systems in general. Recently, Apache Kafka
became a prominent player in this space. AMQP is another approach for
messaging that should not be immediately ruled out. Both have pros and
cons. Your choice depends entirely on your use cases, and to a lesser extent
the existing skills and experience of a team.

Rather than favoring one event bus over another, this section details the
characteristics and behaviors of each, along with their relative strengths and
weaknesses. We want to provide you sufficient information about each
system, enabling you to determine how they may fit into the use cases for a
particular system.

At a high level, Kafka can be described as smart consumers with a dumb
broker, while AMQP has a smart broker but dumb consumers. Sometimes
the choice comes down to the amount of flexibility needed when
implementing a solution.

Sure it’s cliché, but there really is no one-size-fits-all event bus. Each
situation has specific requirements and use cases to be fulfilled, requiring
careful evaluation of the pros and cons of each. Note that other messaging

1

solutions might be better for your use case, such as the Solace PubSub+
Platform, Microsoft Azure Event Hubs, RabbitMQ, or NATS.

Building Reactive Systems with Kafka
Since 2011, when Apache Kafka was open sourced by LinkedIn, it has
skyrocketed to becoming one of the most prominent actors in the event-
driven space. Fueled by the rise of microservices, serverless architecture,
and distributed systems in general, Kafka is a popular choice for developers
needing a messaging backbone.

While Chapter 10 already gave examples of using Kafka, we didn’t explain
the important details of how it works underneath, which are necessary to
understand it well. This chapter dives a bit deeper and explains how to use
Kafka as the connective tissue in a reactive system. We don’t intend to
cover Kafka in full detail, but enough to appreciate how Kafka operates to
effectively develop a reactive system. First off, we need to cover the basics
of Kafka.

Apache Kafka
Kafka is a powerful distributed commit log, and if you’re a developer,
you’re probably familiar with another distributed commit log, Git! When
communicating with Kafka, we use a record, or event, as the piece of
information we want written to the log, and which we then read from the
log later. The log contains a topic for each record grouping we want to track
(Figure 11-1).

https://solace.com/
https://oreil.ly/eXz0E
https://rabbitmq.com/
https://nats.io/

Figure 11-1. Kafka topic

A record can hold only four pieces of information:

Key

Assigned by Kafka when writing a record into the log, but can also be
used in partitioning, which we cover later

Value

The actual value, or payload, we want to be stored in the log for
retrieval by consumers

Timestamp

Optionally set when we create the record, or set by Kafka when the
record is written to the log

Headers

Optional metadata about the record to provide extra information to
Kafka, or for downstream consumers to utilize

Figure 11-2 outlines the process of interacting with the log.

Figure 11-2. Producing and consuming records

With a record created, we write it to the log in Kafka with a producer. We
can have one or many producer instances writing the same type of record to
the log, because the way we write records to the log is decoupled from the
way they’re consumed. Once a record is written to the log, we use a
consumer to read the record from the log and perform whatever processing
is needed with it.

When writing records to the log, a producer always appends. A producer
cannot insert or delete records. An append-only approach means Kafka can
offer high scalability for writes. Because there is no contention or locking
for existing records, every write is a new record.

Separation of producers and consumers is a key concept with Kafka. This
decoupling of time between when records are written to the log and
consumed from it is key for reactive systems. Granted, this is 100%
achievable only when the log retention policies are sufficiently long enough
to prevent any produced records from being removed before they’re

consumed! We don’t want to log all the records and have them deleted by
Kafka before we consume them years later.

In Chapter 10, you saw how to produce messages with @Outgoing. Let’s
modify that example slightly to also set a key for the record, as shown in
Example 11-1.

Example 11-1. Configure the Kafka outgoing metadata
@Outgoing("my-channel")
Multi<Message<Person>> produceAStreamOfMessagesOfPersons() {
 return Multi.createFrom().items(
 Message.of(new Person("Luke"))
 .addMetadata(OutgoingKafkaRecordMetadata.builder()
 .withKey("light").build()),
 Message.of(new Person("Leia"))
 .addMetadata(OutgoingKafkaRecordMetadata.builder()
 .withKey("light").build()),
 Message.of(new Person("Obiwan"))
 .addMetadata(OutgoingKafkaRecordMetadata.builder()
 .withKey("light").build()),
 Message.of(new Person("Palpatine"))
 .addMetadata(OutgoingKafkaRecordMetadata.builder()
 .withKey("dark").build())
);
}

Here we have a key to indicate whether the person is part of the light or
dark side of the force. To switch to producing the message to Kafka, we
need to make two changes. First, modify pom.xml to include the SmallRye
Reactive Messaging for Kafka dependency (Example 11-2).

Example 11-2. Kafka connector dependency
(/Users/clement/Documents/book/code-repository/chapter-
11/processor/pom.xml)
<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-smallrye-reactive-messaging-
kafka</artifactId>
</dependency>

Lastly, configure the dependency, as shown in Example 11-3.

Example 11-3. Configure the Kafka connector to write records (chapter-
11/processor/src/main/resources/application.properties)
mp.messaging.outgoing.my-channel.connector=smallrye-kafka
mp.messaging.outgoing.my-channel.topic=starwars
mp.messaging.outgoing.my-channel.value.serializer=\
 org.apache.kafka.common.serialization.StringSerializer

The configuration indicates the connector we’re using, smallrye-
kafka, the name of the topic the channel should be writing to, and the
serializer for converting the payload content. If the topic being written to
matches the name of the channel, we would not need the topic
configuration, as the channel name is the default.

On the consuming side, we can read the key with Example 11-4.

Example 11-4. Extract the incoming Kafka metadata
@Incoming("my-channel")
CompletionStage<Void> consume(Message<Person> person) {
 String msgKey = (String) person
 .getMetadata(IncomingKafkaRecordMetadata.class).get()
 .getKey();
 // ...
 return person.ack();
}

We also need similar configuration as outgoing for us to use Kafka; see
Example 11-5.

Example 11-5. Configure the Kafka connector to poll records (chapter-
11/processor/src/main/resources/application.properties)
mp.messaging.incoming.my-channel.connector=smallrye-kafka
mp.messaging.incoming.my-channel.topic=starwars
mp.messaging.incoming.my-channel.value.deserializer=\
 org.apache.kafka.common.serialization.StringDeserializer

So far, we’ve been generically referring to write records to and consume
records from a log. As you have seen in Figure 11-1, a topic is a log, a
means of organizing and durably storing records. This log is for a specific
type of record, or group of records, enabling us to customize the behavior
specifically to the needs of those records. For instance, if the records are of
extremely high volume and not meaningful to the application for longer

than a week, we could change the retention policy for one topic to retain
records for only that period of time, even if they haven’t been consumed.
We could also have another topic that has records retained for six months or
even indefinitely.

Also in Figure 11-1 you can see each record as a box with a number; this
represents the offset, or index, of where a record is written in a topic. In this
instance, six records have already been written, and a producer is about to
write the seventh, which is offset 6. We also see a consumer reading the
record at offset 0, the first record in the topic. Though the default is for a
new consumer to begin reading records from the first offset, we could
decide to start at any offset we wanted.

Another way to consider a topic is as a virtual address representing an
external destination. When a producer writes a record to a topic, it has no
knowledge of when, if, or even where the record will be read by a
consumer. Use of a virtual address, or topic, provides the means of
decoupling our reactive system components from one another in space and
time.

A consumer can be combined with others to form a consumer group. Any
consumer created with the same consumer group name, or identifier, will be
placed in the same consumer group. When creating a consumer without
setting a consumer group identifier, we end up with a consumer group
containing a single consumer by default.

So far, what we’ve described implies a topic with a single log of records. A
partition is how we improve the problems associated with a single-log
approach. Partitions are useful for improving the read and write
performance of a topic, as we split a single topic into multiple partitions.

Instead of a single partition with a single consumer, we could have three
partitions with a separate consumer reading records from each of them.
Looking at this situation unscientifically, we could expect there to be three
times the amount of throughput with three partitions and three consumers,
as opposed to a single partition and consumer.

Though we mentioned three consumers for three partitions, in Figure 11-3
we have two consumers within a single consumer group. One consumer is
assigned to read records from two partitions, to ensure that all partitions
have consumers. We’ve now improved our throughput by partitioning the
topic, enabling multiple consumers to consume records.

Figure 11-3. Topic partitions

In the situation shown in Figure 11-3, a producer can write a record to the
topic, leaving the broker to decide which partition the record is actually
written to. Alternatively, the producer can explicitly define the partition that
a record should be written to. If records have a key unique to the record’s
contents, such as username for a Person record, it can be efficient to
determine the appropriate partition with the Kafka key-hashing algorithm. It
will ensure that all records with an identical key are written to the same
partition. We need to be careful, though, to ensure that any key is
reasonably distributed. Otherwise, we risk creating a hot partition (for
example, partitioning by country may see trillions of records placed in a
USA partition, but only a few thousand records in the Andorra partition).

Right now we have an issue with resiliency because all our partitions are on
the same broker instance. In Figure 11-4, we’ve replicated the topic across
three partitions.

Figure 11-4. Topic partition replication

To support resiliency and ensure that consumers don’t read the same record
in a partition from different brokers, a leader partition is elected for
consumers to read from. Partition 0 in the first broker, Partition 1 in the
second, and Partition 2 in the third broker are the leader partitions in this
example.

With the design we have in Figure 11-4, Kafka ensures that our consumers
cannot read a record from a partition before it has been successfully
replicated. It does this by tracking the high watermark offset, the offset of
the last message successfully replicated across all partitions. The broker
prevents consumers from reading beyond the high watermark offset,
stopping unreplicated records from being read.

Point-to-Point Communication
Kafka is not a traditional messaging system. It can be confusing to
implement the standard delivery patterns with it.

With point-to-point communication, we want the same message to be
consumed once, by the same consumer or by any other consumer within the
same consumer group. Note that when facing network failures, you cannot
guarantee that records are consumed only once per consumer group. You
need to be prepared to see duplicated messages.

We use consumer groups to scale a consumer in Kafka to perform identical
processing with greater throughput. In Figure 11-5, only one consumer
within the group is able to read records from a single topic partition,
conforming to the needs of point-to-point communication. Here we see
Consumer 2 unable to read records because it’s part of the same consumer
group as Consumer 1, effectively making Consumer 2 idle, as we have only
one partition in this situation.

Figure 11-5. Consumer groups

Why can’t we have two consumers in the same group reading from the
same partition? Kafka tracks the last committed offset per partition for a
given consumer group and uses the offset for restarting processing.
However, consumers don’t commit the offset until they’ve completely
finished processing a record. This creates a window where multiple
consumers in the same group could read the same record, thus duplicating
the processing of a message.

When a new consumer subscribes to a consumer group, and Kafka does not
know the last committed offset for the partition, there are two strategies.
The strategies are Earliest, where the consumer starts reading events from
the first offset of the partition, and Latest, which consumes only events
received after the consumer subscribed.

Publish/Subscribe
Point-to-point ensures that messages are consumed once. Another popular
pattern dispatches a message to multiple consumers. With a
publish/subscribe model, we can have many subscribers, or consumers,
reading the same message, usually for different purposes.

Figure 11-6 has two consumer groups consuming messages from the same
topic. One consumer group has three consumers, while the other has two
consumers. We see each partition being read by only a single consumer
from the same consumer group, but multiple consumers across consumer
groups. Though the two consumer groups are connected to the same topic
and its partitions, there is no requirement for each consumer to be at the
same offset. Such a requirement would remove the benefits of being able to
consume records with different groups.

Figure 11-6. Multiple consumer groups

Elasticity Patterns
Elasticity is one of the pillars of reactive systems. The partition mechanism
offered by Kafka lets us implement elasticity patterns. Figure 11-6 also
highlights the elasticity patterns of consumer groups in Kafka. Consumer
group 1 has three consumers, each consuming from a different partition. If a
consumer fails for any reason, another consumer takes up the load of
reading from the partition that is now without a consumer. Consumer
elasticity ensures that all partitions are being consumed as long as at least
one consumer is present. Granted, such an occurrence does reduce the
throughput, but it is preferable over no records being consumed. Consumer
group 2 could represent such an occurrence.

Consumer group elasticity is limited, though. As we mentioned earlier, it is
not possible for multiple consumers within the same group to read from the
same partition. In Figure 11-6, with three partitions we’re limited to three
consumers within a single consumer group. Any additional consumers in
the same group would be idle, as we cannot have multiple consumers in the
same group connected to the same partition.

Elasticity is a key factor to consider when determining the number of
partitions we want for a topic. With too few, we limit the throughput for
processing records, while too many can lead to idle consumers if the
records are not distributed across the partitions sufficiently evenly.

Dealing with Failures
Failures happen! It’s the nature of distributed systems, and not one we can
avoid even when developing reactive systems. However, Kafka provides us
with mechanisms for appropriately dealing with failure.

Commit strategies
Each consumer periodically informs the broker of its latest offset commit.
The number represents the last message that was successfully processed
from a topic partition by the consumer. The offset commit then becomes the
starting point for the new consumer of the partition when the current
consumer fails or crashes.

Committing an offset is not a cheap operation. For performance reasons, we
recommend not committing the offset after every record processed. Quarkus
provides a few options for commit strategies to use with Kafka:

Throttled

Ignore

Latest

The Throttled strategy, the default option, tracks the received records for a
consumer and monitors their acknowledgment. When all records before a
position are successfully processed, that position is committed to the broker
as the new offset for that consumer group. If any record is neither acked nor
nacked, it’s no longer possible to commit a new offset position, and records
will be continually enqueued. Without the ability to bail out, it would lead
to out-of-memory errors eventually. The Throttled strategy can detect this
problem by reporting a failure to the connector, enabling the application to

be marked as unhealthy. Note that this situation is often an application bug
causing a message to be “forgotten.”

The Ignore strategy utilizes the default offset commit of the Kafka
consumer, which occurs periodically when polling for new records. This
strategy ignores message acknowledgment and relies on record processing
to be synchronous. This strategy is the default when
enabled.auto.commit=true is used. Any asynchronous processing
that fails will be unknown to the process that is polling for new records to
consume.

If we’ve set commit-strategy to ignore and
enable.auto.commit to false, as shown in Example 11-6, no offset
is ever committed. Every time a new consumer starts reading messages
from a topic, it will always start from offset 0. In some situations, this
approach is desired, but it needs to be a conscious choice.

Example 11-6. Configure the commit strategy
mp.messaging.incoming.my-channel.connector=smallrye-kafka
mp.messaging.incoming.my-channel.enable.auto.commit=false
mp.messaging.incoming.my-channel.commit-strategy=ignore

Latest will commit the offset after every message is acknowledged, which
as we described earlier will impact performance of the consumer. In lower-
throughput scenarios, this strategy may be preferable to have a higher
confidence that the offset is accurate.

Acknowledgment strategies
In “Acknowledgments”, you learned how Reactive Messaging utilizes ack
and nack to inform the upstream reactive streams of the record-processing
status. These acknowledgment methods are part of the failure-handling
strategies we have available for Kafka. The application configures the
Kafka connector with one of these strategies.

The simplest, and default, strategy is Fail Fast. When an application rejects
a message, the connector is notified of the failure, and the application is
stopped. If the failure is transient in origin, such as network issues,

restarting the application should allow processing to continue without an
issue. However, if a particular record causes a consumer failure, the
application will be in a perpetual loop of failure → stop → restart, as it will
be continually trying to process the record causing a failure.

Another simple strategy is Ignore. Any nacked message is logged and then
ignored as the consumer continues processing new records. The Ignore
strategy is beneficial when our application handles any failure internally,
and we thus don’t need to inform the message producer of a failure, or
when an ignored message occasionally is acceptable because of the type of
messages being processed. If, on the other hand, large numbers of messages
are being ignored, it is worth investigating the root cause as it’s likely not
an intended consequence.

The last strategy for failure handling is Dead-Letter Queue. It sends the
failing records to a specific topic to be handled later either automatically or
manually.

Dead-letter queue
This strategy has been a part of messaging systems for as long as messaging
systems have existed! Instead of failing straight away, or ignoring any
failures, this strategy stores the messages that fail to a separate destination,
or topic. Storing the failed messages enables an administration process,
human or automated, to determine the correct cause of action to resolve the
failed handling.

It’s important to note that the use of the Dead-Letter Queue strategy will
work only when ordering of all messages is unnecessary, as we don’t stop
processing new messages waiting for a message failure to be resolved off
the dead-letter queue (DLQ).

When choosing this strategy, the default topic is named dead-letter-
topic-[topic-name]. For our previous examples, it would be dead-
letter-topic-my-channel. It is possible to configure the topic
name as shown in Example 11-7.

Example 11-7. Configure the failure strategy to use a DLQ

mp.messaging.incoming.my-channel.failure-strategy=dead-letter-queue
mp.messaging.incoming.my-channel.dead-letter-queue.topic=my-dlq

We can even retrieve the failure reason associated with the message from
the dead-letter-reason header (Example 11-8).

Example 11-8. Retrieve the failure reason
@Incoming("my-dlq")
public CompletionStage<Void> dlq(Message<String> rejected) {
 IncomingKafkaRecordMetadata<String, String> metadata =
 rejected.getMetadata(IncomingKafkaRecordMetadata.class);
 String reason = new String(metadata.getHeaders()
 .lastHeader("dead-letter-reason").value());
}

Don’t forget that using a DLQ requires having another application or a
human operator to process the records sent to the DLQ. The records may be
reintroduced in the initial topic (but the order is lost) or dropped, or a
mitigation logic would need to happen.

Backpressure and Performance Considerations
There is no way to have a truly reactive system without appropriate
backpressure to avoid overloading components. So how do we handle
backpressure for Kafka?

The outbound connector for Kafka, used with @Outgoing or Emitter,
uses the number of in-flight messages waiting for acknowledgment from
the broker. In-flight messages are those the connector has sent to a Kafka
broker for writing to a topic, but for which the connector has not received
acknowledgment that the record was successfully stored.

We tweak the number of in-flight messages to adjust the backpressure of the
outbound Kafka connector. The default number of in-flight messages is
1,024. Too high a number can lead to higher memory use, potentially out-
of-memory errors depending on the payload size, while too few causes a
reduction in throughput. We can customize the number of in-flight
messages in the connector with the property max-inflight-
messages.

On the side of the consumer, Kafka will pause the consumer and then
resume it, according to the Reactive Streams requests. We’ve talked a lot
about Kafka, so in the next section we explore it in Kubernetes!

Kafka on Kubernetes
To use Kafka on Kubernetes, we need Kafka installed. We will use the
Strimzi project for installing Kafka. This project has an operator for
managing Kafka deployments in Kubernetes.

Before setting up Kafka in Kubernetes, we need a Kubernetes environment.
If you already have one, great! If you don’t, we recommend you use
minikube, as covered in “The New Kids on the Block: Cloud Native and
Kubernetes Native Applications”.

NOTE
Running Kafka in minikube can require more memory than usual deployments, so we
recommend starting it with at least 4 GB of RAM:

minikube start --memory=4096

With a Kubernetes environment running, we need to install Strimzi, as
shown in Example 11-9. Be sure to have Helm installed, as we will use it to
install Strimzi.

Example 11-9. Install Strimzi
kubectl create ns strimzi
kubectl create ns kafka

helm repo add strimzi https://strimzi.io/charts
helm install strimzi strimzi/strimzi-kafka-operator -n strimzi \
 --set watchNamespaces={kafka} --wait --timeout 300s

Create a strimzi namespace for the Kubernetes operator.

https://strimzi.io/
https://helm.sh/

Namespace for the Kafka cluster.

Add the Strimzi chart repository to Helm.

Install the Strimzi operator into the strimzi namespace.

Once the installation has succeeded, verify that the operator is running (as
illustrated in Example 11-10).

Example 11-10. Strimzi operator status
kubectl get pods -n strimzi
NAME READY STATUS
RESTARTS AGE
strimzi-cluster-operator-58fcdbfc8f-mjdxg 1/1 Running 0
46s

Now it’s time to create the Kafka cluster! First we need to define the cluster
we want to create, as shown in Example 11-11.

Example 11-11. Kafka cluster definition
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 replicas: 1
 listeners:
 - name: plain
 port: 9092
 type: internal
 tls: false
 - name: tls
 port: 9093
 type: internal
 tls: true
 config:
 offsets.topic.replication.factor: 1
 transaction.state.log.replication.factor: 1
 transaction.state.log.min.isr: 1
 storage:
 type: ephemeral
 zookeeper:

 replicas: 1
 storage:
 type: ephemeral
 entityOperator:
 topicOperator: {}
 userOperator: {}

Name of the cluster.

Number of Kafka replicas to create in the cluster. In production, we
would want more than one, but for testing this reduces the memory
requirements.

We choose ephemeral storage, again to reduce the requirements from a
testing perspective.

Now we use Example 11-11 to create a Kafka cluster matching the
requested definition, as shown in Example 11-12.

Example 11-12. Create a Kafka cluster
kubectl apply -f deploy/kafka/kafka-cluster.yaml -n kafka

Verify that the cluster we wanted was created (Example 11-13).

Example 11-13. Kafka cluster status
kubectl get pods -n kafka
NAME READY STATUS
RESTARTS AGE
my-cluster-entity-operator-765f64f4fd-2t8mk 3/3 Running 0
90s
my-cluster-kafka-0 1/1 Running 0
113s
my-cluster-zookeeper-0 1/1 Running 0
2m12s

With the cluster running, we create the Kafka topics we need (Example 11-
14).

Example 11-14. Create Kafka topics
kubectl apply -f deploy/kafka/ticks.yaml
kubectl apply -f deploy/kafka/processed.yaml

To show you how Kafka works with Kubernetes, we will use an example
that consists of three services: produce a tick every two seconds, receive the
message and add details of the consumer processing it, and expose all
messages via SSE. These three services will be used to showcase consumer
handling with Kafka. Follow the instructions in /chapter-11/README.md
under Application deployment for building the required Docker images and
installing the services with Helm.

Once the services are running, it’s time to test it! Open the SSE endpoint in
a browser, and you will see data similar to Example 11-15.

Example 11-15. SSE output: all the messages are consumed by the same
pod
data:1 consumed in pod (processor-d44564db5-48n97)
data:2 consumed in pod (processor-d44564db5-48n97)
data:3 consumed in pod (processor-d44564db5-48n97)
data:4 consumed in pod (processor-d44564db5-48n97)
data:5 consumed in pod (processor-d44564db5-48n97)

We can see all the ticks consumed by a single consumer, even though we
have three partitions for our topic. Let’s scale up processor to add more
consumers to the same group (Example 11-16).

Example 11-16. Increase the number of application instances
kubectl scale deployment/processor -n event-bus --replicas=3

In the browser, we now see the messages processed by three consumers of
the same group, increasing throughput and concurrency (Example 11-17).

Example 11-17. SSE output: the messages are consumed by the three pods
data:11 consumed in pod (processor-d44564db5-2cklg)
data:12 consumed in pod (processor-d44564db5-48n97)
data:13 consumed in pod (processor-d44564db5-s6rx9)
data:14 consumed in pod (processor-d44564db5-2cklg)
data:15 consumed in pod (processor-d44564db5-s6rx9)
data:16 consumed in pod (processor-d44564db5-48n97)
data:17 consumed in pod (processor-d44564db5-2cklg)

If we started another processor instance but without
mp.messaging.incoming.ticks.group. id=tick-

consumer set, we would see the duplication of message numbers from the
new consumer, as they have their own consumer group and offset position.

Building Reactive Systems with AMQP
Advanced Message Queuing Protocol, or AMQP, is an application layer
protocol for message-oriented middleware that has been around since 2002.
The AMQP Broker is a highly advanced message broker with a tremendous
amount of flexibility and customization dependent on application
requirements.

We don’t cover all the possible uses of the AMQP Broker here. With a huge
array of possible broker topologies to support many varied use cases, there
is simply too much information to even attempt to squeeze it all into this
section! Robert Godfrey on InfoQ presents the AMQP 1.0 core features and
introduces some possibilities.

Unlike Kafka, all the smarts are inside the AMQP Broker, which knows
about topologies, clients, message statuses, what is delivered, and what is
yet to be delivered.

AMQP 1.0
AMQP 1.0 is an open standard for passing business messages among
applications or organizations. It consists of several layers, the lowest of
which is a binary wire-level protocol for transferring a message between
two processes. On top of the wire-level protocol is the messaging layer,
which defines an abstract message format and encoding. The wire-level
protocol is what enables many clients of different types to be able to send
and receive messages with the AMQP Broker, as long as they support the
same 1.0 version of the AMQP specification.

Utilizing the AMQP 1.0 connector in Quarkus requires the dependency in
Example 11-18.

Example 11-18. Dependency for the AMQP connector

https://oreil.ly/xC0ar

<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-smallrye-reactive-messaging-
amqp</artifactId>
</dependency>

Point-to-Point Communication
With AMQP, point-to-point communication is achieved with a queue and
not a topic. In AMQP-speak a queue is referred to as anycast, meaning any
consumer can read the message, but only one of them (Figure 11-7).
Messages we add to a queue can be durable, as with Kafka, but they can
also be nondurable. When a message is nondurable, it will be lost if the
broker restarts before the message is consumed.

Figure 11-7. AMQP queue consumers

A key difference between Kafka and AMQP for point-to-point is that once a
message is read by a consumer in AMQP, the message is removed from the
queue and not retained in any way. AMQP temporarily stores messages
until they’ve been consumed, whereas Kafka retains all messages in the log,
at least until the log-retention policy begins removing older ones. This
makes AMQP unsuitable for use cases that could require a replay of
messages within the reactive system at some point.

We can also have many consumers reading messages from the same queue,
but the broker ensures that only one of them ever reads a single message.

AMQP does not have the same throughput restrictions as Kafka with
respect to scaling consumers. We can have dozens of consumers reading
from a single queue with AMQP, provided order is not important.

Let’s send a message to AMQP! After adding the dependency we
mentioned earlier (Example 11-18), we need to configure the broker
properties as shown in Example 11-19, so the connector knows the location
of the AMQP Broker.

Example 11-19. Configure the AMQP Broker location and credentials
amqp-host=amqp
amqp-port=5672
amqp-username=username
amqp-password=password

mp.messaging.outgoing.data.connector=smallrye-amqp

We’ve set the AMQP Broker configuration for host, port, username, and
password globally, meaning any channel we define will use the identical
AMQP Broker configuration. If desired, the configuration can be set on a
per-channel basis. We’ve also indicated to use the smallrye-amqp
connector for the data outgoing channel.

By default, the channel uses durable messages for the queue, or we make
them nondurable with
mp.messaging.outgoing.data.durable=false. We can also
override the message durability directly when sending the message, as
shown in Example 11-20.

Example 11-20. Use outgoing metadata to send durable messages
@Outgoing("data")
Multi<Message<Person>> produceAStreamOfMessagesOfPersons() {
 return Multi.createFrom().items(
 Message.of(new Person("Luke"))

.addMetadata(OutgoingAmqpMetadata.builder().withDurable(false).buil
d()),
 Message.of(new Person("Leia"))

.addMetadata(OutgoingAmqpMetadata.builder().withDurable(false).buil
d()),

 Message.of(new Person("Obiwan"))

.addMetadata(OutgoingAmqpMetadata.builder().withDurable(false).buil
d()),
 Message.of(new Person("Palpatine"))

.addMetadata(OutgoingAmqpMetadata.builder().withDurable(false).buil
d())
);
}

We can then consume the message similarly to Kafka, but using the AMQP
metadata object to retrieve more detailed information about the message
(Example 11-21).

Example 11-21. Extract AMQP metadata from incoming messages
@Incoming("data")
CompletionStage<Void> consume(Message<Person> person) {
 Optional<IncomingAmqpMetadata> metadata = person
 .getMetadata(IncomingAmqpMetadata.class);
 metadata.ifPresent(meta -> {
 String address = meta.getAddress();
 String subject = meta.getSubject();
 });
 // ...
 return person.ack();
}

Successful receipt and processing of a message results in the connector
notifying the broker with an accepted acknowledgment. On receiving
this acknowledgment, the broker will delete the message from the queue.

Publish/Subscribe
AMQP also supports a publish/subscribe model, similarly to Kafka,
allowing many subscribers for a single queue to read messages. In AMQP, a
queue can be of type multicast (the opposite of unicast) to indicate that
many consumers can receive the same message.

Figure 11-8 has three consumers of a multicast queue reading messages,
and we see how far through the messages each of the consumers has gotten.

As with unicast queues, the messages are durable by default but can also be
made nondurable if desired.

Figure 11-8. AMQP multicast queue consumers

The code for sending and receiving messages from a multicast queue is
identical to the code we used for point-to-point in “Point-to-Point
Communication”. The address defaults to the channel name; it can be
customized in configuration of the channel or set directly on the metadata
of the message.

Elasticity Patterns
The elasticity patterns for AMQP with point-to-point communication are a
little different. With Kafka, we can have only one consumer reading from a
single partition. With AMQP, we can have as many consumers as we want
reading from the same queue, given the order in which the messages are
processed is not important.

Granted, we may not want a lot of consumers reading the queue from the
same broker node, but we are able to cluster the brokers to spread the load
across them. With a cluster of brokers, the broker is smart enough to shift

messages from one broker to another if it notices the consumers of a queue
on that broker are underutilized compared to other brokers.

Acknowledgment and Redelivery
When we send a message to an AMQP Broker, it is acknowledged if the
broker successfully committed the message. However, this will not be the
case when routers are utilized between the producer and a broker. In this
situation, it is recommended to set auto-acknowledgement to true
to ensure that the producer receives acknowledgment when the message is
sent to the router. Any response from the broker of rejected,
released, or modified results in the message being nacked.

The consumption side has a few more possibilities for acknowledgment. We
can fail the message, causing the application to enter a failed state and
process no further messages. The message being processed resulting in the
failure is marked as rejected with the broker. This is the default
behavior for the AMQP connector.

The Accept, Release, and Reject strategies all result in the failure being
logged, and the application to continue processing additional messages. The
only difference between them is in the way the AMQP messages are
designated on the broker. The Accept strategy marks the message as
accepted, the Release one marks it as released, and, finally, the
Reject one marks it as rejected. When we want to continue processing
messages on failure, which of the three options you set depends on how you
want the AMQP Broker to handle the message.

What about redelivery? If we mark the AMQP message as released, the
broker can redeliver the message, to the same or different consumer, at a
later time. When setting a message as modified, we have two available
strategies. Using the modified-failed strategy sets a delivery-
failed attribute on the message, enabling the broker to attempt redelivery
of the message while processing continues with the next message. However,
using the modified-failed-undeliverable-here strategy also

sets the delivery-failed attribute, and while the broker can attempt
redelivery of the message, it won’t do so with this consumer.

If at any point the consumer loses the session with a broker, any in-progress
work will be rolled back. This allows for other consumers, or restarting of
the current consumer, to accept redelivery of any messages that were in-
flight at the time the session with the broker was severed.

Credit-Flow Backpressure Protocol
AMQP enables backpressure in producers with a credit system. Producers
are able to send messages to a broker only as long as they have credits
available, preventing producers from overloading the broker with too many
messages in a small amount of time. The credits represent the number of
bytes a producer can send. For example, if we had 1,000 credits,
representing 1,000 bytes, a producer would be able to send 1 message of
1,000 bytes or 10 messages of 100 bytes before the credits expired.

When a producer has spent all its credits, it waits in a nonblocking manner
until additional credits are granted from the broker. The default is to request
additional credits every 2,000 ms, but this setting can be configured with
the credit-retrieval-period configuration property.

When running out of credit, the connector marks the application as not
ready. This information is then reported to the application health check. If
you deploy the application to Kubernetes, the readiness health check will
fail, and Kubernetes will stop sending traffic to the pod until it becomes
ready again.

AMQP on Kubernetes
Setting up a production-ready AMQP Broker on Kubernetes is not a
straightforward task, so we’re opting to use a single Docker image to keep
it simple. With a Kubernetes environment running, run an AMQP Broker
container, as shown in Example 11-22.

Example 11-22. Start AMQP Broker container

kubectl run amqp --image=quay.io/artemiscloud/activemq-artemis-
broker \
 --port=5672 --env="AMQ_USER=admin" --env="AMQ_PASSWORD=admin" \
 -n event-bus

Here, we start an AMQP Broker in a Kubernetes pod, but we need to
expose the broker as a service to make it accessible to the services, as
shown in Example 11-23.

Example 11-23. Expose AMQP Broker service port
kubectl expose pod amqp --port=5672 -n event-bus

To be able to use AMQP, we need to switch our code to utilize a different
dependency and configuration, but the bulk of the services remain
unchanged. For each service, comment out the quarkus-smallrye-
reactive-messaging-kafka dependency and uncomment the
quarkus-smallrye-reactive-messaging-amqp dependency in
each pom.xml. In the application.properties file for each service, comment
out the smallrye-kafka connector configuration and uncomment the
smallrye-amqp connector. Don’t forget to change both connectors in
the processor service! Be sure to run mvn clean package on all
the services after making these changes.

All the AMQP Broker configuration is present in the Helm charts, with the
actual values in values.yaml. Follow the instructions in /chapter-
11/README.md under Application deployment for building the required
Docker images and installing the services. They are the same steps we used
for Kafka earlier in the chapter. Once the services are running, it’s time to
test it! Open the SSE endpoint in a browser to see data as we did with
Kafka (Example 11-24).

Example 11-24. SSE output: all the messages are consumed by a single pod
data:2 consumed in pod (processor-7558d76994-mq624)
data:3 consumed in pod (processor-7558d76994-mq624)
data:4 consumed in pod (processor-7558d76994-mq624)

Let’s scale up processor to add more consumers, as shown in
Example 11-25.

Example 11-25. Increase the number of application instances (pods)
kubectl scale deployment/processor -n event-bus --replicas=3

Scaling with AMQP has a different outcome from that of scaling with
Kafka; see Example 11-26.

Example 11-26. SSE output: the messages are consumed by the three pods
data:187 consumed in pod (processor-7558d76994-mq624)
data:187 consumed in pod (processor-7558d76994-hbp6j)
data:187 consumed in pod (processor-7558d76994-q2vcc)
data:188 consumed in pod (processor-7558d76994-q2vcc)
data:188 consumed in pod (processor-7558d76994-hbp6j)
data:188 consumed in pod (processor-7558d76994-mq624)
data:189 consumed in pod (processor-7558d76994-mq624)
data:189 consumed in pod (processor-7558d76994-hbp6j)
data:189 consumed in pod (processor-7558d76994-q2vcc)

We’re now seeing the same message consumed by all three producers,
instead of a message consumed once!

Summary
This chapter went deeper into understanding the event bus when we use
AMQP or Kafka with Reactive Messaging. If we don’t need metadata
classes for specific Kafka or AMQP behavior, we can easily switch between
the two with a dependency change and modifying configuration. We
covered how each of the event bus options support point-to-point
communication, publish/subscribe, acknowledgments, failure handling, and
backpressure. These are all key concepts in understanding the totality of a
reactive system and its components.

Kafka is the current popular choice for many event-driven reactive systems.
Kafka can handle a massive number of messages and makes ordering an
essential characteristic. AMQP does have a lot more flexibility than Kafka
in the way it can be configured and customized. It also has higher elasticity
in point-to-point scenarios, as the limit is not constrained by the number of
partitions.

In the next chapter, we discuss using an HTTP client with Java interfaces
representing an external service, as well as how to use the lower-level web
client and why that’s still useful.

1 Throughout this chapter, we will be talking about AMQP 1.0.

Chapter 12. Reactive REST
Client: Connecting with HTTP
Endpoints

The previous two chapters focused on messaging, the connective tissue of
reactive systems. Modern message brokers provide the perfect feature set to
implement the internal communication of reactive systems. However, at the
frontier of your system, where you need to integrate remote services, there’s
a good chance you need to use HTTP. So let’s be pragmatic and see how we
can consume HTTP services without breaking the reactive principles.

In Chapter 8, you saw how to expose reactive HTTP endpoints. This chapter
presents the other side: how to consume HTTP endpoints. Quarkus offers a
nonblocking way to consume HTTP endpoints. In addition, it provides
resilience features to protect the integration points against failures and
slowness. It’s important to notice that the called service does not have to be
a reactive application. That’s up to the implementation of that service.

Let’s see what Quarkus offers to consume HTTP endpoints.

Interacting with an HTTP Endpoint
Quarkus provides multiple ways to consume HTTP endpoints:

Vert.x Web Client

This low-level HTTP client is implemented on top of Vert.x and Netty
(and so is inherently asynchronous and based on nonblocking I/O).

Reactive Messaging connector

This connector sends HTTP requests for each processed message.

REST client

This type-safe approach eases the consumption of HTTP-based APIs.

Vert.x Web Client is convenient when you don’t want to bother being
exposed to low-level HTTP details, such as verbs, headers, bodies, and
response status. The web client is flexible, and you have complete control
over the HTTP request and the response processing.

To use Vert.x Web Client, you need to add the dependency shown in
Example 12-1 in your project.

Example 12-1. Dependency for Mutiny Vert.x Web Client
<dependency>
 <groupId>io.smallrye.reactive</groupId>
 <artifactId>smallrye-mutiny-vertx-web-client</artifactId>
</dependency>

Then you can use it as shown in Example 12-2.

Example 12-2. Vert.x Web Client example
@ApplicationScoped
public class WebClientExample {

 private final WebClient client;

 @Inject
 public WebClientExample(Vertx vertx) {
 client = WebClient.create(vertx);
 }

 @PreDestroy
 public void close() {
 client.close();
 }

 public Uni<JsonObject> invokeService() {
 return client
 .getAbs("https://httpbin.org/json").send()
 .onItem().transform(response -> {
 if (response.statusCode() == 200) {
 return response.bodyAsJsonObject();
 } else {

 return new JsonObject()
 .put("error",
response.statusMessage());
 }
 });
 }
}

As you can see, you need to create and close WebClient yourself. It
exposes a Mutiny API, so it integrates perfectly within your Quarkus
application.

The HTTP reactive connector integrates with Reactive Messaging (see
Chapter 10) and allows sending HTTP requests for each message. It’s
convenient when you design a message-processing pipeline where the
outbound is an HTTP endpoint. It handles the backpressure and controls the
amount of concurrency (number of in-flight requests) but does not allow
processing the response.

To use this HTTP connector, you need the dependency shown in
Example 12-3.

Example 12-3. Dependency for the HTTP connector
<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-reactive-messaging-http</artifactId>
</dependency>

Then you can configure the connector as shown in Example 12-4.

Example 12-4. Use the HTTP connector to send messages using HTTP
POST requests
mp.messaging.outgoing.my-http-endpoint.connector=quarkus-http

mp.messaging.outgoing.my-http-endpoint.method=POST

mp.messaging.outgoing.my-http-
endpoint.url=https://httpbin.org/anything

Instruct Quarkus to use the quarkus-http connector to manage the
my-http-endpoint channel.

Configure the HTTP method to use.

Configure the URL of the service to invoke.

By default, the connector encodes the received messages to JSON. You can
also configure a custom serializer. The connector also supports retries and
time-out but, as said earlier, does not allow processing the response. Any
non-2XX HTTP response is considered a failure and will nack the message.

The last approach, the REST client, offers a declarative way to invoke an
HTTP service. It implements the MicroProfile REST Client specification.
Instead of dealing with the HTTP requests and responses, you map the
HTTP API in a Java interface. Thanks to a couple of annotations, you
express how to send the request and process the response. The client uses
the same JAX-RS annotations as the server side; see Example 12-5.

Example 12-5. Example of REST client
@Path("/v2")
@RegisterRestClient
public interface CountriesService {

 @GET
 @Path("/name/{name}")
 Set<Country> getByName(@PathParam String name);
}

The application uses the method from the interface directly. The rest of this
chapter focuses on the REST client and how to integrate it in reactive
applications, including how to handle failure gracefully.

The REST Client Reactive
We need to be careful. Lots of asynchronous HTTP and REST clients do
not use nonblocking I/O and instead delegate the HTTP requests to an
internal thread pool. This is not the case with the reactive REST client from
Quarkus. It relies on the reactive architecture of Quarkus. Note that it’s not
because it’s reactive that you can’t use it in a blocking manner. As with

https://oreil.ly/dX0Lv

most Quarkus features, you have the choice. Even if you decide to use the
blocking way, Quarkus would continue using I/O threads and delegate the
calls on a worker thread for your application.

To use the reactive REST client in Quarkus, add the dependency in
Example 12-6 to your project.

Example 12-6. Dependency for the reactive REST client (chapter-12/rest-
client-example/pom.xml)
<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-rest-client-reactive</artifactId>
</dependency>

If you plan to use JSON, which is often the case when using HTTP
services, also add the dependency in Example 12-7.

Example 12-7. Dependency for the Jackson support for the reactive REST
client (chapter-12/rest-client-example/pom.xml)
<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-rest-client-reactive-jackson</artifactId>
</dependency>

The dependency adds the ability to serialize the request body into JSON
and deserialize JSON payloads into objects.

Mapping HTTP APIs to Java Interfaces
The cornerstone of the REST client is a Java interface that represents the
consumed HTTP endpoint. This interface represents the HTTP API your
application consumes. It acts as a facade, enabling your application to avoid
dealing with HTTP directly. On each method of the interface, you use JAX-
RS annotations to describe how to handle the HTTP request and response.
Let’s consider an example. Imagine that you need to integrate the
httpbin service. To call the /uuid endpoint (which returns a UUID), you
need to create a Java interface with the method representing the call; see
Example 12-8.

https://httpbin.org/

Example 12-8. REST client for the httpbin service (chapter-12/rest-
client-example/src/main/java/org/acme/restclient/HttpApi.java)
@RegisterRestClient(configKey = "httpbin")
public interface HttpBinService {

 @GET
 @Path("/uuid")
 String getUUID();
}

The first important fact about this interface is the
@RegisterRestClient annotation. It indicates that the interface
represents an HTTP endpoint. The configKey attribute defines the key
we will use to configure the HTTP endpoint, such as the location.

For now, this interface has a single method: getUUID. When the
application calls this method, it sends a GET request to /uuid, waits for
the response, and reads the response body as String. We define this
behavior by using the @GET and @Path annotations.

Let’s add a method by using another HTTP method, as shown in
Example 12-9.

Example 12-9. Send JSON payloads
class Person {
 public String name;
}

@POST
@Path("/anything")
String anything(Person someone);

Calling this method sends a POST request on /anything with a JSON
payload as the body. The reactive REST client maps the instance of
Person to JSON. You can also use the @Consume annotation to set
content-type explicitly.

The REST client also lets you configure the request headers. These headers
can be constant and defined by using the @ClientHeaderParam

annotation or can be passed as a method parameter by using the
@HeaderParam annotation; see Example 12-10.

Example 12-10. Pass headers
@POST
@Path("/anything")
@ClientHeaderParam(name = "X-header", value = "constant value")
String anythingWithConstantHeader(Person someone);

@POST
@Path("/anything")
String anythingWithHeader(Person someone,
 @HeaderParam("X-header") String value);

To pass query parameters, use the @QueryParameter annotation
(Example 12-11).

Example 12-11. Pass query parameters
@POST
@Path("/anything")
String anythingWithQuery(Person someone,
 @QueryParam("param1") String p1,
 @QueryParam("param2") String p2);

Let’s now look at the response. So far, we used only String, but the
REST client can map the response to objects. If we go back to the initial
example (/uuid), it returns a JSON object with a single field: uuid. We
can map this response into an object, as shown in Example 12-12.

Example 12-12. Receive JSON objects
class UUID {
 public String uuid;
}

@GET
@Path("/uuid")
UUID uuid();

By default, the REST client uses JSON to map the responses to objects. You
can use the @Produces annotation to configure the Accept header.

If you want to handle the HTTP response yourself, to retrieve the status
code or headers, you can return a Response, as shown in Example 12-13.

Example 12-13. Use responses
@GET
@Path("/uuid")
Response getResponse();

It’s the same Response as in “Dealing with Failure and Customizing the
Response”.

Mapping an HTTP API to a Java interface introduces a clear contract and
avoids having HTTP code everywhere in the application code. It also
improves testability as you can quickly mock the remote service. Finally,
note that you don’t have to map all the endpoints of the remote service, only
the one you use in your application.

Invoking the Service
To use the interface we defined in the previous section in your application,
we need to do the following:

1. Inject the REST client in the application code.

2. Configure the URL of the service.

The first step is straightforward; we just need to inject the client, as shown
in Example 12-14.

Example 12-14. Use the HTTPBin REST client (chapter-12/rest-client-
example/src/main/java/org/acme/restclient/HttpEndpoint.java)
@Inject
@RestClient HttpBinService service;

public HttpBinService.UUID invoke() {
 return service.uuid();
}

The @RestClient qualifier indicates that the injected object is a REST
client. Once it’s injected, you can use any of the methods you have defined
on the interface.

To configure the client, open the application.properties file and add the
following property:

httpbin/mp-rest/url=https://httpbin.org

The httpbin part is the configuration key used in the
@RegisterRestClient interface. Here we configure only the location,
but you can configure a lot more.

Of course, the URL can also be passed at runtime by using the
httpbin/mp-rest/url system property or the
HTTPBIN_MP_REST_URL environment property.

Blocking and Nonblocking
As said previously, the reactive REST client from Quarkus supports both
imperative (blocking) methods and reactive (nonblocking) methods. The
distinction is made by using the return type. In “Mapping HTTP APIs to
Java Interfaces”, all our returned types are synchronous. So Quarkus blocks
the caller thread until the reception of the HTTP responses. This is not great
in terms of Reactive. Fortunately, you can avoid this by changing the return
types to Uni, as shown in Example 12-15.

Example 12-15. Use Mutiny in the REST client interfaces
@RegisterRestClient(configKey = "reactive-httpbin")
public interface ReactiveHttpBinService {

 @GET
 @Path("/uuid")
 Uni<String> getUUID();

 class Person {
 public String name;
 }

 @POST
 @Path("/anything")
 Uni<String> anything(Person someone);

https://oreil.ly/rD1tL

 class UUID {
 public String uuid;
 }

 @GET
 @Path("/uuid")
 Uni<UUID> uuid();

 @GET
 @Path("/uuid")
 Uni<Response> getResponse();

}

By returning Uni instead of the direct result type, you instruct the REST
client not to block the caller thread. Even better, it will use the current I/O
thread, embrace the asynchronous execution model, and avoid additional
thread switches.

On the consumer side, you just use Uni and append the processing of the
response to your pipeline (Example 12-16).

Example 12-16. Use the reactive API of the REST client
@Inject
@RestClient ReactiveHttpBinService service;

public void invoke() {
 service.uuid()
 .onItem().transform(u -> u.uuid)
 .subscribe().with(
 s -> System.out.println("Received " + s),
 f -> System.out.println("Failed with " + f)
);
}

In this example, we handle the subscription ourselves. Don’t forget that you
often rely on Quarkus to take care of this. For example, returning Uni from
a RESTEasy Reactive endpoint subscribes on the returned Uni.

Handling Failures

If you look at Example 12-16, you can see that calling the REST client can
emit a failure, and you need to handle it. Quarkus provides multiple ways to
handle failure gracefully. You can use the Mutiny API to handle the failure,
execute retries, or recover gracefully, as shown in Chapter 7. Also, Quarkus
provides a declarative way to express how to handle failures. This approach
is particularly convenient when integrating remote systems (as with the
REST client), because it combines the integration point and the failure
management in a single location.

The quarkus-smallrye-fault-tolerance extension provides a
set of annotations to configure:

Fallback methods

Retries

Circuit breakers

Bulkheads

quarkus-smallrye-fault-tolerance works for both imperative
and reactive APIs. In this section, we focus only on the latter.

First, to use the Fault-Tolerance extension, add the dependency in
Example 12-17 to your project.

Example 12-17. Dependency for fault-tolerance support (chapter-12/api-
gateway-example/api-gateway/pom.xml)
<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-smallrye-fault-tolerance</artifactId>
</dependency>

Fallback
A fallback is a method that provides an alternative result if the original
invocation fails. Let’s reuse the example we have seen before, shown again
here in Example 12-18.

Example 12-18. The uuid method

@GET
@Path("/uuid")
Uni<UUID> uuid();

If the interaction with the remote service fails, we can generate a fallback
(local) UUID, as shown in Example 12-19.

Example 12-19. Declare a fallback for the uuid method
import io.smallrye.mutiny.Uni;
import org.eclipse.microprofile.faulttolerance.Fallback;
import
org.eclipse.microprofile.rest.client.inject.RegisterRestClient;

import javax.ws.rs.GET;
import javax.ws.rs.Path;

@RegisterRestClient(configKey = "reactive-httpbin")
public interface ReactiveHttpBinServiceWithFallbackMethod {

 class UUID {
 public String uuid;
 }

 @GET
 @Path("/uuid")
 @Fallback(fallbackMethod = "fallback")
 Uni<UUID> uuid();

 default Uni<UUID> fallback() {
 UUID u = new UUID();
 u.uuid = java.util.UUID.randomUUID().toString();
 return Uni.createFrom().item(u);
 }

}

The @Fallback annotation indicates the name of the method to call. This
method must have the same signature as the original method. So, in our
case, it must return Uni<UUID>. Our fallback implementation is simple,
but you can imagine more complex scenarios such as calling an alternative
service.

If you need more control on the fallback, you can also provide a
FallbackHandler; see Example 12-20.

Example 12-20. Use a fallback handler
import io.smallrye.common.annotation.NonBlocking;
import io.smallrye.mutiny.Uni;
import org.eclipse.microprofile.faulttolerance.ExecutionContext;
import org.eclipse.microprofile.faulttolerance.Fallback;
import org.eclipse.microprofile.faulttolerance.FallbackHandler;
import
org.eclipse.microprofile.rest.client.inject.RegisterRestClient;

import javax.ws.rs.GET;
import javax.ws.rs.Path;

@RegisterRestClient(configKey = "reactive-httpbin")
public interface ReactiveHttpBinServiceWithFallbackHandler {

 class UUID {
 public String uuid;
 }

 @GET
 @Path("/uuid")
 @Fallback(value = MyFallbackHandler.class)
 Uni<UUID> uuid();

 class MyFallbackHandler implements FallbackHandler<Uni<UUID>> {

 @Override
 public Uni<UUID> handle(ExecutionContext context) {
 UUID u = new UUID();
 u.uuid = java.util.UUID.randomUUID().toString();
 return Uni.createFrom().item(u);
 }
 }

}

The configured fallback handler is called with an ExecutionContext
encapsulating the original method and the exception.

Retries

Fallback allows recovering gracefully with a local value. The Fault-
Tolerance extension also allows retrying. Remember, retries should be used
only when the called service is idempotent. So, before using this feature, be
sure it won’t harm your system.

The @Retry annotation instructs Quarkus to retry the invocation multiple
times, hoping that the next call would be successful (Example 12-21).

Example 12-21. Declare a retry strategy
@GET
@Path("/uuid")
@Retry(maxRetries = 10, delay = 1000, jitter = 100)
Uni<UUID> uuid();

As you can see, you can configure the number of retries, as well as a delay
and jitter to avoid retrying immediately. You could combine @Retry and
@Fallback to invoke the fallback method if all the attempts failed.

Time-out
Failing fast is always better than having users waiting a long time. The
@Timeout annotation enforces that an invocation completes in a timely
fashion; see Example 12-22.

Example 12-22. Configure a time-out
@GET
@Path("/uuid")
@Timeout(value = 3, unit = ChronoUnit.SECONDS)
Uni<UUID> uuid();

If the invocation does not produce a result in the configured time-out, it
fails. Combining @Timeout with @Fallback allows using a fallback
result if the original call was unable to complete in the expected time.

Bulkheads and Circuit Breaker
The Quarkus fault-tolerance feature also provides circuit breakers and
bulkheads. While the other patterns protect your application against remote

failures and slowness, these two last patterns avoid hammering unhealthy or
brittle services.

The first pattern, popularized a few years ago with libraries such as Hystrix
or Resilience4j, detects failing services and gives them time to recover
(instead of continuously calling them). The circuit breaker allows your
application to fail immediately to prevent repeated calls that are likely
going to fail. The circuit breaker operates much like an electrical circuit
breaker. A closed circuit represents a fully functional system, and an open
circuit means an incomplete system. If a failure occurs, the circuit breaker
triggers to open the circuit, removing the point of failure from the system.

The software circuit breaker has one more state: the half-open state. After
the circuit is opened, it periodically changes to the half-open state. It checks
whether the failed component is restored and closes the circuit after being
considered safe and functional. To use a circuit breaker in Quarkus, just use
the @CircuitBreaker annotation, as shown in Example 12-23.

Example 12-23. Use a circuit breaker
@GET
@Path("/uuid")
@CircuitBreaker
Uni<UUID> uuid();

You can also configure the circuit breaker; see Example 12-24.

Example 12-24. Configure a circuit breaker
@GET
@Path("/uuid")
@CircuitBreaker(
 // Delay before switching to the half-open state
 delay = 10, delayUnit = ChronoUnit.SECONDS,
 // The number of successful executions,
 // before a half-open circuit is closed again
 successThreshold = 2,
 // The ratio of failures within the rolling
 // window that will trip the circuit to open
 failureRatio = 0.75,
 // The number of consecutive requests in a
 // rolling window
 requestVolumeThreshold = 10

https://oreil.ly/eLHn0
https://oreil.ly/yr4dO

)
Uni<UUID> uuidWithConfiguredCircuitBreaker();

Protecting your integration point with a circuit breaker not only allows you
to prevent slow responses and failures in your application, but also gives the
failing service time to recover. Using a circuit breaker is handy when the
service you interact with is under maintenance or heavy load.

The idea behind the bulkhead pattern is to limit the propagation of failure.
You protect your application from failures happening in the remote service
and avoid cascading them to the entire system and causing widespread
issues. The @Bulkhead annotation limits the number of concurrent
requests and saves an unresponsive remote service from wasting system
resources.

Using the annotation helps you avoid having to deal with too many failures
and avoids flooding a remote service with a high number of concurrent
requests. The latter aspect is essential. With the reactive principles enabling
high concurrency, you should never forget that the service you are calling
may not be prepared for that load. So using the @Bulkhead annotation
allows controlling the outbound concurrency. Yes, it will increase your
response time and reduce your concurrency, but that’s for the sake of the
global system state.

You can configure the bulkhead with the max concurrency (value), and
the maximum number of requests waiting for their turn, as demonstrated in
Example 12-25. If the queue is full, it rejects any new invocations
immediately, avoiding slow response time.

Example 12-25. Declare a bulkhead
@GET
@Path("/uuid")
@Bulkhead(value = 5, waitingTaskQueue = 1000)
Uni<UUID> uuid();

Building API Gateways with the RESTEasy
Reactive Client

In Chapter 8, we showed how to implement HTTP endpoints relying on
nonblocking I/O and how this implementation can use Mutiny (covered in
Chapter 7) to orchestrate asynchronous tasks and avoid blocking. This
approach enables high concurrency and efficient resource usage. This is the
perfect combination for building API gateways.

An API gateway is a service that sits in front of a set of backend services.
The gateway handles external requests and orchestrates other services. For
example, it can delegate a request to a single service and implement more
complex processes involving multiple backend services.

We can build highly concurrent, responsive, and resilient API gateways by
combining Mutiny, RESTEasy Reactive, the reactive REST client, and the
fault-tolerance annotations. In this section, we explain the basics of
implementing such a gateway by exploring an example. Three applications
compose our system:

Greeting service

Exposes an HTTP API returning Hello {name}, the name being a
query parameter.

Quote service

Exposes another HTTP API returning a random funny quote about
coffee.

API gateway

Exposes an HTTP API that delegates requests on /quote to the quote
service. Requests made to / will call the greeting and quote services
and build a JSON object encapsulating both.

You can find the full code of the system in the chapter-12/api-gateway-
example directory. This section focuses on the API gateway component. We
do not cover the code of the greeting and quote services here as they are
simple. The source code of these components is available in the chapter-
12/api-gateway-example/greeting-service and chapter-12/api-gateway-

example/quote-service directories. The API gateway application that you
can find in chapter-12/api-gateway-example/api-gateway is more
interesting, and we explore it together.

First, let’s build and run this system. To build this example, in a terminal,
navigate into chapter-12/api-gateway-example and run mvn package.
Then you will need three terminals:

1. In the first one, run java -jar target/quarkus-
app/quarkus-run.jar from the chapter-12/api-gateway-
example/greeting-service directory.

2. In the second one, run java -jar target/quarkus-
app/quarkus-run.jar from the chapter-12/api-gateway-
example/quote-service directory.

3. Finally, in the third one, run java -jar target/quarkus-
app/quarkus-run.jar from the chapter-12/api-gateway-
example/api-gateway directory.

NOTE
Ensure that ports 9010 (greeting service) and 9020 (quote service) are not used on your
system. The API gateway uses port 8080.

Once all services are running, you can use curl to invoke the API
gateway, which orchestrates the other backend services (Example 12-26).

Example 12-26. Invoke the greeting endpoint
> curl http://localhost:8080/
{"greeting":"Hello anonymous","quote":"I never drink coffee
at lunch. I find it keeps me awake for the afternoon."}

The cornerstone of the API gateway is the Gateway class, shown in
Example 12-27.

Example 12-27. The Gateway class (chapter-12/api-gateway-example/api-
gateway/src/main/java/org/acme/gateway/Gateway.java)
package org.acme.gateway;

import io.smallrye.mutiny.Uni;
import org.eclipse.microprofile.rest.client.inject.RestClient;

import javax.ws.rs.DefaultValue;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.QueryParam;

@Path("/")
public class Gateway {

 @RestClient
 GreetingService greetingService;

 @RestClient
 QuoteService quoteService;

 @GET
 @Path("/quote")
 public Uni<String> getQuote() {
 return quoteService.getQuote();
 }

 @GET
 @Path("/")
 public Uni<Greeting> getBoth(
 @QueryParam("name")
 @DefaultValue("anonymous") String name) {
 Uni<String> greeting = greetingService.greeting(name);
 Uni<String> quote = quoteService.getQuote()
 .onFailure()
 .recoverWithItem("No coffee - no quote");

 return Uni.combine().all().unis(greeting, quote).asTuple()
 .onItem().transform(tuple ->
 new Greeting(tuple.getItem1(),
 tuple.getItem2())
);
 }

 public static class Greeting {
 public final String greeting;

 public final String quote;

 public Greeting(String greeting, String quote) {
 this.greeting = greeting;
 this.quote = quote;
 }
 }
}

The Gateway class retrieves the two REST clients and handles the HTTP
requests using them. As an API gateway can be under heavy load and high
concurrency, we use RESTEasy Reactive and its Mutiny integration, so we
don’t need worker threads.

The getQuote method is straightforward. It delegates the calls to the
QuoteService.

The getBoth method is more interesting. It needs to call both services and
aggregate the response. As both services are unrelated, we can call them
concurrently. As you have seen in Chapter 7, this can be easily achieved
with Mutiny by using the Uni.combine construct. Once we have both
responses encapsulated in a tuple, we build the Greeting structure and
emit it.

Let’s look at the REST clients. GreetingService uses the fault-
tolerance annotation to be sure we handle failures or slow responses
appropriately; see Example 12-28.

Example 12-28. The GreetingService REST client (chapter-12/api-
gateway-example/api-
gateway/src/main/java/org/acme/gateway/GreetingService.java)
package org.acme.gateway;

import io.smallrye.mutiny.Uni;
import org.eclipse.microprofile.faulttolerance.*;
import
org.eclipse.microprofile.rest.client.inject.RegisterRestClient;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.QueryParam;

@RegisterRestClient(configKey = "greeting-service")
public interface GreetingService {

 @GET
 @Path("/")
 @CircuitBreaker
 @Timeout(2000)
 @Fallback(GreetingFallback.class)
 Uni<String> greeting(@QueryParam("name") String name);

 class GreetingFallback implements FallbackHandler<Uni<String>>
{
 @Override
 public Uni<String> handle(ExecutionContext context) {
 return Uni.createFrom().item("Hello fallback");
 }
 }
}

Notice that the greeting method combines the circuit breaker, time-out, and
fallback annotations. QuoteService is similar but does not use the
fallback annotation, as you can see in Example 12-29.

Example 12-29. The QuoteService REST client (chapter-12/api-
gateway-example/api-
gateway/src/main/java/org/acme/gateway/QuoteService.java)
package org.acme.gateway;

import io.smallrye.mutiny.Uni;
import org.eclipse.microprofile.faulttolerance.CircuitBreaker;
import org.eclipse.microprofile.faulttolerance.Timeout;
import
org.eclipse.microprofile.rest.client.inject.RegisterRestClient;

import javax.ws.rs.GET;
import javax.ws.rs.Path;

@RegisterRestClient(configKey = "quote-service")
public interface QuoteService {

 @GET
 @Path("/")
 @CircuitBreaker
 @Timeout(2000)
 Uni<String> getQuote();

}

Instead, as you may have noticed, we handle failure by using the Mutiny
API in the Gateway class (Example 12-30).

Example 12-30. Recover from failures by using the Mutiny API (chapter-
12/api-gateway-example/api-
gateway/src/main/java/org/acme/gateway/Gateway.java)
Uni<String> quote = quoteService.getQuote()
 .onFailure().recoverWithItem("No coffee - no quote");

While, in general, we choose between using the fault-tolerance annotation
or using the Mutiny API, we wanted to highlight that you have the choice
and can combine the two easily. However, the getQuote method does not
handle the failure and propagate the error. So, when using Mutiny to handle
the failure, make sure you cover all entry points. Now, if you stop the quote
service (by pressing Ctrl-C in the second terminal), you get the output in
Example 12-31.

Example 12-31. Invoke the endpoint
> curl http://localhost:8080\?name\=luke
{"greeting":"Hello luke","quote":"No coffee - no quote"}

If you also stop the greeting service, by pressing Ctrl-C in the first terminal,
you get Example 12-32.

Example 12-32. Invoke the greeting endpoint when there’s no greeting
service
> curl http://localhost:8080\?name\=luke
{"greeting":"Hello fallback","quote":"No coffee - no quote"}

This section explored the fundamental constructs to build a highly
concurrent API gateway. Combining RESTEasy Reactive, the reactive
REST client, fault tolerance, and Mutiny provides all the features you need
to expose robust APIs to your users and handle failure gracefully. The
following section illustrates how the REST client can also be used in
messaging applications.

file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_wcbd4i91/_glcsjg6_pdf_out/OEBPS/Images/#mutiny-fail-recover

Using the REST Client in Messaging
Applications
The REST client can also be helpful in messaging applications. For
example, a message-processing pipeline can call a remote HTTP API for
each message or forward the messages to a remote HTTP endpoint. We can
use the REST client in a processing pipeline modeled with Reactive
Messaging to achieve this. In this section, we explore an application
receiving simple orders from an HTTP endpoint, process them, and persist
them in a database:

1. OrderEndpoint receives Order and emits it into the new-
orders channel.

2. An OrderProcessing component consumes the orders from
the new-order channel and invokes the remote validation
service. If the order gets validated successfully, it is sent to the
validated-orders channel. Otherwise, the order is
acknowledged negatively.

3. OrderStorage receives the order from the validated-
orders channel and stores it in the database.

For the sake of simplicity, the validation endpoint runs in the same process,
but invocations still use the REST client. You can find the complete code of
the application in chapter-12/http-messaging-example, but let’s go through
it quickly.

As you can see in Example 12-33, the Order structure is simple. It
contains just the name of a product and a quantity. Note that the Order
class is a Panache entity. We will use that to store the validated orders in the
database.

Example 12-33. The Order structure (chapter-12/http-messaging-
example/src/main/java/org/acme/http/model/Order.java)
package org.acme.http.model;

import io.quarkus.hibernate.reactive.panache.PanacheEntity;

import javax.persistence.Entity;
import javax.persistence.Table;

@Entity
@Table(name = "orders")
public class Order extends PanacheEntity {

 public String name;
 public int quantity;

}

OrderEndpoint is also straightforward, as you can see in Example 12-
34.

Example 12-34. The OrderEndpoint class (chapter-12/http-messaging-
example/src/main/java/org/acme/http/OrderEndpoint.java)
package org.acme.http;

import io.smallrye.mutiny.Multi;
import io.smallrye.mutiny.Uni;
import io.smallrye.reactive.messaging.MutinyEmitter;
import org.acme.http.model.Order;
import org.eclipse.microprofile.reactive.messaging.Channel;

import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.Path;
import javax.ws.rs.core.Response;

@Path("/order")
public class OrderEndpoint {

 @Channel("new-orders")
 MutinyEmitter<Order> emitter;

 @POST
 public Uni<Response> order(Order order) {
 return emitter.send(order)
 .log()
 .onItem().transform(x ->
Response.accepted().build())
 .onFailure().recoverWithItem(

Response.status(Response.Status.BAD_REQUEST)
 .build()
);
 }

 @GET
 public Multi<Order> getAllValidatedOrders() {
 return Order.streamAll();
 }

}

The order method emits the received order to the new-orders channel.
When the message gets acknowledged, it produces a 202 - ACCEPTED
response. If the message is nacked, it creates a 400 - BAD REQUEST
response.

The getAllValidatedOrders method lets us check what has been
written in the database. The OrderProcessing component consumes
the orders from the new-orders channel and invokes the validation
service, as shown in Example 12-35.

Example 12-35. The OrderProcessing class (chapter-12/http-
messaging-example/src/main/java/org/acme/http/OrderProcessing.java)
package org.acme.http;

import io.smallrye.mutiny.Uni;
import org.acme.http.model.Order;
import org.eclipse.microprofile.reactive.messaging.Incoming;
import org.eclipse.microprofile.reactive.messaging.Outgoing;
import org.eclipse.microprofile.rest.client.inject.RestClient;

import javax.enterprise.context.ApplicationScoped;

@ApplicationScoped
public class OrderProcessing {

 @RestClient
 ValidationService validation;

 @Incoming("new-orders")
 @Outgoing("validated-orders")
 Uni<Order> validate(Order order) {
 return validation.validate(order)

 .onItem().transform(x -> order);
 }

}

The validation service fails if the order is invalid. As a result, the message is
nacked. If the order is valid, it sends the order to the validated-
orders channel. The OrderStorage component consumes this channel
and writes each order in the database (Example 12-36).

Example 12-36. Persist orders in a database (chapter-12/http-messaging-
example/src/main/java/org/acme/http/OrderStorage.java)
package org.acme.http;

import io.quarkus.hibernate.reactive.panache.Panache;
import io.smallrye.mutiny.Uni;
import org.acme.http.model.Order;
import org.eclipse.microprofile.reactive.messaging.Incoming;

import javax.enterprise.context.ApplicationScoped;

@ApplicationScoped
public class OrderStorage {

 @Incoming("validated-orders")
 public Uni<Void> store(Order order) {
 return Panache.withTransaction(order::persist)
 .replaceWithVoid();
 }

}

Run the application with mvn quarkus:dev from the chapter-12/http-
messaging-example directory. As it uses Quarkus Dev Services, you don’t
need to provision a database in dev mode; Quarkus does it for you.

Once the application is running, add an order as shown in Example 12-37.

Example 12-37. Invoke the endpoint to add a new order
> curl -v --header "Content-Type: application/json" \
 --request POST \
 --data '{"name":"coffee", "quantity":2}' \
 http://localhost:8080/order

You can verify that the order has been processed by using Example 12-38.

Example 12-38. Invoke the endpoint to retrieve the persisted orders
> curl http://localhost:8080/order
[{"id":1,"name":"coffee","quantity":2}]

Now try to insert an invalid order (using a negative quantity), as shown in
Example 12-39.

Example 12-39. Invoke the endpoint to introduce an invalid order
> curl -v --header "Content-Type: application/json" \
 --request POST \
 --data '{"name":"book", "quantity":-1}' \
 http://localhost:8080/order

The response is 400. You can verify that it was not inserted in the database
by using code in Example 12-40.

Example 12-40. Invoke the endpoint to retrieve the persisted orders: the
invalid order is not listed
> curl http://localhost:8080/order
[{"id":1,"name":"coffee","quantity":2}]

The validation step of the processing can use the fault-tolerance annotations
to improve the reliability of the application (Example 12-41).

Example 12-41. Use fault-tolerance annotations
@Incoming("new-orders")
@Outgoing("validated-orders")
@Timeout(2000)
Uni<Order> validate(Order order) {
 return validation.validate(order)
 .onItem().transform(x -> order);
}

Using the REST client in the messaging application allows you to smoothly
integrate remote services in a processing workflow.

Summary

This chapter focused on integrating a remote HTTP API into your reactive
application without breaking the reactive principles. You learned how to do
the following:

Integrate a remote HTTP endpoint with your reactive application
by using the reactive REST client

Protect your integration point by using the fault-tolerance
annotations

Build API gateways by combining Mutiny, RESTEasy Reactive,
and the REST client

Integrate remote HTTP APIs in message-processing pipelines

The next chapter focuses on observability and how to keep your reactive
system running under fluctuating load and when facing failures.

Chapter 13. Observing Reactive
and Event-Driven Architectures

So far, we’ve focused on how to develop reactive systems. What we haven’t
discussed is how to ensure that all the components of our reactive system
are functioning as we expect them to. This is the focus of the chapter: how
we monitor and observe our reactive and event-driven architecture.

Why Is Observability Important?
When an application is a single deployment, or monolith, we have a
relatively easy time observing how the application is performing.
Everything we need to observe is in one place. Whether it’s checking logs
for errors, monitoring the utilization of CPU and memory, or any other
aspect, it’s all accessible.

With a reactive and event-driven architecture, instead of one deployment,
it’s often several, dozens, or even hundreds. We’re no longer dealing with a
single place to view the information we need to monitor and observe, but
many places! Observability tooling provides a means for us to gather this
information and provide a single place to view it again.

However, we need to gather the necessary information, or telemetry, from
the components in the event-driven architecture to enable a singular view.
Telemetry consists of any information we gather from processes for the
purpose of observing a system. The most common types of telemetry are as
follows:

Logs

Textual messages often written to console output, logfiles, or exported
to specific log-processing systems. We can also provide more structured
logging in a JSON format to facilitate more accurate data extraction.

Metrics

A single metric measures a specific piece of information, such as HTTP
server requests. Various types of metrics are available: counter, gauge,
timer, and histogram, to name a few.

Traces

Represents a single request through a system, broken into specific
operations.

When running distributed systems utilizing reactive or event-driven
architecture, we need solid telemetry produced from the components to
support sufficient reasoning about the system. Without being able to reason
about the system based on what we can observe from the outside, our
reactive system is not truly observable.

Let’s clarify some terms. Monitoring and observability can be conflated to
mean the same thing. Though there are overlaps, they do mean different
things. Monitoring focuses on specific metrics and measuring them against
specific goals, service-level objectives (SLOs), and alerting operations
when those goals are not met. Monitoring is also called known unknowns,
as we know what data, or metrics, to measure to see a problem, but we
don’t know what might cause a specific problem. Unknown unknowns
refers to observability, because we don’t know what will cause a problem,
and when one occurs, it requires observation of a system from its outputs to
determine the cause.

Kubernetes is a great place to run reactive systems, as it provides the
mechanism to monitor, scale, and repair a system gracefully. However, we
need to provide information for Kubernetes to do that properly, such as with
health checks. Health checks can serve many purposes; for our needs, the
readiness and liveness probes in Kubernetes can utilize them. Readiness
probes let Kubernetes know a container is ready to begin accepting
requests, and liveness probes let Kubernetes know if a container needs to be

restarted because of unrecoverable failures when communicating with
Kafka.

Throughout the rest of the chapter, we explain how to effectively monitor
and observe reactive systems.

Health with Messaging
Kubernetes utilizes health checks to determine the state of a container. If
containers don’t provide health checks, Kubernetes is unable to determine
the state of a container. This may result in users experiencing errors caused
by deadlocked containers that cannot be stopped or by containers that are
not ready to process requests.

We can implement three types of health checks for our containers:

Liveness Probe

This probe lets Kubernetes know a container should be restarted. If we
can write a meaningful health check, it’s a good way to catch situations
of application deadlock or connection issues with external systems. We
can possibly resolve intermittent issues by allowing a clean slate by
restarting the container. The probe is periodically run based on the
frequency we define. We want to ensure that the frequency is not too
large, so we prevent containers being stuck for long periods of time, but
not too small either, as that would increase resource consumption.

Readiness Probe

This probe informs Kubernetes when a container is ready to begin
receiving traffic from a service. We can use this type of health check to
provide enough time for HTTP servers and connections to external
systems to be available before we begin accepting requests. This
prevents users from experiencing errors because the container was not
ready to process a request. This probe executes only once during the life
of a container. The readiness probe is necessary to effectively allow
scaling up without causing undue user errors.

Startup Probe

A recent health check addition, this probe has a similar purpose as the
liveness probe. However, this probe allows us to set a different wait
period before declaring the container unhealthy. This is especially
beneficial in situations where a container could take a very long time to
be alive, possibly due to connecting with legacy systems. We’re able to
set a shorter time-out for a Liveness Probe, while allowing a much
longer time-out for a Startup Probe.

Each of these probes supports HTTP, TCP, or commands run inside the
container itself. Nothing prevents other protocols from being used for
probes, but they’re currently not implemented in Kubernetes. Which probe
we use for an application will depend on whether there are HTTP endpoints
we can utilize for the probes, or whether we need custom commands within
the container. Quarkus has an extension for SmallRye Health to develop
health checks available over HTTP.

How do these probes relate to a reactive application? Readiness indicates
that a Reactive Messaging connector, such as Kafka, has successfully
connected to the broker, or backend, there were no failures, and optionally
the topic we intend to use exists in the broker. In this state, the connector is
ready to begin sending or receiving messages. Verifying the presence of any
topics is disabled by default because it’s a lengthy operation requiring use
of the admin client. Enabling topic verification is done by setting health-
readiness-topic-verification: true.

Liveness should fail when the Reactive Messaging connector has
experienced an unrecoverable failure or a disconnection from the broker.
These types of transient failures can disappear after a restart of the
container. For example, the application may connect to another broker.

As we covered in “Apache Kafka”, Kafka has built-in resilience. The last
committed offset is not updated until a consumer has successfully processed
the record, ensuring that records are not forgotten if a consumer fails while
processing it. Also, Kafka is able to rebalance consumers, within the same

https://github.com/smallrye/smallrye-health

consumer group, if any of them fail. Any consumer(s) that might crash
while processing records from a partition will be replaced with other
consumers from the same group. When using Kubernetes health checks, the
consumers will be rebalanced when containers stop, and re-balanced again
when Kubernetes has started new instances of the containers.

It is now time to see how it all works with an example. We will take the
example from Chapter 11 and extend it. We want to customize the
consumer to highlight the behaviors of health checks. We will have a
specific process service, processor-health. You can find the complete
code in the chapter-13 directory.

First we need to add the extension for SmallRye Health to the pom.xml of
each service, as shown in Example 13-1.

Example 13-1. Dependency for the health support (chapter-13/processor-
health/pom.xml)
<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-smallrye-health</artifactId>
</dependency>

To generate the necessary Kubernetes deployment YAML, including the
liveness and readiness probes, we need the Kubernetes extension. In this
case, though, we use the minikube extension as we’re deploying to it; see
Example 13-2.

Example 13-2. Dependency for the minikube deployment feature (chapter-
13/processor-health/pom.xml)
<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-minikube</artifactId>
</dependency>

Run mvn clean package in the /chapter-13 directory to generate the
deployment YAML. Take a look in the /target/kubernetes directory of one
of the modules and view the generated YAML. We see the desired liveness
and readiness probes added to the deployment specification.

By default, the period between each liveness probe request is 30 seconds.
Let’s reduce it to 10 seconds to enable Kubernetes to restart our consumer,
processor-health, sooner if there are problems by modifying
application.properties (Example 13-3).

Example 13-3. Configure the liveness probe (chapter-13/processor-
health/src/main/resources/application.properties)
quarkus.kubernetes.liveness-probe.period=10s

Example 13-4 shows how to modify Processor to simulate failures.

Example 13-4. Processor to nack every eighth message received (chapter-
13/processor-health/src/main/java/org/acme/Processor.java)
@Incoming("ticks")
@Outgoing("processed")
@Acknowledgment(Acknowledgment.Strategy.MANUAL)

Message<String> process(Message<Long> message) throws Exception {

 if (count++ % 8 == 0) {

 message.nack(new Throwable("Random failure to process a
record."))
 .toCompletableFuture().join();
 return null;
 }
 String value = String.valueOf(message.getPayload());
 value += " consumed in pod (" +
InetAddress.getLocalHost().getHostName() + ")";
 message.ack().toCompletableFuture().join();

 return message.withPayload(value);
}

Use manual acknowledgment, so we can nack messages explicitly.

We need to change the method signature to use Message instead of
Long to use manual acknowledgment.

Every eighth message should be nacked, and we return a null instead.

Explicitly ack a message.

As the default failure-strategy is fail, when we nack a message,
the processing of messages fails. This message failure will cause the health
check of the consumer to also fail, triggering a container restart once the
next liveness probe runs. Refer to “Kafka on Kubernetes”, or the README
of /chapter-13, to start minikube and deploy Kafka. Then, run
m v n v e r i f y ‑D q u a r k u s . k u b e r n e t e s .d e p l o y =t r u e for each of
the three services: ticker, viewer, processor. Verify that all three services are
running with kubectl get pods.

With the services deployed, we can see the overall health check status by
accessing /q/health of a service. We get the response shown in
Example 13-5 for the processor-health service.

Example 13-5. Reactive application health check with no errors
{
 "status": "UP",
 "checks": [
 {
 "name": "SmallRye Reactive Messaging - liveness check",
 "status": "UP",
 "data": {
 "ticks": "[OK]",
 "processed": "[OK]"
 }
 },
 {
 "name": "SmallRye Reactive Messaging - readiness
check",
 "status": "UP",
 "data": {
 "ticks": "[OK]",
 "processed": "[OK]"
 }
 }
]
}

The data within the check shows the channels we’re connected to and
their respective status.

We saw, when viewing the generated deployment YAML, that there are also
/q/health/live and /q/health/ready endpoints. These represent
the liveness and readiness probes, respectively. Access them in a browser,
or via curl, to see the specific checks of each probe.

Open up the VIEWER_URL, from the terminal, in a browser. Based on the
producer we’ve defined, we will see seven messages with the same
processor pod name, before it hit the message that we nacked. There will be
a pause while Kubernetes restarts the container; then we will see another
seven messages, and this sequence repeats.

If we take a look at the pods in Kubernetes, we can see that the container
for the processor service has been restarted, as shown in Example 13-6.

Example 13-6. Use kubectl to list pods
> kubectl get pods
NAME READY STATUS
RESTARTS AGE
observability-processor-5cffd8c755-d5578 1/1 Running 2
84s
observability-ticker-bd8f6f5bb-hqtpj 1/1 Running 0
2m
observability-viewer-786dd8bc84-zbjp4 1/1 Running 0
3m

NOTE
After several restarts in a short amount of time, the pod will be in the state of
CrashLoopBackoff, which will slowly increase the delay between pod restarts. As
we don’t have a “happy” container for at least 10 minutes, we end up in a state where
the pod will not restart for a while. That’s not a problem for these examples, but is worth
noting.

When viewing the health checks at /q/health, it can be difficult to
“catch” the failed health check before the container restarts. To make it
easier, we can modify the quarkus.kubernetes.liveness-
probe.period of the processor service to a large period of time, like

100s. With a longer period, we give ourselves a chance to view the failed
health check before the container restarts, as shown in Example 13-7.

Example 13-7. Reactive application health check with errors
{
 "status": "DOWN",
 "checks": [
 {
 "name": "SmallRye Reactive Messaging - liveness check",
 "status": "DOWN",

 "data": {
 "ticks": "[KO] - Random failure to process a
record.",
 "processed": "[KO] - Multiple exceptions caught:
 [Exception 0]
java.util.concurrent.CompletionException:
 java.lang.Throwable: Random failure to
process a record.
 [Exception 1]
io.smallrye.reactive.messaging.ProcessingException:
 SRMSG00103: Exception thrown when calling the
method
 org.acme.Processor#process"
 }
 },
 {
 "name": "SmallRye Reactive Messaging - readiness
check",
 "status": "UP",
 "data": {
 "ticks": "[OK] - no subscription yet,
 so no connection to the Kafka broker yet"
 "processed": "[OK]"
 }
 }
]
}

Liveness check is DOWN, causing the entire health check to be DOWN.

The ticks channel is not OK, showing the failure from the exception
sent in nack.

There is no subscription, because the process method has failed and
is no longer subscribing. The ticks channel is still OK; it’s just
waiting for a subscription.

We can now check the health of our applications and utilize them in the
container orchestration of Kubernetes. Next, we see how our reactive
applications can generate metrics for monitoring and utilize those metrics
for autoscaling.

Metrics with Messaging
Metrics are a critical part of our applications, even more so with reactive
applications. Metrics can feed monitoring systems for alerting operations
and SREs of problems in applications. Before delving into how we can do
that, let’s explain some monitoring-related terms:

SLA (service-level agreement)

A contract between a service provider and its customers as to the
availability, performance, etc. of the service.

SLO (service-level objective)

A goal for a service provider to reach. SLOs are internal goals used to
help prevent a service provider from breaking an SLA with its
customers. Developers define rules, or thresholds, for the SLOs of a
service to alert Operations or SREs when we’re at risk of breaking
SLAs.

SLI (service-level indicator)

A specific measurement used in measuring an SLO. These are the
metrics we generate from a reactive application.

If an organization doesn’t define SLAs, SLOs, and SLIs, that’s OK. It’s still
beneficial to gather metrics from a reactive application to at least define the

thresholds indicating when everything is OK and when it is not. A “good”
metric for a particular reactive application can differ depending on the
specific use case.

However, all reactive systems should be gathering and monitoring certain
metrics:

Queue length

If the queue of messages waiting to be processed is too large, it impacts
the speed at which messages flow through the system. If messages
aren’t flowing fast enough, a time-sensitive reactive application, such as
stock trading, will see delays and problems as a result. High queue
length is an indication we need to increase the number of consumers
within a consumer group. It may also indicate that we need to increase
the number of partitions for a topic if we’re already at the maximum
number of consumers.

Processing time

When a consumer takes too long to process a message, it will likely
cause an increase in queue length. Long processing times can also
indicate other issues with a reactive application, dependent on what
work a consumer does. We could see network latency issues because of
another service we’re interacting with, database contention, or any other
number of possible problems.

Messages processed in a time window

This metric provides an overall understanding of the throughput of a
reactive application. Knowing the actual number of messages processed
is likely less important than monitoring variations. A significant drop
could indicate a problem in messages not being received, or large
numbers of customers leaving the application too early.

Ack-to-nack ratio

We want this metric to be as high as possible, as it means we’re not
seeing many failures in the messages we process. If too many failures
occur, we need to investigate whether it’s due to upstream systems
providing invalid data, or failures in the processor to handle different
data types properly.

All of these metrics we’ve discussed are great for detecting possible
bottlenecks in a reactive application. We may see several of these metrics
go in a bad direction at the same time—definitely a sign we have a problem
in processing messages! We can also define basic rules for detecting
bottlenecks. When using HTTP, or request/reply, we should check the
response time and success rate. High response times or low success rates
would indicate a problem needing investigation. For messaging
applications, the number of in-flight, not yet processed, messages is a key
measurement to track.

We’ve covered a lot of theory, but what do we need to do to capture these
metrics? The key change is to add the dependency for Micrometer, and in
this case we want the metrics available in the Prometheus format.

Micrometer is the preferred metrics solution for Quarkus because it offers
key benefits for developers:

Ability to switch the monitoring backend from Prometheus, to
Datadog, to Splunk, to New Relic, and many others, without
needing to modify existing code-creating metrics. All that’s
required is a dependency change to use a different registry!

Provides MeterBinder implementations for many of the
frameworks used in Quarkus. These provide metrics for
frameworks such as JAX-RS, Vert.x, and Hibernate, without
developers needing to specifically code metrics themselves.

To expose the metrics in the Prometheus format, add the dependency in
Example 13-8 to your application.

1

Example 13-8. Dependency for the Micrometer Prometheus support
(chapter-13/viewer/pom.xml)
<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-micrometer-registry-prometheus</artifactId>
</dependency>

With this dependency, we have an endpoint showing all the metrics of an
application at /q/metrics. When using Prometheus in Kubernetes, we
then need only a ServiceMonitor to inform Prometheus of this
endpoint for it to scrape the metrics. For this example, we won’t be utilizing
Prometheus and Grafana, two common tools for monitoring metrics. Plenty
of documentation online explains how to set them up in Kubernetes for
readers to view the metrics in these tools.

If minikube is not still running from the earlier health example, follow the
instructions in the README of /chapter-13 to start it, deploy Kafka, and
build and deploy the three services. Verify that they’re running with
kubectl get pods, and then open the URL of the viewer. Once
you’ve seen messages appear, open up the metrics endpoint for the
processor. The URL can be found with minikube service --url
observability-processor and then add /q/metrics to the end.

You will see metrics such those shown in Example 13-9.

Example 13-9. Sample of metrics for a reactive application
HELP kafka_consumer_fetch_manager_records_consumed_total The
total number of
records consumed
kafka_consumer_fetch_manager_records_consumed_total \
 {client_id="kafka-consumer-ticks",kafka_version="2.8.0",} 726.0
HELP kafka_consumer_response_total The total number of responses
received
kafka_consumer_response_total
 {client_id="kafka-consumer-ticks",kafka_version="2.8.0",} 123.0
HELP kafka_consumer_fetch_manager_fetch_latency_avg The average
time taken for
a fetch request.
kafka_consumer_fetch_manager_fetch_latency_avg \
 {client_id="kafka-consumer-ticks",kafka_version="2.8.0",}
485.6222222222222

HELP kafka_consumer_fetch_manager_records_consumed_rate
The average number of records consumed per second
kafka_consumer_fetch_manager_records_consumed_rate \
 {client_id="kafka-consumer-ticks",kafka_version="2.8.0",}
15.203870076019351
HELP kafka_consumer_coordinator_assigned_partitions
The number of partitions currently assigned to this consumer
kafka_consumer_coordinator_assigned_partitions \
 {client_id="kafka-consumer-ticks",kafka_version="2.8.0",} 3.0
HELP kafka_producer_response_rate The number of responses
received per second
kafka_producer_response_rate \
 {client_id="kafka-producer-processed",kafka_version="2.8.0",}
3.8208002687156233
HELP kafka_producer_request_rate The number of requests sent per
second
kafka_producer_request_rate \
 {client_id="kafka-producer-processed",kafka_version="2.8.0",}
3.820639852212612
HELP kafka_producer_record_send_rate The average number of
records sent per second.
kafka_producer_record_send_rate \
 {client_id="kafka-producer-processed",kafka_version="2.8.0",}
15.230982251500022
HELP kafka_producer_record_send_total The total number of records
sent.
kafka_producer_record_send_total \
 {client_id="kafka-producer-processed",kafka_version="2.8.0",}\
 726.0
HELP kafka_producer_response_total The total number of responses
received
kafka_producer_response_total \
 {client_id="kafka-producer-processed",kafka_version="2.8.0",} \
 182.0
HELP kafka_producer_request_total The total number of requests
sent
kafka_producer_request_total \
 {client_id="kafka-producer-processed",kafka_version="2.8.0",} \
 182.0
HELP kafka_producer_request_latency_avg The average request
latency in ms
kafka_producer_request_latency_avg \
 {client_id="kafka-producer-processed",kafka_version="2.8.0",}
10.561797752808989

Example 13-9 shows a condensed version of the metrics generated from the
processor service, as the complete version would require much more space!

Metrics would also enable us to develop a Kubernetes operator to autoscale
the consumers of a reactive system. The operator can use the Kafka admin
API to measure the number of messages that have not been consumed. If
there are fewer consumers than the number of partitions, the operator can
scale up the number of replicas for a consumer to process more messages in
the same time. When the number of un-consumed messages drops below a
threshold, the operator can then scale back consumers from within the
consumer group.

Distributed Tracing with Messaging
Distributed tracing is an extremely important part of observability for
reactive systems. When we have a single application deployment, all the
interactions usually occur within the same process. Additionally, reactive
systems have the complexity of one service not knowing where, or often
when, another service will consume the message they’ve created. With
nonreactive systems, we’re usually able to infer the connections by reading
the code to see where outgoing HTTP calls are made. That is not possible
with a reactive system built around messaging.

This is where distributed tracing shines, connecting the many dots—
services—in a system across space and time to provide an overall
perspective on the message flows. For the example, we will be using the
OpenTelemetry extension, with an exporter to send the captured traces to
Jaeger.

First, though, let’s cover some terminology:

Span

A single operation within a trace (defined next). Many spans can be
created within a single service, depending on the level of detail you
want to collect. A span can have parent or child spans associated with it,
representing a chain of execution.

Trace

2

A collection of operations, or spans, representing a single request
processed by an application and its components.

When using Reactive Messaging in Quarkus for Kafka or AMQP, spans are
automatically created when messages are consumed and when they’re
produced. This is done by the extension propagating the existing trace and
span into the headers of any produced message, which is extracted when
consuming it. This process allows OpenTelemetry to chain together the
spans across multiple services in different processes to provide a singular
view of the flow with Jaeger.

Let’s update the example for distributed tracing! We add the Quarkus
extension for OpenTelemetry to each service in pom.xml, as shown in
Example 13-10.

Example 13-10. Jaeger exporter for OpenTelemetry dependency
<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-opentelemetry-exporter-jaeger</artifactId>
</dependency>

For each service to be able to send the gathered spans to Jaeger, we also
need to update application.properties for each service with the
URL of the collector (Example 13-11).

Example 13-11. Jaeger collector endpoint
quarkus.opentelemetry.tracer.exporter.jaeger.endpoint=
http://simplest-collector.jaeger:14250

To simplify the deployment of Jaeger, we will deploy the all-in-one image,
as shown in Example 13-12.

Example 13-12. Install Jaeger all-in-one
kubectl create ns jaeger
kubectl apply -f deploy/jaeger/jaeger-simplest.yaml -n jaeger

Details of the Kubernetes deployment and service for Jaeger can be
examined by reviewing /deploy/jaeger/jaeger-simplest.yaml. The key point

to note is the service exposing port 14250 for collecting spans, which is the
port we set in Example 13-11.

Retrieve the URL for the Jaeger UI, minikube service --url
jaeger-ui -n jaeger, and open it in a browser. We see the initial
page to search for traces, but without any services in the drop-down to
search for, as nothing is running yet.

Follow the README for /chapter-13 to rebuild and redeploy the three
services: ticker, processor, viewer. Once they’re deployed, open up the
viewer URL, minikube service --url observability-
viewer, in a browser to begin receiving messages.

Once messages are appearing, go back to the Jaeger UI and refresh the
page. There will now be four services to select from; choose
observability-ticker, the first service in the reactive stream. Click
the Find Traces button to retrieve the traces for the service. Select one of
the traces from the list to open a view containing all the details of the spans
(Figure 13-1).

Figure 13-1. Jaeger UI showing reactive system trace

In this example, we have four spans within a single trace. There is a span
for each step in the reactive stream that first produces a message from the
ticker services, then consumes and produces a message in the processor
service, and finally consumes the message in the viewer service. In the
Jaeger UI, explore the data captured within the spans for each step. In

Figure 13-1, we see the details of the ticks send span, including the
type of span, producer, and the details of where the message was sent.

NOTE
Though ticks send is grammatically incorrect for past tense, the name of the span is
dictated by the semantic conventions of OpenTelemetry in
blob/main/specification/trace/semantic_conventions/messaging.md#span-name. The
span name is a combination of the destination, ticks, and the operation type, send.

So far, you’ve seen how to utilize traces when message flows are almost
instantaneous between services. However, a benefit of reactive systems is
being able to decouple components within the system according to time. In
other words, a message flow can take hours, days, weeks, months, or even
years to be completed, with messages waiting in a topic, for instance, for a
lengthy amount of time before being consumed. It’s also possible for the
same message to be processed by a different consumer, such as an audit
process, some time after it was originally consumed. Let’s simulate a
delayed scenario and see how the traces work.

To start, let’s clear out the existing services with kubectl delete all
--all -n default. To ensure that we’re starting with a clean slate, we
should also delete and re-create the existing Kafka topics, as shown in
Example 13-13.

Example 13-13. Update the application deployments
kubectl delete kafkatopics -n kafka processed
kubectl delete kafkatopics -n kafka ticks
kubectl apply -f deploy/kafka/ticks.yaml
kubectl apply -f deploy/kafka/processed.yaml

To simulate delayed processing, let’s deploy the ticker service and then
remove it again after 20–30 seconds to have a reasonable number of
messages produced (Example 13-14).

Example 13-14. Deploy and remove the ticker application
cd ticker
mvn verify -Dquarkus.kubernetes.deploy=true

After 20-30 seconds
kubectl delete all --all -n default

Search again for traces of the observability-ticker service and
you’ll see traces with only a single span. The only span in every trace is the
one from the ticker service. For the processor to receive messages from
before it was running, we need to update application.properties
to indicate we want the earliest messages; see Example 13-15.

Example 13-15. Configure the first offset to read for new consumer groups
mp.messaging.incoming.ticks.auto.offset.reset=earliest

With the change made, deploy the viewer and processor services, and open
the viewer URL in a browser to receive the messages. Once the messages
have been received by the viewer, go back to the Jaeger UI and search for
the traces again. We see the traces that previously had only a single span
now have all four spans! We successfully processed messages after some
time, and Jaeger was able to associate the spans with the right trace.

In a real production system, whether the preceding process works would
depend on the retention of tracing data. If we retain tracing data for a year
but want to process messages older than that, Jaeger will consider them as
traces with only the spans from today. Any spans from the same trace will
no longer be present for Jaeger to properly link them for visualization.

Summary
This chapter detailed the importance of observability for reactive systems in
Kubernetes. Observability is the key to ensuring the resiliency and elasticity
of reactive systems. Health checks help systems to be resilient, by
triggering the restart of services that are not healthy. Specific metrics of a
reactive system can be used to provide elasticity by scaling up and down
consumers as needed, dependent on message queue size, for instance.

We covered observability in Kubernetes with health checks, metrics, and
distributed tracing. What we’ve covered only scratches the surface of
observability for reactive systems, but provides sufficient detail for

developers to delve deeper themselves. Though we can provide general
guidelines for observability of reactive systems, specifics of what is desired
will depend heavily on the use cases of the system.

We’ve reached the end of Part IV, where we covered patterns of Reactive
Messaging and its support of event buses, connecting messages to/from
HTTP endpoints, and observing reactive systems.

1 Micrometer provides a facade over the instrumentation clients of popular monitoring systems,
such as Prometheus.

2 OpenTelemetry is a CNCF project combining OpenCensus and OpenTracing into a single
project for the collection of telemetry signals. Jaeger is a CNCF project for collecting and
visualizing traces.

https://micrometer.io/
https://opentelemetry.io/
https://www.jaegertracing.io/

Conclusion
We have come to the end of this book. We have covered the principles
behind reactive architectures and the technical practices to implement them
with Quarkus.

A Brief Summary
In Part II, we explored reactive architectures. Reactive systems (Chapter 4)
propose a different way to build distributed systems (Chapter 3). The use of
message passing between the various components forming the system
enables elasticity and resilience, two characteristics essential for modern
applications deployed in the cloud or running in containers. But that’s not
all. Reactive applications must also handle the workload in a timely fashion
and use resources efficiently. This last point pushes reactive applications to
use nonblocking I/O and avoids creating too many OS threads (“The Role
of Nonblocking Input/Output”). The resulting execution model provides
better response time and improves memory consumption. However, it does
not come for free. To write such an application, you must change the way
you write code. You must never block the I/O threads and so must write
your code using a continuation-passing style. In this book, we have looked
at reactive programming and Mutiny (Chapter 5, Chapter 7).

We also covered Quarkus, a stack to write applications in Java tailored for
the cloud and containers (Chapter 2). Quarkus runs on top of a reactive
engine dealing with the network and nonblocking I/O. In addition, Quarkus
offers a large set of reactive APIs. The combination of the engine and the
API creates a breeding ground to build reactive applications (Chapter 6).
Quarkus provides reactive APIs to serve HTTP endpoints (Chapter 8), as
well as to interact with data sources (Chapter 9) and consume HTTP
services (Chapter 12).

Quarkus also provides the connective tissue for building reactive systems
(Chapter 10). This book covered Kafka and AMQP 1.0, but many more
possibilities are available (Chapter 11).

Quarkus lets you design, build, and operate reactive systems. Observability
is a key component for distributed systems and not a feature to be tacked on
at the end of development (Chapter 13). Reactive systems are distributed
systems, and failures are inevitable. Being able to observe, detect issues,
emit alerts, and react is essential to keep the system running and serve its
purpose.

Is That All?
This book did not offer a silver-bullet solution to build reactive systems. We
have covered the principles and the building blocks to build them. But, as
with everything in software, the ideal solutions always depend on the
problem. We’ve showed you a toolbox, but it’s up to you to select the best
tool for your application, assemble your system following the reactive
principles, and profit.

Throughout this book, we have shown many features to implement reactive
applications and systems with Quarkus, but we’ve only scratched the
surface. Quarkus offers a lot more reactive features.

We explained how you can deal with HTTP in a reactive fashion. But there
are alternatives to HTTP. gRPC, for example, is a secure, polyglot, and
performant RPC protocol that can replace most HTTP interactions. It uses a
contract-first approach (written using Protobuf), and supports unidirectional
and bidirectional streams. Quarkus lets you implement gRPC services and
consume them. It relies on the reactive engine and therefore offers excellent
performance and resource utilization. In addition, it integrates with the
Mutiny API.

We have also covered the data space, explaining how you can interact with
various databases from within your Quarkus application. Quarkus offers
reactive access to databases such as PostgreSQL, MySQL, Db2, SQL
Server, and Oracle. Quarkus also provides reactive APIs to interact with
many NoSQL databases such as Neo4j, Cassandra, Redis, and MongoDB.

Finally, to build reactive systems, you often need a message broker, or a
way to exchange messages asynchronously. In this book, we used Apache
Kafka and Apache ActiveMQ. Quarkus offers a lot more. You can integrate
with MQTT, RabbitMQ, or JMS. Quarkus can be combined with Apache
Camel to interact with virtually any existing system without preventing
reactiveness.

In other words, Quarkus offers a complete toolbox that lets you build
reactive applications for many contexts and use cases. You have endless
possibilities.

The Future of Reactive Systems
It’s impossible to predict the future with a high degree of certainty. The best
we can do is track meaningful trends and prepare for change. The following
are some trends that we think are important to track.

HTTP is evolving. HTTP/3 comes with a better flow-control approach and
parallel request transmission, improving overall communication across the
system.

The use of message brokers is growing tremendously. New brokers are
emerging, such as Apache Pulsar, NATS, and KubeMQ. The last two are
built with Kubernetes in mind and integrate well in such an environment.
Several revolutionizing projects are changing how to process messages and
derive knowledge from event streams. Apache Pinot, to cite one, allows
querying data coming from event streams such as Apache Kafka.

As in many other domains, the rise of machine learning and AI also
influence the construction of reactive systems. Machine learning algorithms
can help understand the system and adapt it to handle failures or peaks of
demands. Already today, you can see Kubernetes operators collecting
metrics about a system and adapting it to face the current workload.

At the code level, Project Loom is promising. It will drastically reduce the
complexity of writing efficient reactive applications. Approaches to express

structured concurrency such as Ballerina and Joli are still niched but may
become more popular shortly.

There are many more trends. Keep an eye on the technologies that embrace
the reactive principles we explained in this book.

The End of the Beginning
You now have all the tools to build better distributed systems that are more
robust and more efficient. Quarkus, a Java stack tailored for the cloud, will
let you embrace the reactive system paradigm smoothly, one step at a time.
Go ahead!

We hope you enjoyed this journey. Now it’s time for you to start a new one
by using what you’ve learned.

Index

Symbols

@Blocking annotation, Blocking Processing

@Channel annotation, Consuming Messages

@Incoming annotation, Consuming Messages

@Outgoing annotation, Producing Messages

A

accessing data (see data access)

ack (acknowledged successfully), Acknowledgments

acknowledgment

in message-based application, Message and Acknowledgment-
Message and Acknowledgment

negative, Failures and Negative Acknowledgment

acknowledgment strategies, Acknowledgment strategies, Acknowledgment
and Redelivery

acknowledgments (messaging system element), Acknowledgments

ahead of time (AOT) compilation, The Quarkus Way, Going Native

AMQP (Advanced Message Queuing Protocol)

acknowledgment and redelivery, Acknowledgment and Redelivery

AMQP 1.0, Backpressure in Distributed Systems, AMQP 1.0

building reactive systems with, Building Reactive Systems with
AMQP-AMQP on Kubernetes

credit-flow backpressure protocol, Credit-Flow Backpressure Protocol

elasticity patterns, Elasticity Patterns

as event bus tool, Kafka or AMQP: Picking the Right Tool

on Kubernetes, AMQP on Kubernetes

point-to-point communication, Point-to-Point Communication-Point-
to-Point Communication

publish/subscribe model, Publish/Subscribe

anycast (queue), Point-to-Point Communication

AOT (ahead of time) compilation, The Quarkus Way, Going Native

Apache Kafka (see Kafka)

Apache Maven, Getting You Ready

API gateways, Building API Gateways with the RESTEasy Reactive
Client-Building API Gateways with the RESTEasy Reactive Client

asynchronous actions, chaining with Mutiny, Chaining Asynchronous
Actions-Chaining Asynchronous Actions

asynchronous code, Reactive Programming: Taming the Asynchronicity-
Summary

basics, Asynchronous Code and Patterns-Asynchronous Code and
Patterns

futures, Using Futures

Project Loom, Project Loom: Virtual Threads and Carrier Threads-
Project Loom: Virtual Threads and Carrier Threads

reactive programming and, Reactive Programming-Reactive
Programming Libraries

Reactive Streams and need for flow control, Reactive Streams and the
Need for Flow Control-Backpressure in Distributed Systems

asynchronous message passing

reactive systems and, Reactive Systems 101

requirements for, The Reactive Landscape

time decoupling and, Time Decoupling

asynchronousity, event-driven software and, Reactive Software Is Not New

B

backpressure, What Is Backpressure?

credit-flow backpressure protocol, Credit-Flow Backpressure Protocol

defined, What Is Backpressure?

distributed systems and, Backpressure in Distributed Systems

Mutiny and flow control, Mutiny and Flow Control

Reactive Streams, Introducing Reactive Streams-Introducing Reactive
Streams

Reactive Streams and, The Reactive Landscape

blocking I/Os

data access and, The Problem with Data Access-The Problem with
Data Access

nonblocking I/O versus, Blocking Network I/O, Threads, and
Concurrency-Blocking Network I/O, Threads, and Concurrency

blocking methods, reactive REST client and, Blocking and Nonblocking

buffers, Buffering Items

bulkheads, Bulkheads and Circuit Breaker

Byzantine failures, The Dark Side of Distributed Systems

C

callbacks, The Reactive Landscape

carrier threads, Project Loom: Virtual Threads and Carrier Threads-Project
Loom: Virtual Threads and Carrier Threads

CDC (change data capture), Data-Related Events and Change Data
Capture-Using Debezium to Capture Change, Using Debezium to Capture
Change

cgroups (control groups), Java on the Cloud

chaining asynchronous actions, Chaining Asynchronous Actions-Chaining
Asynchronous Actions

channels, defined, Channels and Messages

circuit breakers, Bulkheads and Circuit Breaker

cloud native applications

distributed systems and, The New Kids on the Block: Cloud Native
and Kubernetes Native Applications-The New Kids on the Block:
Cloud Native and Kubernetes Native Applications

false assumptions related to cloud and Kubernetes, Fallacies of
Distributed Computing in a Kubernetes World-Fallacies of Distributed
Computing in a Kubernetes World

Reactive architectures and, Why Are Reactive Architectures So Well-
Suited for Cloud Native Applications?

collections, Collecting Items

combining items, Combining and Joining Items-Combining and Joining
Items

commands

events versus, Commands Versus Events: An Example-Commands
Versus Events: An Example

in reactive systems, Commands

commit strategies, Commit strategies

completion event, Streams

CompletionStage, Using Futures

connectors, Connectors

consumer groups (Kafka), Apache Kafka, Point-to-Point Communication

container density, Quarkus Example

container image, The New Kids on the Block: Cloud Native and Kubernetes
Native Applications

container orchestration (see Kubernetes)

containers, The New Kids on the Block: Cloud Native and Kubernetes
Native Applications-The New Kids on the Block: Cloud Native and
Kubernetes Native Applications, The New Kids on the Block: Cloud Native
and Kubernetes Native Applications

continuations, How Does Nonblocking I/O Work?

CPS (continuation-passing style), How Does Nonblocking I/O Work?

credit-flow backpressure protocol, Credit-Flow Backpressure Protocol

D

data access, Accessing Data Reactively-Summary

blocking I/O problems, The Problem with Data Access-The Problem
with Data Access

data-related events and change data capture, Data-Related Events and
Change Data Capture-Using Debezium to Capture Change

Hibernate ORM and, Using a Reactive ORM: Hibernate Reactive-
Using a Reactive ORM: Hibernate Reactive

interacting with Redis, Interacting with Redis-Interacting with Redis

nonblocking interactions with relational databases, Nonblocking
Interactions with Relational Databases

NoSQL, What About NoSQL?-Interacting with Redis

Dead-Letter Queue strategy, Dead-letter queue

Debezium, Using Debezium to Capture Change

deployment (Quarkus), Kubernetes with Quarkus in 10 Minutes

design principles of reactive systems, Design Principles of Reactive
Systems-Summary

anatomy of reactive applications, Anatomy of Reactive Applications-
Anatomy of Reactive Applications

characteristics of reactive systems, Reactive Systems 101-Reactive
Systems 101

commands, Commands

commands versus events, Commands Versus Events: An Example-
Commands Versus Events: An Example

destinations and space decoupling, Destinations and Space
Decoupling-Destinations and Space Decoupling

events, Events

nonblocking I/O, The Role of Nonblocking Input/Output-Reactor
Pattern and Event Loop

time decoupling, Time Decoupling

destinations, in reactive systems, Destinations and Space Decoupling-
Destinations and Space Decoupling

Dev Services, Using a Reactive ORM: Hibernate Reactive

distributed systems

backpressure in, Backpressure in Distributed Systems

basics, What’s a Distributed System?-What’s a Distributed System?

cloud native applications, The New Kids on the Block: Cloud Native
and Kubernetes Native Applications-The New Kids on the Block:
Cloud Native and Kubernetes Native Applications

defined, What’s a Distributed System?

failures in, The Dark Side of Distributed Systems

false assumptions about, Fallacies of Distributed Computing in a
Kubernetes World-Fallacies of Distributed Computing in a Kubernetes
World

Kubernetes native applications, The New Kids on the Block: Cloud
Native and Kubernetes Native Applications-The New Kids on the
Block: Cloud Native and Kubernetes Native Applications

synchronous communication and time-coupling, A Question of
Timing: The Synchronous Communication Drawback-A Question of
Timing: The Synchronous Communication Drawback

distributed tracing, Distributed Tracing with Messaging-Distributed Tracing
with Messaging

Docker, Getting You Ready, Going Native

E

Eclipse Vert.x, Unification of Reactive and Imperative

"Eight Fallacies of Distributed Computing", Fallacies of Distributed
Computing in a Kubernetes World-Fallacies of Distributed Computing in a
Kubernetes World

elasticity

AMQP and, Elasticity Patterns

defined, Reactive Systems 101

Kafka partition mechanism and, Elasticity Patterns

emitters, Producing Messages

epoll, How Does Nonblocking I/O Work?

event bus, The Event Bus: The Backbone-Summary

building reactive systems with AMQP, Building Reactive Systems
with AMQP-AMQP on Kubernetes

building reactive systems with Kafka, Building Reactive Systems with
Kafka-Kafka on Kubernetes

Kafka versus AMQP, Kafka or AMQP: Picking the Right Tool

event loop, Reactor Pattern and Event Loop, The Reactive Model

event loop thread, Anatomy of Reactive Applications

event-driven architecture, Event-Driven Architecture with Quarkus

event-driven software, Reactive Software Is Not New

events

commands versus, Commands Versus Events: An Example-Commands
Versus Events: An Example

failures as, Recovering from Failure

observing with Mutiny, Observing Events

reactive systems and, Events

streams and, Streams

transforming with Mutiny, Transforming Events

eventual consistency, Data-Related Events and Change Data Capture

F

Fail Fast acknowledgment strategy, Acknowledgment strategies

fail-stop failures, The Dark Side of Distributed Systems

failure (event), Streams

failure handling

acknowledgment strategies, Acknowledgment strategies

circuit breakers/bulkheads, Bulkheads and Circuit Breaker

commit strategies, Commit strategies

dead-letter queue, Dead-letter queue

distributed systems and, The Dark Side of Distributed Systems

fallback, Fallback-Fallback

Kafka and, Dealing with Failures-Dead-letter queue

negative acknowledgment and, Failures and Negative
Acknowledgment

operators and, Operators

Quarkus and, Dealing with Failure and Customizing the Response-
Dealing with Failure and Customizing the Response

reactive REST client and, Handling Failures-Bulkheads and Circuit
Breaker

recovery with Mutiny, Recovering from Failure

retries, Retries

retrying processing, Retrying Processing

time-out, Time-out

fallback, Fallback-Fallback

flow control

backpressure, What Is Backpressure?

buffering, Buffering Items

dropping items, Dropping Items

Mutiny and, Mutiny and Flow Control

Reactive Streams, Introducing Reactive Streams-Introducing Reactive
Streams

Reactive Streams and, Reactive Streams and the Need for Flow
Control-Backpressure in Distributed Systems

frameworks

Quarkus versus traditional, The Quarkus Way-The Quarkus Way

time to first request, Java on the Cloud

futures, Using Futures

G

GraalVM, Going Native-Going Native

H

health checks, Health with Messaging-Health with Messaging

heap size

Quarkus, Quarkus Example

Thorntail, Thorntail Example

Hibernate Reactive, Using a Reactive ORM: Hibernate Reactive-Using a
Reactive ORM: Hibernate Reactive, Using Debezium to Capture Change,
Putting Everything Together

high watermark offset, Apache Kafka

hot partition (Kafka), Apache Kafka

HTTP, HTTP with Reactive in Mind-Summary

asynchronous endpoints returning Uni, Asynchronous Endpoints
Returning Uni-Asynchronous Endpoints Returning Uni

dealing with failure/customizing the response, Dealing with Failure
and Customizing the Response-Dealing with Failure and Customizing
the Response

Reactive Messaging example, Putting Everything Together-Putting
Everything Together

reactive score, Reactive Score

request-handling basics, The Journey of an HTTP Request

RESTEasy Reactive and, Say Hello to RESTEasy Reactive!-Say Hello
to RESTEasy Reactive!

RESTEasy Reactive benefits, What’s the Benefit?-What’s the Benefit?

streaming data, Streaming Data-Using Server-Sent-Events

HTTP endpoints

building API gateways with RESTEasy Reactive client, Building API
Gateways with the RESTEasy Reactive Client-Building API Gateways
with the RESTEasy Reactive Client

connecting with, Reactive REST Client: Connecting with HTTP
Endpoints-Summary

failure handling, Handling Failures-Bulkheads and Circuit Breaker

interacting with, Interacting with an HTTP Endpoint-Interacting with
an HTTP Endpoint

reactive REST client and, The REST Client Reactive-Invoking the
Service

using the REST client in messaging applications, Using the REST
Client in Messaging Applications-Using the REST Client in
Messaging Applications

I

idempotence, A Question of Timing: The Synchronous Communication
Drawback

Ignore acknowledgment strategy, Acknowledgment strategies

Ignore commit strategy, Commit strategies

imperative methods, Blocking and Nonblocking

imperative model, The Imperative Model-The Reactive Model, Unification
of Reactive and Imperative-Unification of Reactive and Imperative

in-flight messages, Backpressure and Performance Considerations

inbound connector, Connectors

intermittent failures, The Dark Side of Distributed Systems

invoke method (Mutiny), Observing Events

item (event), Streams

J

Jaeger, Distributed Tracing with Messaging

Jib, Kubernetes with Quarkus in 10 Minutes

JMS (Java Message Service), From Reactive Applications to Reactive
Systems

joining items (Mutiny), Combining and Joining Items-Combining and
Joining Items

JSON array, streaming, Streaming JSON Array-Streaming JSON Array

K

Kafka

about, Apache Kafka-Apache Kafka

backpressure/performance considerations, Backpressure in Distributed
Systems, Backpressure and Performance Considerations

building reactive systems with, Building Reactive Systems with
Kafka-Kafka on Kubernetes

elasticity patterns, Elasticity Patterns

as event bus tool, Kafka or AMQP: Picking the Right Tool

failure handling, Dealing with Failures-Dead-letter queue

installing, Kafka on Kubernetes

on Kubernetes, Kafka on Kubernetes-Kafka on Kubernetes

point-to-point communication model, Point-to-Point Communication

publish/subscribe model, Publish/Subscribe

Kubernetes

AMQP on, AMQP on Kubernetes

deploying a Quarkus application in, Kubernetes with Quarkus in 10
Minutes-Kubernetes with Quarkus in 10 Minutes

deploying to, Getting You Ready

false assumptions related to cloud and Kubernetes, Fallacies of
Distributed Computing in a Kubernetes World-Fallacies of Distributed
Computing in a Kubernetes World

health checks with messaging, Health with Messaging-Health with
Messaging

Kafka on, Kafka on Kubernetes-Kafka on Kubernetes

location transparency, Destinations and Space Decoupling

running an application with, The New Kids on the Block: Cloud
Native and Kubernetes Native Applications-The New Kids on the
Block: Cloud Native and Kubernetes Native Applications

L

Latest commit strategy, Commit strategies

lazy initialization, Java on the Cloud

leader partition (Kafka), Apache Kafka

lists, collecting items for, Collecting Items

liveness probe, Health with Messaging

location transparency, Destinations and Space Decoupling

Loom, Project Loom: Virtual Threads and Carrier Threads-Project Loom:
Virtual Threads and Carrier Threads

M

Maven, Getting You Ready

message queues, Commands Versus Events: An Example

message-based applications, building, Building Message-Based
Applications-Retrying Processing

failures and negative acknowledgment, Failures and Negative
Acknowledgment

message and acknowledgment, Message and Acknowledgment-
Message and Acknowledgment

messages

consuming, Consuming Messages-Consuming Messages

defined, Messages, Channels and Messages

idempotence, A Question of Timing: The Synchronous
Communication Drawback

independence of system components and, Commands Versus Events:
An Example

in message-based applications, Message and Acknowledgment-
Message and Acknowledgment

processing, Processing Messages

producing, Producing Messages-Producing Messages

reactive systems and, Messages

messaging

distributed tracing with, Distributed Tracing with Messaging-
Distributed Tracing with Messaging

health checks with, Health with Messaging-Health with Messaging

metrics with, Metrics with Messaging-Metrics with Messaging

using the REST client in messaging applications, Using the REST
Client in Messaging Applications-Using the REST Client in
Messaging Applications

minikube, Kubernetes with Quarkus in 10 Minutes-Kubernetes with
Quarkus in 10 Minutes

monitoring (see observability)

Multi class (Mutiny), Uni and Multi-Uni and Multi

combining Multi operations, Combining and Joining Items

Reactive Streams backpressure protocol and, Mutiny and Flow Control

streaming data and, Streaming Data

multicast (queue), Publish/Subscribe

multireactor pattern, Reactor Pattern and Event Loop

Mutiny, Unification of Reactive and Imperative, Mutiny: An Event-Driven
Reactive Programming API-Summary

basics, A Reactive Programming Model

chaining asynchronous actions with, Chaining Asynchronous Actions-
Chaining Asynchronous Actions

collecting items with, Collecting Items

combining/joining items, Combining and Joining Items-Combining
and Joining Items

flow control, Mutiny and Flow Control

observing events with, Observing Events

programming issues addressed by, Why Another Reactive
Programming Library?

Quarkus and, Mutiny Usage in Quarkus

recovering from failure, Recovering from Failure

selecting items for propagation downstream, Selecting Items

transforming events with, Transforming Events

Uni and Multi classes, Uni and Multi-Uni and Multi

unique characteristics of, What Makes Mutiny Unique?

N

nack (acknowledged negatively), Acknowledgments, Failures and Negative
Acknowledgment

native executables, Going Native-Going Native

Netty, Anatomy of Reactive Applications

nonblocking I/O

asynchronous code/patterns, Asynchronous Code and Patterns-
Asynchronous Code and Patterns

blocking I/Os versus, Blocking Network I/O, Threads, and
Concurrency-Blocking Network I/O, Threads, and Concurrency

interactions with relational databases, Nonblocking Interactions with
Relational Databases

mechanism of operation, How Does Nonblocking I/O Work?-How
Does Nonblocking I/O Work?

reactor pattern and event loop, Reactor Pattern and Event Loop-
Reactor Pattern and Event Loop

role in reactive systems, The Role of Nonblocking Input/Output-
Reactor Pattern and Event Loop

nonblocking methods, reactive REST client and, Blocking and Nonblocking

NoSQL databases, What About NoSQL?-Interacting with Redis

O

object-relational mapping (ORM), Using a Reactive ORM: Hibernate
Reactive-Using a Reactive ORM: Hibernate Reactive

observability, Observing Reactive and Event-Driven Architectures-
Summary

distributed tracing with messaging, Distributed Tracing with
Messaging-Distributed Tracing with Messaging

health with messaging, Health with Messaging-Health with Messaging

importance of, Why Is Observability Important?

metrics with messaging, Metrics with Messaging-Metrics with
Messaging

observing events with Mutiny, Observing Events

offset (Kafka), Apache Kafka

offset commit, Commit strategies

operators, reactive programming and, Operators-Operators

ORM (object-relational mapping), Using a Reactive ORM: Hibernate
Reactive-Using a Reactive ORM: Hibernate Reactive

outbound connector, Connectors

P

Panache, Using a Reactive ORM: Hibernate Reactive-Using a Reactive
ORM: Hibernate Reactive

parallel composition, Asynchronous Code and Patterns

partition (Kafka), Apache Kafka

permanent failures, The Dark Side of Distributed Systems

pipelines, Using Futures, Streams

pods, Kubernetes with Quarkus in 10 Minutes

point-to-point communication

AMQP and, Point-to-Point Communication-Point-to-Point
Communication

Kafka and, Point-to-Point Communication

poll, How Does Nonblocking I/O Work?

proactor pattern, Reactor Pattern and Event Loop, Unification of Reactive
and Imperative

Project Loom, Project Loom: Virtual Threads and Carrier Threads-Project
Loom: Virtual Threads and Carrier Threads

Prometheus, Metrics with Messaging

publish/subscribe model

AMQP and, Publish/Subscribe

Kafka and, Publish/Subscribe

Q

Quarkus

about, What About Quarkus?

basics, Introduction to Quarkus-Summary

creating your first application in, Create Your First Quarkus
Application-Create Your First Quarkus Application

deploying an application in Kubernetes, Kubernetes with Quarkus in
10 Minutes-Kubernetes with Quarkus in 10 Minutes

event-driven architecture with, Event-Driven Architecture with
Quarkus

failure handling, Dealing with Failure and Customizing the Response-
Dealing with Failure and Customizing the Response

going native, Going Native-Going Native

HTTP request handling, The Journey of an HTTP Request

Java on the cloud and, Java on the Cloud-Quarkus Example

Mutiny usage in, Mutiny Usage in Quarkus

reactive engine (see reactive engine)

RESTEasy Reactive, Say Hello to RESTEasy Reactive!-Say Hello to
RESTEasy Reactive!

sample application, Quarkus Example-Quarkus Example

traditional frameworks versus, The Quarkus Way-The Quarkus Way

R

raw streaming, Raw Streaming

Reactive

cloud native applications and, Why Are Reactive Architectures So
Well-Suited for Cloud Native Applications?

defined, What Do We Mean by Reactive?

explanation of term, Preface

foundation of ideas behind, Reactive Software Is Not New

landscape, The Reactive Landscape-The Reactive Landscape

limitations, Reactive Is Not a Silver Bullet

reactive (term), What Do We Mean by Reactive?

reactive engine, Introduction to Quarkus, Quarkus: Reactive Engine-
Summary

imperative model and, The Imperative Model-The Imperative Model

reactive model and, The Reactive Model

unification of reactive and imperative, Unification of Reactive and
Imperative-Unification of Reactive and Imperative

"The Reactive Manifesto", The Reactive Landscape, Reactive Systems 101

Reactive Messaging, Reactive Messaging: The Connective Tissue-
Summary

acknowledgments, Acknowledgments

blocking processing, Blocking Processing

building message-based applications, Building Message-Based
Applications-Retrying Processing

channels and messages, Channels and Messages

connectors, Connectors, Interacting with an HTTP Endpoint

consuming messages, Consuming Messages-Consuming Messages

event bus (see event bus)

HTTP example, Putting Everything Together-Putting Everything
Together

processing messages, Processing Messages

producing messages, Producing Messages-Producing Messages

retrying processing, Retrying Processing

stream manipulation, Stream Manipulation-Stream Manipulation

reactive methods, Blocking and Nonblocking

reactive model, The Reactive Model, Unification of Reactive and
Imperative-Unification of Reactive and Imperative

reactive ORM, Using a Reactive ORM: Hibernate Reactive-Using a
Reactive ORM: Hibernate Reactive

reactive programming, Reactive Programming-Reactive Programming
Libraries

basics, Reactive Programming-Reactive Programming Libraries

common definition, Reactive Programming

libraries, Reactive Programming Libraries

Mutiny, A Reactive Programming Model

operators, Operators-Operators

Reactive Streams and need for flow control, Reactive Streams and the
Need for Flow Control-Backpressure in Distributed Systems

streams and, Streams-Streams

reactive REST client

blocking/nonblocking methods, Blocking and Nonblocking

failure handling, Handling Failures-Bulkheads and Circuit Breaker

HTTP endpoints and, The REST Client Reactive-Invoking the Service

mapping HTTP APIs to Java interfaces, Mapping HTTP APIs to Java
Interfaces-Invoking the Service

reactive score, Reactive Score

Reactive Streams

backpressure and, The Reactive Landscape

basics, Introducing Reactive Streams-Introducing Reactive Streams

connectors and, Connectors

distributed systems and, Backpressure in Distributed Systems

flow control and, Reactive Streams and the Need for Flow Control-
Backpressure in Distributed Systems

protocol issues/solutions, Be Warned: It’s a Trap!

reactive systems, Design Principles of Reactive Systems-Summary

anatomy of reactive applications, Anatomy of Reactive Applications-
Anatomy of Reactive Applications

building with AMQP, Building Reactive Systems with AMQP-AMQP
on Kubernetes

building with Kafka, Building Reactive Systems with Kafka-Kafka on
Kubernetes

characteristics of, The Reactive Landscape-The Reactive Landscape,
Reactive Systems 101-Reactive Systems 101

commands, Commands

commands versus events, Commands Versus Events: An Example-
Commands Versus Events: An Example

design principles, Design Principles of Reactive Systems-Summary

destinations and space decoupling, Destinations and Space
Decoupling-Destinations and Space Decoupling

events, Events

nonblocking I/O, The Role of Nonblocking Input/Output-Reactor
Pattern and Event Loop

Reactive Messaging and, Reactive Messaging: The Connective Tissue-
Summary

time decoupling, Time Decoupling

reactor pattern, Reactor Pattern and Event Loop

readiness probe, Health with Messaging

record (Kafka), Apache Kafka

redelivery, AMQP and, Acknowledgment and Redelivery

Redis, Interacting with Redis-Interacting with Redis

relational databases, nonblocking interactions with, Nonblocking
Interactions with Relational Databases

replay mechanism, Commands Versus Events: An Example

resident set size (RSS), Java on the Cloud

resilience, in reactive systems, Reactive Systems 101

responsiveness, in reactive systems, Reactive Systems 101

REST client, Interacting with an HTTP Endpoint-Interacting with an HTTP
Endpoint

in messaging applications, Using the REST Client in Messaging
Applications-Using the REST Client in Messaging Applications

reactive REST client and HTTP endpoints, The REST Client Reactive-
Invoking the Service

RESTEasy Reactive

basics, Say Hello to RESTEasy Reactive!-Say Hello to RESTEasy
Reactive!

benefits of, What’s the Benefit?-What’s the Benefit?

building API gateways with RESTEasy Reactive client, Building API
Gateways with the RESTEasy Reactive Client-Building API Gateways
with the RESTEasy Reactive Client

classic RESTEasy versus, What’s the Benefit?-What’s the Benefit?

reactive score, Reactive Score

retries, A Question of Timing: The Synchronous Communication
Drawback, Retrying Processing, Retries

RSocket, Backpressure in Distributed Systems

RSS (resident set size), Java on the Cloud

RX-JS, Reactive Programming Libraries

RxPY, Reactive Programming Libraries

S

selecting items (Mutiny), Selecting Items

Selector, How Does Nonblocking I/O Work?

sequential composition, Asynchronous Code and Patterns

Server-Sent Events API (SSE), Using Server-Sent-Events-Using Server-
Sent-Events

service, defined, Kubernetes with Quarkus in 10 Minutes

SLA (service-level agreement), Metrics with Messaging

SLI (service-level indicator), Metrics with Messaging

SLO (service-level objective), Metrics with Messaging

SmallRye Mutiny (see Mutiny)

sockets, Blocking Network I/O, Threads, and Concurrency

space decoupling, Destinations and Space Decoupling-Destinations and
Space Decoupling

SSE (Server-Sent Events API), Using Server-Sent-Events-Using Server-
Sent-Events

startup probe, Health with Messaging

stream manipulation, Stream Manipulation-Stream Manipulation

streaming data

HTTP response, Streaming Data-Using Server-Sent-Events

JSON array, Streaming JSON Array-Streaming JSON Array

raw streaming, Raw Streaming

using Server-Sent Events, Using Server-Sent-Events-Using Server-
Sent-Events

streams

buffering, Buffering Items

dropping items, Dropping Items

reactive programming and, Streams-Streams

Reactive Streams, Introducing Reactive Streams-Introducing Reactive
Streams

Reactive Streams and flow control, Reactive Streams and the Need for
Flow Control-Backpressure in Distributed Systems

Strimzi project, Kafka on Kubernetes

strong consistency, Data-Related Events and Change Data Capture

subscription, Streams

synchronous calls, distributed systems and, A Question of Timing: The
Synchronous Communication Drawback-A Question of Timing: The
Synchronous Communication Drawback

T

telemetry, Why Is Observability Important?

Thorntail, Thorntail Example-Thorntail Example

threads

asynchronous code and, Asynchronous Code and Patterns-
Asynchronous Code and Patterns

blocking I/Os and, Blocking Network I/O, Threads, and Concurrency

carrier, Project Loom: Virtual Threads and Carrier Threads-Project
Loom: Virtual Threads and Carrier Threads

data access and, The Problem with Data Access

event handlers and, Anatomy of Reactive Applications

HTTP requests and, The Journey of an HTTP Request-What’s the
Benefit?

imperative programming and, The Imperative Model-The Imperative
Model, Unification of Reactive and Imperative-Unification of Reactive
and Imperative

nonblocking I/Os and, How Does Nonblocking I/O Work?

Reactive Messaging and, Blocking Processing

Reactive model and, The Reactive Model

reactive REST client and, The REST Client Reactive, Blocking and
Nonblocking

virtual, Project Loom: Virtual Threads and Carrier Threads-Project
Loom: Virtual Threads and Carrier Threads

Throttled commit strategy, Commit strategies

time decoupling, reactive systems and, Time Decoupling

time to first request, Java on the Cloud

time-coupling, distributed systems and, A Question of Timing: The
Synchronous Communication Drawback-A Question of Timing: The
Synchronous Communication Drawback

time-out, Time-out

topic (Kafka), Apache Kafka, Apache Kafka

transforming events (Mutiny), Transforming Events

transient failures, The Dark Side of Distributed Systems

U

unbounded streams, Server-Sent Events and, Using Server-Sent-Events-
Using Server-Sent-Events

Uni class (Mutiny), Uni and Multi-Uni and Multi

asynchronous endpoints returning Uni instance, Asynchronous
Endpoints Returning Uni-Asynchronous Endpoints Returning Uni

combining Uni operations, Combining and Joining Items

V

Vert.x, Anatomy of Reactive Applications, Unification of Reactive and
Imperative

managed instance, Asynchronous Endpoints Returning Uni

Quarkus reactive engine and, A Reactive Engine

Vert.x Web Client, Interacting with an HTTP Endpoint

virtual threads, Project Loom: Virtual Threads and Carrier Threads-Project
Loom: Virtual Threads and Carrier Threads

About the Authors
Clement Escoffier is Reactive architect at Red Hat. He has had several
professional lives, from academic positions to management. Currently, he is
working mainly as a Quarkus and Vert.x developer. He has been involved in
projects and products touching many domains and technologies including
OSGi, mobile app development, continuous delivery, and DevOps. His
main area of interest is software engineering—the processes, methods, and
tools that make the development of software more efficient as well as more
fun. Clement is an active contributor to many open source projects such as
Apache Felix, iPOJO, Wisdom Framework, and Eclipse Vert.x, SmallRye,
Eclipse MicroProfile, and Quarkus.

Ken Finnigan is a senior principal software engineer for Red Hat
Middleware and has been a consultant and software engineer for over 20
years with enterprises throughout the world. Ken leads the SmallRye
project, which implements the Eclipse MicroProfile specifications while
also looking to innovate with Kubernetes-native development. Ken is also
part of the team developing Quarkus to be Supersonic Subatomic Java. As
part of his work on SmallRye, Ken is heavily involved in the Eclipse
MicroProfile community to develop specifications for Java microservices in
the cloud. Ken previously served as the project lead for Thorntail and
LiveOak, along with other JBoss projects. Ken is the author of Enterprise
Java Microservices and two other books.

Colophon
The animal on the cover of Reactive Systems in Java is the African leopard
(Panthera pardus). The leopard is known for its well-camouflaged, spotted
fur as well as its predatorial prowess. Leopards are ambush predators,
meaning they pounce on their prey before it has a chance to react. Their diet
consists of antelope, gazelle, pigs, primates, and domestic livestock. Their
tremendous strength allows them to tackle prey up to 10 times their own
weight.

Leopards are vulnerable on the IUCN list, as populations are threatened by
habitat loss and fragmentation. Humans are the leopard’s primary predators,
as they’re hunted as trophy animals or killed for attacking farmers’
livestock.

Many of the animals on O’Reilly covers are endangered; all of them are
important to the world.

The cover illustration is by Karen Montgomery, based on a black-and-white
engraving from Braukhaus Lexicon. The cover fonts are Gilroy Semibold
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu
Mono.

	Preface
	Who Should Read This Book?
	What About Quarkus?
	Navigating This Book
	Getting You Ready
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	I. Reactive and Quarkus Introduction
	1. Reactive in a Nutshell
	What Do We Mean by Reactive?
	Reactive Software Is Not New
	The Reactive Landscape
	Why Are Reactive Architectures So Well-Suited for Cloud Native Applications?
	Reactive Is Not a Silver Bullet

	2. Introduction to Quarkus
	Java on the Cloud
	Thorntail Example
	Quarkus Example

	The Quarkus Way
	Create Your First Quarkus Application
	Kubernetes with Quarkus in 10 Minutes
	Going Native
	Summary

	II. Reactive and Event-Driven Applications
	3. The Dark Side of Distributed Systems
	What’s a Distributed System?
	The New Kids on the Block: Cloud Native and Kubernetes Native Applications
	The Dark Side of Distributed Systems
	Fallacies of Distributed Computing in a Kubernetes World
	A Question of Timing: The Synchronous Communication Drawback
	Summary

	4. Design Principles of Reactive Systems
	Reactive Systems 101
	Commands and Events
	Commands
	Events
	Messages
	Commands Versus Events: An Example

	Destinations and Space Decoupling
	Time Decoupling
	The Role of Nonblocking Input/Output
	Blocking Network I/O, Threads, and Concurrency
	How Does Nonblocking I/O Work?
	Reactor Pattern and Event Loop

	Anatomy of Reactive Applications
	Summary

	5. Reactive Programming: Taming the Asynchronicity
	Asynchronous Code and Patterns
	Using Futures
	Project Loom: Virtual Threads and Carrier Threads
	Reactive Programming
	Streams
	Operators
	Reactive Programming Libraries

	Reactive Streams and the Need for Flow Control
	Buffering Items
	Dropping Items
	What Is Backpressure?
	Introducing Reactive Streams
	Be Warned: It’s a Trap!
	Backpressure in Distributed Systems

	Summary

	III. Building Reactive Applications and Systems with Quarkus
	6. Quarkus: Reactive Engine
	The Imperative Model
	The Reactive Model
	Unification of Reactive and Imperative
	A Reactive Engine
	A Reactive Programming Model
	Event-Driven Architecture with Quarkus
	Summary

	7. Mutiny: An Event-Driven Reactive Programming API
	Why Another Reactive Programming Library?
	What Makes Mutiny Unique?
	Mutiny Usage in Quarkus
	Uni and Multi
	Mutiny and Flow Control
	Observing Events
	Transforming Events
	Chaining Asynchronous Actions
	Recovering from Failure
	Combining and Joining Items
	Selecting Items
	Collecting Items
	Summary

	8. HTTP with Reactive in Mind
	The Journey of an HTTP Request
	Say Hello to RESTEasy Reactive!
	What’s the Benefit?
	Asynchronous Endpoints Returning Uni
	Dealing with Failure and Customizing the Response
	Streaming Data
	Raw Streaming
	Streaming JSON Array
	Using Server-Sent-Events

	Reactive Score
	Summary

	9. Accessing Data Reactively
	The Problem with Data Access
	Nonblocking Interactions with Relational Databases
	Using a Reactive ORM: Hibernate Reactive
	What About NoSQL?
	Interacting with Redis
	Data-Related Events and Change Data Capture
	Using Debezium to Capture Change
	Summary

	IV. Connecting the Dots
	10. Reactive Messaging: The Connective Tissue
	From Reactive Applications to Reactive Systems
	Channels and Messages
	Producing Messages
	Consuming Messages
	Processing Messages
	Acknowledgments
	Connectors

	Building Message-Based Applications
	Message and Acknowledgment
	Failures and Negative Acknowledgment
	Stream Manipulation
	Blocking Processing
	Retrying Processing

	Putting Everything Together
	Summary

	11. The Event Bus: The Backbone
	Kafka or AMQP: Picking the Right Tool
	Building Reactive Systems with Kafka
	Apache Kafka
	Point-to-Point Communication
	Publish/Subscribe
	Elasticity Patterns
	Dealing with Failures
	Backpressure and Performance Considerations
	Kafka on Kubernetes

	Building Reactive Systems with AMQP
	AMQP 1.0
	Point-to-Point Communication
	Publish/Subscribe
	Elasticity Patterns
	Acknowledgment and Redelivery
	Credit-Flow Backpressure Protocol
	AMQP on Kubernetes

	Summary

	12. Reactive REST Client: Connecting with HTTP Endpoints
	Interacting with an HTTP Endpoint
	The REST Client Reactive
	Mapping HTTP APIs to Java Interfaces
	Invoking the Service

	Blocking and Nonblocking
	Handling Failures
	Fallback
	Retries
	Time-out
	Bulkheads and Circuit Breaker

	Building API Gateways with the RESTEasy Reactive Client
	Using the REST Client in Messaging Applications
	Summary

	13. Observing Reactive and Event-Driven Architectures
	Why Is Observability Important?
	Health with Messaging
	Metrics with Messaging
	Distributed Tracing with Messaging
	Summary

	Conclusion
	A Brief Summary
	Is That All?
	The Future of Reactive Systems
	The End of the Beginning

	Index

