

BIRMINGHAM—MUMBAI

Speed Up Your Python with Rust
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, without the
prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the
accuracy of the information presented. However, the information contained
in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held
liable for any damages caused or alleged to have been caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all
of the companies and products mentioned in this book by the appropriate
use of capitals. However, Packt Publishing cannot guarantee the accuracy of
this information.

Group Product Manager: Richa Tripathi

Publishing Product Manager: Richa Tripathi

Senior Editor: Nisha Cleetus

Content Development Editor: Vaishali Ramkumar

Technical Editor: Pradeep Sahu

Copy Editor: Safis Editing

Project Coordinator: Deeksha Thakkar

Proofreader: Safis Editing

Indexer: Manju Arasan

Production Designer: Shankar Kalbhor

First published: December 2021

Production reference: 1151221

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80181-144-6

www.packt.com

http://www.packt.com/

To my wife, Melanie Zhang, who stuck with me and supported me
through a busy work schedule and deadlines. Not only are you smart
and caring, you have been an amazing team player.

– Maxwell Flitton

Contributors

About the author
Maxwell Flitton is a software engineer who works for the open source
financial loss modeling foundation OasisLMF. In 2011, Maxwell achieved
his Bachelor of Science degree in nursing from the University of Lincoln,
UK. While working 12-hour shifts in the A&E departments of hospitals,
Maxwell obtained another degree in physics from the Open University in
the UK and then moved on to another milestone, with a postgraduate
diploma in physics and engineering in medicine from UCL in London. He's
worked on numerous projects such as medical simulation software for the
German government and supervising computational medicine students at
Imperial College London. He also has experience in financial tech and
Monolith AI.

Many thanks to the Rust community for developing an amazing
language with a friendly community that's willing to push boundaries.
I'm also grateful to the team at Monolith AI, where Saravanan
Sathyanandha and Richard Ahlfeld empowered me to grow as an
engineer. This has been carried further by the OasisLMF team where
Ben Hayes, Stephane Struzik, Sam Gamble, and Hassan Chagani have
been supportive and enabled me to grow.

About the reviewers
Mário Idival is a Brazilian and a lover of technologies aimed at software
development, mainly focused on programming languages. He acts as a
technical manager and software engineer in his spare time. He started his
journey as a software developer in 2011 learning only with instructional
material from the internet, starting with learning C, and soon after switched
to Python, which allowed him to achieve his first job after 6 months of
studies.

Today, with 10 years of experience, he has delivered software in several
areas including loans, tourism and travel, artificial intelligence, electronic
data interchange, process automation, and cryptocurrency. He is currently
focused on learning and spreading knowledge of the Rust language. He also
supports the Rust community in the Rust By Example project.

Boyd Johnson has been working in software since 2015. As part of a team
at Bitwise IO, along with partners at Intel, he worked to develop
Hyperledger Sawtooth, an open source blockchain, in Python and Rust.
Boyd worked, in particular, on the FFI layer between Python and Rust, as

well as transaction processing components. You can read more of Boyd's
writing at boydjohnson.dev.

http://boydjohnson.dev/

Table of Contents

Preface

Section 1: Getting to Understand Rust

Chapter 1: An Introduction to Rust from a
Python Perspective

Technical requirements
Understanding the differences between Python
and Rust
Why fuse Python with Rust?
Passing strings in Rust
Sizing up floats and integers in Rust
Managing data in Rust's vectors and arrays
Replacing dictionaries with hashmaps
Error handling in Rust
Understanding variable ownership
Copy
Move
Immutable borrow
Mutable borrow
Keeping track of scopes and lifetimes
Building structs instead of objects
Metaprogramming with macros instead of
decorators
Summary

Questions
Answers
Further reading

Chapter 2: Structuring Code in Rust

Technical requirements
Managing our code with crates and Cargo
instead of pip
Structuring code over multiple files and
modules
Building module interfaces
Benefits of documentation when coding
Interacting with the environment
Summary
Questions
Answers
Further reading

Chapter 3: Understanding Concurrency

Technical requirements
Introducing concurrency
Threads
Processes
Basic asynchronous programming with threads
Running multiple processes
Customizing threads and processes safely
Amdahl's law
Deadlocks
Race conditions
Summary
Questions
Answers
Further reading

Section 2: Fusing Rust with Python

Chapter 4: Building pip Modules in
Python

Technical requirements
Configuring setup tools for a Python pip
module
Creating a GitHub repository
Defining the basic parameters
Defining a README file
Defining a basic module
Packaging Python code in a pip module
Building our Fibonacci calculation code
Creating a command-line interface
Building unit tests
Configuring continuous integration
Manually deploying onto PyPI
Managing dependencies
Setting up type checking for Python
Setting up and running tests and type-checking
with GitHub Actions
Create automatic versioning for our pip
package

Deploying onto PyPI using GitHub Actions
Summary
Questions
Answers
Further reading

Chapter 5: Creating a Rust Interface for
Our pip Module

Technical requirements
Packaging Rust with pip
Define gitignore and Cargo for our package
Configuring the Python setup process for our
package
Installing our Rust library for our package
Building a Rust interface with the pyO3 crate
Building our Fibonacci Rust code
Creating command-line tools for our package
Creating adapters for our package
Building tests for our Rust package
Comparing speed with Python, Rust, and Numba
Summary
Questions
Answers
Further reading

Chapter 6: Working with Python Objects
in Rust

Technical requirements
Passing complex Python objects into Rust
Updating our setup.py file to support .yml
loading
Defining our .yml loading command
Processing data from our Python dictionary
Extracting data from our config file
Returning our Rust dictionary to our Python
system
Inspecting and working with custom Python
objects
Creating an object for our Rust interface
Acquiring the Python GIL in Rust
Adding data to our newly created PyDict struct
Setting the attributes of our custom object
Constructing our own custom Python objects in
Rust
Defining a Python class with the required
attributes

Defining class static methods to process input
numbers
Defining a class constructor
Wrapping up and testing our module
Summary
Questions
Answers
Further reading

Chapter 7: Using Python Modules with
Rust

Technical requirements
Exploring NumPy
Adding vectors in NumPy
Adding vectors in pure Python
Adding vectors using NumPy in Rust
Building a model in NumPy
Defining our model
Building a Python object that executes our
model
Using NumPy and other Python modules in Rust
Recreating our NumPy model in Rust
Building get_weight_matrix and
inverse_weight_matrix functions
Building get_parameters, get_times, and
get_input_vector functions
Building calculate_parameters and
calculate_times functions
Adding calculate functions to the Python
bindings and adding a NumPy dependency to
our setup.py file

Building our Python interface
Summary
Questions
Answers
Further reading

Chapter 8: Structuring an End-to-End
Python Package in Rust

Technical requirements
Breaking down a catastrophe modeling problem
for our package
Building an end-to-end solution as a package
Building a footprint merging process
Building the vulnerability merge process
Building a Python interface in Rust
Building our interface in Python
Building package installation instructions
Utilizing and testing our package
Building a Python construct model using
pandas
Building a random event ID generator function
Timing our Python and Rust implementations
with a series of different data sizes
Summary
Further reading

Section 3: Infusing Rust into a Web
Application

Chapter 9: Structuring a Python Flask
App for Rust

Technical requirements
Building a basic Flask application
Building an entry point for our application
Building our Fibonacci number calculator
module
Building a Docker image for our application
Building our NGINX service
Connecting and running our Nginx service
Defining our data access layer
Defining a PostgreSQL database in docker-
compose
Building a config loading system
Building our data access layer
Setting up the application database migration
system
Building database models
Applying the database access layer to the fib
calculation view
Building a message bus
Building a Celery broker for Flask

Building a Fibonacci calculation task for Celery
Updating our calculation view
Defining our Celery service in Docker
Summary
Questions
Answers
Further reading

Chapter 10: Injecting Rust into a Python
Flask App

Technical requirements
Fusing Rust into Flask and Celery
Defining our dependency on the Rust Fibonacci
number calculation package
Building our calculation model with Rust
Creating a calculation view using Rust
Inserting Rust into our Celery task
Deploying Flask and Celery with Rust
Deploying with a private GitHub repository
Building a Bash script that orchestrates the
whole process
Reconfiguring the Rust Fib package installment
in our Dockerfile
Fusing Rust with data access
Setting up our database cloning package
Setting up the diesel environment
Autogenerating and configuring our database
models and schema
Defining our database connection in Rust

Creating a Rust function that gets all the
Fibonacci records and returns them
Deploying Rust nightly in Flask
Summary
Questions
Answers
Further reading

Chapter 11: Best Practices for Integrating
Rust

Technical requirements
Keeping our Rust implementation simple by
piping data to and from Rust
Building a Python script that formulates the
numbers for calculation
Building a Rust fi le that accepts the numbers,
calculates the Fibonacci numbers, and returns
the calculated numbers
Building another Python script that accepts the
calculated numbers and prints them out
Giving the interface a native feel with objects
Defining traits
Defining struct behavior with traits
Passing traits through functions
Storing structs with common traits
Running our traits in the main file
Keeping data-parallelism simple with Rayon
Further reading

Other Books You May Enjoy

Preface
The Rust programming language is an exciting new language. It gives us
memory safety without garbage collection, resulting in fast times and low
memory footprints. However, rewriting everything in Rust can be expensive
and risky as there might not be package support in Rust for the problem
being solved. This is where Python bindings and pip come in. This book
will enable you to code modules in Rust that can be installed using pip. As
a result, you will be able to inject Rust as and when you need it without
taking on the risk and workload of rewriting your entire system. This
enables you, as a developer, to experiment with and use Rust in your
Python projects.

Who this book is for
Python developers who want to speed up their code with Rust, or
experiment with Rust without having to take on much risk or workload, will
benefit from this book. No background in Rust is needed. This book has an
introduction to Rust for Python developers, and uses Python examples to
get you up to speed with Rust quickly.

What this book covers
Chapter 1, An Introduction to Rust from a Python Perspective, covers the
basics of Rust to enable Rust development. Relevant Python examples are
given to help you grasp the Rust concepts examined.

Chapter 2, Structuring Code in Rust, explains how to structure Rust
programs over multiple pages and use package management tools to
organize and install dependencies.

Chapter 3, Understanding Concurrency, covers how to multithread and
multiprocess in Rust, seeing as Rust has "fearless concurrency." We also
cover concurrency in Python to see the differences.

Chapter 4, Building pip Modules in Python, sees us build Python packages
that can be installed using pip. It also covers how packages can be hosted
privately on GitHub.

Chapter 5, Creating a Rust Interface for Our pip Module, has us inject Rust
into our pip module and use the Rust setup tools to compile and use the
Rust code in our Python code.

Chapter 6, Working with Python Objects in Rust, considers how
compatibility does not just go in one direction. In this chapter, we take in
Python objects and interact with them. We also create Python objects in
Rust.

Chapter 7, Using Python Modules in Rust, builds on the previous chapter
and sees us use Python modules such as NumPy in our Rust code.

Chapter 8, Structuring an End-to-End Python Module in Rust, sees us
wrapping up everything that has been covered into a fully functioning
Python package written in Rust. This package has Python interfaces and
command-line functionality that accepts YAML files for configuration.

Chapter 9, Structuring a Python Flask App for Rust, has us build a Python
Flask app with a PostgreSQL database, NGINX load balancer, and Celery
worker in order to get more practical with our Rust skills. All of this is
wrapped in Docker to prepare us for injecting Rusk into all of these aspects
of the web application.

Chapter 10, Injecting Rust into a Python Flask App, covers how to take the
web application that we built in the previous chapter and inject our Rust
modules into the Docker containers for the Celery worker and Flask
application. We also imprint the migrations that have already been applied
to automatically generate a schema of the database so our Rust code can
directly connect with the database.

Chapter 11, Best Practices for Integrating Rust, concludes the book with
some tips on how to avoid common mistakes as you continue to write Rust
code for Python.

To get the most out of this book
It is advisable that you understand Python and are comfortable with object-
Oriented programming. Some advanced topics such as meta-classing will
be touched on but are not essential. Rust programming, Python web apps,
and Python modules installed using pip are all covered in the book.

If you are using the digital version of this book, we advise you to type
the code yourself or access the code from the book's GitHub repository
(a link is available in the next section). Doing so will help you avoid any
potential errors related to the copying and pasting of code.

Download the example code fi les
You can download the example code files for this book from GitHub at
https://github.com/PacktPublishing/Speed-up-your-Python-with-Rust. If
there's an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check them out!

https://github.com/PacktPublishing/Speed-up-your-Python-with-Rust
https://github.com/PacktPublishing/

Download the color images
We also provide a PDF file that has color images of the screenshots and
diagrams used in this book. You can download it here: https://static.packt-
cdn.com/downloads/9781801811446__ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder
names, filenames, file extensions, pathnames, dummy URLs, user input,
and Twitter handles. Here is an example: "Mount the downloaded
WebStorm-10*.dmg disk image file as another disk in your system."

A block of code is set as follows:

use std::error::Error;

use std::fs::File;

use csv;

use super::structs::FootPrint;

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

let code = "5 + 6";

let result = py.eval(code, None, Some(&locals)).unwrap();

let number = result.extract::<i32>().unwrap();

Any command-line input or output is written as follows:

pip install git+https://github.com/maxwellflitton/flitton-fib-

rs@main

file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_oymw2t51/3hg14cq1_pdf_out/OEBPS/__ColorImages.pdf

Bold: Indicates a new term, an important word, or words that you see on
screen. For instance, words in menus or dialog boxes appear in bold. Here
is an example: "This can be done by clicking on the Settings tab and then
the Secrets tab on the left sidebar, as seen here."

TIPS OR IMPORTANT NOTES
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book,
email us at customercare@packtpub.com and mention the book title in the
subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we
would be grateful if you would report this to us. Please visit
www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on
the internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at copyright@packt.com with a
link to the material.

If you are interested in becoming an author: If there is a topic that you
have expertise in and you are interested in either writing or contributing to a
book, please visit authors.packtpub.com.

https://customercare@packtpub.com/
https://www.packtpub.com/support/errata
https://authors.packtpub.com/

Share Your Thoughts
Once you've read Speed Up your Python with Rust, we'd love to hear your
thoughts! Please click here to go straight to the Amazon review page for
this book and share your feedback.

Your review is important to us and the tech community and will help us
make sure we're delivering excellent quality content.

file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_oymw2t51/3hg14cq1_pdf_out/OEBPS/B17720_Preface_Final_SK_ePub.xhtml

Section 1: Getting to Understand Rust
In this section, we will get to grips with Rust. Instead of introducing the
basics of Rust, such as loops and functions, we will cover the syntax
specific to Rust. After this, we will explore the quirks that the Rust
language introduces, primarily centered around memory management. We
will then cover how to manage dependencies and structure our code over
multiple files. After this, we will experiment with multithreading and
multiprocessing in Rust and Python.

This section comprises the following chapters:

Chapter 1, An Introduction to Rust from a Python Perspective

Chapter 2, Structuring Code in Rust

Chapter 3, Understanding Concurrency

Chapter 1: An Introduction to Rust from a
Python Perspective
Due to its speed and safety, it is no surprise that Rust is the new language
gaining in popularity. However, with success comes criticism. Despite
Rust's popularity as an impressive language, it has also gained the label of
being hard to learn, an idea which isn't quite grounded in reality.

In this chapter, we will cover all of Rust's quirks that will be new to a
Python developer. If Python is your main language, concepts such as basic
memory management and typing can initially slow down your ability to
quickly write productive Rust code due to the compiler failing to compile
the code. However, this can quickly be overcome by learning the rules
around Rust features, such as variable ownership, lifetimes, and so on, as
Rust is a memory-safe language. Consequently, we must keep track of our
variables as they usually get deleted instantly when they go out of scope. If
this does not make sense yet, don't worry; we will cover this concept in the
Keeping track of scopes and lifetimes section.

In this chapter, we will also be covering the basics of syntax, while you will
be setting up a Rust environment on your own computer in the next chapter.
Do not worry though, you can code all the examples in this chapter on the
free online Rust playground.

In particular, we will cover the following topics in this chapter:

Understanding the differences between Python and Rust

Understanding variable ownership

Keeping track of scopes and lifetimes

Building structs as opposed to objects

Metaprogramming with macros instead of decorators

Technical requirements
As this is just an introduction, all the Python examples in the chapter can be
implemented with a free online Python interpreter such as
https://replit.com/languages/python3.

The same goes for all the Rust examples. These can be implemented using
the free online Rust playground found at https://play.rust-lang.org/.

The code covered in the chapter can be found at
https://github.com/PacktPublishing/Speed-up-your-Python-with-
Rust/tree/main/chapter_one.

Understanding the differences between
Python and Rust
Rust can sometimes be described as a systems language. As a result, it can
sometimes be labeled by software engineers in a way that is similar to C++:
fast, hard to learn, dangerous, and time-consuming to code in. As a result,
most of you mainly working in dynamic languages such as Python could be
put off. However, Rust is memory-safe, efficient, and productive. Once we
have gotten over some of the quirks that Rust introduces, nothing is holding
you back from exploiting Rust's advantages by using it to write fast, safe,

https://replit.com/languages/python3
https://play.rust-lang.org/
https://github.com/PacktPublishing/Speed-up-your-Python-with-Rust/tree/main/chapter_one

and efficient code. Seeing as there are so many advantages to Rust, we will
explore them in the next section.

Why fuse Python with Rust?

When it comes to picking a language, there is usually a trade-off between
resources, speed, and development time. Dynamic languages such as
Python became popular as computing power increased. We were able to use
the extra resources we had to manage our memory with garbage collectors.
As a result, developing software became easier, quicker, and safer. As we
will cover later in the Keeping track of scopes and lifetimes section, poor
memory management can lead to some security flaws. The exponential
increase in computing power over the years is known as Moore's Law.
However, this is not continuing to hold and in 2019, Nvidia's CEO Jensen
Huang suggested that as chip components get closer to the size of
individual atoms, it has gotten harder to keep up with the pace of Moore's
Law, thus declaring it dead (https://www.cnet.com/news/moores-law-is-
dead-nvidias-ceo-jensen-huang-says-at-ces-2019/).

However, with the rise of big data, our need to pick up faster languages to
satisfy our needs is increasing. This is where languages such as Golang and
Rust enter. These languages are memory-safe, yet they compile and have
significant speed increases. What makes Rust even more unique is that it
has managed to achieve memory safety without garbage collection. To
appreciate this, let's briefly describe garbage collection: this is where the
program temporarily stops, checks all the variables to see which ones are no
longer being used, and deletes those that are not. Considering that Rust does

https://www.cnet.com/news/moores-law-is-dead-nvidias-ceo-jensen-huang-says-at-ces-2019/

not have to do this, it is a significant advantage as Rust does not have to
keep stopping to clean up the variables. This was demonstrated in Discord's
2020 blog post Why Discord is switching from Go to Rust:
https://blog.discord.com/why-discord-is-switching-from-go-to-rust-
a190bbca2b1f#:~:text=The%20service%20we%20switched%20from,is%20
in%20the%20hot%20path. In this post, we can see that Golang just could
not keep up with Rust, as demonstrated in the graph they presented:

Figure 1.1 – Golang is spiky and Rust is the flat line below Golang (image source:
https://blog.discord.com/why-discord-is-switching-from-go-to-rust-

a190bbca2b1f#:~:text=The%20service%20we%20switched%20from,is%20in%20the%2
0hot%20path)

The comments on the post were full of people complaining that Discord
used an out-of-date version of Golang. Discord responded to this by stating

https://blog.discord.com/why-discord-is-switching-from-go-to-rust-a190bbca2b1f#:~:text=The%20service%20we%20switched%20from,is%20in%20the%20hot%20path.

that they tried a range of Golang versions, and they all had similar results.
With this, it makes sense to get the best of both worlds without much
compromise. We can use Python for prototyping and complex logic. The
extensive range of third-party libraries that Python has combined with the
flexible object-oriented programming it supports make it an ideal language
for solving real-world problems. However, it's slow and is not efficient with
the use of resources. This is where we reach for Rust.

Rust is a bit more restrictive in the way we can lay out and structure the
code; however, it's fast, safe, and efficient when implementing
multithreading. Combining these two languages enables a Python developer
to have a powerful tool in their belt that their Python code can use when
needed. The time investment needed to learn and fuse Rust is low. All we
must do is package Rust and install it in our Python system using pip and
understand a few quirks that Rust has that are different from Python. We
can start this journey by looking at how Rust handles strings in the next
section. However, before we explore strings, we have to first understand
how Rust is run compared to Python.

If you have built a web app in Python using Flask, you will have seen
multiple tutorials sporting the following code:

from flask import Flask

app = Flask(__name__)

@app.route("/")

def home():

 return "Hello, World!"

if __name__ == "__main__":

 app.run(debug=True)

What we must note here is the last two lines of the code. Everything above
that defines a basic Flask web app and a route. However, the running of the
app in the last two lines only executes if the Python interpreter is directly
running the file. This means that other Python files can import the Flask app
from this file without running it. This is referred to by many as an entry
point.

You import everything you need in this file, and for the application to run,
we get our interpreter to run this script. We can nest any code under the if
__name__ == "__main__": line of code. It will not run unless the file is
directly hit by the Python interpreter. Rust has a similar concept. However,
this is more essential, as opposed to Python that just has it as a nice-to-have
feature. In the Rust playground (see the Technical requirements section), we
can type in the following code if it is not there already:

fn main() {

 println!("hello world");

}

This is the entry point. The Rust program gets compiled, and then runs the
main function. If whatever you've coded is not accessed by the main
function, it will never run. Here, we are already getting a sense of the safety
enforced by Rust. We will see more of this throughout the book.

Now that we have our program running, we can move on to understanding
the difference between Rust and Python when it comes to strings.

Passing strings in Rust

In Python, strings are flexible. We can pretty much do what we want with
them. While technically, Python strings cannot be changed under the hood,
in Python syntax, we can chop and change them, pass them anywhere, and
convert them into integers or floats (if permitted) without having to think
too much about it. We can do all of this with Rust too. However, we must
plan beforehand what we are going to do. To demonstrate this, we can dive
right in by making our own print function and calling it, as seen in the
following code:

fn print(input: str) {

 println!("{}", input);

}

fn main() {

 print("hello world");

}

In Python, a similar program would work. However, when we run it in the
Rust playground, we get the following error:

error[E0277]: the size for values of type 'str' cannot be known at

compilation time

This is because we cannot specify what the maximum size is. We don't get
this in Python; therefore, we must take a step back and understand how
variables are assigned in memory. When the code compiles, it allocates
memory for different variables in the stack. When the code runs, it stores
data in the heap. Strings can be various sizes so we cannot be sure at
compile time how much memory we can allocate to the input parameter of

our function when compiling. What we are passing in is a string slice. We
can remedy this by passing in a string and converting our string literal to a
string before passing it into our function as seen here:

fn print(input: String) {

 println!("{}", input);

}

fn main() {

 let string_literal = "hello world";

 print(string_literal.to_string());

}

Here, we can see that we have used the to_string() function to convert our
string literal into a string. To understand why String is accepted, we need to
understand what a string is.

A string is a type of wrapper implemented as a vector of bytes. This vector
holds a reference to a string slice in the heap memory. It then holds the
amount of data available to the pointer, and the length of the string literal.
For instance, if we have a string of the string literal one, it can be denoted
by the following diagram:

Figure 1.2 – String relationship to str

Considering this, we can understand why we can guarantee the size of
String when we pass it into our function. It will always be a pointer to the
string literal with some meta-information about the string literal. If we can
just make a reference to the string literal, we can pass this into our function
as it is just a reference and we can therefore guarantee that the size of the
reference will stay the same. This can be done by borrowing using the &
operator as shown in the following code:

fn print(input_string: &str) {

 println!("{}", input_string);

}

fn main() {

 let test_string = &"Hello, World!";

 print(test_string);

}

We will cover the concept of borrowing later in the chapter but, for now, we
understand that, unlike Python, we must guarantee the size of the variable
being passed into a function. We can use borrowing and wrappers such as
strings to handle this. It may not come as a surprise, but this does not just
stop at strings. Considering this, we can move on to the next section to
understand the differences between Python and Rust when it comes to floats
and integers.

Sizing up floats and integers in Rust

Like strings, Python manages floats and integers with ease and simplicity.
We can pretty much do whatever we want with them. For instance, the
following Python code will result in 6.5:

result = 1 + 2.2

result = result + 3.3

However, there is a problem when we try to just execute the first line in
Rust with the following line of Rust code:

let result = 1 + 2.2;

It results in an error telling us that a float cannot be added to an integer.
This error highlights one of the pain points that Python developers go
through when learning Rust, as Rust enforces typing aggressively by
refusing to compile if typing is not present and consistent. However, while

this is an initial pain, aggressive typing does help in the long run as it
maintains safety.

Type annotation in Python is gaining popularity. This is where the type of
the variable is declared for parameters of functions or variables declared,
enabling some editors to highlight when the types are inconsistent. The
same happens in JavaScript with TypeScript. We can replicate the Python
code at the start of this section with the following Rust code:

let mut result = 1.0 + 2.2;

result = result + 3.3;

It has to be noted that the result variable must be declared as a mutable
variable with the mut notation. Mutable means that the variable can be
changed. This is because Rust automatically assigns all variables as
immutable unless we use the mut notation.

Now that we have seen the effects of types and mutability, we should really
explore integers and floats. Rust has two types of integers: signed
integers, which are denoted by i, and unsigned integers, denoted by u.
Unsigned integers only house positive numbers, whereas signed integers
house positive and negative integers. This does not just stop here. In Rust,
we can also denote the size of the integer that is allowed. This can be
calculated by using binary. Now, understanding how to use binary notation
to describe numbers in detail is not really needed. However, understanding
the simple rule that the size can be calculated by raising two to the power of
the number of bits can give us an understanding of how big an integer is
allowed to be. We can calculate all the integer sizes that we can utilize in
Rust with the following table:

Table 1.1 – Size of integer types

As we can see, we can get to very high numbers here. However, it is not the
best idea to assign all variables and parameters as u128 integers. This is
because the compiler will set aside this amount of memory each time when
compiling. This is not very efficient considering that it's unlikely that we
will be using such large numbers. It must be noted that the changes in each
jump are so large it is pointless graphing it. Each jump in bits completely
overshadows all the others, resulting in a flat line along the x axis and a
huge spike at the last graphed number of bits. However, we also must be
sure that our assignment is not too small. We can demonstrate this with the
Rust code as follows:

let number: u8 = 255;

let breaking_number: u8 = 256;

Our compiler will be OK with the number variable. However, it will throw
the error shown next when assigning the breaking_number variable:

literal '256' does not fit into the type 'u8' whose range

is '0..=255'

This is because there are 256 integers between 0 -> 255, as we include 0.
We can change our unsigned integer to a signed one with the following line
of Rust code:

let number: i8 = 255;

This gives us the following error:

literal '255' does not fit into the type 'i8' whose range

is '-128..=127'

In this error, we are reminded that the bits are are allocated memory space.
Therefore, an i8 integer must accommodate positive and negative integers
within the same number of bits. As a result, we can only support a
magnitude that is half of the integer of an unsigned integer.

When it comes to floats, our choices are more limited. Here, Rust
accommodates both f32 and f64 floating points. Declaring these floating-
point variables requires the same syntax as integers:

let float: f32 = 20.6;

It must be noted that we can also annotate numbers with suffixes, as shown
in the following code:

let x = 1u8;

Here, x has a value of 1 with the type of u8. Now that we have covered
floats and integers, we can use vectors and arrays to store them.

Managing data in Rust's vectors and
arrays

With Python, we have lists. We can stuff anything we want into these lists
with the append function and these lists are, by default, mutable. Python
tuples are technically not lists, but we can treat them as immutable arrays.
With Rust, we have arrays and vectors. Arrays are the most basic of the
two. Defining and looping through an array is straightforward in Rust, as
we can see in the following code:

let array: [i32; 3] = [1, 2, 3];

println!("array has {} elements", array.len());

for i in array.iter() {

 println!("{}", i);

}

If we try and append another integer onto our array with the push function,
we will not be able to even if the array is mutable. If we add a fourth
element to our array definition that is not an integer, the program will refuse
to compile as all of the elements in the array have to be the same. However,
this is not entirely true.

Later in this chapter, we will cover structs. In Python, the closest
comparison to objects is structs as they have their own attributes and
functions. Structs can also have traits, which we will also discuss later. In
terms of Python, the closest comparison to traits is mixins. Therefore, a
range of structs can be housed in an array if they all have the same trait in
common. When looping through the array, the compiler will only allow us

to execute functions from that trait as this is all we can ensure will be
consistent throughout the array.

The same rules in terms of type or trait consistency also apply to vectors.
However, vectors place their memory on the heap and are expandable. Like
everything in Rust, they are, by default, immutable. However, applying the
mut tag will enable us to add and manipulate the vector. In the following
code, we define a vector, print the length of the vector, append another
element to the vector, and then loop through the vector printing all
elements:

let mut str_vector: Vec<&str> = vec!["one", "two", \

 "three"];

println!("{}", str_vector.len());

str_vector.push("four");

for i in str_vector.iter() {

 println!("{}", i);

}

This gives us the following output:

3

one

two

three

four

We can see that our append worked.

Considering the rules about consistency, vectors and arrays might seem a
little restrictive to a Python developer. However, if they are, sit back and

ask yourself why. Why would you want to put in a range of elements that
do not have any consistency? Although Python allows you to do this, how
could you loop through a list with inconsistent elements and confidently
perform operations on them without crashing the program?

With this in mind, we are starting to see the benefits and safety behind this
restrictive typing system. There are some ways in which we can put in
different elements that are not structs bound by the same trait. Considering
this, we will explore how we can store and access our varied data elements
via hashmaps in Rust in the next section.

Replacing dictionaries with hashmaps

Hashmaps in Rust are essentially dictionaries in Python. However, unlike
our previous vectors and arrays, we want to have a range of different data
types housed in a hashmap (although we can also do this with vectors and
arrays). To achieve this, we can use Enums. Enums are, well, Enums, and
we have the exact same concept in Python. However, instead of it being an
Enum, we merely have a Python object that inherits the Enum object as
seen in the following code:

from enum import Enum

class Animal(Enum):

 STRING = "string"

 INT = "int"

Here, we can use the Enum to save us from using raw strings in our Python
code when picking a particular category. With a code editor known as an
IDE, this is very useful, but it's understandable if a Python developer has

never used them as they are not enforced anywhere. Not using them makes
the code more prone to mistakes and harder to maintain when categories
change and so on, but there is nothing in Python stopping the developer
from just using a raw string to describe an option. In Rust, we are going to
want our hashmap to accept strings and integers. To do this, we are going to
have to carry out the following steps:

1. Create an Enum to handle multiple data types.

2. Create a new hashmap and insert values belonging to the Enum we
created in step 1.

3. Test the data consistency by looping through the hashmap and match all
possible outcomes.

4. Build a function that processes data extracted from the hashmap.

5. Use the function to process outcomes from getting a value from the
hashmap.

Therefore, we are going to create an Enum that houses this using the
following code:

enum Value {

 Str(&'static str),

 Int(i32),

}

Here, we can see that we have introduced the statement 'static. This
denotes a lifetime and basically states that the reference remains for the rest
of the program's lifetime. We will cover lifetimes in the Keeping track of
scopes and lifetimes section.

Now that we have defined our Enum, we can build our own mutable
hashmap and insert an integer and a string into it with the following code:

use std::collections::HashMap;

let mut map = HashMap::new();

map.insert("one", Value::Str("1"));

map.insert("two", Value::Int(2));

Now that our hashmap is housing a single type that houses the two types we
defined, we must handle them.

Remember, Rust has strong typing. Unlike Python, Rust will not allow us to
compile unsafe code (Rust can compile in an unsafe context but this is not
default behavior). We must handle every possible outcome, otherwise the
compiler will refuse to compile. We can do this with a match statement as
seen in the following code:

for (_key, value) in &map {

 match value {

 Value::Str(inside_value) => {

 println!("the following value is an str: {}", \

 inside_value);

 }

 Value::Int(inside_value) => {

 println!("the following value is an int: {}", \

 inside_value);

 }

 }

}

In this code sample, we have looped through a borrowed reference to the
hashmap using &. Again, we will cover borrowing later on in the
Understanding variable ownership section. We prefix the key with a _. This
is telling the compiler that we are not going to use the key. We don't have to
do this as the compiler will still compile the code; however, it will complain
by issuing a warning. The value that we are retrieving from the hashmap is
our Value Enum. In this match statement, we can match the field of our
Enum, and unwrap and access the inside value that we denote as
inside_value, printing it to the console.

Running the code gives us the printout to the terminal as follows:

the following value is an int: 2

the following value is an str: 1

It must be noted that Rust is not going to let anything slip by the compiler.
If we remove the match for our Int field for our Enum, then the compiler
will throw the error seen here:

18 | match value {

 | ^^^^^ pattern '&Int(_)' not covered

 |

 = help: ensure that all possible cases are being

 handled,

 possibly by adding wildcards or more match arms

 = note: the matched value is of type '&Value'

This is because we have to handle every single possible outcome. Because
we have been explicit that only values that can be housed in our Enum can
be inserted into the hashmap, we know that there are only two possible

types that can be extracted from our hashmap. We have nearly covered
enough about hashmaps to use them effectively in Rust programs. One last
concept that we must cover is the Enum called Option.

Considering that we have arrays and vectors, we will not be using our
hashmaps primarily for looping through outcomes. Instead, we will be
retrieving values from them when we need them. Like in Python, the
hashmap has a get function. In Python, if the key that is being searched is
not in the dictionary, then the get function will return None. It is then left to
the developer to decide what to do with it. However, in Rust, the hashmap
will return a Some or None. To demonstrate this, let's try to get a value
belonging to a key that we know is not there:

1. Start by running the following code:

let outcome: Option<&Value> = map.get("test");

println!("outcome passed");

let another_outcome: &Value = \

 map.get("test").unwrap();

println!("another_outcome passed");

Here, we can see that we can access the reference to the Value Enum
wrapped in Option with the get function. We then directly access the
reference to the Value Enum using the unwrap function.

2. However, we know that the test key is not in the hashmap. Because of
this, the unwrap function will cause the program to crash, as seen in the
following output from the previous code:

thread 'main' panicked at 'called 'Option::unwrap()'

on a 'None' value', src/main.rs:32:51

We can see that the simple get function did not crash the program.
However, we didn't manage to get the string "another_outcome passed"
to print out to the console. We can handle this with a match statement.

However, this is going to be a match statement within a match statement.

3. In order to reduce the complexity, we should explore Rust functions to
process our value Enum. This can be done with the following code:

fn process_enum(value: &Value) -> () {

 match value {

 Value::Str(inside_value) => {

 println!("the following value is an str: \

 {}", inside_value);

 }

 Value::Int(inside_value) => {

 println!("the following value is an int: \

 {}", inside_value);

 }

 }

}

The function does not really give us any new logic to explore. The ->
() expression is merely stating that the function is not returning
anything.

4. If we are going to return a string, for instance, the expression would be
-> String. We do not need the -> () expression; however, it can be
helpful for developers to quickly understand what's going on with the

function. We can then use this function to process the outcome from our
get function with the following code:

match map.get("test") {

 Some(inside_value) => {

 process_enum(inside_value);

 }

 None => {

 println!("there is no value");

 }

}

We now know enough to utilize hashmaps in our programs. However, we
must notice that we have not really handled errors; we have either printed
out that nothing was found or let the unwrap function just result in an error.
Considering this, we will move on to the next section on handling errors in
Rust.

Error handling in Rust

Handling errors in Python is straightforward. We have a try block that
houses an except block underneath. In Rust, we have a Result wrapper.
This works in the same way as an Option. However, instead of having Some
or None, we have Ok or Err.

To demonstrate this, we can build on the hashmap that was defined in the
previous section. We accept Option from a get function applied to the
hashmap. Our function will check to see whether the integer retrieved from

the hashmap is above a threshold. If it's above the threshold, we will return
a true value. If not, then it is false.

The problem is that there might not be a value in Option. We also know that
the Value Enum might not be an integer. If any of this is the case, we should
return an error. If not, we return a Boolean. This function can be seen here:

fn check_int_above_threshold(threshold: i32,

 get_result: Option<&Value>) -> Result<bool, &'static \

 str> {

 match get_result {

 Some(inside_value) => {

 match inside_value {

 Value::Str(_) => return Err(

 "str value was supplied as opposed to \

 an int which is needed"),

 Value::Int(int_value) => {

 if int_value > &threshold {

 return Ok(true)

 }

 return Ok(false)

 }

 }

 }

 None => return Err("no value was supplied to be \

 checked")

 }

}

Here, we can see that the None result from Option instantly returns an error
with a helpful message as to why we are returning an error. With the Some
value, we utilize another match statement to return an error with a helpful
message that we cannot supply a string to check the threshold if the Value is
a string. It must be noted that Value::Str(_) has a _ in it. This means that
we do not care what the value is because we are not going to use it. In the
final part, we check to see whether the integer is above the threshold
returning Ok values that are either true or false. We implement this function
with the following code:

let result: Option<&Value> = map.get("two");

let above_threshold: bool = check_int_above_threshold(1, \

 result).unwrap();

println!("it is {} that the threshold is breached", \

 above_threshold);

This gives us the following output in the terminal:

it is true that the threshold is breached

If we up the first parameter in our check_int_above_threshold function to
3, we get the following output:

it is false that the threshold is breached

If we change the key in map.get to three, we get the following terminal
output:

thread 'main' panicked at 'called 'Result::unwrap()'

on an 'Err' value: "no value was supplied to be checked"'

If we change the key in map.get to one, we get the following terminal
output:

thread 'main' panicked at 'called 'Result::unwrap()' on

an 'Err' value: "str value was supplied as opposed to an

int

We can add extra signposting to the unwrap with the expect function. This
function unwraps the result and adds an extra message to the printout if
there is an error. With the following implementation, the message "an error
happened" will be added to the error message:

let second_result: Option<&Value> = map.get("one");

let second_threshold: bool = check_int_above_threshold(1, \

 second_result).expect("an error happened");

We can also directly throw an error if needed with the following code:

panic!("throwing some error");

We can also check to see whether the result is an error by using the is_err
function as seen here:

result.is_err()

This returns a bool, enabling us to alter the direction of our program if we
come across an error. As we can see, Rust gives us a range of ways in
which we can throw and manage errors.

We can now handle enough of Rust's quirks to write basic scripts. However,
if the program gets a little more complicated, we fall into other pitfalls such
as variable ownership and lifetimes. In the next section, we cover the basics

of variable ownership so we can continue to use our variables throughout a
range of functions and structs.

Understanding variable ownership
As we pointed out in the introduction discussing why we should use Rust,
Rust doesn't have a garbage collector; however, it is still memory-safe. We
do this to keep the resources low and the speed high. However, how do we
achieve memory safety without a garbage collector? Rust achieves this by
enforcing some strict rules around variable ownership.

Like typing, these rules are enforced when the code is being compiled. Any
violation of these rules will stop the compilation process. This can lead to a
lot of initial frustration for Python developers, as Python developers like to
use their variables as and when they want. If they pass a variable into a
function, they also expect that variable to still be able to be mutated outside
the function if they want. This can lead to issues when implementing
concurrent executions. Python also allows this by running expensive
processes under the hood to enable the multiple references with cleanup
mechanisms when the variable is no longer referenced.

As a result, this mismatch in coding style gives Rust the false label of
having a steep learning curve. If we learn the rules, we only must rethink
our code a little, as the helpful compiler enables us to adhere to them easily.
You'll also be surprised how this approach is not as restrictive as it sounds.
Rust's compile-time checking is done to protect against the following
memory errors:

Use after frees: This is where memory is accessed once it has been
freed, which can cause crashes. It can also allow hackers to execute
code via this memory address.

Dangling pointers: This is where a reference points to a memory
address that no longer houses the data that the pointer was referencing.
Essentially, this pointer now points to null or random data.

Double frees: This is where allocated memory is freed, and then freed
again. This can cause the program to crash and increases the risk of
sensitive data being revealed. This also enables a hacker to execute
arbitrary code.

Segmentation faults: This is where the program tries to access the
memory it's not allowed to access.

Buffer overrun: An example of this is reading off the end of an array.
This can cause the program to crash.

Rust manages to protect against these errors by enforcing the following
rules:

Values are owned by the variables assigned to them.

As soon as the variable goes out of scope, it is deallocated from the
memory it is occupying.

Values can be used by other variables, if we adhere to the conventions
around copying, moving, immutable borrowing, and mutable
borrowing.

To really feel comfortable navigating these rules in code, we will explore
copying, moving, immutable borrowing, and mutable borrowing in more
detail.

Copy

This is where the value is copied. Once it has been copied, the new variable
owns the value, and the existing variable also owns its own value:

Figure 1.3 – Variable Copy path

As we can see with the pathway diagram in Figure 1.3, we can continue to
use both variables. If the variable has a Copy trait, the variable will
automatically copy the value. This can be achieved by the following code:

let one: i8 = 10;

let two: i8 = one + 5;

println!("{}", one);

println!("{}", two);

The fact that we can print out both the one and two variables means we
know that one has been copied and the value of this copy has been utilized
by two. Copy is the simplest reference operation; however, if the variable
being copied does not have a Copy trait, then the variable must be moved.
To understand this, we will now explore moving as a concept.

Move

This is where the value is moved from one variable to another. However,
unlike Copy, the original variable no longer owns the value:

Figure 1.4 – Variable Move path

Looking at the path diagram in Figure 1.4, we can see that one can no
longer be used as it's been moved to two. We mentioned in the Copy section
that if the variable does not have the Copy trait, then the variable is moved.

In the following code, we show this by doing what we did in the Copy
section but using String as this does not have a Copy trait:

let one: String = String::from("one");

let two: String = one + " two";

println!("{}", two);

println!("{}", one);

Running this gives the following error:

let one: String = String::from("one");

 --- move occurs because 'one' has type

 'String', which does not implement the

 'Copy' trait

let two: String = one + " two";

 ------------ 'one' moved due to usage in operator

println!("{}", two);

println!("{}", one);

 ^^^ value borrowed here after move

This is really where the compiler shines. It tells us that the string does not
implement the Copy trait. It then shows us where the move occurs. It is no
surprise that many developers praise the Rust compiler. We can get round
this by using the to_owned function with the following code:

let two: String = one.to_owned() + " two";

It is understandable to wonder why Strings do not have the Copy trait. This
is because the string is a pointer to a string slice. Copying actually means
copying bits. Considering this, if we were to copy strings, we would have
multiple unconstrained pointers to the same string literal data, which would

be dangerous. Scope also plays a role when it comes to moving variables. In
order to see how scope forces movement, we need to explore immutable
borrows in the next section.

Immutable borrow

This is where one variable can reference the value of another variable. If the
variable that is borrowing the value falls out of scope, the value is not
deallocated from memory as the variable borrowing the value does not have
ownership:

Figure 1.5 – Immutable borrow path

We can see with the path diagram in Figure 1.5 that two borrows the value
from one. When this is happening, one is kind of locked. We can still copy
and borrow one; however, we cannot do a mutable borrow or move while
two is still borrowing the value. This is because if we have mutable and
immutable borrows of the same variable, the data of that variable could

change through the mutable borrow causing an inconsistency. Considering
this, we can see that we can have multiple immutable borrows at one time
while only having one mutable borrow at any one time. Once two is
finished, we can do anything we want to one again. To demonstrate this, we
can go back to creating our own print function with the following code:

fn print(input_string: String) -> () {

 println!("{}", input_string);

}

With this, we create a string and pass it through our print function. We then
try and print the string again, as seen in the following code:

let one: String = String::from("one");

print(one);

println!("{}", one);

If we try and run this, we will get an error stating that one was moved into
our print function and therefore cannot be used in println!. We can solve
this by merely accepting a borrow of a string using & in our function, as
denoted in the following code:

fn print(input_string: &String) -> () {

 println!("{}", input_string);

}

Now we can pass a borrowed reference into our print function. After this,
we can still access the | variable, as seen in the following code:

let one: String = String::from("one");

print(&one);

let two: String = one + " two";

println!("{}", two);

Borrows are safe and useful. As our programs grow, immutable borrows are
safe ways to pass variables through to other functions in other files. We are
nearly at the end of our journey toward understanding the rules. The only
concept left that we must explore is mutable borrows.

Mutable borrow

This is where another variable can reference and write the value of another
variable. If the variable that is borrowing the value falls out of scope, the
value is not deallocated from memory as the variable borrowing the value
does not have ownership. Essentially, a mutable borrow has the same path
as an immutable borrow. The only difference is that while the value is being
borrowed, the original variable cannot be used at all. It will be completely
locked down as the value might be altered when being borrowed. The
mutable borrow can be moved into another scope like a function, but cannot
be copied as we cannot have multiple mutable references, as stated in the
previous section.

Considering all that we have covered on borrowing, we can see a certain
theme. We can see that scopes play a big role in implementing the rules that
we have covered. If the concept of scopes is unclear, passing a variable into
a function is changing scope as a function is its own scope. To fully
appreciate this, we need to move on to exploring scopes and lifetimes.

Keeping track of scopes and lifetimes

In Python, we do have the concept of scope. It is generally enforced in
functions. For instance, we can call the Python function defined here:

def add_and_square(one: int, two: int) -> int:

 total: int = one + two

 return total * total

In this case, we can access the return variable. However, we will not be able
to access the total variable. Outside of this, most of the variables are
accessible throughout the program. With Rust, it is different. Like typing,
Rust is aggressive with scopes. Once a variable is passed into a scope, it is
deleted when the scope is finished. Rust manages to maintain memory
safety without garbage collection with the borrowing rules. Rust deletes its
variables without garbage collection by wiping all variables out of scope. It
can also define scopes with curly brackets. A classic way of demonstrating
scopes can be done by the following code:

fn main() {

 let one: String = String::from("one");

 // start of the inner-scope

 {

 println!("{}", &one);

 let two: String = String::from("two");

 }

 // end of the inner-scope

 println!("{}", one);

 println!("{}", two);

}

If we try and run this code, we get the error code defined here:

println!("{}", two);

 ^^^ not found in this scope

We can see that the variable one can be accessed in the inner-scope as it was
defined outside the outer-scope. However, the variable two is defined in the
inner-scope. Once the inner-scope is finished, we can see by the error that
we cannot access the variable two outside the inner-scope. We must
remember that the scope of functions is a little stronger. From revising
borrowing rules, we know that when we move a variable into the scope of a
function, it cannot be accessed outside of the scope of the function if the
variable is not borrowed as it is moved. However, we can still alter a
variable inside another scope like another function, and still then access the
changed variable. To do this, we must do a mutable borrow, and then must
dereference (using *) the borrowed mutable variable, alter the variable, and
then access the altered variable outside the function, as we can see with the
following code:

fn alter_number(number: &mut i8) {

 *number += 1

}

fn print_number(number: i8) {

 println!("print function scope: {}", number);

}

fn main() {

 let mut one: i8 = 1;

 print_number(one);

 alter_number(&mut one);

 println!("main scope: {}", one);

}

This gives us the following output:

print function scope: 1

main scope: 2

With this, we can see that that if we are comfortable with our borrowing, we
can be flexible and safe with our variables. Now that we have explored the
concept of scopes, this leads naturally to lifetimes, as lifetimes can be
defined by scopes. Remember that a borrow is not sole ownership. Because
of this, there is a risk that we could reference a variable that's deleted. This
can be demonstrated in the following classic demonstration of a lifetime:

fn main() {

 let one;

 {

 let two: i8 = 2;

 one = &two;

 } // -----------------------> two lifetime stops here

 println!("r: {}", one);

}

Running this code gives us the following error:

 one = &two;

 ^^^^ borrowed value does not live long enough

} // -----------------------> two lifetime stops here

- 'two' dropped here while still borrowed

println!("r: {}", one);

 --- borrow later used here

What has happened here is that we state that there is a variable called one.
We then define an inner-scope. Inside this scope, we define an integer two.
We then assign one to be a reference of two. When we try and print one in
the outer-scope, we can't, as the variable it is pointing to has been deleted.
Therefore, we no longer get the issue that the variable is out of scope, it's
that the lifetime of the value that the variable is pointing to is no longer
available, as it's been deleted. The lifetime of two is shorter than the lifetime
of one.

While it is great that this is flagged when compiling, Rust does not stop
here. This concept also translates functions. Let's say that we build a
function that references two integers, compares them, and returns the
highest integer reference. The function is an isolated piece of code. In this
function, we can denote the lifetimes of the two integers. This is done by
using the ' prefix, which is a lifetime notation. The names of the notations
can be anything you wish, but it's a general convention to use a, b, c, and so
on. Let's look at an example:

fn get_highest<'a>(first_number: &'a i8, second_number: &'\

 a i8) -> &'a i8 {

 if first_number > second_number {

 return first_number

 } else {

 return second_number

 }

}

fn main() {

 let one: i8 = 1;

 {

 let two: i8 = 2;

 let outcome: &i8 = get_highest(&one, &two);

 println!("{}", outcome);

 }

}

As we can see, the first_number and second_number variables have the
same lifetime notation of a. This means that they have the same lifetimes.
We also have to note that the get_highest function returns an i8 with a
lifetime of a. As a result, both first_number and second_number variables
can be returned, which means that we cannot use the outcome variable
outside of the inner-scope. However, we know that our lifetimes between
the variables one and two are different. If we want to utilize the outcome
variable outside of the inner-scope, we must tell the function that there are
two different lifetimes. We can see the definition and implementation here:

fn get_highest<'a, 'b>(first_number: &'a i8, second_ \

 number: &'b i8) -> &'a i8 {

 if first_number > second_number {

 return first_number

 } else {

 return &0

 }

}

fn main() {

 let one: i8 = 1;

 let outcome: &i8;

 {

 let two: i8 = 2;

 outcome = get_highest(&one, &two);

 }

 println!("{}", outcome);

}

Again, the lifetime a is returned. Therefore, the parameter with the lifetime
b can be defined in the inner-scope as we are not returning it in the function.
Considering this, we can see that lifetimes are not exactly essential. We can
write comprehensive programs without touching lifetimes. However, they
are an extra tool. We don't have to let scopes completely constrain us with
lifetimes.

We are now at the final stages of knowing enough Rust to be productive
Rust developers. All we need to understand now is building structs and
managing them with macros. Once this is done, we can move onto the next
chapter of structuring Rust programs. In the next section, we will cover the
building of structs.

Building structs instead of objects
In Python, we use a lot of objects. In fact, everything you work with in
Python is an object. In Rust, the closest thing we can get to objects is

structs. To demonstrate this, let's build an object in Python, and then
replicate the behavior in Rust. For our example, we will build a basic stock
object as seen in the following code:

class Stock:

 def __init__(self, name: str, open_price: float,\

 stop_loss: float = 0.0, take_profit: float = 0.0) \

 -> None:

 self.name: str = name

 self.open_price: float = open_price

 self.stop_loss: float = stop_loss

 self.take_profit: float = take_profit

 self.current_price: float = open_price

 def update_price(self, new_price: float) -> None:

 self.current_price = new_price

Here, we can see that we have two mandatory fields, which are the name
and price of the stock. We can also have an optional stop loss and an
optional take profit. This means that if the stock crosses one of these
thresholds, it forces a sale, so we don't continue to lose more money or keep
letting the stock rise to the point where it crashes. We then have a function
that merely updates the current price of the stock. We could add extra logic
here on the thresholds for it to return a bool for whether the stock should be
sold or not if needed. For Rust, we define the fields with the following
code:

struct Stock {

 name: String,

 open_price: f32,

 stop_loss: f32,

 take_profit: f32,

 current_price: f32

}

Now we have our fields for the struct, we need to build the constructor. We
can build functions that belong to our struct with an impl block. We build
our constructor with the following code:

impl Stock {

 fn new(stock_name: &str, price: f32) -> Stock {

 return Stock{

 name: String::from(stock_name),

 open_price: price,

 stop_loss: 0.0,

 take_profit: 0.0,

 current_price: price

 }

 }

}

Here, we can see that we have defined some default values for some of the
attributes. To build an instance, we use the following code:

let stock: Stock = Stock::new("MonolithAi", 95.0);

However, we have not exactly replicated our Python object. In the Python
object __init__, there were some optional parameters. We can do this by
adding the following functions to our impl block:

 fn with_stop_loss(mut self, value: f32) -> Stock {

 self.stop_loss = value;

 return self

 }

 fn with_take_profit(mut self, value: f32) -> Stock {

 self.take_profit = value;

 return self

 }

What we do here is take in our struct, mutate the field, and then return it.
Building a new stock with a stop loss involves calling our constructor
followed by the with_stop_loss function as seen here:

let stock_two: Stock = Stock::new("RIMES",\

 150.4).with_stop_loss(55.0);

With this, our RIMES stock will have an open price of 150.4, current price
of 150.4, and a stop loss of 55.0. We can chain multiple functions as they
return the stock struct. We can create a stock struct with a stop loss and a
take profit with the following code:

let stock_three: Stock = Stock::new("BUMPER (former known \

 as ASF)", 120.0).with_take_profit(100.0).\

 with_stop_loss(50.0);

We can continue chaining with as many optional variables as we want. This
also enables us to encapsulate the logic behind defining these attributes.
Now that we have all our constructor needs sorted, we need to edit the
update_price attribute. This can be done by implementing the following
function in the impl block:

fn update_price(&mut self, value: f32) {

 self.current_price = value;

}

This can be implemented with the following code:

let mut stock: Stock = Stock::new("MonolithAi", 95.0);

stock.update_price(128.4);

println!("here is the stock: {}", stock.current_price);

It has to be noted that the stock needs to be mutable. The preceding code
gives us the following printout:

here is the stock: 128.4

There is only one concept left to explore for structs and this is traits. As we
have stated before, traits are like Python mixins. However, traits can also
act as a data type because we know that a struct that has the trait has those
functions housed in the trait. To demonstrate this, we can create a
CanTransfer trait in the following code:

trait CanTransfer {

 fn transfer_stock(&self) -> ();

 fn print(&self) -> () {

 println!("a transfer is happening");

 }

}

If we implement the trait for a struct, the instance of the struct can utilize
the print function. However, the transfer_stock function doesn't have a
body. This means that we must define our own function if it has the same

return value. We can implement the trait for our struct using the following
code:

impl CanTransfer for Stock {

 fn transfer_stock(&self) -> () {

 println!("the stock {} is being transferred for \

 £{}", self.name, self.current_price);

 }

}

We can now use our trait with the following code:

let stock: Stock = Stock::new("MonolithAi", 95.0);

stock.print();

stock.transfer_stock();

This gives us the following output:

a transfer is happening

the stock MonolithAi is being transferred for £95

We can make our own function that will print and transfer the stock. It will
accept all structs that implement our CanTransfer trait and we can use all
the trait's functions in it, as seen here:

fn process_transfer(stock: impl CanTransfer) -> () {

 stock.print();

 stock.transfer_stock();

}

We can see that traits are a powerful alternative to object inheritance; they
reduce the amount of repeated code for structs that fit in the same group.

There is no limit to the number of traits that a struct can implement. This
enables us to plug traits in and out, adding a lot of flexibility to our structs
when maintaining code.

Traits are not the only way by which we can manage how structs interact
with the rest of the program; we can achieve metaprogramming with
macros, which we will explore in the next section.

Metaprogramming with macros instead of
decorators
Metaprogramming can generally be described as a way in which the
program can manipulate itself based on certain instructions. Considering the
strong typing Rust has, one of the simplest ways that we can metaprogram
is by using generics. A classic example of demonstrating generics is
through coordinates:

struct Coordinate <T> {

 x: T,

 y: T

 }

fn main() {

 let one = Coordinate{x: 50, y: 50};

 let two = Coordinate{x: 500, y: 500};

 let three = Coordinate{x: 5.6, y: 5.6};

}

What is happening here is that the compiler is looking through all the uses
of our struct throughout the whole program. It then creates structs that have

those types. Generics are a good way of saving time and getting the
compiler to write repetitive code. While this is the simplest form of
metaprogramming, another form of metaprogramming in Rust is macros.

You may have noticed throughout the chapter that some of the functions
that we use, such as the println! function, have an ! at the end. This is
because it is not technically a function, it is a macro. The ! denotes that the
macro is being called. Defining our own macros is a blend of defining our
own function and using lifetime notation within a match statement within
the function. To demonstrate this, we can define our own macro that
capitalizes the first character in a string passed through it with the following
code:

macro_rules! capitalize {

 ($a: expr) => {

 let mut v: Vec<char> = $a.chars().collect();

 v[0] = v[0].to_uppercase().nth(0).unwrap();

 $a = v.into_iter().collect();

 }

 }

fn main() {

 let mut x = String::from("test");

 capitalize!(x);

 println!("{}", x);

}

Instead of using the fn term that is used for defining functions, we define
our macro using macro_rules!. We then say that the $a is the expression

passed into the macro. We then get the expression, convert it into a vector
of chars, uppercase the first character, and then convert it back to a string. It
must be noted that the macro that we defined does not return anything, and
we do not assign any variable when calling our macro in the main function.
However, when we print the x variable at the end of the main function, it is
capitalized. Therefore, we can deduce that our macro is altering the state of
the variable.

However, we must remember that macros are a last resort. Our example
shows that our macro alters the state even though it is not directly
demonstrated in the main function. As the complexity of the program grows,
we could end up with a lot of brittle, highly coupled processes that we are
not aware of. If we change one thing, it could break five other things. For
capitalizing the first letter, it is better to just build a function that does this
and returns a string value.

Macros do not just stop at what we have covered, they also have the same
effect as our decorators in Python. To demonstrate this, let's look at our
coordinate again. We can generate our coordinate and then pass it through a
function so it can be moved. We then try to print the coordinate outside of
the function with the following code:

struct Coordinate {

 x: i8,

 y: i8

}

fn print(point: Coordinate) {

 println!("{} {}", point.x, point.y);

}

fn main() {

 let test = Coordinate{x: 1, y:2};

 print(test);

 println!("{}", test.x)

}

It will be expected that Rust will refuse to compile the code because the
coordinate has been moved into the scope of the print function that we
created and therefore we cannot use it in the final println!. We could
borrow the coordinate and pass that through to the function. However, there
is another way we can do this. Remember that integers passed through
functions without any trouble because they had a Copy trait. Now, we could
try and code a Copy trait ourselves, but this would be convoluted and would
require advanced knowledge. Luckily for us, we can implement the Copy
and Clone traits by utilizing a derive macro with the following code:

#[derive(Clone, Copy)]

struct Coordinate {

 x: i8,

 y: i8

 }

With this, our code works as we copy the coordinate when passing it
through the function. Macros can be utilized by many packages and
frameworks, from JavaScript Object Notation (JSON) serialization to
entire web frameworks. In fact, here is the classic example of running a
basic server in the Rocket framework:

#![feature(proc_macro_hygiene, decl_macro)]

#[macro_use] extern crate rocket;

#[get("/hello/<name>/<age>")]

fn hello(name: String, age: u8) -> String {

 format!("Hello, {} year old named {}!", age, name)

}

fn main() {

 rocket::ignite().mount("/", routes![hello]).launch();

}

This is a striking resemblance to the Python Flask application example at
the beginning of the chapter. These macros are acting exactly like our
decorators in Python, which is not surprising as a decorator in Python is a
form of metaprogramming that wraps a function.

This wraps up our brief introduction to the Rust language for Python
developers. We are now able to move on to other concepts, such as
structuring our code and building fully fledged programs coded in Rust.

Summary
In this chapter, we explored the role of Rust in today's landscape, showing
that Rust's paradigm-changing position is a result of being memory-safe,
while not having any garbage collection. With this, we understood why it
beats most languages (including Golang) when it comes to speed. We then
went over the quirks that Rust has when it comes to strings, lifetimes,
memory management, and typing, so we can write safe and efficient Rust
code as Python developers. We then covered structs and traits to the point

where we could mimic the basic functionality of a Python object with
mixins, utilizing their traits as types for the Rust struct while we were at it.

We covered the basic concepts of lifetimes and borrowing. This enables us
to have more control over how we implement our structs and functions
within our program, giving us multiple avenues to turn to when solving a
problem. With all this, we can safely code single-page applications with
confidence over concepts that would stump someone who has never coded
in Rust. However, we know, as experienced Python developers, that any
serious program worth coding spans multiple pages. Considering this, we
can use what we have learned here to move on to the next chapter, where
we set up a Rust environment on our own computers and learn how to
structure Rust code over multiple files, enabling us to get one step closer to
building packages in Rust and installing them with pip.

Questions
1. Why can we not simply copy a String?

2. Rust has strong typing. In which two ways can we enable a container
such as a vector or hashmap to contain multiple different types?

3. How are Python decorators and Rust macros the same?

4. What is the Python equivalent to a main function in Rust?

5. Why can we get a higher integer value with the same number of bytes
with an unsigned integer than a signed integer?

6. Why do we have to be strict with lifetimes and scopes when coding in
Rust?

7. Can we reference a variable when it has been moved?

8. What can you do to an original variable if it is currently being borrowed
in an immutable state?

9. What can you do to an original variable if it is currently being borrowed
in a mutable state?

Answers
1. This is because a String is essentially a pointer to Vec<u8> with some

metadata. If we copy this, then we will have multiple unconstrained
pointers to the same string literal, which will introduce errors with
concurrency, mutability, and lifetimes.

2. We can use an Enum, which means that the type being accepted into the
container can be one of those types housed in the Enum. When reading
the data, we can then use a match statement to manage all possible data
types that could be read from the container. The second way is to create
a trait that multiple different structs implement. However, the only
interaction that we can have from the container read when this is the
case is the functions that the trait implements.

3. They both wrap around the code and alter the implementation or
attributes of the code that they are wrapping without directly returning
anything.

4. The Python equivalent is if __name__ == "__main__":.

5. A signed integer must accommodate positive and negative values,
whereas an unsigned integer only accommodates positive values.

6. This is because there is no garbage collection; as a result, variables get
deleted when they shift out of the scope of where they were created. If
we do not consider lifetimes, we could reference a variable that has
been deleted.

7. No, the ownership of the variable has essentially been moved and there
are no references to the original variable anymore.

8. We can still copy and borrow the original variable; however, we cannot
perform a mutable borrow.

9. We cannot use the original variable at all as the state of the variable
might be altered.

Further reading
Hands-On Functional Programming in Rust (2018) by Andrew
Johnson, Packt Publishing

Mastering Rust (2019) by Rahul Sharma and Vesa Kaihlavirta, Packt
Publishing

The Rust Programming Language (2018): https://doc.rust-
lang.org/stable/book/

https://doc.rust-lang.org/stable/book/

Chapter 2: Structuring Code in Rust
Now that we have gotten to grips with the basics of Rust, we can move on
to structuring code over several files so we can actually solve problems
with Rust. In order to do this, we will have to understand how to manage
dependencies as well as how to compile a basic and structured application.
We also have to consider the isolation of code so we can reuse it and keep
the development of the application agile, enabling us to make changes
quickly without much pain. After covering this, we will also get the
application to interact with the user directly by accepting user commands.
We will also utilize Rust crates. A crate is a binary or library that we import
and use.

In this chapter, we will cover the following topics:

Managing our code with crates and Cargo instead of pip

Structuring code over multiple files and modules

Building module interfaces

Interacting with the environment

Technical requirements
We are no longer going to be implementing simple single-page applications
that do not rely on any third-party dependencies as we did in the first
chapter. As a result, you will have to directly install Rust onto your
computer. We will also be managing third-party dependencies through

Cargo. You can install Rust and Cargo on your computer here:
https://www.rust-lang.org/tools/install.

At the time of writing this, the best integrated development environment
(IDE) by far for writing Rust is Visual Studio Code. It has a range of Rust
plugins that can help you keep track of and check your Rust code. It can be
installed using this link: https://code.visualstudio.com/download.

You can find all the code files in the GitHub repository for this chapter:
https://github.com/PacktPublishing/Speed-up-your-Python-with-
Rust/tree/main/chapter_two.

Managing our code with crates and
Cargo instead of pip
Building our own application is going to involve the following steps:

1. Create a simple Rust file and run it.

2. Create a simple application using Cargo.

3. Run our application using Cargo.

4. Manage dependencies with Cargo.

5. Use a third-party crate to serialize JSON.

6. Document our application with Cargo.

Before we start structuring our program with Cargo, we should compile a
basic Rust script and run it:

https://code.visualstudio.com/download
https://github.com/PacktPublishing/Speed-up-your-Python-with-Rust/tree/main/chapter_two

1. To do this, make a file called hello_world.rs with the main function
housing the println! function with a string, as we can see here:

fn main() {

 println!("hello world");

}

2. Once this is done, we can navigate to the file and run the rustc
command:

rustc hello_world.rs

3. This command compiles the file into a binary to be run. If we compile
on Windows, we can run the binary with the following command:

.\hello_world.exe

4. If we compile it on Linux or Mac, we can run it with the following
command:

./hello_world

The console should then print out the string. While this can come in
useful when building a standalone file, it is not recommended for
managing programs spanning multiple files. It is not even recommended
when relying on dependencies. This is where Cargo comes in. Cargo
manages everything – the running, testing, documentation, building, and
dependency out of the box – with a few simple commands.

Now that we have a basic understanding of how to compile a basic file, we
can move on to building a fully fledged application:

1. In your terminal, navigate to where you want your application to sit, and
create a new project called wealth_manager as follows:

cargo new wealth_manager

This will create our application with the following structure:

└── wealth_manage

 ├── .git

 ├── Cargo.toml

 ├── .gitignore

 └── src

 └── main.rs

Here, we can see that Cargo has built the basic structure of an
application that can manage compilations, work with GitHub, and
manage dependencies right out of the box. The metadata and
dependencies of our application are defined in the Cargo.toml file.

In order to perform Cargo commands on this application, our terminal is
going to have to be in the same directory as the Cargo.toml file. The
code that we are going to be altering that makes up our application is
housed in the src directory. Our entry point for the whole application is
in the main.rs file. In Python, we can have multiple entry points, and we
will explore these in Chapter 4, Building pip Modules in Python, where
we will build pure Python packages for the first time. If we open the
.gitignore file, we should have the following:

/target

This is not a mistake; this is how clean Rust is. Everything that Cargo
produces when it comes to compiling, documenting, caching, and so on
is all stored in the target directory.

2. Right now, all we have is the main file that has a printout to the console
saying "hello world." We can run this with the following command:

cargo run

3. With this command, we get the following output in the terminal:

Compiling wealth_manager v0.1.0 (/Users/maxwellflitton

/Documents/github/book_two/chapter_two/wealth_manager)

Finished dev [unoptimized + debuginfo] target(s) in 0.45s

Running 'target/debug/wealth_manager'

Hello, world!

Here, we can see that the application is being compiled. Once it's been
compiled, it states that the compilation process has finished.

However, we have to note that it states that the finished process is
unoptimized with debug info. This means that the compiled product is
not as fast as it could be; however, it does contain debugging info if
needed. This type of compilation is fast compared to an optimized
version and is to be used when developing an application, as opposed to
live production environments. We then see that the binary file that has
been compiled is in target/debug/wealth_manager, and this is then run,
resulting in the hello_world.rs output.

4. If we want to run a release, we simply run the following command:

cargo run --release

This compiles an optimized version of our app in the ./target/release/
directory under the binary wealth_manager. If we just want to compile
our application without running it, we can simply swap the run
command for build.

Now that we have got our application running, let's explore how we manage
the metadata around it. This can all be done by editing the Cargo.toml file.
When we open this, we get the following:

[package]

name = "wealth_manager"

version = "0.1.0"

authors = ["maxwellflitton"]

edition = "2018"

[dependencies]

The name, version, and authors are fairly straightforward. Here are the
effects each section has on the project:

If we change the name value in the Cargo.toml file, then new binaries
with that name will be made when we build or run our application. The
old ones will still be there too.

version is for distribution on services such as crates.io if we want to
open source our application for others to use. The authors are required
for this as well, and our application will still compile and run locally if
it's not there.

edition is the edition of Rust that we are using. Rust gets updated
frequently. These updates accumulate through time, and every two to
three years, the smoothed-out new features are packaged, documented,
and added to a new edition. The latest edition (2021) is available at
https://devclass.com/2021/10/27/rust-1-56-0-arrives-delivering-rust-
2021-edition-support/.

https://devclass.com/2021/10/27/rust-1-56-0-arrives-delivering-rust-2021-edition-support/

We also have dependencies. This is where we can import third-party
crates.

To see how this works, let's use a crate to convert a data structure of stock
into JSON and then print it. Writing the code ourselves would be a bit of a
headache. Luckily, we can install the serde crate and use the json! macro.
In order for Cargo to download and install the crate, we fill our
dependencies section in our Cargo.toml file with the code given here:

[dependencies]

serde="1.0.117"

serde_json="1.0.59"

In our main.rs file, we then import the macro and struct needed to convert
data about a stock into JSON and then print it out in the following code:

use serde_json::{json, Value};

fn main() {

 let stock: Value = json!({

 "name": "MonolithAi",

 "price": 43.7,

 "history": [19.4, 26.9, 32.5]

 });

 println!("first price: {}", stock["history"][0]);

 println!("{}", stock.to_string());

}

It is important to note that we are returning a Value struct from the
serde_json value. In order to see how we can use the return value, we can

explore the documentation of the struct. This is when we get to see that
Rust's documentation system is very comprehensive. We can find the
documentation of the struct here:
https://docs.rs/serde_json/1.0.64/serde_json/enum.Value.html.

We can see in Figure 2.1 that the documentation covers all of the functions
that the struct supports. Our json! macro is returning Object(Map<String,
Value>). We also have a range of other values, depending on how we call
the json! macro. The documentation also covers a range of functions that
we can exploit to check what type the value is, whether the JSON value is
null, and ways in which we can cast the JSON value as a particular type:

https://docs.rs/serde_json/1.0.64/serde_json/enum.Value.html

Figure 2.1 – Documentation of the serde_json value

When we perform a Cargo run command, we will see Cargo compiling the
crates that we defined in the dependencies. We then see the compilation of
our own app, and the printout of the price and the data related to the stock,
as shown here:

first price: 19.4

{"history":[19.4,26.9,32.5], "name":"MonolithAi",\

 "price":43.7}

Going back to the documentation, we can create our own. This is
straightforward; we do not have to install anything. All we have to do is
create documentation in the code, like docstrings in Python. In order to
demonstrate this, we can create a function that adds two variables together
and defines the docstring, as seen in the following code:

/// Adds two numbers together.

///

/// # Arguments

/// * one (i32): one of the numbers to be added

/// * two (i32): one of the numbers to be added

///

/// # Returns

/// (i32): the sum of param one and param two

///

/// # Usage

/// The function can be used by the following code:

///

/// '''rust

/// result: i32 = add_numbers(2, 5);

/// '''

fn add_numbers(one: i32, two: i32) -> i32 {

 return one + two

}

We can see that this documentation is Markdown! This example is overkill
for this type of function. A standard developer should be able to implement
this function without any examples. For more complex functions and
structs, it is worth noting that there is nothing stopping us from
documenting code examples on how to implement what we are
documenting. Building the documentation only requires the command here:

cargo doc

After the process has finished, we can open the documentation with the
following command:

cargo doc --open

This opens up the documentation in a web browser, as shown in Figure 2.2:

Figure 2.2 – Documentation view of our module

What we can see here is that our main and add_numbers functions are
available. We can also see on the left that the dependencies that were

installed are also available. If we click on our add_numbers function, we get
to see the Markdown that we wrote, as shown in Figure 2.3:

Figure 2.3 – Documentation view of our add_numbers function

Here we have it – we can create interactive documentation of our code as
we build our application. It has to be noted that the rest of the book will not
have Markdown in the code snippets; otherwise, this would simply extend
the book to an unnecessary length. However, it is good practice to
document all structs and functions as you code.

Now that we have run our code, set up a basic application structure, and
documented our code, we are ready to move on to the next section of
structuring our application over multiple files.

Structuring code over multiple fi les and
modules
In order to build our module, we are going to carry out the following steps:

1. Map out our file and folder structure.

2. Create our Stock structs.

3. Link our Stock struct to the main file.

4. Use our stocks module in the main file.

5. Add code from another module.

Now that we are at the stage of building out our application over multiple
files, we have to define our first module in our application, which is the
stocks module:

1. We can make our module have the structure defined as follows:

├── main.rs

└── stocks

 ├── mod.rs

 └── structs

 ├── mod.rs

 └── stock.rs

We have taken this structure to enable flexibility; if we need to add
more structs, we can do so in the structs directory. We can also add
other directories alongside the structs directory. For instance, we might
want to build a mechanism for storing the data for our stocks. This can
be achieved by adding a storage directory in the stocks directory and
using this throughout the module as and when it is needed.

2. For now, we simply want to create a stock struct in our stocks module,
import it into our main.rs file, and use it. Our first step is to define our
Stock struct in our stock.rs file with this code:

pub struct Stock {

 pub name: String,

 pub open_price: f32,

 pub stop_loss: f32,

 pub take_profit: f32,

 pub current_price: f32

}

This looks familiar, as it is the same as the Stock struct that we defined
in the previous chapter. However, there is a slight difference. We must
note that there is a pub keyword before the struct definition and each
field definition. This is because we have to declare them public before

we can use them outside the file. This also applies to functions
implemented in the same file, as shown in the following code:

impl Stock {

 pub fn new(stock_name: &str, price: f32) -> \

 Stock {

 return Stock{

 name: String::from(stock_name),

 open_price: price,

 stop_loss: 0.0,

 take_profit: 0.0,

 current_price: price

 }

 }

 pub fn with_stop_loss(mut self, value: f32) \

 -> Stock {

 self.stop_loss = value;

 return self

 }

 pub fn with_take_profit(mut self, value: f32) \

 -> Stock {

 self.take_profit = value;

 return self

 }

 pub fn update_price(&mut self, value: f32) {

 self.current_price = value;

 }

}

We can see that we now have a public struct that is available with all its
functions.

We now have to enable our struct to be used in the main.rs file. This is
where the mod.rs files come in. mod.rs files are essentially __init__.py
files in Python. They show that the directory is a module. However, unlike
Python, Rust data structures need to be publicly declared in order to be
accessed from other files. We can see how the struct is passed through our
stocks module to our main.rs file in Figure 2.4:

Figure 2.4 – How a struct is passed through modules

Here, we can see that we are merely publicly declaring the struct in the
module furthest away from main.rs in the mod.rs file belonging to that
directory. We then publicly declare the structs module in the stocks mod.rs
file. Here is a good time to explore the mod expression that declares
modules. If we want to, we can declare multiple modules in a single file. It

must be stressed that this is not happening in our example. We could declare
module one and module two in a single file with the following code:

mod one {

 . . .

}

Mod two {

 . . .

}

Now that we have defined our modules in our main example project, we
just declare the stocks module in the main.rs file. The reason why this is
not a public declaration is that the main.rs file is the entry point of our
application; we will not be importing this module into anything else:

1. Now that our struct is available, we can simply use it as we would if it
was defined in the same file with the following:

mod stocks;

use stocks::structs::stock::Stock;

fn main() {

 let stock: Stock = Stock::new("MonolithAi", 36.5);

 println!("here is the stock name: {}",\

 stock.name);

 println!("here is the stock name: {}",\

 stock.current_price);

}

2. Running this code unsurprisingly gives us this:

here is the stock name: MonolithAi

here is the stock name: 36.5

Now that we have the basics of using structs from different files covered,
we can move on to exploring other pathways of accessing data structures
from other files in order to be more flexible:

1. The first concept we have to explore is accessing from files in the same
directory. In order to demonstrate this, we can do a throwaway example
of building a print function in the structs. In a new file with the
src/stocks/structs/utils.rs path, we can create a toy function that
merely prints out that the constructor for the struct is firing, as shown in
the following code:

pub fn constructor_shout(stock_name: &str) -> () {

 println!("the constructor for the {} is firing", \

 stock_name);

}

2. We then declare it in our src/stocks/structs/mod.rs file with the
following code:

pub mod stock;

mod utils;

It must be noted that we are not making it public; we just declare it
instead. Nothing is stopping us from making it public; however, with
the non-public approach, we only allow files within the directory of
src/stocks/structs/ to access it.

3. We now want our Stock struct to access it and use it in our constructor,
which can be done with an import in src/stocks/structs/stock.rs
with the following line:

use super::utils::constructor_shout;

4. If we want to move our reference to the src/stocks/ directory, we can
use super::super. We can chain as many supers as we want, depending
on how deep the tree is. It has to be noted that we can only access what
is declared in the mod.rs file of the directory. In our
src/stocks/structs/stock.rs file, we can now use the function in our
constructor with the following code:

pub fn new(stock_name: &str, price: f32) -> Stock {

 constructor_shout(stock_name);

 return Stock{

 name: String::from(stock_name),

 open_price: price,

 stop_loss: 0.0,

 take_profit: 0.0,

 current_price: price

 }

}

5. Now, if we run our application, we will get the following printout in the
terminal:

the constructor for the MonolithAi is firing

here is the stock name: MonolithAi

here is the stock name: 36.5

We can see that the program runs in exactly the same way, with the
additional line from the util function that we imported from. If we

create another module, we can access our stocks module from it,
because the stocks module is defined in the main.rs file.

While we have managed to access data structures from different files and
modules, this is not very scalable, and there are going to be some rules in
which we implement stocks. In order to enable us to write scalable safe
code, we need to lock down the functionality with interfaces in the next
section.

Building module interfaces
Unlike Python, where we can import anything we want from anywhere and
at the most our IDE will just give us a syntax highlight, Rust will actively
not compile if we try and access data structures that have not explicitly been
made public. This gives us an opportunity to really lock down our modules
and enforce functionality through an interface.

However, before we get started with this, let's fully explore what
functionality we will be locking down. It is good practice to keep modules
as isolated as possible. In our stocks module, the logic should only be
around how to handle stocks and nothing else. This might seem a little
overkill, but when we think about it, we quickly realize that this module is
going to scale when it comes to complexity.

For the demonstrative purposes of this chapter, let's just build the
functionality for a stock order. We can either buy or sell a stock. These
stock orders come in multiples. It's fairly common to buy n stocks of a
company. We will also have to check to see whether the stock order is short
or long. With a short order, we borrow money from the broker, buy stocks

with that money, sell them instantly, and then buy the stocks back at a later
date. If the stock price goes down, we make money, as we keep the
difference when repaying to the broker. If we go long, we just buy the stock
and hold it. If it goes up, we make money, so depending on the order, there
will be different outcomes.

We have to remember that this is not a book for developing software around
stock markets, so we need to keep the details simple to avoid losing
ourselves. A simple approach for us to take to demonstrate interfaces is to
take a layered approach, as described in Figure 2.5:

Figure 2.5 – Approach to a simple module interface

In order to achieve this approach, we can carry out the following steps:

1. Structure the module layout with the right files.

2. Create an enum for the different types of orders.

3. Build an order struct.

4. Install the chrono crate needed for datetime objects.

5. Create an order constructor that utilizes the chrono crate.

6. Create dynamic values for the struct.

7. Create a close order interface.

8. Create an open order interface.

9. Use the order interfaces in the main file.

Let's get started:

1. Here, we only allow ourselves to access the stock struct through the
order struct. Again, there are other ways to approach this problem,
which is a demonstration of how to build interfaces in Rust. In order to
achieve this in the code, we have the file structure defined as follows:

├── main.rs

└── stocks

 ├── enums

 │ ├── mod.rs

 │ └── order_types.rs

 ├── mod.rs

 └── structs

 ├── mod.rs

 ├── order.rs

 └── stock.rs

2. First of all, we can define our enum order types in our
enums/order_types.rs file with the following code:

pub enum OrderType {

 Short,

 Long

}

3. We will use this in our order and interfaces. In order to make this enum
type available to the rest of the module, we have to declare it in our
enums/mod.rs file with the following code:

pub mod order_types;

4. Now that we have built our enum type, it is time to put it to work. We
can now build our order struct in our stocks/structs/order.rs file with
the following code:

use chrono::{Local, DateTime};

use super::stock::Stock;

use super::super::enums::order_types::OrderType;

pub struct Order {

 pub date: DateTime<Local>,

 pub stock: Stock,

 pub number: i32,

 pub order_type: OrderType

}

5. Here, we use the chrono crate to define when the order was placed; we
also have to note what stock the order is for, the number of stocks that

we are buying, and the type of order. We have to remember to define
our chrono dependency on our Cargo.toml file with the following code:

[dependencies]

serde="1.0.117"

serde_json="1.0.59"

chrono="0.4.19"

The reason why we have kept our stock struct separate from the order
struct is to allow flexibility. For instance, there are other things that we
can do with stock data that is not an order. We may want to build a
struct that houses stocks on the user watch list and the user hasn't
actually bought anything, but they still want to see the stocks available.

6. There are other use cases for stock data, however. Considering this, we
can see that keeping the data and methods around a stock in an
individual stock struct helps to not only reduce the amount of code we
have to write if we add more features but also standardizes the data
around a stock. This also makes it easier for us to maintain the code. If
we add or delete a field, or change a method for stock data, we only
have to change it in one place as opposed to multiple places. Our
constructor for our order struct can be made in the same file with the
following code:

impl Order {

 pub fn new(stock: Stock, number: i32, \

 order_type: OrderType) -> Order {

 let today: DateTime<Local> = Local::now();

 return Order{date: today, stock, number, \

 order_type}

 }

}

Here we create an Order struct by accepting stock, number, and
order_type arguments and creating a datetime struct.

7. Because our order focuses on the logic around pricing the order as it
houses the number of stocks brought in an order, in our impl block, we
can build our current value of the order with the following code:

 pub fn current_value(&self) -> f32 {

 return self.stock.current_price * self \

 .number as f32

 }

It has to be noted that we have used &self as a parameter instead of just
using self. This enables us to use the function multiple times. If the
parameter was not a reference, then we would move the struct into the
function. We would not be able to calculate the value multiple times,
and it's going to be useful to do so unless the type is Copy.

8. We can also build on this function to calculate the current profit in the
impl block with the following code:

 pub fn current_profit(&self) -> f32 {

 let current_price: f32 = self.current_value();

 let initial_price: f32 = self.stock. \

 open_price * self.number as f32;

 match self.order_type {

 OrderType::Long => return current_price -\

 initial_price,

 OrderType::Short => return initial_price -\

 current_price

 }

 }

Here, we get the current price and the initial price. We then match the
order type, as this will change how the profit is calculated. Now our
structs are complete, we have to ensure that the structs are available by
defining them in the stocks/structs/mod.rs file with the following
code:

pub mod stock;

pub mod order;

9. We are now ready to create our interfaces. In order to build our interface
in our stocks /mod.rs file, we initially have to import everything that
we need, as shown in the following code:

pub mod structs;

pub mod enums;

use structs::stock::Stock;

use structs::order::Order;

use enums::order_types::OrderType;

10. Now that we have everything to build our interface, we can build our
close order interface with the following code:

pub fn close_order(order: Order) -> f32 {

 println!("order for {} is being closed", \

 &order.stock.name);

 return order.current_profit()

}

11. This is a fairly simple interface; we could do more, such as a database
or API call, but for this demonstration, we merely print that the stock is
being sold and return the current profit that we have made. With this in
mind, we can build our more complex interface by opening an order in
the same file with the following code:

pub fn open_order(number: i32, order_type: OrderType,\

 stock_name: &str, open_price: f32,\

 stop_loss: Option<f32>, \

 take_profit: Option<f32>) -> \

 Order { \

 println!("order for {} is being made", \

 &stock_name);

 let mut stock: Stock = Stock::new(stock_name, \

 open_price);

 match stop_loss {

 Some(value) => stock = \

 stock.with_stop_loss(value),

 None => {}

 }

 match take_profit {

 Some(value) => stock = \

 stock.with_take_profit(value),

 None => {}

 }

 return Order::new(stock, number, order_type)

}

Here, we take in all of the parameters that we need. We have also
introduced the Option<f32> argument type, which is implemented as an
enum type. This allows us to pass in a None value. We then create a
mutable stock (as the price will vary and we will have to update it), and
then check to see whether the stop_loss value is provided; if it is, we
then add the stop loss to the stock. We then check to see whether the
take_profit value is provided, updating the stock with this if it is.

12. Now that we have built all our interfaces, all we need to do is to use
them in the main.rs file. In the main file, we need to import the needed
structs and interfaces to utilize them with the following code:

mod stocks;

use stocks::{open_order, close_order};

use stocks::structs::order::Order;

use stocks::enums::order_types::OrderType;

13. In our main function, we can start putting these interfaces to work by
creating a new mutable order with the following code:

println!("hello stocks");

let mut new_order: Order = open_order(20, \

 OrderType::Long, "bumper", 56.8, None, None);

14. Here, we have set take_profit and stop_loss to None, but we can add
them if we need to. To clarify what we have just bought, we can print
out the current value and profit with the following code:

println!("the current price is: {}",

 &new_order.current_value());

println!("the current profit is: {}",

 &new_order.current_profit());

15. We then get some movement in the stock market, which we can
simulate by updating the price and printing the value of our investment
at each change with the following code:

new_order.stock.update_price(43.1);

println!("the current price is: {}", \

 &new_order.current_value());

println!("the current profit is: {}", \

 &new_order.current_profit());

new_order.stock.update_price(82.7);

println!("the current price is: {}", \

 &new_order.current_value());

println!("the current profit is: {}", \

 &new_order.current_profit());

16. We now have a profit, and we will sell our stock to close the order and
print out the profit with the following code:

let profit: f32 = close_order(new_order);

println!("we made {} profit", profit);

17. Now, our interfaces, module, and main file are built. Running the Cargo
run command gives us the following printout:

hello stocks

the constructor for the bumper is firing

the current price is: 1136

the current profit is: 0

the current price is: 862

the current profit is: -274

the current price is: 1654

the current profit is: 518

order for bumper is being closed

we made 518 profit

As we can see, our module works and it has a clean interface. For this book,
our example stops here, as we have shown how we can build modules in
Rust with interfaces. However, if you want to go further with building out
the application, we can take the approach seen in Figure 2.6:

Figure 2.6 – Building out our application

In the account module, we would build data structures around keeping track
of the amount the user has through trades. We would then build a storage
module that has read and write interfaces for accounts and stocks. The
reason why storage is a separate module is that we can keep the interfaces
the same, and chop and change the storage logic under the hood.

For instance, we could start with a simple JSON file storage system for
development and local usage; however, the application then gets put onto a
server, and loads of users start making trades and accessing their accounts.
We can switch the file reading and write for a database driver with database

model mapping. The system then gets a lot of traffic and the application
gets split into a cluster of microservices. One application would still be
talking to a database, while another one for frequently requested
stocks/accounts could be talking to a Redis cache.

Considering this, keeping the storage separate keeps us flexible. Changing
the requirements for the storage is not going to break the build. In fact, a
configuration file could enable the switching of different methods,
depending on the environment. As long as the interfaces remain the same,
refactoring will not be a huge task.

Benefits of documentation when coding

As our module spans multiple files, we are now referencing functions and
structs that are in different files. This is where the importance of
documentation can be seen. We can revisit our point in the technical
requirements of using Visual Studio Code. The code in GitHub is fully
documented. If the Rust plugins are installed, merely hovering the mouse
over the struct or function will pop up the documentation, allowing us to
see what is needed in our interface, as shown in Figure 2.7:

Figure 2.7 – Popup documentation in Visual Studio Code

There is a reason why badly structured code that isn't documented is
referred to as tech debt, and this is because it collects interest over time.
Poorly structured code with no documentation is quick to develop, however,
and as the size of the application grows, it's going to get harder to change
things and understand what is going on. A well-structured module with
good Markdown Rust documentation is a great way to keep you and your
team's productivity high.

We now have a functioning application that spans multiple pages and is
clean and scalable. However, a user cannot dynamically use it, as

everything has to be hardcoded. This is not practical. In the next section, we
interact with the environment so we can pass arguments into the program.

Interacting with the environment
We are at the stage in which the only thing that is holding us back from
building a fully functioning command-line application is interacting with
the environment. As stated in the previous section, this is an open-ended
subject that spans anything from taking command-line arguments to
interacting with servers and databases. As in the previous section, we will
cover enough in order to get an understanding of how to structure Rust code
that accepts data from the outside and processes it.

In order to explore this, we are going to get our stock application to take in
command-line arguments from the user so that we can either buy or sell a
stock. We will not over-complicate things by choosing whether to go short
or go long, and we will not introduce storage.

However, by the end of this section, we will be equipped to approach
building code that scales and accepts data from the outside world. With this,
further reading on crates that connect to databases or read/write files will
enable us to seamlessly add them to our well-structured code. In terms of
databases, we will cover how to mirror the schema of a database and
connect to it in Chapter 10, Injecting Rust into a Python Flask App.

For our toy example, we will be generating a random number for our sale
stock price in order to calculate whether we sell at a profit or loss. We will
do this by adding the rand crate to our dependencies section in the

Cargo.toml file with rand="0.8.3". We can interact with our environment
by carrying out the following steps:

1. Import all the required crates.

2. Collect the inputs from the environment.

3. Process our inputs with orders.

Let's get started:

1. Now that our rand crate has been added, we can add all the extra
imports that we need in the main.rs file with the following code:

use std::env;

use rand::prelude::*;

use std::str::FromStr;

We are using env to get the arguments passed into Cargo. We import
everything from the prelude of the rand crate so that we can generate
random numbers, and we import FromStr trait so that we can convert
strings passed in from the command-line arguments into numbers.

2. In our main function, we initially collect the arguments passed in from
the command line with the following code:

let args: Vec<String> = env::args().collect();

let action: &String = &args[1];

let name: &String = &args[2];

let amount: i32 = i32::from_str(&args[3]).unwrap();

let price: f32 = f32::from_str(&args[4]).unwrap();

We state that we are going to collect the command-line arguments in a
vector of strings. We do this because pretty much everything can be
represented as a string. We then define all the parameters that we need.
We have to note that we start at index 1 instead of 0. This is because
index 0 is populated with the run command. We can also see that we are
converting the strings into numbers when we need them and directly
unwrapping them. This is a little dangerous; we should ideally match
the result of the from_str function and give better information to the
user if we were building a proper production command-line tool.

3. Now that we have everything we need, we create a new order with the
data we collected using the following code:

let mut new_order: Order = open_order(amount, \

 OrderType::Long, &name.as_str(), price, \

 None, None);

We are creating a new order every time even if it is a sell because we do
not have storage, and we need to have all the structured data and logic
around our stock position. We then match our actions. If we are going to
sell our stock, we generate a new price for the stock before selling.
Considering this, we can see whether we make a profit or not with the
following code:

match action.as_str() {

 "buy" => {

 println!("the value of your investment is:\

 {}", new_order.current_value());

 }

 "sell" => {

 let mut rng = rand::thread_rng();

 let new_price_ref: f32 = rng.gen();

 let new_price: f32 = new_price_ref * 100 as \

 f32;

 new_order.stock.update_price(new_price);

 let sale_profit: f32 = close_order(new_order);

 println!("here is the profit you made: {}", \

 sale_profit);

 }

 _ => {

 panic!("Only 'buy' and 'sell' actions are \

 supported");

 }

}

It must be noted that we have a _ at the end of the match expression.
This is because the string could theoretically be anything and Rust is a
safe language. It will not allow us to compile the code if we did not
account for every outcome. The _ is a catch-all pattern. If not all of the
match patterns are made, then this is executed. For us, we merely raise
an error, stating that only sell and buy are supported.

4. In order to run this program, we perform the following command:

cargo run sell monolithai 26 23.4

5. Running this will give us the following outcome:

order for monolithai is being made

order for monolithai is being closed

here is the profit you made: 1825.456

The profit you make will be different, as the number generated will be
random.

Here we have it – our application is interactive and scalable. If you want to
build more comprehensive command-line interfaces with help menus, it is
recommended that you read and utilize the clap crate.

Summary
In this chapter, we went through the basics of Cargo. With Cargo, we
managed to build basic applications, document them, compile them, and run
them. Looking at how clean and easy this implementation was, it is clear to
see why Rust is one of the most favored languages. Managing all the
functionality, documentation, and dependencies in one file with a few lines
of code speeds up the whole process. Combining this with a strict, helpful
compiler makes Rust a no-brainer when it comes to managing complex
projects. We managed our complexity by wrapping our module in easy-to-
use interfaces and interacting with the user's inputs through the command
line.

Right now, as you stand, you can start building Rust code to solve a range
of problems. If you want to build an application that interacts as a Rust web
server with a frontend and database, I recommend that you read my other
book on web development in Rust, Rust Web Programming, and start at

Chapter 3, as you have now covered enough Rust fundamentals to start
building Rust servers.

In the next chapter of this book, we will cover how to exploit Rust's
concurrency.

Questions
1. As we continue to code, how do we document it?

2. Why is it important to keep modules isolated to a single concept?

3. How do we enable our modules to keep the advantages of isolated
modules?

4. How do we manage dependencies in our application?

5. How do we ensure that all outcomes in a match expression are
accounted for when there is theoretically an infinite number of
outcomes, such as matching different strings?

6. Let's say that we have a struct called SomeStruct in a
some_file/some_struct.rs file. How do we make this available outside
of the directory that it is in?

7. Let's say that we have changed our mind about our SomeStruct struct in
question 6 and we want it only available in the some_file/ directory.
How would we do this?

8. How can we access our SomeStruct struct in the
some_file/another_struct.rs file?

Answers
1. Our docstrings can support Markdown while we are building our structs

and functions. Because it's Markdown, we can document ways in which
we can implement the struct or function. If we are using Visual Studio
Code, this also helps our productivity, as merely hovering the mouse
over the function or struct throws up the documentation.

2. Keeping our modules constrained to a single concept increases the
flexibility of the application, enabling us to chop and change modules as
and when they are needed.

3. In order to keep our modules isolated, we need to keep the interfaces of
the module the same; this means that we can change logic inside the
module without having to alter anything in the rest of the application. If
we delete the module, we only have to look for implementations of the
interface throughout the application as opposed to the implementation
of all functions and structs in the module.

4. We manage our dependencies in the Cargo.toml file. Just running Cargo
will install the requirements we have when it is compiling before
running.

5. We can account for everything by catching anything that hasn't satisfied
all our matches. This is done by implementing a _ pattern at the end of
our match expression, executing the code attached to that.

6. We make it publicly available by writing pub mod some_struct; in the
some_file/mod.rs file.

7. We make it available only in the some_file/ directory by writing mod
some_struct; in the some_file/mod.rs file.

8. We can access the SomeStruct by typing use
super::some_struct::SomeStruct; in the some_file/another_struct.rs
file.

Further reading
Rust Web Programming, Maxwell Flitton, Packt Publishing (2021)

Mastering Rust, Rahul Sharma and Vesa Kaihlavirta, Packt Publishing
(2019)

The Rust Programming Language, Rust Foundation: https://doc.rust-
lang.org/stable/book/ (2018)

The Clap documentation, Clap Docs: https://docs.rs/clap/2.33.3/clap/
(2021)

The standard file documentation, Rust Foundation: https://doc.rust-
lang.org/std/fs/struct.File.html (2021)

The chrono DateTime documentation, Rust Foundation:
,https://docs.rs/chrono/0.4.19/chrono/struct.DateTime.html (2021)

https://doc.rust-lang.org/stable/book/
https://docs.rs/clap/2.33.3/clap/
https://doc.rust-lang.org/std/fs/struct.File.html

Chapter 3: Understanding Concurrency
Speeding up our code with Rust is useful. However, understanding
concurrency and utilizing threads and processes can take our ability to
speed up our code to the next level. In this chapter, we will go through what
processes and threads are. We then go through the practical steps of
spinning up threads and processes in Python and Rust. However, while this
can be exciting, we also must acknowledge that reaching for threads and
processes without thinking about our approach can end up tripping us up.
To avoid this, we also explore algorithm complexity and how this affects
our computation time.

In this chapter, we will cover the following topics:

Introducing concurrency

Basic asynchronous programming with threads

Running multiple processes

Customizing threads and processes safely

Technical requirements
The code for this chapter can be accessed via the following GitHub link:

https://github.com/PacktPublishing/Speed-up-your-Python-with-
Rust/tree/main/chapter_three

Introducing concurrency

https://github.com/PacktPublishing/Speed-up-your-Python-with-Rust/tree/main/chapter_three

As we explored in the introduction of Chapter 1, An Introduction to Rust
from a Python Perspective, Moore's law is now failing, and therefore we
have to consider other ways in which we can speed up our processing. This
is where concurrency comes in. Concurrency is essentially running multiple
computations at the same time. Concurrency is everywhere, and to give the
concept full justice, we would have to write a whole book on it.

However, for the scope of this book, understanding the basics of
concurrency (and when to use it) can add an extra tool to our belt that
enables us to speed up computations. Furthermore, threads and processes
are how we can break up our program into computations that run at the
same time. To start our concurrency tour, we will cover threads.

Threads

Threads are the smallest unit of computation that we can process and
manage independently. Threads are used to break a program into
computational parts that can be run at the same time. It also has to be noted
that threads can be run out of sequence. This brings forward an important
distinction between concurrency and parallelism. Concurrency is the task
of running and managing multiple computations at the same time, while
parallelism is the task of running multiple computations at the same time.
Concurrency has a non-deterministic control flow, while parallelism has a
deterministic control flow. Threads share resources such as memory and
processing power; however, they also block each other. For instance, if we
spin off a thread that requires constant processing power, we will merely
block the other thread, as seen in the following diagram:

Figure 3.1 – Two threads over time

Here, we can see that Thread A stops running when Thread B is running.
This is demonstrated in Pan Wu's 2020 article on understanding
multithreading through simulations where different types of tasks were
timed. The results in the article are summed up in the following chart:

Figure 3.2 – Times of different tasks [Source: Pan Wu,
https://towardsdatascience.com/understanding-python-multithreading-and-

multiprocessing-via-simulation-3f600dbbfe31]

Here, we can see that the times decrease as the number of workers
decreases, apart from the central processing unit (CPU)-heavy
multithreaded tasks. This is because, as demonstrated in Figure 3.1, the
CPU-intensive threads are blocking, so only one worker can process at a
time. It does not matter how many more workers you add. It must be noted
that this is because of Python's global interpreter lock (GIL), which is
covered in Chapter 6, Working with Python Objects in Rust. In other

contexts, such as Rust, they can be executed on different CPU cores and
generally will not block each other.

We can also see in Figure 3.2 that the input/output (I/O)-heavy tasks do
reduce in time taken when the workers increase. This is because there is
idle time in I/O-heavy tasks. This is where we can really utilize threads.
Let's say our task is making a call to a server. There is some idle time when
waiting for a response, therefore utilizing threads to make multiple calls to
servers will speed up the time. We also must note that processes work for
CPU- and I/O-heavy tasks. Because of this, it is beneficial for us to explore
what processes are.

Processes

Processes are more expensive to produce compared to threads. In fact, a
process can host multiple threads. This is usually depicted in the following
classic multithreading diagram, as seen everywhere (including the
multiprocessing Wikimedia page):

Figure 3.3 – Relationship between threads and processes [Source: Cburnett (2007)
(https://commons.wikimedia.org/wiki/File:Multithreaded_process.svg), CC BY-SA 3.0]

This is a classic diagram because it encapsulates the relationship between
processes and threads so well. Here, we can see that threads are a subset of
a process. We can also see why threads share memory, and as a result, we
must note that processes are typically independent and do not share
memory. We also must note that context switches are more expensive when
using processes. A context switch refers to when the state of a process (or
thread) is stored so that it can be restored and resumed at a later state. An
example of this would be waiting for an application programming
interface (API) response. The state can be saved, and another
process/thread can run while we wait for the API response.

Now that we understand the basic concepts behind threads and processes,
we need to learn how to practically use threads in our programs.

Basic asynchronous programming with
threads
To utilize threading, we need to be able to start threads, allow them to run,
and then join them. We can see the stages of practically managing our
threads in the following diagram:

Figure 3.4 – Stages of threads

We start the threads, we then let them run, and once they have run, we join
them. If we did not join them, the program would continue to run before the
threads had finished. In Python, we create a thread by inheriting the Thread
object, as follows:

from threading import Thread

from time import sleep

from typing import Optional

class ExampleThread(Thread):

 def __init__(self, seconds: int, name: str) -> None:

 super().__init__()

 self.seconds: int = seconds

 self.name: str = name

 self._return: Optional[int] = None

 def run(self) -> None:

 print(f"thread {self.name} is running")

 sleep(self.seconds)

 print(f"thread {self.name} has finished")

 self._return = self.seconds

 def join(self) -> int:

 Thread.join(self)

 return self._return

Here, we can see that we have overwritten the run function in the Thread
class. This function runs when the thread is running. We then overwrite the
join method. However, we must note that in the join function, there is
extra functionality going on under the hood; therefore, we must call the
Thread class's join method, and then return whatever we want at the end.

We do not have to return anything if we do not want to. If this is the case,
then there is no point overwriting the join function. We can then implement
the threads by running the following code:

one: ExampleThread = ExampleThread(seconds=5, name="one")

two: ExampleThread = ExampleThread(seconds=5, name="two")

three: ExampleThread = ExampleThread(seconds=5,

 name="three")

We then have to time the process of starting, running, and joining the
outcomes, like so:

import time

start = time.time()

one.start()

two.start()

three.start()

print("we have started all of our threads")

one_result = one.join()

two_result = two.join()

three_result = three.join()

finish = time.time()

print(f"{finish - start} has elapsed")

print(one_result)

print(two_result)

print(three_result)

When we run this code, we get the following console printout:

thread one is running

thread two is running

thread three is running

we have started all of our threads

thread one has finished

thread three has finished

thread two has finished

5.005641937255859 has elapsed

5

5

5

Straight away, we can see that it took just over 5 seconds to execute the
whole process. If we were running our program sequentially, it would take
15 seconds. This shows that our threads are working!

It also must be noted that thread three finished before thread two, even
though thread two started before. Don't worry if you get a finishing
sequence of one, two, three; this is because threads finish in an
indeterminate order. Even though the scheduling is deterministic, there are
thousands of events and processes running under the hood of the CPU when
the program is running. As a result, the exact time slices that each thread
gets are never the same. These tiny changes add up over time, and as a
result, we cannot guarantee that the threads will finish in a determinate
order if the executions are close and the durations are roughly the same.

Now we have the basics of Python threads, we can move on to spinning off
threads in Rust. However, before we start doing this, we must understand
the concept of closures, which are essentially a way to store functions

anonymously along with the environment it is part of. Considering this, we
can define functions within the scope of the main function or inside other
scopes including other functions. A simple example of a building closure is
to print an input, like this:

fn main() {

 let example_closure: fn(&str) = |string_input: &str| {

 println!("{}", string_input);

 };

 example_closure("this is a closure");

}

With this approach, we can exploit scopes. It also must be noted that as
closures are scope-sensitive, we can also utilize the existing variables
around a closure. To demonstrate this, we can create a closure that
calculates the amount of interest we have to pay on a loan due to the
external base rate. We will also define it in an inner scope, as seen here:

fn main() {

 let base_rate: f32 = 0.03;

 let calculate_interest = |loan_amount: &f32| {

 return loan_amount * &base_rate

 };

 println!("the total interest to be paid is: {}",

 calculate_interest(&32567.6));

}

Running this code would give us the following printout in the console:

the total interest to be paid is: 977.02795

Here, we can see that closures can return values, but we have not defined
the type for the closure. This is the case even though it is returning a float.
In fact, if we set calculate_interest to f32, the compiler would complain,
stating that the types were mismatched. This is because the closure is a
unique anonymous type that cannot be written out. A closure is a struct
generated by the compiler that houses captured variables. If we try to call
the closure outside the inner scope, our application will fail to compile as
the closure cannot be accessed outside the scope.

Now that we have covered Rust closures, we can replicate the Python
threading example that we covered earlier in the section. Initially, we must
import the standard module crates that are required by running the
following code:

use std::{thread, time};

use std::thread::JoinHandle;

We are using thread to spawn off threads, time to keep track of how long
our processes take, and the JoinHandle struct to join the threads. With these
imports, we can build our own thread by running the following code:

fn simple_thread(seconds: i8, name: &str) -> i8 {

 println!("thread {} is running", name);

 let total_seconds = time::Duration::new(seconds as \

 u64, 0);

 thread::sleep(total_seconds);

 println!("thread {} has finished", name);

 return seconds

}

Here, we can see that we create a Duration struct denoted as total_seconds.
We then use the thread and total_seconds to put the function to sleep,
returning the number of seconds when the whole process is finished. Right
now, this is just a function, and running it by itself will not spin off different
threads. Inside our main function, we start our timer and spawn off our three
threads by running the following code:

let now = time::Instant::now();

let thread_one: JoinHandle<i8> = thread::spawn(|| {

 simple_thread(5, "one")});

let thread_two: JoinHandle<i8> = thread::spawn(|| {

 simple_thread(5, "two")});

let thread_three: JoinHandle<i8> = thread::spawn(|| {

 simple_thread(5, "three")});

Here, we spawn threads and pass our function in with the right parameters
in the closure. Nothing is stopping us from putting any code in the closure.
The final line in the closure would be what is returned to the JoinHandle
struct to unwrap. Once this is done, we join all the threads to hold the
program until all the threads have finished before moving on with this code:

let result_one = thread_one.join();

let result_two = thread_two.join();

let result_three = thread_three.join();

The join function returns a result with the Result<i8, Box<dyn Any +
Send>> type.

There are some new concepts here, but we can break them down, as
follows:

We remember that a Result struct in Rust either returns an Ok or an Err
response. If the thread runs without any problems, then we will return
the i8 value that we are expecting. If not, then we have this rather ugly
Result<i8, Box<dyn Any + Send>> output as the error.

The first thing we must address here is the Box struct. This is one of the
most basic forms of a pointer and allows us to store data on the heap
rather than the stack. What remains on the stack is the pointer to the
data in the heap. We are using this because we do not know how big the
data is when coming out of the thread.

The next expression that we must explain is dyn. This keyword is used
to indicate that the type is a trait object. For instance, we might want to
store a range of Box structs in an array. These Box structs might point to
different structs. However, we can still ensure that they can be grouped
together if they have a certain trait in common. For instance, if all the
structs had to have TraitA implemented, we would denote this with
Box<dyn TraitA>.

The Any keyword is a trait for dynamic typing. This means that the data
type can be anything. The Any trait is combined with Send by using the
Any + Send expression. This means that both traits must be
implemented.

The Send trait is for types that can be transferred across thread
boundaries. Send is implemented automatically by the compiler if it is
deemed appropriate. With all this, we can confidently state that the join
of a thread in Rust returns a result that can either be the integer that we

desire or a pointer to anything else that can be transferred across
threads.

To process the results of the thread, we could just directly unwrap them.
However, this would not be very useful when the demands of our
multithreaded programs increase. We must be able to handle what
potentially comes out of a thread, and to do this, we are going to have to
downcast the outcome. Downcasting is Rust's method of converting a trait
into a concrete type. In this context, we will be converting PyO3 structs that
denote Python types into concrete Rust data types such as strings or
integers. To demonstrate this, let's build a function that handles the outcome
of our thread, as follows:

1. First, we are going to have to import everything we need, as seen in the
following code snippet:

use std::any::Any;

use std::marker::Send;

2. With these imports, we can create a function that unpacks the result and
prints it using this code:

fn process_thread(thread_result: Result<i8, Box<dyn \

 Any + Send>>, name: &str) {

 match thread_result {

 Ok(result) => {

 println!("the result for {} is {}", \

 result, name);

 }

 Err(result) => {

 if let Some(string) = result.downcast \

 _ref::<String>() {

 println!("the error for {} is: {}", \

 name, string);

 } else {

 println!("there error for {} does \

 not have a message", name);

 }

 }

 }

}

3. Here, we merely print out the result if it is a success. However, if it is an
error, as pointed out earlier, we do not know what data type the error is.
However, we would still like to handle this. This is where we downcast.
Downcasting returns an option, which is why we have the if let
Some(string) = result.downcast_ref::<String>() condition. If the
downcast is successful, we can move the string into the scope and print
out the error string. If it is not successful, we can move on and state that
although there was an error, an error string was not provided. We can
use multiple conditional statements to account for a range of data types
if we want. We can write a lot of Rust code without having to rely on
downcasting, as Rust has a strict typing section. However, when
interfacing with Python this can be useful, as we know that Python
objects are dynamic and could essentially be anything.

4. Now that we can process our threads when they have finished, we can
stop the clock and process the outcomes by running the following code:

println!("time elapsed {:?}", now.elapsed());

process_thread(result_one, "one");

process_thread(result_two, "two");

process_thread(result_three, "three");

5. This gives us the following printout:

thread one is running

thread three is running

thread two is running

thread one has finished

thread three has finished

thread two has finished

time elapsed 5.00525725s

the result for 5 is one

the result for 5 is two

the result for 5 is three

And here we have it: we can run and process threads in Python and Rust.
However, remember that if we try to run CPU-intensive tasks with the code
that we have written, we will not get the speed up. However, it must be
noted that in the Rust context of the code, there could be a speedup
depending on the environment. For instance, if multiple CPU cores are
available, the operating system (OS) scheduler can put those threads onto
those cores to be executed in parallel. To write code that will speed up our
code in this context, we will have to learn how to practically spin up
multiple processes, which we cover in the next section.

Running multiple processes
Technically with Python, we can simply switch the inheritance of our thread
from Thread to Process by running the following code:

from multiprocessing import Process

from typing import Optional

class ExampleProcess(Process):

 def __init__(self, seconds: int, name: str) -> None:

 super().__init__()

 self.seconds: int = seconds

 self.name: str = name

 self._return: Optional[int] = None

 def run(self) -> None:

 # do something demanding of the CPU

 pass

 def join(self) -> int:

 Process.join(self)

 return self._return

However, there are some compilations. If we refer to Figure 3.3, we can see
that processes have their own memory. This is where things can get
complicated.

For instance, there is nothing wrong with the process defined previously if
the process is not returning anything directly but writing to a database or
file. On the other hand, the join function will not return anything directly
and will just have None instead. This is because Process is not sharing the
same memory space as the main process. We also must remember that
spinning off processes is more expensive, so we must be more careful with
this.

Since we are getting more complex with the memory and the resources are
getting more expensive, it makes sense to rein it in and keep it simple. This
is where we utilize a pool. A pool is where we have several workers
processing inputs simultaneously and then packaging them as an array, as
seen here:

Figure 3.5 – Pool of processes

The advantage here is that we keep the expensive multiprocessing context
to a small part of the program. We can also easily control the number of
workers that we are willing to support. For Python, this means that we keep

the interaction as lightweight as possible. As seen in the next diagram, we
package an individual isolated function in a tuple with an array of inputs.
This tuple gets processed in the pool by a worker, and then the result of the
outcome is returned from the pool:

Figure 3.6 – Pool data flow

To demonstrate multiprocessing via a pool, we can utilize the Fibonacci
sequence. This is where the next number of the sequence is the sum of the
previous number in the sequence and the number before that, as illustrated
here:

To calculate a number in the sequence, we will have to use recursion.
There is a closed form of the Fibonacci sequence; however, this will not let
us explore multiprocessing as the closed sequence by its very nature doesn't
scale in computation as n increases. To calculate a Fibonacci number in
Python, we can write an isolated function, as seen in the following code
snippet:

def recur_fibo(n: int) -> int:

 if n <= 1:

 return n

 else:

 return (recur_fibo(n-1) + recur_fibo(n-2))

This function keeps going back until it hits the bottom of the tree at either 1
or 0. This function is terrible at scaling. To demonstrate this, let's look at the
recursion tree shown here:

Figure 3.7 – Fibonacci recursion tree

We can see that these are not perfect trees, and if you go online and search
for big O notation of the Fibonacci sequence, there are debates, and some
equations will equate the scaling factor to the golden ratio. While this is
interesting, it is outside the scope of this book as we are focusing on
computational complexity. As a result, we will simplify the math and treat
this as a perfectly symmetrical tree. Recursion trees scale at the rate of

, where n is the depth of the tree. Referring to Figure 3.7, we can see
that if we treat the tree as perfectly symmetrical, a n value of 3 has a depth
of 3, and a n value of 4 has a depth of 4. As n increases, the computation
increases exponentially.

We have taken a slight detour of complexity to highlight the importance of
taking this into account before reaching for multiprocessing. The reason
why you bought this book as opposed to searching online for
multiprocessing code snippets to copy and paste into your code is that you
want to be guided through these concepts with pointers for further reading
and an appreciation of their context. In the case of this sequence, reaching
for a closed form or caching answers would reduce the computation time
greatly. If we have an ordered list of numbers, getting the highest number in
the list and then creating a full sequence up to the highest number would be
a lot quicker than repeatedly calculating the sequence again and again for
each number we want to calculate. Avoiding recursion altogether is a better
option than reaching for multiprocessing.

To implement and test our multiprocessing pool, we first need to time how
long it would take to calculate a range of numbers sequentially. This can be
done like so:

import time

start = time.time()

recur_fibo(n=8)

recur_fibo(n=12)

recur_fibo(n=12)

recur_fibo(n=20)

recur_fibo(n=20)

recur_fibo(n=20)

recur_fibo(n=20)

recur_fibo(n=28)

recur_fibo(n=28)

recur_fibo(n=28)

recur_fibo(n=28)

recur_fibo(n=36)

finish = time.time()

print(f"{finish - start} has elapsed")

We have introduced a pretty long list; however, this is essential to see the
difference. If we just had two Fibonacci numbers to compute, then the cost
of spinning up processes could eclipse the gain in multiprocessing.

Our multiple processing pool can be implemented as follows:

if __name__ == '__main__':

 from multiprocessing import Pool

 start = time.time()

 with Pool(4) as p:

 print(p.starmap(recur_fibo, [(8,), (12,), (12,), \

 (20,), (20,), (20,), (20,), (28,), (28,), (28,), \

 (28,),(36,)]))

 finish = time.time()

 print(f"{finish - start} has elapsed")

Please note that we have nested this code under if __name__ ==
"__main__":. This is because the whole script gets run again when spinning
up another process, which can result in infinite loops. If the code is nested
under if __name__ == "__main__": then it will not run again as there is only
one main process. It also must be noted that we defined a pool of four
workers. This can be changed to whatever we feel fit but there are
diminishing returns when increasing this, as we will explore later. The
tuples in the list are the arguments for each computation. Running the
whole script gives us the following output:

3.2531330585479736 has elapsed

[21, 144, 144, 6765, 6765, 6765, 6765, 317811,

317811, 317811, 317811, 14930352]

3.100019931793213 has elapsed

We can see that the speed is not a quarter of the sequential calculations.
However, the multiprocessing pool is slightly faster. If you run this multiple
times, you will get some variance in the difference in times. However, the
multiprocessing approach will always be faster. Now that we have run a
multiprocessing tool in Python, we can implement our Fibonacci
multithreading in the different context of a multiprocessing pool in Rust.
Here's how we'll do this:

1. In our new Cargo project, we can code the following function in our
main.rs file:

pub fn fibonacci_recursive(n: i32) -> u64 {

 if n < 0 {

 panic!("{} is negative!", n);

 }

 match n {

 0 => panic!(

 "zero is not a right argument to

 fibonacci_reccursive()!"),

 1 | 2 => 1,

 _ => fibonacci_reccursive(n - 1) +

 fibonacci_reccursive(n - 2)

}

}

We can see that our Rust function is not more complex than our Python
version. The extra lines of code are just to account for unexpected
inputs.

2. To run this and time it, we must import the time crate at the top of the
main.rs file by running the following code:

use std::time;

3. Then, we must compute the exact same Fibonacci numbers as we did in
the Python implementation, as follows:

fn main() {

 let now = time::Instant::now();

 fibonacci_reccursive(8);

 fibonacci_reccursive(12);

 fibonacci_reccursive(12);

 fibonacci_reccursive(20);

 fibonacci_reccursive(20);

 fibonacci_reccursive(20);

 fibonacci_reccursive(20);

 fibonacci_reccursive(28);

 fibonacci_reccursive(28);

 fibonacci_reccursive(28);

 fibonacci_reccursive(28);

 fibonacci_reccursive(36);

 println!("time elapsed {:?}", now.elapsed());

}

4. To run this, we are going to use the following command:

cargo run –release

5. We are going to use the release version as that is what we will be using
in production. Running it gives us the following output:

time elapsed 40.754875ms

Running this several times will give us an average roundabout of 40
milliseconds. Considering that our multiprocessing Python code ran at
roughly 3.1 seconds, our Rust single-threaded implementation runs 77 times
faster than our Python multiprocessing code. Just let that sink in! The code
was not more complex, and it is memory-safe. Therefore, fusing Rust with
Python is such a quick win! Combining the aggressive typing with the

compiler forces us to account for every input and outcome, and we are on
the way to turbocharging our Python systems with safer, faster code.

Now, we are going to see what happens to the speed when we run our
numbers through a multithreading tool. Here's how we'll go about this:

1. To do this, we are going to use the rayon crate. We define this
dependency in our Cargo.toml file by running the following code:

[dependencies]

rayon="1.5.0"

2. Once this is done, we import it into our main.rs file, as follows:

use rayon::prelude::*;

3. We can then run our multithreading pool in our main function below our
sequential calculations by running the following code:

rayon::ThreadPoolBuilder::new().num_threads(4) \

 .build_global().unwrap();

let now = time::Instant::now();

let numbers: Vec<i32> = vec![8, 12, 12, 20, 20, 20, \

 20, 28, 28, 28, 28, 36];

let outcomes: Vec<u64> = numbers.into_par_iter() \

 .map(|n| fibonacci_reccursive(n)).collect();

println!("{:?}", outcomes);

println!("time elapsed {:?}", now.elapsed());

4. Here, we define the number of threads that our pool builder has. We
then execute the into_par_iter function on the vector. This is achieved
by implementing the IntoParallelIterator trait onto the vector, which

is done when the rayon crate is imported. If it were not imported, then
the compiler would complain, stating that a vector does not have the
into_par_iter function associated with it.

5. We then map our Fibonacci function over the integers in the vector
utilizing a closure and collect them. The calculated Fibonacci numbers
are associated with the outcomes variable.

6. We then print them and print the time elapsed. Running this via a
release gives us the following printout in the console:

time elapsed 38.993791ms

[21, 144, 144, 6765, 6765, 6765, 6765, 317811,

317811, 317811, 317811, 14930352]

time elapsed 31.493291ms

Running this several times will give you roughly the times stated in the
preceding console printout. Calculating this gives us a 20% increase in
speed. Considering that the Python multiprocessing only gave us a 5%
increase, we can deduce that Rust is also more efficient at
multithreading when the right context is applied.

We can go a little further to really see the advantages of these pools.
Remember that our sequence increases exponentially. In our Rust
program, we can add three computations for n being 46 to our
sequential calculations and pooled calculations, and we get the
following output:

time elapsed 12.5856675s

[21, 144, 144, 6765, 6765, 6765, 6765, 317811, 317811,

317811, 317811, 14930352, 1836311903, 1836311903,

1836311903]

time elapsed 4.0485755s

First, we must acknowledge that the time went from milliseconds to
double-digit seconds. Exponential scaling algorithms are painful, and
just adding 10 to your calculation pushes it up greatly. We can also see
that our savings have increased. Our pooled calculations are now 3.11
times faster as opposed to 1.2 times faster in the previous test!

7. If we add three extra computations for n being 46 for our Python
implementation, we get the following console printout:

1105.5351197719574 has elapsed

[21, 144, 144, 6765, 6765, 6765, 6765, 317811, 317811,

317811, 317811, 14930352, 1836311903, 1836311903,

1836311903]

387.0687129497528 has elapsed

Here, we can see that our Python pooled processing is 2.85 times faster than
our Python sequential processing. We also must note here that our Rust
sequential processing is roughly 95 times faster than our Python sequential
processing, and our Rust pool multithreading is roughly 96 times faster than
our Python pool processing. As the number of points that need processing
increases, so will the difference. This highlights even more motivation for
plugging Rust into Python.

It must be noted that we got our speed increase in our Rust program through
multithreading as opposed to multiprocessing. Multiprocessing in Rust is
not as straightforward as in Python—this is mainly down to Rust being a
newer language. For instance, there is a crate called mitosis that will enable

us to run functions in a separate process; however, this crate only has four
contributors, and the last contribution at the time of writing this book was
13 months ago. Considering this, we should approach multiprocessing in
Rust without any third-party crates. To achieve this, we need to code a
Fibonacci calculation program and a multiprocessing program that will call
this in different processes, as seen in the following diagram:

Figure 3.8 – Multiprocessing in Rust

We are going to pass our data into these processes and parse the outputs
handling them in our multiprocessing.rs file. To carry this out in the

simplest way, we code both files in the same directory. First, we build our
fib_process.rs file. We must import what we are going to do by running
the following code:

use std::env;

use std::vec::Vec;

We want our processes to accept a list of integers to calculate, so we define
Fibonacci number and numbers functions, as follows:

pub fn fibonacci_number(n: i32) -> u64 {

 if n < 0 {

 panic!("{} is negative!", n);

 }

 match n {

 0 => panic!("zero is not a right argument \

 to fibonacci_number!"),

 1 | 2 => 1,

 _ => fibonacci_number(n - 1) +

 fibonacci_number(n - 2)

 }

}

pub fn fibonacci_numbers(numbers: Vec<i32>) -> Vec<u64> {

 let mut vec: Vec<u64> = Vec::new();

 for n in numbers.iter() {

 vec.push(fibonacci_number(*n));

 }

 return vec

}

We have seen these functions before as they have become the standard way
to calculate Fibonacci numbers in this book. We now must take a list of
integers from arguments, parse them into integers, pass them into our
calculation function, and return the results, as follows:

fn main() {

 let mut inputs: Vec<i32> = Vec::new();

 let args: Vec<String> = env::args().collect();

 for i in args {

 match i.parse::<i32>() {

 Ok(result) => inputs.push(result),

 Err(_) => (),

 }

 }

 let results = fibonacci_numbers(inputs);

 for i in results {

 println!("{}", i);

 }

}

Here, we can see that we collect the input from the environment. Once the
input integers have been parsed into i32 integers and used to calculate the
Fibonacci numbers, we merely print them out. Printing out to the console
generally acts as stdout. Our process file is fully coded, so we can compile
it with the following command:

rustc fib_process.rs

This creates a binary of our file. Now that this is done, we can move on to
our multiprocessing.rs file that will spawn multiple processes. We import
what we need by running the following code:

use std::process::{Command, Stdio, Child};

use std::io::{BufReader, BufRead};

The Command struct is going to be used to spawn off a new process, the Stdio
struct is going to be used to define the piping of data back from the process,
and the Child struct is returned when the process is spawned. We will use
them to access the output data and get the process to wait to finish. The
BufReader struct is used to read the data from the child process. Now that
we have imported everything we need, we can define a function that accepts
an array of integers as strings and spins off the process, returning the Child
struct, as follows:

fn spawn_process(inputs: &[&str]) -> Child {

 return Command::new("./fib_process").args(inputs)

 .stdout(Stdio::piped())

 .spawn().expect("failed to execute process")

}

Here, we can see that we just must call our binary and pass in our array of
strings in the args function. We then define the stdout and spawn the
process, returning the Child struct. Now that this is done, we can fire off
three processes in our main function and wait for them to complete by
running the following code:

fn main() {

 let mut one = spawn_process(&["5", "6", "7", "8"]);

 let mut two = spawn_process(&["9", "10", "11", "12"]);

 let mut three = spawn_process(&["13", "14", "15", \

 "16"]);

 one.wait();

 two.wait();

 three.wait();

}

We can now start extracting the data from these processes inside our main
function by running the following code:

 let one_stdout = one.stdout.as_mut().expect(

 "unable to open stdout of child");

 let two_stdout = two.stdout.as_mut().expect(

 "unable to open stdout of child");

 let three_stdout = three.stdout.as_mut().expect

 ("unable to open stdout of child");

 let one_data = BufReader::new(one_stdout);

 let two_data = BufReader::new(two_stdout);

 let three_data = BufReader::new(three_stdout);

Here, we can see that we have accessed the data using the stdout field, and
then processed it using the BufReader struct. We can then loop through our
extracted data, appending it to an empty vector and then printing it out by
running the following code:

 let mut results = Vec::new();

 for i in three_data.lines() {

 results.push(i.unwrap().parse::<i32>().unwrap());

 }

 for i in one_data.lines() {

 results.push(i.unwrap().parse::<i32>().unwrap());

 }

 for i in two_data.lines() {

 results.push(i.unwrap().parse::<i32>().unwrap());

 }

 println!("{:?}", results);

This code is a little repetitive, but it illustrates how to spawn and manage
multiple processes in Rust. We then compile the file with the following
command:

rustc fib_multiprocessing.rs

We can then run our multiprocessing code with the following command:

./multiprocessing

We then get the output, as follows:

[233, 377, 610, 987, 5, 8, 13, 21, 34, 55, 89, 144] we have

 it, our multiprocessing code in Rust works.

We have now covered all we need to know about running processes and
threads to speed up our computations. However, we need to be mindful and
investigate how to customize our threads and processes safely to avoid
pitfalls.

Customizing threads and processes
safely

In this section, we will cover some of the pitfalls that we have to avoid
when being creative with threads and processes. We will not cover the
concepts in depth, as advanced multiprocessing and concurrency is a big
topic and there are books completely dedicated to this. However, it is
important to understand what to look out for and which topics to read if you
want to increase your knowledge of multiprocessing/threading.

Looking back at our Fibonacci sequences, it might be tempting to spin off
extra threads inside our thread to speed up the individual computations in
the thread pool. However, to truly understand if this is a good idea, we need
to understand Amdahl's law.

Amdahl's law

Amdahl's law lets us describe the trade-off on adding more threads. If we
spin off threads inside the threads, we will have exponential growth of
threads. You may be forgiven for thinking this to be a good idea; however,
Amdahl's law states that there are diminishing returns when increasing the
cores. Have a look at the following formula:

Here, the following applies:

Speed: This is the theoretical speedup of the execution of the whole
task.

s: This is the speedup of the part of the task that benefits from improved
system resources.

p: This is the proportion of execution time that the part benefiting from
improved resources originally occupied.

In general, increasing the cores does have an impact; however, the
diminishing returns can be seen in the following screenshot:

Figure 3.9 – Diminishing returns through Amdahl's law [Source: Daniels220
(https://commons.wikimedia.org/w/index.php?curid=6678551), CC BY-SA 3.0]

Considering this, we might want to investigate using a broker to manage
our multiprocessing. However, this can lead to using clogging up the
broker, resulting in deadlock. To understand the gravity of this situation,
we will explore deadlocks in the next section.

Deadlocks

Deadlocks can arise when it comes to bigger applications, where it is
common to manage the multiprocessing through a task broker. This is
usually managed via a database or caching mechanism such as Redis. This
consists of a queue where the tasks are added, as illustrated here:

Figure 3.10 – The flow of tasks when multiprocessing with a broker or queue

Here, we can see that new tasks can be added to the queue. As time goes on,
the oldest tasks get taken off the queue and passed into the pool.
Throughout the application, our code can send functions and parameters to
the queue anywhere in the application.

In Python, the library that does this is called Celery. There is also a Celery
crate for Rust. This approach is also utilized for multiple server setups.
Considering this, we could be tempted to send tasks to the queue inside
another task. However, we can see here that this approach can lock up our
queue:

Figure 3.11 – Deadlock with task broker

In Figure 3.11, we can see that the tasks in the pool have sent tasks to the
queue. However, they cannot complete until their dependencies have been
executed. The thing is, they will never execute because the pool is full of
tasks waiting for their dependency to complete and the pool is full, so they
cannot be processed. The issue with this problem is that there are no errors
raised with this—the pool will just hang. Deadlock is not the only problem
that will arise without helpful warnings. Considering this, we must cover
our last concept that we should be aware of before being creative: race
conditions.

Race conditions

Race conditions occur when two or more threads access shared data that
they both try to change. As we have noted when we were building and
running our threads, they sometimes ran out of order. We can demonstrate
this with a simple concept, as follows:

If we were to have thread one calculate a price and write to a file and
thread two to also calculate a price, read the price calculated from the
thread one file, and add them together, there could be a chance that the
price will not be written to the file before thread two reads it. What is
even worse is that there could be an old price in the file. If this is the
case, we will never know that the error occurred. The term race
conditions is built upon the fact that both threads are racing to the data.

As a solution to race conditions, we can introduce locks. Locks can be
utilized for stopping other threads from accessing certain things such as a
file until your thread has finished with it. However, it has to be noted that

these locks only work inside the process; therefore, other processes can
access the file. Caching solutions such as Redis and general databases have
already implemented these safeguards, and locks will not protect against the
race condition described in this section. In my experience, when we get
creative with thread concepts such as locks, it is usually a sign that we must
take a step back and rethink our design.

Even an SQLite database file will manage our data race issues when
reading and writing to a file, and if the data race condition described at the
start of this section looks like it might happen, it is best to just not have
them running at the same time at all. Sequential programming is safer and
more useful.

Summary
In this chapter, we went through the basics of multiprocessing and
multithreading. We then went through practical ways to utilize threads and
processes. We then explored the Fibonacci sequence to explore how
processes can speed up our computations. We also saw through the
Fibonacci sequence that how we compute our problems is the biggest factor
over threads and processes. Algorithms that scale exponentially should be
avoided before reaching for multiprocessing for speed gains. We must
remember that while it might be tempting to reach for more complex
approaches to multiprocessing, this can lead to problems such as deadlock
and data races. We kept our multiprocessing tight by keeping it contained
within a processing pool. If we keep these principles in mind and keep all
our multiprocessing contained to a pool, we will keep our hard-to-diagnose
problems to a minimum. This does not mean that we should never be

creative with multiprocessing but it is advised to do further reading on this
field, as there are books entirely dedicated to concurrency (as noted in the
Further reading section, with particular chapters to focus on). This is just
an introduction to enable us to use concurrency in our Python packages if
needed. In the next chapter, we will be building our own Python packages
so that we can distribute our Python code across multiple projects and reuse
code.

Questions
1. What is the difference between a process and a thread?

2. Why wouldn't multithreading speed up our Python Fibonacci sequence
calculations?

3. Why is a multiprocessing pool used?

4. Our threads in Rust return Result<i8, Box<dyn Any + Send>>. What
does this mean?

5. Why should we avoid using a recursion tree if we can?

6. Should you just spin up more processes when you need a faster
runtime?

7. Why should you avoid complex multiprocessing if you can?

8. What does join do for our program in multithreading?

9. Why does join not return anything in a process?

Answers

1. Threads are lightweight and enable multithreading, where we can run
multiple tasks that could have idle time. A process is more expensive,
enabling us to run multiple CPU-heavy tasks at the same time.
Processes do not share memory, while threads do.

2. Multithreading would not speed up our Fibonacci sequence calculations
because calculating Fibonacci numbers is a CPU-heavy task that does
not have any idle time; therefore, the threads would run sequentially in
Python. However, we did demonstrate that Rust can run multiple
threads at the same time, getting a significant speed increase.

3. Multiprocessing is expensive and the processes do not share memory,
making the implementation potentially more complex. A processing
pool keeps the multiprocessing part of a program to a minimum. This
approach also enables us to easily control the different numbers of
workers we need as they're all in one place, and we can also return all
the outcomes in the same sequence as they are returned from the
multiprocessing pool.

4. Our Rust thread could fail. If it doesn't, then it will return an integer. If
it fails, it could return anything of any size, which is why it's on the
heap. It also has the Send trait, which means that it can be sent across
threads.

5. Recursion trees scale exponentially. Even if we are multithreading, our
computation time will quickly scale, pushing our milliseconds into
seconds once we've crossed a boundary.

6. No—as demonstrated in Amdahl's law, increasing the workers will give
us some speedup, but we will have diminishing returns as the number of

workers increases.

7. Complex multiprocessing/multithreading can introduce a range of silent
errors such as deadlock and data races that can be hard to diagnose and
solve.

8. join blocks the program until the thread has completed. It can also
return the result of the thread if we overwrite Python's join function.

9. Processes do not share the same memory space, therefore they cannot
be accessed. We can, however, access data from other processes by
saving data to files for our main process to access or pipe data via stdin
and stdout, as we did in our Rust multiprocessing example.

Further reading
Pan Wu (2020). Understanding Python Multithreading and
Multiprocessing via Simulation:
https://towardsdatascience.com/understanding-python-multithreading-
and-multiprocessing-via-simulation-3f600dbbfe31

Brian Troutwine (2018). Hands-On Concurrency with Rust

Gabriele Lanaro and Quan Nguyen (2019). Learning Path Advanced
Python Programming: Chapter 8 (Advanced Introduction to Concurrent
and Parallel Programming)

Andrew Johnson (2018). Hands-On Functional Programming in Rust:
Chapter 8 (Implementing Concurrency)

Rahul Sharma and Vesa Kaihlavirta (2018). Mastering Rust: Chapter 8
(Concurrency)

Section 2: Fusing Rust with Python
Now that you are familiar with Rust, we can start utilizing it. Before we do
this, we need to cover how to build Python packages that can be installed
with pip. Once this has been done, we can build Python pip modules in
Rust. This is where we can import our compiled Rust code into our Python
code and run it with all the benefits of Rust in our Python application. We
then go further into this by working with Python objects and using Python
modules inside the Rust code.

This section comprises the following chapters:

Chapter 4, Building pip Modules in Python

Chapter 5, Creating a Rust Interface for Our pip Module

Chapter 6, Working with Python Objects in Rust

Chapter 7, Using Python Modules in Rust

Chapter 8, Structuring an End-to-End Python Module in Rust

Chapter 4: Building pip Modules in
Python
Writing code to solve our problems is useful. However, writing code can
become repetitive and time-consuming, especially when we are building
applications. Applications usually require defining the steps that build the
application. Packaging our code can help us reuse our code and share it
with other developers. In this chapter, we will package Fibonacci code into
a Python pip module that can be easily installed and has a command-line
tool. We will also cover continuous integration processes that deploy our
packages once a merge has been achieved to our main branch.

In this chapter, we will cover the following topics:

Configuring setup tools for a Python pip module

Packaging Python code in a pip module

Configuring continuous integration

Technical requirements
We will need to have Python 3 installed. To get the most out of this chapter,
we will also need to have a GitHub account, as we will be using GitHub to
package our code, which can be accessed via this link:
https://github.com/maxwellflitton/flitton-fib-py.

Git command-line tools are also needed in this chapter. These can be
installed by following the instructions here: https://git-
scm.com/book/en/v2/Getting-Started-Installing-Git. The chapter will also

https://github.com/maxwellflitton/flitton-fib-py
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

make use of a PyPI account. You will need to have your own PyPI account,
which can be obtained for free with this link: https://pypi.org/.

The code for this chapter can be found via this link:
https://github.com/PacktPublishing/Speed-up-your-Python-with-
Rust/tree/main/chapter_four.

Configuring setup tools for a Python pip
module
Setup tools in Python are how the code in our module is packaged and
installed. They provide a set of commands and parameters for the system
that is installing the code to process. To explore how this is done, we will
package the Fibonacci numbers example introduced in the previous chapter.
However, these calculations will be packaged in a pip module. To configure
our setup tools, we are going to have to carry out the following steps:

1. Create a GitHub repository for our Python pip package.

2. Define basic parameters.

3. Define a README file.

4. Define a basic module structure.

Let's have a look at each of these steps in detail in the following
subsections.

Creating a GitHub repository

https://pypi.org/
https://github.com/PacktPublishing/Speed-up-your-Python-with-Rust/tree/main/chapter_four

Understandably, a seasoned developer can create a GitHub repository but
for the sake of completeness, we will offer all the steps needed. If you can
already create a GitHub repository, move on to the next subsection:

1. On the home URL of GitHub when we are logged in, we can create our
repository by clicking on the New button, as shown here:

Figure 4.1 – How to create a new repository on GitHub

2. Once this is clicked, we can configure our new repository with the
parameters shown next:

Figure 4.2 – Parameters for our new GitHub repository

For this example, we have set the GitHub repository to Public;
however, our pip packaging for this chapter will also work the same
way for private repositories. We have also included a .gitignore file
and selected it to be Python. This is to stop Python caching and for
virtual environment files to be tracked by GitHub and uploaded when
we upload our code to the repository. Now that we have our GitHub
repository made, going to the repository will look like this:

Figure 4.3 – Our GitHub repository home page

We can see that our description is written in the README.md file. It also
has to be noted that the README.md file is rendered. This happens in any
directory of the repository. We can document what to do and how to use
the code throughout the repository with a range of README.md files if we
want.

3. Once this is done, we can download our repository with the command
shown next:

git clone https://github.com/maxwellflitton/flitton-

 fib-py.git

Your URL will be different, as you have a different repository. The only
thing left is to ensure that our development environment for our
repository has a Python virtual environment.

4. This can be done by navigating to the root directory of the GitHub
repository and then running the command shown here:

python3 -m venv venv

This creates a Python virtual environment under the venv directory in
the root directory. We have to use the venv directory, as this is
automatically included in the .gitignore file. However, there is nothing
stopping us from calling it what we want, as long as we include it in the
.gitignore file. However, venv is the convention, and using this will
avoid confusion with other developers. Our environment is now fully
set up.

5. To use our virtual environment in the terminal, we can activate it with
the command shown next:

source venv/bin/activate

We can see that our command is prefixed with (venv), meaning that it is
active.

Defining the basic parameters

Now that our environment is fully functional, we are going to define the
basic parameters when installing our Python pip module:

1. This is achieved by creating a setup.py file in the root of our repository.
This will get run when another Python system installs our pip module.
In our setup.py file, we import our setup tools with the code shown
here:

from setuptools import find_packages, setup

We are going to use setup to define our parameters, and we are going to
use find_packages to exclude tests.

2. Now that we have imported our setup tools, we can define our
parameters in the same file with the code shown here:

setup(

 name="flitton_fib_py",

 version="0.0.1",

 author="Maxwell Flitton",

 author_email="maxwell@gmail.com",

 description="Calculates a Fibonacci number",

 long_description="A basic library that \

 calculates Fibonacci numbers",

 long_description_content_type="text/markdown",

 url="https://github.com/maxwellflitton/flitton- \

 fib-py",

 install_requires=[],

 packages=find_packages(exclude=("tests",)),

 classifiers=[

 "Development Status :: 4 - Beta",

 "Programming Language :: Python :: 3",

 "Operating System :: OS Independent",

],

 python_requires='>=3',

 tests_require=['pytest'],

)

There are a lot of parameters here. What we have done from the name
field to url is essentially define the metadata around our pip module.
The classifiers fields are also metadata around our module. The rest
of the fields have the following effects:

The Install_requires field is currently an empty list. This is
because our module is not requiring any third-party modules
right now. We will cover dependencies in Managing
dependencies section.

The packages field ensures that we exclude our test directory
when we start building our tests for our module. While we will
use tests to check our module and ensure standards, we do not
need to install them when we are using our module as a third-
party dependency.

The Python_requires field ensures that the system installing
our module has the correct version of Python installed.

tests_require is a list of requirements when tests are running.

3. Now that we have defined our basic setup, we can upload our code with
the following commands:

git add -A

git commit -m "adding setup to module"

git push origin main

What we have done here is add all of the new and changed files to our Git
branch (which is main). We then committed our files with the adding setup
to module message. We then pushed our code to the main branch, which
means that we uploaded our changes onto the Git repository online. This is
not the best way to manage our code iterations. We will go over different
branches and how to manage them in the continuous integration section
near the end of this chapter.

You may have noticed that long_description is a Markdown; however,
trying to fit an entire Markdown into this field would end up dominating the
setup.py file. It would essentially be a long string spanning multiple lines,
with a few Python lines dispersed into it. We want our setup.py file to
dictate the logic of setting up the module when it is being installed. We also
want our long description of the module to be rendered by GitHub when we
visit the GitHub repository directly online. Because of this, we will need to
add some extra logic around defining our long description in the next
section.

Defining a README file

Our long description is essentially the README.md file. If we fuse this with
our setup.py, our README.md file will also render if we visit it on PyPI and it
is uploaded to the PyPI server. This can be done by reading the README.md
file into a string in the setup.py file and then plugging that string into our
long_description field with the following code in the setup.py file:

with open("README.md", "r") as fh:

 long_description = fh.read()

setup(

 name="flitton_fib_py",

 version="0.0.1",

 author="Maxwell Flitton",

 author_email="maxwell@gmail.com",

 description="Calculates a Fibonacci number",

 long_description=long_description,

 ...

The rest of the code after ... is the same as before. With this, our basic
module setup is complete. Now, all we need is to do is define a basic
module to install and use, which is what we will do in the next step.

Defining a basic module

Defining a basic module takes the following structure:

├── LICENSE

├── README.md

├── flitton_fib_py

│ └── __init__.py

├── setup.py

└── venv

We house the actual code that the user will have in our flitton_fib_py
directory. For now, we are just going to have a basic function that prints
something out so that we can see if our pip package works. Here are the
steps:

1. We do this by adding a basic print function in the
flitton_fib_py/__init__.py file that has the following code:

def say_hello() -> None:

 print("the Flitton Fibonacci module is saying hello")

Once this is done, we can upload the code to the GitHub repository
using the git commands described in the Packaging Python code in a
pip module section. We should now see all the code of our module in
the main branch. Considering this, we need to navigate to another
directory that is not associated with our git repository.

2. We then unlink our virtual environment by typing the following
command:

deactivate

We can then create a new virtual environment using the steps covered in
the first section and activate it. Now, we are ready to install our package
in our new virtual environment using pip install and check to see
whether it works.

3. To use pip install, we point to the URL of the GitHub repository that
our pip module is stored and define which branch it is. We do this by
typing the following command, all in one line:

pip install git+https://github.com/maxwellflitton/

 flitton-fib-py@main

Your GitHub repository will have a different URL and you might have a
different directory. Running this command will give us a range of
printouts, stating that it is cloning the repository and installing it.

4. We then open up a Python terminal by typing in the following
command:

python

5. We now have an interactive terminal. We can check to see whether our
module works by typing in the following commands:

>>> from flitton_fib_py import say_hello

>>> say_hello()

Once the last command is typed, we will get the following printout in
the terminal:

the Flitton Fibonacci module is saying hello

There we have it – our Python package works! This works for both private
and public GitHub repositories. Nothing is stopping us now from packaging
private Python code to reuse on other private Python projects!

While this is a useful tool to package and install code on other computers
with minimal setup, we have to be careful. When we are running the
setup.py file, we are running the code as our root user. Therefore, we have

to ensure that we trust what we are installing. Putting malicious code into
the setup.py file is a vector of attack. We can run direct commands on the
computer using the SubProcess object from the standard Python library.
Make sure you trust the author of the code that you are installing with pip
install.

This also highlights how vigilant you have to be when merely just running
pip install. There are developers out there who will slightly change a
package. For instance, a famous case was the requests package. This is a
common, well-used package; however, for some time, there was an
imitation package called request. They relied on people mistyping pip
install and downloading the wrong package. This is known as
typosquatting.

We have now packaged our Python code into a module. However, it is not a
very useful module. This brings us to our next section, where we package
our Fibonacci sequencing code.

Packaging Python code in a pip module
Now that we have our GitHub repository configured, we can start building
out our Fibonacci code for our module. To achieve this, we must carry out
the following steps:

1. Build our Fibonacci calculation code.

2. Create a command-line interface.

3. Test our Fibonacci calculation code with unit tests.

Let's now discuss each of these steps in detail.

Building our Fibonacci calculation code

When it comes to building our Fibonacci calculation code, we will have two
functions – one that will calculate a Fibonacci number and another that will
take a list of numbers and lean on the calculation function to return a list of
calculated Fibonacci numbers. For this module, we will take a functional
programming approach. This does not mean that we should have a
functional programming approach every time we build a pip module. We
are using functional programming because Fibonacci sequence calculations
naturally flow well with a functional programming style.

Python is an object-orientated language, and problems that have multiple
moving parts interrelating naturally flow well with object-orientated
approaches. Our module structure will take the following form:

├── LICENSE

├── README.md

├── flitton_fib_py

│ ├── __init__.py

│ └── fib_calcs

│ ├── __init__.py

│ ├── fib_number.py

│ └── fib_numbers.py

├── setup.py

For this chapter, we will maintain a simple interface so that we can focus on
the packaging of code in a pip module. Here are the steps:

1. First, we can build our Fibonacci number calculator in the
fib_number.py file with the following code:

from typing import Optional

def recurring_fibonacci_number(number: int) -> \

Optional[int]:

 if number < 0:

 return None

 elif number <= 1:

 return number

 else:

 return recurring_fibonacci_number(number - 1) + \

 recurring_fibonacci_number(number - 2)

Here, it has to be noted that we are returning None when the input
number is below zero. Technically, we should be throwing an error, but
this is in place, for now, to demonstrate the effectiveness of a checking
tool later on in our Configuring continuous integration section. As we
know from the previous chapter, the preceding code will correctly
calculate a Fibonacci number based on the input number.

2. Now that we have this function, we can depend on this to create a
function that creates a list of Fibonacci numbers in our fib_numbers.py
file with the following code:

from typing import List

from .fib_number import recurring_fibonacci_number

def calculate_numbers(numbers: List[int]) -> List[int]:

 return [recurring_fibonacci_number(number=i) \

 for i in numbers]

We are now ready to test our pip module again. We must push our code
to the main branch on our repository again, uninstall our pip package in
another virtual environment, and install again using pip install.

3. In our Python terminal with our new installed package, we can test our
recurring_fibonacci_number function with the following console
commands:

>>> from flitton_fib_py.fib_calcs.fib_number

 import recurring_fibonacci_number

>>> recurring_fibonacci_number(5)

5

>>> recurring_fibonacci_number(8)

21

Here, we can see that our Fibonacci function can be imported, and it
works, calculating the correct Fibonacci numbers.

4. We can test our calculate_numbers with the following commands:

>>> from flitton_fib_py.fib_calcs.fib_numbers

 import calculate_numbers

>>> calculate_numbers([1, 2, 3, 4, 5, 6, 7])

[1, 1, 2, 3, 5, 8, 13]

Here, we can see that our calculate_numbers function also works. We have
a fully functioning Fibonacci pip module. However, if we want to just
calculate a Fibonacci number without coding a Python script, we should not

have to go into a Python terminal. We can remedy this by building a
command-line interface in the next step.

Creating a command-line interface

In order to build our command line function, our module can take the
following structure:

├── LICENSE

├── README.md

├── flitton_fib_py

│ ├── __init__.py

│ ├── cmd

│ │ ├── __init__.py

│ │ └── fib_numb.py

│ └── fib_calcs

 . . .

To build our interface, we follow these steps:

1. We build the command-line interface in our fib_numb.py file with the
following code:

import argparse

from flitton_fib_py.fib_calcs.fib_number \

 import recurring_fibonacci_number

def fib_numb() -> None:

 parser = argparse.ArgumentParser(

 description='Calculate Fibonacci numbers')

 parser.add_argument('--number', action='store',

 type=int, required=True,

 help="Fibonacci number to be \

 calculated")

 args = parser.parse_args()

 print(f"Your Fibonacci number is: " \

 f"{recurring_fibonacci_number \

 (number=args.number)}")

Here, we can see that we get the parameters passed in from the
command line using the argparse module. Once we have obtained the
parameters, we will then calculate the number and print it out. Now, for
us to actually access it via the terminal, we have to point to it in the
setup.py file at the root of the pip package by adding the following
parameter in the setup object initialization:

entry_points={

 'console_scripts': [

 'fib-number = \

 flitton_fib_py.cmd.fib_numb:fib_numb',

],

},

Here, what we are doing is linking the fib-number console command
with the function that we have just defined. After uninstalling our pip
module in another virtual environment, uploading the changes to the
main branch on our repository, and installing our new module using pip

install, we will have our new module with the command-line tool that
we have built.

2. Once it is installed, we just type in the following command:

fib-number

We get the following output:

usage: fib-number [-h] --number NUMBER

fib-number: error: the following arguments are

required: --number

Here, we can see that the argparse module that we are using ensures
that we provide the arguments needed. If we need help, we can get this
by typing in the following command:

fib-number -h

This gives us the help printout, as shown here:

usage: fib-number [-h] --number NUMBER

Calculate Fibonacci numbers

optional arguments:

 -h, --help show this help message and exit

 --number NUMBER Fibonacci number to be calculated

We can see that we have the type and the help description of what it
does.

3. So, to calculate the Fibonacci number, we use the following command:

fib-number --number 20

This gives us the following printout:

Your Fibonacci number is: 6765

If we were to provide a string instead of a number for our argument, our
program would refuse it, throwing an error.

Here we have it, we have a fully working command-line tool! This does not
stop here. You can take this further. Nothing is stopping you from using
subprocess from the standard library combined with other libraries, such as
Docker, to build your own DevOps tools. You can automate whole
workflows for yourself and the applications you make. However, if we are
to rely more and more on our pip modules to do the repetitive heavy lifting,
we can get into serious problems if the program introduces some bugs we
need to know straight away. To do this, we need to start building unit tests
for our module. These are covered in the next subsection.

Building unit tests

Unit tests are helpful for us to check and maintain quality control for our
code. To build our unit tests, our module will have the following structure:

├── LICENSE

├── README.md

├── flitton_fib_py

 . . .

├── scripts

│ └── run_tests.sh

├── setup.py

├── tests

│ ├── __init__.py

│ └── flitton_fib_py

│ ├── __init__.py

│ └── fib_calcs

│ ├── __init__.py

│ ├── test_fib_number.py

│ └── test_fib_numbers.py

We can see that we are mimicking the structure of the code in our module.
This is important to keep track of our tests. If the module grows, then we
will not get lost in our tests. If we need to chop out a directory or move it to
another module, we can simply delete the appropriate directory or move it.
It also has to be noted that we have built a Bash script to run our tests.

When it comes to writing our tests, it is usually best to code based on the
chain of dependency. For instance, our files have the dependency chain
depicted as follows:

Figure 4.4 – Dependency chain

Considering our dependency chain, we should ideally write our tests for the
fib_number.py file first and make sure that our
recurring_fibonacci_number function works before writing tests that rely
on the recurring_fibonacci_number function. Here are the steps to write
our tests:

1. We first import what we need to test our code in our
test_fib_number.py file via the following code:

from unittest import main, TestCase

from flitton_fib_py.fib_calcs.fib_number \

 import recurring_fibonacci_number

The main function is to run all tests. We also rely on the TestCase class
by writing our own test class that inherits TestCase. This gives our class

extra class functions to aid us in testing outcomes.

2. We can write our own tests for a range of inputs with the following
code:

class RecurringFibNumberTest(TestCase):

 def test_zero(self):

 self.assertEqual(0,

 recurring_fibonacci_number(number=0)

)

 def test_negative(self):

 self.assertEqual(

 None, recurring_fibonacci_number \

 (number=-1)

)

 def test_one(self):

 self.assertEqual(1, \

 recurring_fibonacci_number(number=1))

 def test_two(self):

 self.assertEqual(1, \

 recurring_fibonacci_number(number=2))

 def test_twenty(self):

 self.assertEqual(\

 6765, recurring_fibonacci_number(number=20)

)

Here, it has to be noted that each one of our functions has the test_
prefix. This flags the function as a test function. This is also the case for

the name of the file. All test files have the test_ prefix to flag that the
file houses tests. In our testing code, we can see that we have merely
passed a range of inputs into the function that we are testing and
asserted that the outcome is what we expect. If the assertions do not
hold water, then we get an error and a failed result. Seeing as we are just
testing the same function repeatedly, we can put all of the assertions into
one test function. This is usually preferred if we are testing the whole
object. We would essentially have one test function for each function
that we are testing in the object.

3. Now that all our tests have been run, we can run the unittest main
function if the test_fib_number.py file is run directly at the bottom of
the test_fib_number.py file with the code shown next:

if __name__ == "__main__":

 main()

4. We now have to set our PYTHONPATH variable to the directory of
flitton_fib_py.

Once this is done, we can run our test_fib_number.py file and get the
console printout as shown:

.....

--

Ran 5 tests in 0.002s

OK

We can see that each test function is a test. The dots at the top are each
test. If we were to change the None to a 1 in the second test, we would
get the following printout:

F....

==

FAIL: test_negative (tests.flitton_fib_py.fib_calcs.

test_fib_number.RecurringFibNumberTest)

--

Traceback (most recent call last):

 File "/Users/maxwellflitton/Documents/github/

 flitton-fib-py/tests/flitton_fib_py/fib_calcs/

 test_fib_number.py", line 15, in test_negative

 self.assertEqual(

AssertionError: 1 != None

Ran 5 tests in 0.003s

We can see that we now have an F in the test dots, and it highlights what
test is failing and where it is failing.

5. Now that we have built our base test, we can build our tests for the
function that takes in a list of integers and returns a list of Fibonacci
numbers. In our test_fib_numbers.py file, we import what we need
with the following code:

from unittest import main, TestCase

from unittest.mock import patch

from flitton_fib_py.fib_calcs.fib_numbers \

 import calculate_numbers

Here, we can see that we are importing the function that we are testing
and the same main and TestCase. However, it has to be noted that we

have imported a patch function. This is because we have already tested
our recurring_fibonacci_number function. The patch function enables
us to insert a MagicMock object in place of our
recurring_fibonacci_number function.

For our example, it can be argued that we do not need to patch anything.
However, it is important to get an understanding of patching. Patching
enables us to bypass expensive processes. For instance, if we are relying on
a function that must make an API call, we should not have to make those
API calls when testing. Instead, we can just patch the function. This also
isolates the test. If a particular test is failing, we know that is something to
do with the code that we are testing directly and not external code that it is
depending on. It also speeds up the testing as we are not fully running code
that we are depending on multiple times in different tests. We also get
granularity because we use a MagicMock object; we can define the return
values to anything we want during the test and log all calls to the MagicMock
object.

The advantage here is that we might accidentally call the function we are
depending on twice for some reason. However, if the function returns the
same value twice, we will not know anything if we did not patch it.
However, with patching, we can inspect the calls and throw errors if the
behavior is not what we expect. We can also test a range of edge cases very
quickly by merely changing the return value of the patches and rerunning
the test.

With all this, it is understandable that we can get excited about patching.
However, there are some downsides. If we do not update the patches' return

values, the dependent code does not get the changes, and the testing does
not remain accurate. This is why it is always sensible to have a mixture of
approaches and run a functional test that runs the whole process without
patching anything. With all this in mind, our patched unit test in the
tests/flitton_fib_by/fib_calcs/test_fib_numbers.py file is carried out
by the following code:

class Test(TestCase):

 @patch("flitton_fib_py.fib_calcs.fib_numbers."

 "recurring_fibonacci_number")

 def test_calculate_numbers(self, mock_fib_calc):

 expected_outcome = [mock_fib_calc.return_value,

 mock_fib_calc.return_value]

 self.assertEqual(expected_outcome,

 calculate_numbers(numbers=[3, 4]))

 self.assertEqual(2,

 len(mock_fib_calc.call_args_list))

 self.assertEqual({'number': 3},

 mock_fib_calc.call_args_list[0][1])

 self.assertEqual({'number': 4},

 mock_fib_calc.call_args_list[1][1])

Here, we can see that we have used the patch as a decorator with a string
that defines the path to the function that we are patching. We then pass the
patched function through the test function under the mock_fib_calc
parameter. We then state that we expect the outcome of the function that we
are directly testing (calculate_numbers) to be a list of two return values of

the patched function. We then pass two integers wrapped in a list into the
calculate_numbers function and assert that this is going to be the same as
our expected outcome. Once this is done, we assert that the mock_fib_calc
was only called twice, and we inspect each of those calls, asserting that they
are the numbers that we passed in, in the correct order. This has given us a
lot of power to truly inspect our code. However, we are not done yet; we
also must define the functional test to enable us to run our tests with the
code here:

 def test_functional(self):

 self.assertEqual([2, 3, 5],

 calculate_numbers(numbers=[3, 4, 5]))

if __name__ == "__main__":

 main()

For our module, all our unit tests are done. However, we do not want to go
through manually running each file to see our tests. There will be times
where we want to just see all the outcomes of the tests to see if there are any
fails. To automate this, we can build a Bash script in the run_tests.sh file
with the code here:

#!/usr/bin/env bash

SCRIPTPATH="$(cd "$(dirname "$0")" ; pwd -P)"

cd $SCRIPTPATH

cd ..

source venv/bin/activate

export PYTHONPATH="./flitton_fib_py"

python -m unittest discover

Here, we claim that the file is a Bash script with the first line. The first line
is a shebang line and tells the computer running it what type of language it
is. We then get the directory path of where this script is and assign it to the
SCRIPTPATH variable. We then navigate to this directory, move out to the root
of our module, activate our virtual environment, and then define our
PYTHONPATH variable to be in our module with the Fibonacci number code.
Now that everything is defined, to run our test we use the unittest
command-line tool to run all the unit tests. Remember, all our tests have the
test_ prefix in their filenames. Running this gives us the following
printout:

.......

--

Ran 7 tests in 0.003s

OK

Here, we can see that we have seven tests running and they have all passed.
We can see that we have started automating the test-running process. This is
not where we should stop. As we move forward onto packaging and
distributing our pip module, we should investigate automating the processes
through continuous integration, which is what we explore in the next
section. Right now, as it stands, if a user has access to our GitHub
repository, we can install the code via pip and use it.

Configuring continuous integration
Our Python pip package is fully functioning. However, this is not the end.
We will need to maintain the quality of the code and enable it to be

constantly upgraded when we push new features to our module and refactor
existing code. Continuous integration enables us to ensure that the tests pass
and that the standard of quality is maintained. It also speeds up the
deployment process, enabling us to push new iterations within a matter of
minutes, enabling us to focus on the task at hand. It also reduces the risk of
making a mistake.

As we know, the most mundane, repetitive tasks are the ones that are at the
highest risk of a mistake occurring. This is just a fact of life. It's known that
most car crashes happen within 5 minutes of the driver's home. This is
because the drivers pay less attention and their brain switches off, relying
on muscle memory. Deployment processes are the same. They are repetitive
and do not require a lot of mental focus. As a result, after several times, we
will start to rely on muscle memory and forget to check certain things, and
make minor blunders when deploying our pip package. Continuous
integration is a must to avoid mistakes and saves time in not only
deployment but also in not having to correct the errors. To set up continuous
integration, we are going to have to carry out the following steps:

1. Manually deploy onto PyPI.

2. Manage our dependencies.

3. Set up type checking for Python.

4. Set up and run tests and type checking with GitHub Actions.

5. Create automatic versioning for our pip package.

6. Deploy onto PyPI using GitHub Actions.

Let's have a look at each of these steps in detail in the following
subsections.

Manually deploying onto PyPI

We now move on to our first step of manually deploying our GitHub
repository onto PyPI. We have installed our pip package by directly
pointing to the GitHub repository. However, if we are allowing everyone to
access our module as it's open source, it is easier to upload our package
onto PyPI. This will enable others to install using a simple command. Here
are the steps:

1. First, we need to package our pip module before we upload it. This can
be done with the following command:

python setup.py sdist

What this does is package our pip module in a tar.gz file, which gives
us the following file outline:

├── LICENSE

├── README.md

├── dist

│ └── flitton_fib_py-0.0.1.tar.gz

├── flitton_fib_py

 . . .

2. We can now see that the version is included in the filename. We are now
ready to upload onto the PyPI server. To do this, we have to install
twine with the following command:

pip install twine

3. We are now able to upload the tar.gz file with the following command:

twine upload dist/*

This uploads all of the packages that we have created. During this
process, the terminal will ask us for the PyPI username and password. It
then uploads the package and tells us where we can find out the module
on PyPI. If we visit this, we should get the view depicted in the
following figure:

Figure 4.5 – PyPI view of our module

We can see that our README.md file is being directly rendered in the view in
Figure 4.5. We can now directly install this with the pip install command
depicted in the PyPI view. It must be noted that we now have a dependency.
We need to manage these dependencies. We will cover this in the next step.

Managing dependencies

When it comes to dependencies, we must manage two types. For instance,
our twine dependency helps us upload it onto PyPI. However, this is not
needed for the pip package. Therefore, we need two different lists of
dependencies – one for development and the other for actual use. We define
the dependencies that we need for the development with the simple standard
command stated here:

pip freeze > requirements.txt

What the pip freeze command gives us is a specific list of requirements
that our current Python environment needs to install in order to run. >
requirements.txt writes it to the requirements.txt file. If you are a new
developer starting to develop our module, you can install all the
requirements needed with the following command:

pip install -r requirements.txt

We can be strict here because nothing is depending on the development
requirements apart from the direct development of our module. However,
when it comes to our module, we know that it will be installed into multiple
systems with multiple requirements. Therefore, we want to allow some
flexibility. For instance, if our module was going to write our Fibonacci
numbers to yml and pickle files, then we will need to use the pyYAML and

dill modules to enable us to write our Fibonacci numbers to yml and
pickle files. To do this, we alter our install_requires parameter in our
setup initialization in the setup.py file with the code here:

install_requires=[

 "PyYAML>=4.1.2",

 "dill>=0.2.8"

],

It must be noted that these are not the latest packages. We must drop a few
versions and allow our dependency to be equal to or above that version.
This gives our users freedom when using our pip package in their systems.
We also must copy and paste these requirements into our requirements.txt
file to ensure that our development is consistent with the user experience of
our pip module. Let's say that we are going to add an optional feature which
is to start a small Flask server that locally serves an API that calculates
Fibonacci numbers. Here, we can add an install_requires parameter in
our setup initialization in the setup.py file with the following code:

extras_require={

 'server': ["Flask>=1.0.0"]

},

Now, if we upload our new code to either PyPI or our personal GitHub
repository, we will have a different experience when installing our package.
If we normally install it, we will see that our pickle and yml requirements
automatically install if we run the install command, as shown here:

pip install flitton-fib-py[server]

It will actually install the server requirements. We can have as many
requirements for the server profile as we want, and they will all be
installed. Remember, our extras_require parameter is a dictionary, so we
can define as many extra requirement profiles as we want. With this, we
now have development requirements, essential pip module requirements,
and optional pip module requirements. In the next step, we are now going
to rely on a new development requirement to check types.

Setting up type checking for Python

At this point in the book, we have experienced the safety that Rust
introduces. When types don't match up, the Rust compiler refuses to
compile. However, with Python, we do not get this, as Python is an
interpreted language. However, we can mimic this using the mypy module.
The steps are as follows:

1. First, we can install the mypy module with the following command:

pip install mypy

2. We can then type-check by using the mypy entry point with the code
here:

mypy flitton_fib_py

Here, we are pointing to the main code for our Python module. We
should get the console printout as follows:

flitton_fib_py/fib_calcs/fib_number.py:16:

error: Unsupported operand types for + ("int" and

"None")

flitton_fib_py/fib_calcs/fib_number.py:16:

error: Unsupported operand types for + ("None" and

"int")

flitton_fib_py/fib_calcs/fib_number.py:16:

error: Unsupported left operand type for + ("None")

flitton_fib_py/fib_calcs/fib_number.py:16:

note: Both left and right operands are unions

flitton_fib_py/fib_calcs/fib_numbers.py:13:

error: List comprehension has incompatible

type List[Optional[int]]; expected List[int]

What mypy is doing is checking the consistency across all of our Python
code! Like a Rust compiler, it has found an inconsistency. However,
because this is Python, we can still run our Python code. While Python
is memory-safe, the strong type-checking that Rust enforces is going to
reduce the risk of incorrect variables being passed into the function in
runtime. Now, we know that there is an inconsistency. The
inconsistency is that our recurring_fibonacci_number function returns
either None or int. However, our calculate_numbers function relies on
the recurring_fibonacci_number function for the return value, but it
returns a list of integers as opposed to returning a list of integers or None
values.

3. We can constrict the return value to just an integer with the
recurring_fibonacci_number function:

def recurring_fibonacci_number(number: int) -> int:

 if number < 0:

 raise ValueError(

 "Fibonacci has to be equal or above zero"

)

 elif number <= 1:

 return number

 else:

 return recurring_fibonacci_number(number - 1) + \

 recurring_fibonacci_number(number - 2)

Here, we can see that we raise an error if the input number is below
zero. It's not going to calculate anyway, so we might as well throw an
error informing the user that there is an error as opposed to silently
producing a None value.

If we run our mypy check, we get the following console printout:

Success: no issues found in 6 source files

Here, we can see that all our files were checked and that they have type
consistency.

However, we might forget to run this type of checking every time we
upload new code to the GitHub repository. In the next section, we will
define GitHub Actions to automate our checking.

Setting up and running tests and type-
checking with GitHub Actions

GitHub Actions run a series of computations that we can define in a yml
file. We generally use GitHub Actions to automate processes that need to

run every time. Workflow yml files are automatically detected by GitHub
and run depending on what type of tags we give it. We can set up our
GitHub Actions by following these steps:

1. For our tests and type-checking tags, we will define these in the
.github/workflows/run-tests.yml file. In this file, we initially give a
name for the workflow, and state that it fires when there is a push from
one branch to another. This happens when a pull request is done as one
branch is being pushed to another. This also reruns if we push more
changes to our branch before merging the pull request. Our definitions
are inserted at the top of the file with the following code:

name: Run tests

on: push

Here, we can see that the workflow is called Run tests.

2. Next, we must define our jobs. We also must state that our job is a shell
command. We then define what the operating system is. Once we have
done this, we define the steps of the job. In our steps section, we then
define the uses, which we will state are actions with the following
code:

jobs:

 run-shell-command:

 runs-on: ubuntu-latest

 steps:

 - uses: actions/checkout@v2

If we did not define the uses step, then we would not be able to access
files such as the requirements.

3. We are now ready to define the rest of the steps under the steps tag.
These steps usually have a name and run tag. For us, we will be defining
three steps:

1. The first one is to install the dependencies.

2. The second one is to run all the unit tests.

3. The third one is to run the type-checking with the code here:

 - name: Install dependencies

 run: |

 python -m pip install –upgrade pip

 pip install -r requirements.txt

 - name: run tests

 run: python -m unittest discover ./tests

 - name: run type checking

 run: mypy flitton_fib_py

It must be noted that run is just a one-line terminal command. At one
point, there is a | (pipe) value next to a run tag of the Install
dependencies step. This pipe value simply allows us to write multiple
lines of commands in one step. We must ensure that our
requirements.txt file is updated with the mypy module. Once this is
done, we can push this code to our GitHub repository and this GitHub
action will run when we do pull requests. If you are familiar with
GitHub and making pull requests, then you can move on to the next
step. However, if you are not, then we can perform one now.

4. First, we have to pull a new branch from our main branch with the
following command:

git checkout -b test

With this, we then have a branch called test. We can then make a
change in our code.

5. To just trigger a GitHub action with a pull request, we can simply scar
our code with a comment in any file, such as the one here:

trigger build (14-6-2021)

You can write whatever, as it is just a comment if the code has changed.
We then add and commit our changes to our test branch and push it to
the GitHub repository. Once this is done, we can trigger a pull request
by clicking on the Pull requests tab and selecting our test branch, as
shown here:

Figure 4.6 – Setting up a GitHub pull request

6. Once this is done, we can click on Create pull request to view it. Here,
we will see all the GitHub Actions that get triggered and their status, as
shown in the following figure:

Figure 4.7 – View of the GitHub Actions status of pull requests

We can see that our tests have failed! If we click on Details, we can see
that everything is working; it is just that we forgot to update our tests. If
we remember, we changed our code to throw an error if we pass in a
negative value into the Fibonacci calculation function, as shown next:

Figure 4.8 – View of the GitHub Actions execution details

7. We can change the test code to assert that an error is raised by the
testing code in the
tests/flitton_fib_py/fib_calcs/test_fib_number.py file with the
following code:

def test_negative(self):

 with self.assertRaises(ValueError) as \

raised_error:

 recurring_fibonacci_number(number=-1)

 self.assertEqual(

 "Fibonacci has to be equal or above zero",

 str(raised_error.exception)

)

Here, we can see that we assert that a value error is raised because we
are running code that we expect to raise an error, and that the exception
is what we expect of it. Pushing this to our GitHub repository will
ensure that all the tests have passed. We can merge the pull request if we
want the code to be merged into our main branch.

We have seen from this example that continuous integration is useful. It
has picked up a change in the code that we might not have noted if we
were doing everything manually.

Now that our tests run automatically, we need to automate keeping track of
the version of our module to avoid making the same mistake we made with
not updating our tests.

Create automatic versioning for our pip
package

To automate the process of updating the version number, we are going to
put several functions in the get_latest_version.py file in the root of our
pip module. Following are the steps:

1. First, we need to import everything we need with the following code:

import os

import pathlib

from typing import Tuple, List, Union

import requests

We are going to use os and pathlib to manage writing the latest version
to a file. We are also going to use the requests module to call PyPI to
get the latest version that is currently available to the public.

2. To do this, we can create a function that will get the metadata of our
module from PyPI and return the version with the following code:

def get_latest_version_number() -> str:

 req = requests.get(

 "https://pypi.org/pypi/flitton-fib-py/json")

 return req.json()["info"]["version"]

3. This is just a simple web request. Once we have done this, we are going
to want to unpack this string into a tuple of integers with the function
defined next:

def unpack_version_number(version_string: str) \

 -> Tuple[int, int, int]:

 version_buffer: List[str] = \

 version_string.split(".")

 return int(version_buffer[0]),\

 int(version_buffer[1]),int(version_buffer[2])

Here, we can see that this is a simple split via bullet points. We then
convert them to integers and pack them into a tuple to be returned.

4. Now that we have got our version number, we need to increase this by
one with the function defined next:

def increase_version_number(version_buffer: \

Union[Tuple[int, int, int], List[int]]) -> List[int]:

 first: int = version_buffer[0]

 second: int = version_buffer[1]

 third: int = version_buffer[2]

 third += 1

 if third >= 10:

 third = 0

 second += 1

 if second >= 10:

 second = 0

 first += 1

 return [first, second, third]

Here, we can see that if one of the integers is equal or greater than 10,
we set it back to 0 and increase the next number by 1. The only one that
does not get sent to 0 is the furthest number to the left. This will just
keep going up.

5. Now that we have increased our number by 1, we will need to pack the
integer into a string, with the function defined next:

def pack_version_number(

 version_buffer: Union[Tuple[int, int, int],

 List[int]]) -> str:

 return f"{version_buffer[0]}.{version_buffer[1]} \

 .{version_buffer[2]}"

6. Once we have packed this into a string, we will have to write the
version to a file. This can be done with the function defined next:

def write_version_to_file(version_number: str) -> \

None:

 version_file_path: str = str(\

 pathlib.Path(__file__).parent.absolute()) + \

 "/flitton_fib_py/version.py"

 if os.path.exists(version_file_path):

 os.remove(version_file_path)

 with open(version_file_path, "w") as f:

 f.write(f"VERSION='{version_number}'")

Here, we can see that we ensure that the path is going to be at the root
of our module. We then delete the version file if it already exists, as it
will already be out of date.

7. We then write our updated version number to the file with the following
code:

if __name__ == "__main__":

 write_version_to_file(

 version_number=pack_version_number(

 version_buffer=increase_version_number(

 version_buffer=unpack_version_number(

 version_string=get_latest_version_number()

)

)

)

)

This ensures that if we run the file directly, we will get the updated
version written to a file.

8. Now, in our setup.py file at the root of our module, we must read the
version file and define it for our version parameter in the setup
initialization. For that, we first import pathlib into our file and read the
version file with this code:

import pathlib

with open(str(pathlib.Path(__file__).parent.absolute()) +

 "/flitton_fib_py/version.py", "r") as fh:

 version = fh.read().split("=")[1].replace("'", "")

9. We then set the version parameter with the read value with the
following code:

setup(

 name="flitton_fib_py",

 version=version,

 ...

We now have our version update process fully automated; we must plug this
into our GitHub Actions, so we automatically run the update process and
push to PyPI when merging with our main branch.

Deploying onto PyPI using GitHub
Actions

To enable our GitHub actions to push to PyPI, we need to follow these
steps:

1. First, we store the username and password for our PyPI account in the
Secrets section of our GitHub repository. This can be done by clicking
on the Settings tab and then the Secrets tab on the left sidebar, as
shown here:

Figure 4.9 – View of the GitHub Secrets section

2. On the top right of the view in Figure 4.9 is New repository secret. If
we click this, we will get the following screen:

Figure 4.10 – View of the GitHub secret creation section

Here, we can create a secret for our PyPI password and another secret for
our PyPI username.

Now that we have our secrets defined, we can build our GitHub action in
the .github/workflows/publish-package.yml file:

1. First, we need to ensure that we publish our package only when we have
merged a branch with the main branch. To do this, we need to ensure
that our action only executes when there's a pull request when it's
closed, and the branch being pointed out is main with the following
code:

name: Publish Python distributions to PyPI

on:

 pull_request:

 types: [closed]

 branches:

 - main

2. Once this is done, we can define the basic jobs of installing the
dependencies and updating the package version with jobs, defined in
the following code:

jobs:

 run-shell-command:

 runs-on: ubuntu-latest

 steps:

 - uses: actions/checkout@v2

 - name: Install dependencies

 run: |

 python -m pip install --upgrade pip

 pip install -r requirements.txt

 - name: update version

 run: python get_latest_version.py

What we have done is fine so far. However, it will run when any pull
request pointing to main is closed. Therefore, we must ensure that the
pull request has merged before executing the step.

3. For the next section, we install the dependencies with the following
code:

 - name: install deployment dependancies

 if: github.event.pull_request.merged == true

 run: |

 pip install twine

 pip install pexpect

4. We can see that our conditional statements are straightforward. We then
run the setup.py file for it to produce our distribution with the
following step:

 - name: package module

 if: github.event.pull_request.merged == true

 run: python setup.py sdist

5. Now that we have defined all the steps needed to prepare our package,
we can upload our package using twine with the following code:

 - name: deploy to pypi

 if: github.event.pull_request.merged == true

 env:

 TWINE_USERNAME: ${{ secrets.TWINE_USERNAME

 }}

 TWINE_PASSWORD: ${{ secrets.TWINE_PASSWORD

 }}

 run: |

 twine upload dist/*

Here, we can see that we have automated the deployment of our module to
PyPI using GitHub Actions.

Summary
In this chapter, we have managed to build a fully fledged pip Python
module that has continuous integration. We initially set up a GitHub
repository and created a virtual environment. This is an essential skill for
most Python projects, and you should be using GitHub repositories and
virtual environments even if your project is not a pip module. You will be
able to share your project and work with other team members. We then
defined our setup.py file so our code could be installed via pip. Even if our
GitHub repository is private, people who have access to the GitHub
repository could freely install our code. This gives us even more power
when it comes to distributing our code.

When we have an interface defined, our users do not need to know much
about our code, just how to use the interface. This also enables us to prevent
repeated code. For instance, if we build a user data model with a database
driver, we can package it as a pip module and use this in multiple web
applications. All we need to do is change the data model in the pip module

and make a new release, and then all web applications can use the updated
version if they wish.

Once our code was packaged, we rebuilt our Fibonacci code in our pip
module, and it worked. We then went further, building entry points that
enabled us to define our own command-line tools. This makes our code
packaging even more powerful, as the user doesn't even have to import and
code the module; they can just call the command-line argument! With this,
we can build development tools to speed up our development by automating
tasks with these entry points. We then built basic unit tests to ensure that the
quality of our code was maintained. We then locked in these good standards
with automation pipelines using GitHub Actions. We introduced type-
checking with mypy alongside our unit-testing pipeline. We don't have to
stop here. For instance, the Python script that we coded that increased the
version number by one could be built in its own pip repository with a
command-line interface. With this, we could install the module using pip
install in our GitHub Actions and run the commands. Now, with this code
packaging, you can build your own tools and add them to your belt,
reducing the amount of repetition in your daily coding as time goes on.

In the next chapter, we cover what we have done in this chapter in Rust.
Considering this, we harness the safety and speed of Rust, with the
flexibility of pip packaging. Utilizing this will level up your skills as a
Python toolmaker, making you invaluable to your team.

Questions

1. How would you perform an installation with pip install of our GitHub
repository on the test branch?

2. Can other developers who do not have access to your GitHub repository
install your pip package if you upload it to PyPI?

3. What is the difference between development dependencies and package
dependencies?

4. mypy ensures the consistency of types when it comes to our Python code.
How is this different from type-checking in Rust?

5. Why should we automate boring repetitive tasks?

Answers
1. pip install git+https://github.com/maxwellflitton/flitton-fib-

py@test

2. Yes, they can download it despite not having access to your GitHub
repository. If we think about it, we package our pip module in a file and
then upload it to the PyPI server. Downloading our package from the
PyPI server is not connected to our GitHub repository.

3. Development dependencies are specific dependencies defined in the
requirements.txt file. This ensures that developers can work on the pip
package. Package requirements are a little more relaxed and defined in
the setup.py file. These get installed when the user installs our package.
Package requirements are to enable the pip package to be used.

4. Rust does the type-checking when it is compiling and fails to compile if
the types are inconsistent. Because of this, we cannot run it. Python,

however, is an interpreted language. Because of this, we can still run it
with the potential errors.

5. Repetitive tasks are easy to automate, so the effort invested is not
excessive. Also, repetitive tasks have a higher risk of producing errors.
Automating these tasks reduces the number of errors we could make.

Further reading
Python Organisation (2021) Packaging code:
https://packaging.python.org/guides/distributing-packages-using-
setuptools/

GitHub Organisation (2021) GitHub Actions:
https://docs.github.com/en/actions

https://packaging.python.org/guides/distributing-packages-using-setuptools/
https://docs.github.com/en/actions

Chapter 5: Creating a Rust Interface for
Our pip Module
In Chapter 4, Building pip Modules in Python, we built a pip module in
Python. Now, we will build the same pip module in Rust and manage the
interface. Some people might prefer Python for some tasks; others will state
that Rust is better. In this chapter, we will simply utilize both as and when
we want. To achieve this, we will build a pip module in Rust that can be
installed and directly imported into our Python code. We will also build
Python entry points that talk directly to our compiled Rust code, and Python
adapters/interfaces to make the user experience of our module easy, safe,
and locked down with user interfaces (UIs) that have all features that we
want our user to use.

In this chapter, we will cover the following topics:

Packaging Rust with pip

Building a Rust interface with the pyO3 crate

Building tests for our Rust package

Comparing speed with Python, Rust, and Numba

Covering these topics will enable us to build Rust modules and use them in
our Python systems. This is a major advantage as a Python developer; you
can use faster, safer, and less resource-intensive code seamlessly in your
Python programs.

Technical requirements
We will need to have Python 3 installed. To get the most out of this chapter,
we will also need to have a GitHub account, as we will be using GitHub to
package our code, which can be accessed via this link:
https://github.com/maxwellflitton/flitton-fib-rs.

The code for this chapter can be found at
https://github.com/PacktPublishing/Speed-up-your-Python-with-
Rust/tree/main/chapter_five.

Packaging Rust with pip
In this section, we will be setting up our pip package so that it can utilize
Rust code. This will enable us to use Python setup tools to import our Rust
pip package, compile it for our system, and use it within our Python code.
For this chapter, we are essentially building the same Fibonacci module that
we built in Chapter 4, Building pip Modules in Python. It is advised to
create another GitHub repository for our Rust module; however, nothing is
stopping you from refactoring your existing Python pip module. To build
our Rust pip module, we are going to have to carry out the following steps:

1. Define gitignore and Cargo for our package.

2. Configure a Python setup process for our package.

3. Create a Rust library for our package.

Define gitignore and Cargo for our
package

https://github.com/maxwellflitton/flitton-fib-rs
https://github.com/PacktPublishing/Speed-up-your-Python-with-Rust/tree/main/chapter_five

To get started, we must make sure that our Git does not track files that we
do not want to upload and that our Cargo has the right dependencies with
step 1.

1. First, we can start with gitignore. If you are choosing to use the same
GitHub repository as the one that we defined in the previous chapter,
then all the files for Python are already defined in the .gitignore file at
the root of the GitHub repository. If not, then when you are creating
your new GitHub repository, we have to select the Python template in
the Add .gitignore section. Either way, once we have the Python
gitignore template in our .gitignore file, we must add our gitignore
requirements for the Rust part of our package. To do this, we add the
following code in the .gitignore file:

/target/

Yes, that is it for our Rust code. That is a lot less than the Python files
that we need to ignore.

2. Now that we have defined gitignore, we can move on to defining our
Cargo.toml file in the root of our package, initially defining the
metadata of our package with the following code:

[package]

name = "flitton_fib_rs"

version = "0.1.0"

authors = ["Maxwell Flitton

 <maxwellflitton@gmail.com>"]

edition = "2018"

This is nothing new; all we are doing here is defining the name and
generic information of our package.

3. We then go on to define the dependencies with the following code:

[dependencies]

[dependencies.pyo3]

version = "0.13.2"

features = ["extension-module"]

We can see that we have not defined any dependencies in the
dependencies section. We will be depending on the pyo3 crate to enable
our Rust code to interact with our Python code. We declare the latest
version of the crate at the point of writing this book, and the fact that we
want to enable the extension-module feature because we will be using
pyo3 to make our Rust module.

4. We then define our library data with the following code:

[lib]

name = "flitton_fib_rs"

crate-type = ["cdylib"]

It must be noted that we have defined a crate-type variable. Crate types
provide information to the compiler on how to link Rust crates together.
This can either be static or dynamic. For instance, if we were to define
the crate-type variable as bin, this would compile our Rust code as a
runnable executable. The main file would have to be present in our
module, as this would be the entry point. We could also define the
crate-type variable as lib, which compiles it as a library that can be
used by other Rust programs. We can go further with this, defining

either a static or dynamic library. Defining the crate-type variable as
cdylib tells the compiler that we want a dynamic system library to be
loaded by another language. If we do not put this in, we will not be able
to compile our code when installing our library via pip. Our library
should be able to compile for Linux and Windows. However, we require
some link arguments to ensure that our library also works on macOS.

5. In order to do this, we need to define the configuration in the
.cargo/config file:

[target.x86_64-apple-darwin]

rustflags = [

 "-C", "link-arg=-undefined",

 "-C", "link-arg=dynamic_lookup",

]

[target.aarch64-apple-darwin]

rustflags = [

 "-C", "link-arg=-undefined",

 "-C", "link-arg=dynamic_lookup",

]

With this, we have defined all that we need for our Rust library. Now, we
move on to the next step, configuring the Python part of our module.

Configuring the Python setup process for
our package

When it comes to setting up the Python section, we will be defining this in
the setup.py file at the root of our module. Initially, we are going to import
all the requirements that we need with the following code:

#!/usr/bin/env python

from setuptools import dist

dist.Distribution().fetch_build_eggs(['setuptools_rust'])

from setuptools import setup

from setuptools_rust import Binding, RustExtension

We are going to use the setuptools_rust module for managing our Rust
code. However, we cannot be sure that the user will have installed
setuptools_rust and we need it for running our setup code. Because of this,
we cannot rely on the requirements list, as installing the requirements
happens after we have imported setuptools_rust. To get around this, we
use the dist module to get the required setuptools_rust module for this
script. The user does not permanently install setuptools_rust but uses it for
the script. Now that this is done, we can define our setup with the following
code:

setup(

 name="flitton-fib-rs",

 version="0.1",

 rust_extensions=[RustExtension(

 ".flitton_fib_rs.flitton_fib_rs",

 path="Cargo.toml", binding=Binding.PyO3)],

 packages=["flitton_fib_rs"],

 classifiers=[

 "License :: OSI Approved :: MIT License",

 "Development Status :: 3 - Alpha",

 "Intended Audience :: Developers",

 "Programming Language :: Python",

 "Programming Language :: Rust",

 "Operating System :: POSIX",

 "Operating System :: MacOS :: MacOS X",

],

 zip_safe=False,

)

Here, we can see that we define the metadata of the module as we did in the
previous chapter. We can also see that we define a rust_extensions
parameter, pointing to the actual Rust module that we will define in a Rust
file, as we can see in the following figure:

Figure 5.1 – Our module flow for setup

We also point to our Cargo.toml file, as we will have to compile other Rust
crates that are in our dependencies when we are installing our Rust module.
We also must state that our module is not zipped safely. This is also
standard for C modules. Now that we have done all the setup
configurations, we can now move on to the next step of building our basic
Rust module that will get us installing Rust code using pip install that we
can use in our Python code:

1. For our Rust code, we have to initially import all of the pyo3
requirements in the src/lib.rs file with the following code:

use pyo3::prelude::*;

use pyo3::wrap_pyfunction;

What this does is enable our Rust code to utilize all the macros that the
pyo3 crate has. We will also be wrapping the Rust functions into the
module.

2. We then define a basic hello world function with the following code:

#[pyfunction]

fn say_hello() {

 println!("saying hello from Rust!");

}

We can see that we have applied a Python function macro from pyo3 to
the say_hello function.

3. Now that we have the function, we can define our module in the same
file with the following code:

#[pymodule]

fn flitton_fib_rs(_py: Python, m: &PyModule) -> \

 PyResult<()> {

 m.add_wrapped(wrap_pyfunction!(say_hello));

 Ok(())

}

Here, we can see that we have defined the module as flitton_fib_rs.
This will have to be imported as flitton_fib_rs when using it. We then
use the pymodule macro. This function is loading the module. We must
define a result at the end. Seeing as we do not have any complex logic,
we will define the end result as an Ok result. We don't need to do
anything to Python; however, we add our wrapped say_hello function

to our module. The wrap_pyfunction macro essentially takes a Python
instance and returns a Python function. Now that we have our Rust code
defined, we must build our Python entry point.

4. This is fairly simple; all we have to do is import our functions from the
Rust module in the flitton_fib_rs/__init__.py file with the following
code:

from .flitton_fib_rs import *

We will go through how this works later in this chapter, as we will be
installing this package and running it.

Install ing our Rust l ibrary for our
package

Right now, we have everything we need to deploy our package and install it
via pip. Considering this, we upload our package to our GitHub repository,
which is covered in the Configuring setup tools for a Python pip module
section of the Chapter 4, Building pip Modules in Python.

Once we have done this, we can install our pip package with the following
command, all in one line:

pip install git+https://github.com/maxwellflitton/flitton-

 fib-rs@main

The URL to your GitHub repository might be different. When this is being
installed, the process will hang for a while. The result should give the
following printout:

Collecting git+https://github.com/maxwellflitton

/flitton-fib-rs@main

Cloning https://github.com/maxwellflitton/

flitton-fib-rs (to revision main) to /private

/var/folders/8n/

7295fgp11dncqv9n0sk6j_cw0000gn/T/pip-req-build-kcmv4ldt

Running command git clone -q https:

//github.com/maxwellflitton/flitton-fib-rs

/private/var/folders/8n

/7295fgp11dncqv9n0sk6j_cw0000gn/T/pip-req-build-kcmv4ldt

Installing collected packages: flitton-fib-rs

 Running setup.py install for flitton-fib-rs ... done

Successfully installed flitton-fib-rs-0.1

This is because we are compiling the package based on our system. Here,
we can see that we collect the code from the main branch of the repository
and run the setup.py file. What we have essentially done is compile the
Rust code into a binary file and put it next to our __init__.py entry point
file with the following file layout:

├── flitton_fib_rs

│ ├── __init__.py

│ └── flitton_fib_rs.cpython-38-darwin.so

This is why our from .flitton_fib_rs import * code works in the entry
point.

Now that this is all installed in our Python packages, we can run our Python
console and type in the following commands:

>>> from flitton_fib_rs import say_hello

>>> say_hello()

saying hello from Rust!

Here we have it! We have got Rust working with Python and we have
managed to package our Rust code as a pip module. This is a complete
game changer. We can now utilize Rust code without having to rewrite our
Python systems. However, we only have one file in Rust code. We need to
learn how to build bigger Rust systems if we want to fully take advantage
of our ability to fuse Rust with Python.

Building a Rust interface with the pyO3
crate
Building an interface does not just mean adding more functions to our
module in Rust and wrapping them. In a sense, we do have to do some of
this; however, exploring how to import them from other Rust files is
important. We also must explore and understand the relationship that we
can have between Rust and Python when we are building up our module. To
achieve this, we will carry out these steps:

1. Build our Fibonacci module in our Rust package.

2. Create command-line tools for our package.

3. Create adapters for our package.

With step one, we can just build out our module with Rust code. Steps two
and three are more Python-focused, wrapping our Rust code in Python code
to ease the interaction of our Rust module with external Python code. In
Chapter 6, Working with Python Objects in Rust, we will interact directly

with Python objects in our Rust code. With all this in mind, let's our Python
interface by initially building our Fibonacci code in Rust with step one.

Building our Fibonacci Rust code

In this step, we are going to build our Fibonacci module, spanning multiple
Rust files. To achieve this, the file structure of our module takes the
following form:

├── Cargo.toml

├── README.md

├── flitton_fib_rs

│ ├── __init__.py

├── setup.py

├── src

│ ├── fib_calcs

│ │ ├── fib_number.rs

│ │ ├── fib_numbers.rs

│ │ └── mod.rs

│ ├── lib.rs

Here, we can see that we have added our Fibonacci code under the
src/fib_calcs directory, as we remember that fib_numbers.rs relies on
fib_number.rs.

Now, let's follow these steps:

1. We can initially define our Fibonacci number function in the
fib_number.rs file with the following code:

use pyo3::prelude::pyfunction;

#[pyfunction]

pub fn fibonacci_number(n: i32) -> u64 {

 if n < 0 {

 panic!("{} is negative!", n);

 }

 match n {

 0 => panic!("zero is not a right \

 argument to fibonacci_number!"),

 1 | 2 => 1,

 _ => fibonacci_number(n - 1) +

 fibonacci_number(n - 2)

 }

}

Here, we can see that we have imported the pyfunction macro to apply
to our function. By now, we are familiar with calculating a Fibonacci
number; however, unlike previous examples, it must be noted that we
have removed the if the input Fibonacci number to be calculated
is 3 match statement. This is because that match statement significantly
speeds up the code, and we want a fair speed comparison for the final
section of this chapter.

2. Now that we have defined our Fibonacci number function, we can
define our fibonacci_numbers function in the fib_numbers.rs file with
the following code:

use std::vec::Vec;

use pyo3::prelude::pyfunction;

use super::fib_number::fibonacci_number;

#[pyfunction]

pub fn fibonacci_numbers(numbers: Vec<i32>) -> \

 Vec<u64> {

 let mut vec: Vec<u64> = Vec::new();

 for n in numbers.iter() {

 vec.push(fibonacci_number(*n));

 }

 return vec

}

Here, we can see that we accepted a vector of integers, looped through
them, and appended them to an empty vector, returning the vector with
all the calculated Fibonacci numbers. Here, we have imported the
fibonacci_number function.

3. However, we remember that we will not be able to import it, and neither
of these functions will be available outside of the immediate directory if
we do not define them in the src/mod.rs file with the following code:

pub mod fib_number;

pub mod fib_numbers;

4. Now that we have defined both of our functions and declared them in
our src/mod.rs file, we are now able to import them into our lib.rs
file. We do this by initially declaring the fib_calcs module, and then
importing the functions with the following code:

mod fib_calcs;

use fib_calcs::fib_number::__pyo3_get_function \

 _fibonacci_number;

use fib_calcs::fib_numbers::__pyo3_get_function \

 _fibonacci_numbers;

pub mod fib_numbers;

Here, it must be noted that our functions have the prefix of
__pyo3_get_function_. This enables us to retain the macros applied to
the functions. If we just directly import the functions, we will not be
able to add them to the module, which will result in compilation errors
when we are installing our package.

5. Now that our functions are imported and ready, we can import-wrap
them and add them to the module with the following code:

#[pymodule]

fn flitton_fib_rs(_py: Python, m: &PyModule) -> \

 PyResult<()> {

 m.add_wrapped(wrap_pyfunction!(say_hello));

 m.add_wrapped(wrap_pyfunction!(fibonacci_number));

 m.add_wrapped(wrap_pyfunction!(fibonacci_numbers);

 Ok(())

}

6. Now that we have built our modules, we can test them. We do this by
uploading our changes to the GitHub repository, and using pip
uninstall to uninstall our pip module and pip install to install our
new package. Once our new package is installed, we can import and use
our new functions in the Python terminal as follows:

>>> from flitton_fib_rs import fibonacci_number,

fibonacci_numbers

>>> fibonacci_number(20)

6765

>>> fibonacci_numbers([20, 21, 22])

[6765, 10946, 17711]

>>>

Here, we can see that we can import and use the Fibonacci numbers that we
have coded in Rust that span multiple files! We are now at the stage where
nothing is stopping us from building our own Rust Python pip packages. If
you have a specific problem in mind to solve in Rust, such as an expensive
computation that your Python program is struggling to calculate, nothing is
stopping you from solving that now.

Now that we have gone to the trouble of packaging our Python package
written in Rust, we can further utilize our package with command-line
functionality. Packages installed with pip are convenient, powerful tools for
command-line functionality. In the next section, we will access the Rust
code in our package directly from the command line.

Creating command-line tools for our
package

You may have noticed that to use our Fibonacci functions, we must start a
Python console, import the functions, and use them. This is not very
efficient if we just want to calculate a Fibonacci number in the console. We

can remove these unnecessary procedures needed for calculating a
Fibonacci number in the terminal by defining our entry points.

Considering that we define our command-line entry points in the setup.py
file, it makes sense to define our entry point in a Python file that acts as a
wrapper to our Rust function (as we still want the speed benefits of Rust),
as shown in the following figure:

Figure 5.2 – Flow for module entry point

This wrapper can be done by importing argparse and the fibonacci_number
function we made in the Rust module to create a simple Python function
that gets user input and then passes it into the Rust function, printing out the
result. We can achieve this by carrying out the following steps:

1. We can build the Python function that collects the arguments and calls
the Rust code by adding the following code to the
flitton_fib_rs/fib_number_command.py file we create:

import argparse

from .flitton_fib_rs import fibonacci_number

def fib_number_command() -> None:

 parser = argparse.ArgumentParser(

 description='Calculate Fibonacci numbers')

 parser.add_argument('--number', action='store', \

 type=int, required=True,help="Fibonacci \

 number to becalculated")

 args = parser.parse_args()

 print(f"Your Fibonacci number is: "

 f"{fibonacci_number(n=args.number)}")

}

We must remember that when our Rust binary is compiled, it will be in
the flitton_fib_rs directory, right next to the file we just created.

2. Next, we define the entry point in the setup.py file. Now that we have
our function, we can point to this in the setup.py file by declaring the
path to this file and function for the entry_points parameter with the
following code:

entry_points={

 'console_scripts': [

 'fib-number = flitton_fib_rs.'

 'fib_number_command:'

 'fib_number_command',

],

},

3. Once this is done, we have fully plumbed up the Python entry point in
our package. Finally, we can test our command line by passing in
arguments to the entry point. Now, if we update our GitHub repository
and reinstall our package in the Python environment, we can test our
command line by typing in the following command:

fib-number --number 20

This will give us the following output:

Your Fibonacci number is: 6765

We can see that our command-line tools work. Now we are at the stage
where we have replicated the same functionality as our Python pip package
previously in Chapter 4, Building pip Modules in Python. However, we
must go further now. We are fusing two different languages in our package.
To gain full command of our pip package, we need to explore how to
command and refine the interaction between Rust and Python.

In our next step, we will build adapters that enable us to do this.

Creating adapters for our package

Before we try and build adapter interfaces, we need to understand what an
adapter is. An adapter is a design pattern that manages the interface
between two different modules, applications, languages, and so on. The title
of the design pattern is descriptive of what we are doing. For instance, if

you buy one of the new MacBook Pros, you will realize that you only have
USB-C ports. Instead of opening your MacBook and rewiring it so that it
can accept your standard USB memory stick, you buy an adapter. Adapters
have multiple advantages. When it comes to modular software engineering,
this gives us an advantage.

For instance, let's say that module A relies on module B. Instead of
importing aspects of module B throughout module A, we can create
adapters that manage the interface between both modules. This, in turn,
gives us a lot of flexibility. For instance, module C could be built as an
improvement on module B. Instead of working through module A looking
for, and trying to root out, the uses of module B, we know that they are all
utilized in the adapter. We can even produce a second adapter slowly
moving over to module C in time. If we want to delete a module or move it
out, again, our connection to another module can be severed instantly by
just deleting the adapters. Adapters are simple and give us ultimate
flexibility.

Considering what we have discussed about adapters, it makes sense that we
create adapters between our Rust code and Python. Seeing as Python
systems are essentially using our Rust code, it makes sense to build our
adapters in Python.

To demonstrate how to do this, we will create an adapter that accepts either
a list or an integer. It then selects the right Rust function and implements it.
However, for our purposes with this adapter, we can make up a scenario
where there is a lot of incorrect data being fed into the module. We do not
want it to error every time incorrect data is passed in, but we do want to
categorize whether the calculation is a failure, and we want to count the

number of correct calculations we do. This seems specific, and we must
remember that, like the MacBook, we can have multiple adapters. Nothing
is stopping us from chopping, changing, and deleting in the future if we
need to.

However, before we start writing code, we need to understand the layers
involved for the adapter, as described here:

Figure 5.3 – The layers of a Python adapter for a Rust module

In the preceding figure, we can see that Python objects come from types.
However, we can interject how these objects are called from types with
metaclasses. When it comes to metaclasses, we must build a metaclass that
will define how our counter is called. Our counter is going to be universal.
We do not know how the users will use our interface. They might loop
through a list of data points, calling our adapter for each one. We need to
ensure that no matter how many adapters are being called, they are all
pointing to the same counter. This might be a little confusing. This will
become clearer when we build it.
Using a singleton design pattern to build an
adapter interface
First, we must define our Singleton metaclass:

1. This can be done with the following code in the
flitton_fib_rs/singleton.py file we create:

class Singleton(type):

 _instances = {}

 def __call__(cls, *args, **kwargs):

 if cls not in cls._instances:

 cls._instances[cls] = super(Singleton, \

 cls).__call__(*args, **kwargs)

 return cls._instances[cls]

2. Here, we can see that our Singleton class inherits directly from type.
Here, what is happening is that we have a dictionary called _instances,
where the keys to this dictionary are the class types. When a class that

has Singleton as a metaclass is called, the type of that class is checked
in the dictionary. If the type is not in the dictionary, then it is
constructed and put into the dictionary. The instance in the dictionary is
then returned. What this essentially means is that we cannot have two
instances of a class. This process is laid out in the following figure:

Figure 5.4 – The logic flow for a Singleton metaclass

3. Now, we will use our Singleton class to construct our counter. This can
be done with the following code in the flitton_fib_rs/counter.py file
that we create:

from .singleton import Singleton

class Counter(metaclass=Singleton):

 def __init__(self, initial_value: int = 0) -> \

 None:

 self._value: int = initial_value

 def increase_count(self) -> None:

 self._value += 1

 @property

 def value(self) -> int:

 return self._value

Now, our Counter class cannot be constructed twice in the same
program. Therefore, we can ensure that there will only be one Counter
class, no matter how many times we call it.

4. We can now use it on our main adapter. We will house our main adapter
in the flitton_fib_rs/fib_number_adapter.py file that we create. First
of all, we import all of the functions and objects that we need with the
following code:

from typing import Union, List, Optional

from .flitton_fib_rs import fibonacci_number, \

 fibonacci_numbers

from .counter import Counter

Here, we can see that we have imported the typing that we need. We
have also imported the Rust Fibonacci numbers that we will be using
and our counter. Now that we have imported what we need, we can
build our interface constructor.

5. For our adapter, we will need to have a number input, a status of
whether the process is successful or not, along with the actual result,
which will be the calculated Fibonacci number, or an error message if
there is a failure. We will also have a counter, and we will have to
process the input during the construction of the object. This can be
denoted with the following code:

class FlittonFibNumberAdapter:

 def __init__(self,

 number_input: Union[int, List[int]]) -> None:

 self.input: Union[int, List[int]] = \

 number_input

 self.success: bool = False

 self.result: Optional[Union[int, List[int]]] \

 = None

 self.error_message: Optional[str] = None

 self._counter: Counter = Counter()

 self._process_input()

Remember, even though we call the counter, it is a singleton pattern;
therefore, the counter will be the same instance across all instances of

the adapter. Now that all of the correct attributes have been defined, we
have to define what is an actual success.

6. This is where we state that success is True, and we increase the counter
by one. This can be denoted by the FlittonFibNumberAdapter instance
function, as shown here:

 def _define_success(self) -> None:

 self.success = True

 self._counter.increase_count()

This is smooth; because we have defined a clean interface for the
counter, there is little explanation needed. Now that we have our success
defined, we need to process the input because there are two different
functions, one that takes a list and one that takes an integer.

7. We can pass in the correct input to the correct function with the
FlittonFibNumberAdapter instance function, as shown here:

 def _process_input(self) -> None:

 if isinstance(self.input, int):

 self.result = fibonacci_number(\

 n=self.input)

 self._define_success()

 elif isinstance(self.input, list):

 self.result = fibonacci_numbers(\

 numbers=self.input)

 self._define_success()

 else:

 self.error_message = "input needs to be \

 a list of ints or an int"

Here, we can see that we define an error message if there isn't a list of
integers passed in. If we do pass in the correct input, we define the
result as the result of the function and call the _define_success
function.

8. The only thing left is to expose the count for the outside user. This can
be done with the following FlittonFibNumberAdapter property:

 @property

 def count(self) -> int:

 return self._counter.value

9. Again, the counter interface is clean, so no explanation is needed. Our
adapter interface is now completed. All we need to do is expose it to the
user by importing it into the src/__init__.py file with the following
code:

from .fib_number_adapter import \

 FlittonFibNumberAdapter

Everything is done. We can now update our GitHub repository and reinstall
our package in the Python environment.
Testing our adapter interface in the Python
console
We can now test our adapter with the Python console commands, as shown
here:

>>> from flitton_fib_rs import FlittonFibNumberAdapter

>>> test = FlittonFibNumberAdapter(10)

>>> test_two = FlittonFibNumberAdapter(15)

>>> test_two.count

2

>>> test.count

2

>>> test_two.success

True

>>> test_two.result

610

Here, we can see that we can import our adapter from the module. We can
then define two different adapters. We can see that the count is consistent
across both adapters, which means that our singleton pattern works! Both
adapters are pointing to the same Counter instance! All of our adapters will
point to that same Counter instance. We can also see that the success is
True, and we can access the result of the calculation:

1. Now, in the same Python console, we can test to see whether an
incorrect input results in a failure and doesn't increase the count with the
Python console commands shown next:

>>> test_three = FlittonFibNumberAdapter(

 "should fail"

)

>>> test_three.count

2

>>> test_three.result

>>> test_three.success

False

>>> test_three.error_message

'input needs to be a list of ints or an int'

>>>

2. Here, we can see that the count hasn't increased, the success is False,
and that there is an error message. The final input test can be done by
inputting a list of integers with the Python console command shown
next:

>>> test_four = FlittonFibNumberAdapter(

 [5, 6, 7, 8, 9]

)

>>> test_four.result

[5, 8, 13, 21, 34]

Here, we can see that it works. There is only one final test that we really
know will work. However, it's to drive home what's happening with the
singleton pattern. If we call all of the counts for all four adapters, they
should all be 3, as they are all pointing to the same Counter instance and
there was one failure out of the four.

3. Calling them in the same Python console command reveals whether this
is true, as shown next:

>>> test.count

3

>>> test_two.count

3

>>> test_three.count

3

>>> test_four.count

3

There we have it. We have fully configured the Python interface of our
module.

In this section, we built our Rust pip package with a Python interface. You
might be tempted to add extra directories and flesh out entire Python
modules in the flitton_fib_rs directory. However, extra directories in the
flitton_fib_rs directory do not get copied over when the package is being
installed. This is fine as well. We are essentially building Rust pip
packages. Rust is fast and safe, and we should be leaning on this as much as
we can. The Python adapters and command in the flitton_fib_rs directory
should be there to smooth over the interface. For instance, if we want the
memory of our interface to be managed in a particular way, it makes sense
to do this in the interface of Python as a wrapper, as Python will be the
system that is importing and using the pip package. If you find yourself
putting anything other than adapters and command-line functions in the
flitton_fib_rs module, that is a warning sign that you should try and
consider putting it in the Rust module itself. We have tested our package
manually; however, we need to ensure that our Rust Fibonacci calculation
functions do as we expect.

In the next section, we will be creating unit tests for our Rust code.

Building tests for our Rust package
Previously, in Chapter 4, Building pip Modules in Python, we built unit
tests for our Python code. In this section, we will build unit tests for our

Fibonacci functions. These tests do not need any extra packages or
dependencies. We can use Cargo to manage our testing. This can be done by
adding our testing code in the src/fib_calcs/fib_number.rs file. The steps
are as follows:

1. We do this by creating a module in the src/fib_calcs/fib_number.rs
file with the following code:

#[cfg(test)]

mod fibonacci_number_tests {

 use super::fibonacci_number;

}

Here, we can see that we have defined a module in the same file and
decorated the module with the #[cfg(test)] macro.

2. We can also see that we must import the function, as it is super to the
module. Inside this module, we can run standard tests that check to see
whether the integers we pass in calculate the Fibonacci number we
expect with the following code:

 #[test]

 fn test_one() {

 assert_eq!(fibonacci_number(1), 1);

 }

 #[test]

 fn test_two() {

 assert_eq!(fibonacci_number(2), 1);

 }

 #[test]

 fn test_three() {

 assert_eq!(fibonacci_number(3), 2);

 }

 #[test]

 fn test_twenty() {

 assert_eq!(fibonacci_number(20), 6765);

 }

Here, we can see that we have decorated our test functions with the #
[test] macro. If they do not produce the results that we expect, then
assert_eq! and the test will fail. We also must note that our function
will panic if we pass in zero or a negative value.

3. These can be tested with the test functions, as shown next:

 #[test]

 #[should_panic]

 fn test_0() {

 fibonacci_number(0);

 }

 #[test]

 #[should_panic]

 fn test_negative() {

 fibonacci_number(-20);

 }

Here, we pass in the failing inputs. If they do not panic, then the test
will fail because we decorated it with the #[should_panic] macro.

4. Now that we have created our tests for the fibonacci_number function,
we can build our test for our fibonacci_numbers function in the
src/fib_calcs/fib_numbers.rs file with the following code:

#[cfg(test)]

mod fibonacci_numbers_tests {

 use super::fibonacci_numbers;

 #[test]

 fn test_run() {

 let outcome = fibonacci_numbers([1, 2, 3, \

 4].to_vec());

 assert_eq!(outcome, [1, 1, 2, 3]);

 }

}

5. Here, we can see that this has the same layout as our other tests. If we
want to run our tests, we can run them with the following command:

cargo test

This gives us the following printout:

running 7 tests

test fib_calcs::fib_number::fibonacci_number_tests::test_th

ree ... ok

test fib_calcs::fib_numbers::fibonacci_numbers_tests::test_

run ... ok

test fib_calcs::fib_number::fibonacci_number_tests::

test_two ... ok

test fib_calcs::fib_number::fibonacci_number_tests::test_on

e ... ok

test fib_calcs::fib_number::fibonacci_number_tests::

test_twenty ... ok

test fib_calcs::fib_number::fibonacci_number_tests::

test_negative ... ok

test fib_calcs::fib_number::fibonacci_number_tests::

test_0 ... ok

test result: ok. 7 passed; 0 failed; 0 ignored; 0

measured; 0

filtered out; finished in 0.00s

 Running target/debug/deps/flitton_fib_rs-

07e3ba4b0bc8cc1e

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0

measured; 0

filtered out; finished in 0.00s

 Doc-tests flitton_fib_rs

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0

measured; 0

filtered out; finished in 0.00s

Here, we can see that all of our tests have run and passed. If we recall
Chapter 4, Building pip Modules in Python, we'll remember that we used
mocking.

Rust is still developing mock crates. One crate, mockall, enables mocking
and can be found at this URL: https://docs.rs/mockall/0.10.0/mockall/.
Another cleaner crate that can be utilized for mocking can be found at this
URL: https://docs.rs/mocktopus/0.7.11/mocktopus/.

We have now covered how to build our module and test it. We are at the end
of building a Rust pip module with tests and a Python interface. We can
now test the speed of our Rust module to see what will happen and how
powerful Rust modules as a tool are.

Comparing speed with Python, Rust, and
Numba
We have now built a pip module in Rust with command-line tools, Python
interfaces, and unit tests. This is a shiny new tool that we have. Let's put it
to the test. We know that Rust by itself is faster than Python. However, do
we know that the pyo3 bindings slow us down? Also, there is another way
to speed up our Python code and this is with Numba, a Python package that
compiles Python code to speed it up. Should we go through all of the haste
of creating the Rust package if we can achieve the same speed with
Numba? In this section, we will run our Fibonacci function several times, in
Python, Numba, and our Rust module. It has to be noted that Numba can be
a headache to install. For instance, I could not install it on my MacBook Pro
M1. I had to install Numba on a Linux laptop to run this section. You don't
have to run the code in this section; it is more for demonstrative purposes. If
you do want to try and run the test script, then all of the steps are provided:

https://docs.rs/mocktopus/0.7.11/mocktopus/

1. First of all, we have to install the Rust pip module that we have built.
We then install Numba with the following command:

pip install numba

2. Once this is done, we have everything we need. In any Python script,
we import the packages required with the following code:

from time import time

from flitton_fib_rs.flitton_fib_rs import \

 fibonacci_number

from numba import jit

We are using the time module to time how long it takes for each run to
happen. We also use the Fibonacci function from our Rust pip module,
and we also require the jit decorator from Numba. jit stands for just in
time. This is because Numba compiles the function when it loads it.

3. We now define our standard Python function with the following code:

def python_fib_number(number: int) -> int:

 if number < 0:

 raise ValueError(

 "Fibonacci has to be equal or above zero"

)

 elif number in [1, 2]:

 return 1

 else:

 return numba_fib_number(number - 1) + \

 numba_fib_number(number - 2)

4. We can see that this is the same logic that the Rust code is built with.
We want to ensure that our tests are reputable comparisons. We then
define the Python function that is compiled with jit with the following
code:

@jit(nopython=True)

def numba_fib_number(number: int) -> int:

 if number < 0:

 raise ValueError("Fibonacci has to be equal \

 or above zero")

 elif number in [1, 2]:

 return 1

 else:

 return numba_fib_number(number - 1) + \

 numba_fib_number(number - 2)

5. We can see that it is the same. The only difference is that we have
decorated it with jit and set nopython to True to obtain optimal
performance. We then run all of them with the following code:

t0 = time()

for i in range(0, 30):

 numba_fib_number(35)

t1 = time()

print(f"the time taken for numba is: {t1-t0}")

t0 = time()

for i in range(0, 30):

 numba_fib_number(35)

t1 = time()

print(f"the time taken for numba is: {t1 - t0}")

Here, we can see that we loop through a range from 0 to 30 and hit our
function 30 times with the number 35. We then print the time elapsed for
this to happen. We notice that we have done this twice. This is because
the first run will involve compiling the function.

6. When we run this, we get the following console printout:

the time taken for numba is: 2.6187334060668945

the time taken for numba is: 2.4959869384765625

7. Here, we can see that some time is shaved off in the second run because
it is not compiling. Running this several times shows that this reduction
is standard. Now, we set up our standard Python test with the following
code:

t0 = time()

for i in range(0, 30):

 python_fib_number(35)

t1 = time()

print(f"the time taken for python is: {t1 - t0}")

8. Running this test will get the following console printout:

the time taken for python is: 2.889884853363037

9. We can see that there is a significant speed decrease when it comes to
running pure Python code as opposed to our Numba function. Now, we
can move on to the final test, which is our Rust test, defined with the
following code:

t0 = time()

for i in range(0, 30):

 fibonacci_number(35)

t1 = time()

print(f"the time taken for rust is: {t1 - t0}")

10. Running this test gives us the following console printout:

the time taken for rust is: 0.9373788833618164

Here, we can see that the Rust function is a lot faster. This does not mean
that Numba is a waste of time. When it comes to Python optimizations,
Numba can perform well in certain situations. In other situations, the
Python optimizations will not affect them at all. Considering how easy they
are to apply, it is always worth checking to see whether there is a speed-up.
However, we also now know that Rust will always be faster than pure
Python code.

Summary
In this chapter, we have built a fully fleshed-out Python pip module with
command-line tools, interfaces, and Rust code. We managed gitignore for
both Rust and Python development. We then defined our setup tools for
packaging our Python code and module with the compilation of Rust code
that has Python bindings. Once these were defined, we learned how to build
Rust functions that spanned multiple Rust files that could be wrapped in
pyo3 bindings.

Our development did not just stop at Rust. We also explored Python's
singleton and adapter design patterns to build more advanced Python
interfaces for our users. We then tested our code with unit tests and speed

checking. It must be noted that we did not cover GitHub actions in this
chapter. GitHub actions are defined in the same way as they were in the
previous chapter. Instead of running tests using the Python unit test, we run
our tests using Cargo and so on. However, uploading to PyPI is a little more
complicated. To cover this, examples on how to pre-compile and upload
Rust pip modules are provided in the Further reading section.

We now have a powerful skill, which is building Python pip modules that
utilize Rust. However, we leaned on our Python to build our interfaces. In
the next chapter, we will work with Python objects within our Rust code.
Therefore, we will be able to pass in more advanced Python data objects
into our Rust code. We will also enable our Rust code to return fully
fledged Python objects.

Questions
1. How do you define a setup.py file for a pyo3 Rust Python pip module?

2. What is the layout of our pip module in the Python environment after it
has been installed? Also, why can we not build Python modules
spanning multiple directories?

3. What is a singleton design pattern?

4. What is an adapter design pattern and what are the advantages of using
the design pattern?

5. What is a metaclass and how do we use it?

Answers

1. Here, we must use the dist package to install setuptools_rust before
we do anything else in the setup.py file. We define the parameters for
the setup and use the RustExtension object from setuptools_rust,
pointing to where the compiled Rust module will be once installed.

2. When the pip module is installed, the binary Rust file is in the same
directory where the Python files are defined for the module. However,
directories in that directory are not copied over and, therefore, they will
be lost during the installation.

3. A singleton design pattern ensures that all references to a particular
class all point to one instance of that class.

4. The adapter pattern is an interface that manages the interaction between
two modules. The advantage is the flexibility between the modules. We
know where all the interactions are, and if we want to sever the
modules, all we need to do is delete the adapter. This enables us to
switch modules as and when we need them.

5. A metaclass is a class that lies between a type and an object. Because of
this, we can use this to see how we manage calling our objects.

Further reading
Mre – an example of GitHub actions for deploying Rust packages on
PyPI (2021):
https://github.com/mre/hyperjson/blob/master/.github/workflows/ci.yml

Mastering Object-Oriented Python, Steven F. Lott, Packt Publishing
(2019)

https://github.com/mre/hyperjson/blob/master/.github/workflows/ci.yml%0D

The PyO3 user guide: https://pyo3.rs/v0.13.2/

https://pyo3.rs/v0.13.2/

Chapter 6: Working with Python Objects
in Rust
So far, we have managed to fuse Rust with Python to speed up our code.
However, software programs written in Rust can get complicated. While we
can get by with passing integers and strings into Rust functions from
Python code, it would be useful to handle more complex data structures
from Python and objects. In this chapter, we accept and process Python data
structures such as a dictionary. We will go further by processing custom
Python objects and even creating Python objects inside our Rust code.

In this chapter, we will cover the following topics:

Passing complex Python objects into Rust

Inspecting and working with custom Python objects

Constructing our own custom Python objects in Rust

Technical requirements
The code for this chapter can be found via the following GitHub link:

https://github.com/PacktPublishing/Speed-up-your-Python-with-
Rust/tree/main/chapter_six

Passing complex Python objects into
Rust

https://github.com/PacktPublishing/Speed-up-your-Python-with-Rust/tree/main/chapter_six

A key skill that enables us to take our Rust pip module development to the
next level is taking in complex Python data structures/objects and using
them. In Chapter 5, Creating a Rust Interface for Our pip Module, we
accepted integers. We noticed that these raw integers were just directly
transferred to our Rust function. However, with Python objects, it is more
complex than this.

To explore this, we will create a new command-line function that reads a
.yml file and passes a Python dictionary into our Rust function. The data in
this dictionary will have the parameters needed for firing our
fibonacci_numbers and fibonacci_number Rust functions, adding the results
of those functions to the Python dictionary and passing it back to the Python
system.

To achieve this, we must carry out the following steps:

1. Update our setup.py file to support .yml loading and a command-line
function that reads it.

2. Define a command-line function that reads the .yml file and feeds it into
Rust.

3. Process data from our Python dictionary for fibonacci_numbers in Rust.

4. Extract data from our config file.

5. Return our Python dictionary to our Python system.

This approach will require us to write the whole process before we can run
it. This can be frustrating because we cannot see it working until the end.
However, it is laid out in this book this way so that we can see the data
flow. We are exploring the concept of passing complex data structures into

Rust for the first time. Once we understand how this works, we can then
develop pip modules that work for us as individuals.

Updating our setup.py fi le to support .yml
loading

Let's start this journey by updating our setup.py file, as follows:

1. With our new command-line function, we read a .yml file and pass
through that data to our Rust function. This requires our Python pip
module to have the pyyaml Python module. This can be done by adding
the requirements parameter to our setup initialization, as follows:

 requirements=[

 "pyyaml>=3.13"

]

We remember that we can keep adding more dependencies to our
module by just adding them to our requirements list. If we want our
module to be more flexible for multiple installs to different systems, it is
advised that we can lower the version number for our pyyaml module
requirement.

2. Now that we have defined our requirements, we can define a new
console script, resulting in the entry_points parameter in our setup
initialization, which looks like this:

 entry_points={

 'console_scripts': [

 'fib-number = flitton_fib_rs.'

 'fib_number_command:'

 'fib_number_command',

 'config-fib = flitton_fib_rs.'

 'config_number_command:'

 'config_number_command',

],

 },

With this, we can see that our new console script will be in the
flitton_fib_rs/config_number_command.py directory.

3. In the flitton_fib_rs/config_number_command.py directory, we need to
build a function called config_number_command. First, we need to import
the required modules, as follows:

import argparse

import yaml

import os

from pprint import pprint

from .flitton_fib_rs import run_config

os will help us with the path definition to the .yml file. The pprint function
will just help us print the data in an easy-to-read format on the console. We
have also defined a Rust function that will process our dictionary as
run_config.

Defining our .yml loading command

Now that our imports have been done, we can define our function and
collect the command-line arguments. Here's how we do this:

1. You can start with the following code:

def config_number_command() -> None:

 parser = argparse.ArgumentParser(

 description='Calculate Fibonacci numbers '

 'using a config file')

 parser.add_argument('--path', action='store',

 type=str, required=True,

 help="path to config file")

 args = parser.parse_args()

2. Here, we can see that we take in a string, which is the path to the .yml
file with the --path tag, and we parse it. Now that we have parsed the
path, we can open our .yml file by running the following code:

 with open(str(os.getcwd()) + "/" + args.path) as \

 f:

 config_data: dict = yaml.safe_load(f)

Here, we can see that we attach our path with the os.getcwd() function.
This is because we must know where the user is calling the command.
For instance, if we are in the x/y/ directory and we want to point to the
x/y/z.yml file, we will have to run the config-fib --path z.yml
command. If the directory of the file were x/y/test/z.yml, we would
have had to run the config-fib --path test/z.yml command.

3. Now that we have our data loaded from the .yml file, we can print it out
and print out the results of our Rust function by running the following

code:

 print("Here is the config data: ")

 pprint(config_data)

 print(f"Here is the result:")

 pprint(run_config(config_data))

With this, we have now completed all our Python code.

Processing data from our Python
dictionary

We are now going to have to build Rust functions that process the Python
dictionaries. Here's how we'll go about this:

1. When it comes to processing input dictionaries, we must agree on a
format that we are going to accept. To keep this simple, our Python
dictionaries will have two keys. The number key is for a list of integers
that can call Fibonacci number calculations individually, while the
numbers key is for a list of lists of integers. To ensure that our Rust code
does not become disorganized, we are going to define our interfaces in
our own interface directory, giving our Rust code the following
structure:

├── fib_calcs

│ ├── fib_number.rs

│ ├── fib_numbers.rs

│ └── mod.rs

├── interface

│ ├── config.rs

│ └── mod.rs

├── lib.rs

└── main.rs

2. We will build our configuration interface in the
src/interface/config.rs file. First, we are going to import all the
functions and macros that we need, as follows:

use pyo3::prelude::{pyfunction, PyResult};

use pyo3::types::{PyDict, PyList};

use pyo3::exceptions::PyTypeError;

use crate::fib_calcs::fib_number::fibonacci_number;

use crate::fib_calcs::fib_numbers::fibonacci_numbers;

We are going to use pyfunction to wrap our interface that takes in a
Python dictionary. We will return the dictionary back to the Python
program wrapped in a pyResult struct. Seeing as we are accepting a
Python dictionary, we will be using a PyDict struct to describe the
dictionary being passed in and returned. We will also be accessing the
lists in the dictionary using a PyList struct. If there is an issue with our
dictionary not housing lists, then we will have to throw an error that the
Python system will understand. To do this, we will use a PyTypeError
struct. Finally, we will be using our Fibonacci number functions to
calculate the Fibonacci numbers. We can see that we are simply
importing from another module in the Rust code with use crate::.
Even though our Fibonacci number functions have the pyfunction
macro applied to them, nothing is stopping us from using them as
normal Rust functions elsewhere in our Rust code.

3. Before we write our interface function, we need to build a private
function that accepts our lists of lists, calculates the Fibonacci numbers,
and returns them in a list of lists, as seen in the following code snippet:

fn process_numbers(input_numbers: Vec<Vec<i32>>) \

 -> Vec<Vec<u64>> {

 let mut buffer: Vec<Vec<u64>> = Vec::new();

 for i in input_numbers {

 buffer.push(fibonacci_numbers(i));

 }

 return buffer

}

4. This should be straightforward at this stage in the book. Considering
this, we now have everything we need to build our interface. First, we
need to define a pyfunction function that accepts and returns the same
data by running the following code:

#[pyfunction]

pub fn run_config<'a>(config: &'a PyDict) \

 -> PyResult<&'a PyDict> {

Here, we can see that we tell the Rust compiler that the Python
dictionary that we accept must have the same lifetime as the Python
dictionary that we are returning. This makes sense as we are returning
the same dictionary after adding the results to it.

5. Our first process is to see if the number key is present in the dictionary
by running the following code:

 match config.get_item("number") {

 Some(data) => {

 . . .

 },

 None => println!(

 "parameter number is not in the config"

)

 }

Here, we can see that is the number key is not there, so we merely print
that it is not there. We can change the rules to throw an error instead,
but we are accepting a forgiving config file. If the user does not have
any individual Fibonacci numbers to compute, only lists of them, then
we should not throw errors, insisting that the user adds the field. The
three dots in the code snippet shown in Step 6 are where the code is
going to be executed if the number key is present.

6. We substitute the three dots in the following code snippet:

 match data.downcast::<PyList>() {

 Ok(raw_data) => {

 . . .

 },

 Err(_) => Err(PyTypeError::new_err(

 "parameter number is not a list

 of integers")).unwrap()

 }

Here, we can see that we downcast the data we extracted belonging to
the number key to the PyList struct. If this fails, then we actively throw a

type error because the user has tried to configure the number key but
failed. If it passes, we can run the Fibonacci function by substituting the
three dots in the preceding code snippet with the following code:

 let processed_results: Vec<i32> =

 raw_data.extract::<Vec<i32>>().unwrap();

 let fib_numbers: Vec<u64> =

 processed_results.iter().map(

 |x| fibonacci_number(*x)

).collect();

 config.set_item(

 "NUMBER RESULT", fib_numbers);

Here, what we have done is create Vec<i32> by running the extract
function on the PyList struct. We directly unwrap it so that if there is an
error, it will be thrown straight away. We then create Vec<u64>, which
houses the calculated Fibonacci numbers, by iterating through the vector
with the iter() function. We then map each i32 integer of that vector with
the map function. Inside the map function, we define a closure that is mapped
to each i32 integer in the vector. It must be noted that we apply the
fibonacci function where we dereference the i32 integer being passed in
because it is now a borrowed reference. We collect the results of this
mapping with the .collect() function, which results in the
processed_results variable being a collection of i32 calculated Fibonacci
numbers. We then add the calculated numbers to the dictionary under the
NUMBER RESULT key. We can see the flow of what was just described in the
following diagram:

Figure 6.1 – Data extraction flow

In the next step, we will carry out a similar process to the one displayed in
Figure 6.1 to process the list of lists under the numbers key.

Extracting data from our config fi le

At this point, it would be a good idea to try to implement the process for the
numbers key by yourself. To make things easier, you can use the
process_numbers function that we defined earlier in Step 3 of the Processing
data from our Python dictionary section. We will cover the solution to this
in the next steps:

1. The numbers key can be processed by our run_config function with the
code defined here:

 match config.get_item("numbers") {

 Some(data) => {

 match data.downcast::<PyList>() {

 Ok(raw_data) => {

 let processed_results_two: \

 Vec<Vec<i32>> =

 raw_data.extract::<Vec<Vec<i32>>>(

).unwrap();

 config.set_item("NUMBERS RESULT",

 process_numbers(processed \

 _results_two));

 },

 Err(_) => Err(PyTypeError::new_err(

 "parameter numbers is not a list of \

 lists of integers")).unwrap()

 }

 },

 None => println!(

 "parameter numbers is not in the config")

 }

 return Ok(config)

Here, we can see that the process_numbers function actually makes this
implementation simpler than the numbers key processing. If the
complexity starts to grow, it is always worth breaking down the logic
into smaller functions. It also must be noted that we return a result that
wraps the config dictionary. Now that we have finished the logic behind
processing our dictionary, we need to return our dictionary in the next
step.

2. Here, we must publicly define our src/interface/config.rs file in the
src/interface/mod.rs file by running the following code:

pub mod config;

3. We then import it into our src/lib.rs file by running the following
code:

mod interface;

use interface::config::__pyo3_get_function_run_config;

4. We then add the function to our module in the src/lib.rs file by
running the following code:

m.add_wrapped(wrap_pyfunction!(run_config));

We have now carried out all the steps.

Returning our Rust dictionary to our
Python system

Our pip module can now take in a configuration file, convert it into a
Python dictionary, pass the Python dictionary into the Rust function that
calculates the Fibonacci numbers, and return the results in the form of a
dictionary back to Python. This can be achieved by carrying out the
following steps:

1. Define a .yml file to be ingested by our program. An example .yml file
that can run what we have just done can be defined via the following
code:

number:

 - 4

 - 7

 - 2

numbers:

 -

 - 12

 - 15

 - 20

 -

 - 15

 - 19

 - 18

I have saved the preceding .yml code on my desktop for demonstration
purposes under the filename example.yml. Remember to update your
GitHub repository and uninstall your current module in your Python
environment, and install our new module instead.

2. We can then pass in the .yml file into our module entry point with the
following command:

config-fib --path example.yml

3. I ran this command from my desktop, where I stored the example.yml
file. Running the previous command gives us the following output:

Here is the config data:

{'number': [4, 7, 2, 10, 15],

'numbers': [[5, 8, 12, 15, 20], [12, 15, 19, 18, 8]]}

Here is the result:

{'NUMBER RESULT': [3, 13, 1, 55, 610],

'NUMBERS RESULT': [[5, 21, 144, 610, 6765],

 [144, 610, 4181, 2584, 21]],

'number': [4, 7, 2, 10, 15],

'numbers': [[5, 8, 12, 15, 20], [12, 15, 19, 18, 8]]}

Here, we can see that our Python interface fed the Python dictionary
into the Rust interface. We then got the results of the Fibonacci
functions passed back in the same dictionary.

4. Now, we introduce a breaking change in our .yml file. We can test our
error by changing the number key to a dictionary as opposed to a list of

integers in our example.yml file by running the following code:

number:

 one: 1

5. Finally we run our code again, expecting the correct error message. This
gives us the following error when running our command again:

pyo3_runtime.PanicException: called 'Result::unwrap()'

on an 'Err' value: PyErr { type: <class 'TypeError'>,

value: TypeError('parameter number is not a list of

integers'),

traceback: None }

Here, we can see that a TypeError exception was raised. This is not
trivial. This means that we can try to accept type errors in our Python
code when using our Rust module if we need to. Considering this, if a
user did not know how our module was built, they would have no
problem thinking that our module was built in pure Python. There is one
more test that we can consider. We only manually threw an error when
we were downcasting to PyList, highlighting that we need to have a list
of integers. However, we just unwrapped the extract function being
performed on PyList.

6. We can see how the extract function handles a string being put in,
thereby changing the number key to a list of strings as opposed to a list
of integers in our example.yml file, by running the following code:

number:

 - "test"

7. Running our command again gives us the following output:

pyo3_runtime.PanicException: called 'Result:: \

 unwrap()' on an

'Err' value: PyErr { type: <class 'TypeError'>,

value: TypeError(

"'str' object cannot be interpreted as an integer"),

traceback: None }

Here, we can see that the error string is a little harder to interpret because
we did not directly code an error telling the user what we want; however, it
is still TypeError. We can also see here that errors raised by functions that
are acted on Python objects are Python-friendly.

We have now concluded how to interact with complex Python data
structures. Nothing is stopping you from building Python pip modules in
Rust that fuse seamlessly with a Python program. However, we can take our
Rust pip modules to the next level by working with and inspecting custom
Python objects in the next section.

Inspecting and working with custom
Python objects
Technically, everything in Python is an object. The Python dictionary that
we worked on within the previous section is an object, so we have already
managed Python objects. However, as we know, Python enables us to build
custom objects. In this section, we will get our Rust function to accept a
custom Python class that will have number and numbers attributes. To
achieve this, we must carry out the following steps:

1. Create an object that passes itself into our Rust interface.

2. Acquire the Python global interpreter lock (GIL) within our Rust code
to create a PyDict struct.

3. Add the custom object's attributes to our newly created PyDict struct.

4. Set the attributes of the custom object to the results of our run_config
function.

Creating an object for our Rust interface

We start our journey by setting up our interface object, as follows:

1. We house our object that will pass itself into our Rust code in the
flitton_fib_rs/object_interface.py file. Initially, we import what we
need by running the following code:

from typing import List, Optional

from .flitton_fib_rs import object_interface

2. We then define the __init__ method of our object by running the
following code:

class ObjectInterface:

 def __init__(self, number: List[int], \

 numbers: List[List[int]]) -> None:

 self.number: List[int] = number

 self.numbers: List[List[int]] = numbers

 self.number_results: Optional[List[int]] = \

 None

 self.numbers_results:Optional[List[List \

 [int]]] = None

Here, we can see that we can pass in the Fibonacci numbers that we
want to be calculated in the parameters. We then just set our attributes to
the parameters that we passed in. The result parameters defined here are
of a None value. However, they will be populated by the Rust code when
we pass this object into our Rust object interface.

3. We then define a function that will pass our object into the Rust code by
running the following code:

 def process(self) -> None:

 object_interface(self)

Here, we can see that this is done by merely passing the self reference into
the function. Now that we have defined our object, we can move on to build
our interface and interact with the Python GIL.

Acquiring the Python GIL in Rust

For our interface, we will house our function in the
src/interface/object.rs file. We'll proceed as follows:

1. First, we must import all of what we need by running the following
code:

use pyo3::prelude::{pyfunction, PyResult, Python};

use pyo3::types::{PyAny, PyDict};

use pyo3::exceptions::PyLookupError;

use super::config::run_config;

Most of these imports will be familiar by now. The new import that we
must make note of is the Python import. Python is a struct that is

essentially a marker that is required for the Python operations that we
will be doing.

2. Now that we have imported everything we need, we can build
parameters for our interface and create a PyDict struct by running the
following code:

#[pyfunction]

pub fn object_interface<'a>(input_object: &'a PyAny) \

 -> PyResult<&'a PyAny> {

 let gil = Python::acquire_gil();

 let py = gil.python();

 let config_dict: &PyDict = PyDict::new(py);

Here, what we have essentially done is acquire the Python GIL, and then
use this to create a PyDict struct. To fully understand what we are doing, it
is best to explore what the Python GIL is. In Chapter 3, Understanding
Concurrency, we covered the concept of thread blocking. This means that if
another thread is executing, then all other threads are locked. The GIL
ensures that this happens, as demonstrated in the following diagram:

Figure 6.2 – GIL flow

This is because Python does not have any concept of ownership. A Python
object can be referenced as many times as we want. We can also mutate the
variable from any of those references. When we acquire the gil variable,
we ensure that only one thread can use the Python interpreter and the
Python application programming interface (API) at the same time. We
must remember that processes behave differently and have their own
memory. Our gil variable is a GILGuard struct that ensures that we acquire
the GIL before we run any operations on Python objects.

Adding data to our newly created PyDict
struct

Now that we have control over Python objects with the GIL, we can move
on to our next step, where we add the data from the input object to our
newly created PyDict struct, as follows:

1. Our approach in this step can be summarized in the following diagram:

Figure 6.3 – PyDict flow

2. We can achieve the first cycle depicted in Figure 6.3 by running the
following code:

 match input_object.getattr("number") {

 Ok(data) => {

 config_dict.set_item("number", data) \

 .unwrap();

 },

 Err(_) => Err(PyLookupError::new_err(

 "attribute number is missing")).unwrap()

 }

Here, we can see that we match the getattr function, throwing an error
if input_object does not have the number attribute. If we do have the
attribute, we assign it to config_dict.

3. We can do the second cycle by running the following code:

 match input_object.getattr("numbers") {

 Ok(data) => {

 config_dict.set_item("numbers", data) \

 .unwrap();

 }

 Err(_) => Err(PyLookupError::new_err(

 "attribute numbers is missing")).unwrap()

 }

4. It must be noted that there is a fair amount of repetition, with only one
change. We could refactor this into a single function with an attribute
parameter by running the following code:

fn extract_data<'a>(input_object: &'a PyAny, \

 attribute: &'a str, config_dict: &'a PyDict) \

 -> &'a PyDict {

 match input_object.getattr(attribute) {

 Ok(data) => {

 config_dict.set_item(attribute, \

 data).unwrap();

 },

 Err(_) => Err(PyLookupError::new_err(

 "attribute number is missing")).unwrap()

 }

 return config_dict

}

5. Here, we can see that we get a lot of flexibility with our Python objects.
This function can be used multiple times with the refactored code in our
object_interface function, as seen here:

 let mut config_dict: &PyDict = PyDict::new(py);

 config_dict = extract_data(input_object, \

 "number", config_dict);

 config_dict = extract_data(input_object,

 "numbers", config_dict);

Here, we can see that we have changed config_dict to a mutable. Now that
we have loaded our PyDict struct with all the data that we need, all we must
do is run our run_config function, add it to the input object's attributes, and
return it to the Python interface in the next step.

Setting the attributes of our custom
object

We are now in the final stage of our interface module. Here are the steps:

1. We can pass the output from our run_config function to our Python
object interface by running the following code:

 let output_dict: &PyDict = run_config(\

 config_dict).unwrap();

 input_object.setattr(

 "number_results",

 output_dict.get_item(

 "NUMBER RESULT").unwrap()).unwrap();

 input_object.setattr(

 "numbers_results",

 output_dict.get_item(

 "NUMBERS RESULT").unwrap()).unwrap();

 return Ok(input_object)

Here, we can see that we get the output_dict Python dictionary from
the run_config function. Once we have got this, we set the
input_object attribute based on the items from output_dict.

2. We have now completed our interface and we must subsequently plug it
into our Rust module. We publicly define our interface file in the
src/interface/mod.rs file by running the following code:

pub mod object;

3. We can then define our interface function in our Rust module by
importing it into our src/lib.rs file, as follows:

use interface::object::__pyo3_get_function_object_ \

 interface;

4. We then add our function to our module, as follows:

 m.add_wrapped(wrap_pyfunction!(object_interface));

5. Our module is now fully functioning. As always, we must remember to
update our GitHub repository, uninstall our old module in our Python
environment, and reinstall it. Once this is done, we can test it by
running a Python shell. In our shell, we can test our object by running
the following code:

>>> from flitton_fib_rs.object_interface import

ObjectInterface

>>> test = ObjectInterface([5, 6, 7, 8], [])

>>> test.process()

>>> test.number_results

[5, 8, 13, 21]

Here, we can see that we import the object that we are going to use. We
then initialize it and run the process function. Once this is done, we can see

that our Rust code accepted our object and interacted with it as we have the
correct results for our number_results attribute.

Now we can interact with Python custom objects, the problems we can
solve and how we can interact with the Python system are powerful.
Custom Python objects do not hold us back. However, it is important not to
get too carried away with Python objects in our Rust code. While we should
use them in our interface, we shouldn't have to rely on them to build the
whole program. In this section, we did do this, as we were leaning on a
function that we built in the previous section to avoid excessive code, to get
a point across. However, in your projects, Python objects should leave your
code after the interface. If you find yourself using Python objects in your
Rust code throughout, then you must ask yourself why you are not just
using pure Python. Coding in Python will be slower than coding in Rust,
but the metaclass, dynamic attributes, and many other Python features will
make coding in Python easier and more enjoyable than trying to force a
Python style of coding into Rust. Rust offers structs, traits, enums, and
strong typing with lifetimes that get cut after moving out of scope to keep
resources low.

So, lean into this style of coding to fully reap the benefits of building pip
modules in Rust. Push past your comfort zone of the Python coding style.
The next section is about building Python objects in Rust code.

Constructing our own custom Python
objects in Rust

In this final section, we will build a Python module in Rust that can be
interacted with in the Python system as if it were a native Python object. To
do this, we must follow these steps:

1. Define a Python class with all our attributes.

2. Define class static methods to process numbers.

3. Define a class constructor.

Defining a Python class with the required
attributes

To start our journey, we define our class in the
src/class_module/fib_processor.rs file, as follows:

1. To build our class, we need to import the required macros by running
the following code:

use pyo3::prelude::{pyclass, pymethods, staticmethod};

use crate::fib_calcs::fib_number::fibonacci_number;

use crate::fib_calcs::fib_numbers::fibonacci_numbers;

Here, we are using the pyclass macro to define our Rust Python class.
We then use pymethods and staticmethod to define methods attached to
the class. We also use standard Fibonacci numbers to calculate the
Fibonacci numbers.

2. Now that we have imported everything we need, we can define the class
and the attributes, as follows:

#[pyclass]

pub struct FibProcessor {

 #[pyo3(get, set)]

 pub number: Vec<i32>,

 #[pyo3(get, set)]

 pub numbers: Vec<Vec<i32>>,

 #[pyo3(get)]

 pub number_results: Vec<u64>,

 #[pyo3(get)]

 pub numbers_results: Vec<Vec<u64>>

}

Here, we can see that we use Rust typing for our attributes. We also use a
macro to state what we can do with these attributes. For our number and
numbers attributes, we can get and set data belonging to these attributes.
However, with our results attributes, we can only get data as this is set by
the calculations.

Defining class static methods to process
input numbers

We can now use our attributes to implement class methods.

Just as with standard structs, we can implement methods attached to the
class with an impl block, as seen in the following code snippet:

#[pymethods]

impl FibProcessor {

 #[staticmethod]

 fn process_numbers(input_numbers: Vec<Vec<i32>>) \

 -> Vec<Vec<u64>> {

 let mut buffer: Vec<Vec<u64>> = Vec::new();

 for i in input_numbers {

 buffer.push(fibonacci_numbers(i));

 }

 return buffer

 }

}

Here, we can see that we have applied the pymethods macro to our impl
block. We also apply the staticmethod macro to our process_numbers static
method. This function was used before, in the previous section, to process
lists of lists. Now that our static method is defined, we can use this in our
constructor method in the next step.

Defining a class constructor

Here are the steps we need to take:

1. We can define our constructor method in our impl block by running the
following code:

 #[new]

 fn new(number: Vec<i32>, numbers: Vec<Vec<i32>>) \

 -> Self {

 let input_numbers: Vec<Vec<i32>> = \

 numbers.clone();

 let input_number: Vec<i32> = number.clone();

 let number_results: Vec<u64> =

 input_number.iter(

).map(

 |x| fibonacci_number(*x)

).collect();

 let numbers_results: Vec<Vec<u64>> = Self::

 process_numbers(input_numbers);

 return FibProcessor {number, numbers,

 number_results, numbers_results}

 }

Here, we accept inputs for the calculations of the Fibonacci numbers.
We then clone them because we are going to pass them through the
Fibonacci number functions. Once this is done, we apply the
fibonacci_number function by mapping the input and collecting the
results. We also collect the results from our static method. Once all the
data is calculated, we construct the class and return it. Once this is done,
all we must do is connect our class to our module.

2. This can be done by publicly declaring our class file in the
src/class_module/mod.rs file, as follows:

pub mod fib_processor;

3. Now that this is done, we import it into our src/lib.rs file by running
the following code:

mod class_module;

use class_module::fib_processor::FibProcessor;

4. Once this is done, we can add our class to our module in the same file,
as follows:

m.add_class::<FibProcessor>()?;

We have now fully integrated our class into the pip module.

Wrapping up and testing our module

As always, when we get to the end of a section, we must remember to do
the following:

Update the GitHub repository.

Uninstall the current pip module.

Reinstall it in our Python environment.

Now that we have finished building our module and updated the installed
version, we can manually test our module in the Python system by
following these next steps:

1. We can open our Python shell and test our class by running the
following code:

>>> from flitton_fib_rs.flitton_fib_rs import

FibProcessor

>>> test = FibProcessor([11, 12, 13, 14], [[11, 12],

 [13, 14], [15, 16]])

>>> test.numbers_results

[[89, 144], [233, 377], [610, 987]]

2. We can see that our Rust object works seamlessly in our Python system
with calculated results. We must remember that we have set rules
around our attributes. To check this, we can try to assign our results
attribute, which will give us the following output:

>>> test.numbers_results = "test"

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

AttributeError: attribute 'numbers_results' of

'builtins.FibProcessor' objects is not writable

3. Here, we can see that our results attribute is not writable. We can also
test typing. Although our number attribute is writable, it is supposed to
be a vector of integers. If we try to assign a string to this attribute, we
get the following printout:

>>> test.number = "test"

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: 'str' object cannot be interpreted as an

integer

4. Here, we can see that our typing is also enforced, even though it looks
and acts like a native Python object. Finally, we can test to see if we can
write a new value to the number attribute by running the following code:

>>> test.number = [1, 2, 3, 4, 5]

>>> test.number

[1, 2, 3, 4, 5]

It seems that we can write when the type and permissions are correct.
Considering all of this, what is the point of creating these classes? They
make the interface for our module smoother, but how much faster is this
class?

To quantify this, we can create a simple testing Python script in our Python
environment, as follows:

1. First, in our Python script, we import our Rust class and the time
module by running the following code:

from flitton_fib_rs.flitton_fib_rs import FibProcessor

import time

2. We must now create a pure Python object with the same functionality in
this script, as follows:

class PythonFibProcessor:

 def __init__(self, number, numbers):

 self.number = number

 self.numbers = numbers

 self.numbers_results = None

 self.number_results = None

 self._process()

 def _process(self):

 self.numbers_results = \

 [self.calculate_numbers(i)\

 for i in self.numbers]

 self.number_results = \

 self.calculate_numbers(

 self.number)

 def fibonacci_number(self, number):

 if number < 0:

 return None

 elif number <= 2:

 return 1

 else:

 return self.fibonacci_number(number - 1) + \

 self.fibonacci_number(number - 2)

 def calculate_numbers(self, numbers):

 return [self.fibonacci_number(i) for i in \

 numbers]

3. Now that our benchmark pure Python object is defined, we are now at
the timing stage of the script, where we put the same inputs into both
classes and test them with the following code:

t_one = time.time()

test = FibProcessor([11, 12, 13, 14], [[11, 12], \

 [13, 14], [15, 16]])

t_two = time.time()

print(t_two - t_one)

t_one = time.time()

test = PythonFibProcessor([11, 12, 13, 14], \

 [[11, 12], [13, 14], [15, 16]])

t_two = time.time()

print(t_two - t_one)

4. Running this gives us the following output:

1.4781951904296875e-05

0.0007779598236083984

This translates to the following:

0.000017881393432617188

0.0007779598236083984

Remember, the Rust class is the top reading. This means that our Rust class
is 43 times faster than our Python class! To put this into perspective, we
can see the difference in the following screenshot:

Figure 6.4 – Class speed difference between Rust and Python

Here, we can see that our class interfaces built in Rust are faster than our
Python classes. pyo3 supports class inheritance and other features. More
resources on this are supplied in the Further reading section. We now have
a strong base when it comes to working with Python objects in Rust. There

are always more features to read up on, and these can be built on top of the
structures that we have built.

Summary
In this chapter, we added a third-party pip module into our setup.py file so
that we could add another entry point that could read .yml files. We read the
.yml file and passed the data from that file in the form of a dictionary into
our Rust functions, handling the complex data structure under the PyDict
struct. We then downcasted data from our complex data structure into other
Python objects and Rust data types. This gave us the power to handle a
range of Python data types passed into our Rust code, giving us extra
flexibility in how our Python code interacts with our Rust code.

We went one step further than complex Python data structures by accepting
custom Python objects under the PyAny struct. Once we accepted custom
Python objects, we could inspect attributes and set them as and when we
wanted to. We even acquired the Python GIL to create our own Python data
structures to help us work with the custom Python objects passed into our
Rust code. To polish off our Python object skills, we built Python classes
within our Rust code that not only can be imported into the Python system,
acting just like a pure Python class, but are also 44 times faster. We now
have a powerful tool that will not only speed up our Python code but will
also enable us to interact with Python systems seamlessly.

In the next chapter, we tackle the final hurdle that is stopping us from
infusing Rust into every Python project we have. People reach for Python
due to the extensive third-party modules that are built for it, such as

statistical and machine learning (ML) packages. We will work with the
third-party numpy module and use it in our Rust code. This will enable us to
utilize third-party Python modules in our Rust extension.

Questions
1. How do you extract a vector of i32 integers from a PyDict struct?

2. If we have a vector of strings but we apply a .extract::<Vec<i32>>
() function on it and we directly unwrap it, what will happen?

3. How would you be able to loop through a Vec<i32> vector, doubling
each item and packaging the results in another vector in one line of Rust
code?

4. If we acquire the Python GIL to create a PyDict struct, will this affect
the Python system in any way?

5. Although our Python classes built in our Rust code essentially run the
same way as our pure Python classes, there are some core differences.
What are they?

Answers
1. First, we must get a list from the PyDict struct by applying the get_item

function to PyDict. If there is data under the key that we use, we then
perform .downcast::<PyList>() to convert our data into a PyList struct.
If we achieve this, we then perform .extract::<Vec<i32>>() on the
PyList struct, giving us a Vec<i32>.

2. Our extract function will automatically throw a PyTypeError Python-
friendly error.

3. With this, we use the iter, map, and collect functions, as follows:

let results: Vec<i32> = some_vector.iter().map(

 |x| 2*x

).collect();

4. No—the Python system that is running the code has already acquired
the GIL. If it does not have the GIL, it would just wait for another
thread to finish before acquiring the GIL.

5. The typing system is still enforced. If we try to set an attribute that is a
list of integers to a string, an error will be thrown. Another difference is
that set and get macros for each attribute must be defined. If they are
not, then the attribute cannot be accessed or set.

Further reading
PyO3 (2021). PyO3 user guide—Python Classes
https://pyo3.rs/v0.13.2/class.html

https://pyo3.rs/v0.13.2/class.html

Chapter 7: Using Python Modules with
Rust
We have now become comfortable with writing Python packages in Rust
that can be installed using pip. However, a large advantage of Python is that
it has a lot of mature Python libraries that help us write productive code
with minimal errors. This seems a legitimate observation that could halt us
from adopting Rust in our Python system. However, in this chapter, we
counter this observation by importing Python modules into our Rust code
and running Python code in our Rust code. To achieve an understanding of
this, we are going to use the NumPy Python package to implement a basic
mathematical model. Once this is done, we are going to use the NumPy
package in our Rust code to simplify the implementation of our
mathematical model. Finally, we will evaluate the speed of both
implementations.

In this chapter, we will cover the following topics:

Exploring NumPy

Building a model in NumPy

Using NumPy and other Python modules in Rust

Recreating our NumPy model in Rust

After completing this chapter, we will be able to import Python packages
into our Rust code and use it. This is powerful, as relying on a certain
Python package would not hold us back from implementing Rust in our
Python systems for a certain task. The solutions that we implement in this

chapter using pure Python, Rust, and NumPy will also give us an
understanding of the trade-offs of each implementation when it comes to
code complexity and speed so that we do not try to implement a one-size-
fits-all solution for every problem, avoiding sub-optimal solutions.

Technical requirements
The code for this chapter can be found via the following GitHub link:

https://github.com/PacktPublishing/Speed-up-your-Python-with-
Rust/tree/main/chapter_seven

Exploring NumPy
Before we start using NumPy in our own modules, we must explore what
NumPy is and how to use it. NumPy is a third-party computational Python
package that enables us to perform calculations on lists. NumPy is mainly
written in the C language, meaning that it will be faster than pure Python. In
this section, we will have to assess whether our NumPy implementation
beats a Rust implementation that is imported into Python.

Adding vectors in NumPy

NumPy enables us to build vectors that we can loop through and apply
functions to. We can also perform operations between vectors. We can
demonstrate the power of NumPy by adding items of each vector together,
as seen here:

[0, 1, 2, 3, 4]

https://github.com/PacktPublishing/Speed-up-your-Python-with-Rust/tree/main/chapter_seven

[0, 1, 2, 3, 4]

[0, 2, 4, 6, 8]

To achieve this, we initially need to import modules by running the
following code:

import time

import numpy as np

import matplotlib.pyplot as plt

With this, we can build a numpy_function NumPy function that creates two
NumPy vectors of a certain size and adds them together by running the code
presented here:

def numpy_function(total_vector_size: int) -> float:

 t1 = time.time()

 first_vector = np.arange(total_vector_size)

 second_vector = np.arange(total_vector_size)

 sum_vector = first_vector + second_vector

 return time.time() - t1

Here, we can see that we can add the vectors by merely using the addition
operator. Now that we have our function defined, we can plot how this
scales by looping through a list of integers and applying numpy_function to
the items, collecting the results in a list, by running the code shown here:

numpy_results = [numpy_function(i) for i in range(0 \

 10000)]

plt.plot(numpy_results, linestyle='dashdot')

plt.show()

This gives us a line plot, as shown here:

Figure 7.1 – Time taken to add two NumPy vectors based on size

We can see in the preceding screenshot that the increase is linear. This is
expected because there is only one loop when adding each integer in the
vector to the other vector. We can also see that there are points where the
time taken shoots up—this is the garbage collection kicking in. To
appreciate the effect NumPy has, we can redefineour example by adding
both vectors with a list in pure Python in the next subsection.

Adding vectors in pure Python

We can add two vectors in pure Python and time this by running the
following code:

def python_function(total_vector_size: int) -> float:

 t1 = time.time()

 first_vector = range(total_vector_size)

 second_vector = range(total_vector_size)

 sum_vector = [first_vector[i] + second_vector[i] for \

 i in range(len(second_vector))]

 return time.time() - t1

With our new Python function, we can run both NumPy and Python
functions and chart them by running the following code:

print(python_function(1000))

print(numpy_function(1000))

python_results = [python_function(i) for i in range(0, \

 10000)]

numpy_results = [numpy_function(i) for i in range(0, \

 10000)]

plt.plot(python_results, linestyle='solid')

plt.plot(numpy_results, linestyle='dashdot')

plt.show()

This gives us the following results:

Figure 7.2 – Time taken to add two vectors based on size

As we can see in Figure 7.2, the NumPy vectors are represented in the
bottom line and pure Python is represented in the increasing line, so we can
conclude that Python does not scale that well when compared to our
NumPy implementation. The output makes it clear that NumPy is a good
choice when performing calculations on big vectors. However, how does
this compare to our Rust implementation? We explore this in the next
subsection.

Adding vectors using NumPy in Rust

To compare how NumPy compares to our Rust implementation, we must
incorporate an adding vector function to our Rust package that we have
been building throughout this book so far. Here are the steps we need to
take:

1. Considering that this is a test function that we are using for
demonstrative purposes, we can merely insert it into our lib.rs file. All
we do is build a time_add_vectors function that accepts a number,
create two vectors of a size equal to the number passed as input, loop
through them at the same time, and add the items together, as shown
here:

#[pyfunction]

fn time_add_vectors(total_vector_size: i32)

 -> Vec<i32> {

 let mut buffer: Vec<i32> = Vec::new();

 let first_vector: Vec<i32> =

 (0..total_vector_size.clone()

).map(|x| x).collect();

 let second_vector: Vec<i32> = \

 (0..total_vector_size

).map(|x| x).collect();

 for i in &first_vector {

 buffer.push(first_vector[**&i as usize] +

 second_vector[*i as usize]);

 }

 return buffer

}

2. Once we have done this, we must remember to add this function to our
module, as follows:

#[pymodule]

fn flitton_fib_rs(_py: Python, m: &PyModule) -> \

 PyResult<()> {

 . . .

 m.add_wrapped(wrap_pyfunction!(time_add_vectors));

 . . .

 Ok(())

}

We must remember to update our GitHub repository and reinstall our
Rust package in our Python environment.

3. Once this is done, we must implement the function in our Python testing
script and time it. First, we must import it with the code shown here:

import time

import matplotlib.pyplot as plt

import numpy as np

from flitton_fib_rs import time_add_vectors

4. Once this is done, we can define our rust_function Python function
that calls the time_add_vectors function and times how long it takes to
complete the addition by running the following code:

def rust_function(total_vector_size: int) -> float:

 t1 = time.time()

 sum_vector = time_add_vectors(total_vector_size)

 result = time.time() - t1

 if result > 0.00001:

 result = 0.00001

 return result

You may have noticed that we trim result returned by rust_function.
This is not cheating—we do this because when the garbage collector
kicks in, it can cause spikes and ruin the scaling of the graph. We will
also do this with our NumPy function by running the following code:

def numpy_function(total_vector_size: int) -> float:

 t1 = time.time()

 first_vector = np.arange(total_vector_size)

 second_vector = np.arange(total_vector_size)

 sum_vector = first_vector + second_vector

 result = time.time() - t1

 if result > 0.00001:

 result = 0.00001

 return result

We can see that we are applying the same metrics to both the functions
so that one will not be artificially lowered compared to the other.

5. Now that we have done this, we need to define the pure function by
running the following code:

def python_function(total_vector_size: int) -> float:

 t1 = time.time()

 first_vector = range(total_vector_size)

 second_vector = range(total_vector_size)

 sum_vector = [first_vector[i] + second_vector[i] for

 i in range(len(second_vector))]

 result = time.time() - t1

 if result > 0.0001:

 result = 0.0001

 return result

It must be noted that we have a higher cut-off for the pure Python
because we expect the base reading to be much higher.

6. Now that we have all of our metric functions for Rust, NumPy, and pure
Python, we can create Python lists with the results of both functions and
plot them by running the following code:

numpy_results = [numpy_function(i) for i in range(0, \

 300)]

rust_results = [rust_function(i) for i in range(0, \

 300)]

python_results = [python_function(i) for i in range \

 (0,300)]

plt.plot(rust_results, linestyle='solid', \

 color="green")

plt.plot(python_results, linestyle='solid', \

color="red")

plt.plot(numpy_results, linestyle='solid', \

color="blue")

plt.show()

Running our code will give us the result shown here:

Figure 7.3 – Time taken to add two vectors based on the size of the vectors; left: NumPy;
middle: Rust; right: pure Python

In the preceding screenshot, we can see that NumPy is the fastest and is not
scaling aggressively as the size of the vector increases. Our Rust
implementation is a lot faster than our pure Python implementation by an
order of magnitude, but it is not as efficient as NumPy.

We can see that Python optimizations such as NumPy do increase the speed
compared to pure Python and Rust. However, NumPy's clean syntax of
simply adding vectors is not the only functional advantage of this module.
In the next section, we will explore another functionality that NumPy has
that would require a lot of extra code if we were going to try to code it from
scratch in Python or Rust.

Building a model in NumPy
In this section, we are going to build a basic mathematical model to
demonstrate the power that NumPy has apart from speed. We are going to
use matrices to make a simple model. To achieve this, we will have to carry
out the following steps:

1. Define our model.

2. Build a Python object that executes our model.

Let's look at these steps in detail in the following subsections.

Defining our model

A mathematical model is essentially a set of weights that calculate an
outcome based on inputs. Before we go any further, we must remember the

scope of this book. We are building a model to demonstrate how to utilize
NumPy. If we covered the nuances of mathematical modeling, that would
take up the whole book. We will be building a model based on the example
discussed in the previous section, but this does not mean that the model
defined is an accurate description of the complexity of mathematical
modeling. Here are the steps we need to take:

1. We start by looking at a very simple mathematical model that would be
a simple speed equation, as shown here:

2. With our model, we can calculate the time taken to complete a journey
with the rearrangement shown here:

The final equation on the right is merely substituting the values for
letters so that they can be plugged into a bigger model without it taking
up an entire page.

3. Now, let's take our model a little further. We collect some data from a
trucking company, and we manage to quantify different grades of traffic
into numbers and fit our data so that we can produce a weight to

describe the effect traffic has on time. With this, our model has evolved
to the one defined here:

Here, is the weight of traffic, and y is the grade of traffic. As we can
see, if the grade of traffic increases, so does the time. Now, let's say that
the model is different for cars and trucks. This gives us the following set
of equations:

We can deduce from the equations that the distance (x) and traffic grade
(y) are the same for both cars and trucks. This makes sense. While the
weights could be different as cars could be affected by distance and
traffic differently, as denoted in their weights, the input parameters are
the same.

4. Considering this, the equation could be defined as the following matrix
equation:

This might seem excessive right now, but there are advantages to this.
Matrices have a range of functions that enable us to perform algebra on

them. We will cover a few here so that we can understand how NumPy
becomes invaluable to us when calculating this model.

5. To do this, we must acknowledge that matrix multiplication must occur
in a certain order for it to work. Our model is essentially calculated by
the notation shown here:

6. Our x y matrix must be on the right of our weights matrix. We can add
more inputs to our x y matrix with the following notation:

7. We can, in fact, keep stacking our inputs, and we will get proportional
outputs. This is powerful; we can put in an input matrix of any size if
we keep the dimensions of the matrix consistent. We can also invert our
matrix. If we invert our matrix, we can then input times to work out the
distance and grade of the traffic. Inverting a matrix takes the following
form:

8. Here, we can see that if we multiply a scalar by the matrix, it just gets
applied to all elements of the matrix. Considering this, our model can
calculate the traffic grade and distance using the inverse matrix with the
following notation:

We have only covered enough matrix mathematics to code our model, but
even with just this, we can see that matrices enable us to manipulate
multiple equations and shuffle them around to calculate different things
quickly. However, if we were to code the matrix multiplications from
scratch, it would take a lot of time and we would run the risk of performing
errors. To have fast, safe development of our model, we will need to use
NumPy module functions, which is what we will do in the next subsection.

Building a Python object that executes
our model

We saw in the previous section that there are two different paths that we can
take. When we build our model, we are going to have two branches—one
for calculating the time taken, and the other for calculating the traffic and
distance from time. To build our model class, we must map out our
dependencies, as shown here:

Figure 7.4 – Dependencies of a Python matrix model

The preceding diagram shows us that we must define the weight matrix
property before anything else as this property is the main mechanism on

which everything else is calculated. This was also evident in the matrix
equation. We can build our class with the weight matrix property, as
follows:

import numpy as np

class MatrixModel:

 @property

 def weights_matrix(self) -> np.array:

 return np.array([

 [3, 2],

 [1, 4]

])

Here, we can see that we use NumPy for our matrix and that our matrix is a
list of lists. We use NumPy arrays over normal arrays because NumPy
arrays have matrix operations such as transpose. Remember that the
positions of the matrices matter when they are being multiplied. For
instance, we have a simple matrix equation as follows:

If we were to swap the matrix order, the matrices would not be able to
multiply due to their shapes not being compatible; this is where the
transpose operation comes in. A transpose function flips the matrix,
enabling us to switch the order of the multiplication. We will not be using
transpose in our model, but the Python commands in the terminal here
show us how NumPy gives us this function out of the box:

>>> import numpy as np

>>> t = np.array([

 [3, 2],

 [1, 4]

])

>>> t.transpose()

array([[3, 1],

 [2, 4]])

>>> x = np.array([

 [3],

 [1]

])

>>> x.transpose()

array([[3, 1]])

Here, we can see that the matrices that we have built with NumPy arrays
can change shape with ease. Now that we have established that we are
building our matrices with NumPy arrays, we can build a function that will
call the function that accepts the distance of the journey and the traffic
grade for our MatrixModel class, as follows:

 def calculate_times(self, distance: int, \

 traffic_grade: int) -> dict:

 inputs = np.array([

 [distance],

 [traffic_grade]

])

 result = np.dot(self.weights_matrix, inputs)

 return {

 "car time": result[0][0],

 "truck time": result[1][0]

 }

Here, we can see that once we have constructed our input matrix, we
multiply this by our weights matrix with the np.dot function. result is a
matrix, which—as we know—is a list of lists. We unpack this and then
return it in the form of a dictionary.

We have nearly finished our model; all we must do now is now build our
inverse model. This is where we pass in the times taken for the journey to
calculate the distance and traffic grade for our MatrixModel class. This is
done with the following code:

 def calculate_parameters(self, car_time: int,

 truck_time: int) -> dict:

 inputs = np.array([

 [car_time],

 [truck_time]

])

 result = np.dot(np.linalg.inv(self. \

 weights_matrix), inputs)

 return {

 "distance": result[0][0],

 "traffic grade": result[1][0]

 }

Here, we can see that we take the same approach; however, we use the
np.linalg.inv function to get the inverse of the self.weights_matrix
matrix. Now that this is done, we have a fully functioning model and we
can test it, as follows:

test = MatrixModel()

times = test.calculate_times(distance=10, traffic_grade=3)

print(f"here are the times: {times}")

parameters = test.calculate_parameters(

 car_time=times["car time"], truck_time=times["truck \

 time"]

)

print(f"here are the parameters: {parameters}")

Running the preceding code will give us the following printout in the
terminal:

{'car time': 36, 'truck time': 22}

{'distance': 10.0, 'traffic grade': 3.0}

With this terminal printout, we can see that our model works and that our
inverse model returns the original inputs. With this, we can also conclude
that NumPy is more than just speeding up our code; it gives us extra tools to
solve problems such as modeling with matrices. This is the last hurdle that
could stop us from reaching for Rust. In the next section, we will use the
NumPy Python module in Rust by recreating our model in Rust.

Using NumPy and other Python modules
in Rust

In this section, we are going to understand the basics of importing a Python
module such as NumPy in our Rust program and return the result to our
Python function. We will build our functionality in our Fibonacci number
package that we have been coding so far in this book. We will also briefly
explore importing a Python module in a generic sense so that you
experience how to use a Python module that has the functionality you are
relying on. We will build a more comprehensive approach to using Python
modules in our Rust code in the next section. For this section, we will write
all our code in the src/lib.rs file. Here are the steps we need to take:

1. First, we need to acknowledge that we pass in a dictionary and return
the results in it. Because of this, we must import the PyDict struct by
running the following code:

use pyo3::types::PyDict;

2. Now that this is imported, we can define our function by running the
following code:

#[pyfunction]

fn test_numpy<'a>(result_dict: &'a PyDict)

 -> PyResult<&'a PyDict> {

 let gil = Python::acquire_gil();

 let py = gil.python();

 let locals = PyDict::new(py);

 locals.set_item("np",

 py.import("numpy").unwrap());

}

Because we are using a Python module, there is no surprise that we
acquire the global interpreter lock (GIL) and get Python to interact
with Python objects inside our Rust code. It must be noted that we also
create a PyDict struct called locals.

We then import the NumPy module using the py.import function,
inserting it into our localsstruct.

As demonstrated here, we will be using our locals struct as Python
storage:

Figure 7.5 – Rust flow for computing Python processes within Rust

Here, every time we run a Python operation in our Rust code, we will
pass Python objects from the locals into the Python computation. We
then pass any new Python variables we need to add to our PyDict locals
struct.

3. Now that we understand the flow, we can compute our first Python
computation inside our test_numpy function by running the following

code:

 let code = "np.array([[3, 2], [1, 4]])";

 let weights_matrix = py.eval(code,

 None,

 Some(&locals)).unwrap();

 locals.set_item("weights_matrix", weights_matrix);

Here, we can see that we define the Python command as a string literal.
We then pass this into our py.eval function. Our None parameter is for
global variables. We are going to refrain from passing in global
variables to keep this simple. We also pass in our PyDict locals struct
to get the NumPy module we imported under the np namespace. We
then unwrap the result and add this to our localsstruct.

4. We can now create an input NumPy vector and insert the outcome into
our localsstruct by running the following code:

 let new_code = "np.array([[10], [20]])";

 let input_matrix = py.eval(new_code, None,

 Some(&locals)).unwrap();

 locals.set_item("input_matrix", input_matrix);

5. Now that we have both of our matricies in our locals storage, we can
multiply them together, add them to our input dictionary, and return the
result by running the following code:

 let calc_code = "np.dot(weights_matrix, \

 input_matrix)";

 let result_end = py.eval(calc_code, None,

 Some(&locals)).unwrap();

 result_dict.set_item("numpy result", result_end);

 return Ok(result_dict)

With this, we can now use NumPy in our Rust code and get the results to
pass them back into the Python system. We must remember to update our
GitHub repository and reinstall our Rust package in our Python system. To
test this, we can carry out the following console commands:

>>> from flitton_fib_rs import test_numpy

>>> outcome = test_numpy({})

>>> outcome["numpy result"].transpose()

array([[70, 90]])

Here, we can see that our NumPy process works inside Rust and returns
Python objects that we can use just like all other Python objects. We could
have done this using the Rust NumPy module, which gives us NumPy Rust
structs. However, with the approach that we have covered, nothing is
stopping us from using any Python module that we wish. We now have a
full tool belt for fusing Python with Rust. In the next section, we will
structure our NumPy model in Rust over a range of functions so that we can
put in times for the inverse calculation and grade traffic with distance to
calculate the times.

Recreating our NumPy model in Rust
Now that we can use our NumPy module in Rust, we need to explore how
to structure it so that we can use Python modules to solve bigger problems.
We will do this by building a NumPy model with a Python interface. To
achieve this, we can break down the processes into functions that can be

used as and when we need them. The structure of our NumPy model can be
seen here:

Figure 7.6 – Rust NumPy model structure

Considering the flow of our model structure in the preceding diagram, we
can build our NumPy model in Rust with the following steps:

1. Build get_weight_matrix and inverse_weight_matrix functions.

2. Build get_parameters, get_times, and get_input_vector functions.

3. Build calculate_parameters and calculate_times functions.

4. Add calculate functions to the Python bindings and add a NumPy
dependency to our setup.py file.

5. Build our Python interface.

We can see that each step has dependencies from the previous step. Let's
have a detailed look at each of these steps in the following subsections.

Building get_weight_matrix and
inverse_weight_matrix functions

Our weight and inverse weight matrices enable us to calculate the times and
then recalculate the parameters inputted based on those times. We can start
building our weight matrix function in the src/numpy_model.rs file with the
following steps:

1. Before we write any code, we can import what we need by running the
following code:

use pyo3::prelude::*;

use pyo3::types::PyDict;

We will be using the PyDict struct to pass data between our functions
and pyo3 macros to wrap the functions and get the Python GIL.

2. Now that we have all of our imports, we can build our weight matrix
function by running the following code:

fn get_weight_matrix(py: &Python, locals: &PyDict) \

 -> () {

 let code: &str = "np.array([[3, 2], [1, 4]])";

 let weights_matrix = py.eval(code, None,

 Some(&locals)).unwrap();

 locals.set_item("weights_matrix", weights_matrix);

}

Here, we can see that we accept a reference to Python and locals
storage. With this, we run our code and add it to our locals storage. We
do not have to return anything because these are just referencing via
borrowing. This means that the py and locals variables are not deleted
when the scope of the variable has run its course. It also means that the
locals storage will be updated with our weights_matrix function even
though nothing is returned. We will be using this approach in most of
our functions shown in Figure 7.6.

3. Now that we have our approach defined, we can create our inverse
matrix function by running the following code:

fn invert_get_weight_matrix(py: &Python,

 locals: &PyDict) -> () {

 let code: &str = "np.linalg.inv(weights_matrix)";

 let inverted_weights_matrix = py.eval(code, None,

 Some(&locals)).unwrap();

 locals.set_item("inverted_weights_matrix",

 inverted_weights_matrix);

}

Clearly, the invert_get_weight_matrix function cannot be run unless we
run our get_weight_matrix function beforehand. We could make this more
robust with a get_item check for weights_matrix in our locals storage and
run the get_weight_matrix function if the weights matrix is not there, but
this is not essential. We now have our weights functions defined, so we can
move on to our next step of building our input vectors and calculation
functions.

Building get_parameters, get_times, and
get_input_vector functions

Just as with the previous steps. we are going to get our parameters, times,
and inputs by using three functions. We will also have to pass the Python
struct and locals storage into these functions as they are also going to be
using NumPy via Python. We define these three functions in the following
steps:

1. Referring to Figure 7.6, we can see that our input vector function does
not have any dependencies and the other two depend on the input
vector. Considering this, we build our input vector function by running
the following code:

fn get_input_vector(py: &Python, locals: &PyDict,

 first: i32, second: i32) -> () {

 let code: String = format!("np.array([[{}], \

 [{}]])", first, second);

 let input_vector = py.eval(&code.as_str(), None,

 Some(&locals)).unwrap();

 locals.set_item("input_vector", input_vector);

}

Here, we can see that this vector is generic, so we can pass in the
parameters or the times depending on the calculation that we need. We
can see that we use the format! macro to pass our parameters into our
Python code.

2. Now that our input vector function is defined, we can build our
calculations by running the following code:

fn get_times<'a>(py: &'a Python,

 locals: &PyDict) -> &'a PyAny {

 let code: &str = "np.dot(weights_matrix, \

 input_vector)";

 let times = py.eval(code, None,

 Some(&locals)).unwrap();

 return times

}

fn get_parameters<'a>(py: &'a Python,

 locals: &PyDict) -> &'a PyAny {

 let code: &str = "

 np.dot(inverted_weights_matrix, input_vector)";

 let parameters = py.eval(code, None,

 Some(&locals)).unwrap();

 return parameters

}

With the aforementioned functions, we can get the variables that we need
and put them into our Python code that uses the NumPy np.dot function.
We then return the result as opposed to adding it to locals. We do not need
to add it to locals because we are not going to use the results in any other
computations in Rust. Now that all the computation steps have been done,
we can move on to our next step—building the calculation functions that
run and organize the whole process.

Building calculate_parameters and
calculate_times functions

With these calculation functions, we need to take in some parameters, get
the Python GIL, define our locals storage, and then run a series of
computation processes to get what we need. We can define a
calculate_times function by running the following code:

#[pyfunction]

pub fn calculate_times<'a>(result_dict: &'a PyDict,

 distance: i32, traffic_grade: i32) -> PyResult<&'a \

 PyDict> {

 let gil = Python::acquire_gil();

 let py = gil.python();

 let locals = PyDict::new(py);

 locals.set_item("np", py.import("numpy").unwrap());

 get_weight_matrix(&py, locals);

 get_input_vector(&py, locals, distance, traffic_grade);

 result_dict.set_item("times", get_times(&py, locals));

 return Ok(result_dict)

}

Here, we can see that we get the weight matrix, then the input vector, and
then insert the results into a blank PyDict struct and return it. We can see the
flexibility in this approach. We can slot functions in and out whenever we
want, and rearranging the order is not a struggle. Now that we have built
our calculate_times function, we can build our calculate_parameters
function by running the following code:

#[pyfunction]

pub fn calculate_parameters<'a>(result_dict: &'a PyDict,

 car_time: i32, truck_time: i32) -> PyResult<&'a PyDict> {

 let gil = Python::acquire_gil();

 let py = gil.python();

 let locals = PyDict::new(py);

 locals.set_item("np", py.import("numpy").unwrap());

 get_weight_matrix(&py, locals);

 invert_get_weight_matrix(&py, locals);

 get_input_vector(&py, locals, car_time, truck_time);

 result_dict.set_item("parameters",

 get_parameters(&py, locals));

 return Ok(result_dict)

}

We can see that we use the same approach as our calculate_times function,
using the invert weights instead. We could refactor this to reduce the
repeated code, or we could enjoy the maximum flexibility of having the two
functions isolated against each other. Our model is built now, so we can
move to our next step where we add our calculation functions to our Python
bindings.

Adding calculate functions to the Python
bindings and adding a NumPy
dependency to our setup.py fi le

Now that we have all the model code needed to calculate parameters
through two functions, we are going to have to enable our outside user to
utilize these functions with the following steps:

1. In our src/lib.rs file, we must define our module by running the
following code:

mod numpy_model;

2. Now that this module has been declared, we can import the functions by
running the following code:

use numpy_model::__pyo3_get_function_calculate_times;

use numpy_model::__pyo3_get_function_calculate_ \

 parameters;

3. We then wrap our functions in our module by running the following
code:

#[pymodule]

fn flitton_fib_rs(_py: Python, m: &PyModule) -> \

 PyResult<()> {

 . . .

 m.add_wrapped(wrap_pyfunction!(calculate_times));

 m.add_wrapped(wrap_pyfunction!(calculate_parameters));

 . . .

}

Remember—. . . denotes existing code. We now must accept that our
Rust code has a dependency on NumPy, so in our setup.py file, our
dependencies will look like this:

 requirements=[

 "pyyaml>=3.13",

 "numpy"

]

At this point, there is nothing stopping us from using our NumPy model;
however, it will be better with a simple Python interface, which we will
define in the next step.

Building our Python interface

In the src/numpy_model.rs file, we import what we need and define a basic
class by running the following code:

from .flitton_fib_rs import calculate_times, \

calculate_parameters

class NumpyInterface:

 def __init__(self):

 self.inventory = {}

The self.inventory variable will be where we store the results. Our
functions for our class should calculate the times and parameters by calling
our Rust functions, as follows:

 def calc_times(self, distance, traffic_grade):

 result = calculate_times({}, distance,

 traffic_grade)

 self.inventory["car time"] = result["times"][0][0]

 self.inventory["truck time"] = \

 result["times"][1][0]

 def calc_parameters(self, car_time, truck_time):

 result = calculate_parameters({}, car_time,

 truck_time)

 self.inventory["distance"] =

 result["parameters"][0][0]

 self.inventory["traffic grade"] =

 result["parameters"][1][0]

Now that our Python interface is built, we have finished our NumPy model.

We must remember to update our GitHub repository and reinstall our
module. Once this is done, we can run the following Python console
commands:

>>> from flitton_fib_rs.numpy_interface import

NumpyInterface

>>> test = NumpyInterface()

>>> test.calc_times(10, 20)

>>> test.calc_parameters(70, 90)

>>> test.inventory

{'car time': 70, 'truck time': 90,

'distance': 9.999999999999998,

'traffic grade': 20.0}

While this demonstrates how we can use Python modules within Rust, we
have to be careful when to use them. For our NumPy model example, it
would have just been better to use NumPy within our Python code. To be
honest, there is not that much that you can do with Python modules that you
cannot do in Rust. Rust already has a NumPy crate that we can use. We
should be using the Python modules in the initial stage if we cannot find—
or do not have time to find and learn—a Rust alternative module; however,
over time, these should be phased out of your Rust code.

Summary
In this chapter, we completed our tool belt when it comes to building
Python extensions in Rust by using Python modules in our Rust code. We
got a deeper appreciation for modules such as NumPy by exploring matrix
mathematics to create a simple mathematical model. This showed us that
we use modules such as NumPy for other functionality such as matrix
multiplication, as opposed to just using NumPy for speed. This was

demonstrated when we manipulated multiple mathematical equations with a
few lines of NumPy code and matrix logic.

We then used matrix NumPy multiplication functions in our Rust code to
recreate our mathematical model using a flexible functional programming
approach. We finished this off by making our interface in a Python class.
We also must remember that the NumPy implementation was faster than
our Rust code. This is partly down to poor implementation on our part and
the C optimization in NumPy. This has shown us that while Rust is a lot
faster than Python, solving problems with Python packages such as NumPy
might still be faster until equivalent crates are coded in Rust.

We used a generic approach to using Python modules in Rust. Because of
this, we can theoretically use any Python module that we want. This means
that if the Python module that you are rewriting relies on the functionality
of third-party Python modules such as NumPy, we are now able to create
Rust functions that use them. Considering this, there is no generic technical
hurdle stopping you from rewriting Python code in Rust and slotting it into
your Python system.

In the next chapter, we will put everything that we have learned so far
together to build a new Python package written in Rust from start to end.

Questions
1. What are the steps we must follow to run a Python module in Rust?

2. How do you import a Python module into your Rust code?

3. If we wanted to use our Python code result inside Rust, how would we
do this?

4. When you compare speed graphs of Python/NumPy with Rust, the
Python/NumPy code has a lot of spikes. What could be causing this?

5. Do you think our NumPy implementation in Rust will be slower or
faster than calling NumPy from Python, and why?

Answers
1. We initially must get Python from the GIL. We then must build a PyDict

struct in order to store and pass Python variables between Python
executions. We then define the Python code as a string literal and pass
this into our py.eval function with our PyDict storage.

2. We must make sure that we get Python from the GIL. We then use this
to run the py.eval function with the import line of code passed in as a
string literal. We must remember to pass in our PyDict storage to ensure
that we can reference the module in the future.

3. We must remember that Python code returns a PyAny struct, which we
can extract using the following code:

let code = "5 + 6";

let result = py.eval(code, None, Some(&locals)).unwrap();

let number = result.extract::<i32>().unwrap();

We can see that number should be 11.

4. This is because the Python versions must keep stopping to clean up
variables with the garbage collection mechanism.

5. It would be slightly slower. This is because we are essentially still
running Python code but through an extra layer which is
Rust.Considering this, we should be using Python code out of
convenience as opposed to optimization.

Further reading
NumPy documentation for Rust (2021): Crate numpy:
https://docs.rs/numpy/0.14.1/numpy/

Giuseppe Ciaburro (2020): Hands-on Simulation Modeling with Python:
Develop simulation models to get accurate results and enhance
decision-making processes. Packt Publishing.

https://docs.rs/numpy/0.14.1/numpy/

Chapter 8: Structuring an End-to-End
Python Package in Rust
Now that we have covered enough Rust and pyo3 to theoretically build a
range of real-world solutions, we must be careful. It would not be good if
we decided to reinvent the wheel in Rust and ended up with a slower
outcome after coding the solution. Hence, understanding how to solve a
problem and testing our implementation is important. In this chapter, we
will be building a Python package using Rust that solves a simplified real-
world problem and loads data from files to build a catastrophe model. We
will structure the package in a manner where we can slot in extra
functionality if our model gets more complex. Once we build our model, we
will test it to see whether our implementation is worth it in terms of scaling
and speed.

In this chapter, we will cover the following topics:

Breaking down a catastrophe modeling problem for our package

Building an end-to-end solution as a package

Utilizing and testing our package

This chapter enables us to take what we have learned throughout the book
and solve a real-world problem and handle data files. Testing our solution
will also enable us to avoid spending too much time on a solution that will
have a slower result, preventing us from potentially missing our shot at
implementing Rust in Python systems at our place of work.

Technical requirements
The code and data for this chapter can be found at
https://github.com/PacktPublishing/Speed-up-your-Python-with-
Rust/tree/main/chapter_eight.

Breaking down a catastrophe modeling
problem for our package
The project that we are going to build is a catastrophe model. This is where
we calculate the probability of a catastrophe such as a hurricane, flood, or
terror attack happening in a particular geographical location. We could do
this using longitude and latitude coordinates. However, if we are going to
do this, it is going to take a lot of computational power and time with little
benefit. For instance, if we were going to calculate the probability of the
flooding at Charing Cross Hospital in London, we could use the coordinates
51.4869° N, 0.2195° W.

However, if we use the coordinates 51.4865° N, 0.2190° W, we would still
be hitting Charing Cross Hospital, despite us changing the coordinates by
0.0004° N, 0.0005° W. We could change the coordinates even more and we
would still be hitting Charing Cross Hospital. Therefore, we would be doing
loads of computations to calculate repeatedly the probability of flooding of
the same building, which is not efficient. To combat this, we can break
down the locations into bins and give them a numerical value, as shown
here:

https://github.com/PacktPublishing/Speed-up-your-Python-with-Rust/tree/main/chapter_eight

Figure 8.1 – Geographical bins for a catastrophe model of an island

Here, we can see that if a line of data in our model referred to bin 25, this
means that the line of data is referring to land in the middle of our island
that we are concerned with. We can make our calculations even more
efficient. For instance, we can see that the squares in Figure 8.1 with the
coordinates of 33, 35, 47, and 49 and 1, 2, 8, and 9 are in the sea. Therefore,
the probability of flooding in these squares is zero because it is already
water, and there is nothing that we care about in terms of flooding in the

sea. Because we are merely mapping our calculations onto these bins,
nothing is stopping us from redefining all of the bins inside these squares as
one bin.

Therefore, we must perform only one operation to calculate the risk of
flooding in all our sea bins and that would be zero because the sea is
already flooded. In fact, nothing is stopping us from sticking to square
classifications for one bin. Bin number 1 could be all the squares that are
100% inside the sea, saving us a lot of time. We can also go the other way.
We can make some of our bins more refined. For instance, areas near the
coast might have more nuanced gradients of flooding, as a small distance
closer to the sea could greatly increase the risk of flooding; therefore, we
could break bin number 26 down into smaller bins. To avoid being dragged
into the weeds, we will just refer to arbitrary bin numbers in our model
data. Catastrophe modeling is its own subject, and we are merely using it to
show how to build Rust Python packages that can solve real problems as
opposed to trying to build the most accurate catastrophe model. Now that
we understand how we map geographical data with probabilities, we can
move on to the calculation of those probabilities.

Like with the mapping of geographical data, probability calculations are
more complex and nuanced than what we are going to cover in this book.
Companies like OASISLMF work with academic departments at
universities to model risks of catastrophes and the damage inflicted.
However, there is an overarching theme that we must do when calculating
these probabilities. We will have to calculate the total probability of damage
using the probability of the event happening in the area, and the probability
of the event causing damage. To do this, we must multiply these

probabilities together. We also must break down the probability of the event
happening at a certain intensity. For instance, a category one hurricane is
less likely to cause damage to a building compared to a category five
hurricane. Therefore, we are going to run these probability calculations for
each intensity bin.

We cannot go any further in designing our process without looking at the
data that we have available. The data is in the form of CSV files and is
available in our GitHub repository stated in the Technical requirements
section. The first data file that we can inspect is the footprint.csv file. This
file presents the probability of a catastrophe with a certain intensity
happening in an area:

Here, we can see that we have taken in a series of event IDs. We can merge
the footprint.csv data with the event IDs we passed in. This enables us to
map the event IDs that we passed in with an area, intensity, and probability
of it happening.

Now that we have merged our geographical data, we can now look at our
damage data in the vulnerability.csv file:

Looking at this, we can merge the damage data of the intensity bin ID,
duplicating whatever we need. We then must multiply the probabilities to
get the total probability. The flow can be summed up as follows:

Figure 8.2 – Catastrophe model flow

Considering the data and flow, we can see that we now have events that
have an intensity bin ID, damage bin ID, probability of the event happening
in the area, and the probability of the event causing damage in a certain bin.
These can then be passed on to another stage, which is the process of
calculating financial losses. We will stop here, but we must remember that
real-world applications need to adapt for expansion. For instance, there is
interpolation. This is where we use a function to estimate the values across
a bin, which is demonstrated here:

Figure 8.3 – Linear interpolation of a distribution

Here, we can see that if we just use bins, our reading between 2 and 2.9
would be the same. We know that the distribution is increasing, so we use a
simple linear function, and the value of our reading increases as the reading
increases. There are other more complex functions we can use, but this can
increase the accuracy of readings if the bins are too wide. While we will not
be using interpolation in our example, it is a legitimate step that we might
want to slot in later. Considering this, our processes need to be isolated.

There is only one other thing that we must consider when designing our
package, which is the storage of our model data. Our probabilities will be
defined by an academic team that collected and analyzed a range of data
sources and specific knowledge. For instance, damage to buildings requires
structural engineering knowledge and knowledge of hurricanes. While we
might expect our teams to update the models in later releases, we do not
want the end user to easily manipulate data. We also do not want to
hardcode the data into our Rust code; therefore, storing CSV files in our
package would be useful for this demonstration. Considering this, our
package should take the following structure:

├── Cargo.toml

├── MANIFEST.in

├── README.md

├── flitton_oasis_risk_modelling

│ ├── __init__.py

│ ├── footprint.csv

│ └── vulnerability.csv

├── src

│ ├── lib.rs

│ ├── main.rs

│ ├── footprint

│ │ ├── mod.rs

│ │ ├── processes.rs

│ │ └── structs.rs

│ └── vulnerabilities

│ ├── mod.rs

│ ├── processes.rs

│ └── structs.rs

The structure should be familiar to you. In the preceding file structure, we
can see that our merge processes for the probability of the event happening
and the damage are in their own folders. Data structures for the process are
housed in the structs.rs file and functions around the process are defined
in the processes.rs file. The flitton_oasis_risk_modelling folder will
house our compiled Rust code; therefore, our CSV files are also stored there.

We state that we are storing our CSV files in the MANIFEST.in file. Our lib.rs
file is where our interface between our Rust and Python is defined. Now
that we have defined the process for our catastrophe model, we can move
on to the next section of building our end-to-end package.

Building an end-to-end solution as a
package
In the previous section, we identified what we needed to do to build our
catastrophe model package. We can achieve it with the following steps:

1. Build a footprint merging process.

2. Build a vulnerability and probability merging process.

3. Build a Python interface in Rust.

4. Build an interface in Python.

5. Build package installation instructions.

Before we build anything, we must define our dependencies in our
Cargo.toml file with the following code:

[package]

name = "flitton_oasis_risk_modelling"

version = "0.1.0"

authors = ["Maxwell Flitton <maxwellflitton@gmail.com>"]

edition = "2018"

[dependencies]

csv = "1.1"

serde = { version = "1", features = ["derive"] }

[lib]

name = "flitton_oasis_risk_modelling"

crate-type=["rlib", "cdylib"]

[dependencies.pyo3]

version = "0.13.2"

features = ["extension-module"]

Here, we can see that we are using the csv crate to load our data and the
serde crate to serialize the data that we had loaded from the CSV file. With
this approach, it is important that we start by coding the processes first. This

enables us to know what we need when we get to building our interfaces.
Considering this, we can start building our footprint merging process.

Building a footprint merging process

Our footprint merging process is essentially loading our footprint data and
merging it with our input IDs. Once this is done, we then return the data to
be fed into another process. We initially need to build our data structs
before we build our processes, as our processes will need them. We can
build our footprint struct in the src/footprint/structs.rs file with the
following code:

use serde::Deserialize;

#[derive(Debug, Deserialize, Clone)]

pub struct FootPrint {

 pub event_id: i32,

 pub areaperil_id: i32,

 pub intensity_bin_id: i32,

 pub probability: f32

}

Here, we can see that we apply the Deserialize macro to the struct so that
when we load data from the file, it can be directly loaded into our FootPrint
struct. We will also want to clone our struct if similar multiple event IDs are
being passed into our package.

Now that we have our struct, we can build our merging process in our
src/footprint/processes.rs file:

1. First, we have to define the imports we need with the following code:

use std::error::Error;

use std::fs::File;

use csv;

use super::structs::FootPrint;

We must remember that we did not define our struct in the
src/footprint/mod.rs file, so this will not run yet, but we will define it
in time before running our code.

2. We can now build a function that will read a footprint from the file with
the following code:

pub fn read_footprint(mut base_path: String) -> \

 Result<Vec<FootPrint>, Box<dyn Error>> {

 base_path.push_str("/footprint.csv");

 let file = File::open(base_path.as_str())?;

 let mut rdr = csv::Reader::from_reader(file);

 let mut buffer = Vec::new();

 for result in rdr.deserialize() {

 let record: FootPrint = result?;

 buffer.push(record);

 }

 Ok(buffer)

}

Here, we can see our function requires the directory where our data file
is housed. We then add the filename to the path, open the file, and pass

it through the from_reader function. We then define an empty vector
and add the data that we deserialize. We now have a vector of FootPrint
structs, which we return.

3. Now that we have our load data function, we can now build our merge
footprints function in the same file with the following code:

pub fn merge_footprint_with_events(event_ids: \

 Vec<i32>,

 footprints: Vec<FootPrint>) -> Vec<FootPrint> {

 let mut buffer = Vec::new();

 for event_id in event_ids {

 for footprint in &footprints {

 if footprint.event_id == event_id {

 buffer.push(footprint.clone());

 }

 }

 }

 return buffer

}

Here, we can see that we take in a vector of event IDs and a vector of
FootPrint structs. We then loop through our event IDs. For each event,
we then loop through all the FootPrint structs, adding the struct to our
buffer if it matches the event ID. We then return the buffer meaning that
we have merged all that we need. We do not need to code any more
processes. To make them useful, we can build an interface in the
src/footprint/mod.rs file.

4. So, we must import what we need with the following code:

pub mod structs;

pub mod processes;

use structs::FootPrint;

use processes::{merge_footprint_with_events, \

 read_footprint};

5. Now that we have imported all that we need, we can build our interface
in the same file with the following code:

pub fn merge_event_ids_with_footprint(event_ids: \

 Vec<i32>,

 base_path: String) -> Vec<FootPrint> {

 let foot_prints = \

 read_footprint(base_path).unwrap();

 return merge_footprint_with_events(event_ids, \

 foot_prints)

}

Here, we merely accept the file path and event IDs and pass them
through our processes, returning the results.

With this, our footprint processes are built, meaning that we can move on to
the next step of building the vulnerability merge processes.

Building the vulnerability merge process

Now that we have merged our event IDs with our footprint data, we have a
working map of the probabilities of certain events happening at certain

intensities within a range of geographical locations. We can merge this with
the probabilities of damage occurring due to the catastrophe by following
these steps:

1. In this process, we must load the vulnerabilities and then merge them
with our existing data. To facilitate this, we will have to build two
structs – one for the data that is loaded from the file and another for the
result after the merge. Because we are loading the data, we will need to
use the serde crate. In our src/vulnerabilities/structs.rs file, we
import it with the following code:

use serde::Deserialize;

2. We then build our struct to load the file with the following code:

#[derive(Debug, Deserialize, Clone)]

pub struct Vulnerability {

 pub vulnerability_id: i32,

 pub intensity_bin_id: i32,

 pub damage_bin_id: i32,

 pub probability: f32

}

We must note here that the probability of the data we are loading is
labeled under the probability field. This is the same with our
FootPrint struct. Because of this, we must rename the probability field
to avoid clashes during the merge. We also need to calculate the total
probability.

3. Considering this, our result after the merge takes the form of the
following code:

#[derive(Debug, Deserialize, Clone)]

pub struct VulnerabilityFootPrint {

 pub vulnerability_id: i32,

 pub intensity_bin_id: i32,

 pub damage_bin_id: i32,

 pub damage_probability: f32,

 pub event_id: i32,

 pub areaperil_id: i32,

 pub footprint_probability: f32,

 pub total_probability: f32

}

With this, our structs are complete and we can build our processes in our
src/vulnerabilities/processes.rs file. Here, we are going to have two
functions, reading the vulnerabilities, and then merging them with our
model:

1. First, we must import everything that we need with the following code:

use std::error::Error;

use std::fs::File;

use csv;

use crate::footprint::structs::FootPrint;

use super::structs::{Vulnerability, \

 VulnerabilityFootPrint};

Here, we can see that we are relying on the FootPrint struct from our
footprint module.

2. Now that we have everything, we can build our first process, which is
loading the data with the following code:

pub fn read_vulnerabilities(mut base_path: String) \

 -> Result<Vec<Vulnerability>, Box<dyn Error>> {

 base_path.push_str("/vulnerability.csv");

 let file = File::open(base_path.as_str())?;

 let mut rdr = csv::Reader::from_reader(file);

 let mut buffer = Vec::new();

 for result in rdr.deserialize() {

 let record: Vulnerability = result?;

 buffer.push(record);

 }

 Ok(buffer)

}

Here, we can see that this is similar code to our loading process in our
footprint module. Refactoring this into a generalized function would be
a good exercise.

3. Now that we have our loading function, we can merge
Vec<Vulnerability> with Vec<FootPrint> to get
Vec<VulnerabilityFootPrint>. We can define the function with the
following code:

pub fn merge_footprint_with_vulnerabilities(

 vulnerabilities: Vec<Vulnerability>,

 footprints: Vec<FootPrint>) -> \

 Vec<VulnerabilityFootPrint> {

 let mut buffer = Vec::new();

 for vulnerability in &vulnerabilities {

 for footprint in &footprints {

 if footprint.intensity_bin_id == \

 vulnerability

 .intensity_bin_id {

 . . .

 }

 }

 }

 return buffer

}

Here, we can see that we have a new vector called buffer, which is
where the merged data will be stored in the . . . placeholder. We can
see that we loop through the footprints for each vulnerability. If
intensity_bin_id matches, we execute the code in the . . .
placeholder, which is the following code:

buffer.push(VulnerabilityFootPrint{

 vulnerability_id: vulnerability.vulnerability_id,

 intensity_bin_id: vulnerability.intensity_bin_id,

 damage_bin_id: vulnerability.damage_bin_id,

 damage_probability: vulnerability.probability,

 event_id: footprint.event_id,

 areaperil_id: footprint.areaperil_id,

 footprint_probability: footprint.probability,

 total_probability: footprint.probability * \

 vulnerability.probability

 });

Here, we are merely mapping the correct values to the correct fields of
our VulnerabilityFootPrint struct. In the last field, we calculate the
total probability by multiplying the other probabilities together.

Our processes are finally done, so we move on to building our interface for
this process in our src/vulnerabilities/mod.rs file:

1. We first import what we need with the following code:

pub mod structs;

pub mod processes;

use structs::VulnerabilityFootPrint;

use processes::{merge_footprint_with_vulnerabilities \

 ,read_vulnerabilities};

use crate::footprint::structs::FootPrint;

With this, we can create a function that takes in a base path for the
directory of where our data files are and our footprint data.

2. We then pass them through both of our processes, loading and merging,
and then return our merged data with the following code:

pub fn merge_vulnerabilities_with_footprint(\

 footprint: Vec<FootPrint>, mut base_path: String) \

 -> Vec<VulnerabilityFootPrint> {

 let vulnerabilities = read_vulnerabilities(\

 base_path).unwrap();

 return merge_footprint_with_vulnerabilities(\

 vulnerabilities, footprint)

}

We have now built our two processes for constructing our data model. We
can move on to our next step, which is building our Python interface in
Rust.

Building a Python interface in Rust

The Python interface is defined in the src/lib.rs file, where we use the
pyo3 crate to get our Rust code to communicate with the Python system.
Here are the steps:

1. First, we must import what we need with the following code:

use pyo3::prelude::*;

use pyo3::wrap_pyfunction;

use pyo3::types::PyDict;

mod footprint;

mod vulnerabilities;

use footprint::merge_event_ids_with_footprint;

use vulnerabilities::merge_vulnerabilities_with_footprint;

use vulnerabilities::structs::VulnerabilityFootPrint;

Here, we can see that we import what we need from the pyo3 crate. We
will be wrapping a get_model function with wrap_pyfunction and

returning a list of PyDict structs. We also define the process modules,
structs, and functions that we need to build our model.

2. We can then define our function with the following code:

#[pyfunction]

fn get_model<'a>(event_ids: Vec<i32>, \

 mut base_path: String, py: Python) -> Vec<&PyDict> {

 let footprints = merge_event_ids_with_footprint(\

 event_ids, base_path.clone());

 let model = merge_vulnerabilities_with_footprint \

 (footprints, base_path);

 let mut buffer = Vec::new();

 for i in model {

 . . .

 }

 return buffer

}

It must be noted that we accept a Python struct into our function. This is
automatically filled. If we get the Python struct via the Global
Interpreter Lock (GIL) as done in previous chapters, we will not be
able to return them because the lifetime will finish at the end of the
function. Because we take in the Python struct, we can return the Python
structures that we create in the function using the Python struct that we
took in.

3. In the . . . placeholder, we create a PyDict struct with all the data for
the model row and push it to our buffer with the following code:

 let placeholder = PyDict::new(py);

 placeholder.set_item("vulnerability_id", \

 i.vulnerability_id);

 placeholder.set_item("intensity_bin_id", \

 i.intensity_bin_id);

 placeholder.set_item("damage_bin_id", \

 i.damage_bin_id);

 placeholder.set_item("damage_probability",\

 i.damage_probability);

 placeholder.set_item("event_id", \

 i.event_id);

 placeholder.set_item("areaperil_id",\

 i.areaperil_id);

 placeholder.set_item("footprint_probability", \

 i.footprint_probability);

 placeholder.set_item("total_probability", \

 i.total_probability);

 buffer.push(placeholder);

Here, we can see that we can push different types to our PyDict struct
and Rust does not care.

4. We can then wrap our function and define our module with the
following code:

#[pymodule]

fn flitton_oasis_risk_modelling(_py: Python, \

 m: &PyModule) -> PyResult<()> {

 m.add_wrapped(wrap_pyfunction!(get_model));

 Ok(())

}

Now that all our Rust programming is done, we can move on to building
our Python interface in the next step.

Building our interface in Python

When it comes to our Python interface, we will have to build a function in a
Python script in the flitton_oasis_rist_modelling/__init__.py file. We
also store our data CSV files in the flitton_oasis_rist_modelling directory.
Remember, we do not want our users interfering with the CSV files or having
to know where they are. To do this, we will use the os Python module to
find the directory of our module to load our CSV data.

To do this, we import what we need in the
flitton_oasis_rist_modelling/__init__.py file with the following code:

import os

from .flitton_oasis_risk_modelling import *

Remember, our Rust code will compile into a binary and be stored in the
flitton_oasis_rist_modelling directory, so we can do a relative import for
all the wrapped functions in our Rust code. Now, we can code our
construct_model model function with the following code:

def construct_model(event_ids):

 dir_path = os.path.dirname(os.path.realpath(__file__))

 return get_model(event_ids, str(dir_path))

Here, we can see that all the user needs to do is pass in the event IDs.
However, if we tried to install this package using pip, we would get errors
stating that the CSV files cannot be found; this is because our setup does not
include the data files. We can solve this in our next step of building package
installation instructions.

Building package installation instructions

To do this, we must state that we want to keep all CSV files in our
MANIFEST.in file with the following code:

recursive-include flitton_oasis_risk_modelling/*.csv

Now that we have done this, we can move to our setup.py file to define our
setup:

1. First, we must import what we need with the following code:

#!/usr/bin/env python

from setuptools import dist

dist.Distribution().fetch_build_eggs([\

 'setuptools_rust'])

from setuptools import setup

from setuptools_rust import Binding, RustExtension

Here, as we have done before, we fetch the setuptools_rust package;
although it is not essential for the running of the package, it is needed
for the installation.

2. We can now define our setup parameters with the following code:

setup(

 name="flitton-oasis-risk-modelling",

 version="0.1",

 rust_extensions=[RustExtension(

 ".flitton_oasis_risk_modelling.flitton_oasis \

 _risk_modelling",

 path="Cargo.toml", binding=Binding.PyO3)],

 packages=["flitton_oasis_risk_modelling"],

 include_package_data=True,

 package_data={'': ['*.csv']},

 zip_safe=False,

)

Here, we can see that we do not need any Python third-party packages.
We have also defined our Rust extension, set the include_package_data
parameter to True, and defined our package data with package_data=
{'': ['*.csv']}. With this, all CSV files will be kept when installing our
package.

3. We are nearly finished; all we have to do is define the rustflags
environment variables in the .cargo/config file with the following
code:

[target.x86_64-apple-darwin]

rustflags = [

 "-C", "link-arg=-undefined",

 "-C", "link-arg=dynamic_lookup",

]

[target.aarch64-apple-darwin]

rustflags = [

 "-C", "link-arg=-undefined",

 "-C", "link-arg=dynamic_lookup",

]

With this, we can upload our code and install it in our Python system.

We can now use our Python module. We can test this in our module with
the terminal output, as follows:

>>> from flitton_oasis_risk_modelling import

 construct_model

>>> construct_model([1, 2])

[{'vulnerability_id': 1, 'intensity_bin_id': 1,

'damage_bin_id': 1, 'damage_probability': 0.44999998807907104,

'event_id': 1, 'areaperil_id': 10,

'footprint_probability': 0.4699999988079071,

'total_probability': 0.21149998903274536},

{'vulnerability_id': 1, 'intensity_bin_id': 1,

'damage_bin_id': 1, 'damage_probability':

0.44999998807907104,

'event_id': 2, 'areaperil_id': 20,

'footprint_probability': 0.30000001192092896,

'total_probability': 0.13500000536441803},

{'vulnerability_id': 1, 'intensity_bin_id': 2,

'damage_bin_id': 2, 'damage_probability':

0.6499999761581421,

'event_id': 1, 'areaperil_id': 10,

'footprint_probability': 0.5299999713897705,

'total_probability': 0.34449997544288635},

{'vulnerability_id': 1, 'intensity_bin_id': 2,

'damage_bin_id': 2,

'damage_probability': 0.6499999761581421, 'event_id': 2,

'areaperil_id': 20, 'footprint_probability':

0.699999988079071,

'total_probability': 0.45499998331069946},

. . .

There's more data that is printed out, but if your printout correlates with the
preceding output, then there is a high chance that the rest of your data is
accurate. Here, we have built a real-world solution that loads data and does
a series of operations and processes to come up with a model. However, it is
a basic model that would not be used in real-life catastrophe modeling; we
have coded it in isolated modules so that we can slot in more processes
when we need to.

However, we need to ensure that all our effort was not for nothing. We can
do what we did in this package with a few lines of Python code using
pandas, which is written in C, so it could be quicker or at the same speed.
Considering this, we need to test to ensure that we are not wasting our time
by testing our code in the next section.

Util izing and testing our package

We have started building out our solution in a Python package coded in
Rust. However, we need to justify to our team and ourselves that all this
effort was worth it. We can test to see whether we should continue with our
efforts in a single isolated Python script. In this Python script, we can test
by following these steps:

1. Build a Python construct model using pandas.

2. Build random event ID generator functions.

3. Time our Python and Rust implementations with a series of different
data sizes.

Once we have carried out all the aforementioned steps, we will know
whether we should progress further with our module.

In our testing script, before we start coding anything, we must import all of
what we need with the following code:

import random

import time

import matplotlib.pyplot as plt

import pandas as pd

from flitton_oasis_risk_modelling import construct_model

Here, we are using the random module to generate random event IDs and the
time module to time our implementations. We are using pandas to build our
model, matplotlib to plot the outcomes, and our Rust implementation. We
can now build our model.

Building a Python construct model using
pandas

Now that we have imported everything that we need, we can move on to
loading data from the CSV files in Python and use it to construct a model in
Python using pandas with the following steps:

1. First, our function must take in event IDs. We also must load our data
from our CSV files with the following code:

def python_construct_model(event_ids):

 vulnerabilities = \

 pd.read_csv("./vulnerability.csv")

 foot_print = pd.read_csv("./footprint.csv")

 event_ids = pd.DataFrame(event_ids)

2. Now that we have all our data, we can merge our data and rename the
probability column to avoid clashing with the following code:

 model = pd.merge(

 event_ids, foot_print, how="inner", \

 on="event_id"

)

 model.rename(

 columns={"probability": \

 "footprint_probability"},

 inplace=True

)

Here, we can see that we are using less code.

3. Now, we can do our final process, which is merging with the
vulnerabilities and then calculating the total probability with the
following code:

 model = pd.merge(

 model, vulnerabilities,

 how="inner", on="intensity_bin_id"

)

 model.rename(

 columns={"probability": \

 "vulnerability_probability"},

 inplace=True

)

 model["total_prob"] = \

 model["footprint_probability"] * \

 model["vulnerability_probability"]

 return model

With this, our Python model is now complete. We can now move on to our
next step of building our random event ID generator functions.

Building a random event ID generator
function

When it comes to our Rust implementation, we need a list of integers. For
our Python model, we need to pass in a list of dictionaries with an event ID
stored in it. We can define these functions with the following code:

def generate_event_ids_for_python(number_of_events):

 return [{"event_id": random.randint(1, 4)} for _

 in range(0, number_of_events)]

def generate_event_ids_for_rust(number_of_events):

 return [random.randint(1, 4) for _

 in range(0, number_of_events)]

Now that we have everything we need, we can carry out the final step of
testing our implementations.

Timing our Python and Rust
implementations with a series of different
data sizes

We now have everything we need to test our Rust and Python
implementation. Running both Python and Rust models with timing can be
done by carrying out the following steps:

1. To test our implementation, we define our entry point and all the data
structures for our time graph with the following code:

if __name__ == "__main__":

 x = []

 python_y = []

 rust_y = []

2. For our testing data, we are going to loop through a list of integers from
10 to 3000 in steps of 10 with the following code:

 for i in range(10, 3000, 10):

 x.append(i)

Both Python and Rust implementations will be running the same event
ID dataset sizes, which is why we only have one x vector. We can now
test our Python implementation with the following code:

 python_event_ids = \

 generate_event_ids_for_python(

 number_of_events=i

)

 python_start = time.time()

 python_construct_model(event_ids= \

 python_event_ids)

 python_finish = time.time()

 python_y.append(python_finish - python_start)

Here, we generate our ID dataset to the size of the integer of the loop.
We then start our timer, construct our model in Python, finish the timer,
and add the time taken to our Python data list.

3. We take the same approach with our Rust test with the following code:

 rust_event_ids = generate_event_ids_for_rust(

 number_of_events=i

)

 rust_start = time.time()

 construct_model(rust_event_ids)

 rust_finish = time.time()

 rust_y.append(rust_finish - rust_start)

Our data collection is now complete.

4. All we need to do is plot the results when the loop has finished with the
following code:

 plt.plot(x, python_y)

 plt.plot(x, rust_y)

 plt.show()

We have now written all the code for testing, which should display a graph
like this:

Figure 8.4 – Rust versus Python for the time taken for model generation for the size of
data

In the preceding figure, we see that initially, our Rust implementation is
faster than our Python pandas implementation. However, once we get past
the 1,300 mark, our Rust model gets slower than our Python pandas model.
This is because our code does not scale well. We are performing loops
within loops. In our pandas model, we vectorize our total probability.
pandas is a well-written module where multiple developers have optimized
the merge functions.

Therefore, although our Rust code will be faster than Python and pandas
code, if our implementation is sloppy and does not scale well, we may even
be slowing down our program. I have seen poorly implemented C++ be
beaten by Python pandas. Understanding this nuance is important when
trying to implement Rust in your system. Rust is a new language, and
colleagues will be let down if you promise big gains, poorly implement
code, and result in slower performance after burning a lot of time coding
implementation in Rust.

Seeing that this is a book about building Python packages in Rust as
opposed to data processing in Rust, this is where we stop. However, Xavier
Tao implemented an efficient merge process in Rust, resulting in Rust
taking 75% less time and 78% less memory. This is noted in the Further
reading section. There is also a Rust implementation of pandas called
Polars, which also has Python bindings. It is faster than standard pandas,
and this documentation is also listed in the Further reading section.

The takeaway message here is that Rust enables us to build fast memory-
efficient solutions, but we must be careful with our implementation and test

to see whether what we are doing is sensible. We should be careful,
especially if we are trying to build a solution from scratch that has an
optimized solution in an existing Python package.

Summary
In this chapter, we went through the basics of building a simple catastrophe
model. We then broke down the logic and converted it into steps so that we
could build the catastrophe model in Rust. This included taking in paths,
loading data from files, including data in our package, and building a
Python interface so that our users do not have to know about what is going
on under the hood when constructing a model. After all of this, we tested
our module and ensured that we kept increasing the data size of the test to
see how it scales. We saw that, initially, our Rust solution was faster
because Rust is faster than Python and pandas. However, our
implementation did not scale well, as we did a loop within a loop for our
merge.

As the data size increased, our Rust code ended up being slower. In
previous chapters, we have shown multiple times that Rust implementations
are generally faster. However, this does not counteract the effects of bad
code implementation. If you are relying on a Python third-party module to
perform a complex process, it probably is not a good idea to rewrite it in
Rust for performance gains. If a Rust crate is not available for the same
solution, then it is probably best to leave that part of the solution to the
Python module.

In the next chapter, we will be building a Flask web application to lay the
groundwork for applying Rust to a Python web application.

Further reading
Polars documentation for Rust Crate Polars (2021):
https://docs.rs/polars/0.15.1/polars/frame/struct.DataFrame.html

Data Manipulation: Pandas vs Rust, Xavier Tao (2021):
https://able.bio/haixuanTao/data-manipulation-pandas-vs-rust--1d70e7fc

https://docs.rs/polars/0.15.1/polars/frame/struct.DataFrame.html%0D
https://able.bio/haixuanTao/data-manipulation-pandas-vs-rust--1d70e7fc

Section 3: Infusing Rust into a Web
Application
At this point, all the key areas have been covered in terms of using Rust
practically in Python code. In this section, we will apply all of what we
have learned thus far in a practical project. We achieve this by injecting our
Python packages written in Rust into every aspect of a web application that
can be deployed in Docker.

This section comprises the following chapters:

Chapter 9, Structuring a Python Flask App for Rust

Chapter 10, Injecting Rust into a Python Flask App

Chapter 11, Best Practices for Integrating Rust

Chapter 9: Structuring a Python Flask
App for Rust
In the previous chapter, we managed to solve a real-world problem with
Rust. However, we also learned an important lesson, that is, the good
implementation of code, such as adding vectors or merging dataframes,
along with third-party modules, such as NumPy, can outperform badly
implemented self-coded Rust solutions. However, we know that comparing
implementation to implementation, Rust is a lot faster than Python. We
already understand how to fuse Rust with a standard Python script.
However, Python is used for more than just running scripts. A popular use
for Python is in web applications.

In this chapter, we will build a Flask web application with NGINX, a
database, and a message bus implemented by the Celery package. This
message bus will allow our application to process heavy tasks in the
background while we return a web HTTP request. The web application and
message bus will be wrapped in Docker containers and deployed to docker-
compose. However, nothing is preventing us from deploying the application
onto a cloud platform if desired.

In this chapter, we will cover the following topics:

Building a basic Flask application

Defining a database access layer

Building a message bus

This chapter will enable us to build a foundation for deployable Python web
applications that have a range of features and services. This foundation
allows us to discover how to fuse Rust with Python web applications that
are wrapped in Docker containers.

Technical requirements
The code and data for this chapter can be found at
https://github.com/PacktPublishing/Speed-up-your-Python-with-
Rust/tree/main/chapter_nine.

In addition to this, we will be using docker-compose on top of Docker to
orchestrate our Docker containers. This can be installed by following the
instructions at https://docs.docker.com/compose/install/.

In this chapter, we will be building a Docker-contained Flask application,
which is available via the GitHub repository at
https://github.com/maxwellflitton/fib-flask.

Building a basic Flask application
Before we begin adding any additional features such as a database to an
application, we have to ensure that that we can get a basic Flask application
up and running with everything that we need. This application will take in a
number and return a Fibonacci number. Additionally, we will need to make
sure that this application can run in its own Docker container if we were to
deploy it. By the end of this section, our application should have the
following structure:

├── deployment

https://github.com/PacktPublishing/Speed-up-your-Python-with-Rust/tree/main/chapter_nine
https://docs.docker.com/compose/install/
https://github.com/maxwellflitton/fib-flask

│ ├── docker-compose.yml

│ └── nginx

│ ├── Dockerfile

│ └── nginx.conf

├── src

│ ├── Dockerfile

│ ├── __init__.py

│ ├── app.py

│ ├── fib_calcs

│ │ ├── __init__.py

│ │ └── fib_calculation.py

│ └── requirements.txt

Here, you can see that the application is housed in the src directory. When
running our application, we must ensure that the PYTHONPATH path is set to
src. The code required for our deployment exists in the deployment
directory. To build an application so that it can run in Docker, perform the
following steps:

1. Build an entry point for our application.

2. Build a Fibonacci number calculation module.

3. Build a Docker image for our application.

4. Build our NGINX service.

Once we have completed all of these steps, we will have a basic Flask
application that can be run on a server. Now, let's explore each of these
steps in detail in the following subsections.

Building an entry point for our application

Here are the steps to perform:

1. Before we can build our entry point, we need to install the Flask module
using the following command:

pip install flask

2. Once this is done, we have all we need to create a basic Flask
application by defining the entry point in the src/app.py file using the
following code:

from flask import Flask

app = Flask(__name__)

@app.route("/")

def home():

 return "home for the fib calculator"

if __name__ == "__main__":

 app.run(use_reloader=True, port=5002, \

 threaded=True)

Here, observe that we can define a basic route with the decorator. We can
run our application by running the src/app.py script; this will run our
server locally, enabling us to access all of the routes that we have defined.
Passing the http://127.0.0.1:5002 URL into our browser will give us the
following view:

Figure 9.1 – The main view of our local Flask server

Now that our basic server is running, we can move on to build a Fibonacci
number calculator module.

Building our Fibonacci number calculator
module

Here are the steps to perform:

1. In this example, our application is simple. As a result, we can define our
module's functionality within one file in one class. We define it within
the src/fib_calcs/fib_calculation.py file using the following code:

class FibCalculation:

 def __init__(self, input_number: int) -> None:

 self.input_number: int = input_number

 self.fib_number: int = self.recur_fib(

 n=self.input_number

)

 @staticmethod

 def recur_fib(n: int) -> int:

 if n <= 1:

 return n

 else:

 return (FibCalculation.recur_fib(n - 1) +

 FibCalculation.recur_fib(n - 2))

Here, notice that our class merely takes in an input number and
automatically populates the self.fib_number attribute with the
calculated Fibonacci number.

2. Once that is done, we can define a view that accepts an integer through
the URL, passes it to our FibCalculation class, and returns the
calculated Fibonacci number as a string to the user in our src/app.py
file using the following code:

from fib_calcs.fib_calculation import FibCalculation

. . .

@app.route("/calculate/<int:number>")

def calculate(number):

 calc = FibCalculation(input_number=number)

 return f"you entered {calc.input_number} " \

 f"which has a Fibonacci number of " \

 f"{calc.fib_number}"

3. Rerunning our server and passing the
http://127.0.0.1:5002/calculate/10 URL into our browser will give
us the following view:

Figure 9.2 – Calculating the view of our local Flask server

Now our application performs its intended purpose: it calculates a
Fibonacci number based on the input. There is more to views with Flask;
however, this book is not a web development textbook. If you want to learn
how to build more comprehensive API endpoints, we advise that you look
into the Flask API and Marshmallow packages. References to both are
available in the Further reading section. Now, we need to make our
application deployable so that we can use it in a range of settings for our
next step.

Building a Docker image for our
application

For our application to be usable, we must build a Docker image of our
application that accepts requests. Then, we must protect it with another
container call that acts as an ingress. NGINX performs load balancing,
caching, streaming, and the redirecting of traffic. Our application will be
run using the Gunicorn package, which, essentially, runs multiple workers
of our application at the same time. For each request, NGINX asks which
Gunicorn worker the request should go to and redirects it, as shown in the
following diagram:

Figure 9.3 – The flow of requests for our application

We can achieve the layout defined in the preceding diagram by performing
the following steps:

1. Before we build a Docker image, we must make sure the requirements
for our application are handled. Therefore, we must install Gunicorn
using pip with the following command:

pip install gunicorn

2. We must make sure that we are in the src directory because we are
going to dump all of our application dependencies into a file called
requirements.txt using the following command:

pip freeze > requirements.txt

This gives us a text file with a list of all the dependencies that our
application needs in order to run. Right now, all we need is Flask and
Gunicorn.

3. With this, we can start coding our Docker file so that we can build
application images of our application. First, in our src/Dockerfile file,
we should define the operating system that is required with the
following code:

FROM python:3.6.13-stretch

This means that our image is running a stripped-down version of Linux
with Python installed.

4. Now that we have the correct operating system, we should define our
app's directory and copy all of our application files into the image using
the following code:

Set the working directory to /app

WORKDIR /app

Copy the current directory contents into the

 container at /app

ADD . /app

5. Now that all of our application files are in the image, we install system
updates and then install the python-dev package. This is so that we can
include extensions with the code given here:

RUN apt-get update -y

RUN apt-get install -y python3-dev python-dev gcc

This will enable us to compile our Rust code in our application and use
database binaries.

Our system has now been set up, so we can move on to install our
requirements using the following code:

RUN pip install --upgrade pip setuptools wheel

RUN pip install -r requirements.txt

Everything is in place to define our system. Nothing is stopping us from
running our application.

6. To do this, we expose the port and run our application using the
following code:

EXPOSE 5002

CMD ["gunicorn", "-w 4", "-b", "0.0.0.0:5002", \

 "app:app"]

Note that when we create a container from the image, we run CMD with
the parameters defined in the list. We state that we have four workers
with the -w 4 parameter. Then, we define the URL and port that we are
listening to. Our final parameter is app:app. This states that our
application is housed in the app.py file, and our application in that file is
the Flask object under the variable name of app.

7. We can now build our application image using the following command:

docker build . -t flask-fib

The result is a very long stream of console printouts, but essentially, our
Docker image is built with the flask-fib tag.

8. We can then inspect our images using the following command:

docker image ls

Running this command gives us an image that has been created in the
following form:

REPOSITORY TAG IMAGE ID

flask-fib latest 0cdb0c979ac1

CREATED SIZE

33 minutes ago 1.05GB

This is important. We will need to reference our image later when we are
running our application with NGINX, which we will define next.

Building our NGINX service

When it comes to Docker and NGINX, we are lucky in that we do not have
to build a Dockerfile that defines our NGINX image. NGINX has released
an official image that we can download and use for free. However, we do
have to alter its configuration. NGINX is fairly important; this is because it
gives us the ability to control how incoming requests are processed. We can
redirect the requests to different services depending on parts of the URL.
Additionally, we can control the size of the data, the duration of the
connection, and configure HTTPS traffic. NGINX can also act as a load
balancer. In this example, we are going to configure NGINX in the simplest
format to get it running. However, it must be noted that NGINX is a vast

topic in itself; a reference to a useful NGINX book is provided in the
Further reading section.

We can build our NGINX service and connect it to our Flask application by
performing the following steps:

1. We will configure our NGINX container with what we code in the
deployment/nginx/nginx.conf file. In this file, we declare our worker
processes and error log, as follows:

worker_processes auto;

error_log /var/log/nginx/error.log warn;

Here, we have defined worker_processes as auto. This is where we
automatically detect the number of CPU cores available, setting the
number of processes to the number of CPU cores.

2. Now, we have to define the maximum number of connections that a
worker can entertain at a time using the following code:

events {

 worker_connections 512;

}

It must be noted that the number that is chosen here is the default
number for NGINX.

3. All that is now left for us to do is to define our HTTP listener. This can
be achieved with the following code:

http {

 server {

 listen 80;

 location / {

 proxy_pass http://flask_app:5002/;

 }

 }

}

Here, observe that we listen to port 80, which is the standard outside
listening port. Then, we state that if there is any pattern to our URL, we
pass it to our flask_app container at port 5002. We can stack multiple
locations in the http section if we wish. For instance, if we have another
app, we can route the request to the other application if the URL tail
starts with /another_app/ using the following code:

 location /another_app {

 proxy_pass http://another_app:5002/;

 }

 location / {

 proxy_pass http://flask_app:5002/;

 }

Our configuration file for our NGINX is complete. Again, there are many
more configuration parameters; we are just running the bare minimum.
More resources on these parameters are signposted in the Further reading
section. Considering that our NGINX configuration file is complete, for the
next step, we have to run it alongside our Flask application.

Connecting and running our Nginx
service

To run our application and NGINX together, we will be using docker-
compose. This allows us to define multiple Docker containers at the same
time that can talk to each other. Nothing is stopping us from running
docker-compose on a server to achieve a basic setup. However, more
advanced systems such as Kubernetes can help with the orchestration of
Docker containers across multiple servers if needed. In addition to this,
different cloud platforms offer out-of-the-box load balancers. Perform the
following steps:

1. In our deployment/docker-compose.yml file, we state what version of
docker-compose we are using with the following code:

version: "3.7"

2. Now that this has been implemented, we can define our services along
with our first service, which is our Flask application. This is defined
with the following code:

services:

 flask_app:

 container_name: fib-calculator

 image: "flask-fib:latest"

 restart: always

 ports:

 - "5002:5002"

 expose:

 - 5002

In the preceding code, we reference the image that we built with the
latest release. For instance, if we changed the image and rebuilt it, then

our docker-compose setup would use this. We also give it a container
name, so we know the container status when checking the running
containers. Additionally, we state that we accept traffic through port
5002, and we route it to our container's port 5002. Because we have
chosen this path, we also expose port 5002. If we run our docker-
compose setup now, we could access our application with the
http://localhost:5002 URL. However, if this was running on a server
and port 5002 was not accessible to outside traffic, then we would not be
able to access it.

3. Considering this, we can define our NGINX in our deployment/docker-
compose.yml file using the following code:

 nginx:

 container_name: 'nginx'

 image: "nginx:1.13.5"

 ports:

 - "80:80"

 links:

 - flask_app

 depends_on:

 - flask_app

 volumes:

 - ./nginx/nginx.conf:/etc/nginx/nginx.conf

Here, you can see that we rely on the third-party NGINX image and that
we route the outside port of 80 to port 80. Also, we link to our Flask
application, and we depend on it, meaning that docker-compose will

ensure that our Flask application is up and running before we run our
NGINX service. In the volumes section, we replace the standard
configuration file with the configuration file that we defined in the
previous step. As a result, our NGINX service will run the configuration
that we defined. It must be noted that this configuration switch will
happen every time we run docker-compose. This means that if we
change our configuration file and then run docker-compose again, we
will see the changes. So, we have done everything to get our application
up and running. Now we can test it.

4. Testing our application is as easy as running the following command:

Docker-compose up

Our services will boot up, and we will get the following printout:

Starting fib-calculator ... done

Starting nginx ... done

Attaching to fib-calculator, nginx

fib-calculator | [2021-08-20 18:43:14 +0000] [1]

[INFO]

Starting gunicorn 20.1.0

fib-calculator | [2021-08-20 18:43:14 +0000] [1]

[INFO]

Listening at: http://0.0.0.0:5002 (1)

fib-calculator | [2021-08-20 18:43:14 +0000] [1]

[INFO]

Using worker: sync

fib-calculator | [2021-08-20 18:43:14 +0000] [8]

[INFO]

Booting worker with pid: 8

fib-calculator | [2021-08-20 18:43:14 +0000] [9]

[INFO]

Booting worker with pid: 9

. . .

nginx | /docker-entrypoint.sh: Configuration

complete;

ready for start up

Here, notice that both of our services spin up without any problems. Our
Flask application starts Gunicorn, starts listening at port 5002, and boots
up workers to process requests. Following this, our NGINX service
looks for a range of configurations before concluding that the
configuration is complete and that it is ready to start up. Also, note that
the NGINX started after our Flask application was started. This is
because we stated that our NGINX was dependent on our Flask
application when building our docker-compose file.

Now, we can directly hit our localhost URL without having to specify a
port because we are listening to the outside port of 80 with our NGINX.
This gives us results similar to the following:

Figure 9.4 – Interacting with our fully containerized Flask application

Now we have a fully containerized application that runs. This is at a ready
state, so in the next chapter, we can test to see whether our Rust integration
with our application will actually work in a real-life scenario. Now that we
have gotten our application running, we can move on to build our data
access layer. This will allow us to store and get data from a database.

Defining our data access layer
Now we have an application that takes in a number and calculates a
Fibonacci number based on it. However, a database lookup is quicker than a
calculation. We will use this fact to optimize our application by initially
performing a database lookup when a number is submitted. If it is not there,
we calculate the number, store it in the database, and then return it to the
user. Before we start building, we will have to install the following
packages using pip:

pyml: This package helps in loading parameters for our application from
a .yml file.

sqlalchemy: This package enables our application to map Python objects
to databases for storing and querying.

alembic: This package helps in tracking and applying changes to the
database from the application.

psycopg2-binary: This is the binary that will enable our application to
connect to the database.

Now that we have installed all that we need, we can enable our application
to store and get Fibonacci numbers by performing the following steps:

1. Define a PostgreSQL database in docker-compose.

2. Build a config loading system.

3. Define a data access layer.

4. Build database models.

5. Set up the application database migration system.

6. Apply the database access layer to the fib calculation view.

Once we have completed these steps, our application will take the following
form:

├── deployment

│ . . .

├── docker-compose.yml

├── src

│ . . .

│ ├── config.py

│ ├── config.yml

│ ├── data_access.py

│ ├── fib_calcs

│ │ . . .

│ ├── models

│ │ ├── __init__.py

│ │ └── database

│ │ ├── __init__.py

│ │ └── fib_entry.py

│ └── requirements.txt

Our deployment file structure has not changed. We have added a docker-
compose.yml file to our root as it will enable us to access the database when
we are developing our application. In addition to this, we have added a data
access file to enable us to connect to the database along with a models
module to enable mapping objects to the database. This structure will result
in a containerized Flask application that has access to a database. Next, we
will begin defining our Docker container for our database.

Defining a PostgreSQL database in
docker-compose

To define our database container, we apply the following code to both the
deployment/docker-compose.yml file and the docker-compose.yml file:

 Postgres:

 container_name: 'fib-dev-Postgres

 image: 'postgres:11.2'

 restart: always

 ports:

 - '5432:5432'

 environment:

 - 'POSTGRES_USER=user'

 - 'POSTGRES_DB=fib'

 - 'POSTGRES_PASSWORD=password'

Here, you can observe that we are relying on the official third-party
Postgres image. Instead of defining a configuration file, as we did with the

NGINX service, we define the password, database name, and user using the
environment variables. When we are running our local environment and
developing our application, we will run our docker-compose file in the root.
Now we have defined our database; in the next section, we can build our
config system.

Building a config loading system

Essentially, our configuration system loads parameters from a .yml file
inside the Flask application by performing these steps:

1. Our application might require different parameters depending on the
system. Because of this, we must build an object that loads parameters
from a .yml file and serves them as a dictionary throughout the
application. In our src/config.py file, first, we import what we need
with the following code:

import os

import sys

from typing import Dict, List

import yaml

We will be using the sys module to take in the arguments that were
passed into our application while running it. We use the os module to
check whether the config file that we have specified in the arguments
exists.

2. Our global parameters object can be built using the following code:

class GlobalParams(dict):

 def __init__(self) -> None:

 super().__init__()

 self.update(self.get_yml_file())

 @staticmethod

 def get_yml_file() -> Dict:

 file_name = sys.argv[-1]

 if ".yml" not in file_name:

 file_name = "config.yml"

 if os.path.isfile(file_name):

 with open("./{}".format(file_name)) as \

 file:

 data = yaml.load(file,

 Loader=yaml.FullLoader)

 return data

 raise FileNotFoundError(

 "{} config file is not available".

 format(file_name)

)

 @property

 def database_meta(self) -> Dict[str, str]:

 db_string: str = self.get("DB_URL")

 buffer: List[str] = db_string.split("/")

 second_buffer: List[str] = buffer[- \

 2].split(":")

 third_buffer: List[str] = \

 second_buffer[1].split("@")

 return {

 "DB_URL": db_string,

 "DB_NAME": buffer[-1],

 "DB_USER": second_buffer[0],

 "DB_PASSWORD": third_buffer[0],

 "DB_LOCATION":f"{third_buffer[1]} \

 :{second_buffer[-1]}",

 }

Here, you can observe that our GlobalParams class directly inherits from
the dictionary class. This means that we have all the functionality of a
dictionary. In addition to this, note that we do not pass any arguments
into our Python program specifying which .yml file to load; instead, we
simply revert to the standard config.yml file. This is because we will
use our configuration file for migrations to the database. It will be
difficult to pass in our parameters when performing database
migrations. If we want to change the configuration, it is best to get the
new data and write it to the config file.

3. Now that our config parameters class has been defined, we can add the
database URL to our src/config.yml file using the following code:

DB_URL: \

"postgresql://user:password@localhost:5432/fib"

Now that we have access to our database URL, in the next step, we can
build our database access layer.

Building our data access layer

Our database access will be defined in the src/data_access.py file. Once
this is done, we can import the data access layer from the
src/data_access.py file anywhere in the Flask application. This is so that
we can access the database anywhere inside the Flask application. We can
build this by performing the following steps:

1. First of all, we have to import what we need using the following code:

from flask import _app_ctx_stack

from sqlalchemy import create_engine

from sqlalchemy.ext.declarative import

declarative_base

from sqlalchemy.orm import sessionmaker,

scoped_session

from config import GlobalParams

Here, we will use the _app_ctx_stack object to ensure that our session is
in the context of the Flask request. Following this, we import all of the
other sqlalchemy dependencies to ensure that our access has a session
maker and an engine. We have to avoid going into excessive detail with
database management as this book focuses on fusing Rust with Python
and we are merely using SQLAlchemy to explore database integration
with Rust. However, we should be able to get a feel for what the
session, engine, and base do.

2. Now that we have imported everything we need, we can build our
database engine using the following code:

class DbEngine:

 def __init__(self) -> None:

 params = GlobalParams()

 self.base = declarative_base()

 self.engine = create_engine(params.get

 ("DB_URL"),

 echo=True,

 pool_recycle=3600,

 pool_size=2,

 max_overflow=1,

 connect_args={

 'connect_timeout': 5

 })

 self.session = scoped_session(sessionmaker(

 bind=self.engine

), scopefunc=_app_ctx_stack)

 self.url = params.get("DB_URL")

dal = DbEngine()

Now we have a class that can give us database sessions, a database
connection, and a base. However, it must be noted that we initiated the
DbEngine class and assigned it to the dal variable; however, we didn't
import the DbEngine class outside of this file. Instead, we import the dal
variable to be used for interactions with the database. If we import the
DbEngine class outside of this file during initiation and use it whenever
we want to interact with the database, we will create multiple database

sessions per request and these sessions will struggle to close. Even
something as small as a couple of users will grind your database to a
halt with too many hanging connections. Now that our database
connection has been defined, in the next step, we can move on to build
our database models.

3. In our database model, we can have a unique ID, input number, and fib
number. Our model is defined in the
src/models/database/fib_entry.py file with the following code:

from typing import Dict

from sqlalchemy import Column, Integer

from data_access import dal

class FibEntry(dal.base):

 __tablename__ = "fib_entries"

 id = Column(Integer, primary_key=True)

 input_number = Column(Integer)

 calculated_number = Column(Integer)

 @property

 def package(self) -> Dict[str, int]:

 return {

 "input_number": self.input_number,

 "calculated_number": \

 self.calculated_number

 }

Here, you can see that the code is straightforward. We pass dal.base
through our model to add the model to the metadata. Then, we define the

table name that will be in the database and model fields, which are id,
input_number, and calculated_number. Our database model has now been
defined, so we can import and use it throughout our application.
Additionally, we will use this in the next step to manage the database
migrations.

Setting up the application database
migration system

Migrations are a useful tool for keeping track of all the changes made to our
database. If we make a change in a database model or define one, we need
to translate those changes to our database. We can achieve this by
performing the following steps:

1. For our database management, we are going to lean on the alembic
package. Once we have navigated inside the src/ directory, we run the
following command:

alembic init alembic

This will generate a range of scripts and files. We are interested in the
src/alembic/env.py file; we are going to alter this so that we can
connect our alembic scripts and commands to our database.

2. Next, we must import the os and sys modules, as we will be using them
to import our models and load our configuration file. We import the
modules using the following code:

import sys

import os

3. Following this, we use the os module to append the path that is in the
src/ directory with the following code:

from alembic import context

this is the Alembic Config object, which provides

access to the values within the .ini file in use.

Config = context.config

Interpret the config file for Python logging.

This line sets up loggers basically.

fileConfig(config.config_file_name)

add the src to our import path

sys.path.append(os.path.join(

 os.path.dirname(os.path.abspath(__file__)),

 "../")

)

4. Now that we have configured our import path, we can import our
parameters and database engine. Then, we add our database URL to our
alembic database URL using the following code:

config the database url for migrations

from config import GlobalParams

params = GlobalParams()

section = config.config_ini_section

db_params = params.database_meta

config.set_section_option(section, 'sqlalchemy.url',

 params.get('DB_URL'))

from data_access import dal

db_engine = dal

from models.database.fib_entry import FibEntry

target_metadata = db_engine.base.metadata

5. With this, you can observe that the autogenerated function gets our
config, which then executes the migrations with the following code:

def run_migrations_offline():

 url = config.get_main_option("sqlalchemy.url")

 context.configure(

 url=url,

 target_metadata=target_metadata,

 literal_binds=True,

 dialect_opts={"paramstyle": "named"},

 render_as_batch=True

)

 with context.begin_transaction():

 context.run_migrations()

6. Now that we have our configuration system linked up to our database
migrations, we have to make sure docker-compose is running because
our database has to be live. We can generate a migration using the
following command:

alembic revision --autogenerate -m create-fib-entry

This gives us the following printout:

INFO [alembic.runtime.migration] Context impl

PostgresqlImpl.

INFO [alembic.runtime.migration] Will assume

transactional DDL.

INFO [alembic.autogenerate.compare] Detected added

table 'fib_entries'

You can observe that in our src/alembic/versions/ file, there is an
autogenerated script that creates our table with the following code:

revision identifiers, used by Alembic.

Revision = '40b83d85c278'

down_revision = None

branch_labels = None

depends_on = None

def upgrade():

 op.create_table('fib_entries',

 sa.Column('id', sa.Integer(), nullable=False),

 sa.Column('input_number', sa.Integer(),\

 nullable=True),

 sa.Column('calculated_number', sa.Integer(), \

 nullable=True),

 sa.PrimaryKeyConstraint('id')

)

def downgrade():

 op.drop_table('fib_entries')

Here, if we upgrade, the upgrade function will run, and if we
downgrade, the downgrade function will run. We can upgrade our
database using the following command:

alembic upgrade head

This gives us the following printout:

INFO [alembic.runtime.migration] Context impl

PostgresqlImpl.

INFO [alembic.runtime.migration] Will assume

transactional DDL.

INFO [alembic.runtime.migration] Running upgrade ->

40b83d85c278, create-fib-entry

Our migration has worked. In the next step, we will interact with the
database in our application.

Building database models

Now that we have a database that has our application models applied to it,
we can interact with our database in the application. This can be done by
importing our data access layer and data model into the view that is using
them and, well, use them:

1. For our example, we will be implementing our view inside the
src/app/app.py file. First, we import the data access layer and model
using the following code:

from data_access import dal

from models.database.fib_entry import FibEntry

With these imports, we can alter our calculation view to check whether
the number exists in the database and return the number from the
database if it does.

2. If it is not available in the database, then we calculate it, save the result
in the database, and return the result using the following code:

@app.route("/calculate/<int:number>")

def calculate(number):

 fib_calc = dal.session.query(FibEntry).filter_by(

 input_number=number).one_or_none()

 if fib_calc is None:

 calc = FibCalculation(input_number=number)

 new_calc = FibEntry(input_number=number,

 calculated_number=calc.fib_number)

 dal.session.add(new_calc)

 dal.session.commit()

 return f"you entered {calc.input_number} " \

 f"which has a Fibonacci number of " \

 f"{calc.fib_number}"

 return f"you entered {fib_calc.input_number} "

 f"which has an existing Fibonacci number of "

 f"{fib_calc.calculated_number}"

Here, you can observe that our interactions with the database are
straightforward.

3. Now we have to make sure that when our request has finished, our
database sessions are expired, closed, and removed using the following
code:

@app.teardown_request

def teardown_request(*args, **kwargs):

 dal.session.expire_all()

 dal.session.remove()

 dal.session.close()

So, we have a safe and fully functioning interaction with our database. You
are now aware of the fundamentals of interacting with a database using our
application. You can achieve other, more complex database queries by
reading the SQLAlchemy documentation about the specifics of the
database, other database queries, and insertions as a way to map syntax. If
we run our application locally and hit our calculation view twice, we will
get the first and second results, as shown in the following screenshot:

Figure 9.5 – The top part is the first request (calculated), and the bottom part is the
second request (database call)

Our database is working the way we expect it to. Now the application is
fully functioning, and you can move on to the next section if you wish, as
this is enough to test Rust code in a Flask application, which we will do in
the next chapter. However, if you want to understand how we apply the
database in our deployment section, we will cover this next.

Applying the database access layer to
the fib calculation view

Adding a database to our deployment is a matter of adding it to our docker-
compose deployment and updating our configuration file to map to the
database service in the docker-compose deployment. We can achieve this by
performing the following steps:

1. First, we have to refactor our deployment/docker-compose.yml file using
the following code:

services:

 flask_app:

 container_name: fib-calculator

 image: "flask-fib:latest"

 restart: always

 ports:

 - "5002:5002"

 expose:

 - 5002

 depends_on:

 - postgres

 links:

 - postgres

 nginx:

 . . .

 postgres:

 container_name: 'fib-live-postgres'

 image: 'postgres:11.2'

 restart: always

 ports:

 - '5432:5432'

 environment:

 - 'POSTGRES_USER=user'

 - 'POSTGRES_DB=fib'

 - 'POSTGRES_PASSWORD=password'

You can observe that we have a slightly different name for our database
container. This is to ensure that there are no clashes with our
development database. Additionally, we have declared that our Flask
application is dependent on and linked to our database.

2. We also have to point our Flask application to the Docker database. To
do this, we have to have a different configuration file for our Flask
application. We can manage the configuration file switch in
src/Dockerfile for the Flask application. This can be done using the
following code:

Copy the current directory contents into the

 container at /app

ADD . /app

RUN rm ./config.yml

RUN mv live_config.yml config.yml

. . .

Here, we remove the config.yml file and then change the filename of
the live_config.yml file to config.yml.

3. Then, we have to make our src/live_config.yml file with the following
content:

DB_URL: "postgresql://user:password@postgres:5432/fib"

Here, we have changed @localhost to @postgres because the
classification of our service is called postgres.

4. Following this, we can rebuild our Flask image using the following
command:

docker build . -t flask-fib

5. Now we can run our docker-compose deployment, but we will have to
run our migrations while our docker-compose deployment is running.
This is because our Flask application will not cause an error if it is out
of sync with the database until we try and make a query to the database,
so running docker-compose before migrating is fine if we make no
requests. When we make the migration, we must do this while the
database in docker-compose is running; otherwise, the migration will not
be able to connect to the database. We can run the migration while
docker-compose is running using the following command:

docker exec -it fib-calculator alembic upgrade head

This runs the migrations on our Flask container. It is not advised that you
only have your live configuration files within your application code. A
favorite method of mine is to upload an encrypted configuration file in
AWS S3 and pull it in Kubernetes as it starts up a pod. This is beyond the
scope of this book, as this is not a web development book. However, it is
important to keep methods such as this in mind for further reading if
needed.

Right now, there is not much to complain about when it comes to
calculating Fibonacci numbers with our Flask application. However, when
we try and calculate a large number, we will be waiting for a long time, and
this will keep the request hanging. To prevent this from occurring, in the
next section, we are going to implement a message bus. This is so that
while our application is processing large numbers in the background, we
can return a message telling the users to be patient.

Building a message bus
For this section, we will be using the Celery and Redis packages to build
and run our message bus. Once we have completed this section, our
mechanism will take a form that is similar to the following:

Figure 9.6 – A message bus with Flask and Celery

As shown in the preceding diagram, we have two processes running. One is
running our Flask application, while the other is running Celery, which
handles queuing and processing tasks. To make this work, we are going to
perform the following steps:

1. Build a Celery broker for Flask.

2. Build a Fibonacci calculation task for Celery.

3. Update our calculation view with Celery.

4. Define our Celery service in Docker.

Before we embark on these steps, we have to install the following packages
using pip:

Celery: This is the message bus broker that we are going to use.

Redis: This is the storage system that Celery is going to use.

Now that we have installed the requirements, we have to remember to
update the src/requirements.txt file with Celery and Redis for our Docker
builds. Now that we have all of our dependencies installed, we can start
building our Celery broker, as demonstrated next.

Building a Celery broker for Flask

Essentially, our Celery broker is a storage system that will store data
concerning the tasks we have sent to it. We can set up our storage system
and connect it to our Celery system using the following steps:

1. We are going to build our own module when building our task queue.
Inside the src/ directory, our task queue module will take the following
structure:

└── task_queue

 ├── __init__.py

 ├── engine.py

 └── fib_calc_task.py

Our engine.py file will host a constructor for Celery that considers the
context of the Flask application.

2. We will build our Fibonacci calculation Celery task in the
fib_calc_task.py file. In our engine.py file, we can build our
constructor using the following code:

from celery import Celery

from config import GlobalParams

def make_celery(flask_app):

 params = GlobalParams()

 celery = Celery(

 backend=params.get("QUEUE_BACKEND"),

 broker=params.get("QUEUE_BROKER")

)

 celery.conf.update(flask_app.config)

 class ContextTask(celery.Task):

 def __call__(self, *args, **kwargs):

 with flask_app.app_context():

 return self.run(*args, **kwargs)

 celery.Task = ContextTask

 return celery

The backend and broker parameters will point to the storage; we will
define them later. Here, you can observe that we must pass the Flask
application into the function, construct the Celery class, and fuse a
Celery task object with the Flask application context and then return it.
When it comes to defining an entry point for running our Celery
process, we should place it in the same file as our Flask application.

This is because we want to use the same Docker build and, thus, image
for the Flask application and Celery process.

3. To achieve this, we import our Celery constructor and pass the Flask
application through it, in the src/app.py file, using the following code:

. . .

from task_queue.engine import make_celery

app = Flask(__name__)

celery = make_celery(app)

. . .

4. Now, when we run our Celery broker, we will point it at our src/app.py
file and the Celery object inside it. Additionally, we must define our
backend storage system. Because we are using Redis, we can define
these parameters in our src/config.yml file using the following code:

QUEUE_BACKEND: "redis://localhost:6379/0"

QUEUE_BROKER: "redis://localhost:6379/0"

Now that we have defined our Celery broker, in the next step, we can build
our Fibonacci calculation task.

Building a Fibonacci calculation task for
Celery

When it comes to running our Celery task, we need to build another
constructor. However, instead of passing in our Flask application, we pass
in our Celery broker. We can achieve this in the
src/task_queue/fib_calc_task.py file using the following code:

from data_access import dal

from fib_calcs.fib_calculation import FibCalculation

from models.database.fib_entry import FibEntry

def create_calculate_fib(input_celery):

 @input_celery.task()

 def calculate_fib(number):

 calculation = FibCalculation(input_number=number)

 fib_entry = FibEntry(

 input_number=calculation.input_number,

 calculated_number=calculation.fib_number

)

 dal.session.add(fib_entry)

 dal.session.commit()

 return calculate_fib

The preceding logic is like our standard calculation view. We can import it
into our src/app.py file and pass our Celery broker to it using the following
code:

. . .

from task_queue.engine import make_celery

app = Flask(__name__)

celery = make_celery(app)

from task_queue.fib_calc_task import create_calculate_fib

calculate_fib = create_calculate_fib(input_celery=celery)

. . .

Now that we have our task defined and fused with our Celery broker and
Flask application, in the next step, we can add our Celery task to the
calculation view if the number is too large.

Updating our calculation view

With our view, we must check to see whether our input number is less than
31 and not in the database. If it is, we run our standard existing code.
However, if the input number is 30 or above, we will send the calculation to
the Celery broker and return a message telling the user that it has been sent
to the queue. We can do this using the following code:

@app.route("/calculate/<int:number>")

def calculate(number):

 fib_calc = dal.session.query(FibEntry).filter_by(

 input_number=number).one_or_none()

 if fib_calc is None:

 if number < 31:

 calc = FibCalculation(input_number=number)

 new_calc = FibEntry(input_number=number,

 calculated_number=calc.

 fib_number)

 dal.session.add(new_calc)

 dal.session.commit()

 return f"you entered {calc.input_number} " \

 f"which has a Fibonacci number of " \

 f"{calc.fib_number}"

 calculate_fib.delay(number)

 return "calculate fib sent to queue because " \

 "it's above 30"

 return f"you entered {fib_calc.input_number} " \

 f"which has an existing Fibonacci number of " \

 f"{fib_calc.calculated_number}"

Now our Celery process with our task has been fully built. In the next step,
we will define our Redis service in docker-compose.

Defining our Celery service in Docker

When it comes to our Celery service, remember that we used Redis as a
storage mechanism. Considering this, we define our Redis service in our
developed docker-compose.yml file using the following code:

. . .

 redis:

 container_name: 'main-dev-redis'

 image: 'redis:5.0.3'

 ports:

 - '6379:6379'

Now running our whole system in develop mode requires running our
developed docker-compose file at the root of our project. Additionally, we
run the Flask application by running our app.py file with Python, where
PYTHONPATH is set to src.

Following this, we open another Terminal window, navigate the Terminal
inside the src directory, and run the following command:

celery -A app.celery worker -l info

This is where we point Celery to the app.py file. We state that the object is
called Celery, that it is a worker, and that the logging is at the info level.
Running this gives us the following printout:

-------------- celery@maxwells-MacBook-Pro.

--- ***** ----- local v5.1.2 (sun-harmonics)

-- ******* ---- Darwin-20.2.0-x86_64-i386-64bit

- *** --- * --- 2021-08-22 23:24:14

- ** ---------- [config]

- ** ---------- .> app: __main__:0x7fd0796d0ed0

- ** ---------- .> transport: redis://localhost:6379/0

- ** ---------- .> results: redis://localhost:6379/0

- *** --- * --- .> concurrency: 4 (prefork)

-- ******* ---- .> task events: OFF (enable -E to

--- ***** ----- monitor tasks in this worker)

-------------- [queues]

 .> celery exchange=celery(direct)

key=celery

[tasks]

 . task_queue.fib_calc_task.calculate_fib

[2021-08-22 23:24:14,385: INFO/MainProcess] Connected

to redis://localhost:6379/0

[2021-08-22 23:24:14,410: INFO/MainProcess] mingle:

searching for neighbors

[2021-08-22 23:24:15,476: INFO/MainProcess] mingle:

all alone

[2021-08-22 23:24:15,514: INFO/MainProcess]

celery@maxwells-MacBook-Pro.local ready.

[2021-08-22 23:24:39,822: INFO/MainProcess]

Task task_queue.fib_calc_task.calculate_fib

[c3241a5f-3208-48f7-9b0a-822c30aef94e] received

The preceding printout shows us that our task has been registered and that
four processes have been spun up. Hitting the calculation view with our
Celery processes using a number higher than 30 gives us the following
view:

Figure 9.7 – The bottom shows the first request with Celery, and the top shows the

second request with Celery

Our Flask application with a database and Celery message bus is now fully
working locally. You can stop here if you wish, as this is enough to test Rust
code in Celery in the next chapter. However, if you want to learn how to
apply Celery to the deployment section, continue with this section.

Applying Celery to our docker-compose deployment is straightforward.
Remember that we have the same entry point, so there is no need for a new
image. Instead, all we have to do is change the command that we run when
spinning up our Celery container. This can be done in our
deployment/docker-compose.yml file using the following code:

. . .

 main_cache:

 container_name: 'main-live-redis'

 image: 'redis:5.0.3'

 ports:

 - '6379:6379'

 queue_worker:

 container_name: fib-worker

 image: "flask-fib:latest"

 restart: always

 entrypoint: "celery -A app.celery worker -l info"

 ports:

 - "5003:5003"

 expose:

 - 5003

 depends_on:

 - main_cache

 links:

 - main_cache

Here, you can observe that we pull the same image for our queue_worker
service. However, we change the CMD tag in our Docker build using the
entrypoint tag in docker-compose. So, when our queue_worker service is
built, it will run the Celery command running the Celery workers, as
opposed to running the Flask web application. Following this, we need to

add some more parameters to our live_config.yml file using the following
code:

QUEUE_BACKEND: "redis://main_cache:6379/0"

QUEUE_BROKER: "redis://main_cache:6379/0"

Here, we have named our Redis service as opposed to the localhost. This is
so that our packaged Celery worker and Flask application will connect to
our Redis service in the docker-compose deployment. After running the
docker-compose deployment, we can repeat the requests demonstrated in
Figure 9.6 with localhost as opposed to 127.0.0.1:5002. With this, our
Flask application is ready to deploy with a database and task queue.
Technically, our setup can be deployed and used on a server. I have done
this, and it works just fine. However, for more advanced systems and
control, it is advised that you carry out some further reading. Additional
references about deploying Flask applications in Docker to cloud services
such as Amazon Web Services are listed in the Further reading section.

Summary
In this chapter, we built a Python Flask application that had access to a
database and message bus to allow the queuing of heavy tasks in the
background. Following this, we wrapped our services in Docker containers
and deployed them in a simple docker-compose file with NGINX.
Additionally, we learned how to build our Celery worker and Flask
application in the same Dockerfile using the same build. This made our
code easier to maintain and deploy. We also managed our migrations for our
database using alembic and a configuration file, which was then switched to

another configuration file when we were deploying our application. While
this is not a web development textbook, we have covered all of the
essentials when it comes to structuring a Flask web application.

Further details regarding database queries, data serialization, or HTML and
CSS rendering are covered, in a straightforward manner, in the Flask
documentation. We have covered all of the difficult stuff. Now, we can
experiment with Rust and how it can be fused with a Python web
application, not just in a development setting but a live setting where the
application is running in a Docker container while communicating with
other Docker containers. In the next chapter, we will fuse Rust with our
Flask application. This is so that it can work with the development and
deployment settings.

Questions
1. What do we change in the URI when we switch from development to

deployment on docker-compose to communicate with another service?

2. Why do we use configuration files?

3. Do we really need alembic to manage the database?

4. What do we have to do to our database engine to ensure our database
does not get flooded with hanging sessions?

5. Do we need Redis for our Celery worker process?

Answers

1. We switch the localhost part of the URI to the tag of the docker-
compose service.

2. Configuration files enable us to switch contexts easily; for instance,
switching from development to live. Additionally, if our Celery service
needs to talk to a different database for some reason, this can be done
with minimal effort; simply changing the configuration file will work. It
is also a security issue. Hardcoding database URIs will expose these
credentials to anyone who has access to the code and will be in the
GitHub repository history. Store the configuration file in a different
space such as AWS S3, which gets pulled when the service is deployed.

3. Technically, no. We can simply write SQL scripts and run them in
sequence. When I was working in financial technology, this was
actually a thing that we had to do. While this can give you more
freedom, it does take more time and is more error-prone. Using alembic
will save you time, errors, and work for pretty much most of your
needs.

4. We initiate our database engine once in the same file where our engine
is defined. We never initiate it again, and we import this initiated engine
anywhere we need. Not doing so will lead to our database to a grinding
halt with dangling sessions and not very helpful error messages that will
have you running around in circles on the internet with vague half-
baked answers. Additionally, we have to close our sessions in the Flask
teardown function for all requests.

5. Yes and no. We require a storage mechanism such as Redis; however,
we can also use RabbitMQ or MongoDB instead of Redis if needed.

Further reading
Nginx HTTP Server – Fourth Edition: Harness the power of Nginx by
Fjordvald M. and Nedelcu C. (2018) (Packt)

The official Flask documentation – Pallets (2021):
https://flask.palletsprojects.com/en/2.0.x/

Hands-On Docker for Microservices with Python by Jaime Buelta
(2019) (Packt)

AWS Certified Developer – Associate Guide – Second Edition by Vipul
Tankariya and Bhavin Parmar (2019) (Packt)

The SQLAlchemy query reference documentation (2021):
https://docs.sqlalchemy.org/en/14/orm/loading_objects.html

https://flask.palletsprojects.com/en/2.0.x/%0D
https://docs.sqlalchemy.org/en/14/orm/loading_objects.html%0D

Chapter 10: Injecting Rust into a Python
Flask App
In Chapter 9, Structuring a Python Flask App for Rust, we set up a basic
Python web application in Flask that could be deployed using Docker. In
this chapter, we are going to fuse Rust into every aspect of that web
application. This means polishing our skills of defining Rust packages that
can be installed using pip. With these packages, we are going to plug Rust
code into our Flask and Celery containers. We are also going to directly
interact with an existing database using Rust, without having to worry about
migrations. This is because our Rust package is going to mirror the schema
of the existing database. We will need a Rust nightly version to compile
our package, so we will also learn how to manage Rust nightly when
building our Flask image. We will also learn how to use Rust packages from
private GitHub repositories.

In this chapter, we will cover the following topics:

Fusing Rust into Flask and Celery

Deploying Flask and Celery with Rust

Deploying with a private GitHub repository

Fusing Rust with data access

Deploying Rust nightly in Flask

Learning about these topics will enable us to use our Rust packages in a
Python web application so that it can be deployed in Docker. This will bring

our Rust skills directly in line with the real world, enabling us to speed up
Python web applications without having to rewrite our entire infrastructure.
If you are a Python web developer, you will be able to turn up to work after
reading this chapter and start injecting Rust into web applications to
introduce fast, safe code without much risk.

Technical requirements
The following are the technical requirements for this chapter:

The code and data for this chapter can be found at
https://github.com/PacktPublishing/Speed-up-your-Python-with-
Rust/tree/main/chapter_ten.

In this chapter, you will be building a Docker-contained Flask
application. This is available via the following GitHub repository:
https://github.com/maxwellflitton/fib-flask.

Fusing Rust into Flask and Celery
We will fuse Rust into our Flask application by installing our Rust
Fibonacci calculation library using pip. We will then use it in our views and
Celery tasks. This will speed up our Flask application without us having to
make big changes to our infrastructure. To achieve this, we will carry out
the following steps:

1. Define our dependency on the Rust Fibonacci number calculation
package.

2. Build our calculation module with Rust.

https://github.com/PacktPublishing/Speed-up-your-Python-with-Rust/tree/main/chapter_ten
https://github.com/maxwellflitton/fib-flask

3. Create a calculation view using Rust in our Flask application.

4. Insert Rust into our Celery task.

With this, we will have a Flask application that has a speedup due to Rust.
Let's get started!

Defining our dependency on the Rust
Fibonacci number calculation package

When it comes to our Rust dependency, it would be tempting to just put our
Rust dependency in our requirements.txt file. However, this can become
confusing. Also, we are using an automated process to update our
requirements.txt file. This runs the risk of wiping our GitHub repositories
from the requirements.txt file. We must remember that our
requirements.txt file is just a text file. Therefore, nothing is stopping us
from just adding another text file that lists our GitHub repositories and
using it to install the GitHub repositories that our application is dependent
on. To do this, we will populate our src/git_repos.txt file with the
following dependency:

git+https://github.com/maxwellflitton/flitton-fib-rs@main

Now, we can install our GitHub repository dependencies with the following
command:

pip install -r git_repos.txt

This will result in our Python system downloading the GitHub repository
and compiling it in our Python packages. We now know which GitHub
repositories are powering our application, so we can start using automation

tools to update our requirements.txt file. Now that we have installed our
Rust package, we can start building a calculation module that will use Rust.

Building our calculation model with Rust

Our calculation module will have the following structure:

src

├── fib_calcs

│ ├── __init__.py

│ ├── enums.py

│ └── fib_calculation.py

We already have our Python calculation in the fib_calculation.py file
from the previous chapter. However, we are now supporting both Rust and
Python implementations.

To do this, we will start by defining an enum in our enums.py file with the
following code:

from enum import Enum

class CalculationMethod(Enum):

 PYTHON = "python"

 RUST = "rust"

With this enum, we can keep adding methods. For instance, if we were to
develop microservices later on and have a separate server for calculating
our Fibonacci numbers, we can add an API call to our enum and support it
in our calculation interface. Depending on the configuration file, we can

switch between all of them. Now that we have defined our enums, we can
build our interface in the src/fib_calcs/__init__.py file:

1. First of all, we have to import what we need with the following code:

import time

from flitton_fib_rs.flitton_fib_rs import \

 fibonacci_number

from fib_calcs.enums import CalculationMethod

from fib_calcs.fib_calculation import FibCalculation

Here, we used the time module to time how long a process takes to run.
We also imported our Python and Rust implementations for our
calculations. Finally, we imported our enum to map which method we
used.

2. With all of this, we can start building the time process function in our
src/fib_calcs/__init__.py file with the following code:

def _time_process(processor, input_number):

 start = time.time()

 calc = processor(input_number)

 finish = time.time()

 time_taken = finish - start

 return calc, time_taken

Here, we took in a calculation function under the processor parameter
name and passed the input_number parameter into the function. We also
timed this process and returned it with the Fibonacci number. Now that
we've done this, we can build a function that processes an input string
and convert that into our enum. We will not always pass a string into

our interface, but if we can load a string signaling what process type we
want from a configuration file, this will be important.

3. Our processing method can be defined with the following code:

def _process_method(input_method):

 calc_enum = CalculationMethod._value2member_map_.

 get(input_method)

 if calc_enum is None:

 raise ValueError(

 f"{input_method} is not supported, "

 f"please choose from "

 f"{CalculationMethod._value2member_map_.keys()}")

 return calc_enum

Here, we can see that our string is stored in the key values of the
_value2member_map_ map. If it is not in the keys, then our enum will not
support it, and the method will throw an error. However, if it exists, we
return the enum associated with the key value.

4. Now, we can define the two helper functions for our interface with the
following code:

def calc_fib_num(input_number, method):

 if isinstance(method, str):

 method = _process_method(input_method=method)

 if method == CalculationMethod.PYTHON:

 calc, time_taken = _time_process(

 processor=FibCalculation,

 input_number=input_number

)

 return calc.fib_number, time_taken

 elif method == CalculationMethod.RUST:

 calc, time_taken = _time_process(

 processor=fibonacci_number,

 input_number=input_number

)

 return calc, time_taken

Here, if we pass in a string for our method, we can convert it into an enum.
If the enum points to Python, we can pass our Python calculation object,
along with the input number, into our _time_process function. Then, we can
return the Fibonacci number and time taken. If our enum points to Rust, we
can perform the same operations but with the Rust function. With this
approach, we can add and take away functionality. For instance, we can
switch the timing process with another parameter that's pointing to another
calculation function that does not time the process, resulting in a process
that just performs the calculation without timing it if we want. However, for
this example, we will be using the timing process to compare speeds. Now
that we have built our interface, we can create our calculation view with
this interface.

Creating a calculation view using Rust

We are hosting our view in the src/app.py file. First, we will import our
interface with the following code:

from fib_calcs import calc_fib_num

from fib_calcs.enums import CalculationMethod

With this new interface and enum, we can make changes to our standard
calculation view with the following code:

@app.route("/calculate/<int:number>")

def calculate(number):

 fib_calc = dal.session.query(FibEntry).filter_by(

 input_number=number).one_or_none()

 if fib_calc is None:

 if number < 50:

 fib_number, time_taken = calc_fib_num(

 input_number=number,

 method=CalculationMethod.PYTHON

)

 . . .

 return f"you entered {number} " \

 f"which has a Fibonacci number of " \

 f"{fib_number} which took {time_taken}"

 . . .

Here, we are using the new interface. Because of this, we can also return the
time taken to perform the calculation. Now, we can build our Rust
calculation view. It will take the same form as the standard calculation view,
meaning that you can refactor it to have the Rust and Python calculation
methods in the same view based on the parameter that's passed into the
URL. If not, our Rust calculation view will take the form of the following
code:

@app.route("/rust/calculate/<int:number>")

def rust_calculate(number):

 . . .

 if fib_calc is None:

 if number < 50:

 fib_number, time_taken = calc_fib_num(

 input_number=number,

 method=CalculationMethod.RUST

)

 . . .

The dots in the aforementioned code show that this is the same code that's
used in the standard calculation function. Now that our Rust package has
been fused with our Flask application, we can insert Rust into our Celery
task.

Inserting Rust into our Celery task

When it comes to our background task in Celery, we do not have to worry
about the timing. Because of the interface and configuration, we have to
import the parameters and interface into the
src/task_queue/fib_calc_task.py file with the following code:

from config import GlobalParams

from fib_calcs import calc_fib_num

With this, we can now refactor our Celery task with the following code:

def create_calculate_fib(input_celery):

 @input_celery.task()

 def calculate_fib(number):

 params = GlobalParams()

 fib_number, _ = calc_fib_num(input_number=number,

 method=params.get(

 "CELERY_METHOD",

 "rust"))

 fib_entry = FibEntry(input_number=number,

 calculated_number=fib_number)

 dal.session.add(fib_entry)

 dal.session.commit()

 return calculate_fib

Here, we can see that we get the global parameters. We pass the
CELERY_METHOD global parameter into the params. Considering that the
parameters are inherited from the dictionary class, we can use the built-in
get method. We can set the default calculation method to rust if we have
not defined CELERY_METHOD in the configuration file.

The application is now fully integrated, which means we can test our
application. We must remember to run our development docker-compose
environment, Flask application, and Celery worker. Accessing our two
views will give us the following output:

Figure 10.1 – Flask, Python, and Rust requests

In the preceding screenshot, we can see that our Rust call is four times
faster, even though the Rust request number is higher. We now have a
working Python application that uses Rust to speed up the calculations.
However, this is not very useful if we cannot deploy it. The internet is full
of half-baked tutorials that teach you how to do something superficially in a
development environment, while not being able to use or configure it in a
production environment. In the next section, we will configure our Docker
environment so that we can deploy our application.

Deploying Flask and Celery with Rust

For our Flask application's Docker image to support our Rust packages, we
need to make some changes to the src/Dockerfile file. Looking at this file,
we can see that our image is built on python:3.6.13-stretch. This is
essentially a Linux environment with Python installed. When we see this,
we realize that we can be confident in manipulating our Docker image
environment. If we can do this in Linux, there is a high chance we can do
this in our Docker image. Considering this, what we must do in our
src/Dockerfile file is install Rust and register cargo with the following
code:

. . .

RUN apt-get update -y

RUN apt-get install -y python3-dev python-dev gcc

setup rust

RUN curl https://sh.rustup.rs -sSf | bash -s -- -y –profile

 minimal –no-modify-path

Add .cargo/bin to PATH

ENV PATH="/root/.cargo/bin:${PATH}"

. . .

Luckily for us, Rust is very easy to install. Remember that the apt-get
install -y python3-dev python-dev gcc command allows us to use
compiled extensions when using Python. Now that we've done this, we can
pull and compile our Rust package with the following code:

. . .

Install the dependencies

RUN pip install --upgrade pip setuptools wheel

RUN pip install -r requirements.txt

RUN pip install -r git_repos.txt

. . .

Everything else is the same. Our image is now ready to be built with the
following command while our terminal is in the root of the src/ directory:

docker build . -t flask-fib

This will rebuild our Docker image for our Flask application. Some bits
might be skipped over in this build. Don't worry – Docker caches the layers
in the image build that have not been changed. This is denoted with the
following printout:

Step 1/14 : FROM python:3.6.13-stretch

---> b45d914a4516

Step 2/14 : WORKDIR /app

---> Using cache

---> b0331f8a005d

Step 3/14 : ADD . /app

---> Using cache

Once a step has been changed, every step following it will be rerun since
the interrupted step might change the outcome of the steps following it.
Note that the build might hang when pip installs our Rust package. This is
because the package is being compiled. You may have noticed that we have
to do this every time we install the Rust package. A more optimal
distribution strategy will be explored in the next chapter. Now, if we run
docker-compose in our deployment directory, we will see that we can use
our Rust Flask container without any problems.

Deploying with a private GitHub
repository
If you are coding for a side project, company, or paid feature, you will be
working with private GitHub repositories. This makes sense as we do not
want people accessing a repository for free that you or your company plans
on charging them for. However, if we set our Rust Fibonacci package's
GitHub repository to private, delete all of our Flask images using the docker
image rm YOUR_IMAGE_ID_HERE command, and run our docker build . -t
flask-fib command again, we would get the following printout:

Collecting git+https://github.com/maxwellflitton/flitton-

fib-rs@main

Running command git clone -q

https://github.com/maxwellflitton/

flitton-fib-rs /tmp/pip-req-build-ctmjnoq0

Cloning https://github.com/maxwellflitton/flitton-fib-rs

(to revision main) to /tmp/pip-req-build-ctmjnoq0

fatal: could not read Username for 'https://github.com':

No such device or address

This is because our isolated Linux-based Docker image that is being built is
not logged into GitHub, even though we are. As a result, the image that's
being built could not pull the package from the GitHub repository. We
could pass our GitHub credentials into the build via arguments, but this will
show up in the image build layers. Therefore, anyone who has access to our
image could look and see our GitHub credentials. This is a security hazard.
Docker does have some documentation on passing in secrets. However, at

the time of writing this book, the documentation is sparse and convoluted.
A more straightforward approach is to clone our flitton-fib-rs package
outside the image and pass it into the Docker image build, as shown here:

Figure 10.2 – Private repository image build flow

If we are going to use a continuous integration tool such as GitHub Actions
or Travis, then we can run the process laid out in the preceding diagram
with GitHub credentials passed in as secrets. GitHub Actions and Travis
handle secrets with efficiency and simplicity. If we are building it locally, as
we are doing in this example, then we should already be logged into GitHub
as we are directly working on the Flask project in this project. To carry out
the process laid out in the preceding diagram, we must carry out the
following steps:

1. Build a Bash script that orchestrates the process depicted in the
preceding diagram.

2. Reconfigure our Rust Fib package installment in our Dockerfile.

This is the most straightforward approach to using private GitHub
repositories in our web application builds. We will start by looking at the
Bash script.

Building a Bash script that orchestrates
the whole process

Our script is housed in src/build_image.sh. First, we must declare that this
is a Bash script and that the code should run in the directory of the Flask
application. To do so, we must change to the directory that contains the
script with the following code:

#!/usr/bin/env bash

SCRIPTPATH="$(cd "$(dirname "$0")" ; pwd -P)"

cd $SCRIPTPATH

Now, we have to clone our package and remove our .git file from the
repository with the following code:

git clone https://github.com/maxwellflitton/flitton-fib-

 rs.git

rm -rf ./flitton-fib-rs/.git

Now, our package is just a directory. We are ready to build our Docker
image. However, if we do so, it might not work because our files might be
cached. To prevent this from happening, we can run our build with no cache
and then remove our cloned package after the build with the following
code:

docker build . --no-cache -t flask-fib

rm -rf ./flitton-fib-rs

We will have to run this script to run a build of our Flask application.
However, if we were to run a build now, it would not work as our
Dockerfile will still be trying to pull the directory from GitHub. To fix this,
we will move on to the second step.

Reconfiguring the Rust Fib package
installment in our Dockerfi le

In our src/Dockerfile file, we must remove the RUN pip install -r
git_repos.txt line as this will stop our image build from trying to pull
from the GitHub repository. Now, we can pip install the local directory
that has been passed in, and then remove it with the following code:

RUN pip install ./flitton-fib-rs

RUN rm -rf ./flitton-fib-rs

Now, we can build our Flask image by running the following command:

sh build_image.sh

This will result in a long printout that will eventually tell us that the image
was successfully built. Running our deployment docker-compose file will
confirm this. You may want to install our package from a different Git
branch. This can be done by adding three more lines to our
src/build_image.sh file, as shown here:

. . .

git clone –branch $1

 https://github.com/maxwellflitton/flitton-fib-rs.git

cd flitton-fib-rs

cd ..

rm -rf ./flitton-fib-rs/.git

. . .

Here, we cloned the repository containing the branch, whose name is based
on the argument that's passed into the script. Once we've done this, we can
remove the Git history by removing the .git file.

Our Rust package is now fully fused with our Python web application in
Docker. One bonus of installing our Rust package when building an image
is that it does not have to be compiled every time we use the image.

NOTE
We can go one step further when it comes to reducing our build, though this is optional. You
do not have to do this to complete this chapter. Right now, we are installing Rust and then
compiling our Rust Python package for the Fibonacci calculations. We can avoid the need
to install Rust and compile every time by building wheels for a range of Linux distributions

and Python versions. This can be done by pulling the ManyLinux Docker images and using
them to compile our package into multiple distributions.

The detailed steps on how to do this to your Python pip package coded in Rust are laid out

in the Rust setup tools documentation (see the Further reading section). Once those steps
are completed, you will end up with a range of wheels in your dist directory. Copy and

paste the 3.6 version into your Flask src directory and instruct your Dockerfile to copy it

into the image when it is being built. Once you've done this, you can point the pip

install command directly to the wheel file you copied into the image build. The

installation will be nearly instant.

While fusing Rust with our Flask application is certainly useful, since we
now have a real-world example of how our Rust code can be used in a
deployment setting, we can go even further. In the next section, we will
have our Rust code interact with our database.

Fusing Rust with data access
In web applications, accessing a database is a big part of the process. We
could import the dal object that we created in the src/data_access.py file
and pass it into our Rust function, executing database operations through
Python. While this will technically work, it is not ideal as we will have to
waste time and effort extracting objects from the database queries,
inspecting them, and converting them into Rust structs. We would then have
to convert the Rust structs into Python objects before inserting them into the
database. This is a lot of excess code that has a lot of interaction with
Python, reducing its speed gain.

Because a database is external from the Python web application, and it
contains information about its schema, we can completely bypass Python's
implementations by using the diesel Rust crate to automatically write our

schema and database models in Rust based on the live database. We can
also use diesel to manage the connection to the database. As a result, we
can directly interact with the database, reducing our reliance on Python,
speeding up our code, and reducing the amount of code that we have to
write. To achieve this, we have to carry out the following steps:

1. Set up our database cloning package.

2. Set up our diesel environment.

3. Autogenerate and configure our database models and schema.

4. Define our database connection in Rust.

5. Create a Rust function that gets all the Fibonacci records and returns
them.

Once we have completed these steps, we will have a Rust package that
interacts with the database that can be added to our Flask application build
and used if needed. We will start by setting up our database cloning
package.

Setting up our database cloning package

We should now be familiar with setting up a standard Rust package for
Python. For our database package, we will have the following layout:

├── Cargo.toml

├── diesel.toml

├── rust_db_cloning

│ └── __init__.py

├── setup.py

├── src

│ ├── database.rs

│ ├── lib.rs

│ ├── models.rs

│ └── schema.rs

├── .env

You should know the role of some of these files by now. The new files have
the following purposes:

database.rs: Houses the function that returns a database connection

models.rs: Houses the structs that define the database models, fields,
and the behavior of the individual rows of a table in the database

schema.rs: Houses the schema of the tables of the database

.env: Houses the database URL for our command-line interface (CLI)
interactions

Diesel.toml: Houses the configuration for our diesel CLI

Now, we can turn our attention to the setup.py file. Looking at the package
layout, you should be able to define this file yourself, and I encourage you
to give it a try. Here is an example of the barebones setup.py file that is
needed to enable this package to be installed with pip:

#!/usr/bin/env python

from setuptools import dist

dist.Distribution().fetch_build_eggs(['setuptools_rust'])

from setuptools import setup

from setuptools_rust import Binding, RustExtension

setup(

 name="rust-database-cloning",

 version="0.1",

 rust_extensions=[RustExtension(

 ".rust_db_cloning.rust_db_cloning",

 path="Cargo.toml", binding=Binding.PyO3)],

 packages=["rust_db_cloning"],

 zip_safe=False,

)

With this, our rust_db_cloning/__init__.py file contains the following
code:

from .rust_db_cloning import *

Now, we can move onto our Cargo.toml file, which will list some
dependencies that you are familiar with, as well as the new diesel
dependency:

[package]

name = "rust_db_cloning"

version = "0.1.0"

authors = ["maxwellflitton"]

edition = "2018"

[dependencies]

diesel = { version = "1.4.4", features = ["postgres"] }

dotenv = "0.15.0"

[lib]

name = "rust_db_cloning"

crate-type = ["cdylib"]

[dependencies.pyo3]

version = "0.13.2"

features = ["extension-module"]

With that, we have defined the basics for our package to be installed via
pip. It will not be installed yet as we have nothing in our src/lib.rs file,
but we will fill that file out in the final step. Now, we can move on to the
next step, which is setting up our diesel environment.

Setting up the diesel environment

We will be cloning our schema from our development database so that we
can hardcode the URL into our .env file, as follows:

DATABASE_URL=postgresql://user:password@localhost:5432/fib

Since this database configuration will never end up in a production
environment and is merely used to generate the schema and models from a
development database, it is OK if this URL gets into the wrong hands.
Having this hardcoded into your GitHub repository is not the end of the
world. With this in mind, we can define where we want our schema to be
printed in our diesel.toml file with the following code:

[print_schema]

file = "src/schema.rs"

Now that we have written everything we need, we can start installing and
running the diesel CLI. You may get compilation errors when installing

and compiling diesel. If this is the case while you are reading this, you can
get around these compilation errors by switching to Rust nightly. Rust
nightly provides the latest releases of Rust; however, it is less stable.
Therefore, you should try and follow these steps without switching to
nightly but if you find that you need to, then you can switch to nightly by
installing it with the following code:

rustup toolchain install nightly

Once it has been installed, we can switch to nightly with the following
command:

rustup default nightly

Your Rust compilations will be running in nightly now. Going back to
setting up our diesel environment, we have to install the diesel CLI with
the following command:

cargo install diesel_cli --no-default-features

--features postgres

With this, we can now use the CLI combined with the URL in the .env file
to interact with our database.

Autogenerating and configuring our
database models and schema

In this step, we will be interacting with the development database in
Docker. Considering this, before moving on, you need to open another
terminal and run the development docker-compose environment in the
flask-fib repository. Running this will run the database that we will

connect to so that we can access the database schema and models. Now that
the CLI has been installed, we can print the schema with the following
command:

diesel print-schema > src/schema.rs

There will be no printouts in the terminal but if we open our src/schema.rs
file, we will see the following code:

table! {

 alembic_version (version_num) {

 version_num -> Varchar,

 }

}

table! {

 fib_entries (id) {

 id -> Int4,

 input_number -> Nullable<Int4>,

 calculated_number -> Nullable<Int4>,

 }

}

allow_tables_to_appear_in_same_query!(

 alembic_version,

 fib_entries,

);

Here, we can see that our alembic version is in the schema as a separate
table. This is how alembic keeps track of the migrations. We can also see
that our fib_entries table has been mapped. While we could have done this

ourselves without the diesel CLI, it is a lifesaver, ensuring that the schema
is always up to date with the database. This also saves time in big, complex
databases and reduces errors.

Now that our schema has been defined, we can define our models with the
following command:

diesel_ext > src/models.rs

This gives us the following code:

#![allow(unused)]

#![allow(clippy::all)]

#[derive(Queryable, Debug, Identifiable)]

#[primary_key(version_num)]

pub struct AlembicVersion {

 pub version_num: String,

}

#[derive(Queryable, Debug)]

pub struct FibEntry {

 pub id: i32,

 pub input_number: Option<i32>,

 pub calculated_number: Option<i32>,

}

This is not completely perfect, and we have to make some changes. The
models do not have the tables defined. diesel assumes that the table name
is just the plural of the model's name. For instance, if we have a data model
called test, then diesel would assume that the table is called tests. However,
for us, this is not the case as we specifically defined our tables in our Flask

application when running migrations in the previous chapter. We can also
remove the two allow macros as we will not be using this functionality.
Instead, we will import our schemas and define them in the table macro.
After this rearrangement, our src/models.rs file should look like this:

use crate::schema::fib_entries;

use crate::schema::alembic_version;

#[derive(Queryable, Debug, Identifiable)]

#[primary_key(version_num)]

#[table_name="alembic_version"]

pub struct AlembicVersion {

 pub version_num: String,

}

#[derive(Queryable, Debug, Identifiable)]

#[table_name="fib_entries"]

pub struct FibEntry {

 pub id: i32,

 pub input_number: Option<i32>,

 pub calculated_number: Option<i32>,

}

Our models and schema are now ready to be used in our Rust package.
Considering this, we can move on to the next step, which is defining our
database connection.

Defining our database connection in Rust

Our database connection would traditionally take the database URL from
the environment and use this to make a connection. However, this is a Rust
package that is an appendage to our Flask application. There is no point in
having another sensitive piece of information that has to be loaded.
Therefore, to avoid extra complications and another point of security
failure, we will merely pass the database URL from the Flask application to
make the connection, since the Flask application is managing the
configuration and loading the sensitive data anyway. The entirety of our
database connection can be handled in our src/database.rs file. First, we
must import what we need with the following code:

use diesel::prelude::*;

use diesel::pg::PgConnection;

prelude helps us use the diesel macros, and PgConnection is what we will
return to get a database connection. With this, we can build our database
connection function with the following code:

pub fn establish_connection(url: String) -> PgConnection {

 PgConnection::establish(&url)

 .expect(&format!("Error connecting to {}", url))

}

This can be imported anywhere where we need a database connection. At
this point, we can start creating a function that gets all the records and
returns them in dictionaries.

Creating a Rust function that gets all the
Fibonacci records and returns them

To avoid excessive complexity in this example, we will be doing everything
in the src/lib.rs file. However, it is advised that you build some modules
and import them into the src/lib.rs file for more complex packages. First
of all, we will import everything we need to build the function and bind it
with the following code:

#[macro_use] extern crate diesel;

extern crate dotenv;

use diesel::prelude::*;

use pyo3::prelude::*;

use pyo3::wrap_pyfunction;

use pyo3::types::PyDict;

mod database;

mod schema;

mod models;

use database::establish_connection;

use models::FibEntry;

use schema::fib_entries;

The order of the imports matters here. We import the diesel crate with
macro use straightaway. Therefore, files such as database and schema will
not error out because they are using diesel macros. dotenv is not being
used in our example as we are passing in the database URL from the Python
system. However, it's useful to know about this if you want to get database
URLs from the environment. Then, we can import the pyo3 macros and
structs that we need, and the structs and functions that we defined. With

these imports, we can define our get_fib_entries function with the
following code:

#[pyfunction]

fn get_fib_entries(url: String, py: Python) -> Vec<&PyDict>

{

 let connection = establish_connection(url);

 let fibs = fib_entries::table

 .order(fib_entries::columns::input_number.asc())

 .load::<FibEntry>(&connection)

 .unwrap();

 let mut buffer = Vec::new();

 for i in fibs {

 let placeholder = PyDict::new(py);

 placeholder.set_item("input number",

 i.input_number.unwrap());

 placeholder.set_item("fib number",

 i.calculated_number.unwrap());

 buffer.push(placeholder);

 }

}

Using Python to build a list of dictionaries is not new, and neither is the
definition of the function. What is new, however, is establishing a
connection, ordering it using the schema columns, and loading it as a list of
FibEntry structs. We pass a reference to the connection into our query and

unwrap it as it returns a result. We can chain more functions to it, such as
.filter, if needed. The diesel documentation does a good job of covering
the different types of queries and inserts you can perform. Once we've done
this, we can add it to our rust_db_cloning module with the following code:

#[pymodule]

fn rust_db_cloning(py: Python, m: &PyModule)

 -> PyResult<()> {

 m.add_wrapped(wrap_pyfunction!(get_fib_enteries));

 Ok(())

}

With this, our code is ready to be uploaded to the GitHub repository and
used in our Flask application.

Now, we can quickly test whether our package works before defining it in
our Dockerfile. First of all, we need to pip install it in our Flask
application virtual environment. This is another point where you might have
compilation issues. To get around this, you might have to switch to Rust
nightly to pip install the package you just built. Once our package has
been installed, we can check it out by adding a simple get view to our Flask
application. In the src/app.py file of our Flask application, we can import
our function with the following code:

from rust_db_cloning import get_fib_entries

Now, we can define our get view with the following code:

@app.route("/get")

def get():

 return str(get_fib_entries(dal.url))

Remember that in the previous chapter, we defined the url attribute of dal
with the URL from GlobalParams, which was loaded from the .yml config
file. We have to turn it into a string; otherwise, the Flask serialization will
not be able to process it. Running this in the development docker-compose
environment will give us the following output:

Figure 10.3 – Simple get view from our Flask application

You may have different numbers, depending on what you have in your
database. However, what we have here is a Rust package that keeps up with
the changes in the database that can interact directly with the database. Now
that this is working in our development setup, we can start packaging our
Rust nightly package for deployment.

Deploying Rust nightly in Flask
To package our nightly database Rust package so that it can be deployed,
we have to add another clone of our GitHub repository to our build Bash
script, install nightly, and switch to it when we are installing our database
package with pip. You can probably guess what we are going to achieve by
cloning our database GitHub repository in our Bash script.

For reference, our src/build_image.sh file will take the form of the
following code:

. . .

git clone https://github.com/maxwellflitton/

flitton-fib-rs.git

git clone https://github.com/maxwellflitton/

rust-db-cloning.git

rm -rf ./flitton-fib-rs/.git

rm -rf ./rust-db-cloning/.git

docker build . --no-cache -t flask-fib

rm -rf ./flitton-fib-rs

rm -rf ./rust-db-cloning

Here, we can see that we have merely added the code for cloning the rust-
db-cloning repository, removed the .git file in that rust-db-cloning
repository, and then removed the rust-db-cloning repository once the
image build has finished. When it comes to our Dockerfile, these steps will
remain the same. The only difference is that after installing our normal Rust
package, we install nightly, switch to it, and then install our database
package. This can be achieved with the following code:

. . .

RUN pip install ./flitton-fib-rs

RUN rm -rf ./flitton-fib-rs

RUN rustup toolchain install nightly

RUN rustup default nightly

RUN pip install ./rust-db-cloning

RUN rm -rf ./rust-db-cloning

. . .

Even though one is compiled with normal Rust, while the other is compiled
with Rust nightly, they will both run fine when the application is running.
Building this image and running it in the deployment docker-compose
environment will show us that the container will process the Rust
computation view and get it from the database view without any problems.
With this, we now have all the tools we need to fuse Rust into Python web
applications and deploy them in Docker.

Summary
In this chapter, we have put all our Rust fusing skills to work to build
packages that are baked into Docker images for a Python web application.
We attached Rust packages directly to the web application, and then to the
Celery worker, resulting in a significant speedup when we asked our web
application to calculate the Fibonacci number.

Then, we altered our build process to take Rust packages from private
GitHub repositories when building our Python web application image.
Finally, we connected directly to the database with Rust and used Rust
nightly to compile it. We managed to include this in our Python web
application Docker build. This resulted in us not only being able to fuse
Rust into a deployable web application but also use Rust nightly and
databases to solve our problems

With this in mind, we can now use what we have learned in this book for
production web applications. You can now start coding in Rust and plug

your Rust packages into existing Python web applications that can be
deployed in Docker, without having to make major changes to the Python
web application build process.

Reaching for Rust to solve a speed bottleneck or to ensure that the code is
consistent and safe in a live Python web application is something you can
do in your day job tomorrow. You can now bring forward the fastest
memory-safe programming language into your Python projects without
having to overhaul your existing system. You are now capable of bridging
the gap between practically maintaining an existing tried and tested system
and a cutting-edge language. In the next and final chapter, we will cover
some best practices. But right now, you know the key concepts to go and
change your project or organization.

Questions
1. How does directly connecting to a database in Rust reduce code?

2. Why can't we just pass login credentials into our Docker image build
Dockerfile?

3. We did not make any migrations in this chapter. How did we map our
models and schema of a database to our Rust module, and how do we
continue to keep up with database changes?

4. Why do we pass the database URL into our database Rust package as
opposed to loading it from a config file or environment?

5. Do we have to do anything extra if we were going to fuse Rust with a
Django, bottle, or FastAPI Python web application?

Answers
1. Directly connecting to a database with Rust reduces the amount of code

we must write as we do not have to inspect the Python objects that are
returned from the Python database call. We also do not have to package
data into Python objects before inserting them into the database. This
essentially removes a whole layer of code that we must write when
interacting with the database.

2. If someone gets hold of our image, they can access the layers of the
build. As a result, they can access the arguments that have been passed
into the build. This will mean that they can see the credentials we use to
log in.

3. We used the diesel crate to connect to the database and automatically
print the schemas and models based on the database it connects to. We
can do this repeatedly to keep up to date with new database migrations.

4. We must remember that our Rust database package is an appendage to
our Python web application. Our Python web application has already
loaded the database URL. Loading credentials into our package just
adds another possibility for a security breach with no advantages.

5. No – our fusing method is completely detached from the pip installation
process and the database mapping process.

Further reading
Diesel documentation for Rust (2021): Crate Diesel: https://diesel.rs

https://diesel.rs/

Setup tools Rust documentation (2021): Distributing a Rust Python
package with wheels: https://pypi.org/project/setuptools-rust/

ManyLinux GitHub (2021): https://github.com/pypa/manylinux

https://pypi.org/project/setuptools-rust/
https://github.com/pypa/manylinux%0D

Chapter 11: Best Practices for Integrating
Rust
In Chapter 10, Injecting Rust into a Python Flask App, we managed to fuse
our Rust code with a Python web application. In this final chapter, we will
wrap up what we have covered in the book with best practices. These
practices are not essential to fuse Rust with Python; however, they will help
us in avoiding pitfalls when building bigger packages in Rust. When it
comes to best practices, we can Google search the topic SOLID principles,
which will give us loads of free information on how to keep code generally
clean. But instead of regurgitating these principles, we will cover concepts
that are specific to using Rust and Python together. We will learn how to
keep the Rust/Python implementation as simple as possible if the
requirements are not too demanding. We will also understand what Python
and Rust excel in when it comes to computational tasks and Python
interfaces. We then investigate traits in Rust and how they can help us
organize and structure our structs. Finally, we look into keeping it simple
when we want data parallelism with the Rayon crate.

In this chapter, we will cover the following topics:

Keeping our Rust implementation simple by piping data to and from
Rust

Giving the interface a native feel with objects

Using traits as opposed to objects

Keeping data-parallelism simple with Rayon

Covering these topics will enable us to avoid pitfalls when building bigger
packages that are more complex. We will also be able to build Rust
solutions for smaller projects faster as we will learn that we do not have to
rely on Python setup tools and installation with pip.

Technical requirements
The code and data for this chapter can be found at the following link:

https://github.com/PacktPublishing/Speed-up-your-Python-with-
Rust/tree/main/chapter_eleven

Keeping our Rust implementation simple
by piping data to and from Rust
We have covered everything we need to integrate Rust into our Python
system. We can build Rust packages that can be installed using pip and use
them in Docker when integrating with a web application. However,
reaching for a setup tool can be too much effort if the problem being solved
is small and simple. For instance, if in a situation we were merely opening a
comma-separated values (CSV) file full of numbers in Python, calculating
the Fibonacci numbers, and then writing them in another file, then it would
make sense to just write the program in Rust. However, we do not start
building a Rust package with Python setup tools if we have a more
complicated Python standalone script that just needs a simple speedup with
Rust—it is still just a standalone script. Instead, we pipe data. This means
we pass data from a Python script to a Rust standalone binary and back to a
Python script for computing Fibonacci numbers, as shown here:

https://github.com/PacktPublishing/Speed-up-your-Python-with-Rust/tree/main/chapter_eleven

Figure 11.1 – Process of a basic pipeline

To achieve the same speed as the Rust Fibonacci calculation package
without having to use any setup tools, we must carry out the following
steps:

1. Build a Python script that formulates the numbers for calculation.

2. Build a Rust file that accepts the numbers, calculates the Fibonacci
numbers, and returns the calculated numbers.

3. Build another Python script that accepts the calculated numbers and
prints them out.

With this, we will be able to have a simple pipeline. While each file is
isolated and we can build in any order, it makes sense to start with Step 1.

Building a Python script that formulates
the numbers for calculation

For this example, we will just hardcode the input numbers that we are
passing into our pipeline, but nothing is stopping you from reading your

data from files or taking in numbers from command-line arguments. In our
input.py file, we can write to stdout with the following code:

import sys

sys.stdout.write("5\n")

sys.stdout.write("6\n")

sys.stdout.write("7\n")

sys.stdout.write("8\n")

sys.stdout.write("9\n")

sys.stdout.write("10\n")

With this, if we run this script with the Python interpreter, we get the
following output:

$ python input.py

5

6

7

8

9

10

With this, we can now move on to the next step.

Building a Rust fi le that accepts the
numbers, calculates the Fibonacci
numbers, and returns the calculated
numbers

For our Rust file, we must have everything contained in the file to keep it as
simple as possible. We can span it over multiple files if needed, but for a
simple calculation, keeping it all in one file is good enough. In our fib.rs
file, we initially import what we need and define our Fibonacci function
with the following code:

use std::io;

use std::io::prelude::*;

pub fn fibonacci_reccursive(n: i32) -> u64 {

 match n {

 1 | 2 => 1,

 _ => fibonacci_reccursive(n - 1) +

 fibonacci_reccursive(n - 2)

 }

}

Here, we can see that there is nothing new; we are merely going to use
std::io to get the numbers piped into the file, and then calculate the
Fibonacci number, sending it to the next file in the pipeline with the
following main function:

fn main() {

 let stdin = io::stdin();

 let stdout = std::io::stdout();

 let mut writer = stdout.lock();

 for line in stdin.lock().lines() {

 let input_int: i32 = line.unwrap().parse::<i32>() \

 .unwrap();

 let fib_number = fibonacci_reccursive(input_int);

 writeln!(writer, "{}", fib_number);

 }

}

Here, we can see that we define stdin to receive the numbers sent to the
Rust program, and stdout to send out the calculated Fibonacci numbers. We
then loop through the lines sent into the Rust program and then parse each
line at an integer. We then calculate the Fibonacci number and then send it
using the macro that we imported with the io prelude. With this, we can
now compile our Rust file with the following command:

rustc fib.rs

This will compile our Rust file. We can now run both files, piping the data
from the Python file to the compiled Rust code with the following
command:

$ python input.py | ./fib

5

8

13

21

34

55

Here, we can see that the numbers from the python input.py command get
piped into the Rust code returning the calculated Fibonacci numbers. With
this, we can now move on to the final step, where we get the calculated
Fibonacci numbers from the Rust code and print them out.

Building another Python script that
accepts the calculated numbers and
prints them out

Our output.py file is very straightforward. It takes the following form:

import sys

for i in sys.stdin.readlines():

 try:

 processed_number = int(i)

 print(f"receiving: {processed_number}")

 except ValueError:

 pass

We have a try block because the start and the end of the data passed into
the last Python script will have empty lines, and they will fail when we try
to convert them into integers. We then print out the data with "receiving:
{processed_number}" added to the last script to make it clear that it is the
output.py file printing out the numbers. This gives us the printout, as
follows:

$ python input.py | ./fib | python output.py

receiving: 5

receiving: 8

receiving: 13

receiving: 21

receiving: 34

receiving: 55

We can time how long it takes for the pipeline to run using the time
command. If we compare this to pure Python with the example numbers
that we have used, pure Python will be faster. However, we know that Rust
is much faster than pure Python code. Because the input/output (I/O)
operations take time, it is not worth implementing the pipeline if you are
going to calculate one or two small numbers. However, to demonstrate the
value of our approach, we can write the following pure Python code in the
pure_python.py file:

def recur_fib(n: int) -> int:

 if n <= 2:

 return 1

 else:

 return (recur_fib(n - 1) +

 recur_fib(n - 2))

for i in [5, 6, 7, 8, 9, 10, 15, 20, 25, 30]:

 print(recur_fib(i))

This gives us the following printout:

$ time python pure_python.py

5

8

13

21

34

55

610

6765

75025

832040

real 0m0.315s

user 0m0.240s

sys 0m0.027s

Adding the same numbers to the pipeline gives us the following printout:

$ time python input.py | ./fib | python output.py

receiving: 5

receiving: 8

receiving: 13

receiving: 21

receiving: 34

receiving: 55

receiving: 610

receiving: 6765

receiving: 75025

receiving: 832040

real 0m0.054s

user 0m0.050s

sys 0m0.025s

Here, we can see that our pipeline is much faster. The gap between Rust and
pure Python will just get larger as the numbers increase and become more
numerous. We can see here that this is a lot easier with fewer moving parts.

If our program is simple, then we keep the construction and use of Rust
simple.

Giving the interface a native feel with
objects
Python is an object-oriented language. When we are building our Rust
packages, we need to keep the friction of adoption low. The adoption of
Rust packages would be better if we keep our interfaces as objects. Most
Python packages have object interfaces. Calculations are done with inputs,
and the Python object has a range of functions and attributes that give us the
results of those calculations. While we did cover creating classes in Rust
with pyo3 macros in Chapter 6, Working with Python Objects in Rust, in the
Constructing our custom Python objects in Rust section, it is advised that
we understand the pros and cons of doing this. We remember that classes
written in Rust are faster. However, the freedom of inheritance and
metaclassing with pure Python is useful. As a result, it is best to leave the
construction and organization of the object interface in pure Python. Any
calculations that need to be done can be done in Rust. To demonstrate this,
we can use the simple physics example of a particle's two-dimensional
(2D) trajectory, as seen in the following screenshot:

Figure 11.2 – Simple 2D physics trajectory

Here, we can see that the initial velocity is denoted as V0. The projection on
the x axis is denoted by Vx, and the projection on the y axis is denoted by
Vy. The dashed line is the particle at every point in time. Time here is
another dimension. Our equations for each position in time and the endpoint
in time (when it hits the ground) are defined as follows:

Here, g is the constant for gravity. We also want to know the position of the
particle at a certain point in time. We do this by calculating the last point in
time, then looping through all the time points between zero and the last
point in time, calculating the x and y coordinates. All we would need is the
initial velocity in x and y. The loop through with the position calculations
would all be done in Rust. The dictionary where all the keys are all the
times and all the values are tuples of x and y is housed in the Python object.
We could write one function that processes all the times and returns a
dictionary in Rust called calculate_coordinates. Using it in our Python
class would look like this:

from rust_package import calculate_coordinates

class Particle:

 def __init__(self, v_x, v_y):

 self.co_dict = calculate_coordinates(v_x, v_y)

 def get_position(self, time) -> tuple:

 return self.co_dict[time]

 @property

 def times(self):

 return list(self.co_dict.keys())

The user would just have to import the Particle object, initialize it with the
initial velocity in the x and y coordinates, and then input times to get the
coordinates. To plot all the positions for a particle, we would use our class
with the following code:

from . . . import Particle

particle = Particle(20, 30)

x_positions = []

y_positions = []

for t in particle.times:

 x, y = particle.get_position(t)

 x_positions.append(x)

 y_positions.append(y)

This is intuitive to Python. We have kept all our number crunching in Rust
to get that speed, but we have managed to keep all of our interfaces,
including accessing times and positions in Python. As a result, a developer
using this package would not know that it is written in Rust—they would
just appreciate that it is fast. We can drive home the benefits of keeping the
formation and access to data 100% in Python while doing all the
calculations in Rust with metaclassing.

In our particle system, we could load a lot of data for the initial velocities of
particles. As a result, our system would calculate the trajectories for a range
of particles that we load. However, if we load two particles with the same
initial velocities, they will both have the same trajectories. Considering this,
it would not make sense for us to calculate the trajectory for both particles.
To avoid this, we do not need to store anything in a file or database for

reference; we just need to implement a flyweight design pattern. This is
where we check the parameters passed into the object. If they are the same
as the previous instance, we just return the previous instance. The flyweight
pattern is defined with the following code:

class FlyWeight(type):

 _instances = {}

 def __call__(cls, *args, **kwargs):

 key = str(args[0]) + str(args[1])

 if key not in cls._instances:

 cls._instances[key] = super(\

 FlyWeight, cls).__call__(*args, **kwargs)

 return cls._instances[key]

Here, we can see that we combine the initial velocities to define a key, and
then check to see if there is already an instance with these velocities. If
there is, we return the instance from our _instances dictionary. If not, we
create a new instance and insert it into our _instances dictionary. Our
particles will then take the form of the following code:

class Particle(metaclass=FlyWeight):

 def __init__(self, v_x, v_y):

 self.co_dict = calculate_coordinates(v_x, v_y)

 def get_position(self, time) -> tuple:

 return self.co_dict[time]

 @property

 def times(self):

 return list(self.co_dict.keys())

Here, our particles will now adhere to the flyweight pattern. We can test this
with the following code:

test = Particle(4, 6)

test_two = Particle(3, 8)

test_three = Particle(4, 6)

print(id(test))

print(id(test_three))

print(id(test_two))

Running this will give us the following printout:

140579826787152

140579826787152

140579826787280

Here, we can see that the two particles that have the same initial velocities
have the same memory address, so it works.

We can initialize these particles anywhere and this design pattern will apply,
ensuring that we do not perform duplicate calculations. Considering that we
are writing Python extensions in Rust, the flyweight pattern really shows us
how much control we get with how the interface is called, used, and
displayed. Even though we have built our interfaces in Python, this does not
mean that we do not have to structure our Rust code. This brings us on to

the next section, in which we discuss how to lean into traits as opposed to
objects when it comes to structuring our Rust code.

Using traits as opposed to objects

As a Python developer, it is tempting to build structs that inherit via the
composition of other structs. Object-oriented programming (OOP) is
well supported in Python; however, there are many reasons why Rust is
favored, and one of them is traits. As seen in the following screenshot, traits
enable us to separate data from behavior:

Figure 11.3 – Difference between traits and objects

This gives us a lot of flexibility as the data and behavior are decoupled,
enabling us to slot behavior in and out of structs as we need. Structs can
have a portfolio of traits without giving us disadvantages arising from
multiple inheritance. To demonstrate this, we are going to create a basic
doctor, patient, nurse program so that we can see how different structs can
have different traits, allowing them to move through functions. We are
going to see how traits affect the way we lay out code over multiple files.
Our program will have the following layout:

├── Cargo.toml

├── src

│ ├── actions.rs

│ ├── main.rs

│ ├── objects.rs

│ ├── people.rs

│ └── traits.rs

With this structure, the flow of our code will take the following form:

Figure 11.4 – Code flow of a simple trait-based program

With this, we can see that our code is decoupled. Our traits go into all the
other files to define the behavior of those files. To build this program, we
must carry out the following steps:

Defining traits—building traits for our structs

Defining struct behavior with traits

Passing traits through functions

Storing structs with common traits

Running our program in the main.rs file.

With this, we can start by defining our traits in the first subsection.

Defining traits

Before we start defining traits, we must conceptualize the types of people in
our program that we are defining behavior for. They are laid out as follows:

Patient: This person does not have any clinical skills, but actions are
performed on them.

Nurse: This person has clinical skills but cannot prescribe or diagnose.

Nurse practitioner: This person has clinical skills and can prescribe
but cannot diagnose.

Advanced nurse practitioner: This person has clinical skills and can
prescribe and diagnose.

Doctor: This person has clinical skills and can prescribe and diagnose.

What we can see here is that they are all humans. Therefore, they are all
able to speak and introduce themselves. So, in our traits.rs file, we can
create a Speak trait with the following code:

pub trait Speak {

 fn introduce(&self) -> ();

}

If a struct implements this trait, it will have to create its own introduce
function with the same return and input parameters. We can also see that
everyone apart from the patient has clinical skills. To accommodate this, we
can implement a clinical skills trait with the following code:

pub trait ClinicalSkills {

 fn can_prescribe(&self) -> bool {

 return false

 }

 fn can_diagnose(&self) -> bool {

 return false

 }

 fn can_administer_medication(&self) -> bool {

 return true

 }

}

Here, we can see that we have defined the most common attributes for each
clinician. Only two people—the doctor and the advanced nurse practitioner
—can diagnose and prescribe. However, all of them can administer
medication. We can implement this trait for all clinicians and then overwrite
specifics. We must note that because the doctor and advanced nurse
practitioner have the same possibilities in terms of diagnosing and
prescribing, we can create another trait for this to prevent repeating
ourselves, and a trait for the patient with the following code:

pub trait AdvancedMedical {}

pub trait PatientRole {

 fn get_name(&self) -> String;

}

We have now defined all the traits that we need. We can start using them to
define our people in the next subsection.

Defining struct behavior with traits

Before we define any structs, we must import our traits into our people.rs
file with the following code:

use super::traits;

use traits::{Speak, ClinicalSkills, AdvancedMedical, \

 PatientRole};

We now have all our traits, so we can define our people in the program with
the following code:

pub struct Patient {

 pub name: String

}

pub struct Nurse {

 pub name: String

}

pub struct NursePractitioner {

 pub name: String

}

pub struct AdvancedNursePractitioner {

 pub name: String

}

pub struct Doctor {

 pub name: String

}

Sadly, there is some repetition here. This is also going to happen with our
Speak trait; however, it is important to keep these structs separate as we will
slot traits into them later, so we need them to be decoupled. We can
implement our Speak trait for each person with the following code:

impl Speak for Patient {

 fn introduce(&self) {

 println!("hello I'm a Patient and my name is {}", \

 self.name);

 }

}

impl Speak for Nurse {

 fn introduce(&self) {

 println!("hello I'm a Nurse and my name is {}", \

 self.name);

 }

}

impl Speak for NursePractitioner {

 fn introduce(&self) {

 println!("hello I'm a Practitioner and my name is \

 {}", self.name);

 }

}

. . .

We can continue this pattern and implement Speak traits for all the people
structs. Now this is done, we can implement our clinical skills and patient
role traits for our people with the following code:

impl PatientRole for Patient {

 fn get_name(&self) -> String {

 return self.name.clone()

 }

}

impl ClinicalSkills for Nurse {}

impl ClinicalSkills for NursePractitioner {

 fn can_prescribe(&self) -> bool {

 return true

 }

}

Here, we can see that our people structs have the following traits:

The Patient struct has the standard PatientRole trait.

The Nurse struct has the standard ClinicalSkills trait.

The NursePractitioner struct has the standard ClinicialSkills trait
with the can_prescribe function overwritten to return true.

Now that we have our clinical skills applied to our standard clinicians, we
can now apply our advanced traits with the following code:

impl AdvancedMedical for AdvancedNursePractitioner {}

impl AdvancedMedical for Doctor {}

impl<T> ClinicalSkills for T where T: AdvancedMedical {

 fn can_prescribe(&self) -> bool {

 return true

 }

 fn can_diagnose(&self) -> bool {

 return true

 }

}

Here, we apply the AdvancedMedical trait to our Doctor and
AdvancedNursePractitioner structs. However, we know that these structs
are also clinicians. We need them to have clinical skills. Therefore, we
implement ClinicalSkills for the AdvancedMedical trait. We then overwrite
the can_prescribe and can_diagnose functions to true. Therefore, doctors
and advanced nurse practitioners have both ClinicalSkills and
AdvancedMedical traits and can diagnose and prescribe. With this, our
people structs are ready to be passed into functions. We will do this in the
next subsection.

Passing traits through functions

To perform actions such as updating a database or sending data to a server,
we are going to pass our people structs through functions where clinicians
can act on patients. To do this, we must import our traits in our actions.rs
file with the following code:

use super::traits;

use traits::{ClinicalSkills, AdvancedMedical, PatientRole};

Our first action is to admit a patient. This can be done by anyone with
clinical skills. Considering this, we can define this action with the following
code:

pub fn admit_patient<Y: ClinicalSkills>(

 patient: &Box<dyn PatientRole>, _clinician: &Y) {

 println!("{} is being admitted", patient.get_name());

}

Here, we can see that our clinician being passed in is anything with a
ClinicalSkills trait, which means all our clinician structs. However, it
must be noted that we are also passing in &Box<dyn PatientRole> for the
patient. This is because we will be using a patient list when passing in
patients. We can have multiple patients assigned to a clinician. We will
explore why we are using &Box<dyn PatientRole> in the next subsection
when we define our patient list struct. The next action is to diagnose a
patient, which is defined with the following code:

pub fn diagnose_patient<Y: AdvancedMedical>(

 patient: &Box<dyn PatientRole>, _clinician: &Y) {

 println!("{} is being diagnosed", patient.get_name());

}

Here, it makes sense to have the AdvancedMedical trait to diagnose. If we try
to pass in a Nurse or NursePractitioner struct, the program will fail to
compile due to mismatching traits. We can then have a prescribe medication
action, which takes the form of the following code:

pub fn prescribe_meds<Y: ClinicalSkills>(

 patient: &Box<dyn PatientRole>, clinician: &Y) {

 if clinician.can_prescribe() {

 println!("{} is being prescribed medication", \

 patient.get_name());

 } else {

 panic!("clinician cannot prescribe medication");

 }

}

Here, we can see that the ClinicalSkills trait is accepted but the code will
throw an error if the clinician cannot prescribe. This is because our
NursePractitioner struct can prescribe. We could also make a third
intermediate trait and apply it to doctor, advanced, and normal nurse
practitioners. However, this is just one check as opposed to implementing a
new trait for all three clinician structs. Our last action is that of
administering medication and discharging the patient, which can be done by
all our clinician structs; therefore, it takes the following form:

pub fn administer_meds<Y: ClinicalSkills>(

 patient: &Box<dyn PatientRole>, _clinician: &Y) {

 println!("{} is having meds administered", \

 patient.get_name());

}

pub fn discharge_patient<Y: ClinicalSkills>(

 patient: &Box<dyn PatientRole>, _clinician: &Y) {

 println!("{} is being discharged", patient.get_name());

}

We can now pass our people structs through a range of actions, with our
compiler refusing to compile if we pass through the wrong person struct
into the function. In the next subsection, we will be storing structs with
traits in a patient list.

Storing structs with common traits

When it comes to a patient list, it is tempting to just store patient structs in a
vector. However, this does not give us much flexibility. For instance, let's
say that our system is deployed, and one of the nurses in the hospital is sick
and must be admitted. We could allow this by implementing the
PatientRole trait to the Nurse struct without having to rewrite anything else.
We might also need to expand the different types of patients, adding more
structs such as ShortStayPatient, or CriticallySickPatient. Because of
this, we store our patients with the PatientRole trait in our objects.rs file
with the following code:

use super::traits;

use traits::PatientRole;

pub struct PatientList {

 pub patients: Vec<Box<dyn PatientRole>>

}

We must wrap our structs in a box because we do not know the size at
compile time. Different structs of different sizes can implement the same
trait. A Box is a pointer on the heap memory. Because we know the size of
pointers, we know the size of memory being added to the vector at compile
time. The dyn keyword is used to define that it is a trait that we are referring

to. Managing to access the struct directly in the patients vector is not going
to happen, as again, we do not know the size of the struct. Therefore, we
access the data of the struct via the get_name function in the PatientRole
trait in our action functions. Traits are also pointers. We can still build
functions such as constructors for our struct. However, when it comes to our
Patient struct being passed through an action function that we created, our
PatientRole trait acts as an interface between our Patient struct and our
admit_function function. We now have everything we need, so we can
move on to our next subsection to put it all together and run it in our
main.rs file.

Running our traits in the main fi le

Running all our code together is straightforward and safe. Here's what we
need to do:

1. First, we import all we need in our main.rs file with the following code:

mod traits;

mod objects;

mod people;

mod actions;

use people::{Patient, Nurse, Doctor};

use objects::PatientList;

use actions::{admit_patient, diagnose_patient, \

 prescribe_meds, administer_meds, discharge_patient};

2. In our main function, we can now define the two nurses and doctors for
our clinic for the day with the following code:

fn main() {

 let doctor = Doctor{name: String::from("Torath")};

 let doctor_two = Doctor{name: \

 String::from("Sergio")};

 let nurse = Nurse{name: String::from("Maxwell")};

 let nurse_two = Nurse{name: \

 String::from("Nathan")};

}

3. We then get our patient list, and it turns out that the four horsemen have
turned up for their treatment, as seen in the following code snippet:

 let patient_list = PatientList {

 patients: vec![

 Box::new(Patient{name: \

 String::from("pestilence")}),

 Box::new(Patient{name: \

 String::from("war")}),

 Box::new(Patient{name: \

 String::from("famine")}),

 Box::new(Patient{name: \

 String::from("death")})

]

 };

4. We then loop through our patients, getting our doctors and nurses to
care for them with the following code:

 for i in patient_list.patients {

 admit_patient(&i, &nurse);

 diagnose_patient(&i, &doctor);

 prescribe_meds(&i, &doctor_two);

 administer_meds(&i, &nurse_two);

 discharge_patient(&i, &nurse);

 }

This is the end of our main function. Running it would give us the following
printout:

conquest is being admitted

conquest is being diagnosed

conquest is being prescribed medication

conquest is having meds administered

conquest is being discharged

war is being admitted

. . .

famine is being admitted

. . .

death is being admitted

. . .

With this, we have finished our exercise in using traits in Rust. Hopefully,
with this, you see the flexibility and decoupling we get when we use traits.

However, we must remember that this approach cannot be supported if we
were to build an interface with our Python system. If we were to build an
interface, this could be done with the following pseudocode:

#[pyclass]

pub struct NurseClass {

 #[pyo3(get, set)]

 pub name: String,

 #[pyo3(get, set)]

 pub admin: bool,

 #[pyo3(get, set)]

 pub prescribe: bool,

 #[pyo3(get, set)]

 pub diagnose: bool,

}

#[pymethods]

impl NurseClass {

 #[new]

 fn new(name: String, admin: bool, prescribe: bool,

 diagnose: bool) Self {

 return Nurse{name, admin, prescribe}

 }

 fn introduce(&self) Vec<Vec<u64>> {

 println!("hello I'm a Nurse and my name is {}",

 self.name);

 }

}

Here, we can see that we swapped the functions in the ClinicalSkills trait
for attributes. We would be able to pass our NurseClass struct with traits
into a function which calls the ClinicalSkills functions. The results from
the ClinicalSkills functions can then be passed into the constructor for our
NurseClass struct. Our NurseClass struct can then be passed out to our
Python system.

OOP has its merits and should be used when coding in Python. However,
Rust has given us a new approach that is flexible and decoupled. It may
take a while to get your head around traits, however, they are worth it. It's
advised that you keep working with traits in your Rust code to get the
advantages of using traits.

Keeping data-parallelism simple with
Rayon
In Chapter 3, Understanding Concurrency we processed our Fibonacci
numbers in parallel. While it was interesting to look into concurrency, when
we are building our own applications, we should lean on other crates to
reduce the complexity of our application. This is where the rayon crate
comes in. This will enable us to loop through numbers to be calculated and
process them in parallel. In order to do this, we initially have to define the
crate in the Cargo.toml file as seen here:

[dependencies]

rayon = "1.5.1"

With this, we import this crate in our main.rs file with the

following code:

extern crate rayon;

use rayon::prelude::*;

Then, if we do not import the macros with use rayon::prelude::*; our
compiler will refuse to compile when we try and turn a standard vector into
a parallel iterator. With these macros, we can execute parallel Fibonacci
calculations with the following code:

pub fn fibonacci_reccursive(n: i32) -> u64 {

 match n {

 1 | 2 => 1,

 _ => fibonacci_reccursive(n - 1) +

 fibonacci_reccursive(n - 2)

 }

}

fn main() {

 let numbers: Vec<u64> = vec![6, 7, 8, 9, 10].into_par_iter(

).map(

 |x| fibonacci_reccursive(x)

).collect();

 println!("{:?}", numbers);

}

With this code, we can see that we define a standard Fibonacci number
function. We then get a vector of input numbers and convert it into a
parallel iterator with the into_par_iter function. We then map our
Fibonacci function to this parallel iterator. After this, we collect the results.

Therefore, printing numbers will give us [8, 13, 21, 34, 55]. And that's it!
We have coded parallel code, and we have kept it simple with the rayon
crate. However, we must remember that there is a cost to set up this
parallelization. If we were only going to use the numbers in the example, a
normal loop would be faster. However, if the numbers and size of the array
increase, the benefits of rayon start to show. For instance, if we were to
have a vector of numbers to be calculated ranging from 6 to 33, we will get
the time difference as seen in the following figure:

Figure 11.5 – Time taken for a loop 6 -> 33 Fib numbers to be taken in microseconds

[left = Rayon right = normal loop]

With this, we have a simple approach to parallelizing our calculations
which will keep our complexity and mistakes down.

Summary

In this chapter, we went over best practices for implementing Rust in our
Python systems. We initially started by keeping it simple. We saw that we
could leverage the speed of Rust without any setup tools or installing a
package thanks to piping data to and from our Rust binary with Python.
This is a useful technique to have and is not just limited to Python and Rust.
In fact, you can pipe data between any language.

If you are writing a basic program, then data piping should be the first thing
you should do. This way, you reduce the number of moving parts and speed
up development. A simple Bash script could compile the Rust file and run
the process. However, as the program complexity increases, you can go for
setup tools and import your Rust code directly into your Python code,
utilizing what you covered in this book.

We then moved on to the importance of leveraging Python's object support
with a metaclass to lean on Python for our interfaces without Rust
packages. Python is a mature language that is very expressive. It makes
sense to use the best of Python and the best of Rust when building our
packages by using Python for the interfaces and Rust for the calculations.
We finally covered how to utilize traits as opposed to forcing Rust to have
an object-orientated approach with inheritance via composition. The result
is more decoupling and flexibility. Finally, we kept our parallel processing
code simple with third-party crates which will increase our productivity and
reduce the complexity of our code, and in turn, reduce mistakes.

We have now come to the end of the book. There is always more to learn;
however, you now have a full tool belt. You not only have a handle on the
fastest memory-safe language that is cutting-edge, but you can also fuse it
with the widely used Python language in an efficient way, installing it with

pip. Not only can you do this for Python scripts, but you can also wrap up
Rust extensions in Docker, enabling you to use Rust in Python web
applications. Therefore, you do not have to wait for your company and
projects to rewrite and adopt Rust. Instead, you can plug Rust into an
already established project tomorrow. I am nothing short of excited about
what you will do with this in the future.

Further reading
Mastering Object-Oriented Python by Steven Lott (2019) (Packt
Publishing)

Mastering Rust by Rahul Sharma, Vesa Kaihlavirta (2018) (Packt
Publishing)

Packt.com

Subscribe to our online digital library for full access to over 7,000 books
and videos, as well as industry leading tools to help you plan your personal
development and advance your career. For more information, please visit
our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks
and Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at packt.com and as a print book customer, you are entitled to a discount on

http://packt.com/
https://packt.com/

the eBook copy. Get in touch with us at customercare@packtpub.com for
more details.

At www.packt.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters, and receive exclusive discounts and
offers on Packt books and eBooks.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by
Packt:

https://customercare@packtpub.com/
https://www.packt.com/

Python for Geeks

Muhammad Asif

ISBN: 9781801070119

https://www.packtpub.com/product/python-for-geeks/9781801070119

Understand how to design and manage complex Python projects

Strategize test-driven development (TDD) in Python

Explore multithreading and multiprogramming in Python

Use Python for data processing with Apache Spark and Google Cloud
Platform (GCP)

Deploy serverless programs on public clouds such as GCP

Use Python to build web applications and application programming
interfaces

Apply Python for network automation and serverless functions

Get to grips with Python for data analysis and machine learning

Rust Web Programming

Maxwell Flitton

ISBN: 9781800560819

https://packt.link/9781800560819

Structure scalable web apps in Rust in Rocket, Actix Web, and Warp

Apply data persistence for your web apps using PostgreSQL

Build login, JWT, and config modules for your web apps

Serve HTML, CSS, and JavaScript from the Actix Web server

Build unit tests and functional API tests in Postman and Newman

Deploy the Rust app with NGINX and Docker onto an AWS EC2
instance

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their
insight with the global tech community. You can make a general
application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

Share Your Thoughts
Now you've finished Speed Up your Python with Rust, we'd love to hear
your thoughts! If you purchased the book from Amazon, please click here
to go straight to the Amazon review page for this book and share your
feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us
make sure we're delivering excellent quality content.

https://authors.packtpub.com/
file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_oymw2t51/3hg14cq1_pdf_out/OEBPS/B17720_BM_Final_SK_ePub.xhtml

	Speed Up Your Python with Rust
	Contributors
	About the author
	About the reviewers
	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used
	Get in touch
	Share Your Thoughts

	Section 1: Getting to Understand Rust
	Chapter 1: An Introduction to Rust from a Python Perspective
	Technical requirements
	Understanding the differences between Python and Rust
	Why fuse Python with Rust?
	Passing strings in Rust
	Sizing up floats and integers in Rust
	Managing data in Rust's vectors and arrays
	Replacing dictionaries with hashmaps
	Error handling in Rust

	Understanding variable ownership
	Copy
	Move
	Immutable borrow
	Mutable borrow

	Keeping track of scopes and lifetimes
	Building structs instead of objects
	Metaprogramming with macros instead of decorators
	Summary
	Questions
	Answers
	Further reading

	Chapter 2: Structuring Code in Rust
	Technical requirements
	Managing our code with crates and Cargo instead of pip
	Structuring code over multiple files and modules
	Building module interfaces
	Benefits of documentation when coding

	Interacting with the environment
	Summary
	Questions
	Answers
	Further reading

	Chapter 3: Understanding Concurrency
	Technical requirements
	Introducing concurrency
	Threads
	Processes

	Basic asynchronous programming with threads
	Running multiple processes
	Customizing threads and processes safely
	Amdahl's law
	Deadlocks
	Race conditions

	Summary
	Questions
	Answers
	Further reading

	Section 2: Fusing Rust with Python
	Chapter 4: Building pip Modules in Python
	Technical requirements
	Configuring setup tools for a Python pip module
	Creating a GitHub repository
	Defining the basic parameters
	Defining a README file
	Defining a basic module

	Packaging Python code in a pip module
	Building our Fibonacci calculation code
	Creating a command-line interface
	Building unit tests

	Configuring continuous integration
	Manually deploying onto PyPI
	Managing dependencies
	Setting up type checking for Python
	Setting up and running tests and type-checking with GitHub Actions
	Create automatic versioning for our pip package
	Deploying onto PyPI using GitHub Actions

	Summary
	Questions
	Answers
	Further reading

	Chapter 5: Creating a Rust Interface for Our pip Module
	Technical requirements
	Packaging Rust with pip
	Define gitignore and Cargo for our package
	Configuring the Python setup process for our package
	Installing our Rust library for our package

	Building a Rust interface with the pyO3 crate
	Building our Fibonacci Rust code
	Creating command-line tools for our package
	Creating adapters for our package

	Building tests for our Rust package
	Comparing speed with Python, Rust, and Numba
	Summary
	Questions
	Answers
	Further reading

	Chapter 6: Working with Python Objects in Rust
	Technical requirements
	Passing complex Python objects into Rust
	Updating our setup.py file to support .yml loading
	Defining our .yml loading command
	Processing data from our Python dictionary
	Extracting data from our config file
	Returning our Rust dictionary to our Python system

	Inspecting and working with custom Python objects
	Creating an object for our Rust interface
	Acquiring the Python GIL in Rust
	Adding data to our newly created PyDict struct
	Setting the attributes of our custom object

	Constructing our own custom Python objects in Rust
	Defining a Python class with the required attributes
	Defining class static methods to process input numbers
	Defining a class constructor
	Wrapping up and testing our module

	Summary
	Questions
	Answers
	Further reading

	Chapter 7: Using Python Modules with Rust
	Technical requirements
	Exploring NumPy
	Adding vectors in NumPy
	Adding vectors in pure Python
	Adding vectors using NumPy in Rust

	Building a model in NumPy
	Defining our model
	Building a Python object that executes our model

	Using NumPy and other Python modules in Rust
	Recreating our NumPy model in Rust
	Building get_weight_matrix and inverse_weight_matrix functions
	Building get_parameters, get_times, and get_input_vector functions
	Building calculate_parameters and calculate_times functions
	Adding calculate functions to the Python bindings and adding a NumPy dependency to our setup.py file
	Building our Python interface

	Summary
	Questions
	Answers
	Further reading

	Chapter 8: Structuring an End-to-End Python Package in Rust
	Technical requirements
	Breaking down a catastrophe modeling problem for our package
	Building an end-to-end solution as a package
	Building a footprint merging process
	Building the vulnerability merge process
	Building a Python interface in Rust
	Building our interface in Python
	Building package installation instructions

	Utilizing and testing our package
	Building a Python construct model using pandas
	Building a random event ID generator function
	Timing our Python and Rust implementations with a series of different data sizes

	Summary
	Further reading

	Section 3: Infusing Rust into a Web Application
	Chapter 9: Structuring a Python Flask App for Rust
	Technical requirements
	Building a basic Flask application
	Building an entry point for our application
	Building our Fibonacci number calculator module
	Building a Docker image for our application
	Building our NGINX service
	Connecting and running our Nginx service

	Defining our data access layer
	Defining a PostgreSQL database in docker-compose
	Building a config loading system
	Building our data access layer
	Setting up the application database migration system
	Building database models
	Applying the database access layer to the fib calculation view

	Building a message bus
	Building a Celery broker for Flask
	Building a Fibonacci calculation task for Celery
	Updating our calculation view
	Defining our Celery service in Docker

	Summary
	Questions
	Answers
	Further reading

	Chapter 10: Injecting Rust into a Python Flask App
	Technical requirements
	Fusing Rust into Flask and Celery
	Defining our dependency on the Rust Fibonacci number calculation package
	Building our calculation model with Rust
	Creating a calculation view using Rust
	Inserting Rust into our Celery task

	Deploying Flask and Celery with Rust
	Deploying with a private GitHub repository
	Building a Bash script that orchestrates the whole process
	Reconfiguring the Rust Fib package installment in our Dockerfile

	Fusing Rust with data access
	Setting up our database cloning package
	Setting up the diesel environment
	Autogenerating and configuring our database models and schema
	Defining our database connection in Rust
	Creating a Rust function that gets all the Fibonacci records and returns them

	Deploying Rust nightly in Flask
	Summary
	Questions
	Answers
	Further reading

	Chapter 11: Best Practices for Integrating Rust
	Technical requirements
	Keeping our Rust implementation simple by piping data to and from Rust
	Building a Python script that formulates the numbers for calculation
	Building a Rust file that accepts the numbers, calculates the Fibonacci numbers, and returns the calculated numbers
	Building another Python script that accepts the calculated numbers and prints them out

	Giving the interface a native feel with objects
	Defining traits
	Defining struct behavior with traits
	Passing traits through functions
	Storing structs with common traits
	Running our traits in the main file

	Keeping data-parallelism simple with Rayon
	Further reading
	Why subscribe?

	Other Books You May Enjoy
	Packt is searching for authors like you
	Share Your Thoughts

