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Preface

Many professional programmers are not well prepared to tackle algorithm design
problems. This is a pity, because the techniques of algorithm design form one
of the core practical technologies of computer science.

This book is intended as a manual on algorithm design, providing access to
combinatorial algorithm technology for both students and computer profession-
als. It is divided into two parts: Techniques and Resources. The former is a
general introduction to the design and analysis of computer algorithms. The Re-
sources section is intended for browsing and reference, and comprises the catalog
of algorithmic resources, implementations, and an extensive bibliography.

To the Reader

I have been gratified by the warm reception previous editions of The Algorithm
Design Manual have received, with over 60,000 copies sold in various formats
since first being published by Springer-Verlag in 1997. Translations have ap-
peared in Chinese, Japanese, and Russian. It has been recognized as a unique
guide to using algorithmic techniques to solve problems that often arise in prac-
tice.

Much has changed in the world since the second edition of The Algorithm
Design Manual was published in 2008. The popularity of my book soared as
software companies increasingly emphasized algorithmic questions during em-
ployment interviews, and many successful job candidates have trusted The Al-
gorithm Design Manual to help them prepare for their interviews.

Although algorithm design is perhaps the most classical area of computer
science, it continues to advance and change. Randomized algorithms and data
structures have become increasingly important, particularly techniques based
on hashing. Recent breakthroughs have reduced the algorithmic complexity of
the best algorithms known for such fundamental problems as finding minimum
spanning trees, graph isomorphism, and network flows. Indeed, if we date the
origins of modern algorithm design and analysis to about 1970, then roughly
20% of modern algorithmic history has happened since the second edition of
The Algorithm Design Manual.

The time has come for a new edition of my book, incorporating changes
in the algorithmic and industrial world plus the feedback I have received from
hundreds of readers. My major goals for the third edition are:
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e To introduce or expand coverage of important topics like hashing, ran-

domized algorithms, divide and conquer, approximation algorithms, and
quantum computing in the first part of the book (Practical Algorithm
Design).

e To update the reference material for all the catalog problems in the second

part of the book (The Hitchhiker’s Guide to Algorithms).

e To take advantage of advances in color printing to produce more informa-

tive and eye-catching illustrations.

Three aspects of The Algorithm Design Manual have been particularly beloved:

(1) the hitchhiker’s guide to algorithms, (2) the war stories, and (3) the elec-
tronic component of the book. These features have been preserved and strength-
ened in this third edition:

o The Hitchhiker’s Guide to Algorithms — Since finding out what is known

about an algorithmic problem can be a difficult task, I provide a catalog of
the seventy-five most important algorithmic problems arising in practice.
By browsing through this catalog, the student or practitioner can quickly
identify what their problem is called, what is known about it, and how
they should proceed to solve it.

I have updated every section in response to the latest research results and
applications. Particular attention has been paid to updating discussion
of available software implementations for each problem, reflecting sources
such as GitHub, which have emerged since the previous edition.

War stories — To provide a better perspective on how algorithm problems
arise in the real world, I include a collection of “war stories”, tales from my
experience on real problems. The moral of these stories is that algorithm
design and analysis is not just theory, but an important tool to be pulled
out and used as needed.

The new edition of the book updates the best of the old war stories,
plus adds new tales on randomized algorithms, divide and conquer, and
dynamic programming.

Online component — Full lecture notes and a problem solution Wiki is
available on my website www.algorist.com. My algorithm lecture videos
have been watched over 900,000 times on YouTube. This website has been
updated in parallel with the book.

Equally important is what is not done in this book. I do not stress the

mathematical analysis of algorithms, leaving most of the analysis as informal
arguments. You will not find a single theorem anywhere in this book. When
more details are needed, the reader should study the cited programs or refer-
ences. The goal of this manual is to get you going in the right direction as
quickly as possible.
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To the Instructor

This book covers enough material for a standard Introduction to Algorithms
course. It is assumed that the reader has completed the equivalent of a second
programming course, typically titled Data Structures or Computer Science II.

A full set of lecture slides for teaching this course are available online at
www.algorist.com. Further, I make available online video lectures using these
slides to teach a full-semester algorithm course. Let me help teach your course,
through the magic of the Internet!

I have made several pedagogical improvements throughout the book, includ-
ing:

e New material — To reflect recent developments in algorithm design, I have
added new chapters on randomized algorithms, divide and conquer, and
approximation algorithms. I also delve deeper into topics such as hashing.
But I have been careful to heed the readers who begged me to keep the
book of modest length. I have (painfully) removed less important material
to keep total expansion by page count under 10% over the previous edition.

o C(learer exposition — Reading through my text ten years later, I was thrilled
to find many sections where my writing seemed ethereal, but other places
that were a muddled mess. Every page in this manuscript has been edited
or rewritten for greater clarity, correctness and flow.

e More interview resources — The Algorithm Design Manual remains very
popular for interview prep, but this is a fast-paced world. I include more
and fresher interview problems, plus coding challenges associated with
interview sites like LeetCode and Hackerrank. I also include a new section
with advice on how to best prepare for interviews.

e Stop and think — Each of my course lectures begins with a “Problem of
the Day,” where I illustrate my thought process as I solve a topic-specific
homework problem — false starts and all. This edition had more Stop and
Think sections, which perform a similar mission for the reader.

e More and better homework problems — The third edition of The Algorithm
Design Manual has more and better homework exercises than the previous
one. I have added over a hundred exciting new problems, pruned some
less interesting problems, and clarified exercises that proved confusing or
ambiguous.

e Updated code style — The second edition featured algorithm implementa-
tions in C, replacing or augmenting pseudocode descriptions. These have
generally been well received, although certain aspects of my programming
have been condemned by some as old fashioned. All programs have been
revised and updated, and are structurally highlighted in color.

e (Color images — My companion book The Data Science Design Manual
was printed with color images, and I was excited by how much this made


http://www.algorist.com

viii PREFACE

concepts clearer. Every single image in the The Algorithm Design Manual
is now rendered in living color, and the process of review has improved
the contents of most figures in the text.
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Part 1

Practical Algorithm Design
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Chapter 1

Introduction to Algorithm
Design

What is an algorithm? An algorithm is a procedure to accomplish a specific
task. An algorithm is the idea behind any reasonable computer program.

To be interesting, an algorithm must solve a general, well-specified problem.
An algorithmic problem is specified by describing the complete set of instances
it must work on and of its output after running on one of these instances. This
distinction, between a problem and an instance of a problem, is fundamental.
For example, the algorithmic problem known as sorting is defined as follows:

Problem: Sorting
Input: A sequence of n keys aq,...,ay,.

Output: The permutation (reordering) of the input sequence such that af <
ah <---<ah_y <al.

An instance of sorting might be an array of names, like { Mike, Bob, Sally,
Jill, Jan}, or a list of numbers like {154, 245, 568, 324, 654, 324}. Determining
that you are dealing with a general problem instead of an instance is your first
step towards solving it.

An algorithm is a procedure that takes any of the possible input instances
and transforms it to the desired output. There are many different algorithms
that can solve the problem of sorting. For example, insertion sort is a method
that starts with a single element (thus trivially forming a sorted list) and then
incrementally inserts the remaining elements so that the list remains sorted.
An animation of the logical flow of this algorithm on a particular instance (the
letters in the word “INSERTIONSORT”) is given in Figure 1.1.

This algorithm, implemented in C, is described below:
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Figure 1.1: Animation of insertion sort in action (time flows downward).

void insertion_sort(item_type s[], int n) {
int i, j; /* counters */

for (i = 1; i < mn; i++) {
j=1i;
while ((j > 0) && (s[j] < s[j - 11)) {
swap(&s[jl, &s[j - 11);
=31

Note the generality of this algorithm. It works just as well on names as it
does on numbers. Or anything else, given the appropriate comparison operation
(<) to test which of two keys should appear first in sorted order. It can be
readily verified that this algorithm correctly orders every possible input instance
according to our definition of the sorting problem.

There are three desirable properties for a good algorithm. We seek algo-
rithms that are correct and efficient, while being easy to implement. These
goals may not be simultaneously achievable. In industrial settings, any pro-
gram that seems to give good enough answers without slowing the application
down is often acceptable, regardless of whether a better algorithm exists. The
issue of finding the best possible answer or achieving maximum efficiency usually
arises in industry only after serious performance or legal troubles.

This chapter will focus on algorithm correctness, with our discussion of ef-
ficiency concerns deferred to Chapter 2. It is seldom obvious whether a given
algorithm correctly solves a given problem. Correct algorithms usually come
with a proof of correctness, which is an explanation of why we know that the
algorithm must take every instance of the problem to the desired result. But be-
fore we go further, it is important to demonstrate why it’s obvious never suffices
as a proof of correctness, and is usually flat-out wrong.
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Figure 1.2: A good instance for the nearest-neighbor heuristic. The rainbow
coloring (red to violet) reflects the order of incorporation.

1.1 Robot Tour Optimization

Let’s consider a problem that arises often in manufacturing, transportation,
and testing applications. Suppose we are given a robot arm equipped with a
tool, say a soldering iron. When manufacturing circuit boards, all the chips and
other components must be fastened onto the substrate. More specifically, each
chip has a set of contact points (or wires) that need be soldered to the board.
To program the robot arm for this job, we must first construct an ordering of
the contact points so that the robot visits (and solders) the first contact point,
then the second point, third, and so forth until the job is done. The robot arm
then proceeds back to the first contact point to prepare for the next board, thus
turning the tool-path into a closed tour, or cycle.

Robots are expensive devices, so we want the tour that minimizes the time
it takes to assemble the circuit board. A reasonable assumption is that the
robot arm moves with fixed speed, so the time to travel between two points is
proportional to their distance. In short, we must solve the following algorithm
problem:

Problem: Robot Tour Optimization
Input: A set S of n points in the plane.
Output: What is the shortest cycle tour that visits each point in the set S7

You are given the job of programming the robot arm. Stop right now and
think up an algorithm to solve this problem. I’ll be happy to wait for you. ..

Several algorithms might come to mind to solve this problem. Perhaps the
most popular idea is the nearest-neighbor heuristic. Starting from some point
po, we walk first to its nearest neighbor p;. From p;, we walk to its nearest
unvisited neighbor, thus excluding only py as a candidate. We now repeat this
process until we run out of unvisited points, after which we return to pg to close
off the tour. Written in pseudo-code, the nearest-neighbor heuristic looks like
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Figure 1.3: A bad instance for the nearest-neighbor heuristic, with the optimal
solution. Colors are sequenced as ordered in the rainbow.

this:
NearestNeighbor(P)

Pick and visit an initial point py from P

P = Do

1=0

While there are still unvisited points
i1=1+1
Select p; to be the closest unvisited point to p;_1
Visit p;

Return to pg from p,_1

This algorithm has a lot to recommend it. It is simple to understand and
implement. It makes sense to visit nearby points before we visit faraway points
to reduce the total travel time. The algorithm works perfectly on the example
in Figure 1.2. The nearest-neighbor rule is reasonably efficient, for it looks at
each pair of points (p;,p;) at most twice: once when adding p; to the tour, the
other when adding p;. Against all these positives there is only one problem.
This algorithm is completely wrong.

Wrong? How can it be wrong? The algorithm always finds a tour, but it
doesn’t necessarily find the shortest possible tour. It doesn’t necessarily even
come close. Consider the set of points in Figure 1.3, all of which lie along a line.
The numbers describe the distance that each point lies to the left or right of
the point labeled “0”. When we start from the point “0” and repeatedly walk
to the nearest unvisited neighbor, we might keep jumping left-right-left-right
over “0” as the algorithm offers no advice on how to break ties. A much better
(indeed optimal) tour for these points starts from the left-most point and visits
each point as we walk right before returning at the left-most point.

Try now to imagine your boss’s delight as she watches a demo of your robot
arm hopscotching left-right—left-right during the assembly of such a simple
board.
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“But wait,” you might be saying. “The problem was in starting at point
“0.” Instead, why don’t we start the nearest-neighbor rule using the left-most
point as the initial point py? By doing this, we will find the optimal solution
on this instance.”

That is 100% true, at least until we rotate our example by 90 degrees. Now
all points are equally left-most. If the point “0” were moved just slightly to the
left, it would be picked as the starting point. Now the robot arm will hopscotch
up—down—up—down instead of left-—right—left—right, but the travel time will be
just as bad as before. No matter what you do to pick the first point, the
nearest-neighbor rule is doomed to work incorrectly on certain point sets.

Maybe what we need is a different approach. Always walking to the closest
point is too restrictive, since that seems to trap us into making moves we didn’t
want. A different idea might repeatedly connect the closest pair of endpoints
whose connection will not create a problem, such as premature termination of
the cycle. Each vertex begins as its own single vertex chain. After merging
everything together, we will end up with a single chain containing all the points
in it. Connecting the final two endpoints gives us a cycle. At any step during
the execution of this closest-pair heuristic, we will have a set of single vertices
and the end of vertex-disjoint chains available to merge. In pseudocode:

ClosestPair(P)
Let n be the number of points in set P.
Fori=1ton—1do
d=o00
For each pair of endpoints (s,t) from distinct vertex chains
if dist(s,t) <d then s,, = s, t,,, = t, and d = dist(s,t)
Connect (S, tm) by an edge
Connect the two endpoints by an edge

This closest-pair rule does the right thing in the example in Figure 1.3.
It starts by connecting “0” to its two immediate neighbors, the points 1 and
—1. Subsequently, the next closest pair will alternate left-right, growing the
central path by one link at a time. The closest-pair heuristic is somewhat more
complicated and less efficient than the previous one, but at least it gives the
right answer in this example.

But not on all examples. Consider what this algorithm does on the point set
in Figure 1.4(1). Tt consists of two rows of equally spaced points, with the rows
slightly closer together (distance 1 — €) than the neighboring points are spaced
within each row (distance 1+ ¢€). Thus, the closest pairs of points stretch across
the gap, not around the boundary. After we pair off these points, the closest re-
maining pairs will connect these pairs alternately around the boundary. The to-
tal path length of the closest-pair tour is 3(1—€)+2(14€)++/(1 — €)2 + (2 + 2¢)2.
Compared to the tour shown in Figure 1.4(r), we travel over 20% farther than
necessary when ¢ — 0. Examples exist where the penalty is considerably worse
than this.

Thus, this second algorithm is also wrong. Which one of these algorithms
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Figure 1.4: A bad instance for the closest-pair heuristic, with the optimal solu-
tion.

performs better? You can’t tell just by looking at them. Clearly, both heuristics
can end up with very bad tours on innocent-looking input.

At this point, you might wonder what a correct algorithm for our problem
looks like. Well, we could try enumerating all possible orderings of the set of
points, and then select the one that minimizes the total length:

OptimalTSP(P)
d=o00
For each of the n! permutations P; of point set P
If (cost(P;) < d) then d = cost(P;) and Py = P;
Return P,,;n

Since all possible orderings are considered, we are guaranteed to end up
with the shortest possible tour. This algorithm is correct, since we pick the
best of all the possibilities. But it is also extremely slow. Even a powerful
computer couldn’t hope to enumerate all the 20! = 2,432,902,008,176,640,000
orderings of 20 points within a day. For real circuit boards, where n ~ 1,000,
forget about it. All of the world’s computers working full time wouldn’t come
close to finishing the problem before the end of the universe, at which point it
presumably becomes moot.

The quest for an efficient algorithm to solve this problem, called the traveling
salesman problem (TSP), will take us through much of this book. If you need
to know how the story ends, check out the catalog entry for TSP in Section 19.4
(page 594).

Take-Home Lesson: There is a fundamental difference between algorithms,
procedures that always produce a correct result, and heuristics, which may
usually do a good job but provide no guarantee of correctness.

1.2 Selecting the Right Jobs

Now consider the following scheduling problem. Imagine you are a highly in
demand actor, who has been presented with offers to star in n different movie
projects under development. Each offer comes specified with the first and last
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Tarjan of the Jungle The Four Volume Problem
Steiner’s Tree Process Terminated
Halting State Programming Challenges
"Discrete" Mathematics Calculated Bets

Figure 1.5: An instance of the non-overlapping movie scheduling problem. The
four red titles define an optimal solution.

day of filming. Whenever you accept a job, you must commit to being available
throughout this entire period. Thus, you cannot accept two jobs whose intervals
overlap.

For an artist such as yourself, the criterion for job acceptance is clear: you
want to make as much money as possible. Because each film pays the same fee,
this implies you seek the largest possible set of jobs (intervals) such that no two
of them conflict with each other.

For example, consider the available projects in Figure 1.5. You can star in
at most four films, namely “Discrete” Mathematics, Programming Challenges,
Calculated Bets, and one of either Halting State or Steiner’s Tree.

You (or your agent) must solve the following algorithmic scheduling problem:

Problem: Movie Scheduling Problem

Input: A set I of n intervals on the line.

Output: What is the largest subset of mutually non-overlapping intervals that
can be selected from I7

Now you (the algorist) are given the job of developing a scheduling algorithm
for this task. Stop right now and try to find one. Again, I'll be happy to wait. . .

There are several ideas that may come to mind. One is based on the notion
that it is best to work whenever work is available. This implies that you should
start with the job with the earliest start date — after all, there is no other job
you can work on then, at least during the beginning of this period:

EarliestJobFirst(I)
Accept the earliest starting job j from [ that does not overlap any
previously accepted job, and repeat until no more such jobs remain.

This idea makes sense, at least until we realize that accepting the earliest
job might block us from taking many other jobs if that first job is long. Check
out Figure 1.6(1), where the epic War and Peace is both the first job available
and long enough to kill off all other prospects.

This bad example naturally suggests another idea. The problem with War
and Peace is that it is too long. Perhaps we should instead start by taking
the shortest job, and keep seeking the shortest available job at every turn.
Maximizing the number of jobs we do in a given period is clearly connected to
the notion of banging them out as quickly as possible. This yields the heuristic:
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War and Peace

@ ®

Figure 1.6: Bad instances for the (1) earliest job first and (r) shortest job first
heuristics. The optimal solutions are in red.

ShortestJobFirst(I)
While (I # 0) do
Accept the shortest possible job j from I.
Delete j, and any interval that intersects j, from I.

Again this idea makes sense, at least until we realize that accepting the
shortest job might block us from taking two other jobs, as shown in Figure
1.6(r). While the maximum potential loss here seems smaller than with the
previous heuristic, it can still limit us to half the optimal payoff.

At this point, an algorithm where we try all possibilities may start to look
good. As with the TSP problem, we can be certain exhaustive search is correct.
If we ignore the details of testing whether a set of intervals are in fact disjoint,
it looks something like this:

ExhaustiveScheduling(I)
j=0
Sma:z: = (Z)
For each of the 2™ subsets S; of intervals I
If (S; is mutually non-overlapping) and (size(S;) > 7)
then j = size(S;) and Syae = Si-
Return S,,qx

But how slow is it? The key limitation is enumerating the 2™ subsets of
n things. The good news is that this is much better than enumerating all n!
orders of n things, as proposed for the robot tour optimization problem. There
are only about one million subsets when n = 20, which can be enumerated
within seconds on a decent computer. However, when fed n = 100 movies, we
get 2100 subsets, which is much much greater than the 20! that made our robot
cry “uncle” in the previous problem.

The difference between our scheduling and robotics problems is that there is
an algorithm that solves movie scheduling both correctly and efficiently. Think
about the first job to terminate—that is, the interval x whose right endpoint
is left-most among all intervals. This role is played by “Discrete” Mathematics
in Figure 1.5. Other jobs may well have started before x, but all of these must
at least partially overlap each other. Thus, we can select at most one from the
group. The first of these jobs to terminate is x, so any of the overlapping jobs
potentially block out other opportunities to the right of it. Clearly we can never
lose by picking x. This suggests the following correct, efficient algorithm:
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OptimalScheduling(I)
While (I # 0) do
Accept the job j from I with the earliest completion date.
Delete j, and any interval which intersects j, from I.

Ensuring the optimal answer over all possible inputs is a difficult but often
achievable goal. Seeking counterexamples that break pretender algorithms is an
important part of the algorithm design process. Efficient algorithms are often
lurking out there; this book will develop your skills to help you find them.

Take-Home Lesson: Reasonable-looking algorithms can easily be incorrect. Al-
gorithm correctness is a property that must be carefully demonstrated.

1.3 Reasoning about Correctness

Hopefully, the previous examples have opened your eyes to the subtleties of
algorithm correctness. We need tools to distinguish correct algorithms from
incorrect ones, the primary one of which is called a proof.

A proper mathematical proof consists of several parts. First, there is a
clear, precise statement of what you are trying to prove. Second, there is a set
of assumptions of things that are taken to be true, and hence can be used as
part of the proof. Third, there is a chain of reasoning that takes you from these
assumptions to the statement you are trying to prove. Finally, there is a little
square () or QED at the bottom to denote that you have finished, representing
the Latin phrase for “thus it is demonstrated.”

This book is not going to emphasize formal proofs of correctness, because
they are very difficult to do right and quite misleading when you do them wrong.
A proof is indeed a demonstration. Proofs are useful only when they are honest,
crisp arguments that explain why an algorithm satisfies a non-trivial correctness
property. Correct algorithms require careful exposition, and efforts to show both
correctness and not incorrectness.

1.3.1 Problems and Properties

Before we start thinking about algorithms, we need a careful description of the
problem that needs to be solved. Problem specifications have two parts: (1) the
set of allowed input instances, and (2) the required properties of the algorithm’s
output. It is impossible to prove the correctness of an algorithm for a fuzzily-
stated problem. Put another way, ask the wrong question and you will get the
wrong answer.

Some problem specifications allow too broad a class of input instances. Sup-
pose we had allowed film projects in our movie scheduling problem to have gaps
in production (e.g. filming in September and November but a hiatus in Octo-
ber). Then the schedule associated with any particular film would consist of a
given set of intervals. Our star would be free to take on two interleaving but not
overlapping projects (such as the above-mentioned film nested with one filming
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in August and October). The earliest completion algorithm would not work for
such a generalized scheduling problem. Indeed, no efficient algorithm exists for
this generalized problem, as we will see in Section 11.3.2.

Take-Home Lesson: An important and honorable technique in algorithm de-
sign is to narrow the set of allowable instances until there is a correct and
efficient algorithm. For example, we can restrict a graph problem from general
graphs down to trees, or a geometric problem from two dimensions down to
one.

There are two common traps when specifying the output requirements of a
problem. The first is asking an ill-defined question. Asking for the best route
between two places on a map is a silly question, unless you define what best
means. Do you mean the shortest route in total distance, or the fastest route,
or the one minimizing the number of turns? All of these are liable to be different
things.

The second trap involves creating compound goals. The three route-planning
criteria mentioned above are all well-defined goals that lead to correct, efficient
optimization algorithms. But you must pick a single criterion. A goal like Find
the shortest route from a to b that doesn’t use more than twice as many turns as
necessary is perfectly well defined, but complicated to reason about and solve.

I encourage you to check out the problem statements for each of the seventy-
five catalog problems in Part II of this book. Finding the right formulation for
your problem is an important part of solving it. And studying the definition of
all these classic algorithm problems will help you recognize when someone else
has thought about similar problems before you.

1.3.2 Expressing Algorithms

Reasoning about an algorithm is impossible without a careful description of the
sequence of steps that are to be performed. The three most common forms of
algorithmic notation are (1) English, (2) pseudocode, or (3) a real programming
language. Pseudocode is perhaps the most mysterious of the bunch, but it is
best defined as a programming language that never complains about syntax
errors.

All three methods are useful because there is a natural tradeoff between
greater ease of expression and precision. English is the most natural but least
precise programming language, while Java and C/C++ are precise but difficult
to write and understand. Pseudocode is generally useful because it represents
a happy medium.

The choice of which notation is best depends upon which method you are
most comfortable with. I usually prefer to describe the ideas of an algorithm in
English (with pictures!), moving to a more formal, programming-language-like
pseudocode or even real code to clarify sufficiently tricky details.

A common mistake my students make is to use pseudocode to dress up an
ill-defined idea so that it looks more formal. Clarity should be the goal. For
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example, the ExhaustiveScheduling algorithm on page 10 would have better
been written in English as:

ExhaustiveScheduling(I)
Test all 2" subsets of intervals from I, and return the largest subset
consisting of mutually non-overlapping intervals.

Take-Home Lesson: The heart of any algorithm is an idea. If your idea is
not clearly revealed when you express an algorithm, then you are using too
low-level a notation to describe it.

1.3.3 Demonstrating Incorrectness

The best way to prove that an algorithm is incorrect is to produce an instance on
which it yields an incorrect answer. Such instances are called counterexamples.
No rational person will ever defend the correctness of an algorithm after a
counter-example has been identified. Very simple instances can instantly defeat
reasonable-looking heuristics with a quick touché. Good counterexamples have
two important properties:

e Verifiability — To demonstrate that a particular instance is a counterex-
ample to a particular algorithm, you must be able to (1) calculate what
answer your algorithm will give in this instance, and (2) display a better
answer so as to prove that the algorithm didn’t find it.

o Simplicity — Good counter-examples have all unnecessary details stripped
away. They make clear exactly why the proposed algorithm fails. Simplic-
ity is important because you must be able to hold the given instance in
your head in order to reason about it. Once a counterexample has been
found, it is worth simplifying it down to its essence. For example, the
counterexample of Figure 1.6(1) could have been made simpler and better
by reducing the number of overlapped segments from five to two.

Hunting for counterexamples is a skill worth developing. It bears some
similarity to the task of developing test sets for computer programs, but relies
more on inspiration than exhaustion. Here are some techniques to aid your
quest:

e Think small — Note that the robot tour counter-examples I presented
boiled down to six points or less, and the scheduling counter-examples
to only three intervals. This is indicative of the fact that when algorithms
fail, there is usually a very simple example on which they fail. Amateur
algorists tend to draw a big messy instance and then stare at it helplessly.
The pros look carefully at several small examples, because they are easier
to verify and reason about.
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Think exhaustively — There are usually only a small number of possible
instances for the first non-trivial value of n. For example, there are only
three distinct ways two intervals on the line can occur: as disjoint intervals,
as overlapping intervals, and as properly nesting intervals, one within the
other. All cases of three intervals (including counter-examples to both of
the movie heuristics) can be systematically constructed by adding a third
segment in each possible way to these three instances.

e Hunt for the weakness — If a proposed algorithm is of the form “always
take the biggest” (better known as the greedy algorithm), think about why
that might prove to be the wrong thing to do. In particular, ...

e Go for a tie — A devious way to break a greedy heuristic is to provide
instances where everything is the same size. Suddenly the heuristic has
nothing to base its decision on, and perhaps has the freedom to return
something suboptimal as the answer.

o Seck extremes — Many counter-examples are mixtures of huge and tiny,
left and right, few and many, near and far. It is usually easier to verify or
reason about extreme examples than more muddled ones. Consider two
tightly bunched clouds of points separated by a much larger distance d.
The optimal TSP tour will be essentially 2d regardless of the number of
points, because what happens within each cloud doesn’t really matter.

Take-Home Lesson: Searching for counterexamples is the best way to disprove
the correctness of a heuristic.

Stop and Think: Greedy Movie Stars?

Problem: Recall the movie star scheduling problem, where we seek to find the
largest possible set of non-overlapping intervals in a given set S. A natural
greedy heuristic selects the interval i, which overlaps the smallest number of
other intervals in .S, removes them, and repeats until no intervals remain.

Give a counter-example to this proposed algorithm.

Solution:  Consider the counter-example in Figure 1.7. The largest possible
independent set consists of the four intervals in red, but the interval of lowest
degree (shown in pink) overlaps two of these, After we grab it, we are doomed
to finding a solution of only three intervals.

But how would you go about constructing such an example? My thought
process started with an odd-length chain of intervals, each of which overlaps
one interval to the left and one to the right. Picking an even-length chain would
mess up the optimal solution (hunt for the weakness). All intervals overlap two
others, except for the left and right-most intervals (go for the tie). To make
these terminal intervals unattractive, we can pile other intervals on top of them
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Figure 1.7: Counter-example to the greedy heuristic for movie star scheduling.
Picking the pink interval, which intersects the fewest others, blocks us from the
optimal solution (the four red intervals).

(seek extremes). The length of our chain (7) is the shortest that permits this
construction to work. W

1.4 Induction and Recursion

Failure to find a counterexample to a given algorithm does not mean “it is
obvious” that the algorithm is correct. A proof or demonstration of correctness
is needed. Often mathematical induction is the method of choice.

When I first learned about mathematical induction it seemed like complete
magic. You proved a formula like Y7 ;i = n(n + 1)/2 for some basis case like
n =1 or 2, then assumed it was true all the way to n — 1 before proving it was

in fact true for general n using the assumption. That was a proof? Ridiculous!

When I first learned the programming technique of recursion it also seemed
like complete magic. The program tested whether the input argument was some
basis case like 1 or 2. If not, you solved the bigger case by breaking it into pieces
and calling the subprogram itself to solve these pieces. That was a program?
Ridiculous!

The reason both seemed like magic is because recursion is mathematical
induction in action. In both, we have general and boundary conditions, with
the general condition breaking the problem into smaller and smaller pieces. The
initial or boundary condition terminates the recursion. Once you understand
either recursion or induction, you should be able to see why the other one also
works.

I've heard it said that a computer scientist is a mathematician who only
knows how to prove things by induction. This is partially true because computer
scientists are lousy at proving things, but primarily because so many of the
algorithms we study are either recursive or incremental.

Consider the correctness of insertion sort, which we introduced at the be-
ginning of this chapter. The reason it is correct can be shown inductively:
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Figure 1.8: Large-scale changes in the optimal solution (red boxes) after insert-
ing a single interval (dashed) into the instance.

e The basis case consists of a single element, and by definition a one-element
array is completely sorted.

e We assume that the first n — 1 elements of array A are completely sorted
after n — 1 iterations of insertion sort.

e To insert one last element x to A, we find where it goes, namely the unique
spot between the biggest element less than or equal to  and the smallest
element greater than x. This is done by moving all the greater elements
back by one position, creating room for x in the desired location. |

One must be suspicious of inductive proofs, however, because very subtle
reasoning errors can creep in. The first are boundary errors. For example,
our insertion sort correctness proof above boldly stated that there was a unique
place to insert & between two elements, when our basis case was a single-element
array. Greater care is needed to properly deal with the special cases of inserting
the minimum or maximum elements.

The second and more common class of inductive proof errors concerns cava-
lier extension claims. Adding one extra item to a given problem instance might
cause the entire optimal solution to change. This was the case in our scheduling
problem (see Figure 1.8). The optimal schedule after inserting a new segment
may contain none of the segments of any particular optimal solution prior to
insertion. Boldly ignoring such difficulties can lead to very convincing inductive
proofs of incorrect algorithms.

Take-Home Lesson: Mathematical induction is usually the right way to verify
the correctness of a recursive or incremental insertion algorithm.

Stop and Think: Incremental Correctness

Problem: Prove the correctness of the following recursive algorithm for incre-
menting natural numbers, that is, y — y + 1:

Increment(y)
if (y = 0) then return(1) else
if (y mod 2) =1 then
return(2 - Increment(|y/2]))
else return(y + 1)
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Solution: The correctness of this algorithm is certainly not obvious to me. But
as it is recursive and I am a computer scientist, my natural instinct is to try to
prove it by induction. The basis case of y = 0 is obviously correctly handled.
Clearly the value 1 is returned, and 0 + 1 = 1.

Now assume the function works correctly for the general case of y = n — 1.
Given this, we must demonstrate the truth for the case of y = n. The cases
corresponding to even numbers are obvious, because y + 1 is explicitly returned
when (y mod 2) = 0.

For odd numbers, the answer depends on what Increment(|y/2]) returns.
Here we want to use our inductive assumption, but it isn’t quite right. We have
assumed that Increment worked correctly for y = n— 1, but not for a value that
is about half of it. We can fix this problem by strengthening our assumption to
declare that the general case holds for all y < n — 1. This costs us nothing in
principle, but is necessary to establish the correctness of the algorithm.

Now, the case of odd y (i.e. y = 2m + 1 for some integer m) can be dealt
with as:

2 - Increment(|(2m + 1)/2|) = 2-Increment(|m + 1/2])
= 2-Increment(m)
= 2(m+1)
= 2m+2=y+1

and the general case is resolved. ||

1.5 Modeling the Problem

Modeling is the art of formulating your application in terms of precisely de-
scribed, well-understood problems. Proper modeling is the key to applying
algorithmic design techniques to real-world problems. Indeed, proper model-
ing can eliminate the need to design or even implement algorithms, by relating
your application to what has been done before. Proper modeling is the key to
effectively using the “Hitchhiker’s Guide” in Part II of this book.

Real-world applications involve real-world objects. You might be working on
a system to route traffic in a network, to find the best way to schedule classrooms
in a university, or to search for patterns in a corporate database. Most algo-
rithms, however, are designed to work on rigorously defined abstract structures
such as permutations, graphs, and sets. To exploit the algorithms literature,
you must learn to describe your problem abstractly, in terms of procedures on
such fundamental structures.

1.5.1 Combinatorial Objects

Odds are very good that others have probably stumbled upon any algorithmic
problem you care about, perhaps in substantially different contexts. But to find
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Figure 1.9: Modeling real-world structures with trees and graphs.

out what is known about your particular “widget optimization problem,” you
can’t hope to find it in a book under widget. You must first formulate widget
optimization in terms of computing properties of common structures such as
those described below:

e Permutations are arrangements, or orderings, of items. For example,
{1,4,3,2} and {4,3,2,1} are two distinct permutations of the same set
of four integers. We have already seen permutations in the robot opti-
mization problem, and in sorting. Permutations are likely the object in
question whenever your problem seeks an “arrangement,” “tour,” “order-
ing,” or “sequence.”

e Subsets represent selections from a set of items. For example, {1,3,4}
and {2} are two distinct subsets of the first four integers. Order does
not matter in subsets the way it does with permutations, so the subsets
{1,3,4} and {4, 3,1} would be considered identical. Subsets arose as can-
didate solutions in the movie scheduling problem. They are likely the
object in question whenever your problem seeks a “cluster,” “collection,”
“committee,” “group,” “packaging,” or “selection.”

e Trees represent hierarchical relationships between items. Figure 1.9(a)
shows part of the family tree of the Skiena clan.  Trees are likely the
object in question whenever your problem seeks a “hierarchy,” “dominance
relationship,” “ancestor/descendant relationship,” or “taxonomy.”

e Graphs represent relationships between arbitrary pairs of objects. Figure
1.9(b) models a network of roads as a graph, where the vertices are cities
and the edges are roads connecting pairs of cities. Graphs are likely the
object in question whenever you seek a “network,” “circuit,” “web,” or
“relationship.”

e Points define locations in some geometric space. For example, the loca-
tions of McDonald’s restaurants can be described by points on a map/plane.
Points are likely the object in question whenever your problems work on
“sites,” “positions,” “data records,” or “locations.”
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e Polygons define regions in some geometric spaces. For example, the bor-
ders of a country can be described by a polygon on a map/plane. Polygons
and polyhedra are likely the object in question whenever you are working
on “shapes,” “regions,” “configurations,” or “boundaries.”

e Strings represent sequences of characters, or patterns. For example, the
names of students in a class can be represented by strings. Strings are
likely the object in question whenever you are dealing with “text,” “char-
acters,” “patterns,” or “labels.”

These fundamental structures all have associated algorithm problems, which
are presented in the catalog of Part II. Familiarity with these problems is im-
portant, because they provide the language we use to model applications. To
become fluent in this vocabulary, browse through the catalog and study the in-
put and output pictures for each problem. Understanding these problems, even
at a cartoon/definition level, will enable you to know where to look later when
the problem arises in your application.

Examples of successful application modeling will be presented in the war
stories spaced throughout this book. However, some words of caution are in
order. The act of modeling reduces your application to one of a small number
of existing problems and structures. Such a process is inherently constraining,
and certain details might not fit easily into the given target problem. Also,
certain problems can be modeled in several different ways, some much better
than others.

Modeling is only the first step in designing an algorithm for a problem. Be
alert for how the details of your applications differ from a candidate model, but
don’t be too quick to say that your problem is unique and special. Temporarily
ignoring details that don’t fit can free the mind to ask whether they really were
fundamental in the first place.

Take-Home Lesson: Modeling your application in terms of well-defined struc-
tures and algorithms is the most important single step towards a solution.

1.5.2 Recursive Objects

Learning to think recursively is learning to look for big things that are made
from smaller things of exactly the same type as the big thing. If you think of
houses as sets of rooms, then adding or deleting a room still leaves a house
behind.

Recursive structures occur everywhere in the algorithmic world. Indeed, each
of the abstract structures described above can be thought about recursively. You
just have to see how you can break them down, as shown in Figure 1.10:

e Permutations — Delete the first element of a permutation of n things
{1,...,n} and you get a permutation of the remaining n — 1 things. This
may require renumbering to keep the object a permutation of consecu-
tive integers. For example, removing the first element of {4,1,5,2,3} and
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Figure 1.10: Recursive decompositions of combinatorial objects. Permutations,
subsets, trees, and graphs (left column). Point sets, polygons, and strings (right
column). Note that the elements of a permutation of {1,...,n} get renumbered
after element deletion in order to remain a permutation of {1,...,n —1}.

renumbering gives {1,4, 2,3}, a permutation of {1,2,3,4}. Permutations
are recursive objects.

e Subsets — Every subset of {1,...,n} contains a subset of {1,...,n — 1}
obtained by deleting element n, if it is present. Subsets are recursive
objects.

e Trees — Delete the root of a tree and what do you get? A collection of
smaller trees. Delete any leaf of a tree and what do you get? A slightly
smaller tree. Trees are recursive objects.

e Graphs — Delete any vertex from a graph, and you get a smaller graph.
Now divide the vertices of a graph into two groups, left and right. Cut
through all edges that span from left to right, and what do you get? Two
smaller graphs, and a bunch of broken edges. Graphs are recursive objects.

e Points — Take a cloud of points, and separate them into two groups by
drawing a line. Now you have two smaller clouds of points. Point sets are
recursive objects.

e Polygons — Inserting any internal chord between two non-adjacent ver-
tices of a simple polygon cuts it into two smaller polygons. Polygons are
recursive objects.

e Strings — Delete the first character from a string, and what do you get?
A shorter string. Strings are recursive objects.!

LAn alert reader of the previous edition observed that salads are recursive objects, in ways
that hamburgers are not. Take a bite (or an ingredient) out of a salad, and what is left is a
smaller salad. Take a bite out of a hamburger, and what is left is something disgusting.
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Recursive descriptions of objects require both decomposition rules and basis
cases, namely the specification of the smallest and simplest objects where the
decomposition stops. These basis cases are usually easily defined. Permutations
and subsets of zero things presumably look like {}. The smallest interesting tree
or graph consists of a single vertex, while the smallest interesting point cloud
consists of a single point. Polygons are a little trickier; the smallest genuine
simple polygon is a triangle. Finally, the empty string has zero characters in it.
The decision of whether the basis case contains zero or one element is more a
question of taste and convenience than any fundamental principle.

Recursive decompositions will define many of the algorithms we will see in
this book. Keep your eyes open for them.

1.6 Proof by Contradiction

Although some computer scientists only know how to prove things by induction,
this isn’t true of everyone. The best sometimes use contradiction.
The basic scheme of a contradiction argument is as follows:

e Assume that the hypothesis (the statement you want to prove) is false.
e Develop some logical consequences of this assumption.

e Show that one consequence is demonstrably false, thereby showing that
the assumption is incorrect and the hypothesis is true.

The classic contradiction argument is Euclid’s proof that there are an infinite
number of prime numbers: integers n like 2,3,5,7,11,... that have no non-
trivial factors, only 1 and n itself. The negation of the claim would be that there
are only a finite number of primes, say m, which can be listed as p1,...,pm. So
let’s assume this is the case and work with it.

Prime numbers have particular properties with respect to division. Suppose
we construct the integer formed as the product of “all” of the listed primes:

N = sz‘
=1

This integer N has the property that it is divisible by each and every one of the
known primes, because of how it was built.

But consider the integer N + 1. It can’t be divisible by p; = 2, because N is.
The same is true for po = 3 and every other listed prime. Since N + 1 doesn’t
have any non-trivial factor, this means it must be prime. But you asserted that
there are exactly m prime numbers, none of which are N + 1. This assertion is
false, so there cannot be a bounded number of primes. Touché!

For a contradiction argument to be convincing, the final consequence must
be clearly, ridiculously false. Muddy outcomes are not convincing. It is also
important that this contradiction be a logical consequence of the assumption.
We will see contradiction arguments for minimum spanning tree algorithms in
Section 8.1.
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1.7 About the War Stories

The best way to learn how careful algorithm design can have a huge impact on
performance is to look at real-world case studies. By carefully studying other
people’s experiences, we learn how they might apply to our work.

Scattered throughout this text are several of my own algorithmic war sto-
ries, presenting our successful (and occasionally unsuccessful) algorithm design
efforts on real applications. I hope that you will be able to internalize these
experiences so that they will serve as models for your own attacks on problems.

FEvery one of the war stories is true. Of course, the stories improve somewhat
in the retelling, and the dialogue has been punched up to make them more
interesting to read. However, I have tried to honestly trace the process of going
from a raw problem to a solution, so you can watch how this process unfolded.

The Oxford English Dictionary defines an algorist as “one skillful in reckon-
ings or figuring.” In these stories, I have tried to capture some of the mindset
of the algorist in action as they attack a problem.

The war stories often involve at least one problem from the problem catalog
in Part II. T reference the appropriate section of the catalog when such a problem
occurs. This emphasizes the benefits of modeling your application in terms of
standard algorithm problems. By using the catalog, you will be able to pull out
what is known about any given problem whenever it is needed.

1.8 War Story: Psychic Modeling

The call came for me out of the blue as I sat in my office.

“Professor Skiena, I hope you can help me. I'm the President of Lotto
Systems Group Inc., and we need an algorithm for a problem arising in our
latest product.”

“Sure,” T replied. After all, the dean of my engineering school is always
encouraging our faculty to interact more with industry.

“At Lotto Systems Group, we market a program designed to improve our
customers’ psychic ability to predict winning lottery numbers.? In a standard
lottery, each ticket consists of six numbers selected from, say, 1 to 44. However,
after proper training, our clients can visualize (say) fifteen numbers out of the
44 and be certain that at least four of them will be on the winning ticket. Are
you with me so far?”

“Probably not,” I replied. But then I recalled how my dean encourages us
to interact with industry.

“Our problem is this. After the psychic has narrowed the choices down to
fifteen numbers and is certain that at least four of them will be on the winning
ticket, we must find the most efficient way to exploit this information. Suppose
a cash prize is awarded whenever you pick at least three of the correct numbers
on your ticket. We need an algorithm to construct the smallest set of tickets
that we must buy in order to guarantee that we win at least one prize.”

2Yes, this is a true story.
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Tickets Winning Pairs

1 23 1 2 2 3
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Figure 1.11: Covering all pairs of {1,2,3,4,5} with tickets {1,2,3}, {1,4,5},
{2,4,5}, {3,4,5}. Pair color reflects the covering ticket.

“Assuming the psychic is correct?”

“Yes, assuming the psychic is correct. We need a program that prints out
a list of all the tickets that the psychic should buy in order to minimize their
investment. Can you help us?”

Maybe they did have psychic ability, for they had come to the right place.
Identifying the best subset of tickets to buy was very much a combinatorial
algorithm problem. It was going to be some type of covering problem, where
each ticket bought would “cover” some of the possible 4-element subsets of the
psychic’s set. Finding the absolute smallest set of tickets to cover everything was
a special instance of the NP-complete problem set cover (discussed in Section
21.1 (page 678)), and presumably computationally intractable.

It was indeed a special instance of set cover, completely specified by only
four numbers: the size n of the candidate set S (typically n =~ 15), the number of
slots k for numbers on each ticket (typically k ~ 6), the number of psychically-
promised correct numbers j from S (say j = 4), and finally, the number of
matching numbers [ necessary to win a prize (say [ = 3). Figure 1.11 illustrates
a covering of a smaller instance, where n =5, k = 3, and [ = 2, and no psychic
contribution (meaning j = 5).

“Although it will be hard to find the exact minimum set of tickets to buy,
with heuristics I should be able to get you pretty close to the cheapest covering
ticket set,” I told him. “Will that be good enough?”

“So long as it generates better ticket sets than my competitor’s program,
that will be fine. His system doesn’t always guarantee a win. I really appreciate
your help on this, Professor Skiena.”

“One last thing. If your program can train people to pick lottery winners,
why don’t you use it to win the lottery yourself?”

“I look forward to talking to you again real soon, Professor Skiena. Thanks
for the help.”

I hung up the phone and got back to thinking. It seemed like the perfect
project to give to a bright undergraduate. After modeling it in terms of sets
and subsets, the basic components of a solution seemed fairly straightforward:

e We needed the ability to generate all subsets of k£ numbers from the can-
didate set S. Algorithms for generating and ranking /unranking subsets of
sets are presented in Section 17.5 (page 521).
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e We needed the right formulation of what it meant to have a covering set
of purchased tickets. The obvious criteria would be to pick a small set of
tickets such that we have purchased at least one ticket containing each of
the (7) [-subsets of S that might pay off with the prize.

e We needed to keep track of which prize combinations we have thus far
covered. We seek tickets to cover as many thus-far-uncovered prize com-
binations as possible. The currently covered combinations are a subset of
all possible combinations. Data structures for subsets are discussed in Sec-
tion 15.5 (page 456). The best candidate seemed to be a bit vector, which
would answer in constant time “is this combination already covered?”

e We needed a search mechanism to decide which ticket to buy next. For
small enough set sizes, we could do an exhaustive search over all possible
subsets of tickets and pick the smallest one. For larger problems, a ran-
domized search process like simulated annealing (see Section 12.6.3 (page
406)) would select tickets-to-buy to cover as many uncovered combina-
tions as possible. By repeating this randomized procedure several times
and picking the best solution, we would be likely to come up with a good
set of tickets.

The bright undergraduate, Fayyaz Younas, rose to the challenge. Based
on this framework, he implemented a brute-force search algorithm and found
optimal solutions for problems with n < 5 in a reasonable time. He implemented
a random search procedure to solve larger problems, tweaking it for a while
before settling on the best variant. Finally, the day arrived when we could call
Lotto Systems Group and announce that we had solved the problem.

“Our program found an optimal solution for n = 15, k =6, j = 4,1 =3
meant buying 28 tickets.”

“Twenty-eight tickets!” complained the president. “You must have a bug.
Look, these five tickets will suffice to cover everything twice over: {2,4,8,10,13,14},
{4,5,7,8,12,15}, {1,2,3,6,11,13}, {3,5,6,9,10,15}, {1,7,9,11,12,14}.” We
fiddled with this example for a while before admitting that he was right.

We hadn’t modeled the problem correctly! In fact, we didn’t need to explicitly
cover all possible winning combinations. Figure 1.12 illustrates the principle by
giving a two-ticket solution to our previous four-ticket example. Although the
pairs {2,4}, {2,5}, {3,4}, or {3,5} do not explicitly appear in one of our two
tickets, these pairs plus any possible third ticket number must create a pair in
either {1,2,3} or {1,4,5}. We were trying to cover too many combinations, and
the penny-pinching psychics were unwilling to pay for such extravagance.

Fortunately, this story has a happy ending. The general outline of our search-
based solution still holds for the real problem. All we must fix is which subsets
we get credit for covering with a given set of tickets. After this modification,
we obtained the kind of results they were hoping for. Lotto Systems Group
gratefully accepted our program to incorporate into their product, and we hope
they hit the jackpot with it.



1.9. ESTIMATION 25

Tickets Winning Pairs
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Figure 1.12: Guaranteeing a winning pair from {1,2,3,4,5} using only tickets
{1,2,3} and {1,4,5}. The bottom figure shows how all missing pairs imply a
covered pair on expansion.

The moral of this story is to make sure that you model your problem cor-
rectly before trying to solve it. In our case, we came up with a reasonable model,
but didn’t work hard enough to validate it before we started to program. Our
misinterpretation would have become obvious had we worked out a small ex-
ample by hand and bounced it off our sponsor before beginning work. Our
success in recovering from this error is a tribute to the basic correctness of our
initial formulation, and our use of well-defined abstractions for such tasks as (1)
ranking/unranking k-subsets, (2) the set data structure, and (3) combinatorial
search.

1.9 Estimation

When you don’t know the right answer, the best thing to do is guess. Principled
guessing is called estimation. The ability to make back-of-the-envelope estimates
of diverse quantities such as the running time of a program is a valuable skill in
algorithm design, as it is in any technical enterprise.

Estimation problems are best solved through some kind of logical reasoning
process, typically a mix of principled calculations and analogies. Principled
calculations give the answer as a function of quantities that either you already
know, can look up on Google, or feel confident enough to guess. Analogies
reference your past experiences, recalling those that seem similar to some aspect
of the problem at hand.

I once asked my class to estimate the number of pennies in a hefty glass jar,
and got answers ranging from 250 to 15,000. Both answers will seem pretty silly
if you make the right analogies:

e A penny roll holds 50 coins in a tube roughly the length and width of your
biggest finger. So five such rolls can easily be held in your hand, with no
need for a hefty jar.
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e 15,000 pennies means $150 in value. I have never managed to accumulate
that much value in coins even in a hefty pile of change—and here I am
only using pennies!

But the class average estimate proved very close to the right answer, which
turned out to be 1879. There are at least three principled ways I can think of
to estimate the number of coins in the jar:

e Volume — The jar was a cylinder with about 5 inches diameter, and the
coins probably reached a level equal to about ten pennies tall stacked end
to end. Figure a penny is ten times longer than it is thick. The bottom
layer of the jar was a circle of radius about five pennies. So

(10 x 10) x (7 x 2.5%) ~ 1962.5

o Weight — Lugging the jar felt like carrying around a bowling ball. Mul-
tiplying the number of US pennies in a pound (181 when I looked it up)
times a 10 1b. ball gave a frighteningly accurate estimate of 1810.

e Analogy — The coins had a height of about 8 inches in the jar, or twice
that of a penny roll. Figure I could stack about two layers of ten rolls per
layer in the jar, or a total estimate of 1,000 coins.

A best practice in estimation is to try to solve the problem in different ways
and see if the answers generally agree in magnitude. All of these are within a
factor of two of each other, giving me confidence that my answer is about right.

Try some of the estimation exercises at the end of this chapter, and see how
many different ways you can approach them. If you do things right, the ratio
between your high and low estimates should be somewhere within a factor of two
to ten, depending upon the nature of the problem. A sound reasoning process
matters a lot more here than the actual numbers you get.

Chapter Notes

Every algorithm book reflects the design philosophy of its author. For stu-
dents seeking alternative presentations and viewpoints, I particularly recom-
mend the books of Cormen, et al. [CLRS09], Kleinberg and Tardos [KT06],
Manber [Man89], and Roughgarden [Roul7].

Formal proofs of algorithm correctness are important, and deserve a fuller
discussion than this chapter is able to provide. See Gries [Gri89] for a thorough
introduction to the techniques of program verification.

The movie scheduling problem represents a very special case of the general
independent set problem, which will be discussed in Section 19.2 (page 589).
The restriction limits the allowable input instances to interval graphs, where
the vertices of the graph G can be represented by intervals on the line and
(,7) is an edge of G iff the intervals overlap. Golumbic [Gol04] provides a full
treatment of this interesting and important class of graphs.
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Jon Bentley’s Programming Pearls columns are probably the best known
collection of algorithmic “war stories,” collected in two books [Ben90, Ben99).
Brooks’s The Mythical Man Month [Bro95] is another wonderful collection of
war stories that, although focused more on software engineering than algorithm
design, remain a source of considerable wisdom. Every programmer should read
these books for pleasure as well as insight.

Our solution to the lotto ticket set covering problem is presented in more
detail in Younas and Skiena [YS96].

1.10 Exercises

Finding Counterexamples
1-1. /8] Show that a + b can be less than min(a,b).
1-2. /3] Show that a x b can be less than min(a, b).

1-3. [5] Design/draw a road network with two points a and b such that the fastest
route between a and b is not the shortest route.

1-4. [5] Design/draw a road network with two points a and b such that the shortest
route between a and b is not the route with the fewest turns.

1-5. [4] The knapsack problem is as follows: given a set of integers S = {s1, s2,...,$n},
and a target number T, find a subset of S that adds up exactly to T. For ex-
ample, there exists a subset within S = {1,2,5,9,10} that adds up to T" = 22
but not T' = 23.

Find counterexamples to each of the following algorithms for the knapsack prob-
lem. That is, give an S and T" where the algorithm does not find a solution that
leaves the knapsack completely full, even though a full-knapsack solution exists.

(a) Put the elements of S in the knapsack in left to right order if they fit, that
is, the first-fit algorithm.

(b) Put the elements of S in the knapsack from smallest to largest, that is, the
best-fit algorithm.

(c) Put the elements of S in the knapsack from largest to smallest.

1-6. [5] The set cover problem is as follows: given a set S of subsets Si,...,Sm of

the universal set U = {1, ...,n}, find the smallest subset of subsets 7' C S such
that Uy, ert; = U. For example, consider the subsets S1 = {1,3,5}, Se = {2,4},
S3 = {1,4}, and Sy = {2,5}. The set cover of {1,...,5} would then be S; and
So.
Find a counterexample for the following algorithm: Select the largest subset for
the cover, and then delete all its elements from the universal set. Repeat by
adding the subset containing the largest number of uncovered elements until all
are covered.

1-7. [5] The mazimum clique problem in a graph G = (V, E) asks for the largest
subset C of vertices V such that there is an edge in F between every pair of
vertices in C'. Find a counterexample for the following algorithm: Sort the
vertices of G from highest to lowest degree. Considering the vertices in order
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of degree, for each vertex add it to the clique if it is a neighbor of all vertices
currently in the clique. Repeat until all vertices have been considered.

Proofs of Correctness

1-8. [3] Prove the correctness of the following recursive algorithm to multiply two
natural numbers, for all integer constants ¢ > 2.

Multiply(y, z)
if z =0 then return(0) else
return(Multiply(cy, | 2/¢]) + y - (z mod c¢))
1-9. /3] Prove the correctness of the following algorithm for evaluating a polynomial
anx™ + Gn_12" P+ -+ a1z + ao.
Horner(a, x)
p=an
for i fromn —1 to 0
pP=p-T+a;
return p
1-10. /8] Prove the correctness of the following sorting algorithm.
Bubblesort (A)
for i from n to 1
for j from 1 to¢—1
if (Alj] > A[j+1)
swap the values of A[j] and A[j + 1]

1-11. /5] The greatest common divisor of positive integers x and y is the largest integer
d such that d divides x and d divides y. Euclid’s algorithm to compute ged(z, y)
where = > y reduces the task to a smaller problem:

ged(z,y) = ged(y, z mod y)
Prove that Euclid’s algorithm is correct.
Induction
1-12. /8] Prove that > 7" i =n(n+1)/2 for n > 0, by induction.
1-13. /8] Prove that >.7 , i* =n(n+ 1)(2n+ 1)/6 for n > 0, by induction.
1-14. /8] Prove that > | i* = n*(n+ 1)?/4 for n > 0, by induction.
1-15. [3] Prove that

Zi(i +1)(i+2) =n(n+1)(n+2)(n+3)/4

1-16. [5] Prove by induction on n > 1 that for every a # 1,

+1_1

n n
; a—1
=0
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1-17. [3] Prove by induction that for n > 1,

)P

i(i+1)  n+l

1-18. [8] Prove by induction that n® + 2n is divisible by 3 for all n > 0.

1-19. /3] Prove by induction that a tree with n vertices has exactly n — 1 edges.

1-20. /3] Prove by induction that the sum of the cubes of the first n positive integers
is equal to the square of the sum of these integers, that is,

n

Zf" =(>_ i)

i=1

Estimation

1-21. [8] Do all the books you own total at least one million pages? How many total
pages are stored in your school library?

1-22. [3] How many words are there in this textbook?

1-23. /8] How many hours are one million seconds? How many days? Answer these
questions by doing all arithmetic in your head.

1-24. [3] Estimate how many cities and towns there are in the United States.

1-25. [3] Estimate how many cubic miles of water flow out of the mouth of the
Mississippi River each day. Do not look up any supplemental facts. Describe all
assumptions you made in arriving at your answer.

1-26. [8] How many Starbucks or McDonald’s locations are there in your country?
1-27. [8] How long would it take to empty a bathtub with a drinking straw?

1-28. [3] Is disk drive access time normally measured in milliseconds (thousandths of
a second) or microseconds (millionths of a second)? Does your RAM memory
access a word in more or less than a microsecond? How many instructions can
your CPU execute in one year if the machine is left running all the time?

1-29. [4] A sorting algorithm takes 1 second to sort 1,000 items on your machine.
How long will it take to sort 10,000 items. ..
(a) if you believe that the algorithm takes time proportional to n?, and

(b) if you believe that the algorithm takes time roughly proportional to nlogn?

Implementation Projects

1-30. /5] Implement the two TSP heuristics of Section 1.1 (page 5). Which of them
gives better solutions in practice? Can you devise a heuristic that works better
than both of them?

1-31. [5] Describe how to test whether a given set of tickets establishes sufficient
coverage in the Lotto problem of Section 1.8 (page 22). Write a program to find
good ticket sets.
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Interview Problems

1-32. [5] Write a function to perform integer division without using either the / or *
operators. Find a fast way to do it.

1-33. [5] There are twenty-five horses. At most, five horses can race together at a
time. You must determine the fastest, second fastest, and third fastest horses.
Find the minimum number of races in which this can be done.

1-34. [3/ How many piano tuners are there in the entire world?
1-35. [3/ How many gas stations are there in the United States?
1-36. [3/ How much does the ice in a hockey rink weigh?

1-37. [3] How many miles of road are there in the United States?

1-38. [3] On average, how many times would you have to flip open the Manhattan
phone book at random in order to find a specific name?

LeetCode

1-1. https://leetcode.com/problems/daily-temperatures/
1-2. https://leetcode.com/problems/rotate-list/
1-3. https://leetcode.com/problems/wiggle-sort-ii/

HackerRank

1-1. https://www.hackerrank.com/challenges/array-left-rotation/
1-2. https://www.hackerrank.com/challenges/kangaroo/

1-3. https://www.hackerrank.com/challenges/hackerland-radio-transmitters/

Programming Challenges
These programming challenge problems with robot judging are available at
https://onlinejudge.org:

1-1. “The 3n + 1 Problem”—Chapter 1, problem 100.

1-2. “The Trip”—Chapter 1, problem 10137.

1-3. “Australian Voting”—Chapter 1, problem 10142.


https://leetcode.com/problems/daily-temperatures/
https://leetcode.com/problems/rotate-list/
https://leetcode.com/problems/wiggle-sort-ii/
https://www.hackerrank.com/challenges/array-left-rotation/
https://www.hackerrank.com/challenges/kangaroo/
https://www.hackerrank.com/challenges/hackerland-radio-transmitters/
https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=28
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Chapter 2

Algorithm Amnalysis

Algorithms are the most important and durable part of computer science be-
cause they can be studied in a language- and machine-independent way. This
means we need techniques that let us compare the efficiency of algorithms with-
out implementing them. Our two most important tools are (1) the RAM model
of computation and (2) the asymptotic analysis of computational complexity.

Assessing algorithmic performance makes use of the “Big Oh” notation that
proves essential to compare algorithms, and design better ones. This method
of keeping score will be the most mathematically demanding part of this book.
But once you understand the intuition behind this formalism it becomes a lot
easier to deal with.

2.1 The RAM Model of Computation

Machine-independent algorithm design depends upon a hypothetical computer
called the Random Access Machine, or RAM. Under this model of computation,
we are confronted with a computer where:

e Each simple operation (4, *, —, =, if, call) takes exactly one time step.

e Loops and subroutines are not considered simple operations. Instead,
they are the composition of many single-step operations. It makes no
sense for sort to be a single-step operation, since sorting 1,000,000 items
will certainly take much longer than sorting ten items. The time it takes
to run through a loop or execute a subprogram depends upon the number
of loop iterations or the specific nature of the subprogram.

e FEach memory access takes exactly one time step. Furthermore, we have
as much memory as we need. The RAM model takes no notice of whether
an item is in cache or on the disk.

Under the RAM model, we measure run time by counting the number of
steps an algorithm takes on a given problem instance. If we assume that our
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RAM executes a given number of steps per second, this operation count converts
naturally to the actual running time.

The RAM is a simple model of how computers perform. Perhaps it sounds
too simple. After all, multiplying two numbers takes more time than adding two
numbers on most processors, which violates the first assumption of the model.
Fancy compiler loop unrolling and hyperthreading may well violate the second
assumption. And certainly memory-access times differ greatly depending on
where your data sits in the storage hierarchy. This makes us zero for three on
the truth of our basic assumptions.

And yet, despite these objections, the RAM proves an ezcellent model for
understanding how an algorithm will perform on a real computer. It strikes a
fine balance by capturing the essential behavior of computers while being simple
to work with. We use the RAM model because it is useful in practice.

Every model in science has a size range over which it is useful. Take, for
example, the model that the Earth is flat. You might argue that this is a bad
model, since it is quite well established that the Earth is round. But, when
laying the foundation of a house, the flat Earth model is sufficiently accurate
that it can be reliably used. It is so much easier to manipulate a flat-Earth
model that it is inconceivable that you would try to think spherically when you
don’t have to.!

The same situation is true with the RAM model of computation. We make
an abstraction that is generally very useful. It is difficult to design an algorithm
where the RAM model gives you substantially misleading results. The robust-
ness of this model enables us to analyze algorithms in a machine-independent
way.

Take-Home Lesson: Algorithms can be understood and studied in a language-
and machine-independent manner.

2.1.1 Best-Case, Worst-Case, and Average-Case Complex-
ity

Using the RAM model of computation, we can count how many steps our algo-

rithm takes on any given input instance by executing it. However, to understand

how good or bad an algorithm is in general, we must know how it works over

all possible instances.

To understand the notions of the best, worst, and average-case complexity,
think about running an algorithm over all possible instances of data that can be
fed to it. For the problem of sorting, the set of possible input instances includes
every possible arrangement of n keys, for all possible values of n. We can
represent each input instance as a point on a graph (shown in Figure 2.1) where
the z-axis represents the size of the input problem (for sorting, the number of
items to sort), and the y-axis denotes the number of steps taken by the algorithm
in this instance.

1The Earth is not completely spherical either, but a spherical Earth provides a useful model
for such things as longitude and latitude.
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Number

of Steps Worst Case

Average Case

Best Case

Problem Size

Figure 2.1: Best-case, worst-case, and average-case complexity.

These points naturally align themselves into columns, because only integers
represent possible input sizes (e.g., it makes no sense to sort 10.57 items). We
can define three interesting functions over the plot of these points:

e The worst-case complezity of the algorithm is the function defined by the
maximum number of steps taken in any instance of size n. This represents
the curve passing through the highest point in each column.

e The best-case complexity of the algorithm is the function defined by the
minimum number of steps taken in any instance of size n. This represents
the curve passing through the lowest point of each column.

e The average-case complexity or expected time of the algorithm, which is
the function defined by the average number of steps over all instances of
size n.

The worst-case complexity generally proves to be most useful of these three
measures in practice. Many people find this counterintuitive. To illustrate why,
try to project what will happen if you bring $n into a casino to gamble. The
best case, that you walk out owning the place, is so unlikely that you should not
even think about it. The worst case, that you lose all $n, is easy to calculate
and distressingly likely to happen.

The average case, that the typical bettor loses 87.32% of the money that he
or she brings to the casino, is both difficult to establish and its meaning subject
to debate. What exactly does average mean? Stupid people lose more than
smart people, so are you smarter or stupider than the average person, and by
how much? Card counters at blackjack do better on average than customers
who accept three or more free drinks. We avoid all these complexities and obtain
a very useful result by considering the worst case.

That said, average-case analysis for expected running time will prove very
important with respect to randomized algorithms, which use random numbers
to make decisions within the algorithm. If you make n independent $1 red-
black bets on roulette in the casino, your expected loss is indeed well defined at
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$(2n/38), because American roulette wheels have eighteen red, eighteen black,
and two green slots 0 and 00 where every bet loses.

Take-Home Lesson: Each of these time complexities defines a numerical func-
tion for any given algorithm, representing running time as a function of input
size. These functions are just as well defined as any other numerical function,
be it y = 22 — 22 + 1 or the price of Alphabet stock as a function of time. But
time complexities are such complicated functions that we must simplify them
for analysis using the “Big Oh” notation.

2.2 The Big Oh Notation

The best-case, worst-case, and average-case time complexities for any given
algorithm are numerical functions over the size of possible problem instances.
However, it is very difficult to work precisely with these functions, because they
tend to:

e Have too many bumps — An algorithm such as binary search typically runs
a bit faster for arrays of size exactly n = 2¥ — 1 (where k is an integer),
because the array partitions work out nicely. This detail is not particularly
important, but it warns us that the exact time complexity function for any
algorithm is liable to be very complicated, with lots of little up and down
bumps as shown in Figure 2.2.

e Require too much detail to specify precisely — Counting the exact number
of RAM instructions executed in the worst case requires the algorithm be
specified to the detail of a complete computer program. Furthermore, the
precise answer depends upon uninteresting coding details (e.g. did the
code use a case statement or nested ifs?). Performing a precise worst-case
analysis like

T(n) = 12754n? + 4353n + 8341g, n + 13546

would clearly be very difficult work, but provides us little extra information
than the observation that “the time grows quadratically with n.”

It proves to be much easier to talk in terms of simple upper and lower bounds
of time-complexity functions using the Big Oh notation. The Big Oh simplifies
our analysis by ignoring levels of detail that do not impact our comparison of
algorithms.

The Big Oh notation ignores the difference between multiplicative constants.
The functions f(n) = 2n and g(n) = n are identical in Big Oh analysis. This
makes sense given our application. Suppose a given algorithm in (say) C lan-
guage ran twice as fast as one with the same algorithm written in Java. This
multiplicative factor of two can tell us nothing about the algorithm itself, be-
cause both programs implement exactly the same algorithm. We should ignore
such constant factors when comparing two algorithms.

The formal definitions associated with the Big Oh notation are as follows:
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Figure 2.2: Upper and lower bounds valid for n > ng smooth out the behavior
of complex functions.
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Figure 2.3: Tllustrating notations: (a) f(n) = O(g(n)), (b) f(n) = Q(g(n)), and
(¢) f(n) = O(g(n)).

e f(n) = O(g(n)) means ¢ - g(n) is an upper bound on f(n). Thus, there
exists some constant ¢ such that f(n) < c¢- g(n) for every large enough n
(that is, for all n > ng, for some constant ny).

e f(n)=Q(g(n)) means c-g(n) is a lower bound on f(n). Thus, there exists
some constant ¢ such that f(n) > c¢-g(n) for all n > ny.

e f(n) = O(g(n)) means c; - g(n) is an upper bound on f(n) and ¢ - g(n)
is a lower bound on f(n), for all n > ng. Thus, there exist constants c¢;
and cg such that f(n) <c¢p-g(n) and f(n) > ¢o-g(n) for all n > ng. This
means that g(n) provides a nice, tight bound on f(n).

Got it? These definitions are illustrated in Figure 2.3. Each of these defi-
nitions assumes there is a constant ny beyond which they are satisfied. We are
not concerned about small values of n, anything to the left of ng. After all,
we don’t really care whether one sorting algorithm sorts six items faster than
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another, but we do need to know which algorithm proves faster when sorting
10,000 or 1,000,000 items. The Big Oh notation enables us to ignore details and
focus on the big picture.

Take-Home Lesson: The Big Oh notation and worst-case analysis are tools
that greatly simplify our ability to compare the efficiency of algorithms.

Make sure you understand this notation by working through the following
examples. Certain constants (¢ and ng) are chosen in the explanations below
because they work and make a point, but other pairs of constants will do exactly
the same job. You are free to choose any constants that maintain the same
inequality (ideally constants that make it obvious that the inequality holds):

f(n) = 3n% — 100n 4+ 6 = O(n?), because for ¢ = 3, 3n* > f(n);

f(n) =3n? —100n + 6 = O(n?), because for ¢ = 1, n® > f(n) when n > 3;

f(n) = 3n? —100n + 6 # O(n), because for any ¢ > 0, cn < f(n) when n > (¢ + 100)/3,
since n > (¢ +100)/3 = 3n > ¢+ 100 = 3n? > cn + 100n > cn + 100n — 6
= 3n? — 100n + 6 = f(n) > cn;

f(n) = 3n% —100n + 6 = Q(n?), because for ¢ = 2, 2n* < f(n) when n > 100;
f(n) = 3n% —100n + 6 # Q(n®), because for any ¢ > 0, f(n) < c¢-n® when n > 3/c+ 3;
f(n) = 3n% —100n + 6 = Q(n), because for any ¢ > 0, f(n) < 3n* 4 6n? = 9n?

which is < en® when n > max(9/c, 1);

f(n) = 3n? —100n +6 = @(nQ), because both O and €2 apply;
f(n) = 3n% —100n 4 6 # ©(n?), because only O applies;
f(n) = 3n? — 100n + 6 # O(n), because only Q applies.

The Big Oh notation provides for a rough notion of equality when comparing
functions. It is somewhat jarring to see an expression like n? = O(n?), but its
meaning can always be resolved by going back to the definitions in terms of
upper and lower bounds. It is perhaps most instructive to read the “=” here as
meaning one of the functions that are. Clearly, n? is one of the functions that
are O(n?).

Stop and Think: Back to the Definition

Problem: Is 2"t = ©(2")?
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Solution: Designing novel algorithms requires cleverness and inspiration. How-
ever, applying the Big Oh notation is best done by swallowing any creative
instincts you may have. All Big Oh problems can be correctly solved by going
back to the definition and working with that.

o [s 2"l = 0(2")? Well, f(n) = O(g(n)) iff there exists a constant ¢ such
that for all sufficiently large n, f(n) < c¢-g(n). Is there? Yes, because
27t = 2.2 and clearly 22" < ¢- 2" for any ¢ > 2.

o [s 2"t = Q(2")? Go back to the definition. f(n) = Q(g(n)) iff there
exists a constant ¢ > 0 such that for all sufficiently large n f(n) > c- g(n).
This would be satisfied for any 0 < ¢ < 2. Together the Big Oh and €2
bounds imply 2" = ©(2").

Stop and Think: Hip to the Squares?

Problem: Is (x +y)? = O(2? + y?)?

Solution: Working with the Big Oh means going back to the definition at the
slightest sign of confusion. By definition, this expression is valid iff we can find
some ¢ such that (z + y)? < c(2? + y?) for all sufficiently large = and y.

My first move would be to expand the left side of the equation, that is,
(x 4+ y)? = 2% + 22y + y%. If the middle 22y term wasn’t there, the inequality
would clearly hold for any ¢ > 1. But it is there, so we need to relate 2xy to
22 + 9% What if 2 < y? Then 2zy < 2y? < 2(2? + y?). What if z > y? Then
22y < 222 < 2(2? + y?). Either way, we now can bound 2zy by two times the
right-side function 2% + y2. This means that (z + y)? < 3(2? + »?), and so the
result holds. 1

2.3 Growth Rates and Dominance Relations

With the Big Oh notation, we cavalierly discard the multiplicative constants.
Thus, the functions f(n) = 0.001n? and g(n) = 1000n? are treated identically,
even though g(n) is a million times larger than f(n) for all values of n.

The reason why we are content with such coarse Big Oh analysis is provided
by Figure 2.4, which shows the growth rate of several common time analysis
functions. In particular, it shows how long algorithms that use f(n) operations
take to run on a fast computer, where each operation costs one nanosecond
(1072 seconds). The following conclusions can be drawn from this table:

e All such algorithms take roughly the same time for n = 10.

e Any algorithm with n! running time becomes useless for n > 20.
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n lgn n nlgn n? 2mn n!

10 0.003 ps 0.01 ps 0.033 us 0.1 ps 1 ps 3.63 ms
20 0.004 ps 0.02 us 0.086 us 0.4 ps 1 ms 77.1 years
30 0.005 ps | 0.03 pus | 0.147 pus | 0.9 ps 1 sec 8.4 x 10*° yrs
40 0.005 ps 0.04 us 0.213 us 1.6 ps 18.3 min

50 0.006 ps 0.05 ps 0.282 us 2.5 ps 13 days

100 0.007 ps | 0.1 ps 0.644 ps | 10 ps 4 % 105 yrs

1,000 0.010 ps 1.00 ps 9.966 us 1 ms

10,000 0.013 ps 10 ps 130 ps 100 ms

100,000 0.017 ps 0.10 ms 1.67 ms 10 sec

1,000,000 0.020 ps 1 ms 19.93 ms 16.7 min

10,000,000 0.023 ps 0.01 sec 0.23 sec 1.16 days

100,000,000 0.027 ps 0.10 sec 2.66 sec 115.7 days

1,000,000,000 0.030 ps 1 sec 29.90 sec 31.7 years

Figure 2.4: Running times of common functions measured in nanoseconds.
The function lgn denotes the base-2 logarithm of n.

Algorithms whose running time is 2" have a greater operating range, but
become impractical for n > 40.

e Quadratic-time algorithms, whose running time is n?, remain usable up

to about n = 10,000, but quickly deteriorate with larger inputs. They are
likely to be hopeless for n > 1,000,000.

e Linear-time and nlgn algorithms remain practical on inputs of one billion
items.

e An O(lgn) algorithm hardly sweats for any imaginable value of n.

The bottom line is that even ignoring constant factors, we get an excellent
idea of whether a given algorithm is appropriate for a problem of a given size.

2.3.1 Dominance Relations

The Big Oh notation groups functions into a set of classes, such that all the
functions within a particular class are essentially equivalent. Functions f(n) =
0.34n and g(n) = 234,234n belong in the same class, namely those that are order
O(n). Furthermore, when two functions f and g belong to different classes, they
are different with respect to our notation, meaning either f(n) = O(g(n)) or
g(n) = O(f(n)), but not both.

We say that a faster growing function dominates a slower growing one, just
as a faster growing company eventually comes to dominate the laggard. When
f and g belong to different classes (i.e. f(n) # ©(g(n))), we say g dominates f
when f(n) = O(g(n)). This is sometimes written g > f.

The good news is that only a few different function classes tend to occur
in the course of basic algorithm analysis. These suffice to cover almost all the
algorithms we will discuss in this text, and are listed in order of increasing
dominance:
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e Constant functions, f(n) = 1: Such functions might measure the cost
of adding two numbers, printing out “The Star Spangled Banner,” or
the growth realized by functions such as f(n) = min(n, 100). In the big
picture, there is no dependence on the parameter n.

e Logarithmic functions, f(n) = logn: Logarithmic time complexity shows
up in algorithms such as binary search. Such functions grow quite slowly
as n gets big, but faster than the constant function (which is standing
still, after all). Logarithms will be discussed in more detail in Section 2.7

(page 48).

e Linear functions, f(n) = n: Such functions measure the cost of looking
at each item once (or twice, or ten times) in an n-element array, say to
identify the biggest item, the smallest item, or compute the average value.

e Superlinear functions, f(n) = nlgn: This important class of functions
arises in such algorithms as quicksort and mergesort. They grow just a
little faster than linear (recall Figure 2.4), but enough so to rise to a higher
dominance class.

o Quadratic functions, f(n) = n?: Such functions measure the cost of look-
ing at most or all pairs of items in an n-element universe. These arise in
algorithms such as insertion sort and selection sort.

e Cubic functions, f(n) = n3: Such functions enumerate all triples of items
in an n-element universe. These also arise in certain dynamic program-
ming algorithms, to be developed in Chapter 10.

e [Exponential functions, f(n) = ¢" for a given constant ¢ > 1: Functions
like 2™ arise when enumerating all subsets of n items. As we have seen,
exponential algorithms become useless fast, but not as fast as. ..

e Factorial functions, f(n) = n!: Functions like n! arise when generating all
permutations or orderings of n items.

The intricacies of dominance relations will be further discussed in Section
2.10.2 (page 58). However, all you really need to understand is that:

n!>2" > n > n? > nlogn>>n>logn>>1

Take-Home Lesson: Although esoteric functions arise in advanced algorithm
analysis, a small set of time complexities suffice for most algorithms we will see
in this book.

2.4 Working with the Big Oh

You learned how to do simplifications of algebraic expressions back in high
school. Working with the Big Oh requires dusting off these tools. Most of what
you learned there still holds in working with the Big Oh, but not everything.
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2.4.1 Adding Functions

The sum of two functions is governed by the dominant one, namely:

f(n) +g(n) = O(max(f(n), g(n)))

This is very useful in simplifying expressions: for example it gives us that
n3+n?+n+1=0(n3). Everything else is small potatoes besides the dominant
term.

The intuition is as follows. At least half the bulk of f(n)+ g(n) must come
from the larger value. The dominant function will, by definition, provide the
larger value as n — oco. Thus, dropping the smaller function from consideration
reduces the value by at most a factor of 1/2, which is just a multiplicative
constant. For example, if f(n) = O(n?) and g(n) = O(n?), then f(n) + g(n) =
O(n?) as well.

2.4.2 Multiplying Functions

Multiplication is like repeated addition. Consider multiplication by any constant
¢ > 0, be it 1.02 or 1,000,000. Multiplying a function by a constant cannot affect
its asymptotic behavior, because we can multiply the bounding constants in the
Big Oh analysis to account for it. Thus,

O(c- f(n)) = O(f(n))
Qe f(n)) = Q(f(n))
O(c- f(n)) = 6(f(n))

Of course, ¢ must be strictly positive (i.e. ¢ > 0) to avoid any funny business,
since we can wipe out even the fastest growing function by multiplying it by
Zero.

On the other hand, when two functions in a product are increasing, both
are important. An O(n!logn) function dominates n! by just as much as logn
dominates 1. In general,

O(f(n)) - O(g(n)) = O(f(n) -

Q(f(n)) - Qg(n)) = Qf(n) -
O(f(n)) - ©(g(n)) = O(f(n) -

(n))
(n))
(n))

Q@ @ «

Stop and Think: Transitive Experience

Problem: Show that Big Oh relationships are transitive. That is, if f(n) =
O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).

Solution: We always go back to the definition when working with the Big Oh.
What we need to show here is that f(n) < ¢3 - h(n) for n > ng given that
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f(n) < e -g(n) and g(n) < cg - h(n), for n > ny and n > ng, respectively.
Cascading these inequalities, we get that

f(n) <ei-g(n) <ciea - hin)

for n > ng = max(ny,n2). |

2.5 Reasoning about Efficiency

Coarse reasoning about an algorithm’s running time is usually easy, given a
precise description of the algorithm. In this section, I will work through several
examples, perhaps in greater detail than necessary.

2.5.1 Selection Sort

Here we'll analyze the selection sort algorithm, which repeatedly identifies the
smallest remaining unsorted element and puts it at the end of the sorted portion
of the array. An animation of selection sort in action appears in Figure 2.5, and
the code is shown below:

void selection_sort(item_type s[], int n) {
int i, j; /* counters */
int min; /* index of mintmum */

for (i = 0; 1 < mn; i++) {
min = i;
for (j =1+ 1; j <mn; j+t) {
if (s[j] < smin]) {
min = j;
}
}
swap(&s[i], &s[min]);

The outer for loop goes around n times. The nested inner loop goes around
n — (i + 1) times, where 7 is the index of the outer loop. The exact number of
times the if statement is executed is given by:

n—1 n—1

Tn)=>» > 1:2_:n—z'—1

i=0 j=i+1 =0

What this sum is doing is adding up the non-negative integers in decreasing
order starting from n — 1, that is,

Tn)=n-1)4n—-2)+n—-3)+...+2+1
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SELECTIONSORT
CELESTIONSORT
CEILESTIONSORT
CEEILSTIONSORT
CE STLONSORT
CE TSONSORT
CE SOTSORT
CE OSTSORT
CE OO[TSSRT
CE OOR[SSTT
CE OORSI[STT
CE OORS S[TT
CE OORS STT
CE OORSST

Figure 2.5: Animation of selection sort in action.

How can we reason about such a formula? We must solve the summation
formula using the techniques of Section 2.6 (page 46) to get an exact value. But,
with the Big Oh, we are only interested in the order of the expression. One way
to think about it is that we are adding up n — 1 terms, whose average value is
about n/2. This yields T'(n) ~ (n — 1)n/2 = O(n?).

Proving the Theta

Another way to think about this algorithm’s running time is in terms of upper
and lower bounds. We have n terms at most, each of which is at most n — 1.
Thus, T(n) < n(n — 1) = O(n?). The Big Oh is an upper bound.

The Big 2 is a lower bound. Looking at the sum again, we have n/2 terms
each of which is bigger than n/2, followed by n/2 terms each greater than zero..
Thus, T(n) > (n/2) - (n/2) + (n/2) - 0 = Q(n?). Together with the Big Oh
result, this tells us that the running time is ©(n?), meaning that selection sort
is quadratic.

Generally speaking, turning a Big Oh worst-case analysis into a Big © in-
volves identifying a bad input instance that forces the algorithm to perform as
poorly as possible. But selection sort is distinctive among sorting algorithms
in that it takes exactly the same time on all n! possible input instances. Since
T(n) =n(n—1)/2 for all n > 0, T(n) = O(n?).

2.5.2 Insertion Sort

A basic rule of thumb in Big Oh analysis is that worst-case running time fol-
lows from multiplying the largest number of times each nested loop can iterate.
Consider the insertion sort algorithm presented on page 3, whose inner loops
are repeated here:



2.5. REASONING ABOUT EFFICIENCY 43

for (i = 1; 1 < n; i++) {
i= i
while ((j > 0) && (s[j] < s[j - 11)) {
swap (&s[jl, &s[j - 11);
i= it

3

How often does the inner while loop iterate? This is tricky because there
are two different stopping conditions: one to prevent us from running off the
bounds of the array (j > 0) and the other to mark when the element finds its
proper place in sorted order (s[j] < s[j —1]). Since worst-case analysis seeks an
upper bound on the running time, we ignore the early termination and assume
that this loop always goes around ¢ times. In fact, we can simplify further
and assume it always goes around n times since ¢ < n. Since the outer loop
goes around n times, insertion sort must be a quadratic-time algorithm, that is,
O(n?).

This crude “round it up” analysis always does the job, in that the Big Oh
running time bound you get will always be correct. Occasionally, it might be
too pessimistic, meaning the actual worst-case time might be of a lower order
than implied by such analysis. Still, I strongly encourage this kind of reasoning
as a basis for simple algorithm analysis.

Proving the Theta

The worst case for insertion sort occurs when each newly inserted element must
slide all the way to the front of the sorted region. This happens if the input
is given in reverse sorted order. Each of the last n/2 elements of the input
must slide over at least n/2 elements to find the correct position, taking at least
(n/2)? = Q(n?) time.

2.5.3 String Pattern Matching

Pattern matching is the most fundamental algorithmic operation on text strings.
This algorithm implements the find command available in any web browser or
text editor:

Problem: Substring Pattern Matching
Input: A text string t and a pattern string p.
Output: Does t contain the pattern p as a substring, and if so, where?

Perhaps you are interested in finding where “Skiena” appears in a given news
article (well, I would be interested in such a thing). This is an instance of string
pattern matching with ¢ as the news article and p = “Skiena”.

There is a fairly straightforward algorithm for string pattern matching that
considers the possibility that p may start at each possible position in ¢ and then
tests if this is so.
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abba
ab b a
a bba
abb a
ab b a
abba
abaababbaba

Figure 2.6: Searching for the substring abba in the text abaababbaba. Blue
characters represent pattern-text matches, with red characters mismatches. The
search stops as soon as a match is found.

int findmatch(char *p, char *t) {
int i, j; /* counters */
int plen, tlen; /* string lengths */

plen = strlen(p);
tlen = strlen(t);

for (i = 0; 1 <= (tlen-plen); i =1 + 1) {

=0

while ((j < plen) && (t[i + jl == p[j1)) {
=31

}

if (j == plen) {
return(i); /* location of the first match */
}
}

return(-1); /* there is mo match */

What is the worst-case running time of these two nested loops? The inner
while loop goes around at most m times, and potentially far less when the
pattern match fails. This, plus two other statements, lies within the outer for
loop. The outer loop goes around at most n — m times, since no complete
alignment is possible once we get too far to the right of the text. The time
complexity of nested loops multiplies, so this gives a worst-case running time of
O((n —m)(m +2)).

We did not count the time it takes to compute the length of the strings using
the function strlen. Since the implementation of strlen is not given, we must
guess how long it should take. If it explicitly counts the number of characters
until it hits the end of the string, this will take time linear in the length of the
string. Thus, the total worst-case running time is O(n +m + (n — m)(m + 2)).

Let’s use our knowledge of the Big Oh to simplify things. Since m + 2 =
O(m), the “42” isn’t interesting, so we are left with O(n + m + (n — m)m).



2.5. REASONING ABOUT EFFICIENCY 45

Multiplying this out yields O(n + m +nm —m?), which still seems kind of ugly.

However, in any interesting problem we know that n > m, since p can’t be a
substring of ¢t when the pattern is longer than the text itself. One consequence
of this is that n+m < 2n = O(n). Thus, our worst-case running time simplifies
further to O(n + nm — m?).

Two more observations and we are done. First, note that n < nm, since
m > 1 in any interesting pattern. Thus, n+nm = ©(nm), and we can drop the
additive n, simplifying our analysis to O(nm — m?).

Finally, observe that the —m? term is negative, and thus only serves to
lower the value within. Since the Big Oh gives an upper bound, we can drop
any negative term without invalidating the upper bound. The inequality n > m
implies that mn > m?, so the negative term is not big enough to cancel the term
that is left. Thus, we can express the worst-case running time of this algorithm
simply as O(nm).

After you get enough experience, you will be able to do such an algorithm
analysis in your head without even writing the algorithm down. After all, algo-
rithm design for a given task involves mentally rifling through different possibil-
ities and selecting the best approach. This kind of fluency comes with practice,
but if you are confused about why a given algorithm runs in O(f(n)) time, start
by writing the algorithm out carefully and then employ the kind of reasoning
we used in this section.

Proving the Theta

The analysis above gives a quadratic-time upper bound on the running time of
this simple pattern matching algorithm. To prove the theta, we must show an
example where it actually does take Q(mn) time.

Consider what happens when the text ¢ = “aaaa...aaaa” is a string of n
a’s, and the pattern p = “aaaa...aaab” is a string of m — 1 a’s followed by a b.
Wherever the pattern is positioned on the text, the while loop will successfully
match the first m — 1 characters before failing on the last one. There are
n —m + 1 possible positions where p can sit on t without overhanging the end,
so the running time is:

(n —m+1)(m) =mn —m? +m = Q(mn)
Thus, this string matching algorithm runs in worst-case ©(nm) time. Faster

algorithms do exist: indeed we will see an expected linear-time algorithm for
this problem in Section 6.7.

2.5.4 Matrix Multiplication

Nested summations often arise in the analysis of algorithms with nested loops.
Consider the problem of matrix multiplication:
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Problem: Matrix Multiplication

Input: Two matrices, A (of dimension z X y) and B (dimension y X z).
Output: An z x z matrix C' where C[i][j] is the dot product of the ith row of A
and the jth column of B.

Matrix multiplication is a fundamental operation in linear algebra, presented
with an entry in the catalog in Section 16.3 (page 472). That said, the elemen-
tary algorithm for matrix multiplication is implemented as three nested loops:

for (i = 1; i <= a->rows; i++) {
for (j = 1; j <= b->columns; j++) {
c->m[i] [j] = O;
for (k = 1; k <= b->rows; k++) {
c—>m[il [j]1 += a->m[il [k] * b->m[k] [j1;
}

}

How can we analyze the time complexity of this algorithm? Three nested
loops should smell O(n?) to you by this point, but let’s be precise. The number
of multiplications M (z,y, z) is given by the following summation:

M) =333

i=1 j=1 k=1

Sums get evaluated from the right inward. The sum of z ones is z, so

M) =33

=1 j=1

The sum of y z’s is just as simple, yz, so

M(z,y, 2 Zyz

Finally, the sum of x yz’s is zyz.

Thus, the running of this matrix multiplication algorithm is O(zyz). If we
consider the common case where all three dimensions are the same, this becomes
O(n?). The same analysis holds for an (n?) lower bound, because the matrix
dimensions govern the number of iterations of the for loops. Simple matrix
multiplication is a cubic algorithm that runs in ©(n?) time. Faster algorithms
exist: see Section 16.3.

2.6 Summations

Mathematical summation formulae are important to us for two reasons. First,
they often arise in algorithm analysis. Second, proving the correctness of such
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formulae is a classic application of mathematical induction. Several exercises on
inductive proofs of summations appear as exercises at the end of this chapter.
To make them more accessible, I review the basics of summations here.

Summation formulae are concise expressions describing the addition of an
arbitrarily large set of numbers, in particular the formula

Zf(i):f(1)+f(2)+-~-+f(n)

Simple closed forms exist for summations of many algebraic functions. For
example, since the sum of n ones is n,

n

len

i=1
When n is even, the sum of the first n = 2k integers can be seen by pairing up
the ith and (n — i 4 1)th integers:

n

3=

The same result holds for odd n with slightly more careful analysis.
Recognizing two basic classes of summation formulae will get you a long way
in algorithm analysis:

)=

(i+@2k—i+1)=k2k+1)=n(n+1)/2

o Sum of a power of integers — We encountered the sum of the first n positive
integers S(n) = Y.i' ;i = n(n + 1)/2 in the analysis of selection sort.
From the big picture perspective, the important thing is that the sum is

quadratic, not that the constant is 1/2. In general,
n
S(n,p) =Y ¥ =0 (n"*™")
i=1

for p > 0. Thus, the sum of squares is cubic, and the sum of cubes is
quartic (if you use such a word).

For p < —1, this sum S(n,p) always converges to a constant as n — oo,
while for p > 0 it diverges. The interesting case between these is the
Harmonic numbers, H(n) = Y"1, 1/i = O(logn).

e Sum of a geometric progression — In geometric progressions, the index of
the loop affects the exponent, that is,

G(n,a)=> a' = (""" —1)/(a—1)

=0

How we interpret this sum depends upon the base of the progression, in
this case a. When |a| < 1, G(n, a) converges to a constant as n — co.
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This series convergence proves to be the great “free lunch” of algorithm
analysis. It means that the sum of a linear number of things can be
constant, not linear. For example, 1+1/2+1/4+1/8+ ... <2 no matter
how many terms we add up.

When a > 1, the sum grows rapidly with each new term, asin 14+2+4 +
8 4+ 16 + 32 = 63. Indeed, G(n,a) = O(a™*!) for a > 1.

Stop and Think: Factorial Formulae

Problem: Prove that Y. ;i x i = (n+1)! — 1 by induction.

Solution: The inductive paradigm is straightforward. First verify the basis
case. The case n = 0 gives an empty sum, which by definition evaluates to 0.
Alternately we can do n = 1:

1
dixil=land (1+1)-1=2-1=1
i=1
Now assume the statement is true up to n. To prove the general case of
n + 1, observe that separating out the largest term

n+1 n
Sixil=(n+1)x (n+1)+> ixil
i=1 1=1

reveals the left side of our inductive assumption. Substituting the right side
gives us

n+1

dixil=m+1)x (n+ D+ (n+1)! -1

) =n+1)!x((n+1)+1)—-1
=(Mn+2)!-1

This general trick of separating out the largest term from the summation
to reveal an instance of the inductive assumption lies at the heart of all such
proofs. 1

2.7 Logarithms and Their Applications

Logarithm is an anagram of algorithm, but that’s not why we need to know
what logarithms are. You’ve seen the button on your calculator, but may have
forgotten why it is there. A logarithm is simply an inverse exponential function.
Saying b* = y is equivalent to saying that x = log, y. Further, this equivalence
is the same as saying b'°8» Y = ).
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Figure 2.7: A height h tree with d children per node has d" leaves. Here h = 3
and d = 3 (left). The number of bit patterns grows exponentially with pattern
length (right). These would be described by the root-to-leaf paths of a binary
tree of height h = 3.

Exponential functions grow at a distressingly fast rate, as anyone who has
ever tried to pay off a credit card balance understands. Thus, inverse exponential
functions (logarithms) grow refreshingly slowly. Logarithms arise in any process
where things are repeatedly halved. We’ll now look at several examples.

2.7.1 Logarithms and Binary Search

Binary search is a good example of an O(logn) algorithm. To locate a particular
person p in a telephone book? containing n names, you start by comparing
p against the middle, or (n/2)nd name, say Monroe, Marilyn. Regardless of
whether p belongs before this middle name (Dean, James) or after it (Presley,
Elvis), after just one comparison you can discard one half of all the names
in the book. The number of steps the algorithm takes equals the number of
times we can halve n until only one name is left. By definition, this is exactly
log, n. Thus, twenty comparisons suffice to find any name in the million-name
Manhattan phone book!

Binary search is one of the most powerful ideas in algorithm design. This
power becomes apparent if we imagine trying to find a name in an unsorted
telephone book.

2.7.2 Logarithms and Trees

A binary tree of height 1 can have up to 2 leaf nodes, while a tree of height 2
can have up to 4 leaves. What is the height h of a rooted binary tree with n
leaf nodes? Note that the number of leaves doubles every time we increase the
height by 1. To account for n leaves, n = 2", which implies that h = log, n.

What if we generalize to trees that have d children, where d = 2 for the case
of binary trees? A tree of height 1 can have up to d leaf nodes, while one of
height 2 can have up to d? leaves. The number of possible leaves multiplies by
d every time we increase the height by 1, so to account for n leaves, n = d",
which implies that h = log,; n, as shown in Figure 2.7.

2If necessary, ask your grandmother what telephone books were.
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The punch line here is that short trees can have very many leaves, which is
the main reason why binary trees prove fundamental to the design of fast data
structures.

2.7.3 Logarithms and Bits

There are two bit patterns of length 1 (0 and 1), four of length 2 (00, 01, 10,
and 11), and eight of length 3 (see Figure 2.7 (right)). How many bits w do we
need to represent any one of n different possibilities, be it one of n items or the
integers from 0 to n — 17

The key observation is that there must be at least n different bit patterns
of length w. Since the number of different bit patterns doubles as you add each
bit, we need at least w bits where 2 = n. In other words, we need w = logy n
bits.

2.7.4 Logarithms and Multiplication

Logarithms were particularly important in the days before pocket calculators.
They provided the easiest way to multiply big numbers by hand, either implicitly
using a slide rule or explicitly by using a book of logarithms.

Logarithms are still useful for multiplication, particularly for exponentiation.
Recall that log, (ry) = log,(x) +1log,(y); that is, the log of a product is the sum
of the logs. A direct consequence of this is

log, n® =b-log, n

How can we compute a® for any a and b using the exp(z) and In(x) functions
on your calculator, where exp(z) = ¢ and In(z) = log,(z)? We know

a’® = exp(In(a®)) = exp(bln(a))

so the problem is reduced to one multiplication plus one call to each of these
functions.

2.7.5 Fast Exponentiation

Suppose that we need to ezactly compute the value of a™ for some reasonably
large n. Such problems occur in primality testing for cryptography, as dis-
cussed in Section 16.8 (page 490). Issues of numerical precision prevent us from
applying the formula above.

The simplest algorithm performs n — 1 multiplications, by computing a x a X
... X a. However, we can do better by observing that n = |n/2] + [n/2]. If n
is even, then a” = (a™/?)2. If n is odd, then a™ = a(al™/?1)2. In either case, we
have halved the size of our exponent at the cost of, at most, two multiplications,
so O(lgn) multiplications suffice to compute the final value.



2.7. LOGARITHMS AND THEIR APPLICATIONS 51

function power(a,n)
if (n = 0) return(1)
x = power(a, |n/2])
if (n is even) then return(z?)
else return(a x z?)

This simple algorithm illustrates an important principle of divide and con-
quer. It always pays to divide a job as evenly as possible. When n is not a power
of two, the problem cannot always be divided perfectly evenly, but a difference
of one element between the two sides as shown here cannot cause any serious
imbalance.

2.7.6 Logarithms and Summations

The Harmonic numbers arise as a special case of a sum of a power of inte-
gers, namely H(n) = S(n,—1). They are the sum of the progression of simple
reciprocals, namely,

H(n) = Z 1/i = ©(logn)

The Harmonic numbers prove important, because they usually explain “where
the log comes from” when one magically pops out from algebraic manipulation.
For example, the key to analyzing the average-case complexity of quicksort is
the summation n )", 1/i. Employing the Harmonic number’s © bound imme-
diately reduces this to O(nlogn).

2.7.7 Logarithms and Criminal Justice

Figure 2.8 will be our final example of logarithms in action. This table appears
in the Federal Sentencing Guidelines, used by courts throughout the United
States. These guidelines are an attempt to standardize criminal sentences, so
that a felon convicted of a crime before one judge receives the same sentence
that they would before a different judge. To accomplish this, the judges have
prepared an intricate point function to score the depravity of each crime and
map it to time-to-serve.

Figure 2.8 gives the actual point function for fraud—a table mapping dollars
stolen to points. Notice that the punishment increases by one level each time
the amount of money stolen roughly doubles. That means that the level of
punishment (which maps roughly linearly to the amount of time served) grows
logarithmically with the amount of money stolen.

Think for a moment about the consequences of this. Many a corrupt CEO
certainly has. It means that your total sentence grows extremely slowly with
the amount of money you steal. Embezzling an additional $100,000 gets you
3 additional punishment levels if you've already stolen $10,000, adds only 1
level if you've stolen $50,000, and has no effect if you’ve stolen a million. The
corresponding benefit of stealing really large amounts of money becomes even
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Loss (apply the greatest) Increase in level
(A) $2,000 or less no increase
(B) More than $2,000 add 1
(C) More than $5,000 add 2
(D) More than $10,000 add 3
(E) More than $20,000 add 4
(F) More than $40,000 add 5
(G) More than $70,000 add 6
(H) More than $120,000 add 7
(I) More than $200,000 add 8
(J) More than $350,000 add 9
(K) More than $500,000 add 10
(L) More than $800,000 add 11
(M) More than $1,500,000 add 12
(N) More than $2,500,000 add 13
(0) More than $5,000,000 add 14
(P) More than $10,000,000 add 15
(Q) More than $20,000,000 add 16
(R) More than $40,000,000 add 17
(S) More than $80,000,000 add 18

Figure 2.8: The Federal Sentencing Guidelines for fraud

greater. The moral of logarithmic growth is clear: If you’re gonna do the crime,
make it worth the timel®

Take-Home Lesson: Logarithms arise whenever things are repeatedly halved
or doubled.

2.8 Properties of Logarithms

As we have seen, stating b* = y is equivalent to saying that x = log,y. The
b term is known as the base of the logarithm. Three bases are of particular
importance for mathematical and historical reasons:

e Base b = 2: The binary logarithm, usually denoted lgx, is a base 2 loga-
rithm. We have seen how this base arises whenever repeated halving (i.e.,
binary search) or doubling (i.e., nodes in trees) occurs. Most algorithmic
applications of logarithms imply binary logarithms.

e Base b = e: The natural logarithm, usually denoted Inx, is a base e =
2.71828... logarithm. The inverse of Inx is the exponential function
exp(z) = €* on your calculator. Thus, composing these functions gives us
the identity function,

exp(Inz) =z and In(expz) =z

3Life imitates art. After publishing this example in the previous edition, I was approached
by the U.S. Sentencing Commission seeking insights to improve these guidelines.
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e Base b = 10: Less common today is the base-10 or common logarithm, usu-
ally denoted as log x. This base was employed in slide rules and logarithm
books in the days before pocket calculators.

We have already seen one important property of logarithms, namely that

log, (zy) = log, () + log, (v)

The other important fact to remember is that it is easy to convert a logarithm
from one base to another. This is a consequence of the following formula:

_ log.b
~ log.a

log,, b

Thus, changing the base of logb from base-a to base-c simply involves multi-
plying by log,a. It is easy to convert a common log function to a natural log
function, and vice versa.

Two implications of these properties of logarithms are important to appre-
ciate from an algorithmic perspective:

e The base of the logarithm has no real impact on the growth rate: Compare
the following three values: log,(1,000,000) = 19.9316, logs(1,000,000) =
12.5754, and log;,(1,000,000) = 3. A big change in the base of the
logarithm produces little difference in the value of the log. Changing the
base of the log from a to ¢ involves multiplying by log, a. This conversion
factor is absorbed in the Big Oh notation whenever a and c are constants.
Thus, we are usually justified in ignoring the base of the logarithm when
analyzing algorithms.

e Logarithms cut any function down to size: The growth rate of the loga-
rithm of any polynomial function is O(lgn). This follows because

log, n” =b-log, n

The effectiveness of binary search on a wide range of problems is a con-
sequence of this observation. Note that performing a binary search on a
sorted array of n? things requires only twice as many comparisons as a
binary search on n things.

Logarithms efficiently cut any function down to size. It is hard to do
arithmetic on factorials except after taking logarithms, since

n! = Hz — logn! = Zlogi = O(nlogn)
i=1 i=1

provides another way logarithms pop up in algorithm analysis.
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Stop and Think: Importance of an Even Split

Problem: How many queries does binary search take on the million-name
Manhattan phone book if each split were 1/3-to-2/3 instead of 1/2-to-1/27

Solution: When performing binary searches in a telephone book, how important
is it that each query split the book exactly in half? Not very much. For the
Manhattan telephone book, we now use 10g3/2(1, 000, 000) = 35 queries in the
worst case, not a significant change from log,(1,000,000) ~ 20. Changing the
base of the log does not affect the asymptotic complexity. The effectiveness of
binary search comes from its logarithmic running time, not the base of the log.
[ |

2.9 War Story: Mystery of the Pyramids

That look in his eyes should have warned me off even before he started talking.

“We want to use a parallel supercomputer for a numerical calculation up to
1,000,000,000, but we need a faster algorithm to do it.”

I’d seen that distant look before. Eyes dulled from too much exposure to the
raw horsepower of supercomputers—machines so fast that brute force seemed
to eliminate the need for clever algorithms; at least until the problems got hard
enough.

“I am working with a Nobel prize winner to use a computer on a famous
problem in number theory. Are you familiar with Waring’s problem?”

I knew some number theory. “Sure. Waring’s problem asks whether every
integer can be expressed at least one way as the sum of at most four integer
squares. For example, 78 = 82+ 32422+ 12 = 72452422, I remember proving
that four squares suffice to represent any integer in my undergraduate number
theory class. Yes, it’s a famous problem but one that got solved 200 years ago.”

“No, we are interested in a different version of Waring’s problem. A pyra-
midal number is a number of the form (m® —m)/6, for m > 2. Thus, the first
several pyramidal numbers are 1, 4, 10, 20, 35, 56, 84, 120, and 165. The con-
jecture since 1928 is that every integer can be represented by the sum of at most
five such pyramidal numbers. We want to use a supercomputer to prove this
conjecture on all numbers from 1 to 1,000,000,000.”

“Doing a billion of anything will take a substantial amount of time,” I
warned. “The time you spend to compute the minimum representation of each
number will be critical, since you are going to do it one billion times. Have you
thought about what kind of an algorithm you are going to use?”

“We have already written our program and run it on a parallel supercom-
puter. It works very fast on smaller numbers. Still, it takes much too much
time as soon as we get to 100,000 or so.”

“Terrific,” T thought. Our supercomputer junkie had discovered asymptotic
growth. No doubt his algorithm ran in something like quadratic time, and went
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into vapor lock as soon as n got large.

“We need a faster program in order to get to a billion. Can you help us? Of
course, we can run it on our parallel supercomputer when you are ready.”

I am a sucker for this kind of challenge, finding fast algorithms to speed up
programs. I agreed to think about it and got down to work.

I started by looking at the program that the other guy had written. He had
built an array of all the @(nl/ 3) pyramidal numbers from 1 to n inclusive.* To
test each number k in this range, he did a brute force test to establish whether
it was the sum of two pyramidal numbers. If not, the program tested whether
it was the sum of three of them, then four, and finally five, until it first got an
answer. About 45% of the integers are expressible as the sum of three pyramidal
numbers. Most of the remaining 55% require the sum of four, and usually each
of these can be represented in many different ways. Only 241 integers are known
to require the sum of five pyramidal numbers, the largest being 343,867. For
about half of the n numbers, this algorithm presumably went through all of the
three-tests and at least some of the four-tests before terminating. Thus, the
total time for this algorithm would be at least O(n x (n1/3)3) = O(n?) time,
where n = 1,000,000,000. No wonder his program cried “Uncle.”

Anything that was going to do significantly better on a problem this large
had to avoid explicitly testing all triples. For each value of k, we were seeking
the smallest set of pyramidal numbers that add up to exactly to k. This problem
is called the knapsack problem, and is discussed in Section 16.10 (page 497). In
our case, the weights are the pyramidal numbers no greater than n, with an
additional constraint that the knapsack holds exactly k items.

A standard approach to solving knapsack precomputes the sum of smaller
subsets of the items for use in computing larger subsets. If we have a table of
all sums of two numbers and want to know whether k is expressible as the sum
of three numbers, we can ask whether k is expressible as the sum of a single
number plus a number in this two-table.

Therefore, I needed a table of all integers less than n that can be ex-
pressed as the sum of two of the 1,816 non-trivial pyramidal numbers less than
1,000,000,000. There can be at most 1,816% = 3,297,856 of them. Actually,
there are only about half this many, after we eliminate duplicates and any sum
bigger than our target. Building a sorted array storing these numbers would be
no big deal. Let’s call this sorted data structure of all pair-sums the two-table.

To find the minimum decomposition for a given k, I would first check whether
it was one of the 1,816 pyramidal numbers. If not, I would then check whether
k was in the sorted table of the sums of two pyramidal numbers. To see whether
k was expressible as the sum of three such numbers, all T had to do was check
whether k — p[i] was in the two-table for 1 < ¢ < 1,816. This could be done
quickly using binary search. To see whether k was expressible as the sum of
four pyramidal numbers, T had to check whether k — twoli] was in the two-table

4Why n'/3? Recall that pyramidal numbers are of the form (m3 — m)/6. The largest
m such that the resulting number is at most n is roughly ¥/6n, so there are @(n1/3) such
numbers.
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for any 1 < i < |two|. However, since almost every k was expressible in many
ways as the sum of four pyramidal numbers, this test would terminate quickly,
and the total time taken would be dominated by the cost of the threes. Testing
whether & was the sum of three pyramidal numbers would take O(n'/31gn).
Running this on each of the n integers gives an O(n*/1gn) algorithm for the
complete job. Comparing this to his O(n?) algorithm for n = 1,000,000,000
suggested that my algorithm was a cool 30,000 times faster than his original!

My first attempt to code this solved up to n = 1,000,000 on my ancient
Sparc ELC in about 20 minutes. From here, I experimented with different
data structures to represent the sets of numbers and different algorithms to
search these tables. I tried using hash tables and bit vectors instead of sorted
arrays, and experimented with variants of binary search such as interpolation
search (see Section 17.2 (page 510)). My reward for this work was solving up
to n = 1,000,000 in under three minutes, a factor of six improvement over my
original program.

With the real thinking done, I worked to tweak a little more performance
out of the program. I avoided doing a sum-of-four computation on any k& when
k — 1 was the sum-of-three, since 1 is a pyramidal number, saving about 10% of
the total run time using this trick alone. Finally, I got out my profiler and tried
some low-level tricks to squeeze a little more performance out of the code. For
example, I saved another 10% by replacing a single procedure call with inline
code.

At this point, I turned the code over to the supercomputer guy. What he
did with it is a depressing tale, which is reported in Section 5.8 (page 161).

In writing up this story, I went back to rerun this program, which is now
older than my current graduate students. Even though single-threaded, it ran
in 1.113 seconds. Turning on the compiler optimizer reduced this to a mere
0.334 seconds: this is why you need to remember to turn your optimizer on
when you are trying to make your program run fast. This code has gotten hun-
dreds of times faster by doing nothing, except waiting for 25 years of hardware
improvements. Indeed a server in our lab can now run up to a billion in under
three hours (174 minutes and 28.4 seconds) using only a single thread. Even
more amazingly, I can run this code to completion in 9 hours, 37 minutes, and
34.8 seconds on the same crummy Apple MacBook laptop that I am writing this
book on, despite its keys falling off as I type.

The primary lesson of this war story is to show the enormous potential
for algorithmic speedups, as opposed to the fairly limited speedup obtainable
via more expensive hardware. I sped his program up by about 30,000 times.
His million-dollar computer (at that time) had 16 processors, each reportedly
five times faster on integer computations than the $3,000 machine on my desk.
That gave him a maximum potential speedup of less than 100 times. Clearly,
the algorithmic improvement was the big winner here, as it is certain to be in
any sufficiently large computation.
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2.10 Advanced Analysis (*)

Ideally, each of us would be fluent in working with the mathematical techniques
of asymptotic analysis. And ideally, each of us would be rich and good looking
as well.

In this section I will survey the major techniques and functions employed
in advanced algorithm analysis. I consider this optional material—it will not
be used elsewhere in the textbook section of this book. That said, it will make
some of the complexity functions reported in the Hitchhiker’s Guide a little less
mysterious.

2.10.1 Esoteric Functions

The bread-and-butter classes of complexity functions were presented in Section
2.3.1 (page 38). More esoteric functions also make appearances in advanced
algorithm analysis. Although we will not see them much in this book, it is still
good business to know what they mean and where they come from.

e [nverse Ackermann’s function f(n) = a(n): This function arises in the
detailed analysis of several algorithms, most notably the Union-Find data
structure discussed in Section 8.1.3 (page 250). Tt is sufficient to think of
this as geek talk for the slowest growing complexity function. Unlike the
constant function f(n) = 1, a(n) eventually gets to infinity as n — oo,
but it certainly takes its time about it. The value of a(n) is smaller than
5 for any value of n that can be written in this physical universe.

e f(n) = loglogn: The “log log” function is just that—the logarithm of
the logarithm of n. One natural example of how it might arise is doing a
binary search on a sorted array of only Ign items.

e f(n) = logn/loglogn: This function grows a little slower than logn,
because it is divided by an even slower growing function. To see where
this arises, consider an n-leaf rooted tree of degree d. For binary trees,
that is, when d = 2, the height h is given

n=2"sh=Ilgn

by taking the logarithm of both sides of the equation. Now consider the
height of such a tree when the degree d = logn. Then

n= (logn)h — h =logn/loglogn

e f(n) = log®n: This is the product of two log functions, (logn) x (logn). It
might arise if we wanted to count the bits looked at when doing a binary
search on n items, each of which was an integer from 1 to (say) n?. Each
such integer requires a lg(n?) = 2lgn bit representation, and we look at
Ign of them, for a total of 21g® n bits.
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The “log squared” function typically arises in the design of intricate nested
data structures, where each node in (say) a binary tree represents another
data structure, perhaps ordered on a different key.

e f(n) = y/n: The square root is not very esoteric, but represents the class of
“sublinear polynomials” since \/n = n'/2. Such functions arise in building
d-dimensional grids that contain n points. A y/n X y/n square has area n,
and an n'/3 x n!/3 x n!/3 cube has volume n. In general, a d-dimensional
hypercube of length n'/¢ on each side has volume n.

e f(n) = n(1t9): Epsilon (¢) is the mathematical symbol to denote a con-
stant that can be made arbitrarily small but never quite goes away.

It arises in the following way. Suppose I design an algorithm that runs in
2¢ . p(1+1/¢) time, and I get to pick whichever ¢ I want. For ¢ = 2, this
is 4n3/2 or O(n3/2). For ¢ = 3, this is 8n*/3 or O(n*/3), which is better.
Indeed, the exponent keeps getting better the larger I make c.

The problem is that I cannot make ¢ arbitrarily large before the 2¢ term be-
gins to dominate. Instead, we report this algorithm as running in O(n'*¢),
and leave the best value of € to the beholder.

2.10.2 Limits and Dominance Relations

The dominance relation between functions is a consequence of the theory of
limits, which you may recall from taking calculus. We say that f(n) dominates
g(n) if lim,_,o g(n)/f(n) = 0.

Let’s see this definition in action. Suppose f(n) = 2n? and g(n) = n?.
Clearly f(n) > g(n) for all n, but it does not dominate since

() R R |
e Fn) T2 T a2 7O
This is to be expected because both functions are in the class ©(n?). What
about f(n) =n® and g(n) = n?? Since

2
im 2 £ o
n— 00 f(n) n—oo N3 n—oo N

the higher-degree polynomial dominates. This is true for any two polynomials,
that is, n* dominates n® if @ > b since
nb

lim — = lim n
n—oo N n— 00

b=a

Thus, n'2 dominates nt-1999999,

Now consider two exponential functions, say f(n) = 3™ and g(n) = 2". Since
2n 2
g _ 2"y 2oy

ngrolo f(n) 3" n—ooo' 3
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the exponential with the higher base dominates.

Our ability to prove dominance relations from scratch depends upon our
ability to prove limits. Let’s look at one important pair of functions. Any
polynomial (say f(n) = n°) dominates logarithmic functions (say g(n) = lgn).
Since n = 287,

f(n) _ (21gn)e _ 251gn

Now consider

In fact, this does go to 0 as n — oco.

Take-Home Lesson: By interleaving the functions here with those of Section
2.3.1 (page 38), we see where everything fits into the dominance pecking order:

n!>c" > n® > n? >t > nlogn > n > Vo>
log? n > logn > logn/ loglogn > loglogn > a(n) > 1

Chapter Notes

Most other algorithm texts devote considerably more efforts to the formal anal-
ysis of algorithms than I have here, and so I refer the theoretically inclined
reader elsewhere for more depth. Algorithm texts more heavily stressing anal-
ysis include Cormen et al. [CLRS09] and Kleinberg and Tardos [KT06].

The book Concrete Mathematics by Graham, Knuth, and Patashnik [GKP89]
offers an interesting and thorough presentation of mathematics for the analysis
of algorithms. Niven and Zuckerman [NZM91] is my favorite introduction to
number theory, including Waring’s problem, discussed in the war story.

The notion of dominance also gives rise to the “Little Oh” notation. We say
that f(n) = o(g(n)) iff g(n) dominates f(n). Among other things, the Little
Oh proves useful for asking questions. Asking for an o(n?) algorithm means you
want one that is better than quadratic in the worst case—and means you would
be willing to settle for O(n'29 log® n).

2.11 Exercises

Program Analysis
2-1. [3] What value is returned by the following function? Express your answer as
a function of n. Give the worst-case running time using the Big Oh notation.
Mystery(n)
r=20
fori=1ton—1do
for j=i41tondo
for k=1 to j do
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2-3.

2-4.

2-5.

2-6.
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r=r+1

return(r)

. [3] What value is returned by the following function? Express your answer as

a function of n. Give the worst-case running time using Big Oh notation.
Pesky(n)
r=20
for i =1 ton do
for j=1to i do
for k=jtoi+j do
r=r+1
return(r)
[5] What value is returned by the following function? Express your answer as
a function of n. Give the worst-case running time using Big Oh notation.
Pestiferous(n)
r=20
fori=1tondo
for j =1toido
fork=jtoi+j do
forl=1toi+j—k do
r=r+1
return(r)
[8] What value is returned by the following function? Express your answer as
a function of n. Give the worst-case running time using Big Oh notation.
Conundrum(n)
r=20
fori=1tondo
for j=i41tondo
fork=i4j7—1tondo
r=r+1
return(r)

[5] Consider the following algorithm: (the print operation prints a single aster-
isk; the operation x = 2z doubles the value of the variable z).

for k=1 to n:

z=k

while (z < n):
print ¥’
T =2z

Let f(n) be the time complexity of this algorithm (or equivalently the number
of times * is printed). Provide correct bounds for O(f(n)) and Q(f(n)), ideally
converging on O(f(n)).

[5] Suppose the following algorithm is used to evaluate the polynomial

p(x) = anz” + an—1f£n_1 +...+a1x+ao
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P = ao;
rpower = 1;
fori=1ton do
Tpower = T - TPOwWer;
p = p+ ai *x xpower
(a) How many multiplications are done in the worst case? How many addi-
tions?
(b) How many multiplications are done on the average?
(c) Can you improve this algorithm?

2-7. [3] Prove that the following algorithm for computing the maximum value in an
array A[l..n] is correct.

max(A)
m = A[l]
for i =2 ton do
if A[i] > m then m = A[i]

return (m)

Big Oh
2-8. [3] (a) Is 2"F1 = O(2™)?
(b) Is 2™ = O(2™)?

2-9. [8] For each of the following pairs of functions, f(n) is in O(g(n)), Q(g(n)), or
O(g(n)). Determine which relationships are correct and briefly explain why.

(a) f(n) =logn? g(n) =logn +5
(b) f(n) = /n; g(n) = logn®
(¢) f(n)=log?n; g(n) = logn
(d) f(n)=mn;g(n) =log’n
(e) f(n)=nlogn+mn; g(n) =logn
(f) f(n)=10; g(n) =1log10
(g) f(n)=2"; g(n) = 10n?
(h) f(n) =2"; g(n) =3"
2-10. /3] For each of the following pairs of functions f(n) and g(n), determine whether

) f(n)
) f(n) (n) =n?
) f(n) =nlogn, g(n) =nyn/2
(d) f(n) =n+logn, g(n) =vn
) f(n) =

) f(n)

2(logn)?, g(n) = logn + 1
=4nlogn +n, g(n) = (n° —n)/2
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2-11.

2-12.
2-13.
2-14.
2-15.

2-16.

2-17.

2-18.

2-19.

2-20.

2-21.

2-22.

2-23.
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[5] For each of the following functions, which of the following asymptotic bounds
hold for f(n): O(g(n)), 2(g(n)), or ©(g(n))?

(a) f(n)=3n? g(n) =n?

(b) f(n)=2n*—3n*>+7, g(n) =n’
(c) f(n)=logn, g(n) =logn+
(d) f(n) =215, g(n) = n*

(e) f(n)=2", g(n)=2""

[3] Prove that n® — 3n® —n + 1 = 60(n?).

[3] Prove that n? = O(2").

[8] Prove or disprove: ©(n?) = O(n* +1).

[3] Suppose you have algorithms with the five running times listed below. (As-
sume these are the exact running times.) How much slower do each of these
algorithms get when you (a) double the input size, or (b) increase the input size
by one?

(a) n? (b) n* (c) 100n? (d) nlogn (e) 2™

[3] Suppose you have algorithms with the six running times listed below. (As-
sume these are the exact number of operations performed as a function of the
input size n.) Suppose you have a computer that can perform 10'° operations

per second. For each algorithm, what is the largest input size n that you can
complete within an hour? (a) n* (b) n® (c) 100n? (d) nlogn (e) 2™ (f) 2?

[8] For each of the following pairs of functions f(n) and g(n), give an appropriate
positive constant ¢ such that f(n) < c-g(n) for all n > 1.

(a) f(n)=n*+n+1,g(n)=2n°

(b) f(n) =nyn+n? g(n) =n’

(©) f(n)=n*—n+1,g(n) =n?/2
[3] Prove that if fi(n) = O(g1(n)) and fa(n) = O(g2(n)), then fi(n)+ f2(n) =
O(g1(n) + g2(n)).

[8] Prove that if f1(n) = Q(g1(n)) and fa(n) = Q(g2(n)), then fi(n)+ f2(n) =
Q(g1(n) + g2(n))-

[3] Prove that if fi(n) = O(g1(n)) and f2(n) = O(g2(n)), then fi(n) - fa(n) =
O(g1(n) - g2(n)).

[5] Prove that for all k > 0 and all sets of real constants {ax,ar—1,...,a1,a0},

k-1

arn” + ar_1n" N+ ain+ap = O(n)

[5] Show that for any real constants a and b, b > 0
(n+a)" =6(n")

[5] List the functions below from the lowest to the highest order. If any two or
more are of the same order, indicate which.
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n 2" nlgn Inn

n—n®4+7° lgn Vn e"

n?+lgn n? 2"l lglgn

n® (Ign)* n! n'™e where 0 < e < 1

[8] List the functions below from the lowest to the highest order. If any two or
more are of the same order, indicate which.

) o

(ni4) 210g4 n n5(log 'n)2 n4 (nﬁ4)
[8] List the functions below from the lowest to the highest order. If any two or
more are of the same order, indicate which.

Z?:l ZZ n" (lOg n)logn 2(log n?)
log a )2
! glogtn  p(losn (")
[5] List the functions below from the lowest to the highest order. If any two or
more are of the same order, indicate which.

Vn n 2n

nlogn n—n®+7m°% n%+logn
n? n logn

ni + logn  (logn)? n!

Inn 102 - log logn
(1/3)" 3/2)" 6

/5] Find two functions f(n) and g(n) that satisfy the following relationship. If
no such f and g exist, write “None.”

(a) f(n) =o(g(n)) and f(n) # O(g(n))
(b) f(n) =©(g(n)) and f(n) = o(g(n))
(¢) f(n) =0O(g(n)) and f(n) # O(g(n))
(d) f(n) =Q(g(n)) and f(n) # O(g(n))

[5] True or False?
(a) 2n? 4+ 1= 0(n?)
(b) vn = O(logn)
(c) logn =O(v/n)

(d) n*(1++/n) = O(n”logn)
) 30 +/n=0(n?)

) v/nlogn = 0O(n)

)

1/2)

(e
(f
(g

[5] For each of the following pairs of functions f(n) and g(n), state whether
f(n) = 0(g(n)), f(n) = Q(g(n)), f(n) = O(g(n)), or none of the above.

a)
b)

logn = O(n

(a) f(n)=n*+3n+4,g(n)=6n+7
(b) f(n) =nyn, gn) =n*—n
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2-30.

2-31.

2-32.

2-33.

2-34.

2-35.

2-36.
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(¢) f(n)=2"—n? g(n) =n"+n?
[8] For each of these questions, answer yes or no and briefly explain your answer.

(a) If an algorithm takes O(n?) worst-case time, is it possible that it takes O(n)
on some inputs?

(b) If an algorithm takes O(n?) worst-case time, is it possible that it takes O(n)
on all inputs?

(c) If an algorithm takes ©(n?) worst-case time, is it possible that it takes O(n)
on some inputs?

(d) If an algorithm takes ©(n?) worst-case time, is it possible that it takes O(n)
on all inputs?

(e) Ts the function f(n) = O(n?), where f(n) = 100n? for even n and f(n) =
20n? — nlog, n for odd n?

[8] For each of the following, answer yes, no, or can’t tell. Explain your reasoning.
(a) Is 3" = O(2™)?

(b) Is log 3™ = O(log2™)?

(c) Is 3" =Q(2m)7

(d) Is log 3™ = Q(log 2™)?

[5] For each of the following expressions f(n) find a simple g(n) such that
f(n) = O(g(n)).

(@) f(n) =371, 1

(b) f(n) =377

(€) f(n) =31, logi.

(d) f(n) = log(n!)
[5] Place the following functions into increasing order: fi(n) = n®log,n,

f2(n) = n(logy n)?, fa(n) = 327 2" and, fa(n) =log,y (327, 2.
[5] Which of the following are true?

(b) 2=, 3" =03").
(€) Xiy3'=03"").
[5] For each of the following functions f find a simple function g such that

f(n) =0O(g(n)).
(1000)2" 4 4.

(a) 37, 3" =6@E").
13

(a
(b
(c
(d

) fi(n) =
) n) =n+nlogn + /n.
) f3(n) =log(n*") + (logn)"’
) fa(n) = (0.99)" + n'o.

[5] For each pair of expressions (A, B) below, indicate whether A is O, o, Q, w,
or © of B. Note that zero, one, or more of these relations may hold for a given
pair; list all correct ones.



2.11.

EXERCISES 65

A B
(a) nlOO on
(b) (1gn)™ vn
(C) \/ﬁ nCOS(ﬂ'n/S)
(d 10" 100"
() n="  (Ign)"
(f) ()  nlgn

e

Summations

2-37.

2-38.

2-39.

2-40.

2-41.

2-42.

[5] Find an expression for the sum of the ith row of the following triangle, and
prove its correctness. Each entry is the sum of the three entries directly above
it. All non-existing entries are considered 0.

1
1 1 1
1 2 3 2 1
1 3 6 7 6 3 1
1 4 10 16 19 16 10 4 1

[8] Assume that Christmas has n days. Exactly how many presents did my “true
love” send to me? (Do some research if you do not understand this question.)
[5] An unsorted array of size n contains distinct integers between 1 and n + 1,
with one element missing. Give an O(n) algorithm to find the missing integer,
without using any extra space.
[5] Consider the following code fragment:

for i=1 to n do

for j=i to 2*i do
output ‘‘foobar’’

Let T'(n) denote the number of times ‘foobar’ is printed as a function of n.

a. Express T'(n) as a summation (actually two nested summations).

b. Simplify the summation. Show your work.
[5] Consider the following code fragment:

for i=1 to n/2 do
for j=i to n-i do
for k=1 to j do
output ‘‘foobar’’

Assume n is even. Let T'(n) denote the number of times “foobar” is printed as
a function of n.

(a) Express T'(n) as three nested summations.

(b) Simplify the summation. Show your work.

[6] When you first learned to multiply numbers, you were told that z X y means
adding = a total of y times, so 5 x4 =5+ 54+ 5+ 5 = 20. What is the time
complexity of multiplying two n-digit numbers in base b (people work in base 10,
of course, while computers work in base 2) using the repeated addition method,
as a function of n and b. Assume that single-digit by single-digit addition or
multiplication takes O(1) time. (Hint: how big can y be as a function of n and
b?)
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2-43. [6] In grade school, you learned to multiply long numbers on a digit-by-digit
basis, so that 127 x 211 = 127 x 1 + 127 x 10 + 127 x 200 = 26,797. Analyze
the time complexity of multiplying two n-digit numbers with this method as a
function of n (assume constant base size). Assume that single-digit by single-
digit addition or multiplication takes O(1) time.

Logarithms
2-44. [5] Prove the following identities on logarithms:

(a) log,(zy) = log, = +log, y
(b) log, z¥ = ylog,
)
)

logy, x

(c

(d xlogb Y _ ylogb T

log, x = Tog

2-45. [8] Show that [lg(n +1)] = [lgn] +1
2-46. [3] Prove that that the binary representation of n > 1 has |lg, n| + 1 bits.

2-47. [5] In one of my research papers I give a comparison-based sorting algorithm
that runs in O(nlog(y/n)). Given the existence of an Q(nlogn) lower bound for
sorting, how can this be possible?

Interview Problems

2-48. [5] You are given a set S of n numbers. You must pick a subset S’ of k numbers
from S such that the probability of each element of S occurring in S’ is equal
(i.e., each is selected with probability k£/n). You may make only one pass over
the numbers. What if n is unknown?

2-49. [5] We have 1,000 data items to store on 1,000 nodes. Each node can store copies
of exactly three different items. Propose a replication scheme to minimize data
loss as nodes fail. What is the expected number of data entries that get lost
when three random nodes fail?

2-50. [5] Consider the following algorithm to find the minimum element in an array
of numbers A[0,...,n]. One extra variable tmp is allocated to hold the current
minimum value. Start from A[0]; ¢mp is compared against A[1], A[2], ..., A[N]
in order. When A[i] < tmp, tmp = A[i]. What is the expected number of times
that the assignment operation tmp = A[i] is performed?

2-51. [5] You are given ten bags of gold coins. Nine bags contain coins that each weigh
10 grams. One bag contains all false coins that weigh 1 gram less. You must
identify this bag in just one weighing. You have a digital balance that reports
the weight of what is placed on it.

2-52. [5] You have eight balls all of the same size. Seven of them weigh the same, and
one of them weighs slightly more. How can you find the ball that is heavier by
using a balance and only two weighings?

2-53. [5] Suppose we start with n companies that eventually merge into one big com-
pany. How many different ways are there for them to merge?

2-54. [7] Six pirates must divide $300 among themselves. The division is to proceed
as follows. The senior pirate proposes a way to divide the money. Then the
pirates vote. If the senior pirate gets at least half the votes he wins, and that
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division remains. If he doesn’t, he is killed and then the next senior-most pirate
gets a chance to propose the division. Now tell what will happen and why (i.e.
how many pirates survive and how the division is done)? All the pirates are
intelligent and the first priority is to stay alive and the next priority is to get as
much money as possible.

2-55. [7] Reconsider the pirate problem above, where we start with only one indivisible
dollar. Who gets the dollar, and how many are killed?

LeetCode

2-1. https://leetcode.com/problems/remove-k-digits/
2-2. https://leetcode.com/problems/counting-bits/
2-3. https://leetcode.com/problems/4sum/

HackerRank

2-1. https://www.hackerrank.com/challenges/pangrams/
2-2. https://www.hackerrank.com/challenges/the-power-sum/

2-3. https://www.hackerrank.com/challenges/magic-square-forming/

Programming Challenges
These programming challenge problems with robot judging are available at
https://onlinejudge.org:

2-1. “Primary Arithmetic”—Chapter 5, problem 10035.

2-2. “A Multiplication Game”—Chapter 5, problem 847.

2-3. “Light, More Light”—Chapter 7, problem 10110.


https://leetcode.com/problems/remove-k-digits/
https://leetcode.com/problems/counting-bits/
https://leetcode.com/problems/4sum/
https://www.hackerrank.com/challenges/pangrams/
https://www.hackerrank.com/challenges/the-power-sum/
https://www.hackerrank.com/challenges/magic-square-forming/
https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=28
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Chapter 3

Data Structures

Putting the right data structure into a slow program can work the same wonders
as transplanting fresh parts into a sick patient. Important classes of abstract
data types such as containers, dictionaries, and priority queues have many func-
tionally equivalent data structures that implement them. Changing the data
structure does not affect the correctness of the program, since we presumably
replace a correct implementation with a different correct implementation. How-
ever, the new implementation may realize different trade-offs in the time to
execute various operations, so the total performance can improve dramatically.
Like a patient in need of a transplant, only one part might need to be replaced
in order to fix the problem.

But it is better to be born with a good heart than have to wait for a replace-
ment. The maximum benefit from proper data structures results from designing
your program around them in the first place. We assume that the reader has
had some previous exposure to elementary data structures and pointer manip-
ulation. Still, data structure courses (CS II) focus more on data abstraction
and object orientation than the nitty-gritty of how structures should be repre-
sented in memory. This material will be reviewed here to make sure you have
it down.

As with most subjects, in data structures it is more important to really un-
derstand the basic material than to have exposure to more advanced concepts.
This chapter will focus on each of the three fundamental abstract data types
(containers, dictionaries, and priority queues) and show how they can be im-
plemented with arrays and lists. Detailed discussion of the trade-offs between
more sophisticated implementations is deferred to the relevant catalog entry for
each of these data types.

3.1 Contiguous vs. Linked Data Structures

Data structures can be neatly classified as either contiguous or linked, depend-
ing upon whether they are based on arrays or pointers. Contiguously allocated
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structures are composed of single slabs of memory, and include arrays, matrices,
heaps, and hash tables. Linked data structures are composed of distinct chunks
of memory bound together by pointers, and include lists, trees, and graph ad-
jacency lists.

In this section, I review the relative advantages of contiguous and linked data
structures. These trade-offs are more subtle than they appear at first glance,
so I encourage readers to stick with me here even if you may be familiar with
both types of structures.

3.1.1 Arrays

The array is the fundamental contiguously allocated data structure. Arrays are
structures of fixed-size data records such that each element can be efficiently
located by its indez or (equivalently) address.

A good analogy likens an array to a street full of houses, where each array
element is equivalent to a house, and the index is equivalent to the house number.
Assuming all the houses are of equal size and numbered sequentially from 1 to n,
we can compute the exact position of each house immediately from its address.’

Advantages of contiguously allocated arrays include:

e (Constant-time access given the index — Because the index of each element
maps directly to a particular memory address, we can access arbitrary
data items instantly provided we know the index.

e Space efficiency — Arrays consist purely of data, so no space is wasted with
links or other formatting information. Further, end-of-record information
is not needed because arrays are built from fixed-size records.

e Memory locality — Many programming tasks require iterating through all
the elements of a data structure. Arrays are good for this because they
exhibit excellent memory locality. Physical continuity between succes-
sive data accesses helps exploit the high-speed cache memory on modern
computer architectures.

The downside of arrays is that we cannot adjust their size in the middle
of a program’s execution. Our program will fail as soon as we try to add the
(n+1)st customer, if we only allocated room for n records. We can compensate
by allocating extremely large arrays, but this can waste space, again restricting
what our programs can do.

Actually, we can efficiently enlarge arrays as we need them, through the
miracle of dynamic arrays. Suppose we start with an array of size 1, and double
its size from m to 2m whenever we run out of space. This doubling process
allocates a new contiguous array of size 2m, copies the contents of the old array

THouses in Japanese cities are traditionally numbered in the order they were built, not by
their physical location. This makes it extremely difficult to locate a Japanese address without
a detailed map.
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to the lower half of the new one, and then returns the space used by the old
array to the storage allocation system.

The apparent waste in this procedure involves recopying the old contents on
each expansion. How much work do we really do? It will take log, n (also known
as lgn) doublings until the array gets to have n positions, plus one final doubling
on the last insertion when n = 27 for some j. There are recopying operations
after the first, second, fourth, eighth, ..., nth insertions. The number of copy
operations at the ith doubling will be 2¢~!, so the total number of movements
M will be:

Ign n Ign n 00 1
M=n+) 27 =14+2+4+...+-+n=Y» —<n)y —=2n
Thus, each of the n elements move only two times on average, and the total
work of managing the dynamic array is the same O(n) as it would have been if
a single array of sufficient size had been allocated in advance!

The primary thing lost in using dynamic arrays is the guarantee that each
insertion takes constant time in the worst case. Note that all accesses and most
insertions will be fast, except for those relatively few insertions that trigger
array doubling. What we get instead is a promise that the nth element insertion
will be completed quickly enough that the total effort expended so far will still
be O(n). Such amortized guarantees arise frequently in the analysis of data
structures.

3.1.2 Pointers and Linked Structures

Pointers are the connections that hold the pieces of linked structures together.
Pointers represent the address of a location in memory. A variable storing a
pointer to a given data item can provide more freedom than storing a copy of
the item itself. A cell-phone number can be thought of as a pointer to its owner
as they move about the planet.

Pointer syntax and power differ significantly across programming languages,
so we begin with a quick review of pointers in C language. A pointer p is
assumed to give the address in memory where a particular chunk of data is
located.? Pointers in C have types declared at compile time, denoting the data
type of the items they can point to. We use *p to denote the item that is pointed
to by pointer p, and &x to denote the address of (i.e.pointer to) a particular
variable x. A special NULL pointer value is used to denote structure-terminating
or unassigned pointers.

All linked data structures share certain properties, as revealed by the fol-
lowing type declaration for linked lists:

2C permits direct manipulation of memory addresses in ways that may horrify Java pro-
grammers, but I will avoid doing any such tricks.
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'7 Turing —1—= Knuth — Karp NIL

Figure 3.1: Linked list example showing data and pointer fields.

typedef struct list {

item_type item; /* data item */
struct list *next; /* point to successor */
} list;

In particular:

e Each node in our data structure (here list) contains one or more data
fields (here item) that retain the data that we need to store.

e Each node contains a pointer field to at least one other node (here next).
This means that much of the space used in linked data structures is de-
voted to pointers, not data.

e Finally, we need a pointer to the head of the structure, so we know where
to access it.

The list here is the simplest linked structure. The three basic operations sup-
ported by lists are searching, insertion, and deletion. In doubly linked lists, each
node points both to its predecessor and its successor element. This simplifies
certain operations at a cost of an extra pointer field per node.

Searching a List

Searching for item x in a linked list can be done iteratively or recursively. I
opt for recursively in the implementation below. If z is in the list, it is either
the first element or located in the rest of the list. Eventually, the problem is
reduced to searching in an empty list, which clearly cannot contain z.

list *search_list(list *1, item_type x) {
if (1 == NULL) {

return(NULL) ;

}

if (1->item == x) {
return(l);

} else {

return(search_list(l->next, x));

}
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Insertion into a List

Insertion into a singly linked list is a nice exercise in pointer manipulation, as
shown below. Since we have no need to maintain the list in any particular order,
we might as well insert each new item in the most convenient place. Insertion
at the beginning of the list avoids any need to traverse the list, but does require
us to update the pointer (denoted 1) to the head of the data structure.

void insert_list(list **1, item_type x) {
list *p; /* temporary pointer */

p = malloc(sizeof (list));
p—>item = x;

p—>next = *1;

*1 = p;

Two C-isms to note. First, the malloc function allocates a chunk of memory
of sufficient size for a new node to contain x. Second, the funny double star
in *x1 denotes that 1 is a pointer to a pointer to a list node. Thus, the last
line, *1=p; copies p to the place pointed to by 1, which is the external variable
maintaining access to the head of the list.

Deletion From a List

Deletion from a linked list is somewhat more complicated. First, we must find
a pointer to the predecessor of the item to be deleted. We do this recursively:

list *item_ahead(list *1, list *x) {
if ((1 == NULL) || (1->next == NULL)) {
return (NULL) ;
}

if ((1->next) == x) {
return(l);
} else {
return(item_ahead(1->next, x));

}

The predecessor is needed because it points to the doomed node, so its next
pointer must be changed. The actual deletion operation is simple, once ruling
out the case that the to-be-deleted element does not exist. Special care must
be taken to reset the pointer to the head of the list (1) when the first element
is deleted:
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void delete_list(list **1, list **x) {

list *p; /* item pointer */
list *pred; /* predecessor pointer */
p = *1;

pred = item_ahead(*1, *x);

if (pred == NULL) { /* splice out of list */
*1 = p->next;

} else {
pred->next = (*x)->next;

}

free(*x); /* free memory used by node */

C language requires explicit deallocation of memory, so we must free the
deleted node after we are finished with it in order to return the memory to the
system. This leaves the incoming pointer as a dangling reference to a location
that no longer exists, so care must be taken not to use this pointer again.
Such problems can generally be avoided in Java because of its stronger memory
management model.

3.1.3 Comparison

The advantages of linked structures over static arrays include:

e Overflow on linked structures never occurs unless the memory is actually
full.

e Insertion and deletion are simpler than for static arrays.

e With large records, moving pointers is easier and faster than moving the
items themselves.

Conversely, the relative advantages of arrays include:

e Space efficiency: linked structures require extra memory for storing pointer
fields.

e Efficient random access to items in arrays.

e Better memory locality and cache performance than random pointer jump-
ing.

Take-Home Lesson: Dynamic memory allocation provides us with flexibility
on how and where we use our limited storage resources.

One final thought about these fundamental data structures is that both
arrays and linked lists can be thought of as recursive objects:
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e Lists — Chopping the first element off a linked list leaves a smaller linked
list. This same argument works for strings, since removing characters from
a string leaves a string. Lists are recursive objects.

o Arrays — Splitting the first k elements off of an n element array gives
two smaller arrays, of size k and n — k, respectively. Arrays are recursive
objects.

This insight leads to simpler list processing, and efficient divide-and-conquer
algorithms such as quicksort and binary search.

3.2 Containers: Stacks and Queues

I use the term container to denote an abstract data type that permits storage
and retrieval of data items independent of content. By contrast, dictionaries are
abstract data types that retrieve based on key values or content, and will be
discussed in Section 3.3 (page 76).

Containers are distinguished by the particular retrieval order they support.
In the two most important types of containers, this retrieval order depends on
the insertion order:

e Stacks support retrieval by last-in, first-out (LIFO) order. Stacks are
simple to implement and very efficient. For this reason, stacks are probably
the right container to use when retrieval order doesn’t matter at all, such
as when processing batch jobs. The put and get operations for stacks are
usually called push and pop:

— Push(z,s): Insert item z at the top of stack s.
— Pop(s): Return (and remove) the top item of stack s.

LIFO order arises in many real-world contexts. People crammed into a
subway car exit in LIFO order. Food inserted into my refrigerator usu-
ally exits the same way, despite the incentive of expiration dates. Algo-
rithmically, LIFO tends to happen in the course of executing recursive
algorithms.

e Queues support retrieval in first-in, first-out (FIFO) order. This is surely
the fairest way to control waiting times for services. Jobs processed in
FIFO order minimize the maximum time spent waiting. Note that the
average waiting time will be the same regardless of whether FIFO or LIFO
is used. Many computing applications involve data items with infinite
patience, which renders the question of maximum waiting time moot.

Queues are somewhat trickier to implement than stacks and thus are most
appropriate for applications (like certain simulations) where the order is
important. The put and get operations for queues are usually called en-
queue and dequeue.
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— Enqueue(x,q): Insert item x at the back of queue q.

— Dequeue(q): Return (and remove) the front item from queue q.

We will see queues later as the fundamental data structure controlling
breadth-first search (BFS) in graphs.

Stacks and queues can be effectively implemented using either arrays or
linked lists. The key issue is whether an upper bound on the size of the container
is known in advance, thus permitting the use of a statically allocated array.

3.3 Dictionaries

The dictionary data type permits access to data items by content. You stick
an item into a dictionary so you can find it when you need it. The primary
operations dictionaries support are:

o Search(D,k) — Given a search key k, return a pointer to the element in
dictionary D whose key value is k, if one exists.

e Insert(D,z) — Given a data item x, add it to the dictionary D.

e Delete(D,z) — Given a pointer x to a given data item in the dictionary D,
remove it from D.

Certain dictionary data structures also efficiently support other useful oper-
ations:

e Max(D) or Min(D) — Retrieve the item with the largest (or smallest) key
from D. This enables the dictionary to serve as a priority queue, as will
be discussed in Section 3.5 (page 87).

e Predecessor(D,z) or Successor(D,z) — Retrieve the item from D whose key
is immediately before (or after) item x in sorted order. These enable us
to iterate through the elements of the data structure in sorted order.

Many common data processing tasks can be handled using these dictionary
operations. For example, suppose we want to remove all duplicate names from a
mailing list, and print the results in sorted order. Initialize an empty dictionary
D, whose search key will be the record name. Now read through the mailing list,
and for each record search to see if the name is already in D. If not, insert it into
D. After reading through the mailing list, we print the names in the dictionary.
By starting from the first item Min(D) and repeatedly calling Successor until
we obtain Maz(D), we traverse all elements in sorted order.

By defining such problems in terms of abstract dictionary operations, we can
ignore the details of the data structure’s representation and focus on the task
at hand.
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In the rest of this section, we will carefully investigate simple dictionary
implementations based on arrays and linked lists. More powerful dictionary
implementations such as binary search trees (see Section 3.4 (page 81)) and
hash tables (see Section 3.7 (page 93)) are also attractive options in practice.
A complete discussion of different dictionary data structures is presented in the
catalog in Section 15.1 (page 440). T encourage the reader to browse through
the data structures section of the catalog to better learn what your options are.

Stop and Think: Comparing Dictionary Implementations (I)

Problem: What are the asymptotic worst-case running times for all seven fun-
damental dictionary operations (search, insert, delete, successor, predecessor,
minimum, and maximum) when the data structure is implemented as:

e An unsorted array.

e A sorted array.

Solution: This problem (and the one following it) reveals some of the inherent
trade-offs of data structure design. A given data representation may permit
efficient implementation of certain operations at the cost that other operations
are expensive.

In addition to the array in question, we will assume access to a few extra
variables such as n, the number of elements currently in the array. Note that
we must maintain the value of these variables in the operations where they
change (e.g., insert and delete), and charge these operations the cost of this
maintenance.

The basic dictionary operations can be implemented with the following costs
on unsorted and sorted arrays. The starred element indicates cleverness.

Unsorted  Sorted
Dictionary operation | array array
Search(A, k) O(n) O(logn)
Insert(A, ) O(1) O(n)
Delete(A, x) o(1)* O(n)
Successor(A, x) O(n) O(1)
Predecessor(A4, x) O(n) 0(1)
Minimum(A) O(n) O(1)
Maximum(A) O(n) O(1)

‘We must understand the implementation of each operation to see why. First,
let’s discuss the operations when maintaining an unsorted array A.

e Search is implemented by testing the search key k against (potentially)
each element of an unsorted array. Thus, search takes linear time in the
worst case, which is when key k& is not found in A.
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e [nsertion is implemented by incrementing n and then copying item x to
the nth cell in the array, A[n]. The bulk of the array is untouched, so this
operation takes constant time.

e Deletion is somewhat trickier, hence the asterisk in the table above. The
definition states that we are given a pointer = to the element to delete,
so we need not spend any time searching for the element. But removing
the zth element from the array A leaves a hole that must be filled. We
could fill the hole by moving each of the elements from A[z + 1] to Aln]
down one position, but this requires ©(n) time when the first element is
deleted. The following idea is better: just overwrite Afz] with A[n], and
decrement n. This only takes constant time.

e The definitions of the traversal operations, Predecessor and Successor,
refer to the item appearing before/after z in sorted order. Thus, the
answer is not simply A[z — 1] (or Az + 1]), because in an unsorted array
an element’s physical predecessor (successor) is not necessarily its logical
predecessor (successor). Instead, the predecessor of A[x] is the biggest
element smaller than Afx]. Similarly, the successor of A[z] is the smallest
element larger than A[z]. Both require a sweep through all n elements of
A to determine the winner.

e Minimum and Mazimum are similarly defined with respect to sorted order,
and so require linear-cost sweeps to identify in an unsorted array. It is
tempting to set aside extra variables containing the current minimum
and maximum values, so we can report them in O(1) time. But this is
incompatible with constant-time deletion, as deleting the minimum valued
item mandates a linear-time search to find the new minimum.

Implementing a dictionary using a sorted array completely reverses our no-
tions of what is easy and what is hard. Searches can now be done in O(logn)
time, using binary search, because we know the median element sits in A[n/2].
Since the upper and lower portions of the array are also sorted, the search can
continue recursively on the appropriate portion. The number of halvings of n
until we get to a single element is [lgn].

The sorted order also benefits us with respect to the other dictionary retrieval
operations. The minimum and maximum elements sit in A[1] and A[n], while
the predecessor and successor to A[z] are Alx — 1] and A[x + 1], respectively.

Insertion and deletion become more expensive, however, because making
room for a new item or filling a hole may require moving many items arbitrarily.
Thus, both become linear-time operations. |

Take-Home Lesson: Data structure design must balance all the different op-
erations it supports. The fastest data structure to support both operations A
and B may well not be the fastest structure to support just operation A or B.




3.3. DICTIONARIES 79
Stop and Think: Comparing Dictionary Implementations (IT)

Problem: ~ What are the asymptotic worst-case running times for each of
the seven fundamental dictionary operations when the data structure is im-
plemented as

e A singly linked unsorted list.
e A doubly linked unsorted list.
e A singly linked sorted list.

e A doubly linked sorted list.

Solution: Two different issues must be considered in evaluating these implemen-
tations: singly vs. doubly linked lists and sorted vs. unsorted order. Operations
with subtle implementations are denoted with an asterisk:

Singly linked Doubly linked
Dictionary operation | unsorted sorted unsorted sorted
Search(L, k) O(n) O(n)  O(n) O(n)
Insert(L, x) O(1) O(n) O(1) O(n)
Delete(L, x) O(n)* O(n)* 0O(1) o(1)
Successor(L, ) O(n) O(1)  O(n) o(1)
Predecessor(L, x) O(n) O(n)*  O(n) o(1)
Minimum(L) O(1)* O(1)  O(n) o(1)
Maximum(L) o(1)* O(1)*  O(n) o(1)

As with unsorted arrays, search operations are destined to be slow while
maintenance operations are fast.

e Insertion/Deletion — The complication here is deletion from a singly linked
list. The definition of the Delete operation states we are given a pointer
z to the item to be deleted. But what we really need is a pointer to the
element pointing to = in the list, because that is the node that needs to
be changed. We can do nothing without this list predecessor, and so must
spend linear time searching for it on a singly linked list. Doubly linked lists
avoid this problem, since we can immediately retrieve the list predecessor
of 2.3

3 Actually, there is a way to delete an element from a singly linked list in constant time, as
shown in Figure 3.2. Overwrite the node that = points to with the contents of what x.next
points to, then deallocate the node that x.next originally pointed to. Special care must be
taken if x is the first node in the list, or the last node (by employing a permanent sentinel
element that is always the last node in the list). But this would prevent us from having
constant-time minimum/maximum operations, because we no longer have time to find new
extreme elements after deletion.
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Figure 3.2: By overwriting the contents of a node-to-delete, and deleting its
original successor, we can delete a node without access to its list predecessor.

Deletion is faster for sorted doubly linked lists than sorted arrays, because
splicing out the deleted element from the list is more efficient than filling
the hole by moving array elements. The predecessor pointer problem again
complicates deletion from singly linked sorted lists.

Search — Sorting provides less benefit for linked lists than it did for arrays.
Binary search is no longer possible, because we can’t access the median
element without traversing all the elements before it. What sorted lists
do provide is quick termination of unsuccessful searches, for if we have not
found Abbott by the time we hit Costello we can deduce that he doesn’t
exist in the list. Still, searching takes linear time in the worst case.

Traversal operations — The predecessor pointer problem again complicates
implementing Predecessor with singly linked lists. The logical successor is
equivalent to the node successor for both types of sorted lists, and hence
can be implemented in constant time.

Minimum/Mazimum — The minimum element sits at the head of a sorted
list, and so is easily retrieved. The maximum element is at the tail of the
list, which normally requires ©(n) time to reach in either singly or doubly
linked lists.

However, we can maintain a separate pointer to the list tail, provided we
pay the maintenance costs for this pointer on every insertion and deletion.
The tail pointer can be updated in constant time on doubly linked lists: on
insertion check whether last->next still equals NULL, and on deletion set
last to point to the list predecessor of last if the last element is deleted.

We have no efficient way to find this predecessor for singly linked lists. So
why can we implement Mazimum in O(1)? The trick is to charge the cost
to each deletion, which already took linear time. Adding an extra linear
sweep to update the pointer does not harm the asymptotic complexity of
Delete, while gaining us Mazimum (and similarly Minimum) in constant
time as a reward for clear thinking.
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Figure 3.3: The five distinct binary search trees on three nodes. All nodes in
the left (resp. right) subtree of node z have keys < x (resp. > ).

3.4 Binary Search Trees

We have seen data structures that allow fast search or flexible update, but not
fast search and flexible update. Unsorted, doubly linked lists supported insertion
and deletion in O(1) time but search took linear time in the worst case. Sorted
arrays support binary search and logarithmic query times, but at the cost of
linear-time update.

Binary search requires that we have fast access to two elements—specifically
the median elements above and below the given node. To combine these ideas,
we need a “linked list” with two pointers per node. This is the basic idea behind
binary search trees.

A rooted binary tree is recursively defined as either being (1) empty, or
(2) consisting of a node called the root, together with two rooted binary trees
called the left and right subtrees, respectively. The order among “sibling” nodes
matters in rooted trees, that is, left is different from right. Figure 3.3 gives the
shapes of the five distinct binary trees that can be formed on three nodes.

A binary search tree labels each node in a binary tree with a single key
such that for any node labeled z, all nodes in the left subtree of z have keys
< 2 while all nodes in the right subtree of z have keys > z.* This search tree
labeling scheme is very special. For any binary tree on n nodes, and any set of n
keys, there is exactly one labeling that makes it a binary search tree. Allowable
labelings for three-node binary search trees are given in Figure 3.3.

3.4.1 Implementing Binary Search Trees

Binary tree nodes have left and right pointer fields, an (optional) parent pointer,
and a data field. These relationships are shown in Figure 3.4; a type declaration
for the tree structure is given below:

4 Allowing duplicate keys in a binary search tree (or any other dictionary structure) is bad
karma, often leading to very subtle errors. To better support repeated items, we can add a
third pointer to each node, explicitly maintaining a list of all items with the given key.



82 CHAPTER 3. DATA STRUCTURES
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Figure 3.4: Relationships in a binary search tree. Parent and sibling pointers
(left). Finding the minimum and maximum elements in a binary search tree
(center). Inserting a new node in the correct position (right).

typedef struct tree {

item_type item; /* data item */

struct tree *parent; /* pointer to parent */

struct tree xleft; /* pointer to left child */

struct tree *right; /* pointer to right child */
} tree;

The basic operations supported by binary trees are searching, traversal, in-
sertion, and deletion.

Searching in a Tree

The binary search tree labeling uniquely identifies where each key is located.
Start at the root. Unless it contains the query key z, proceed either left or right
depending upon whether x occurs before or after the root key. This algorithm
works because both the left and right subtrees of a binary search tree are them-
selves binary search trees. This recursive structure yields the recursive search
algorithm below:

tree *search_tree(tree *1, item_type x) {
if (1 == NULL) {
return(NULL) ;
}

if (1->item == x) {
return(l);

}

if (x < 1->item) {
return(search_tree(1->left, x));
} else {
return(search_tree(1->right, x));

}
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This search algorithm runs in O(h) time, where h denotes the height of the
tree.

Finding Minimum and Maximum Elements in a Tree

By definition, the smallest key must reside in the left subtree of the root, since
all keys in the left subtree have values less than that of the root. Therefore,
as shown in Figure 3.4 (center), the minimum element must be the left-most
descendant of the root. Similarly, the maximum element must be the right-most
descendant of the root.

tree *find_minimum(tree *t) {
tree *min; /* pointer to minimum */

if (t == NULL) {
return(NULL) ;
}

min = t;

while (min->left != NULL) {
min = min->left;

¥

return(min) ;

Traversal in a Tree

Visiting all the nodes in a rooted binary tree proves to be an important com-
ponent of many algorithms. It is a special case of traversing all the nodes and
edges in a graph, which will be the foundation of Chapter 7.

A prime application of tree traversal is listing the labels of the tree nodes.
Binary search trees make it easy to report the labels in sorted order. By defini-
tion, all the keys smaller than the root must lie in the left subtree of the root,
and all keys bigger than the root in the right subtree. Thus, visiting the nodes
recursively, in accord with such a policy, produces an in-order traversal of the
search tree:

void traverse_tree(tree *1) {
if (1 '= NULL) {
traverse_tree(1->left);
process_item(1->item);
traverse_tree(l->right);
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Each item is processed only once during the course of traversal, so it runs in
O(n) time, where n denotes the number of nodes in the tree.

Different traversal orders come from changing the position of process_item
relative to the traversals of the left and right subtrees. Processing the item first
yields a pre-order traversal, while processing it last gives a post-order traversal.
These make relatively little sense with search trees, but prove useful when the
rooted tree represents arithmetic or logical expressions.

Insertion in a Tree

There is exactly one place to insert an item z into a binary search tree T so we
can be certain where to find it again. We must replace the NULL pointer found
in T after an unsuccessful query for the key of z.

This implementation uses recursion to combine the search and node insertion
stages of key insertion. The three arguments to insert_tree are (1) a pointer
1 to the pointer linking the search subtree to the rest of the tree, (2) the key x
to be inserted, and (3) a parent pointer to the parent node containing 1. The
node is allocated and linked in after hitting the NULL pointer. Note that we pass
the pointer to the appropriate left/right pointer in the node during the search,
so the assignment *1 = p; links the new node into the tree:

void insert_tree(tree **1, item_type x, tree *parent) {
tree *p; /* temporary pointer */

if (1 == NULL) {
p = malloc(sizeof (tree));
p—>item = x;
p—>left = p->right = NULL;
p->parent = parent;
*1=p;
return;

}

if (x < (*1)->item) {
insert_tree(&((x1)->left), x, *1);
} else {
insert_tree(&((*1)->right), x, *1);
}

Allocating the node and linking it into the tree is a constant-time operation,
after the search has been performed in O(h) time. Here h denotes the height of
the search tree.
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initial tree delete leaf node (3) delete node with 1 child (6) delete node with 2 children (4)

Figure 3.5: Deleting tree nodes with 0, 1, and 2 children. Colors show the nodes
affected as a result of the deletion.

Deletion from a Tree

Deletion is somewhat trickier than insertion, because removing a node means
appropriately linking its two descendant subtrees back into the tree somewhere
else. There are three cases, illustrated in Figure 3.5. Study this figure. Leaf
nodes have no children, and so may be deleted simply by clearing the pointer
to the given node.

The case of a doomed node having one child is also straightforward. We
can link this child to the deleted node’s parent without violating the in-order
labeling property of the tree.

But what of a node with two children? Our solution is to relabel this node
with the key of its immediate successor in sorted order. This successor must
be the smallest value in the right subtree, specifically the left-most descendant
in the right subtree p. Moving this descendant to the point of deletion results
in a properly labeled binary search tree, and reduces our deletion problem to
physically removing a node with at most one child—a case that has been resolved
above. The full implementation has been omitted here because it looks a little
ghastly, but the code follows logically from the description above.

The worst-case complexity analysis is as follows. Every deletion requires the
cost of at most two search operations, each taking O(h) time where h is the
height of the tree, plus a constant amount of pointer manipulation.

3.4.2 How Good are Binary Search Trees?

When implemented using binary search trees, all three dictionary operations
take O(h) time, where h is the height of the tree. The smallest height we can
hope for occurs when the tree is perfectly balanced, meaning that h = [logn].
This is very good, but the tree must be perfectly balanced.

Our insertion algorithm puts each new item at a leaf node where it should
have been found. This makes the shape (and more importantly height) of the
tree determined by the order in which we insert the keys.
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Unfortunately, bad things can happen when building trees through insertion.
The data structure has no control over the order of insertion. Consider what
happens if the user inserts the keys in sorted order. The operations insert (a),
followed by insert (b), insert(c), insert(d), ... will produce a skinny, linear-
height tree where only right pointers are used.

Thus, binary trees can have heights ranging from lg n to n. But how tall are
they on average? The average case analysis of algorithms can be tricky because
we must carefully specify what we mean by average. The question is well defined
if we assume each of the n! possible insertion orderings to be equally likely, and
average over those. If this assumption is valid then we are in luck, because with
high probability the resulting tree will have ©(log n) height. This will be shown
in Section 4.6 (page 130).

This argument is an important example of the power of randomization. We
can often develop simple algorithms that offer good performance with high prob-
ability. We will see that a similar idea underlies the fastest known sorting algo-
rithm, quicksort.

3.4.3 Balanced Search Trees

Random search trees are usually good. But if we get unlucky with our order of
insertion, we can end up with a linear-height tree in the worst case. This worst
case is outside of our direct control, since we must build the tree in response to
the requests given by our potentially nasty user.

What would be better is an insertion/deletion procedure that adjusts the
tree a little after each insertion, keeping it close enough to be balanced that the
maximum height is logarithmic. Sophisticated balanced binary search tree data
structures have been developed that guarantee the height of the tree always to
be O(logn). Therefore, all dictionary operations (insert, delete, query) take
O(logn) time each. Implementations of balanced tree data structures such as
red-black trees and splay trees are discussed in Section 15.1 (page 440).

From an algorithm design viewpoint, it is important to know that these trees
exist and that they can be used as black boxes to provide an efficient dictionary
implementation. When figuring the costs of dictionary operations for algorithm
analysis, we can assume the worst-case complexities of balanced binary trees to
be a fair measure.

Take-Home Lesson:  Picking the wrong data structure for the job can be
disastrous in terms of performance. Identifying the very best data structure is
usually not as critical, because there can be several choices that perform in a
similar manner.

Stop and Think: Exploiting Balanced Search Trees

Problem:  You are given the task of reading n numbers and then printing
them out in sorted order. Suppose you have access to a balanced dictionary
data structure, which supports the operations search, insert, delete, minimum,
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maximum, successor, and predecessor each in O(logn) time. How can you sort
in O(nlogn) time using only:

1. insert and in-order traversal?
2. minimum, successor, and insert?

3. minimum, insert, and delete?

Solution: Every algorithm for sorting items using a binary search tree has to
start by building the actual tree. This involves initializing the tree (basically
setting the pointer ¢ to NULL), and then reading/inserting each of the n items
into t. This costs O(nlogn), since each insertion takes at most O(logn) time.
Curiously, just building the data structure is a rate-limiting step for each of our
sorting algorithms!

The first problem allows us to do insertion and in-order traversal. We can
build a search tree by inserting all n elements, then do a traversal to access the
items in sorted order.

The second problem allows us to use the minimum and successor operations
after constructing the tree. We can start from the minimum element, and then
repeatedly find the successor to traverse the elements in sorted order.

The third problem does not give us successor, but does allow us delete. We
can repeatedly find and delete the minimum element to once again traverse all
the elements in sorted order.

In summary, the solutions to the three problems are:

Sort1() Sort2() Sort3()
initialize-tree(t) initialize-tree(t) initialize-tree(t)
While (not EOF) While (not EOF) While (not EOF)
read(x); read(x); read(x);
insert(x,t) insert(x,t); insert(x,t);
Traverse(t) y = Minimum(t) y = Minimum(t)
While (y # NULL) do  While (y # NULL) do
print(y—item) print(y—item)
y = Successor(y,t) Delete(y,t)

y = Minimum(t)

Fach of these algorithms does a linear number of logarithmic-time opera-
tions, and hence runs in O(nlogn) time. The key to exploiting balanced binary
search trees is using them as black boxes. |

3.5 Priority Queues

Many algorithms need to process items in a specific order. For example, suppose
you must schedule jobs according to their importance relative to other jobs. Such
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scheduling requires sorting the jobs by importance, and then processing them
in this sorted order.

The priority queue is an abstract data type that provides more flexibility
than simple sorting, because it allows new elements to enter a system at arbi-
trary intervals. It can be much more cost-effective to insert a new job into a
priority queue than to re-sort everything on each such arrival.

The basic priority queue supports three primary operations:

o Insert(Q,x)— Given item x, insert it into the priority queue Q.

e Find-Minimum(Q) or Find-Mazimum(Q)- Return a pointer to the item
whose key value is smallest (or largest) among all keys in priority queue

Q.

o Delete-Minimum/((Q)) or Delete-Mazimum((Q))- Remove the item whose key
value is minimum (or maximum) from priority queue Q.

Naturally occurring processes are often informally modeled by priority queues.
Single people maintain a priority queue of potential dating candidates, mentally
if not explicitly. One’s impression on meeting a new person maps directly to
an attractiveness or desirability score, which serves as the key field for insert-
ing this new entry into the “little black book” priority queue data structure.
Dating is the process of extracting the most desirable person from the data
structure (Find-Mazimum), spending an evening to evaluate them better, and
then reinserting them into the priority queue with a possibly revised score.

Take-Home Lesson: Building algorithms around data structures such as dictio-
naries and priority queues leads to both clean structure and good performance.

Stop and Think: Basic Priority Queue Implementations

Problem: What is the worst-case time complexity of the three basic priority
queue operations (insert, find-minimum, and delete-minimum) when the basic
data structure is as follows:

e An unsorted array.
e A sorted array.

e A balanced binary search tree.

Solution:  There is surprising subtlety when implementing these operations,
even using a data structure as simple as an unsorted array. The unsorted array
dictionary (discussed on page 77) implements insertion and deletion in constant
time, and search and minimum in linear time. A linear-time implementation of
delete-minimum can be composed from find-minimum, followed by delete.
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Figure 3.6: A triangulated model of a dinosaur (1), with several triangle strips
peeled off the model (r).

For sorted arrays, we can implement insert and delete in linear time, and
minimum in constant time. However, priority queue deletions involve only the
minimum element. By storing the sorted array in reverse order (largest value on
top), the minimum element will always be the last one in the array. Deleting the
tail element requires no movement of any items, just decrementing the number
of remaining items n, and so delete-minimum can be implemented in constant
time.

All this is fine, yet the table below claims we can implement find-minimum
in constant time for each data structure:

Unsorted Sorted Balanced

array array tree
Insert(Q, x) 0O(1) O(n)  O(logn)
Find-Minimum(Q) 0O(1) O(1) o(1)
Delete-Minimum(Q) | O(n) O(1) O(logn)

The trick is using an extra variable to store a pointer/index to the minimum
entry in each of these structures, so we can simply return this value whenever we
are asked to find-minimum. Updating this pointer on each insertion is easy—we
update it iff the newly inserted value is less than the current minimum. But what
happens on a delete-minimum? We can delete that minimum element we point
to, and then do a search to restore this canned value. The operation to identify
the new minimum takes linear time on an unsorted array and logarithmic time
on a tree, and hence can be folded into the cost of each deletion. [

Priority queues are very useful data structures. Indeed, they will be the hero
of two of our war stories. A particularly nice priority queue implementation
(the heap) will be discussed in the context of sorting in Section 4.3 (page 115).
Further, a complete set of priority queue implementations is presented in Section
15.2 (page 445) of the catalog.

3.6 War Story: Stripping Triangulations

Geometric models used in computer graphics are commonly represented by a
triangulated surface, as shown in Figure 3.6(1). High-performance rendering
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Figure 3.7: Extracting a triangle strip from a triangular mesh: A strip with
partial coverage using alternating left and right turns (left), and a strip with
complete coverage by exploiting the flexibility of arbitrary turns (right).

engines have special hardware for rendering and shading triangles. This render-
ing hardware is so fast that the computational bottleneck becomes the cost of
feeding the triangulation structure into the hardware engine.

Although each triangle can be described by specifying its three endpoints,
an alternative representation proves more efficient. Instead of specifying each
triangle in isolation, suppose that we partition the triangles into strips of adja-
cent triangles and walk along the strip. Since each triangle shares two vertices
in common with its neighbors, we save the cost of retransmitting the two ex-
tra vertices and any associated information. To make the description of the
triangles unambiguous, the OpenGL triangular-mesh renderer assumes that all
turns alternate left and right. The strip in Figure 3.7 (left) completely describes
five triangles of the mesh with the vertex sequence [1,2,3,4,5,7,6] and the im-
plied left/right order. The strip on the right describes all seven triangles with
specified turns: [1,2,3,-4,7-5,1-7,r-6,r-1,1-3].

The task was to find a small number of strips that together cover all the
triangle in a mesh, without overlap. This can be thought of as a graph problem.
The graph of interest has a vertex for every triangle of the mesh, and an edge
between every pair of vertices representing adjacent triangles. This dual graph
representation captures all the information about the triangulation (see Section
18.12 (page 581)) needed to partition it into strips.

Once we had the dual graph, the project could begin in earnest. We sought
to partition the dual graph’s vertices into as few paths or strips as possible.
Partitioning it into one path implied that we had discovered a Hamiltonian path,
which by definition visits each vertex exactly once. Since finding a Hamiltonian
path is NP-complete (see Section 19.5 (page 598)), we knew not to look for an
optimal algorithm, but concentrate instead on heuristics.

The simplest approach for strip cover would start from an arbitrary triangle
and then do a left-right walk until the walk ends, either by hitting the boundary
of the object or a previously visited triangle. This heuristic had the advantage
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Figure 3.8: A bounded-height priority queue for triangle strips.

that it would be fast and simple, although there is no reason to expect that it
must find the smallest possible set of left-right strips for a given triangulation.

The greedy heuristic should result in a relatively small number of strips,
however. Greedy heuristics always try to grab the best possible thing first. In
the case of the triangulation, the natural greedy heuristic would be to identify
the starting triangle that yields the longest left—right strip, and peel that one
off first.

Being greedy does not guarantee you the best possible solution overall, since
the first strip you peel off might break apart a lot of potential strips we would
have wanted to use later. Still, being greedy is a good rule of thumb if you want
to get rich. Removing the longest strip leaves the fewest number of triangles
remaining for later strips, so greedy should outperform the naive heuristic of
pick anything.

But how much time does it take to find the largest strip to peel off next?
Let k be the length of the walk possible from an average vertex. Using the
simplest possible implementation, we could walk from each of the n vertices to
find the largest remaining strip to report in O(kn) time. Repeating this for
each of the roughly n/k strips we extract yields an O(n?)-time implementation,
which would be hopelessly slow on even a small model of 20,000 triangles.

How could we speed this up? It seems wasteful to re-walk from each triangle
after deleting a single strip. We could maintain the lengths of all the possible
future strips in a data structure. However, whenever we peel off a strip, we
must update the lengths of all affected strips. These strips will be shortened
because they walked through a triangle that now no longer exists. There are
two aspects of such a data structure:

e Priority queue — Since we were repeatedly identifying the longest remain-
ing strip, we needed a priority queue to store the strips ordered according
to length. The next strip to peel always sits at the top of the queue. Our
priority queue had to permit reducing the priority of arbitrary elements of
the queue whenever we updated the strip lengths to reflect what triangles
were peeled away. Because all of the strip lengths were bounded by a fairly
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Triangle Naive | Greedy Greedy
Model name count cost cost time
Diver 3,798 8,460 4,650 6.4 sec
Heads 4,157 10,588 4,749 9.9 sec
Framework 5,602 9,274 7,210 9.7 sec
Bart Simpson 9,654 | 24,934 | 11,676 20.5 sec
Enterprise 12,710 | 29,016 | 13,738 | 26.2 sec
Torus 20,000 | 40,000 | 20,200 | 272.7 sec
Jaw 75,842 | 104,203 | 95,020 | 136.2 sec

Figure 3.9: A comparison of the naive and greedy heuristics for several triangular
meshes. Cost is the number of strips. Running time generally scales with
triangle count, except for the highly symmetric torus with very long strips.

small integer (hardware constraints prevent any strip from having more
than 256 vertices), we used a bounded-height priority queue (an array of
buckets, shown in Figure 3.8 and described in Section 15.2 (page 445)).
An ordinary heap would also have worked just fine.

To update the queue entry associated with each triangle, we needed to
quickly find where it was. This meant that we also needed a . ..

e Dictionary — For each triangle in the mesh, we had to find where it was in
the queue. This meant storing a pointer to each triangle in a dictionary.
By integrating this dictionary with the priority queue, we built a data
structure capable of a wide range of operations.

Although there were various other complications, such as quickly recalcu-
lating the length of the strips affected by the peeling, the key idea needed to
obtain better performance was to use the priority queue. Run time improved
by several orders of magnitude after employing this data structure.

How much better did the greedy heuristic do than the naive heuristic? Study
the table in Figure 3.9. In all cases, the greedy heuristic led to a set of strips
that cost less, as measured by the total number of vertex occurrences in the
strips. The savings ranged from about 10% to 50%, which is quite remarkable
since the greatest possible improvement (going from three vertices per triangle
down to one) yields a savings of only 66.6%.

After implementing the greedy heuristic with our priority queue data struc-
ture, the program ran in O(n - k) time, where n is the number of triangles and
k is the length of the average strip. Thus, the torus, which consisted of a small
number of very long strips, took longer than the jaw, even though the latter
contained over three times as many triangles.

There are several lessons to be gleaned from this story. First, when working
with a large enough data set, only linear or near-linear algorithms are likely
to be fast enough. Second, choosing the right data structure is often the key
to getting the time complexity down. Finally, using the greedy heuristic can
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significantly improve performance over the naive approach. How much this
improvement will be can only be determined by experimentation.

3.7 Hashing

Hash tables are a very practical way to maintain a dictionary. They exploit the
fact that looking an item up in an array takes constant time once you have its
index. A hash function is a mathematical function that maps keys to integers.
We will use the value of our hash function as an index into an array, and store
our item at that position.

The first step of the hash function is usually to map each key (here the string
S) to a big integer. Let a be the size of the alphabet on which S is written.
Let char(c) be a function that maps each symbol of the alphabet to a unique
integer from 0 to aw — 1. The function

1S|-1
H(S) = alsl + Z o170+ 5 char(s;)
i=0

maps each string to a unique (but large) integer by treating the characters of
the string as “digits” in a base-a number system.

This creates unique identifier numbers, but they are so large they will quickly
exceed the number of desired slots in our hash table (denoted by m). We must
reduce this number to an integer between 0 and m — 1, by taking the remainder
H'(S) = H(S) mod m. This works on the same principle as a roulette wheel.
The ball travels a long distance, around and around the circumference-m wheel
|H(S)/m]| times before settling down to a random bin. If the table size is
selected with enough finesse (ideally m is a large prime not too close to 2¢ — 1),
the resulting hash values should be fairly uniformly distributed.

3.7.1 Collision Resolution

No matter how good our hash function is, we had better be prepared for col-
lisions, because two distinct keys will at least occasionally hash to the same
value. There are two different approaches for maintaining a hash table:

e Chaining represents a hash table as an array of m linked lists (“buckets”),
as shown in Figure 3.10. The ith list will contain all the items that hash
to the value of i. Search, insertion, and deletion thus reduce to the corre-
sponding problem in linked lists. If the n keys are distributed uniformly
in a table, each list will contain roughly n/m elements, making them a
constant size when m =~ n.

Chaining is very natural, but devotes a considerable amount of memory to
pointers. This is space that could be used to make the table larger, which
reduces the likelihood of collisions. In fact, the highest-performing hash
tables generally rely on an alternative method called open addressing.
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Figure 3.10: Collision resolution by chaining, after hashing the first eight Fi-
bonacci numbers in increasing order, with hash function H(z) = (22 4+ 1)
mod 10. Insertions occur at the head of each list in this figure.

o 1 2 3 4 5 6 7 8 9
341 5 |55 |21 2 3 18 |13

Figure 3.11: Collision resolution by open addressing and sequential probing,
after inserting the first eight Fibonacci numbers in increasing order with H(z) =
(2 + 1) mod 10. The red elements have been bumped to the first open slot
after the desired location.

e Open addressing maintains the hash table as a simple array of elements
(not buckets). Each cell is initialized to null, as shown in Figure 3.11.
On each insertion, we check to see whether the desired cell is empty; if
so, we insert the item there. But if the cell is already occupied, we must
find some other place to put the item. The simplest possibility (called
sequential probing) inserts the item into the next open cell in the table.
Provided the table is not too full, the contiguous runs of non-empty cells
should be fairly short, hence this location should be only a few cells away
from its intended position.

Searching for a given key now involves going to the appropriate hash value
and checking to see if the item there is the one we want. If so, return it.
Otherwise we must keep checking through the length of the run. Deletion
in an open addressing scheme can get ugly, since removing one element
might break a chain of insertions, making some elements inaccessible. We
have no alternative but to reinsert all the items in the run that follows the
new hole.

Chaining and open addressing both cost O(m) to initialize an m-element
hash table to null elements prior to the first insertion.
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When using chaining with doubly linked lists to resolve collisions in an m-
element hash table, the dictionary operations for n items can be implemented
in the following expected and worst case times:

Hash table Hash table

(expected)  (worst case)
Search(L, k) O(n/m) O(n)
Insert(L, x) o(1) o(1)
Delete(L, x) o(1) o(1)
Successor(L, x) On+m) O(n+m)
Predecessor(L, ) | O(n+m) O(n+m)
Minimum(L) On+m) O(n+m)
Maximum (L) O(n+m) O(n+m)

Traversing all the elements in the table takes O(n + m) time for chaining,
since we have to scan all m buckets looking for elements, even if the actual num-
ber of inserted items is small. This reduces to O(m) time for open addressing,
since n must be at most m.

Pragmatically, a hash table often is the best data structure to maintain a
dictionary. The applications of hashing go far beyond dictionaries, however, as
we will see below.

3.7.2 Duplicate Detection via Hashing

The key idea of hashing is to represent a large object (be it a key, a string, or
a substring) by a single number. We get a representation of the large object
by a value that can be manipulated in constant time, such that it is relatively
unlikely that two different large objects map to the same value.

Hashing has a variety of clever applications beyond just speeding up search.
I once heard Udi Manber—at one point responsible for all search products at
Google—talk about the algorithms employed in industry. The three most im-
portant algorithms, he explained, were “hashing, hashing, and hashing.”

Consider the following problems with nice hashing solutions:

e [s a given document unique within a large corpus? — Google crawls yet
another webpage. How can it tell whether this is new content never seen
before, or just a duplicate page that exists elsewhere on the web?

Explicitly comparing the new document D against all n previous docu-
ments is hopelessly inefficient for a large corpus. However, we can hash
D to an integer, and compare H (D) to the hash codes of the rest of the
corpus. Only if there is a collision might D be a possible duplicate. Since
we expect few spurious collisions, we can explicitly compare the few doc-
uments sharing a particular hash code with little total effort.

e s part of this document plagiarized? — A lazy student copies a portion
of a web document into their term paper. “The web is a big place,” he
smirks. “How will anyone ever find the page I stole this from?”
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This is a more difficult problem than the previous application. Adding,
deleting, or changing even one character from a document will completely
change its hash code. The hash codes produced in the previous application
thus cannot help for this more general problem.

However, we could build a hash table of all overlapping windows (sub-
strings) of length w in all the documents in the corpus. Whenever there
is a match of hash codes, there is likely a common substring of length w
between the two documents, which can then be further investigated. We
should choose w to be long enough so such a co-occurrence is very unlikely
to happen by chance.

The biggest downside of this scheme is that the size of the hash table
becomes as large as the document corpus itself. Retaining a small but
well-chosen subset of these hash codes is exactly the goal of min-wise
hashing, discussed in Section 6.6.

How can I convince you that a file isn’t changed? — In a closed-bid auction,
each party submits their bid in secret before the announced deadline. If
you knew what the other parties were bidding, you could arrange to bid
$1 more than the highest opponent and walk off with the prize as cheaply
as possible. The “right” auction strategy would thus be to hack into the
computer containing the bids just prior to the deadline, read the bids, and
then magically emerge as the winner.

How can this be prevented? What if everyone submits a hash code of their
actual bid prior to the deadline, and then submits the full bid only after
the deadline? The auctioneer will pick the largest full bid, but checks
to make sure the hash code matches what was submitted prior to the
deadline. Such cryptographic hashing methods provide a way to ensure
that the file you give me today is the same as the original, because any
change to the file will change the hash code.

Although the worst-case bounds on anything involving hashing are dismal,

with a proper hash function we can confidently expect good behavior. Hashing
is a fundamental idea in randomized algorithms, yielding linear expected-time
algorithms for problems that are ©(nlogn) or ©(n?) in the worst case.

3.7.3 Other Hashing Tricks

Hash functions provide useful tools for many things beyond powering hash ta-
bles. The fundamental idea is of many-to-one mappings, where many is con-
trolled so it is very unlikely to be too many.

3.7.4 Canonicalization

Consider a word game that gives you a set of letters S, and asks you to find
all dictionary words that can be made by reordering them. For example, I can
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make three words from the four letters in S = (a, e, k, 1), namely kale, lake, and
leak.

Think how you might write a program to find the matching words for S,
given a dictionary D of n words. Perhaps the most straightforward approach is
to test each word d € D against the characters of S. This takes time linear in
n for each S, and the test is somewhat tricky to program.

What if we instead hash every word in D to a string, by sorting the word’s
letters. Now kale goes to aekl, as do lake and leak. By building a hash table
with the sorted strings as keys, all words with the same letter distribution get
hashed to the same bucket. Once you have built this hash table, you can use it
for different query sets S. The time for each query will be proportional to the
number of matching words in D, which is a lot smaller than n.

Which set of k letters can be used to make the most dictionary words? This
secems like a much harder problem, because there are o possible letter sets,
where « is the size of the alphabet. But observe that the answer is simply the
hash code with the largest number of collisions. Sweeping over a sorted array
of hash codes (or walking through each bucket in a chained hash table) makes
this fast and easy.

This is a good example of the power of canonicalization, reducing compli-
cated objects to a standard (i.e. “canonical”) form. String transformations like
reducing letters to lower case or stemming (removing word suffixes like -ed, -s,
or -ing) result in increased matches, because multiple strings collide on the same
code. Soundex is a canonicalization scheme for names, so spelling variants of
“Skiena” like “Skina,”, “Skinnia,” and “Schiena” all get hashed to the same
Soundex code, S25. Soundex is described in more detail in Section 21.4.

For hash tables, collisions are very bad. But for pattern matching problems
like these, collisions are exactly what we want.

3.7.5 Compaction

Suppose that you wanted to sort all n books in the library, not by their titles but
by the contents of the actual text. Bulwer-Lytton’s [BL30] “It was a dark and
stormy night...” would appear before this book’s “What is an algorithm?...”
Assuming the average book is m ~ 100,000 words long, doing this sort seems
an expensive and clumsy job since each comparison involves two books.

But suppose we instead represent each book by the first (say) 100 characters,
and sort these strings. There will be collisions involving duplicates of the same
prefix, involving multiple editions or perhaps plagiarism, but these will be quite
rare. After sorting the prefixes, we can then resolve the collisions by comparing
the full texts. The world’s fastest sorting programs use this idea, as discussed
in Section 17.1.

This is an example of hashing for compaction, also called fingerprinting,
where we representing large objects by small hash codes. It is easier to work
with small objects than large ones, and the hash code generally preserves the
identity of each item. The hash function here is trivial (just take the prefix) but
it is designed to accomplish a specific goal—not to maintain a hash table. More
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sophisticated hash functions can make the probability of collisions between even
slightly different objects vanishingly low.

3.8 Specialized Data Structures

The basic data structures described thus far all represent an unstructured set
of items so as to facilitate retrieval operations. These data structures are well
known to most programmers. Not as well known are data structures for repre-
senting more specialized kinds of objects, such as points in space, strings, and
graphs.

The design principles of these data structures are the same as for basic
objects. There exists a set of basic operations we need to perform repeatedly.
We seek a data structure that allows these operations to be performed very
efficiently. These specialized data structures are important for efficient graph
and geometric algorithms, so one should be aware of their existence:

e String data structures — Character strings are typically represented by
arrays of characters, perhaps with a special character to mark the end of
the string. Suffix trees/arrays are special data structures that preprocess
strings to make pattern matching operations faster. See Section 15.3 (page
448) for details.

e Geometric data structures — Geometric data typically consists of collec-
tions of data points and regions. Regions in the plane can be described by
polygons, where the boundary of the polygon is a closed chain of line
segments. A polygon P can be represented using an array of points
(v1,...,Vn,v1), such that (v;,v;41) is a segment of the boundary of P.
Spatial data structures such as kd-trees organize points and regions by ge-
ometric location to support fast search operations. See Section 15.6 (page
460).

e Graph data structures — Graphs are typically represented using either ad-
jacency matrices or adjacency lists. The choice of representation can have
a substantial impact on the design of the resulting graph algorithms, and
will be discussed in Chapter 7 and in the catalog in Section 15.4.

o Set data structures — Subsets of items are typically represented using a
dictionary to support fast membership queries. Alternatively, bit vectors
are Boolean arrays such that the ith bit is 1 if ¢ is in the subset. Data
structures for manipulating sets is presented in the catalog in Section 15.5.

3.9 War Story: String ’em Up

The human genome encodes all the information necessary to build a person.
Sequencing the genome has had an enormous impact on medicine and molecular
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Figure 3.12: The concatenation of two fragments can be in S only if all sub-
fragments are.

biology. Algorists like me have become interested in bioinformatics, for several
reasons:

e DNA sequences can be accurately represented as strings of characters on
the four-letter alphabet (A,C,T,G). The needs of biologist have sparked
new interest in old algorithmic problems such as string matching (see
Section 21.3 (page 685)) as well as creating new problems such as shortest
common superstring (see Section 21.9 (page 709)).

e DNA sequences are very long strings. The human genome is approximately
three billion base pairs (or characters) long. Such large problem size means
that asymptotic (Big Oh) complexity analysis is fully justified on biological
problems.

e Enough money is being invested in genomics for computer scientists to
want to claim their piece of the action.

One of my interests in computational biology revolved around a proposed
technique for DNA sequencing called sequencing by hybridization (SBH). This
procedure attaches a set of probes to an array, forming a sequencing chip. Each
of these probes determines whether or not the probe string occurs as a sub-
string of the DNA target. The target DNA can now be sequenced based on the
constraints of which strings are (and are not) substrings of the target.

We sought to identify all the strings of length 2k that are possible substrings
of an unknown string S, given the set of all length-k substrings of S. For exam-
ple, suppose we know that AC, CA, and C'C are the only length-2 substrings
of S. Tt is possible that ACCA is a substring of S5, since the center substring is
one of our possibilities. However, CAAC' cannot be a substring of S, since AA
is not a substring of S. We needed to find a fast algorithm to construct all the
consistent length-2k strings, since S could be very long.

The simplest algorithm to build the 2k strings would be to concatenate all
O(n?) pairs of k-strings together, and then test to make sure that all (k — 1)
length-% substrings spanning the boundary of the concatenation were in fact

substrings, as shown in Figure 3.12. For example, the nine possible concatena-
tions of AC, CA, and CC are ACAC, ACCA, ACCC, CAAC, CACA, CACC,
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CCAC, CCCA, and CCCC. Only CAAC can be eliminated, because of the
absence of AA as a substring of S.

We needed a fast way of testing whether the £ — 1 substrings straddling
the concatenation were members of our dictionary of permissible k-strings. The
time it takes to do this depends upon which dictionary data structure we use.
A binary search tree could find the correct string within O(logn) comparisons,
where each comparison involved testing which of two length-k strings appeared
first in alphabetical order. The total time using such a binary search tree would
be O(klogn).

That seemed pretty good. So my graduate student, Dimitris Margaritis,
used a binary search tree data structure for our implementation. It worked
great up until the moment we ran it.

“I've tried the fastest computer we have, but our program is too slow,”
Dimitris complained. “It takes forever on string lengths of only 2,000 characters.
We will never get up to n = 50,000.”

We profiled our program and discovered that almost all the time was spent
searching in this data structure. This was no surprise, since we did this k& —
1 times for each of the O(n?) possible concatenations. We needed a faster
dictionary data structure, since search was the innermost operation in such a
deep loop.

“How about using a hash table?” I suggested. “It should take O(k) time to
hash a k-character string and look it up in our table. That should knock off a
factor of O(logn).”

Dimitris went back and implemented a hash table implementation for our
dictionary. Again, it worked great, up until the moment we ran it.

“Our program is still too slow,” Dimitris complained. “Sure, it is now about
ten times faster on strings of length 2,000. So now we can get up to about 4,000
characters. Big deal. We will never get up to 50,000.”

“We should have expected this,” T mused. “After all, 1g,(2,000) =~ 11. We
need a faster data structure to search in our dictionary of strings.”

“But what can be faster than a hash table?” Dimitris countered. “To look
up a k-character string, you must read all k characters. Our hash table already
does O(k) searching.”

“Sure, it takes k comparisons to test the first substring. But maybe we
can do better on the second test. Remember where our dictionary queries are
coming from. When we concatenate ABC'D with EFGH, we are first testing
whether BCDE is in the dictionary, then CDEF. These strings differ from
each other by only one character. We should be able to exploit this so each
subsequent test takes constant time to perform...”

“We can’t do that with a hash table,” Dimitris observed. “The second key
is not going to be anywhere near the first in the table. A binary search tree
won’t help, either. Since the keys ABC'D and BCDE differ according to the
first character, the two strings will be in different parts of the tree.”

“But we can use a suffix tree to do this,” I countered. “A suffix tree is a
trie containing all the suffixes of a given set of strings. For example, the suffixes
of ACAC are {ACAC,CAC, AC,C}. Coupled with suffixes of string CACT,
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Figure 3.13: Suffix tree on ACAC and CACT, with the pointer to the suffix
of ACAC. Green nodes correspond to suffixes of ACAC, with blue nodes to
suffixes of CACT.

we get the suffix tree of Figure 3.13. By following a pointer from ACAC to its
longest proper suffix CAC, we get to the right place to test whether CACT is
in our set of strings. One character comparison is all we need to do from there.”

Suffix trees are amazing data structures, discussed in considerably more
detail in Section 15.3 (page 448). Dimitris did some reading about them, then
built a nice suffix tree implementation for our dictionary. Once again, it worked
great up until the moment we ran it.

“Now our program is faster, but it runs out of memory,” Dimitris com-
plained. “The suffix tree builds a path of length k for each suffix of length k,
so all told there can be ©(n?) nodes in the tree. It crashes when we go beyond
2,000 characters. We will never get up to strings with 50,000 characters.”

I wasn’t ready to give up yet. “There is a way around the space problem, by
using compressed suffix trees,” I recalled. “Instead of explicitly representing long
paths of character nodes, we can refer back to the original string.” Compressed
suffix trees always take linear space, as described in Section 15.3 (page 448).

Dimitris went back one last time and implemented the compressed suffix
tree data structure. Now it worked great! As shown in Figure 3.14, we ran
our simulation for strings of length n = 65,536 without incident. Our results
showed that interactive SBH could be a very efficient sequencing technique.
Based on these simulations, we were able to arouse interest in our technique
from biologists. Making the actual wet laboratory experiments feasible provided
another computational challenge, which is reported in Section 12.8 (page 414).

The take-home lessons for programmers should be apparent. We isolated a
single operation (dictionary string search) that was being performed repeatedly
and optimized the data structure to support it. When an improved dictionary
structure still did not suffice, we looked deeper into the kind of queries we were
performing, so that we could identify an even better data structure. Finally,
we didn’t give up until we had achieved the level of performance we needed. In
algorithms, as in life, persistence usually pays off.
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String Binary Hash Suffix | Compressed
length tree table tree tree
8 0.0 0.0 0.0 0.0

16 0.0 0.0 0.0 0.0

32 0.1 0.0 0.0 0.0

64 0.3 0.4 0.3 0.0
128 2.4 1.1 0.5 0.0
256 17.1 9.4 3.8 0.2
512 31.6 67.0 6.9 1.3
1,024 1,828.9 96.6 31.5 2.7
2,048 | 11,441.7 941.7 553.6 39.0
4,096 | > 2 days 5,246.7 out of 45.4
8,192 > 2 days | memory 642.0
16,384 1,614.0
32,768 13,657.8
65,536 39,776.9

Figure 3.14: Run times (in seconds) for the SBH simulation using various data
structures, as a function of the string length n.

Chapter Notes

Optimizing hash table performance is surprisingly complicated for such a con-
ceptually simple data structure. The importance of short runs in open address-
ing has led to more sophisticated schemes than sequential probing for optimal
hash table performance. For more details, see Knuth [Knu98].

My thinking on hashing was profoundly influenced by a talk by Mihai Patrascu,
a brilliant theoretician who sadly died before he turned 30. More detailed treat-
ments on hashing and randomized algorithms include Motwani and Raghavan
[MR95] and Mitzenmacher and Upfal [MU17].

Our triangle strip optimizing program, stripe, is described in Evans et al.
[ESV96]. Hashing techniques for plagiarism detection are discussed in Schlieimer
et al. [SWAO03].

Surveys of algorithmic issues in DNA sequencing by hybridization include
Chetverin and Kramer [CK94] and Pevzner and Lipshutz [PL94]. Our work on
interactive SBH reported in the war story is reported in Margaritis and Skiena
[MS95a).



3.10. EXERCISES 103

3.10 Exercises

Stacks, Queues, and Lists

3-1.

3-2.

3-3.

3-4.

3-5.

3-6.

3-7.

[3] A common problem for compilers and text editors is determining whether
the parentheses in a string are balanced and properly nested. For example, the
string ((())())() contains properly nested pairs of parentheses, while the strings
)O( and ()) do not. Give an algorithm that returns true if a string contains
properly nested and balanced parentheses, and false if otherwise. For full credit,
identify the position of the first offending parenthesis if the string is not properly
nested and balanced.

[5] Give an algorithm that takes a string S consisting of opening and closing
parentheses, say )()(())()()))())))(, and finds the length of the longest balanced
parentheses in S, which is 12 in the example above. (Hint: The solution is not
necessarily a contiguous run of parenthesis from S.)

[3] Give an algorithm to reverse the direction of a given singly linked list. In
other words, after the reversal all pointers should now point backwards. Your
algorithm should take linear time.

[5] Design a stack S that supports S.push(z), S.pop(), and S.findmin(), which
returns the minimum element of S. All operations should run in constant time.

[5] We have seen how dynamic arrays enable arrays to grow while still achiev-
ing constant-time amortized performance. This problem concerns extending
dynamic arrays to let them both grow and shrink on demand.

(a) Consider an underflow strategy that cuts the array size in half whenever
the array falls below half full. Give an example sequence of insertions and
deletions where this strategy gives a bad amortized cost.

(b) Then, give a better underflow strategy than that suggested above, one that
achieves constant amortized cost per deletion.

[8] Suppose you seek to maintain the contents of a refrigerator so as to minimize
food spoilage. What data structure should you use, and how should you use
it?

[5] Work out the details of supporting constant-time deletion from a singly

linked list as per the footnote from page 79, ideally to an actual implementation.
Support the other operations as efficiently as possible.

Elementary Data Structures

3-8.

3-9.

[5] Tic-tac-toe is a game played on an n x n board (typically n = 3) where two
players take consecutive turns placing “O” and “X” marks onto the board cells.
The game is won if n consecutive “O” or ‘X” marks are placed in a row, column,
or diagonal. Create a data structure with O(n) space that accepts a sequence
of moves, and reports in constant time whether the last move won the game.

[8] Write a function which, given a sequence of digits 2-9 and a dictionary of n
words, reports all words described by this sequence when typed in on a standard
telephone keypad. For the sequence 269 you should return any, box, boy, and
cow, among other words.
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3-10.

Trees
3-11.

3-12.

3-14.

3-15.

3-16.

3-17.

3-18.

3-19.

3-20.
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[8] Two strings X and Y are anagrams if the letters of X can be rearranged
to form Y. For example, silent/listen, and incest/insect are anagrams. Give an
efficient algorithm to determine whether strings X and Y are anagrams.

and Other Dictionary Structures

[3] Design a dictionary data structure in which search, insertion, and deletion
can all be processed in O(1) time in the worst case. You may assume the set
elements are integers drawn from a finite set 1,2, ..,n, and initialization can take
O(n) time.

[8] The maximum depth of a binary tree is the number of nodes on the path
from the root down to the most distant leaf node. Give an O(n) algorithm to
find the maximum depth of a binary tree with n nodes.

. [5] Two elements of a binary search tree have been swapped by mistake. Give

an O(n) algorithm to identify these two elements so they can be swapped back.

[5] Given two binary search trees, merge them into a doubly linked list in sorted
order.

[5] Describe an O(n)-time algorithm that takes an n-node binary search tree
and constructs an equivalent height-balanced binary search tree. In a height-
balanced binary search tree, the difference between the height of the left and
right subtrees of every node is never more than 1.

[3] Find the storage efficiency ratio (the ratio of data space over total space)
for each of the following binary tree implementations on n nodes:

(a) All nodes store data, two child pointers, and a parent pointer. The data
field requires 4 bytes and each pointer requires 4 bytes.

(b) Only leaf nodes store data; internal nodes store two child pointers. The
data field requires four bytes and each pointer requires two bytes.

[5] Give an O(n) algorithm that determines whether a given n-node binary tree
is height-balanced (see Problem 3-15).

[5] Describe how to modify any balanced tree data structure such that search,
insert, delete, minimum, and maximum still take O(logn) time each, but suc-
cessor and predecessor now take O(1) time each. Which operations have to be
modified to support this?

[5] Suppose you have access to a balanced dictionary data structure that sup-
ports each of the operations search, insert, delete, minimum, maximum, suc-
cessor, and predecessor in O(logn) time. Explain how to modify the insert
and delete operations so they still take O(logn) but now minimum and max-
imum take O(1) time. (Hint: think in terms of using the abstract dictionary
operations, instead of mucking about with pointers and the like.)

[5] Design a data structure to support the following operations:

e insert(z,T) — Insert item x into the set T'.
e delete(k,T) — Delete the kth smallest element from 7'
o member(z,T) — Return true iff z € T

All operations must take O(logn) time on an n-element set.
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3-21. [8] A concatenate operation takes two sets S1 and Sa, where every key in Sy is
smaller than any key in S2, and merges them. Give an algorithm to concatenate
two binary search trees into one binary search tree. The worst-case running
time should be O(h), where h is the maximal height of the two trees.

Applications of Tree Structures

3-22. [5] Design a data structure that supports the following two operations:

e insert(z) — Insert item z from the data stream to the data structure.

e median() — Return the median of all elements so far.

All operations must take O(logn) time on an n-element set.

3-23. [5] Assume we are given a standard dictionary (balanced binary search tree)
defined on a set of n strings, each of length at most . We seek to print out all
strings beginning with a particular prefix p. Show how to do this in O(mllogn)
time, where m is the number of strings.

3-24. [5] An array A is called k-unique if it does not contain a pair of duplicate
elements within k& positions of each other, that is, there is no 7 and j such that
Ali] = A[j] and |j — i| < k. Design a worst-case O(nlogk) algorithm to test if
A is k-unique.

3-25. [5] In the bin-packing problem, we are given n objects, each weighing at most

1 kilogram. Our goal is to find the smallest number of bins that will hold the n
objects, with each bin holding 1 kilogram at most.

e The best-fit heuristic for bin packing is as follows. Consider the objects
in the order in which they are given. For each object, place it into the
partially filled bin with the smallest amount of extra room after the ob-
ject is inserted. If no such bin exists, start a new bin. Design an algo-
rithm that implements the best-fit heuristic (taking as input the n weights
w1, W2, ..., w, and outputting the number of bins used) in O(nlogn) time.

e Repeat the above using the worst-fit heuristic, where we put the next
object into the partially filled bin with the largest amount of extra room
after the object is inserted.

3-26. [5] Suppose that we are given a sequence of n values x1, x2, ..., x, and seek to
quickly answer repeated queries of the form: given ¢ and j, find the smallest
value in z;, ..., x;.

(a) Design a data structure that uses O(n?) space and answers queries in O(1)
time.

(b) Design a data structure that uses O(n) space and answers queries in
O(logn) time. For partial credit, your data structure can use O(nlogn)
space and have O(logn) query time.

3-27. [5] Suppose you are given an input set S of n integers, and a black box that if
given any sequence of integers and an integer k instantly and correctly answers
whether there is a subset of the input sequence whose sum is exactly k. Show
how to use the black box O(n) times to find a subset of S that adds up to k.

3-28. [5] Let A[l..n] be an array of real numbers. Design an algorithm to perform
any sequence of the following operations:
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3-29.

3-30.

3-31.
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e Add(i,y) — Add the value y to the ith number.
e Partial-sum(i) — Return the sum of the first ¢ numbers, that is, 22:1 Alj].
There are no insertions or deletions; the only change is to the values of the num-

bers. Each operation should take O(logn) steps. You may use one additional
array of size n as a work space.

[8] Extend the data structure of the previous problem to support insertions and
deletions. Each element now has both a key and a value. An element is accessed
by its key, but the addition operation is applied to the values. The Partial_sum
operation is different.

e Add(k,y) — Add the value y to the item with key k.
e Insert(k,y) — Insert a new item with key k and value y.
e Delete(k) — Delete the item with key k.
e Partial-sum(k) — Return the sum of all the elements currently in the set
whose key is less than k, that is, >, _, =i.
The worst-case running time should still be O(nlogn) for any sequence of O(n)
operations.

[8] You are consulting for a hotel that has n one-bed rooms. When a guest
checks in, they ask for a room whose number is in the range [/, h]. Propose a
data structure that supports the following data operations in the allotted time:

(a) Initialize(n): Initialize the data structure for empty rooms numbered

1,2,...,n, in polynomial time.
(b) Count(l,h): Return the number of available rooms in [[, k], in O(logn)
time.

(¢) Checkin(l,h): In O(logn) time, return the first empty room in [I, h] and
mark it occupied, or return NIL if all the rooms in [l, h] are occupied.

(d) Checkout(x): Mark room z as unoccupied, in O(logn) time.

[8] Design a data structure that allows one to search, insert, and delete an
integer X in O(1) time (i.e., constant time, independent of the total number of
integers stored). Assume that 1 < X < n and that there are m + n units of
space available, where m is the maximum number of integers that can be in the
table at any one time. (Hint: use two arrays A[l..n] and B[1..m].) You are not
allowed to initialize either A or B, as that would take O(m) or O(n) operations.
This means the arrays are full of random garbage to begin with, so you must be
very careful.

Implementation Projects

3-32.

[5] Implement versions of several different dictionary data structures, such as
linked lists, binary trees, balanced binary search trees, and hash tables. Con-
duct experiments to assess the relative performance of these data structures in
a simple application that reads a large text file and reports exactly one instance
of each word that appears within it. This application can be efficiently imple-
mented by maintaining a dictionary of all distinct words that have appeared
thus far in the text and inserting/reporting each new word that appears in the
stream. Write a brief report with your conclusions.
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3-33. [5] A Caesar shift (see Section 21.6 (page 697)) is a very simple class of ciphers for
secret messages. Unfortunately, they can be broken using statistical properties
of English. Develop a program capable of decrypting Caesar shifts of sufficiently
long texts.

Interview Problems

3-34. [3] What method would you use to look up a word in a dictionary?

3-35. [3] Imagine you have a closet full of shirts. What can you do to organize your
shirts for easy retrieval?

3-36. [4] Write a function to find the middle node of a singly linked list.

3-37. [4] Write a function to determine whether two binary trees are identical. Iden-
tical trees have the same key value at each position and the same structure.

3-38. [4] Write a program to convert a binary search tree into a linked list.

3-39. [4] Implement an algorithm to reverse a linked list. Now do it without recur-
sion.

3-40. [5] What is the best data structure for maintaining URLs that have been visited
by a web crawler? Give an algorithm to test whether a given URL has already
been visited, optimizing both space and time.

3-41. [4] You are given a search string and a magazine. You seek to generate all the
characters in the search string by cutting them out from the magazine. Give an
algorithm to efficiently determine whether the magazine contains all the letters
in the search string.

3-42. [4] Reverse the words in a sentence—that is, “My name is Chris” becomes “Chris
is name My.” Optimize for time and space.

3-43. [5] Determine whether a linked list contains a loop as quickly as possible without
using any extra storage. Also, identify the location of the loop.

3-44. [5] You have an unordered array X of n integers. Find the array M containing
n elements where M, is the product of all integers in X except for X;. You may
not use division. You can use extra memory. (Hint: there are solutions faster
than O(n?).)

3-45. [6] Give an algorithm for finding an ordered word pair (e.g. “New York”) oc-
curring with the greatest frequency in a given webpage. Which data structures
would you use? Optimize both time and space.

LeetCode

3-1. https://leetcode.com/problems/validate-binary-search-tree/
3-2. https://leetcode.com/problems/count-of-smaller-numbers-after-self/

3-3. https://leetcode.com/problems/construct-binary-tree-from-preorder-and-
inorder-traversal/

HackerRank

3-1. https://www.hackerrank.com/challenges/is-binary-search-tree/
3-2. https://www.hackerrank.com/challenges/queue-using-two-stacks/

3-3. https://www.hackerrank.com/challenges/detect-whether-a-linked-list-contains-
a-cycle/problem


https://leetcode.com/problems/validate-binary-search-tree/
https://leetcode.com/problems/count-of-smaller-numbers-after-self/
https://leetcode.com/problems/construct-binary-tree-from-preorder-and-inorder-traversal/
https://leetcode.com/problems/construct-binary-tree-from-preorder-and-inorder-traversal/
https://www.hackerrank.com/challenges/is-binary-search-tree/
https://www.hackerrank.com/challenges/queue-using-two-stacks/
https://www.hackerrank.com/challenges/detect-whether-a-linked-list-contains-a-cycle/problem
https://www.hackerrank.com/challenges/detect-whether-a-linked-list-contains-a-cycle/problem
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Programming Challenges
These programming challenge problems with robot judging are available at
https://onlinejudge.org:

3-1. “Jolly Jumpers”—Chapter 2, problem 10038.

3-2. “Crypt Kicker”—Chapter 2, problem 843.

3-3. “Where’s Waldorf?”—Chapter 3, problem 10010.

3-4. “Crypt Kicker II”—Chapter 3, problem 850.


https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=28

t‘)

Check for
updates

Chapter 4

Sorting

Typical computer science students study the basic sorting algorithms at least
three times before they graduate: first in introductory programming, then in
data structures, and finally in their algorithms course. Why is sorting worth so
much attention? There are several reasons:

e Sorting is the basic building block that many other algorithms are built
around. By understanding sorting, we obtain an amazing amount of power
to solve other problems.

e Most of the interesting ideas used in the design of algorithms appear in
the context of sorting, such as divide-and-conquer, data structures, and
randomized algorithms.

e Sorting is the most thoroughly studied problem in computer science. Lit-
erally dozens of different algorithms are known, most of which possess
some particular advantage over all other algorithms in certain situations.

This chapter will discuss sorting, stressing how sorting can be applied to
solving other problems. In this sense, sorting behaves more like a data structure
than a problem in its own right. I then give detailed presentations of several
fundamental algorithms: heapsort, mergesort, quicksort, and distribution sort as
examples of important algorithm design paradigms. Sorting is also represented
by Section 17.1 (page 506) in the problem catalog.

4.1 Applications of Sorting

I will review several sorting algorithms and their complexities over the course of
this chapter. But the punch line is this: clever sorting algorithms exist that run
in O(nlogn). This is a big improvement over naive O(n?) sorting algorithms,
for large values of n. Consider the number of steps done by two different sorting
algorithms for reasonable values of n:
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n n?/4 nlgn

10 25 33
100 2,500 66
1,000 250,000 9,965

10,000 25,000,000 132,877
100,000  2,500,000,000 1,660,960

You might survive using a quadratic-time algorithm even if n = 10,000, but the
slow algorithm clearly gets ridiculous once n > 100,000.

Many important problems can be reduced to sorting, so we can use our
clever O(nlogn) algorithms to do work that might otherwise seem to require a
quadratic algorithm. An important algorithm design technique is to use sorting
as a basic building block, because many other problems become easy once a set
of items is sorted.

Consider the following applications:

e Searching — Binary search tests whether an item is in a dictionary in
O(logn) time, provided the keys are all sorted. Search preprocessing is
perhaps the single most important application of sorting.

e (losest pair — Given a set of n numbers, how do you find the pair of num-
bers that have the smallest difference between them? Once the numbers
are sorted, the closest pair of numbers must lie next to each other some-
where in sorted order. Thus, a linear-time scan through the sorted list
completes the job, for a total of O(nlogn) time including the sorting.

e FElement uniqueness — Are there any duplicates in a given set of n items?
This is a special case of the closest-pair problem, where now we ask if
there is a pair separated by a gap of zero. An efficient algorithm sorts the
numbers and then does a linear scan checking all adjacent pairs.

e Finding the mode — Given a set of n items, which element occurs the
largest number of times in the set? If the items are sorted, we can sweep
from left to right and count the number of occurrences of each element,
since all identical items will be lumped together after sorting.

To find out how often an arbitrary element k& occurs, look up k using binary
search in a sorted array of keys. By walking to the left of this point until
the first element is not k£ and then doing the same to the right, we can
find this count in O(logn + ¢) time, where ¢ is the number of occurrences
of k. Even better, the number of instances of k can be found in O(logn)
time by using binary search to look for the positions of both k — ¢ and
k + € (where € is suitably small) and then taking the difference of these
positions.

e Selection — What is the kth largest item in an array? If the keys are
placed in sorted order, the kth largest item can be found in constant
time because it must sit in the kth position of the array. In particular,
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Figure 4.1: The convex hull of a set of points (left), constructed by left-to-right
insertion (right).

the median element (see Section 17.3 (page 514)) appears in the (n/2)nd
position in sorted order.

Convez hulls — What is the polygon of smallest perimeter that contains a
given set of n points in two dimensions? The convex hull is like a rubber
band stretched around the points in the plane and then released. It shrinks
to just enclose the points, as shown in Figure 4.1(1). The convex hull gives
a nice representation of the shape of the point set and is an important
building block for more sophisticated geometric algorithms, as discussed
in the catalog in Section 20.2 (page 626).

But how can we use sorting to construct the convex hull? Once you have
the points sorted by z-coordinate, the points can be inserted from left to
right into the hull. Since the right-most point is always on the boundary,
we know that it must appear in the hull. Adding this new right-most
point may cause others to be deleted, but we can quickly identify these
points because they lie inside the polygon formed by adding the new point.
See the example in Figure 4.1(r). These points will be neighbors of the
previous point we inserted, so they will be easy to find and delete. The
total time is linear after the sorting has been done.

While a few of these problems (namely median and selection) can be solved

in linear time using more sophisticated algorithms, sorting provides quick and
easy solutions to all of these problems. It is a rare application where the running
time of sorting proves to be the bottleneck, especially a bottleneck that could
have otherwise been removed using more clever algorithmics. Never be afraid
to spend time sorting, provided you use an efficient sorting routine.

Take-Home Lesson: Sorting lies at the heart of many algorithms. Sorting the
data is one of the first things any algorithm designer should try in the quest
for efficiency.
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Stop and Think: Finding the Intersection

Problem: Give an efficient algorithm to determine whether two sets (of size m
and n, respectively) are disjoint. Analyze the worst-case complexity in terms of
m and n, considering the case where m < n.

Solution: At least three algorithms come to mind, all of which are variants of
sorting and searching:

o [lirst sort the big set— The big set can be sorted in O(nlogn) time. We can
now do a binary search with each of the m elements in the second, looking
to see if it exists in the big set. The total time will be O((n + m)logn).

o First sort the small set — The small set can be sorted in O(mlogm) time.
We can now do a binary search with each of the n elements in the big
set, looking to see if it exists in the small one. The total time will be
O((n +m)logm).

e Sort both sets — Observe that once the two sets are sorted, we no longer
have to do binary search to detect a common element. We can compare
the smallest elements of the two sorted sets, and discard the smaller one
if they are not identical. By repeating this idea recursively on the now
smaller sets, we can test for duplication in linear time after sorting. The
total cost is O(nlogn + mlogm +n +m).

So, which of these is the fastest method? Clearly small-set sorting trumps
big-set sorting, since logm < logn when m < n. Similarly, (n 4+ m)logm must
be asymptotically smaller than nlogn, since n +m < 2n when m < n. Thus,
sorting the small set is the best of these options. Note that this is linear when
m is constant in size.

Note that expected linear time can be achieved by hashing. Build a hash
table containing the elements of both sets, and then explicitly check whether
collisions in the same bucket are in fact identical elements. In practice, this may
be the best solution. R

Stop and Think: Making a Hash of the Problem?

Problem: Fast sorting is a wonderful thing. But which of these tasks can be
done as fast or faster (in expected time) using hashing instead of sorting?

e Searching?
o Closest pair?
e Flement uniqueness?

e Finding the mode?
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Finding the median?

Convex hull?

Solution: Hashing can solve some these problems efficiently, but is inappropri-
ate for others. Let’s consider them one by one:

Searching — Hash tables are a great answer here, enabling you to search
for items in constant expected time, as opposed to O(logn) with binary
search.

Closest pair — Hash tables as so far defined cannot help at all. Normal
hash functions scatter keys around the table, so a pair of similar numerical
values are unlikely to end up in the same bucket for comparison. Bucketing
values by numerical ranges will ensure that the closest pair lie within the
same bucket, or at worst neighboring buckets. But we cannot also force
only a small number of items to lie in this bucket, as will be discussed
with respect to bucketsort in Section 4.7.

Element uniqueness — Hashing is even faster than sorting for this problem.
Build a hash table using chaining, and then compare each of the (expected
constant) pairs of items within a bucket. If no bucket contains a duplicate
pair, then all the elements must be unique. The table construction and
sweeping can be completed in linear expected time.

Finding the mode — Hashing leads to a linear expected-time algorithm here.
Each bucket should contain a small number of distinct elements, but may
have many duplicates. We start from the first element in a bucket and
count/delete all copies of it, repeating this sweep the expected constant
number of passes until the bucket is empty.

Finding the median — Hashing does not help us, I am afraid. The median
might be in any bucket of our table, and we have no way to judge how
many items lie before or after it in sorted order.

Convez hull — Sure, we can build a hash table on points just as well as
any other data type. But it isn’t clear what good that does us for this
problem: certainly it can’t help us order the points by z-coordinate.

4.2 Pragmatics of Sorting

We have seen many algorithmic applications of sorting, and we will see several
efficient sorting algorithms. One issue stands between them: in what order do
we want our items sorted? The answer to this basic question is application
specific. Consider the following issues:
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e Increasing or decreasing order? — A set of keys S are sorted in ascending

order when S; < S;41 for all 1 < i < n. They are in descending order
when S; > S;41 for all 1 <14 < n. Different applications call for different
orders.

Sorting just the key or an entire record? — Sorting a data set requires
maintaining the integrity of complex data records. A mailing list of names,
addresses, and phone numbers may be sorted by names as the key field,
but it had better retain the linkage between names and addresses. Thus,
we need to specify which is the key field in any complex record, and
understand the full extent of each record.

What should we do with equal keys? — Elements with equal key values all
bunch together in any total order, but sometimes the relative order among
these keys matters. Suppose an encyclopedia contains articles on both
Michael Jordan (the basketball player) and Michael Jordan (the actor).!
Which entry should appear first? You may need to resort to secondary
keys, such as article size, to resolve ties in a meaningful way.

Sometimes it is required to leave the items in the same relative order as in
the original permutation. Sorting algorithms that automatically enforce
this requirement are called stable. Few fast algorithms are naturally stable.
Stability can be achieved for any sorting algorithm by adding the initial
position as a secondary key.

Of course we could make no decision about equal key order and let the ties
fall where they may. But beware, certain efficient sort algorithms (such
as quicksort) can run into quadratic performance trouble unless explicitly
engineered to deal with large numbers of ties.

What about non-numerical data? — Alphabetizing defines the sorting of
text strings. Libraries have very complete and complicated rules con-
cerning the relative collating sequence of characters and punctuation. Is
Skiena the same key as skiena? Is Brown- Williams before or after Brown
America, and before or after Brown, John?

The right way to specify such details to your sorting algorithm is with an
application-specific pairwise-element comparison function. Such a comparison
function takes pointers to record items a and b and returns “<” if a < b, “>" if
a>b,or “="if a =b.

By abstracting the pairwise ordering decision to such a comparison function,

we can implement sorting algorithms independently of such criteria. We simply
pass the comparison function in as an argument to the sort procedure. Any
reasonable programming language has a built-in sort routine as a library func-
tion. You are usually better off using this than writing your own routine. For
example, the standard library for C contains the gsort function for sorting:

INot to mention Michael Jordan (the statistician).
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#include <stdlib.h>

void gsort(void *base, size_t nel, size_t width,
int (*compare) (const void *, const void *));

The key to using gsort is realizing what its arguments do. It sorts the first
nel elements of an array (pointed to by base), where each element is width-
bytes long. We can thus sort arrays of 1-byte characters, 4-byte integers, or
100-byte records, all by changing the value of width.

The desired output order is determined by the compare function. It takes as
arguments pointers to two width-byte elements, and returns a negative number
if the first belongs before the second in sorted order, a positive number if the
second belongs before the first, or zero if they are the same. Here is a comparison
function to sort integers in increasing order:

int intcompare(int *i, int *j)

{
if (¥i > *j) return (1);
if (%1 < xj) return (-1);
return (0);

}

This comparison function can be used to sort an array a, of which the first
n elements are occupied, as follows:

gsort(a, n, sizeof(int), intcompare);

The name gsort suggests that quicksort is the algorithm implemented in
this library function, although this is usually irrelevant to the user.

4.3 Heapsort: Fast Sorting via Data Structures

Sorting is a natural laboratory for studying algorithm design paradigms, since
many useful techniques lead to interesting sorting algorithms. The next several
sections will introduce algorithmic design techniques motivated by particular
sorting algorithms.

The alert reader may ask why I review all the standard sorting algorithms
after saying that you are usually better off not implementing them, and using
library functions instead. The answer is that the underlying design techniques
are very important for other algorithmic problems you are likely to encounter.

We start with data structure design, because one of the most dramatic al-
gorithmic improvements via appropriate data structures occurs in sorting. Se-
lection sort is a simple-to-code algorithm that repeatedly extracts the smallest
remaining element from the unsorted part of the set:
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SelectionSort(A)
For i =1ton do
Sort[i] = Find-Minimum from A
Delete-Minimum from A
Return(Sort)

A C language implementation of selection sort appeared back in Section
2.5.1 (page 41). There we partitioned the input array into sorted and unsorted
regions. To find the smallest item, we performed a linear sweep through the
unsorted portion of the array. The smallest item is then swapped with the ith
item in the array before moving on to the next iteration. Selection sort performs
n iterations, where the average iteration takes n/2 steps, for a total of O(n?)
time.

But what if we improve the data structure? It takes O(1) time to remove
a particular item from an unsorted array after it has been located, but O(n)
time to find the smallest item. These are exactly the operations supported by
priority queues. So what happens if we replace the data structure with a better
priority queue implementation, either a heap or a balanced binary tree? The
operations within the loop now take O(logn) time each, instead of O(n). Using
such a priority queue implementation speeds up selection sort from O(n?) to
O(nlogn).

The name typically given to this algorithm, heapsort, obscures the fact that
the algorithm is nothing but an implementation of selection sort using the right
data structure.

4.3.1 Heaps

Heaps are a simple and elegant data structure for efficiently supporting the
priority queue operations insert and extract-min. Heaps work by maintaining a
partial order on the set of elements that is weaker than the sorted order (so it
can be efficient to maintain) yet stronger than random order (so the minimum
element can be quickly identified).

Power in any hierarchically structured organization is reflected by a tree,
where each node in the tree represents a person, and edge (z,y) implies that x
directly supervises (or dominates) y. The person at the root sits at the “top of
the heap.”

In this spirit, a heap-labeled tree is defined to be a binary tree such that
the key of each node dominates the keys of its children. In a min-heap, a node
dominates its children by having a smaller key than they do, while in a max-
heap parent nodes dominate by being bigger. Figure 4.2(1) presents a min-heap
ordered tree of noteworthy years in American history.

The most natural implementation of this binary tree would store each key
in a node with pointers to its two children. But as with binary search trees, the
memory used by the pointers can easily outweigh the size of keys, which is the
data we are really interested in. The heap is a slick data structure that enables
us to represent binary trees without using any pointers. We store data as an
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Figure 4.2: A heap-labeled tree of important years from American history (left),
with the corresponding implicit heap representation (right).

array of keys, and use the position of the keys to implicitly play the role of the
pointers.

We store the root of the tree in the first position of the array, and its left
and right children in the second and third positions, respectively. In general, we
store the 2/~! keys of the Ith level of a complete binary tree from left to right
in positions 2!7! to 2! — 1, as shown in Figure 4.2(right). We assume that the
array starts with index 1 to simplify matters.

typedef struct {

item_type q[PQ_SIZE+1]; /* body of queue */

int n; /* number of queue elements */
} priority_queue;

What is especially nice about this representation is that the positions of the
parent and children of the key at position k are readily determined. The left
child of k sits in position 2k and the right child in 2k + 1, while the parent of k
holds court in position |k/2]. Thus, we can move around the tree without any
pointers.

int pq_parent(int n) {
if (m == 1) {
return(-1);
}
return((int) n/2); /* amplicitly take floor(n/2) */

int pq_young_child(int n) {
return(2 * n);

3
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This approach means that we can store any binary tree in an array without
pointers. What is the catch? Suppose our height h tree was sparse, meaning
that the number of nodes n < 2" — 1. All missing internal nodes still take up
space in our structure, since we must represent a full binary tree to maintain
the positional mapping between parents and children.

Space efficiency thus demands that we not allow holes in our tree—meaning
that each level be packed as much as it can be. Then only the last level may be
incomplete. By packing the elements of the last level as far left as possible, we
can represent an n-key tree using the first n elements of the array. If we did not
enforce these structural constraints, we might need an array of size 2™ — 1 to
store n elements: consider a right-going twig using positions 1, 3, 7, 15, 31....
With heaps all but the last level are filled, so the height h of an n element heap
is logarithmic because:

h—1
Z2Z:2h—12n
=0

implying that h = [lg(n + 1)].

This implicit representation of binary trees saves memory, but is less flexible
than using pointers. We cannot store arbitrary tree topologies without wasting
large amounts of space. We cannot move subtrees around by just changing a
single pointer, only by explicitly moving all the elements in the subtree. This
loss of flexibility explains why we cannot use this idea to represent binary search
trees, but it works just fine for heaps.

Stop and Think: Who’s Where in the Heap?

Problem: How can we efficiently search for a particular key & in a heap?

Solution: ~ We can’t. Binary search does not work because a heap is not a
binary search tree. We know almost nothing about the relative order of the n/2
leaf elements in a heap—certainly nothing that lets us avoid doing linear search
through them. |

4.3.2 Constructing Heaps

Heaps can be constructed incrementally, by inserting each new element into the
left-most open spot in the array, namely the (n + 1)st position of a previously
n-element heap. This ensures the desired balanced shape of the heap-labeled
tree, but does not maintain the dominance ordering of the keys. The new key
might be less than its parent in a min-heap, or greater than its parent in a
max-heap.

The solution is to swap any such dissatisfied element with its parent. The old
parent is now happy, because it is properly dominated. The other child of the
old parent is still happy, because it is now dominated by an element even more
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extreme than before. The new element is now happier, but may still dominate
its new parent. So we recur at a higher level, bubbling up the new key to its
proper position in the hierarchy. Since we replace the root of a subtree by a
larger one at each step, we preserve the heap order elsewhere.

void pq_insert(priority_queue *q, item_type x) {
if (g->n >= PQ_SIZE) {
printf ("Warning: priority queue overflow! \n");
} else {
g->n = (q->n) + 1;
gq->qlgq->n] = x;
bubble_up(q, g->n);

void bubble_up(priority_queue *q, int p) {
if (pq_parent(p) == -1) {
return; /* at root of heap, mo parent */

3

if (gq->qlpg_parent(p)] > g->qlpl) {

pa_swap(q, p, pg_parent(p));
bubble_up(q, pg_parent(p));

This swap process takes constant time at each level. Since the height of an
n-element heap is [lgn], each insertion takes at most O(logn) time. A heap of
n elements can thus be constructed in O(nlogn) time through n such insertions:

void pq_init(priority_queue *q) {
q—>n = 0;
}

void make_heap(priority_queue *q, item_type s[], int n) {
int 1i; /* counter */

pa_init(q);

for (i = 0; i < n; i++) {
pg_insert(q, s[il);

}
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4.3.3 Extracting the Minimum

The remaining priority queue operations are identifying and deleting the dom-
inant element. Identification is easy, since the top of the heap sits in the first
position of the array.

Removing the top element leaves a hole in the array. This can be filled by
moving the element from the right-most leaf (sitting in the nth position of the
array) into the first position.

The shape of the tree has been restored but (as after insertion) the labeling
of the root may no longer satisfy the heap property. Indeed, this new root may
be dominated by both of its children. The root of this min-heap should be
the smallest of three elements, namely the current root and its two children.
If the current root is dominant, the heap order has been restored. If not, the
dominant child should be swapped with the root and the problem pushed down
to the next level.

This dissatisfied element bubbles down the heap until it dominates all its chil-
dren, perhaps by becoming a leaf node and ceasing to have any. This percolate-
down operation is also called heapify, because it merges two heaps (the subtrees
below the original root) with a new key.

item_type extract_min(priority_queue *q) {
int min = -1; /* minimum value */

if (gq—>n <= 0) {

printf ("Warning: empty priority queue.\n");
} else {

min = gq->q[1];

q->q[1] = q->qlq—>n];
g->n = g—>n - 1;
bubble_down(qg, 1);

}

return(min) ;

void bubble_down(priority_queue *q, int p) {
int c; /* child index */
int i; /* counter */
int min_index; /* indez of lightest child */

¢ = pq_young_child(p);
min_index = p;

for (i = 0; 1 <= 1; i++) {
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if ((c + i) <= g—>n) {
if (q->q[min_index] > gq->qlc + i]) {
min_index = c + 1i;

}
}

if (min_index !'= p) {
pg_swap(q, p, min_index);
bubble_down(q, min_index) ;

We will reach a leaf after |lgn| bubble_down steps, each constant time.
Thus, root deletion is completed in O(logn) time.

Repeatedly exchanging the maximum element with the last element and
calling heapify yields an O(nlogn) sorting algorithm, named heapsort.

void heapsort_(item_type s[], int n) {
int i; /* counters */
priority_queue gq; /* heap for heapsort */

make_heap(&q, s, n);

for (i

s[i]

0; i < n; i++) {
= extract_min(&q);

}

Heapsort is a great sorting algorithm. It is simple to program; indeed,
the complete implementation has been presented above. It runs in worst-case
O(nlogn) time, which is the best that can be expected from any sorting algo-
rithm. It is an in-place sort, meaning it uses no extra memory over the array
containing the elements to be sorted. Admittedly, as implemented here, my
heapsort is not in-place because it creates the priority queue in g, not s. But
each newly extracted element fits perfectly in the slot freed up by the shrinking
heap, leaving behind a sorted array. Although other algorithms prove slightly
faster in practice, you won’t go wrong using heapsort for sorting data that sits
in the computer’s main memory.

Priority queues are very useful data structures. Recall they were the hero
of the war story described in Section 3.6 (page 89). A complete set of priority
queue implementations is presented in the catalog, in Section 15.2 (page 445).
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4.3.4 Faster Heap Construction (*)

As we have seen, a heap can be constructed on n elements by incremental
insertion in O(nlogn) time. Surprisingly, heaps can be constructed even faster,
by using our bubble_down procedure and some clever analysis.

Suppose we pack the n keys destined for our heap into the first n elements of
our priority-queue array. The shape of our heap will be right, but the dominance
order will be all messed up. How can we restore it?

Consider the array in reverse order, starting from the last (nth) position.
It represents a leaf of the tree and so dominates its non-existent children. The
same is the case for the last n/2 positions in the array, because all are leaves. If
we continue to walk backwards through the array we will eventually encounter
an internal node with children. This element may not dominate its children,
but its children represent well-formed (if small) heaps.

This is exactly the situation the bubble_down procedure was designed to
handle, restoring the heap order of an arbitrary root element sitting on top of
two sub-heaps. Thus, we can create a heap by performing n/2 non-trivial calls
to the bubble_down procedure:

void make_heap_fast(priority_queue *q, item_type s[], int n) {

int i; /* counter */
gq->n = n;
for (i = 0; i < n; i++) {

g->qli + 11 = s[il;
}

for (i = g—>n/2; i >= 1; i--) {
bubble_down(q, i);
}

Multiplying the number of calls to bubble_down (n) times an upper bound
on the cost of each operation (O(logn)) gives us a running time analysis of
O(nlogn). This would make it no faster than the incremental insertion algo-
rithm described above.

But note that it is indeed an wupper bound, because only the last insertion
will actually take |lgn| steps. Recall that bubble_down takes time proportional
to the height of the heaps it is merging. Most of these heaps are extremely
small. In a full binary tree on n nodes, there are n/2 nodes that are leaves (i.e.
height 0), n/4 nodes that are height 1, n/8 nodes that are height 2, and so on.
In general, there are at most [n/2"*1] nodes of height h, so the cost of building
a heap is:

llgn] [lgn]
> [n/2"Mh<n Y h/2"<2n

h=0 h=0
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Since this sum is not quite a geometric series, we can’t apply the usual
identity to get the sum, but rest assured that the puny contribution of the
numerator (h) is crushed by the denominator (2"). The series quickly converges
to linear.

Does it matter that we can construct heaps in linear time instead of O(nlogn)?
Not really. The construction time did not dominate the complexity of heapsort,
so improving the construction time does not improve its worst-case performance.
Still, it is an impressive display of the power of careful analysis, and the free
lunch that geometric series convergence can sometimes provide.

Stop and Think: Where in the Heap?

Problem:  Given an array-based heap on n elements and a real number =z,
efficiently determine whether the kth smallest element in the heap is greater than
or equal to . Your algorithm should be O(k) in the worst case, independent of
the size of the heap. (Hint: you do not have to find the kth smallest element;
you need only to determine its relationship to z.)

Solution: There are at least two different ideas that lead to correct but inefficient
algorithms for this problem:

e (Call extract-min k times, and test whether all of these are less than x.
This explicitly sorts the first k£ elements and so gives us more information
than the desired answer, but it takes O(klogn) time to do so.

e The kth smallest element cannot be deeper than the kth level of the heap,
since the path from it to the root must go through elements of decreasing
value. We can thus look at all the elements on the first k& levels of the
heap, and count how many of them are less than z, stopping when we
either find k£ of them or run out of elements. This is correct, but takes
O(min(n, 2%)) time, since the top k elements have 2¥ — 1 elements.

An O(k) solution can look at only %k elements smaller than z, plus at most
O(k) elements greater than x. Consider the following recursive procedure, called
at the root with ¢ = 1 and count = k:
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int heap_compare(priority_queue *q, int i, int count, int x) {
if ((count <= 0) [| (i > g—>n)) {
return(count) ;

}

if (g->qli] < x) {
count = heap_compare(q, pq_young_child(i), count-1, x);
count = heap_compare(q, pq_young_child(i)+1, count, x);

}

return(count) ;

If the root of the min-heap is > x, then no elements in the heap can be less
than z, as by definition the root must be the smallest element. This procedure
searches the children of all nodes of weight smaller than z until either (a) we
have found k of them, when it returns 0, or (b) they are exhausted, when it
returns a value greater than zero. Thus, it will find enough small elements if
they exist.

But how long does it take? The only nodes whose children we look at are
those < x, and there are at most k of these in total. Each have visited at most
two children, so we visit at most 2k + 1 nodes, for a total time of O(k). ||

4.3.5 Sorting by Incremental Insertion

Now consider a different approach to sorting via efficient data structures. Select
the next element from the unsorted set, and put it into it’s proper position in
the sorted set:

for (i = 1; i < n; i++) {
j=1i;
while ((j > 0) && (s[j] < s[j - 11)) {
swap(&s[jl, &sl[j - 11);
j=7i1

}

Although insertion sort takes O(n?) in the worst case, it performs consider-
ably better if the data is almost sorted, since few iterations of the inner loop
suffice to sift it into the proper position.

Insertion sort is perhaps the simplest example of the incremental insertion
technique, where we build up a complicated structure on n items by first building
it on n — 1 items and then making the necessary changes to add the last item.

Note that faster sorting algorithms based on incremental insertion follow
from more efficient data structures. Insertion into a balanced search tree takes
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O(logn) per operation, or a total of O(nlogn) to construct the tree. An in-
order traversal reads through the elements in sorted order to complete the job
in linear time.

4.4 War Story: Give me a Ticket on an Airplane

I came into this particular job seeking justice. I’d been retained by an air travel
company to help design an algorithm to find the cheapest available airfare from
city x to city y. Like most of you, I suspect, I'd been baffled at the crazy
price fluctuations of ticket prices under modern “yield management.” The price
of flights seems to soar far more efficiently than the planes themselves. The
problem, it seemed to me, was that airlines never wanted to show the true
cheapest price. If I did my job right, I could make damned sure they would
show it to me next time.

“Look,” I said at the start of the first meeting. “This can’t be so hard.
Construct a graph with vertices corresponding to airports, and add an edge
between each airport pair (u,v) that shows a direct flight from u to v. Set the
weight of this edge equal to the cost of the cheapest available ticket from u to
v. Now the cheapest fair from x to y is given by the shortest z—y path in this
graph. This path/fare can be found using Dijkstra’s shortest path algorithm.
Problem solved!” T announced, waving my hand with a flourish.

The assembled cast of the meeting nodded thoughtfully, then burst out
laughing. It was I who needed to learn something about the overwhelming
complexity of air travel pricing. There are literally millions of different fares
available at any time, with prices changing several times daily. Restrictions on
the availability of a particular fare in a particular context are enforced by a vast
set of pricing rules. These rules are an industry-wide kludge—a complicated
structure with little in the way of consistent logical principles. My favorite rule
exceptions applied only to the country of Malawi. With a population of only 18
million and per-capita income of $1,234 (180th in the world), they prove to be
an unexpected powerhouse shaping world aviation price policy. Accurately pric-
ing any air itinerary requires at least implicit checks to ensure the trip doesn’t
take us through Malawi.

The real problem is that there can easily be 100 different fares for the first
flight leg, say from Los Angeles (LAX) to Chicago (ORD), and a similar number
for each subsequent leg, say from Chicago to New York (JFK). The cheapest
possible LAX-ORD fare (maybe an AARP children’s price) might not be com-
binable with the cheapest ORD—-JFK fare (perhaps a pre-Ramadan special that
can only be used with subsequent connections to Mecca).

After being properly chastised for oversimplifying the problem, I got down
to work. I started by reducing the problem to the simplest interesting case.
“So, you need to find the cheapest two-hop fare that passes your rule tests. Is
there a way to decide in advance which pairs will pass without explicitly testing
them?”

“No, there is no way to tell,” they assured me. “We can only consult a
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X+Y
$150 (1,1)
X Y $160 (2,1)

— — $175 (1,2)
$100 $50 $180 (3,1)

$110 $75 $185 (2,2)
$205 (3,2)
$130 $125 $225 (1.3)
$235 (2,3)
$255 (3,3)

Figure 4.3: Sorting the pairwise sums of lists X and Y.

black box routine to decide whether a particular price is available for the given
itinerary/travelers.”

“So our goal is to call this black box on the fewest number of combinations.
This means evaluating all possible fare combinations in order from cheapest to
most expensive, and stopping as soon as we encounter the first legal combina-
tion.”

“Right.”

“Why not construct the m xn possible price pairs, sort them in terms of cost,
and evaluate them in sorted order? Clearly this can be done in O(nmlog(nm))
time.”?

“That is basically what we do now, but it is quite expensive to construct the
full set of m x n pairs, since the first one might be all we need.”

I caught a whiff of an interesting problem. “So what you really want is
an efficient data structure to repeatedly return the mezt most expensive pair
without constructing all the pairs in advance.”

This was indeed an interesting problem. Finding the largest element in a
set under insertion and deletion is ezactly what priority queues are good for.
The catch here is that we could not seed the priority queue with all values in
advance. We had to insert new pairs into the queue after each evaluation.

I constructed some examples, like the one in Figure 4.3. We could represent
each fare by the list indexes of its two components. The cheapest single fare
will certainly be constructed by adding up the cheapest component from both
lists, described (1,1). The second cheapest fare would be made from the head
of one list and the second element of another, and hence would be either (1,2)
or (2,1). Then it gets more complicated. The third cheapest could either be
the unused pair above or (1,3) or (3,1). Indeed it would have been (3,1) in the
example above if the third fare of X had been $120.

“Tell me,” I asked. “Do we have time to sort the two respective lists of fares

2The question of whether all such sums can be sorted faster than nm arbitrary integers is
a notorious open problem in algorithm theory. See [Fre76, Lam92] for more on X + Y sorting,
as the problem is known.



4.5. MERGESORT: SORTING BY DIVIDE AND CONQUER 127

in increasing order?”

“Don’t have to,” the leader replied. “They come out in sorted order from
the database.”

That was good news! It meant there was a natural order to the pair values.
We never need to evaluate the pairs (i 4+ 1, 7) or (4,5 + 1) before (i, j), because
they clearly defined more expensive fares.

“Got it!,” T said. “We will keep track of index pairs in a priority queue,
with the sum of the fare costs as the key for the pair. Initially we put only
the pair (1,1) in the queue. If it proves not to be feasible, we put in its two
successors—namely (1,2) and (2,1). In general, we enqueue pairs (i + 1, j) and
(i,7 + 1) after evaluating/rejecting pair (7, 7). We will get through all the pairs
in the right order if we do so.”

The gang caught on quickly. “Sure. But what about duplicates? We will
construct pair (x,y) two different ways, both when expanding (z — 1,y) and
(x,y—1)7

“You are right. We need an extra data structure to guard against duplicates.
The simplest might be a hash table to tell us whether a given pair exists in the
priority queue before we insert a duplicate. In fact, we will never have more
than n active pairs in our data structure, since there can only be one pair for
each distinct value of the first coordinate.”

And so it went. Our approach naturally generalizes to itineraries with more
than two legs, with complexity that grows with the number of legs. The best-
first evaluation inherent in our priority queue enabled the system to stop as
soon as it found the provably cheapest fare. This proved to be fast enough
to provide interactive response to the user. That said, I never noticed airline
tickets getting cheaper as a result.

4.5 Mergesort: Sorting by Divide and Conquer

Recursive algorithms reduce large problems into smaller ones. A recursive ap-
proach to sorting involves partitioning the elements into two groups, sorting each
of the smaller problems recursively, and then interleaving the two sorted lists to
totally order the elements. This algorithm is called mergesort, recognizing the
importance of the interleaving operation:

Mergesort(A[L, ..., n])
Merge( MergeSort(A[l, ..., [n/2]]), MergeSort(A[|n/2] +1,...,n]) )

The basis case of the recursion occurs when the subarray to be sorted con-
sists of at most one element, so no rearrangement is necessary. A trace of the
execution of mergesort is given in Figure 4.4. Picture the action as it happens
during an in-order traversal of the tree, with each merge occurring after the two
child calls return sorted subarrays.

The efficiency of mergesort depends upon how efficiently we can combine the
two sorted halves into a single sorted list. We could concatenate them into one
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Figure 4.4: The recursion tree for mergesort. The tree has height [log, n], and
the cost of the merging operations on each level are ©(n), yielding an ©(nlogn)
time algorithm.

list and call heapsort or some other sorting algorithm to do it, but that would
just destroy all the work spent sorting our component lists.

Instead we can merge the two lists together. Observe that the smallest
overall item in two lists sorted in increasing order (as above) must sit at the
top of one of the two lists. This smallest element can be removed, leaving two
sorted lists behind—one slightly shorter than before. The second smallest item
overall must now be atop one of these lists. Repeating this operation until both
lists are empty will merge two sorted lists (with a total of n elements between
them) into one, using at most n — 1 comparisons or O(n) total work.

What is the total running time of mergesort? It helps to think about how
much work is done at each level of the execution tree, as shown in Figure 4.4.
If we assume for simplicity that n is a power of two, the kth level consists of all
the 2 calls to mergesort processing subranges of n/2% elements.

The work done on the zeroth level (the top) involves merging one pair of
sorted lists, each of size n/2, for a total of at most n — 1 comparisons. The
work done on the first level (one down) involves merging two pairs of sorted
lists, each of size n/4, for a total of at most n — 2 comparisons. In general, the
work done on the kth level involves merging 2 pairs of sorted lists, each of size
n/2k+1 for a total of at most n — 2% comparisons. Linear work is done merging
all the elements on each level. Each of the n elements appears in exactly one
subproblem on each level. The most expensive case (in terms of comparisons)
is actually the top level.

The number of elements in a subproblem gets halved at each level. The
number of times we can halve n until we get to 1 is [lgn]. Because the recursion
goes lgn levels deep, and a linear amount of work is done per level, mergesort
takes O(nlogn) time in the worst case.

Mergesort is a great algorithm for sorting linked lists, because it does not
rely on random access to elements like heapsort and quicksort. Its primary
disadvantage is the need for an auxiliary buffer when sorting arrays. It is easy to
merge two sorted linked lists without using any extra space, just by rearranging
the pointers. However, to merge two sorted arrays (or portions of an array), we
need to use a third array to store the result of the merge to avoid stepping on the
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component arrays. Consider merging {4, 5,6} with {1, 2,3}, packed from left to
right in a single array. Without the buffer, we would overwrite the elements of
the left half during merging and lose them.

Mergesort is a classic divide-and-conquer algorithm. We are ahead of the
game whenever we can break one large problem into two smaller problems,
because the smaller problems are easier to solve. The trick is taking advantage
of the two partial solutions to construct a solution of the full problem, as we
did with the merge operation. Divide and conquer is an important algorithm
design paradigm, and will be the subject of Chapter 5.

Implementation

The divide-and-conquer mergesort routine follows naturally from the pseu-
docode:

void merge_sort(item_type s[], int low, int high) {
int middle; /* index of middle element */

if (low < high) {
middle = (low + high) / 2;
merge_sort(s, low, middle);
merge_sort(s, middle + 1, high);

merge(s, low, middle, high);

More challenging turns out to be the details of how the merging is done. The
problem is that we must put our merged array somewhere. To avoid losing an
element by overwriting it in the course of the merge, we first copy each subarray
to a separate queue and merge these elements back into the array. In particular:

void merge(item_type s[], int low, int middle, int high) {
int i; /* counter */
queue bufferl, buffer2; /* buffers to hold elements for merging */

init_queue (&bufferl);
init_queue (&buffer2);

for (i = low; i <= middle; i++) enqueue(&bufferl, s[i]);
for (i = middle + 1; i <= high; i++) enqueue(&buffer2, s[il);
i = low;

while (! (empty_queue(&bufferl) || empty_queue(&buffer2))) {
if (headq(&bufferl) <= headq(&buffer2)) {
s[i++] = dequeue(&bufferl);
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} else {
s[i++] = dequeue(&buffer2);
}
}

while (!empty_queue(&bufferl)) {
s[i++] = dequeue(&bufferl);
}

while (!empty_queue(&buffer2)) {
s[i++] = dequeue(&buffer?2);
}

4.6 Quicksort: Sorting by Randomization

Suppose we select an arbitrary item p from the n items we seek to sort. Quicksort
(shown in action in Figure 4.5) separates the n — 1 other items into two piles: a
low pile containing all the elements that are < p, and a high pile containing all
the elements that are > p. Low and high denote the array positions into which
we place the respective piles, leaving a single slot between them for p.

Such partitioning buys us two things. First, the pivot element p ends up in
the exact array position it will occupy in the final sorted order. Second, after
partitioning no element flips to the other side in the final sorted order. Thus,
we can now sort the elements to the left and the right of the pivot independently!
This gives us a recursive sorting algorithm, since we can use the partitioning
approach to sort each subproblem. The algorithm must be correct, because each
element ultimately ends up in the proper position:

void quicksort(item_type s[], int 1, int h) {
int p; /* index of partition */

if (1 < h) {
p = partition(s, 1, h);
quicksort(s, 1, p - 1);
quicksort(s, p + 1, h);

We can partition the array in one linear scan for a particular pivot element
by maintaining three sections of the array: less than the pivot (to the left of
firsthigh), greater than or equal to the pivot (between firsthigh and i), and
unexplored (to the right of i), as implemented below:
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Figure 4.5: Animations of quicksort in action: first selecting the first element
in each subarray as pivot (on left), and then selecting the last element as pivot
(on right).

int partition(item_type s[], int 1, int h) {
int i; /* counter */
int p; /* pivot element indexr */
int firsthigh; /* divider position for pivot element */

p = h; /* select last element as pivot */
firsthigh = 1;
for (i = 1; i < h; i++) {
if (s[il < slpD {
swap(&s[i], &s[firsthigh]);
firsthigh++;
}
}
swap (&s[p], &s[firsthighl);

return(firsthigh) ;

Since the partitioning step consists of at most n swaps, it takes time lin-
ear in the number of keys. But how long does the entire quicksort take? As
with mergesort, quicksort builds a recursion tree of nested subranges of the n-
element array. As with mergesort, quicksort spends linear time processing (now
partitioning instead of mergeing) the elements in each subarray on each level.
As with mergesort, quicksort runs in O(n - h) time, where h is the height of the
recursion tree.

The difficulty is that the height of the tree depends upon where the pivot
element ends up in each partition. If we get very lucky and happen to repeatedly
pick the median element as our pivot, the subproblems are always half the size
of those at the previous level. The height represents the number of times we
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i

Figure 4.6: The best-case (left) and worst-case (right) recursion trees for quick-
sort. The left partition is in blue and the right partition in red.

can halve n until we get down to 1, meaning h = [lgn]. This happy situation
is shown in Figure 4.6(left), and corresponds to the best case of quicksort.

Now suppose we consistently get unlucky, and our pivot element always splits
the array as unequally as possible. This implies that the pivot element is always
the biggest or smallest element in the sub-array. After this pivot settles into its
position, we will be left with one subproblem of size n — 1. After doing linear
work we have reduced the size of our problem by just one measly element, as
shown in Figure 4.6(right). It takes a tree of height n — 1 to chop our array
down to one element per level, for a worst case time of ©(n?).

Thus, the worst case for quicksort is worse than heapsort or mergesort. To
justify its name, quicksort had better be good in the average case. Understand-
ing why requires some intuition about random sampling.

4.6.1 Intuition: The Expected Case for Quicksort

The expected performance of quicksort depends upon the height of the partition
tree constructed by pivot elements at each step. Mergesort splits the keys into
two equal halves, sorts both of them recursively, and then merges the halves
in linear time—and hence runs in O(nlogn) time. Thus, whenever our pivot
element is near the center of the sorted array (meaning the pivot is close to the
median element), we get the same good split realizing the same running time
as mergesort.

I will give an intuitive explanation of why quicksort runs in O(nlogn) time
in the average case. How likely is it that a randomly selected pivot is a good
one? The best possible selection for the pivot would be the median key, because
exactly half of elements would end up left, and half the elements right, of the
pivot. However, we have only a probability of 1/n that a randomly selected
pivot is the median, which is quite small.

Suppose we say a key is a good enough pivot if it lies in the center half of the
sorted space of keys—those ranked from n/4 to 3n/4 in the space of all keys to
be sorted. Such good enough pivot elements are quite plentiful, since half the
elements lie closer to the middle than to one of the two ends (see Figure 4.7).
Thus, on each selection we will pick a good enough pivot with probability of 1/2.
We will make good progress towards sorting whenever we pick a good enough
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Figure 4.7: Half the time, a randomly chosen pivot is close to the median
element.

pivot.

The worst possible good enough pivot leaves the bigger of the two partitions
with 3n/4 items. This happens also to be the expected size of the larger partition
left after picking a random pivot p, at the median between the worst possible
pivot (p = 1 or p = n leaving a partition of size n — 1) and the best possible
pivot (p = n/2 leaving two partitions of size n/2. So what is the height h,
of a quicksort partition tree constructed repeatedly from the expected pivot
value? The deepest path through this tree passes through partitions of size
n, (3/4)n, (3/4)%n, ..., down to 1. How many times can we multiply n by 3/4
until it gets down to 17

(3/4)'vn =1 = n = (4/3)"s

80 hg = logy /s n.

On average, random quicksort partition trees (and by analogy, binary search
trees under random insertion) are very good. More careful analysis shows the av-
erage height after n insertions is approximately 21Inn. Since 2Inn ~ 1.3861gn,
this is only 39% taller than a perfectly balanced binary tree. Since quicksort
does O(n) work partitioning on each level, the average time is O(nlogn). If we
are extremely unlucky, and our randomly selected elements are always among
the largest or smallest element in the array, quicksort turns into selection sort
and runs in O(n?). But the odds against this are vanishingly small.

4.6.2 Randomized Algorithms

There is an important subtlety about the expected case O(nlogn) running time
for quicksort. Our quicksort implementation above selected the last element in
each sub-array as the pivot. Suppose this program were given a sorted array
as input. Then at each step it would pick the worst possible pivot, and run in
quadratic time.

For any deterministic method of pivot selection, there exists a worst-case
input instance which will doom us to quadratic time. The analysis presented
above made no claim stronger than:

“Quicksort runs in ©(nlogn) time, with high probability, if you give
it randomly ordered data to sort.”

But now suppose we add an initial step to our algorithm where we ran-
domly permute the order of the n elements before we try to sort them. Such
a permutation can be constructed in O(n) time (see Section 16.7 for details).
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This might seem like wasted effort, but it provides the guarantee that we can
expect ©(nlogn) running time whatever the initial input was. The worst case
performance still can happen, but it now depends only upon how unlucky we
are. There is no longer a well-defined “worst-case” input. We now can claim
that:

“Randomized quicksort runs in ©(nlogn) time on any input, with
high probability.”

Alternately, we could get the same guarantee by selecting a random element to
be the pivot at each step.

Randomization is a powerful tool to improve algorithms with bad worst-
case but good average-case complexity. It can be used to make algorithms
more robust to boundary cases and more efficient on highly structured input
instances that confound heuristic decisions (such as sorted input to quicksort).
It often lends itself to simple algorithms that provide expected-time performance
guarantees, which are otherwise obtainable only using complicated deterministic
algorithms. Randomized algorithms will be the topic of Chapter 6.

Proper analysis of randomized algorithms requires some knowledge of prob-
ability theory, and will be deferred to Chapter 6. However, some of the basic
approaches to designing efficient randomized algorithms are readily explainable:

e Random sampling — Want to get an idea of the median value of n things,
but don’t have either the time or space to look at them all? Select a small
random sample of the input and find the median of those. The result
should be representative for the full set.

This is the idea behind opinion polling, where we sample a small number
of people as a proxy for the full population. Biases creep in unless you
take a truly random sample, as opposed to the first  people you happen
to see. To avoid bias, actual polling agencies typically dial random phone
numbers and hope someone answers.

e Randomized hashing — We have claimed that hashing can be used to im-
plement dictionary search in O(1) “expected time.” However, for any hash
function there is a given worst-case set of keys that all get hashed to the
same bucket. But now suppose we randomly select our hash function from
a large family of good ones as the first step of our algorithm. We get the
same type of improved guarantee that we did with randomized quicksort.

e Randomized search — Randomization can also be used to drive search tech-
niques such as simulated annealing, as will be discussed in detail in Section
12.6.3 (page 406).

Stop and Think: Nuts and Bolts

Problem: The nuts and bolts problem is defined as follows. You are given a
collection of n bolts of different widths, and n corresponding nuts. You can test
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whether a given nut and bolt fit together, from which you learn whether the
nut is too large, too small, or an exact match for the bolt. The differences in
size between pairs of nuts or bolts are too small to see by eye, so you cannot
compare the sizes of two nuts or two bolts directly. You are asked to match
each bolt to each nut as efficiently as possible.

Give an O(n?) algorithm to solve the nuts and bolts problem. Then give a
randomized O(nlogn) expected-time algorithm for the same problem.

Solution: The brute force algorithm for matching nuts and bolts starts with
the first bolt and compares it to each nut until a match is found. In the worst
case, this will require n comparisons. Repeating this for each successive bolt on
all remaining nuts yields an algorithm with a quadratic number of comparisons.

But what if we pick a random bolt and try it? On average, we would expect
to get about halfway through the set of nuts before we found the match, so
this randomized algorithm would do half the work on average as the worst case.
That counts as some kind of improvement, although not an asymptotic one.

Randomized quicksort achieves the desired expected-case running time, so a
natural idea is to emulate it on the nuts and bolts problem. The fundamental
step in quicksort is partitioning elements around a pivot. Can we partition nuts
and bolts around a randomly selected bolt b?

Certainly we can partition the nuts into those of size less than b and greater
than b. But decomposing the problem into two halves requires partitioning the
bolts as well, and we cannot compare bolt against bolt. But once we find the
matching nut to b, we can use it to partition the bolts accordingly. In 2n — 2
comparisons, we partition the nuts and bolts, and the remaining analysis follows
directly from randomized quicksort.

What is interesting about this problem is that no simple deterministic algo-
rithm for nut and bolt sorting is known. It illustrates how randomization makes
the bad case go away, leaving behind a simple and beautiful algorithm. |

4.6.3 Is Quicksort Really Quick?

There is a clear, asymptotic difference between a ©(nlogn) algorithm and one
that runs in ©(n?). Only the most obstinate reader would doubt my claim that
mergesort, heapsort, and quicksort will all outperform insertion sort or selection
sort on large enough instances.

But how can we compare two ©(nlogn) algorithms to decide which is faster?
How can we prove that quicksort is really quick? Unfortunately, the RAM model
and Big Oh analysis provide too coarse a set of tools to make that type of dis-
tinction. When faced with algorithms of the same asymptotic complexity, im-
plementation details and system quirks such as cache performance and memory
size often prove to be the decisive factor.

What we can say is that experiments show that when quicksort is imple-
mented well, it is typically two to three times faster than mergesort or heapsort.
The primary reason is that the operations in the innermost loop are simpler.
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Figure 4.8: A small subset of Charlottesville Shiffletts.

But I can’t argue if you don’t believe me when I say quicksort is faster. It is a
question whose solution lies outside the analytical tools we are using. The best
way to tell is to implement both algorithms and experiment.

4.7 Distribution Sort: Sorting via Bucketing

To sort names for a class roster or the telephone book, we could first partition
them according to the first letter of the last name. This will create twenty-six
different piles, or buckets, of names. Observe that any name in the J pile must
occur after all names in the I pile, and before any name in the K pile. Therefore,
we can proceed to sort each pile individually and just concatenate the sorted
piles together at the end.

Assuming the names are distributed evenly among the buckets, the resulting
twenty-six sorting problems should each be substantially smaller than the orig-
inal problem. By now further partitioning each pile based on the second letter
of each name, we can generate smaller and smaller piles. The set of names will
be completely sorted as soon as every bucket contains only a single name. Such
an algorithm is commonly called bucketsort or distribution sort.

Bucketing is a very effective idea whenever we are confident that the distri-
bution of data will be roughly uniform. It is the idea that underlies hash tables,
kd-trees, and a variety of other practical data structures. The downside of such
techniques is that the performance can be terrible when the data distribution is
not what we expected. Although data structures such as balanced binary trees
offer guaranteed worst-case behavior for any input distribution, no such promise
exists for heuristic data structures on unexpected input distributions.

Non-uniform distributions do occur in real life. Consider Americans with the
uncommon last name of Shifflett. When last I looked, the Manhattan telephone
directory (with over one million names) contained exactly five Shiffletts. So how
many Shiffletts should there be in a small city of 50,000 people? Figure 4.8 shows
a small portion of the two and a half pages of Shiffletts in the Charlottesville,
Virginia telephone book. The Shifflett clan is a fixture of the region, but it
would play havoc with any distribution sort program, as refining buckets from
S to Sh to Shi to Shif to ... to Shifflett results in no significant partitioning.
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(1,3,2) (2,3,1) (3.1.2) (3,2,1)

Figure 4.9: Interpreting insertion sort of input array a as a decision tree. Each
leaf represents a given input permutation, while the root—to—leaf path describes
the sequence of comparisons the algorithm does to sort it.

Take-Home Lesson: Sorting can be used to illustrate many algorithm design
paradigms. Data structure techniques, divide and conquer, randomization, and
incremental construction all lead to efficient sorting algorithms.

4.7.1 Lower Bounds for Sorting

One last issue on the complexity of sorting. We have seen several sorting algo-
rithms that run in worst-case O(nlogn) time, but none that is linear. To sort
n items certainly requires looking at all of them, so any sorting algorithm must
be (n) in the worst case. Might sorting be possible in linear time?

The answer is no, presuming that your algorithm is based on comparing
pairs of elements. An (nlogn) lower bound can be shown by observing that
any sorting algorithm must behave differently during execution on each of the
n! possible permutations of n keys. If an algorithm did ezactly the same thing
with two different input permutations, there is no way that both of them could
correctly come out sorted. The outcome of each pairwise comparison governs
the run-time behavior of any comparison-based sorting algorithm. We can think
of the set of all possible executions for such an algorithm as a tree with n! leaves,
each of which correspond to one input permutation, and each root—to—leaf path
describes the comparisons performed to sort the given input. The minimum
height tree corresponds to the fastest possible algorithm, and it happens that
lg(n!) = ©(nlogn).

Figure 4.9 presents the decision tree for insertion sort on three elements. To
interpret it, simulate what insertion sort does on the input a = (3, 1, 2). Because
a1 > ao, these elements must be swapped to produce a sorted order. Insertion
sort then compares the end of the sorted array (the original input a;) against
agz. If a1 > ag, the final test of a3 against the head of the sorted part (original
input ag) decides whether to put as first or second in sorted order.

This lower bound is important for several reasons. First, the idea can be
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extended to give lower bounds for many applications of sorting, including ele-
ment uniqueness, finding the mode, and constructing convex hulls. Sorting has
one of the few non-trivial lower bounds among algorithmic problems. We will
present a different approach to arguing that fast algorithms are unlikely to exist
in Chapter 11.

Note that hashing-based algorithms do not perform such element compar-
isons, putting them outside the scope of this lower bound. But hashing-based
algorithms can get unlucky, and with worst-case luck the running time of any
randomized algorithm for one of these problems will be Q(nlogn).

4.8 War Story: Skiena for the Defense

I lead a quiet, reasonably honest life. One reward for this is that I don’t often
find myself on the business end of surprise calls from lawyers. Thus, I was
astonished to get a call from a lawyer who not only wanted to talk with me, but
wanted to talk to me about sorting algorithms.

It turned out that her firm was working on a case involving high-performance
programs for sorting, and needed an expert witness who could explain technical
issues to the jury. They knew I knew something about algorithms, but before
taking me on they demanded to see my teaching evaluations to prove that I
could explain things to people.? It promised to be an opportunity to learn
about how fast sorting programs really worked. I figured I would learn which
in-place sorting algorithm was fastest in practice. Was it heapsort or quicksort?
What subtle, secret algorithmics made the difference to minimize the number
of comparisons in practice?

The answer was quite humbling. Nobody cared about in-place sorting. The
name of the game was sorting huge files, much bigger than can fit in main
memory. All the important action was in getting the data on and off a disk.
Cute algorithms for doing internal (in-memory) sorting were not the bottleneck,
because the real problem lies in sorting gigabytes at a time.

Recall that disks have relatively long seek times, reflecting how long it takes
the desired part of the disk to rotate under the read/write head. Once the head
is in the right place, the data moves relatively quickly, and it costs about the
same to read a large data block as it does to read a single byte. Thus, the
goal is minimizing the number of blocks read/written, and coordinating these
operations so the sorting algorithm is never waiting to get the data it needs.

The disk-intensive nature of sorting is best revealed by the annual Minutesort
competition. The goal is to sort as much data in one minute as possible. As
of this writing, the current champion is Tencent Sort, which managed to sort
55 terabytes of data in under a minute on a little old 512-node cluster, each
with 20 cores and 512 GB RAM. You can check out the current records at
http://sortbenchmark.org/.

30ne of my more cynical faculty colleagues said this was the first time anyone, anywhere,
had ever actually looked at university teaching evaluations.
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That said, which algorithm is best for external sorting? It basically turns
out to be a multiway mergesort, employing a lot of engineering and special
tricks. You build a heap with members of the top block from each of k sorted
lists. By repeatedly plucking the top element off this heap, you build a sorted
list merging these k lists. Because this heap is sitting in main memory, these
operations are fast. When you have a large enough sorted run, you write it to
disk, and free up memory for more data. When you get close to emptying out
the elements from the top block of one of the k sorted lists you are merging,
load the next block.

It proves very hard to benchmark sorting programs/algorithms at this level
and decide which really is fastest. Is it fair to compare a commercial pro-
gram designed to handle general files with a stripped-down code optimized for
integers? The Minutesort competition employs randomly generated 100-byte
records. This is a different world than sorting names: Shiffletts are not ran-
domly distributed. For example, one widely employed trick is to strip off a
relatively short prefix of the key and initially sort only on that, just to avoid
lugging all those extra bytes around.

What lessons did I learn from this? The most important, by far, is to do
everything you can to avoid being involved in a lawsuit either as a plaintiff or
defendant.* Courts are not instruments for resolving disputes quickly. Legal
battles have a lot in common with military battles: they escalate very quickly,
become very expensive in time, money, and soul, and usually end only when
both sides are exhausted and compromise. Wise are the parties who can work
out their problems without going to court. Properly absorbing this lesson now
could save you thousands of times the cost of this book.

On technical matters, it is important to worry about external memory per-
formance whenever you combine very large datasets with low-complexity algo-
rithms (say linear or ©(nlogn)). Constant factors of even 5 or 10 can make a
big difference here between what is feasible and what is hopeless. Of course,
quadratic-time algorithms are doomed to fail on large datasets, regardless of
data access times.

Chapter Notes

Several interesting sorting algorithms have not been discussed in this section
including shellsort, a substantially more efficient version of insertion sort, and
radiz sort, an efficient algorithm for sorting strings. You can learn more about
these and every other sorting algorithm by browsing through Knuth [Knu98].
This includes external sorting, the subject of this chapter’s legal war story.

As implemented here, mergesort copies the merged elements into an auxiliary
buffer, to avoid overwriting the original elements to be sorted. Through clever
but complicated buffer manipulation, mergesort can be implemented in an array
without using too much extra storage. Kronrod’s algorithm for in-place merging
is presented in [Knu98].

4However, it is actually quite interesting serving as an expert witness.
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Randomized algorithms are discussed in greater detail in the books by Mot-
wani and Raghavan [MR95] and Mitzenmacher and Upfal [MU17]. The prob-
lem of nut and bolt sorting was introduced by Rawlins [Raw92]. A complicated
but deterministic ©(nlogn) algorithm is due to Komlos, Ma, and Szemeredi
[KMS98].

4.9 Exercises

Applications of Sorting: Numbers

4-1.

4-4.

[8] The Grinch is given the job of partitioning 2n players into two teams of n
players each. Each player has a numerical rating that measures how good he or
she is at the game. The Grinch seeks to divide the players as unfairly as possible,
so as to create the biggest possible talent imbalance between the teams. Show
how the Grinch can do the job in O(nlogn) time.

. [8] For each of the following problems, give an algorithm that finds the de-

sired numbers within the given amount of time. To keep your answers brief,
feel free to use algorithms from the book as subroutines. For the example,
S ={6,13,19, 3,8}, 19 — 3 maximizes the difference, while 8 — 6 minimizes the
difference.

(a) Let S be an unsorted array of n integers. Give an algorithm that finds the
pair z,y € S that mazimizes |z —y|. Your algorithm must run in O(n) worst-case
time.

(b) Let S be a sorted array of n integers. Give an algorithm that finds the pair
z,y € S that mazimizes |z — y|. Your algorithm must run in O(1) worst-case
time.

(c) Let S be an unsorted array of n integers. Give an algorithm that finds the
pair z,y € S that minimizes |z — y|, for  # y. Your algorithm must run in
O(nlogn) worst-case time.

(d) Let S be a sorted array of n integers. Give an algorithm that finds the pair
x,y € S that minimizes |z — y|, for x # y. Your algorithm must run in O(n)
worst-case time.

. [3] Take a list of 2n real numbers as input. Design an O(nlogn) algorithm

that partitions the numbers into n pairs, with the property that the partition
minimizes the maximum sum of a pair. For example, say we are given the
numbers (1,3,5,9). The possible partitions are ((1,3),(5,9)), ((1,5),(3,9)), and
((1,9),(3,5)). The pair sums for these partitions are (4,14), (6,12), and (10,8).
Thus, the third partition has 10 as its maximum sum, which is the minimum
over the three partitions.

[8] Assume that we are given m pairs of items as input, where the first item
is a number and the second item is one of three colors (red, blue, or yellow).
Further assume that the items are sorted by number. Give an O(n) algorithm
to sort the items by color (all reds before all blues before all yellows) such that
the numbers for identical colors stay sorted.

For example: (1,blue), (3,red), (4,blue), (6,yellow), (9,red) should become (3,red),
(9,red), (1,blue), (4,blue), (6,yellow).
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4-5.

4-6.

4-7.

4-8.

4-9.

4-10.

[3] The mode of a bag of numbers is the number that occurs most frequently in
the set. The set {4,6,2,4,3,1} has a mode of 4. Give an efficient and correct
algorithm to compute the mode of a bag of n numbers.

[3] Given two sets S1 and Sa (each of size n), and a number z, describe an
O(nlogn) algorithm for finding whether there exists a pair of elements, one
from S; and one from Sa, that add up to z. (For partial credit, give a ©(n?)
algorithm for this problem.)

[5] Give an efficient algorithm to take the array of citation counts (each count
is a non-negative integer) of a researcher’s papers, and compute the researcher’s
h-index. By definition, a scientist has index h if h of his or her n papers have
been cited at least h times, while the other n — h papers each have no more than
h citations.

[8] Outline a reasonable method of solving each of the following problems. Give
the order of the worst-case complexity of your methods.

(a) You are given a pile of thousands of telephone bills and thousands of checks
sent in to pay the bills. Find out who did not pay.

(b) You are given a printed list containing the title, author, call number, and
publisher of all the books in a school library and another list of thirty
publishers. Find out how many of the books in the library were published
by each company.

(¢) You are given all the book checkout cards used in the campus library during
the past year, each of which contains the name of the person who took out
the book. Determine how many distinct people checked out at least one
book.

[5] Given a set S of n integers and an integer T, give an O(nk*1 log n) algorithm
to test whether k of the integers in S add up to T

[8] We are given a set of S containing n real numbers and a real number z, and
seek efficient algorithms to determine whether two elements of S exist whose
sum is exactly z.

(a) Assume that S is unsorted. Give an O(nlogn) algorithm for the problem.
(b) Assume that S is sorted. Give an O(n) algorithm for the problem.

. [8] Design an O(n) algorithm that, given a list of n elements, finds all the

elements that appear more than n/2 times in the list. Then, design an O(n)
algorithm that, given a list of n elements, finds all the elements that appear
more than n/4 times.

Applications of Sorting: Intervals and Sets

4-12.

[8] Give an efficient algorithm to compute the union of sets A and B, where
n = max(|A|, |B|). The output should be an array of distinct elements that form
the union of the sets.

(a) Assume that A and B are unsorted arrays. Give an O(nlogn) algorithm
for the problem.

(b) Assume that A and B are sorted arrays. Give an O(n) algorithm for the
problem.



142

4-13.

4-14.

4-15.

4-16.
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[5] A camera at the door tracks the entry time a; and exit time b; (assume
bi > a;) for each of n persons p; attending a party. Give an O(nlogn) algo-
rithm that analyzes this data to determine the time when the most people were
simultaneously present at the party. You may assume that all entry and exit
times are distinct (no ties).

[5] Given a list I of n intervals, specified as (z;,y;) pairs, return a list where
the overlapping intervals are merged. For I = {(1,3), (2,6), (8,10),(7,18)} the
output should be {(1,6),(7,18)}. Your algorithm should run in worst-case
O(nlogn) time complexity.

[5] You are given a set S of n intervals on a line, with the ith interval described
by its left and right endpoints (l;,7;). Give an O(nlogn) algorithm to identify
a point p on the line that is in the largest number of intervals.

As an example, for S = {(10,40), (20, 60), (50, 90), (15,70)} no point exists in
all four intervals, but p = 50 is an example of a point in three intervals. You
can assume an endpoint counts as being in its interval.

[5] You are given a set S of n segments on the line, where segment S; ranges
from [; to r;. Give an efficient algorithm to select the fewest number of segments
whose union completely covers the interval from 0 to m.

Heaps

4-17.

4-18.

4-19.

4-20.

[3] Devise an algorithm for finding the k smallest elements of an unsorted set
of n integers in O(n + klogn).

[5] Give an O(nlogk)-time algorithm that merges k sorted lists with a total
of n elements into one sorted list. (Hint: use a heap to speed up the obvious
O(kn)-time algorithm).

[5] You wish to store a set of n numbers in either a max-heap or a sorted array.
For each application below, state which data structure is better, or if it does not
matter. Explain your answers.

(a) Find the maximum element quickly.
(b

(c
(d

) Delete an element quickly.

) Form the structure quickly.

) Find the minimum element quickly.

[5] (a) Give an efficient algorithm to find the second-largest key among n keys.
You can do better than 2n — 3 comparisons.

(b) Then, give an efficient algorithm to find the third-largest key among n keys.

How many key comparisons does your algorithm do in the worst case? Must your
algorithm determine which key is largest and second-largest in the process?

Quicksort

4-21.

4-22.

[3] Use the partitioning idea of quicksort to give an algorithm that finds the
median element of an array of n integers in expected O(n) time. (Hint: must
you look at both sides of the partition?)

[3] The median of a set of n values is the [n/2]th smallest value.

(a) Suppose quicksort always pivoted on the median of the current sub-array.
How many comparisons would quicksort make then in the worst case?
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4-23.

4-24.

4-25.

4-26.

4-27.

(b) Suppose quicksort always pivoted on the [n/3]th smallest value of the
current sub-array. How many comparisons would be made then in the
worst case?

[5] Suppose an array A consists of n elements, each of which is red, white, or
blue. We seek to sort the elements so that all the reds come before all the whites,
which come before all the blues. The only operations permitted on the keys are:

e FEzamine(A,i) — report the color of the ith element of A.
e Swap(A,i,j) — swap the ith element of A with the jth element.

Find a correct and efficient algorithm for red—white—blue sorting. There is a
linear-time solution.

[8] Give an efficient algorithm to rearrange an array of n keys so that all
the negative keys precede all the non-negative keys. Your algorithm must be
in-place, meaning you cannot allocate another array to temporarily hold the
items. How fast is your algorithm?

[5] Consider a given pair of different elements in an input array to be sorted,
say z; and z;. What is the most number of times z; and z; might be compared
with each other during an execution of quicksort?

[5] Define the recursion depth of quicksort as the maximum number of successive
recursive calls it makes before hitting the base case. What are the minimum
and maximum possible recursion depths for randomized quicksort?

/8] Suppose you are given a permutation p of the integers 1 to n, and seek
to sort them to be in increasing order [1,...,n]. The only operation at your
disposal is reverse(p,i,j), which reverses the elements of a subsequence p;, ..., p;
in the permutation. For the permutation [1,4, 3,2, 5] one reversal (of the second
through fourth elements) suffices to sort.

e Show that it is possible to sort any permutation using O(n) reversals.

e Now suppose that the cost of reverse(p,i,j) is equal to its length, the num-
ber of elements in the range, |j —i| + 1. Design an algorithm that sorts p
in O(nlog®n) cost. Analyze the running time and cost of your algorithm
and prove correctness.

Mergesort

4-28.

4-29.

4-30.

[5] Consider the following modification to merge sort: divide the input array
into thirds (rather than halves), recursively sort each third, and finally combine
the results using a three-way merge subroutine. What is the worst-case running
time of this modified merge sort?

[5] Suppose you are given k sorted arrays, each with n elements, and you want
to combine them into a single sorted array of kn elements. One approach is to
use the merge subroutine repeatedly, merging the first two arrays, then merging
the result with the third array, then with the fourth array, and so on until you
merge in the kth and final input array. What is the running time?

[5] Consider again the problem of merging k sorted length-n arrays into a single
sorted length-kn array. Consider the algorithm that first divides the k arrays
into k/2 pairs of arrays, and uses the merge subroutine to combine each pair,
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resulting in k/2 sorted length-2n arrays. The algorithm repeats this step until
there is only one length-kn sorted array. What is the running time as a function
of n and k7

Other Sorting Algorithms

4-31.

4-32.

4-33.

4-34.

4-35.

4-36.

4-37.

4-38.

[5] Stable sorting algorithms leave equal-key items in the same relative order
as in the original permutation. Explain what must be done to ensure that
mergesort is a stable sorting algorithm.

[5] Wiggle sort: Given an unsorted array A, reorder it such that A[0] < A[1] >
A[2] < A[3].... For example, one possible answer for input [3,1,4,2,6,5] is
[1,3,2,5,4,6]. Can you do it in O(n) time using only O(1) space?

[3] Show that n positive integers in the range 1 to k can be sorted in O(nlog k)
time. The interesting case is when k < n.

[5] Consider a sequence S of n integers with many duplications, such that the
number of distinct integers in S is O(logn). Give an O(nloglogn) worst-case
time algorithm to sort such sequences.

[5] Let A[l..n] be an array such that the first n—+/n elements are already sorted
(though we know nothing about the remaining elements). Give an algorithm
that sorts A in substantially better than nlogn steps.

[5] Assume that the array A[l..n] only has numbers from {1,...,n?} but that
at most loglogn of these numbers ever appear. Devise an algorithm that sorts
A in substantially less than O(nlogn).

[5] Consider the problem of sorting a sequence of n 0’s and 1’s using compar-
isons. For each comparison of two values z and y, the algorithm learns which of
r<y,xr =1y, or x>y holds.

(a) Give an algorithm to sort in n — 1 comparisons in the worst case. Show
that your algorithm is optimal.

(b) Give an algorithm to sort in 2n/3 comparisons in the average case (assum-
ing each of the n inputs is 0 or 1 with equal probability). Show that your
algorithm is optimal.

[6] Let P be a simple, but not necessarily convex, n-sided polygon and ¢ an
arbitrary point not necessarily in P. Design an efficient algorithm to find a line
segment originating from ¢ that intersects the maximum number of edges of P.
In other words, if standing at point ¢, in what direction should you aim a gun
so the bullet will go through the largest number of walls. A bullet through a
vertex of P gets credit for only one wall. An O(nlogn) algorithm is possible.

Lower Bounds

4-39.

4-40.

[5] In one of my research papers [Ski88], I discovered a comparison-based sorting
algorithm that runs in O(nlog(y/n)). Given the existence of an Q(nlogn) lower
bound for sorting, how can this be possible?

[5] Mr. B. C. Dull claims to have developed a new data structure for priority
queues that supports the operations Insert, Mazimum, and Extract-Maxr—all in
O(1) worst-case time. Prove that he is mistaken. (Hint: the argument does not
involve a lot of gory details—just think about what this would imply about the
Q(nlogn) lower bound for sorting.)
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Searching

4-41.

4-42.

[3] A company database consists of 10,000 sorted names, 40% of whom are
known as good customers and who together account for 60% of the accesses to
the database. There are two data structure options to consider for representing
the database:

e Put all the names in a single array and use binary search.

e Put the good customers in one array and the rest of them in a second
array. Only if we do not find the query name on a binary search of the
first array do we do a binary search of the second array.

Demonstrate which option gives better expected performance. Does this change
if linear search on an unsorted array is used instead of binary search for both
options?

[5] A Ramanujan number can be written two different ways as the sum of two
cubes—meaning there exist distinct positive integers a, b, ¢, and d such that
a® +b® = & + d3. For example, 1729 is a Ramanujan number because 1729 =
1% +12° = 9° 4 10°.

(a) Give an efficient algorithm to test whether a given single integer n is a
Ramanujan number, with an analysis of the algorithm’s complexity.

(b) Now give an efficient algorithm to generate all the Ramanujan numbers
between 1 and n, with an analysis of its complexity.

Implementation Challenges

4-43.

4-44.

4-45.

4-46.

[5] Consider an nxn array A containing integer elements (positive, negative, and
zero). Assume that the elements in each row of A are in strictly increasing order,
and the elements of each column of A are in strictly decreasing order. (Hence
there cannot be two zeros in the same row or the same column.) Describe an
efficient algorithm that counts the number of occurrences of the element 0 in A.
Analyze its running time.

[6] Implement versions of several different sorting algorithms, such as selection
sort, insertion sort, heapsort, mergesort, and quicksort. Conduct experiments
to assess the relative performance of these algorithms in a simple application
that reads a large text file and reports exactly one instance of each word that
appears within it. This application can be efficiently implemented by sorting all
the words that occur in the text and then passing through the sorted sequence
to identify one instance of each distinct word. Write a brief report with your
conclusions.

[5] Implement an external sort, which uses intermediate files to sort files bigger
than main memory. Mergesort is a good algorithm to base such an implemen-
tation on. Test your program both on files with small records and on files with
large records.

[8] Design and implement a parallel sorting algorithm that distributes data
across several processors. An appropriate variation of mergesort is a likely can-
didate. Measure the speedup of this algorithm as the number of processors
increases. Then compare the execution time to that of a purely sequential
mergesort implementation. What are your experiences?
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Interview Problems

4-47.

4-48.

4-49.

4-50.

4-51.

4-52.

4-53.

[8] If you are given a million integers to sort, what algorithm would you use to
sort them? How much time and memory would that consume?

[8] Describe advantages and disadvantages of the most popular sorting algo-
rithms.

[8] Implement an algorithm that takes an input array and returns only the
unique elements in it.

[5] You have a computer with only 4 GB of main memory. How do you use it to
sort a large file of 500 GB that is on disk?

[5] Design a stack that supports push, pop, and retrieving the minimum element
in constant time.

[5] Given a search string of three words, find the smallest snippet of the docu-
ment that contains all three of the search words—that is, the snippet with the
smallest number of words in it. You are given the index positions where these
words occur in the document, such as wordI: (1, 4, 5), word2: (8, 9, 10), and
word3: (2, 6, 15). Each of the lists are in sorted order, as above.

[6] You are given twelve coins. One of them is heavier or lighter than the rest.
Identify this coin in just three weighings with a balance scale.

LeetCode
4-1. https://leetcode.com/problems/sort-1list/
4-2. https://leetcode.com/problems/queue-reconstruction-by-height/
4-3. https://leetcode.com/problems/merge-k-sorted-lists/
4-4. https://leetcode.com/problems/find-k-pairs-with-smallest-sums/
HackerRank
4-1. https://www.hackerrank.com/challenges/quicksort3/

4-2.
4-3.

https://www.hackerrank.com/challenges/mark-and-toys/

https://www.hackerrank.com/challenges/organizing-containers-of-balls/

Programming Challenges

These programming challenge problems with robot judging are available at
https://onlinejudge.org:

4-1.
4-2.
4-3.
4-4.
4-5.

“Vito’s Family”—Chapter 4, problem 10041.

“Stacks of Flapjacks”—Chapter 4, problem 120.
“Bridge”—Chapter 4, problem 10037.

“ShoeMaker’s Problem” —Chapter 4, problem 10026.
“ShellSort”—Chapter 4, problem 10152.


https://leetcode.com/problems/sort-list/
https://leetcode.com/problems/queue-reconstruction-by-height/
https://leetcode.com/problems/merge-k-sorted-lists/
https://leetcode.com/problems/find-k-pairs-with-smallest-sums/
https://www.hackerrank.com/challenges/quicksort3/
https://www.hackerrank.com/challenges/mark-and-toys/
https://www.hackerrank.com/challenges/organizing-containers-of-balls/
https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=28
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Chapter 5

Divide and Conquer

One of the most powerful techniques for solving problems is to break them down
into smaller, more easily solved pieces. Smaller problems are less overwhelming,
and they permit us to focus on details that are lost when we are studying
the whole thing. A recursive algorithm starts to become apparent whenever
we can break the problem into smaller instances of the same type of problem.
Multicore processors now sit in almost every computer, but effective parallel
processing requires decomposing jobs into at least as many tasks as the number
of processors.

Two important algorithm design paradigms are based on breaking problems
down into smaller problems. In Chapter 10, we will see dynamic programming,
which typically removes one element from the problem, solves the smaller prob-
lem, and then adds back the element to the solution of this smaller problem in
the proper way. Divide and conquer instead splits the problem into (say) halves,
solves each half, then stitches the pieces back together to form a full solution.

Thus, to use divide and conquer as an algorithm design technique, we must
divide the problem into two smaller subproblems, solve each of them recursively,
and then meld the two partial solutions into one solution to the full problem.
Whenever the merging takes less time than solving the two subproblems, we
get an efficient algorithm. Mergesort, discussed in Section 4.5 (page 127), is the
classic example of a divide-and-conquer algorithm. It takes only linear time to
merge two sorted lists of n/2 elements, each of which was obtained in O(nlgn)
time.

Divide and conquer is a design technique with many important algorithms to
its credit, including mergesort, the fast Fourier transform, and Strassen’s matrix
multiplication algorithm. Beyond binary search and its many variants, however,
I find it to be a difficult design technique to apply in practice. Our ability to
analyze divide and conquer algorithms rests on our proficiency in solving the
recurrence relations governing the cost of such recursive algorithms, so we will
introduce techniques for solving recurrences here.
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5.1 Binary Search and Related Algorithms

The mother of all divide-and-conquer algorithms is binary search, which is a
fast algorithm for searching in a sorted array of keys S. To search for key ¢, we
compare ¢ to the middle key S[n/2]. If ¢ appears before S[n/2], it must reside
in the left half of S; if not, it must reside in the right half of S. By repeating
this process recursively on the correct half, we locate the key in a total of [lgn]
comparisons—a big win over the n/2 comparisons expected using sequential
search:

int binary_search(item_type s[], item_type key, int low, int high) {
int middle; /* index of middle element */

if (low > high) {
return (-1); /* key not found */
}

middle = (low + high) / 2;

if (s[middle] == key) {
return(middle) ;

}

if (s[middle] > key) {

return(binary_search(s, key, low, middle - 1));
} else {

return(binary_search(s, key, middle + 1, high));
}

This much you probably know. What is important is to understand is just
how fast binary search is. Twenty questions is a popular children’s game where
one player selects a word and the other repeatedly asks true/false questions
until they guess it. If the word remains unidentified after twenty questions, the
first party wins. But the second player has a winning strategy, based on binary
search. Take a printed dictionary, open it in the middle, select a word (say
“move”), and ask whether the unknown word is before “move” in alphabetical
order. Standard dictionaries contain between 50,000 to 200,000 words, so we
can be certain that the process will terminate within twenty questions.

5.1.1 Counting Occurrences

Several interesting algorithms are variants of binary search. Suppose that we
want to count the number of times a given key k (say “Skiena”) occurs in a
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given sorted array. Because sorting groups all the copies of k into a contiguous
block, the problem reduces to finding that block and then measuring its size.

The binary search routine presented above enables us to find the index of
an element x of the correct block in O(lgn) time. A natural way to identify
the boundaries of the block is to sequentially test elements to the left of x until
we find one that differs from the search key, and then repeat this search to the
right of x. The difference between the indices of these boundaries (plus one)
gives the number of occurrences of k.

This algorithm runs in O(Ign + s), where s is the number of occurrences of
the key. But this can be as bad as ©(n) if the entire array consists of identical
keys. A faster algorithm results by modifying binary search to find the boundary
of the block containing k, instead of k itself. Suppose we delete the equality test

if (s[middle] == key) return(middle);

from the implementation above and return the index high instead of —1 on
each unsuccessful search. All searches will now be unsuccessful, since there
is no equality test. The search will proceed to the right half whenever the
key is compared to an identical array element, eventually terminating at the
right boundary. Repeating the search after reversing the direction of the binary
comparison will lead us to the left boundary. Each search takes O(lgn) time,
so we can count the occurrences in logarithmic time regardless of the size of the
block.

By modifying our binary search routine to return (low+high)/2 instead of
-1 on an unsuccessful search, we obtain the location between two array elements
where the key k should have been. This variant suggests another way to solve
our length of run problem. We search for the positions of keys k — € and k + ¢,
where € is a tiny enough constant that both searches are guaranteed to fail with
no intervening keys. Again, doing two binary searches takes O(logn) time.

5.1.2 One-Sided Binary Search

Now suppose we have an array A consisting of a run of 0’s, followed by an
unbounded run of 1’s, and would like to identify the exact point of transition
between them. Binary search on the array would find the transition point in
[lgn] tests, if we had a bound n on the number of elements in the array.

But in the absence of such a bound, we can test repeatedly at larger in-
tervals (A[1], A[2], A[4], A[8], A[16], ...) until we find a non-zero value. Now
we have a window containing the target and can proceed with binary search.
This one-sided binary search finds the transition point p using at most 2[lg p|
comparisons, regardless of how large the array actually is. One-sided binary
search is useful whenever we are looking for a key that lies close to our current
position.
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5.1.3 Square and Other Roots

The square root of n is the positive number r such that 2 = n. Square root
computations are performed inside every pocket calculator, but it is instructive
to develop an efficient algorithm to compute them.

First, observe that the square root of n > 1 must be at least 1 and at most
n. Let [ = 1 and r = n. Consider the midpoint of this interval, m = (I 4 r)/2.
How does m? compare to n? If n > m?2, then the square root must be greater
than m, so the algorithm repeats with [ = m. If n < m?, then the square root
must be less than m, so the algorithm repeats with r = m. Either way, we have
halved the interval using only one comparison. Therefore, after [lgn] rounds
we will have identified the square root to within +1/2.

This bisection method, as it is called in numerical analysis, can also be applied
to the more general problem of finding the roots of an equation. We say that x
is a root of the function f if f(x) = 0. Suppose that we start with values [ and r
such that f(I) > 0 and f(r) < 0. If f is a continuous function, there must exist
a root between [ and r. Depending upon the sign of f(m), where m = (I41r)/2,
we can cut the window containing the root in half with each test, and stop as
soon as our estimate becomes sufficiently accurate.

Root-finding algorithms converging faster than binary search are known for
both of these problems. Instead of always testing the midpoint of the interval,
these algorithms interpolate to find a test point closer to the actual root. Still,
binary search is simple, robust, and works as well as possible without additional
information on the nature of the function to be computed.

Take-Home Lesson:  Binary search and its variants are the quintessential
divide-and-conquer algorithms.

5.2 War Story: Finding the Bug in the Bug

Yutong stood up to announce the results of weeks of hard work. “Dead,” he
announced defiantly. Everybody in the room groaned.

I was part of a team developing a new approach to create vaccines: Synthetic
Attenuated Virus Engineering or SAVE. Because of how the genetic code works,
there are typically about 3™ different possible genes that code for any given
protein of length n. To a first approximation, all of these are the same, since
they describe exactly the same protein. But each of the 3" synonymous genes use
the biological machinery in somewhat different ways, translating at somewhat
different speeds.

By substituting a virus gene with a less dangerous replacement, we hoped to
create a vaccine: a weaker version of the disease-causing agent that otherwise
did the same thing. Your body could fight off the weak virus without you getting
sick, along the way training your immune system to fight off tougher villains.
But we needed weak viruses, not dead ones: you can’t learn anything fighting
off something that is already dead.
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Figure 5.1: Designs of four synthetic genes to locate a specific sequence signal.
The green regions are drawn from a viable sequence, while the red regions are
drawn from a lethally defective sequence. Genes II, III, and IV were viable while
gene I was defective, an outcome that can only be explained by a lethal signal
in the region located fifth from the right.

“Dead means that there must be one place in this 1,200-base region where the
virus evolved a signal, a second meaning of the sequence it needs for survival,”
said our senior virologist. By changing the sequence at this point, we killed the
virus. “We have to find this signal to bring it back to life.”

“But there are 1,200 places to look! How can we find it?” Yutong asked.

I thought about this a bit. We had to debug a bug. This sounded similar
to the problem of debugging a program. I recall many a lonesome night spent
trying to figure out exactly which line number was causing my program to crash.
I often stooped to commenting out chunks of the code, and then running it again
to test if it still crashed. It was usually easy to figure out the problem after I
got the commented-out region down to a small enough chunk. The best way to
search for this region was. ..

“Binary search!” T announced. Suppose we replace the first half of the
coding sequence of the viable gene (shown in green) with the coding sequence of
the dead, critical signal-deficient strain (shown in red), as in design II in Figure
5.1. If this hybrid gene is viable, it means the critical signal must occur in the
right half of the gene, whereas a dead virus implies the problem must occur in
the left half. Through a binary search process the signal can be located to one
of n regions in [log, n] sequential rounds of experiment.

“We can narrow the area containing the signal in a length-n gene to n/16
by doing only four experiments,” I informed them. The senior virologist got
excited. But Yutong turned pale.

“Four more rounds of experiments!” he complained. “It took me a full
month to synthesize, clone, and try to grow the virus the last time. Now you
want me to do it again, wait to learn which half the signal is in, and then repeat
three more times? Forget about it!”

Yutong realized that the power of binary search came from interaction: the
query that we make in round r depends upon the answers to the queries in
rounds 1 through r — 1. Binary search is an inherently sequential algorithm.
When each individual comparison is a slow and laborious process, suddenly 1g n
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comparisons doesn’t look so good. But I had a very cute trick up my sleeve.

“Four successive rounds of this will be too much work for you, Yutong. But
might you be able to do four different designs at the same time if we could give
them to you all at once?” I asked.

“If I am doing the same things to four different sequences at the same time,
it is no big deal,” he said. “Not much harder than doing just one of them.”

That settled, I proposed that they simultaneously synthesize the four virus
designs labeled I, IT, TIT, and IV in Figure 5.1. It turns out you can parallelize bi-
nary search, provided your queries can be arbitrary subsets instead of connected
halves. Observe that each of the columns defined by these four designs consists
of a distinct pattern of red and green. The pattern of living/dead among the
four synthetic designs thus uniquely defines the position of the critical signal in
one experimental round. In this example, virus I happened to be dead while
the other three lived, pinpointing the location of the lethal signal to the fifth
region from the right.

Yutong rose to the occasion, and after a month of toil (but not months)
discovered a new signal in poliovirus [SLWT12]. He found the bug in the bug
through the idea of divide and conquer, which works best when splitting the
problem in half at each point. Note that all four of our designs consist of half red
and half green, arranged so all sixteen regions have a distinct pattern of colors.
With interactive binary search, the last test selects between just two remaining
regions. By expanding each test to have half the sequence, we eliminated the
need for sequential tests, making the entire process much faster.

5.3 Recurrence Relations

Many divide-and-conquer algorithms have time complexities that are naturally
modeled by recurrence relations. The ability to solve such recurrences is impor-
tant to understanding when divide-and-conquer algorithms perform well, and
provides an important tool for analysis in general. The reader who balks at the
very idea of analysis is free to skip this section, but important insights come
from an understanding of the behavior of recurrence relations.

What is a recurrence relation? It is an equation in which a function is
defined in terms of itself. The Fibonacci numbers are described by the recurrence
relation

Fn = n—1+Fn—2

together with the initial values Fy = 0 and F} = 1, as will be discussed in Section
10.1.1. Many other familiar functions are easily expressed as recurrences. Any
polynomial can be represented by a recurrence, such as the linear function:

ap =0p_1+1,a1 =1 — a,=n
Any exponential can be represented by a recurrence:

ap =2anp_1,01 =1 — a, =2""1
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Finally, lots of weird functions that cannot be easily described using conventional
notation can be represented naturally by a recurrence, for example:

ap = Nap_1,01 =1 — a, =n!

This shows that recurrence relations are a very versatile way to represent func-
tions.

The self-reference property of recurrence relations is shared with recursive
programs or algorithms, as the shared roots of both terms reflect. Essentially,
recurrence relations provide a way to analyze recursive structures, such as algo-
rithms.

5.3.1 Divide-and-Conquer Recurrences

A typical divide-and-conquer algorithm breaks a given problem into a smaller
pieces, each of which is of size n/b. It then spends f(n) time to combine these
subproblem solutions into a complete result. Let T(n) denote the worst-case
time this algorithm takes to solve a problem of size n. Then T'(n) is given by
the following recurrence relation:

T(n)=a-T(n/b)+ f(n)
Consider the following examples, based on algorithms we have previously seen:

e Mergesort — The running time of mergesort is governed by the recurrence
T(n) = 2T (n/2) + O(n), since the algorithm divides the data into equal-
sized halves and then spends linear time merging the halves after they are
sorted. In fact, this recurrence evaluates to T'(n) = O(nlgn), just as we
got by our previous analysis.

e Binary search — The running time of binary search is governed by the
recurrence T'(n) = T(n/2) + O(1), since at each step we spend constant
time to reduce the problem to an instance half its size. This recurrence
evaluates to T'(n) = O(lgn), just as we got by our previous analysis.

e Fast heap construction — The bubble_down method of heap construction
(described in Section 4.3.4) builds an n-element heap by constructing two
n/2 element heaps and then merging them with the root in logarithmic
time. The running time is thus governed by the recurrence relation T'(n) =
2T (n/2) + O(lgn). This recurrence evaluates to T'(n) = O(n), just as we
got by our previous analysis.

Solving a recurrence means finding a nice closed form describing or bounding
the result. We can use the master theorem, discussed in Section 5.4, to solve
the recurrence relations typically arising from divide-and-conquer algorithms.
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Figure 5.2:  The recursion tree resulting from decomposing each problem of
size n into a problems of size n/b

5.4 Solving Divide-and-Conquer Recurrences

Divide-and-conquer recurrences of the form 7'(n) = aT'(n/b)+ f(n) are generally
easy to solve, because the solutions typically fall into one of three distinct cases:

L. If f(n) = O(n'°& 2~€) for some constant € > 0, then T'(n) = O(n'°& ).
2. If f(n) = ©(n'°8: %), then T(n) = O(n'°s *1gn).

3. If f(n) = Q(n'°& 4¢) for some constant € > 0, and if af(n/b) < cf(n) for
some ¢ < 1, then T'(n) = ©(f(n)).

Although this looks somewhat frightening, it really isn’t difficult to apply.
The issue is identifying which case of this so-called master theorem holds for
your given recurrence. Case 1 holds for heap construction and matrix multipli-
cation, while Case 2 holds for mergesort. Case 3 generally arises with clumsier
algorithms, where the cost of combining the subproblems dominates everything.

The master theorem can be thought of as a black-box piece of machinery,
invoked as needed and left with its mystery intact. However, after a little study
it becomes apparent why the master theorem works.

Figure 5.2 shows the recursion tree associated with a typical T'(n) = a1 (n/b)+
f(n) divide-and-conquer algorithm. Each problem of size n is decomposed into
a problems of size n/b. Each subproblem of size k takes O(f(k)) time to deal
with internally, between partitioning and merging. The total time for the algo-
rithm is the sum of these internal evaluation costs, plus the overhead of building
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the recursion tree. The height of this tree is h = log, n and the number of leaf
nodes is a” = a'°% ™, which happens to simplify to n'°% ¢ with some algebraic
manipulation.

The three cases of the master theorem correspond to three different costs,
each of which might be dominant as a function of a, b, and f(n):

e Case 1: Too many leaves — If the number of leaf nodes outweighs the
overall internal evaluation cost, the total running time is O(n'°2 @),

o Case 2: Equal work per level — As we move down the tree, each problem
gets smaller but there are more of them to solve. If the sums of the internal
evaluation costs at each level are equal, the total running time is the cost
per level (n'°® @) times the number of levels (log, n), for a total running
time of O(n'°®» % 1gn).

e Case 3: Too expensive a root — If the internal evaluation cost grows very
rapidly with n, then the cost of the root evaluation may dominate every-
thing. Then the total running time is O(f(n)).

Once you accept the master theorem, you can easily analyze any divide-and-
conquer algorithm, given only the recurrence associated with it. We use this
approach on several algorithms below.

5.5 Fast Multiplication

You know at least two ways to multiply integers A and B to get A x B. You first
learned that A x B meant adding up B copies of A, which gives an O(n - 10™)
time algorithm to multiply two n-digit base-10 numbers. Then you learned to
multiply long numbers on a digit-by-digit basis, like

9256 x 5367 = 9256 x 7 + 9256 x 60 + 9256 x 300 4 9256 x 5000 = 13,787,823

Recall that those zeros we pad the digit-terms by are not really computed as
products. We implement their effect by shifting the product digits to the correct
place. Assuming we perform each real digit-by-digit product in constant time,
by looking it up in a times table, this algorithm multiplies two n-digit numbers
in O(n?) time.

In this section I will present an even faster algorithm for multiplying large
numbers. It is a classic divide-and-conquer algorithm. Suppose each number
has n = 2m digits. Observe that we can split each number into two pieces each
of m digits, such that the product of the full numbers can easily be constructed
from the products of the pieces, as follows. Let w = 10™*!, and represent
A = a9 + ayw and B = by + byw, where a; and b; are the pieces of each
respective number. Then:

Ax B = (ao + (IﬂU) X (bo + b1w) = aogbg + agbiw + a1bgw + CL1b1’LU2
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This procedure reduces the problem of multiplying two n-digit numbers to
four products of (n/2)-digit numbers. Recall that multiplication by w doesn’t
count: it is simply padding the product with zeros. We also have to add together
these four products once computed, which is O(n) work.

Let T'(n) denote the amount of time it takes to multiply two n-digit numbers.
Assuming we use the same algorithm recursively on each of the smaller products,
the running time of this algorithm is given by the recurrence:

T(n) =4T(n/2) + O(n)

Using the master theorem (case 1), we see that this algorithm runs in O(n?)
time, exactly the same as the digit-by-digit method. We divided, but we did
not conquer.

Karatsuba’s algorithm is an alternative recurrence for multiplication, which
yields a better running time. Suppose we compute the following three products:

qo = agbg
q1 = (ao + al)(bo + bl)
G2 = a1by

Note that

A X B = (ap+ ajw) x (by + byw) = agby + agbyw + a1bpw + aybyw?
=q+ (@1 — @ — @2)w + gow?

so now we have computed the full product with just three half-length multipli-
cations and a constant number of additions. Again, the w terms don’t count as
multiplications: recall that they are really just zero shifts. The time complexity
of this algorithm is therefore governed by the recurrence

T(n) =3T(n/2)+ O(n)

Since n = O(n'°#23), this is solved by the first case of the master theo-
rem, and T(n) = O(n'°823) = O(n!58%). This is a substantial improvement
over the quadratic algorithm for large numbers, and indeed beats the standard
multiplication algorithm soundly for numbers of 500 digits or so.

This approach of defining a recurrence that uses fewer multiplications but
more additions also lurks behind fast algorithms for matrix multiplication. The
nested-loops algorithm for matrix multiplication discussed in Section 2.5.4 takes
O(n?) for two n x n matrices, because we compute the dot product of n terms
for each of the n? elements in the product matrix. However, Strassen [Str69)
discovered a divide-and-conquer algorithm that manipulates the products of
seven n/2 x n/2 matrix products to yield the product of two n x n matrices.
This yields a time-complexity recurrence

T(n)=7-T(n/2) + O(n?
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Figure 5.3: The largest subrange sum is either entirely to the left of center
or entirely to the right, or (like here) the sum of the largest center-bordering
ranges on left and right.

Because log, 7 ~ 2.81, O(n'°827) dominates O(n?), so Case 1 of the master
theorem applies and T'(n) = ©(n?-%1).

This algorithm has been repeatedly “improved” by increasingly complicated
recurrences, and the current best is O(n?3727). See Section 16.3 (page 472) for
more detail.

5.6 Largest Subrange and Closest Pair

Suppose you are tasked with writing the advertising copy for a hedge fund whose
monthly performance this year was

[~17,5,3,-10,6,1,4,—3,8,1, —13, 4]

You lost money for the year, but from May through October you had your
greatest gains over any period, a net total of 17 units of gains. This gives you
something to brag about.

The largest subrange problem takes an array A of n numbers, and asks for
the index pair ¢ and j that maximizes S = Y 7_, A[k]. Summing the entire
array does not necessarily maximize S because of negative numbers. Explicitly
testing each possible interval start—end pair requires Q(n?) time. Here I present
a divide-and-conquer algorithm that runs in O(nlogn) time.

Suppose we divide the array A into left and right halves. Where can the
largest subrange be? It is either in the left half or the right half, or includes
the middle. A recursive program to find the largest subrange between A[l] and
Alr] can easily call itself to work on the left and right subproblems. How can
we find the largest subrange spanning the middle, that is, spanning positions m
and m + 17

The key is to observe that the largest subrange centered spanning the middle
will be the union of the largest subrange on the left ending on m, and the largest
subrange on the right starting from m+1, as illustrated in Figure 5.3. The value
V, of the largest such subrange on the left can be found in linear time with a
sweep:
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%

¢

Figure 5.4: The closest pair of points in two dimensions either lie to the left of
center, to the right, or in a thin strip straddling the center.

LeftMidMaxRange(A, I, m)
S=M=0
for ¢ = m downto [
S =S5+ Ali
if (S> M) then M =S5
return S

The corresponding value on the right can be found analogously. Dividing n
into two halves, doing linear work, and recurring takes time 7'(n), where

T(n)=2-T(n/2)+ O(n)

Case 2 of the master theorem yields T'(n) = O(nlogn).

This general approach of “find the best on each side, and then check what is
straddling the middle” can be applied to other problems as well. Consider the
problem of finding the smallest distance between pairs among a set of n points.

In one dimension, this problem is easy: we saw in Section 4.1 (page 109)
that after sorting the points, the closest pair must be neighbors. A linear-time
sweep from left to right after sorting thus yields an ©(nlogn) algorithm. But
we can replace this sweep by a cute divide-and-conquer algorithm. The closest
pair is defined by the left half of the points, the right half, or the pair in the
middle, so the following algorithm must find it:

ClosestPair(A, I, r)
mid = |(I+r)/2]
lmin = ClosestPair(A, [, mid)
Trmin = ClosestPair(A, mid + 1,r)
return min(lyin, Tmin, Alm + 1] — A[m])

Because this does constant work per call, its running time is given by the
recurrence:

T(n)=2-T(n/2)+O0(1)
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Case 1 of the master theorem tells us that T'(n) = ©(n).

This is still linear time and so might not seem very impressive, but let’s
generalize the idea to points in two dimensions. After we sort the n (z,y)
points according to their z-coordinates, the same property must be true: the
closest pair is either two points on the left half or two points on the right, or
it straddles left and right. As shown in Figure 5.4, these straddling points had
better be close to the dividing line (distance d < min(l,,in, 7min)) and also have
very similar y-coordinates. With clever bookkeeping, the closest straddling pair
can be found in linear time, yielding a running time of

T(n)=2-T(n/2)+6(n) = O(nlogn)

as defined by Case 2 of the master theorem.

5.7 Parallel Algorithms

Two heads are better than one, and more generally, n heads better than n — 1.
Parallel processing has become increasingly prevalent, with the advent of multi-
core processors and cluster computing.

5.7.1 Data Parallelism

Divide and conquer is the algorithm paradigm most suited to parallel compu-
tation. Typically, we seek to partition our problem of size n into p equal-sized
parts, and simultaneously feed one to each processor. This reduces the time to
completion (or makespan) from T'(n) to T'(n/p), plus the cost of combining the
results together. If T'(n) is linear, this gives us a maximum possible speedup of
p. If T(n) = ©(n?) it may look like we can do even better, but this is generally
an illusion. Suppose we want to sweep through all pairs of n items. Sure we
can partition the items into p independent chunks, but n? — p(n/p)? of the n?
possible pairs will not ever have both elements on the same processor.
Multiple processors are typically best deployed to exploit data parallelism,
running a single algorithm on different and independent data sets. For example,
computer animation systems must render thirty frames per second for realistic
animation. Assigning each frame to a distinct processor, or dividing each image
into regions assigned to different processors, might be the best way to get the
job done in time. Such tasks are often called embarrassingly parallel.
Generally speaking, such data parallel approaches are not algorithmically
interesting, but they are simple and effective. There is a more advanced world
of parallel algorithms where different processors synchronize their efforts so they
can together solve a single problem quicker than one can. These algorithms are
out of the scope of what we will cover in this book, but be aware of the challenges
involved in the design and implementation of sophisticated parallel algorithms.
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5.7.2 Pitfalls of Parallelism

There are several potential pitfalls and complexities associated with parallel
algorithms:

o There is often a small upper bound on the potential win — Suppose that
you have access to a machine with 24 cores that can be devoted exclu-
sively to your job. These can potentially be used to speed up the fastest
sequential program by up to a factor of 24. Sweet! But even greater
performance gains can often result from developing more efficient sequen-
tial algorithms. Your time spent parallelizing a code might well be better
spent enhancing the sequential version. Performance-tuning tools such as
profilers are better developed for sequential machines/programs than for
parallel models.

o Speedup means nothing — Suppose my parallel program runs 24 times faster
on a 24-core machine than it does on a single processor. That’s great, isn’t
it? If you get linear speedup and can increase the number of processors
without bound, you will eventually beat any sequential algorithm. But
the one-processor parallel version of your code is likely to be a crummy
sequential algorithm, so measuring speedup typically provides an unfair
test of the benefits of parallelism. And it is hard to buy machines with an
unlimited number of cores.

The classic example of this phenomenon occurs in the minimax game-tree
search algorithm used in computer chess programs. A brute-force tree
search is embarrassingly easy to parallelize: just put each subtree on a
different processor. However, a lot of work gets wasted because the same
positions get considered on different machines. Moving from a brute-force
search to the more clever alpha—beta pruning algorithm can easily save
99.99% of the work, thus dwarfing any benefits of a parallel brute-force
search. Alpha-beta can be parallelized, but not easily, and the speedups
grow surprisingly slowly as a function of the number of processors you
have.

e Parallel algorithms are tough to debug — Unless your problem can be de-
composed into several independent jobs, the different processors must com-
municate with each other to end up with the correct final result. Unfortu-
nately, the non-deterministic nature of this communication makes parallel
programs notoriously difficult to debug, because you will get different re-
sults each time you run the code. Data parallel programs typically have no
communication except copying the results at the end, which makes things
much simpler.

I recommend considering parallel processing only after attempts at solving
a problem sequentially prove too slow. Even then, I would restrict attention
to data parallel algorithms where no communication is needed between the
processors, except to collect the final results. Such large-grain, naive parallelism
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can be simple enough to be both implementable and debuggable, because it
really reduces to producing a good sequential implementation. There can be
pitfalls even in this approach, however, as shown by the following war story.

5.8 War Story: Going Nowhere Fast

In Section 2.9 (page 54), I related our efforts to build a fast program to test
Waring’s conjecture for pyramidal numbers. At that point, my code was fast
enough that it could complete the job in a few weeks running in the background
of a desktop workstation. This option did not appeal to my supercomputing
colleague, however.

“Why don’t we do it in parallel?” he suggested. “After all, you have an
outer loop doing the same calculation on each integer from 1 to 1,000,000,000.
I can split this range of numbers into different intervals and run each range on
a different processor. Divide and conquer. Watch, it will be easy.”

He set to work trying to do our computations on an Intel IPSC-860 hyper-
cube using 32 nodes with 16 megabytes of memory per node—very big iron for
the time. However, instead of getting answers, over the next few weeks I was
treated to a regular stream of e-mail about system reliability:

e “Our code is running fine, except one processor died last night. I will
rerun.”

e “This time the machine was rebooted by accident, so our long-standing
job was killed.”

e “We have another problem. The policy on using our machine is that
nobody can command the entire machine for more than 13 hours, under
any condition.”

Still, eventually, he rose to the challenge. Waiting until the machine was
stable, he locked out 16 processors (half the computer), divided the integers
from 1 to 1,000,000,000 into 16 equal-sized intervals, and ran each interval on
its own processor. He spent the next day fending off angry users who couldn’t
get their work done because of our rogue job. The instant the first processor
completed analyzing the numbers from 1 to 62,500,000, he announced to all the
people yelling at him that the rest of the processors would soon follow.

But they didn’t. He failed to realize that the time to test each integer
increased as the numbers got larger. After all, it would take longer to test
whether 1,000,000,000 could be expressed as the sum of three pyramidal numbers
than it would for 100. Thus, at longer and longer intervals, each new processor
would announce its completion. Because of the architecture of the hypercube,
he couldn’t return any of the processors until our entire job was completed.
Eventually, half the machine and most of its users were held hostage by one,
final interval.

What conclusions can be drawn from this? If you are going to parallelize a
problem, be sure to balance the load carefully among the processors. Proper
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load balancing, using either back-of-the-envelope calculations or the partition
algorithm we will develop in Section 10.7 (page 333), would have significantly
reduced the length of time we needed the machine, and his exposure to the
wrath of his colleagues.

5.9 Convolution (*)

The convolution of two arrays (or vectors) A and B is a new vector C' such that

Ju

m—

Clk) = >_ Alj)- Blk = j]

J

If we assume that A and B are of length m and n respectively, and indexed
starting from 0, the natural range on C is from C[0] to C[n+m —2]. The values
of all out-of-range elements of A and B are interpreted as zero, so they do not
contribute to any product.

An example of convolution that you are familiar with is polynomial multi-
plication. Recall the problem of multiplying two polynomials, for example:

(32% 422 +6) x (42 +32+2) = (3-4)2* + (3-3+2-4)a3
+(3-2+4+2-3+6-4)2>+(2-24+6-3)2" + (6-2)2°

Let A[i] and B[i] denote the coefficients of 2% in each of the polynomials. Then
multiplication is a convolution, because the coefficient of the z* term in the
product polynomial is given by the convolution C[k] above. This coefficient is
the sum of the products of all terms which have exponent pairs adding to k: for
example, 2° = 2% - 2! = 23 - 22

The obvious way to implement convolution is by computing the m term dot
product C[k| for each 0 < k < n+ m — 2. This is two nested loops, running
in ©(nm) time. The inner loop does not always involve m iterations because of
boundary conditions. Simpler loop bounds could have been employed if A and
B were flanked by ranges of zeros.

for (i = 0; i < n+tm-1; i++) {

for (j = max(0,i-(n-1)); j <= min(m-1,1i); j++) {
cli]l = c[i] + alj] * bli-jl;

}

Convolution multiplies every possible pair of elements from A and B, and
hence it seems like we should require quadratic time to get these n +m — 1
numbers. But in a miracle akin to sorting, there exists a clever divide-and-
conquer algorithm that runs in O(nlogn) time, assuming that n > m. And just
like sorting, there are a large number of applications that take advantage of this
enormous speedup for large sequences.
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B 012 3 4 BR 4|1C|3|2‘|I(|)
AO0O1234567829 A 012345673829

Figure 5.5: Convolution of strings becomes equivalent to string matching when
the pattern is reversed.

5.9.1 Applications of Convolution

Going from O(n?) to O(nlogn) is as big a win for convolution as it was for

sorting. Taking advantage of it requires recognizing when you are doing a con-

volution operation. Convolutions often arise when you are trying all possible

ways of doing things that add up to k, for a large range of values of k, or when

sliding a mask or pattern A over a sequence B and calculating at each position.
Important examples of convolution operations include:

o Integer multiplication: We can interpret integers as polynomials in any
base b. For example, 632 = 6-b%+3-b' +2-b°, where b = 10. Polynomial
multiplication behaves like integer multiplication without carrying.

There are two different ways we can use fast polynomial multiplication to
deal with integers. First, we can explicitly perform the carrying operation
on the product polynomial, adding |C[i]/b] to C[i + 1], and then replac-
ing C[i] with C[i] (mod b). Alternatively, we could compute the product
polynomial and then evaluate it at b to get the integer product A x B.

With fast convolution, either way gives us an even faster multiplication
algorithm than Karatsuba, running in O(nlogn) time on a RAM model
of computation.

e Cross-correlation:  For two time series A and B, the cross-correlation
function measures the similarity as a function of the shift or displacement
of one relative to the other. Perhaps people buy a product on average
k days after seeing an advertisement for it. Then there should be high
correlation between sales and advertising expenditures lagged by k days.
This cross-correlation function C[k] can be computed:

Cli) = > AlBL + k]

Note that the dot product here is computed over backward shifts of B
instead of forward shifts, as in the original definition of a convolution.
But we can still use fast convolution to compute this: simply input the
reversed sequence BY instead of B.

o Moving average filters: Often we are tasked with smoothing time series
data by averaging over a window. Perhaps we want C[i—1] = 0.25B[i—1]+
0.5B[i] +0.25B[i + 1] over all positions . This is just another convolution,
where A is the vector of weights within the window around B[i].
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e String matching: Recall the problem of substring pattern matching, first

discussed in Section 2.5.3. We are given a text string S and a pattern
string P, and seek to identify all locations in P where P may be found.
For S = abaababa and P = aba, we can find P in S starting at positions
0, 3, and 5.

The O(mn) algorithm described in Section 2.5.3 works by sliding the
length-m pattern over each of the n possible starting points in the text.
This sliding window approach is suggestive of being a convolution with
the reversed pattern P, as shown in Figure 5.5. Can we solve string
matching in O(nlogn) by using fast convolution?

The answer is yes! Suppose our strings have an alphabet of size a. We
can represent each character by a binary vector of length o having exactly
one non-zero bit. Say a = 10 and b = 01 for the alphabet {a,b}. Then we
can encode the strings S and P above as

S =1001101001100110
P =100110

The dot product over a window will be m on an even-numbered position of
s iff p starts at that position in the text. So fast convolution can identify
all locations of p in s in O(nlogn) time.

Take-Home Lesson: Learn to recognize possible convolutions. A magical
O(nlogn) algorithm instead of O(n?) is your reward for seeing this.

5.9.2 Fast Polynomial Multiplication (**)

The applications above should whet our interest in efficient ways to compute
convolutions. The fast convolution algorithm uses divide and conquer, but a
detailed proof of correctness relies on fairly sophisticated properties of complex
numbers and linear algebra that are beyond the scope of what I want to do
here. Feel free to skip ahead! But I will provide enough of an overview for you
to understand the divide and conquer part.

We present convolution through a fast algorithm for multiplying polynomi-

als. It is based on a series of observations:

e Polynomials can be represented either as equations or sets of points: You

know that every pair of points defines a line. More generally, any degree-n
polynomial P(z) is completely defined by n+ 1 points on the polynomial.
For example, the points (—1,—2), (0,—1), and (1,2) define (and are de-
fined by) the quadratic equation y = 2 + 2z — 1.

e We can find n+1 such points on P(x) by evaluation, but it looks expensive:

Generating a point on a given polynomial is easy—simply pick an arbitrary
value z and plug it into P(z). The time it takes for one such z will be linear
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in the degree of P(z), which means n for the problems we are interested
in. But doing this n + 1 times for different values of x would take O(n?)
time, which is more than we can afford if we want fast multiplication.

o Multiplying polynomials A and B in a points representation is easy, if they
have both been evaluated on the same values of x: Suppose we want to
compute the product of (322 + 2z + 6) (422 + 3z +2). The result will be a
degree-4 polynomial, so we need five points to define it. We can evaluate
both factors on the same x values:

A(x) = 32% + 224+ 6 — (=2,14),(—1,7),(0,6), (1,11), (2,22)

B(z) =42 + 3z +2 — (=2,12),(—1,3),(0,2),(1,9), (2,24)

Since C'(z) = A(z)B(x), we can now construct points on C(z) by multi-
plying the corresponding y-values:

C(l‘) — (_Za 168)7 (_17 21)7 (Oa 12)a (17 99)7 (2a 528)
Thus, multiplying points in this representation takes only linear time.

o We can evaluate a degree-n polynomial A(x) as two degree-(n/2) polyno-
mials in x%: We can partition the terms of A into those of even and odd
degree, for example:

122% 4+ 1723 + 3622 + 222 + 12 = (122 + 3622 + 12) + x(172% + 22)

By replacing z? by 2/, the right side gives us two smaller, lower degree
polynomials as promised.

o This suggests an efficient divide-and-conquer algorithm: We need to eval-
uate n points of a degree-d polynomial. We need n > 2d + 1 points, since
we will be using them to compute the product of two polynomials. We can
decompose the problem into doing this evaluation on two polynomials of
half the degree, plus a linear amount of work stitching the results together.
This defines the recurrence T'(n) = 27(n/2) + O(n), which evaluates to
O(nlogn).

o Making this work correctly requires picking the right x values to evaluate
on: The trick with the squares makes it desirable for our sample points
to come in pairs of the form +x, since their evaluation requires half as
much work because they are identical when squared.

However, this property does not hold recursively, unless the = values are
carefully chosen complex numbers. The nth roots of unity are the set of
solutions to the equation z™ = 1. In reals, we only get € {—1,1}, but
there are n solutions with complex numbers. The kth of these n roots is
given by

wy, = cos(2km/n) + isin(2kw/n)
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To appreciate the magic properties of these numbers, look at what happens
when we raise them to powers:

w{l Ieiy Ioi oy 1 “}
w? = {1,i,—1,—i,1,i,—1, —i}
wt={1,-1,1,-1,1,-1,1, -1}
w®={1,1,1,1,1,1,1,1}
Observe that these terms come in positive/negative pairs, and the number

of distinct terms gets halved with each squaring. These are the properties
we need to make the divide and conquer work.

The best implementations of fast convolution generally compute the fast
Fourier transform (FFT), so usually we seek to reduce our problems to FFTs to
take advantage of existing libraries. FFTs are discussed in Section 16.11 (page
501).

Take-Home Lesson: Fast convolution solves many important problems in
O(nlogn). The first step is to recognize your problem is a convolution.

Chapter Notes

Several other algorithms texts provide more substantive coverage of divide-
and-conquer algorithms, including Kleinberg and Tardos [KT06] and Manber
[Man89]. See Cormen et al. [CLRS09] for an excellent overview of the master
theorem.

See Skiena [Skil2] for an accessible introduction to algorithmic design of
vaccines. The bug searching sequences described in Section 5.2 is an example
of a pooling design, enabling the identification of (say) one sick patient out of n
using only lgn blood tests on pooled samples. The theory of these interesting
designs is surveyed by Du and Hwang [DHO00]. The left-right order of the subsets
on these designs reflects a Gray code, in which neighboring subsets differ in
exactly one element. Gray codes are discussed in Section 17.5.

Our parallel computations on pyramidal numbers were reported in Deng and
Yang [DY94]. My treatment of convolutions and the FFT was based on Avrim
Blum’s 15-451/651 algorithm lecture notes.

5.10 Exercises

Binary Search
5-1. [8] Suppose you are given a sorted array A of size n that has been circularly
shifted k positions to the right. For example, [35,42,5,15,27,29] is a sorted
array that has been circularly shifted k = 2 positions, while [27,29, 35,42, 5, 15]
has been shifted k = 4 positions.
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e Suppose you know what k is. Give an O(1) algorithm to find the largest
number in A.

e Suppose you do not know what k is. Give an O(lgn) algorithm to find the
largest number in A. For partial credit, you may give an O(n) algorithm.

5-2. [3] A sorted array of size n contains distinct integers between 1 and n+ 1, with
one element missing. Give an O(logn) algorithm to find the missing integer,
without using any extra space.

5-3. [3] Consider the numerical Twenty Questions game. In this game, the first
player thinks of a number in the range 1 to n. The second player has to figure
out this number by asking the fewest number of true/false questions. Assume
that nobody cheats.

(a) What is an optimal strategy if n in known?

(b) What is a good strategy if n is not known?

5-4. [5] You are given a unimodal array of n distinct elements, meaning that its
entries are in increasing order up until its maximum element, after which its
elements are in decreasing order. Give an algorithm to compute the maximum
element of a unimodal array that runs in O(logn) time.

5-5. [5] Suppose that you are given a sorted sequence of distinct integers [a1, az, . .., an].
Give an O(lgn) algorithm to determine whether there exists an index ¢ such that
a; = i. For example, in [—10,-3,3,5,7], as = 3. In [2,3,4,5,6,7], there is no
such 1.

5-6. [5] Suppose that you are given a sorted sequence of distinct integers a =
[a1,az2,...,ay], drawn from 1 to m where n < m. Give an O(lgn) algorithm to
find an integer < m that is not present in a. For full credit, find the smallest
such integer x such that 1 < x < m.

5-7. [5] Let M be an n X m integer matrix in which the entries of each row are
sorted in increasing order (from left to right) and the entries in each column are
in increasing order (from top to bottom). Give an efficient algorithm to find the
position of an integer = in M, or to determine that z is not there. How many
comparisons of x with matrix entries does your algorithm use in worst case?

Divide and Conquer Algorithms

5-8. [6] Given two sorted arrays A and B of size n and m respectively, find the
median of the n + m elements. The overall run time complexity should be
O(log(m + n)).

5-9. [8] The largest subrange problem, discussed in Section 5.6, takes an array A of
n numbers, and asks for the index pair ¢ and j that maximizes S = Zi:z Alk].
Give an O(n) algorithm for largest subrange.

5-10. [8] We are given n wooden sticks, each of integer length, where the ith piece
has length L[i]. We seek to cut them so that we end up with k pieces of exactly
the same length, in addition to other fragments. Furthermore, we want these k
pieces to be as large as possible.
(a) Given four wood sticks, of lengths L = {10,6,5,3}, what are the largest
sized pieces you can get for k = 47 (Hint: the answer is not 3).
(b) Give a correct and efficient algorithm that, for a given L and k, returns the
maximum possible length of the k£ equal pieces cut from the initial n sticks.
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5-11. /8] Extend the convolution-based string-matching algorithm described in the
text to the case of pattern matching with wildcard characters “*”, which match
any character. For example, “sh*t” should match both “shot” and “shut”.

Recurrence Relations

5-12. [5] In Section 5.3, it is asserted that any polynomial can be represented by a

recurrence. Find a recurrence relation that represents the polynomial a, = n?.

5-13. [5] Suppose you are choosing between the following three algorithms:

e Algorithm A solves problems by dividing them into five subproblems of
half the size, recursively solving each subproblem, and then combining the
solutions in linear time.

e Algorithm B solves problems of size n by recursively solving two subprob-
lems of size n — 1 and then combining the solutions in constant time.

e Algorithm C solves problems of size n by dividing them into nine subprob-
lems of size n/3, recursively solving each subproblem, and then combining
the solutions in ©(n?) time.

What are the running times of each of these algorithms (in big O notation), and
which would you choose?

5-14. [5] Solve the following recurrence relations and give a © bound for each of them:

= 2T(n/3) + 1
=5T(n/4) +n
=T7T(n/T)+n
=9T(n/3) +n

se the master theorem to solve the following recurrence relations:

T(n) = 64T (n/4) + n*

b) T(n) = 64T (n/4) +n®
(¢) T(n) = 64T (n/4) + 128

5-16. [3] Give asymptotically tight upper (Big Oh) bounds for T'(n) in each of the
following recurrences. Justify your solutions by naming the particular case of

the master theorem, by iterating the recurrence, or by using the substitution
method:

(a) T(n)=T(n—2)+1.
(b) T(n) = 2T(n/2) + nlg®n.
(c) T(n) = 9T (n/4) + n>.

LeetCode

5-1. https://leetcode.com/problems/median-of-two-sorted-arrays/
5-2. https://leetcode.com/problems/count-of-range-sum/

5-3. https://leetcode.com/problems/maximum-subarray/
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https://leetcode.com/problems/maximum-subarray/
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HackerRank
5-1. https://www.hackerrank.com/challenges/unique-divide-and-conquer
5-2. https://www.hackerrank.com/challenges/kingdom-division/

5-3. https://www.hackerrank.com/challenges/repeat-k-sums/

Programming Challenges
These programming challenge problems with robot judging are available at
https://onlinejudge.org:

5-1. “Polynomial Coefficients”—Chapter 5, problem 10105.

5-2. “Counting”—Chapter 6, problem 10198.

5-3. “Closest Pair Problem”—Chapter 14, problem 10245.


https://www.hackerrank.com/challenges/unique-divide-and-conquer
https://www.hackerrank.com/challenges/kingdom-division/
https://www.hackerrank.com/challenges/repeat-k-sums/
https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=28
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updates

Chapter 6

Hashing and Randomized
Algorithms

Most of the algorithms discussed in previous chapters were designed to optimize
worst-case performance: they are guaranteed to return optimal solutions for
every problem instance within a specified running time.

This is great, when we can do it. But relaxing the demand for either always
correct or always efficient can lead to useful algorithms that still have perfor-
mance guarantees. Randomized algorithms are not merely heuristics: any bad
performance is due to getting unlucky on coin flips, rather than adversarial
input data.

We classify randomized algorithms into two types, depending upon whether
they guarantee correctness or efficiency:

e Las Vegas algorithms: These randomized algorithms guarantee correct-
ness, and are usually (but not always) efficient. Quicksort is an excellent
example of a Las Vegas algorithm.

e Monte Carlo algorithms: These randomized algorithms are provably ef-
ficient, and usually (but not always) produce the correct answer or some-
thing close to it. Representative of this class are random sampling methods
discussed in Section 12.6.1, where we return the best solution found in the
course of (say) 1,000,000 random samples.

We will see several examples of both types of algorithm in this chapter.

One blessing of randomized algorithms is that they tend to be very simple to
describe and implement. Eliminating the need to worry about rare or unlikely
situations makes it possible to avoid complicated data structures and other
contortions. These clean randomized algorithms are often intuitively appealing,
and relatively easy to design.

However, randomized algorithms are frequently quite difficult to analyze
rigorously. Probability theory is the mathematics we need for the analysis of
randomized algorithms, and is of necessity both formal and subtle. Probabilistic
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analysis often involves algebraic manipulation of long chains of inequalities that
looks frightening, and relies on tricks and experience.

This makes it difficult to provide satisfying analysis on the level of this book,
which maintains a strict no-theorem/proof policy. But I will try to provide
intuition where I can, so you can appreciate why these algorithms are usually
correct or efficient.

We have had initial peeks at randomized algorithms through our discussions
of hash tables (Section 3.7) and quicksort (Section 4.6). Review these now to
give yourself the best chance of understanding what is to come.

Stop and Think: Quicksort City

Problem: Why is randomized quicksort a Las Vegas algorithm, as opposed to a
Monte Carlo algorithm?

Solution: Recall that Monte Carlo algorithms are always fast and usually cor-
rect, while Las Vegas algorithms are always correct and usually fast.

Randomized quicksort always produces a sorted permutation, so we know it
is always correct. Picking a very bad series of pivots might cause the running
to exceed O(nlogn), but we are always going to end up sorted. Thus, quicksort
is a nice example of a Las Vegas-style algorithm. [

6.1 Probability Review

I will resist the temptation to give a thorough review of probability theory here,
as part of my objective to keep this book to a manageable size. My presumptions
are: (1) you have had some previous exposure to probability theory, and (2) you
know where to look if you feel you need more. I will therefore limit myself to a
few basic definitions and properties we will use.

6.1.1 Probability

Probability theory provides a formal framework for reasoning about the likeli-
hood of events. Because it is a formal discipline, there is a thicket of associated
definitions to instantiate exactly what we are reasoning about:

e An experiment is a procedure that yields one of a set of possible out-
comes. As our ongoing example, consider the experiment of tossing two
six-sided dice, one red and one blue, with each face bearing a distinct
integer {1,...,6}.

o A sample space S is the set of possible outcomes of an experiment. In our
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dice example, there are thirty-six possible outcomes, namely
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e An event E is a specified subset of the outcomes of an experiment. The
event that the sum of the dice equals 7 or 11 (the conditions to win at
craps on the first roll) is the subset

E ={(1,6),(2,5),(3,4),(4,3), (5,

2)7 (6’ 1)7 (5

,6),(6,5)}.

e The probability of an outcome s, denoted p(s), is a number with the two

properties:

— For each outcome s in sample space S, 0 < p(s) < 1.

— The sum of probabilities of all outcomes adds to one: ) ¢ p(s) = 1.

If we assume two distinct fair dice, the probability p(s) =

1/36 for all outcomes s € S.

(1/6) x

(1/6) =

e The probability of an event E is the sum of the probabilities of the out-

= pls)

comes of the event. Thus,

sER

An alternative formulation is in terms of the complement of the event E,
the case when E does not occur. Then

P(E)=1- P(E)

This is useful, because often it is easier to analyze P(E) than P(E) di-

rectly.

e A random variable V is a numerical function on the outcomes of a proba-
bility space. The function “sum the values of two dice” (V((a,b)) = a+10)
produces an integer result between 2 and 12. This implies a probability
distribution of the possible values of the random variable. The probability
P(V(s) =7)=1/6, while P(V(s) =12) = 1/36.

e The ezpected value of a random variable V' defined on a sample space S,

V)= p(s) V(s

E(V), is defined

seS
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Figure 6.1: Venn diagrams illustrating set difference (left), intersection (middle),
and union (right).

6.1.2 Compound Events and Independence

We will be interested in complex events computed from simpler events A and B
on the same set of outcomes. Perhaps event A is that at least one of two dice
be an even number, while event B denotes rolling a total of either 7 or 11. Note
that there exist outcomes of A that are not outcomes of B, specifically

A—B={(1,2),(1,4),(2,1),(2,2),(23),(2,4),(2,6), (3,2), (3,6), (4, 1),
(4,2),(4,4), (4,5), (4,6), (5,4), (6,2), (6,3), (6,4), (6,6)}

This is the set difference operation. Observe that here B — A = {}, because
every pair adding to 7 or 11 must contain one odd and one even number.

The outcomes in common between both events A and B are called the in-
tersection, denoted A N B. This can be written as

ANB=A-(S-B)

Outcomes that appear in either A or B are called the union, denoted A U B.
The probability of the union and intersection are related by the formula

P(AUB)=P(A)+P(B) - P(ANB)

With the complement operation A = S— A, we get a rich language for combining

events, shown in Figure 6.1. We can readily compute the probability of any of

these sets by summing the probabilities of the outcomes in the defined sets.
The events A and B are said to be independent if

P(ANB) = P(A) x P(B)

This means that there is no special structure of outcomes shared between events
A and B. Assuming that half of the students in my class are female, and half
the students in my class are above average, we would expect that a quarter of
my students are both female and above average if the events are independent.
Probability theorists love independent events, because it simplifies their cal-
culations. For example, if A; denotes the event of getting an even number on
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the ith dice throw, then the probability of obtaining all evens in a throw of two
dice is P(Ay N As) = P(A1)P(As) = (1/2)(1/2) = 1/4. Then, the probability
of A, that at least one of two dice is even, is

P(A) = P(A; U Ay) = P(Ay) + P(Ay) — P(Ay N Ay) = 1/2+1/2 — 1/4 = 3/4

That independence often doesn’t hold explains much of the subtlety and
difficulty of probabilistic analysis. The probability of getting n heads when
tossing n independent coins is 1/2". But it would be 1/2 if the coins were
perfectly correlated, since the only possibilities would be all heads or all tails.
This computation would become very hard if there were complex dependencies
between the outcomes of the ¢th and jth coins.

Randomized algorithms are typically designed around samples drawn inde-
pendently at random, so that we can safely multiply probabilities to understand
compound events.

6.1.3 Conditional Probability

Presuming that P(B) > 0, the conditional probability of A given B, P(A|B) is
defined as follows
P(ANB)

P(AIB) = =

In particular, if events A and B are independent, then

P(lE) = T = TS — Py

and B has absolutely no impact on the likelihood of A. Conditional probability
becomes interesting only when the two events have dependence on each other.
Recall the dice-rolling events from Section 6.1.2, namely:

e Event A: at least one of two dice is an even number.
e Event B: the sum of the two dice is either 7 or 11.

Observe that P(A|B) = 1, because any roll summing to an odd value must
consist of one even and one odd number. Thus, AN B = B. For P(B|A), note
that P(AN B) = P(B) =8/36 and P(A) = 27/36, so P(B|A) = 8/27.

Our primary tool to compute conditional probabilities will be Bayes’ theo-
rem, which reverses the direction of the dependencies:

P(A[B)P(B)

P(BIA) = =5

Often it proves easier to compute probabilities in one direction than another,
as in this problem. By Bayes’ theorem P(B|A) = (1-8/36)/(27/36) = 8/27,
exactly what we got before.
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Figure 6.2: The probability density function (pdf) of the sum of two dice con-
tains exactly the same information as the cumulative density function (cdf), but
looks very different.

6.1.4 Probability Distributions

Random variables are numerical functions where the values are associated with
probabilities of occurrence. In our example where V (s) is the sum of two tossed
dice, the function produces an integer between 2 and 12. The probability of a
particular value V(s) = X is the sum of the probabilities of all the outcomes
whose components add up to X.

Such random variables can be represented by their probability density func-
tion, or pdf. This is a graph where the z-axis represents the values the random
variable can take on, and the y-axis denotes the probability of each given value.
Figure 6.2 (left) presents the pdf of the sum of two fair dice. Observe that the
peak at X = 7 corresponds to the most probable dice total, with a probability
of 1/6.

6.1.5 Mean and Variance

There are two main types of summary statistics, which together tell us an enor-
mous amount about a probability distribution or a data set:

e (entral tendency measures, which capture the center around which the
random samples or data points are distributed.

e Variation or variability measures, which describe the spread, that is, how
far the random samples or data points can lie from the center.

The primary centrality measure is the mean. The mean of a random variable
V', denoted FE(V') and also known as the expected value, is given by

E(V) =Y V(s)p(s)

seS

When the elementary events are all of equal probability, the mean or average,

computed as
N
i=
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Figure 6.3: The probability distribution of getting h heads in n =10,000 tosses
of a fair coin is tightly centered around the mean, n/2 =5,000.

The most common measure of variability is the standard deviation o. The
standard deviation of a random variable V is given by 0 = \/E((V — E(V))2.
For a data set, the standard deviation is computed from the sum of squared
differences between the individual elements and the mean:

> (@i — X)?

n—1

A related statistic, the wariance V' = 02, is the square of the standard

deviation. Sometimes it is more convenient to talk about variance than standard
deviation, because the term is ten characters shorter. But they measure exactly
the same thing.

6.1.6 Tossing Coins

You probably have a fair degree of intuition about the distribution of the number

of heads and tails when you toss a fair coin 10,000 times. You know that the

expected number of heads in n tosses, each with probability p = 1/2 of heads, is

pn, or 5,000 for this example. You likely know that the distribution for A heads

out of n is a binomial distribution, where
(i)

S SN T

and that it is a bell-shaped symmetrical distribution about the mean.

But you may not appreciate just how narrow this distribution is, as shown in
Figure 6.3. Sure, anywhere from 0 to n heads can result from n fair coin tosses.
But they won’t: the number of heads we get will almost always be within a
few standard deviations of the mean, where the standard deviation o for the

binomial distribution is given by o = y/np(1 —p) = O(y/n).
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1 2 3 456

Figure 6.4: How long does a random walk take to visit all n nodes of a path
(left) or a complete graph (right)?

Indeed, for any probability distribution, at least 1 — (1/k?) of the mass of
the distribution lies within £ko of the mean p. Typically o is small relative
to p for the distributions arising in the analysis of randomized algorithms and
processes.

Take-Home Lesson: Students often ask me “what happens” when randomized
quicksort runs in ©(n?). The answer is that nothing happens, in exactly the
same way nothing happens when you buy a lottery ticket: you almost certainly
just lose. With a randomized quicksort you almost certainly just win: the
probability distribution is so tight that you nearly always run in time very
close to expectation.

Stop and Think: Random Walks on a Path

Problem: Random walks on graphs are important processes to understand. The
expected covering time (the number of moves until we have visited all vertices)
differs depending upon the topology of the graph (see Figure 6.4). What is it
for a path?

Suppose we start at the left end of an m-vertex path. We repeatedly flip
a fair coin, moving one step right on heads and one step left on tails (staying
where we are if we were to fall off the path). How many coin flips do we expect
it will take, as a function of m, until we get to the right end of the path?

Solution: To get to the right end of the path, we need m — 1 more heads than
tails after n coin flips, assuming we don’t bother to flip when on the left-most
vertex where we can only move right. We expect about half of the flips to be
heads, with a standard deviation of o = ©(y/n). This o describes the spread of
the difference in the number of the heads and tails we are likely to have. We
must flip enough times for o to be on the order of m, so

m = 0(v/n) = n = 0(m?)
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6.2 Understanding Balls and Bins

Ball and bin problems are classics of probability theory. We are given x identical
balls to toss at random into y labeled bins. We are interested in the resulting
distribution of balls. How many bins are expected to contain a given number of
balls?

Hashing can be thought of as a ball and bin process. Suppose we hash n
balls/keys into n bins/buckets. We expect an average of one ball per bin, but
note that this will be true regardless of how good or bad the hash function is.

A good hash function should behave like a random number generator, se-
lecting integers/bin IDs with equal probability from 1 to n. But what happens
when we draw n such integers from a uniform distribution? The ideal would
be for each of the n items (balls) to be assigned to a different bin, so that each
bucket contains exactly one item to search. But is this really what happens?

To help develop your own intuition, I encourage you to code a little simula-
tion and run your own experiment. I did, and got the following results, for hash
table sizes from one million to one hundred million items:

Number of Buckets with k& Items

E | n=10° n =107 n = 10%
0 | 367,899 3,678,774 36,789,634
1 367,928 3,677,993 36,785,705
2 183,926 1,840,437 18,392,948
3 61,112 613,564 6,133,955
4 15,438 152,713 1,531,360
5 3130 30,517 306,819
6 499 5,133 51,238
7 56 754 7,269
8 12 107 972
9 8 89
10 10
11

1

We see that 36.78% of the buckets are empty in all three cases. That can’t
be a coincidence. The first bucket will be empty iff each of the n balls gets
assigned to one of the other n — 1 buckets. The probability p of missing for each
particular ball is p = (n — 1)/n, which approaches 1 as n gets large. But we
must miss for all n balls, the probability of which is p”. What happens when
we multiply a large number of large probabilities? You actually saw the answer
back when you studied limits:

n—1

"o
P(|By| = 0) = ( ) =~ =0.367879

Thus, 36.78% of the buckets in a large hash table will be empty. And, as it turns
out, exactly the same fraction of buckets is expected to contain one element.
If so many buckets are empty, others must be unusually full. The fullest
bucket gets fuller in the table above as n increases, from 8 to 9 to 11. In fact,
the expected value of the longest list is O(logn/loglogn), which grows slowly
but is not a constant. Thus, I was a little too glib when I said in Section 3.7.1
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Figure 6.5: Ilustrating the coupon collectors problem through an experiment
tossing balls at random into ten bins. It is not until the 33rd toss that all bins
are non-empty.

that the worst-case access time for hashing is O(1).!

Take-Home Lesson: Precise analysis of random process requires formal proba-
bility theory, algebraic skills, and careful asymptotics. We will gloss over such
issues in this chapter, but you should appreciate that they are out there.

6.2.1 The Coupon Collector’s Problem

As a final hashing warmup, let’s keep tossing balls into these n bins until none
of them are empty, that is, until we have at least one ball in each bin. How
many tosses do we expect this should take? As shown in Figure 6.5, it may
require considerably more than n tosses until every bin is occupied.

We can split such a sequence of balls into n runs, where run r; consists of the
balls we toss after we have filled i buckets until the next time we hit an empty
bucket. The expected number of balls to fill all n slots E(n) will be the sum of
the expected lengths of all runs. If you are flipping a coin with probability p
of coming up heads, the expected number of flips until you get your first head
is 1/p; this is a property of the geometric distribution. After filling ¢ buckets,
the probability that our next toss will hit an empty bucket is p = (n —i)/n.
Putting this together, we get the following

n—1 n—1 n n—1 1
E(”):Z|Ti| :Zn—i :nzn—i =nH, ~nlnn
i=0 i=0 i=0

The trick here is to remember that the harmonic number H, = Y . 1/i,
and that H,, = Inn.

Stop and Think: Covering Time for K,

Problem: Suppose we start on vertex 1 of a complete n-vertex graph (see Figure
6.4). We take a random walk on this graph, at each step going to a randomly

1To be precise, the expected search time for hashing is O(1) averaged over all n keys, but
we also expect there will a few keys unlucky enough to require ©(logn/loglogn) time.
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selected neighbor of our current position. What is the expected number of steps
until we have visited all vertices of the graph?

Solution: This is exactly the same question as the previous stop and think,
but with a different graph and thus with a possibly different answer.

Indeed, the random process here of independently generating random inte-
gers from 1 to n looks essentially the same as the coupon collector’s problem.
This suggests that the expected length of the covering walk is ©(nlogn).

The only hitch in this argument is that the random walk model does not
permit us to stay at the same vertex for two successive steps, unless the graph
has edges from a vertex to itself (self-loops). A graph without such self-loops
should have a slightly faster covering time, since a repeat visit does not make
progress in any way, but not enough to change the asymptotics. The probability
of discovering one of n — ¢ untouched vertices in the next step changes from
(n—1)/n to (n—1)/(n—1), reducing the total covering time analysis from nH,
to (n — 1)H,. But these are asymptotically the same. Covering the complete
graph takes O(nlogn) steps, much faster than the covering time of the path.
|

6.3 Why is Hashing a Randomized Algorithm?

Recall that a hash function h(s) maps keys s to integers in a range from 0 to
m — 1, ideally uniformly over this interval. Because good hash functions scatter
keys around this integer range in a manner similar to that of a uniform random
number generator, we can analyze hashing by treating the values as drawn from
tosses of an m-sided die.

But just because we can analyze hashing in terms of probabilities doesn’t
make it a randomized algorithm. As discussed so far, hashing is completely
deterministic, involving no random numbers. Indeed, hashing must be deter-
ministic, because we need h(z) to produce exactly the same result whenever
called with a given x, or else we can never hope to find x in a hash table.

One reason we like randomized algorithms is that they make the worst case
input instance go away: bad performance should be a result of extremely bad
luck, rather than some joker giving us data that makes us do bad things. But it
is easy (in principle) to construct a worst case example for any hash function h.
Suppose we take an arbitrary set S of nm distinct keys, and hash each s € S.
Because the range of this function has only m elements, there must be many
collisions. Since the average number of items per bucket is nm/m = n, it follows
from the pigeonhole principle that there must be a bucket with at least n items
in it. The n items in this bucket, taken by themselves, will prove a nightmare
for hash function h.

How can we make such a worst-case input go away? We are protected if we
pick our hash function at random from a large set of possibilities, because we
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can only construct such a bad example by knowing the exact hash function we
will be working with.

So how can we construct a family of random hash functions? Recall that
typically h(z) = f(x) (mod m), where f(x) turns the key into a huge value, and
taking the remainder mod m reduces it to the desired range. Our desired range
is typically determined by application and memory constraints, so we would not
want to select m at random. But what about first reducing with a larger integer
p? Observe that in general

/() (mod m) # (f(2) mod p) (mod m)

For example:
21347895537127 (mod 17) =8 # (21347895537127 (mod 2342343)) (mod 17) = 12
Thus, we can select p at random to define the hash function

h(x) = ((f(x) mod p) mod m)

and things will work out just fine provided (a) f(x) is large relative to p, (b) p
is large relative to m, and (c) m is relatively prime to p.

This ability to select random hash functions means we can now use hashing to
provide legitimate randomized guarantees, thus making the worst-case input go
away. It also lets us build powerful algorithms involving multiple hash functions,
such as Bloom filters, discussed in Section 6.4.

6.4 Bloom Filters

Recall the problem of detecting duplicate documents faced by search engines like
Google. They seek to build an index of all the unique documents on the web.
Identical copies of the same document often exist on many different websites,
including (unfortunately) pirated copies of my book. Whenever Google crawls
a new link, they need to establish whether what they found is a not previously
encountered document worth adding to the index.

Perhaps the most natural solution here is to build a hash table of the docu-
ments. Should a freshly crawled document hash to an empty bucket, we know
it must be new. But when there is a collision, it does not necessarily mean we
have seen this document before. To be sure, we must explicitly compare the
new document against all other documents in the bucket, to detect spurious
collisions between a and b, where h(a) = s and h(b) = s, but a # b. This is
what was discussed back in Section 3.7.2.

But in this application, spurious collisions are not really a tragedy: they
only mean that Google will fail to index a new document it has found. This can
be an acceptable risk, provided the probability of it happening is low enough.
Removing the need to explicitly resolve collisions has big benefits in making the
table smaller. By reducing each bucket from a pointer link to a single bit (is
this bucket occupied or not?), we reduce the space by a factor of 64 on typical
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Figure 6.6: Hashing the integers 0, 1, 2, 3, and 4 into an n = 8 bit Bloom filter,
using hash functions hy(z) = 22+ 1 (blue) and ha(z) = 32+ 2 (red). Searching
for x = 5 would yield a false positive, since the two corresponding bits have
been set by other elements.

machines. Some of this space can then be taken back to make the hash table
larger, thus reducing the probability of collisions in the first place.

Now suppose we build such a bit-vector hash table, with a capacity of n bits.
If we have distinct bits corresponding to m documents occupied, the probability
that a new document will spuriously hash to one of these bits is p = m/n. Thus,
even if the table is only 5% full, there is still a p = 0.05 probability that we will
falsely discard a new discovery, which is much higher than is acceptable.

Much better is to employ a Bloom filter, which is also just a bit-vector
hash table. But instead of each document corresponding to a single position
in the table, a Bloom filter hashes each key k times, using k different hash
functions. When we insert document s into our Bloom filter, we set all the
bits corresponding to hi(s), ha(s), ... hg(s) to be 1, meaning occupied. To test
whether a query document s is present in the data structure, we must test that
all k of these bits equal 1. For a document to be falsely convicted of already
being in the filter, it must be unlucky enough that all k& of these bits were set
in hashes of previous documents, as in the example of Figure 6.6.

What are the chances of this? Hashes of m documents in such a Bloom
filter will occupy at most km bits, so the probability of a single collision rises
to p1 = km/n, which is k times greater than the single hash case. But all k
bits must collide with those of our query document, which only happens with
probability pr = (p1)* = (km/n)*. This is a peculiar expression, because a
probability raised to the kth power quickly becomes smaller with increasing k,
yet here the probability being raised simultaneously increases with k. To find
the k that minimizes py, we could take the derivative and set it to zero.

Figure 6.7 graphs this error probability ((km/n)*) as a function of load
(m/n), with a separate line for each k from 1 to 5. It is clear that using a large
number of hash functions (increased k) reduces false positive error substantially
over a conventional hash table (the blue line, k = 1), at least for small loads.
But observe that the error rate associated with larger k increases rapidly with
load, so for any given load there is always a point where adding more hash
functions becomes counter-productive.

For a 5% load, the error rate for a simple hash table of k = 1 will be 51.2
times larger than a Bloom filter with & = 5 (9.77 x 10~%), even though they
use exactly the same amount of memory. A Bloom filter is an excellent data
structure for maintaining an index, provided you can live with occasionally
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Figure 6.7: Bloom filter error probability as a function of load (m/n) for k from
1 to 5. By selecting the right & for the given load, we can dramatically reduce
false positive error rate with no increase in table space.

saying yes when the answer is no.

6.5 The Birthday Paradox and Perfect Hashing

Hash tables are an excellent data structure in practice for the standard dic-
tionary operations of insert, delete, and search. However, the ©(n) worst-case
search time for hashing is an annoyance, no matter how rare it is. Is there a
way we can guarantee worst-case constant time search?

Perfect hashing offers us this possibility for static dictionaries. Here we are
given all possible keys in one batch, and are not allowed to later insert or delete
items. We can thus build the data structure once and use it repeatedly for
search/membership testing. This is a fairly common use case, so why pay for
the flexibility of dynamic data structures when you don’t need them?

One idea for how this might work would be to try a given hash function
h(z) on our set of n keys S and hope it creates a hash table with no collisions,
that is, h(z) # h(y) for all pairs of distinct x,y € S. It should be clear that our
chances of getting lucky improve as we increase the size of our table relative to
n: the more empty slots there are available for the next key, the more likely we
find one.

How large a hash table m do we need before we can expect zero collisions
among n keys? Suppose we start from an empty table, and repeatedly insert
keys. For the (i + 1)th insertion, the probability that we hit one of the m — i
still-open slots in the table is (m — i)/m. For a perfect hash, all n inserts must
succeed, so

n—1 o |
P(no collision) = H (m z) = e

= SN ATt

What happens when you evaluate this is famously called the birthday para-
dor. How many people do you need in a room before it is likely that at least
two of them share the same birthday? Here the table size is m = 365. The
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Figure 6.8: The probability of no collisions in a hash table decreases rapidly
with n, the number of keys to hash. Here the hash table size is m = 365.

probability of no collisions drops below 1/2 for n = 23 and is less than 3% when
n > 50, as shown in Figure 6.8. In other words, odds are we have a collision
when only 23 people are in the room. Solving this asymptotically, we begin to
expect collisions when n = ©(y/m) or equivalently when m = O(n?).

But quadratic space seems like an awful large penalty to pay for constant
time access to n elements. Instead, we will create a two-level hash table. First,
we hash the n keys of set S into a table with n slots. We expect collisions, but
unless we are very unlucky all the lists will be short enough.

Let I; be the length of the ith list in this table. Because of collisions, many
lists will be of length longer than 1. Our definition of short enough is that n
items are distributed around the table such that the sum of squares of the list
lengths is linear, that is,

Suppose that it happened that all elements were in lists of length [, meaning
that we have n/l non-empty lists. The sum of squares of the list lengths is
N = (n/l)I? = nl, which is linear because [ is a constant. We can even get away
with a fixed number of lists of length y/n and still use linear space.

In fact, it can be shown that NV < 4n with high probability. So if this isn’t
true on S for the first hash function we try, we can just try another. Pretty
soon we will find one with short-enough list lengths that we can use.

We will use an array of length N for our second-level table, allocating ;>
space for the elements of the ith bucket. Note that this is big enough relative to
the number of elements to avoid the birthday paradox—odds are we will have
no collision in any given hash function. And if we do, simply try another hash
function until all elements end up in unique places.

The complete scheme is illustrated in Figure 6.9. The contents of the ith
entry in the first-level hash table include the starting and ending positions for
the [;% entries in the second-level table corresponding to this list. It also contains
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Figure 6.9: Perfect hashing uses a two-level hash table to guarantee lookup in
constant time. The first-level table encodes an index range of [;* elements in
the second-level table, allocated to store the [; items in first-level bucket i.

a description (or identifier) of the hash function that we will use for this region
of the second-level table.

Lookup for an item s starts by calling hash function hq(s) to compute the
right spot in the first table, where we will find the appropriate start/stop
position and hash function parameters. From this we can compute start +
(ha(s) (mod (stop — start))), the location where item s will appear in the sec-
ond table. Thus, search can always be performed in ©(1) time, using linear
storage space between the two tables.

Perfect hashing is a very useful data structure in practice, ideal for whenever
you will be making large numbers of queries to a static dictionary. There is a
lot of fiddling you can do with this basic scheme to minimize space demands
and construction/search cost, such as working harder to find second-level hash
functions with fewer holes in the table. Indeed, minimum perfect hashing guar-
antees constant time access with zero empty hash table slots, resulting in an
n-element second hash table for n keys.

6.6 Minwise Hashing

Hashing lets you quickly test whether a specific word w in document D; also
occurs in document Ds: build a hash table on the words of Ds and then hunt
for h(w) in this table T'. For simplicity and efficiency we can remove duplicate
words from each document, so each contains only one entry for each vocabulary
term used. By so looking up all the vocabulary words w; € Dy in T, we can
get a count of the intersection, and compute the Jaccard similarity J(Dq, D)
of the two documents, where

D,y ﬂD2|
J<D1’D2):D1UD2|

This similarity measure ranges from 0 to 1, sort of like a probability that the
two documents are similar.

But what if you want to test whether two documents are similar without
looking at all the words? If we are doing this repeatedly, on a web scale, effi-
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Figure 6.10: The words associated with the minimum hash code from each of
two documents are likely to be the same, if the documents are very similar.

ciency matters. Suppose we are allowed to look at only one word per document
to make a decision. Which word should we pick?

A first thought might be to pick the most frequent word in the original
document, but it is likely to be “the” and tell you very little about similarity.
Picking the most representative word, perhaps according to the TD-IDF statis-
tic, would be better. But it still makes assumptions about the distribution of
words, which may be unwarranted.

The key idea is to synchronize, so we pick the same word out of the two
documents while looking at the documents separately. Minwise hashing is a
clever but simple idea to do this. We compute the hash code h(w;) of every
word in D1, and select the code with smallest value among all the hash codes.
Then we do the same thing with the words in Ds, using the same hash function.

What is cool about this is that it gives a way to pick the same random word
in both documents, as shown in Figure 6.10. Suppose the vocabularies of each
document were identical. Then the word with minimum hash code will be the
same in both Dy and Ds, and we get a match. In contrast, suppose we had
picked completely random words from each document. Then the probability of
picking the same word would be only 1/v, where v is the vocabulary size.

Now suppose that D; and D5 do not have identical vocabularies. The proba-
bility that the minhash word appears in both documents depends on the number
of words in common, that is, the intersection of the vocabularies, and also on
the total vocabulary size of the documents. In fact, this probability is exactly
the Jaccard similarity described above.

Sampling a larger number of words, say, the k& smallest hash values in each
document, and reporting the size of intersection over k gives us a better estimate
of Jaccard similarity. But the alert reader may wonder why we bother. It takes
time linear in the size of D1 and D5 to compute all the hash values just to find
the minhash values, yet this is the same running time that it would take to
compute the exact size of intersection using hashing!

The value of minhash comes in building indexes for similarity search and
clustering over large corpora of documents. Suppose we have N documents,
each with an average of m vocabulary words in them. We want to build an index
to help us determine which of these is most similar to a new query document Q).
Hashing all words in all documents gives us a table of size O(Nm). Storing k <
m minwise hash values from each document will be much smaller at O(NEk), but
the documents at the intersection of the buckets associated with the k minwise
hashes of @ are likely to contain the most similar documents—particularly if
the Jaccard similarity is high.



188 CHAPTER 6. HASHING AND RANDOMIZED ALGORITHMS

Stop and Think: Estimating Population Size

Problem: Suppose we will receive a stream S of n numbers one by one. This
stream will contain many duplicates, possibly even a single number repeated n
times. How can we estimate the number of distinct values in S using only a
constant amount of memory?

Solution: If space was not an issue, the natural solution would be to build a
dictionary data structure on the distinct elements from the stream, each with
an associated count of how often it has occurred. For the next element we see
in the stream, we add one to the count if it exists in the dictionary, or insert it
if it is not found. But we only have enough space to store a constant number
of elements. What can we do?

Minwise hashing comes to the rescue. Suppose we hash each new element s
of S as it comes in, and only save h(s) if it is smaller than the previous minhash.

Why is this interesting? Suppose the range of possible hash values is between
0 and M — 1, and we select k values in this range uniformly at a random. What
is the expected minimum of these k values? If k& = 1, the expected value will
(obviously) be M/2. For general k, we might hand wave and say that if our k
values were equally spaced in the interval, the minhash should be M/(k + 1).

In fact, this hand waving happens to produce the right answer. Define X as
the smallest of k samples. Then

P(X:i):P(XZi)_p(X2i+1):(M]\;i>k_(z\4_]\/j_1)k

Taking the limit of the expected value as M gets large gives the result
M—1

B(X)=> i(<MMi>k <Mﬂjl>k) - %

=0

The punch line is that M divided by the minhash value gives an excellent
estimate of the number of distinct values we have seen. This method will not
be fooled by repeated values in the stream, since repeated occurrences will yield
precisely the same value every time we evaluate the hash function. [

6.7 Efficient String Matching

Strings are sequences of characters where the order of the characters matters:
the string ALGORITHM is different than LOGARITHM. Text strings are fundamen-
tal to a host of computing applications, from programming language pars-
ing/compilation, to web search engines, to biological sequence analysis.

The primary data structure for representing strings is an array of characters.
This allows us constant-time access to the ith character of the string. Some
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Figure 6.11: The Rabin—Karp hash function H (s, j) gives distinctive codes to
different substrings (in blue), while a less powerful hash function that just adds
the character codes yields many collisions (shown in purple). Here the pattern
string (BBA) has length m = 3, and the character codes are A =0 and B = 1.

auxiliary information must be maintained to mark the end of the string: either
a special end-of-string character or (perhaps more usefully) a count n of the
characters in the string.

The most fundamental operation on text strings is substring search, namely:

Problem: Substring Pattern Matching
Input: A text string ¢ and a pattern string p.
Output: Does t contain the pattern p as a substring, and if so where?

The simplest algorithm to search for the presence of pattern string p in
text t overlays the pattern string at every position in the text, and checks
whether every pattern character matches the corresponding text character. As
demonstrated in Section 2.5.3 (page 43), this runs in O(nm) time, where n = |[¢|
and m = |p|.

This quadratic bound is worst case. More complicated, worst-case linear-
time search algorithms do exist: see Section 21.3 (page 685) for a complete
discussion. But here I give a linear ezpected-time algorithm for string matching,
called the Rabin—Karp algorithm. It is based on hashing. Suppose we compute
a given hash function on both the pattern string p and the m-character substring
starting from the ith position of ¢. If these two strings are identical, clearly the
resulting hash values must be the same. If the two strings are different, the hash
values will almost certainly be different. These false positives should be so rare
that we can easily spend the O(m) time it takes to explicitly check the identity
of two strings whenever the hash values agree.

This reduces string matching to n — m + 2 hash value computations (the
n —m + 1 windows of ¢, plus one hash of p), plus what should be a very small
number of O(m) time verification steps. The catch is that it takes O(m) time to
compute a hash function on an m-character string, and O(n) such computations
seems to leave us with an O(mn) algorithm again.

But let’s look more closely at our previously defined (in Section 3.7) hash
function, applied to the m characters starting from the jth position of string S:

m—1

H(S,j) =Y o™=+ x char(sis;)

1=
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What changes if we now try to compute H(S,j + 1)—the hash of the next
window of m characters? Note that m — 1 characters are the same in both
windows, although this differs by one in the number of times they are multiplied
by «. A little algebra reveals that

H(S,j+1) = a(H(S,j) — o™ 'char(s;)) + char(sj1m)

This means that once we know the hash value from the jth position, we can
find the hash value from the (j+1)th position for the cost of two multiplications,
one addition, and one subtraction. This can be done in constant time (the value
of a™~! can be computed once and used for all hash value computations). This
math works even if we compute H(S,j) mod M, where M is a reasonably large
prime number. This keeps the size of our hash values small (at most M) even
when the pattern string is long.

Rabin—Karp is a good example of a randomized algorithm (if we pick M in
some random way). We get no guarantee the algorithm runs in O(n +m) time,
because we may get unlucky and have the hash values frequently collide with
spurious matches. Still, the odds are heavily in our favor—if the hash function
returns values uniformly from 0 to M — 1, the probability of a false collision
should be 1/M. This is quite reasonable: if M = n, there should only be one
false collision per string, and if M ~ n* for k > 2, the odds are great we will
never see any false collisions.

6.8 Primality Testing

One of the first programming assignments students get is to test whether an
integer n is a prime number, meaning that its only divisors are 1 and itself. The
sequence of prime numbers starts with 2,3,5,7,11,13,17,..., and never ends.

That program you presumably wrote employed trial division as the algo-
rithm: using a loop where ¢ runs from 2 to n — 1, and check whether n/i is an
integer. If so, then i is a factor of n, and so n must be composite. Any integer
that survives this gauntlet of tests is prime. In fact, the loop only needs to run
up to [y/n], since that is the largest possible value of the smallest non-trivial
factor of n.

Still, such trial division is not cheap. If we assume that each division takes
constant time this gives an O(y/n) algorithm, but here n is the value of the
integer being factored. A 1024-bit number (the size of a small RSA encryption
key) encodes numbers up to 21924 — 1, with the security of RSA depending on
factoring being hard. Observe that /21024 = 2512 which is greater than the
number of atoms in the universe. So expect to spend some time waiting before
you get the answer.

Randomized algorithms for primality testing (not factoring) turn out to be
much faster. Fermat’s little theorem states that if n is a prime number then

a"~' = 1(mod n) for all a not divisible by n
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For example, when n = 17 and a = 3, observe that (317~ —1)/17 = 2,532, 160,
so 31771 = 1(mod 17). But for n = 16, 315~ = 11(mod 16), which proves that
16 cannot be prime.

What makes this interesting is that the mod of this big power always is 1 if
n is prime. This is a pretty good trick, because the odds of it being 1 by chance
should be very small-—only 1/n if the residue was uniform in the range.

Let’s say we can argue that the probability of a composite giving a residue
of 1 is less than 1/2. This suggests the following algorithm: Pick 100 random
integers a;, each between 1 and n — 1. Verify that none of them divide n. Then
compute (a;)""* (mod n). If all hundred of these come out to be 1, then the
probability that n is not prime must be less than (1/2)%, which is vanishingly
small. Because the number of tests (100) is fixed, the running time is always
fast, which makes this a Monte Carlo type of randomized algorithm.

There is a minor issue in our probability analysis, however. It turns out
that a very small fraction of integers (roughly 1 in 50 billion up to 10?!) are
not prime, yet also satisfy the Fermat congruence for all a. Such Carmichael
numbers like 561 and 1105 are doomed to be always be misclassified as prime.
Still, this randomized algorithm proves very effective at distinguishing likely
primes from composite integers.

Take-Home Lesson: Monte Carlo algorithms are always fast, usually correct,
and most of them are wrong in only one direction.

One issue that might concern you is the time complexity of computing
a1 (mod n). In fact, it can be done in O(logn) time. Recall that we can
compute a*™ as (a™)? by divide and conquer, meaning we only need a number
of multiplications logarithmic in the size of the exponent. Further, we don’t
have to work with excessively large numbers to do it. Because of the properties
of modular arithmetic,

(z-y) mod n = ((z mod n) - (y mod n)) mod n

so we never need multiply numbers larger than n over the course of the compu-
tation.

6.9 War Story: Giving Knuth the Middle Initial

The great Donald Knuth is the seminal figure in creating computer science as
an intellectually distinct academic discipline. The first three volumes of his Art
of Computer Programming series (now four), published between 1968 and 1973,
revealed the mathematical beauty of algorithm design, and still make fun and
exciting reading. Indeed, I give you my blessing to put my book aside to pick
up one of his, at least for a little while.

Knuth is also a co-author of the textbook Concrete Mathematics, which
focuses on mathematical analysis techniques for algorithms and discrete math-
ematics. Like his other books it contains open research questions in addition



192 CHAPTER 6. HASHING AND RANDOMIZED ALGORITHMS

to homework problems. Omne problem that caught my eye concerned middle
binomial coefficients, asking whether it is true that

2
( n) = (=1)"(mod (2n + 1)) iff 2n + 1 is prime.
n
This is suggestive of Fermat’s little theorem, discussed in Section 6.8 (page 190).

The congruence is readily shown to hold whenever 2n + 1 is prime. By basic
modular arithmetic,

(2n)(2n = 1).e.(n + 1) = (=1)(=2)...(=n) = (=1)" - n! (mod (2n + 1))

Since ad = bd(mod m) implies a = b(mod m) if d is relatively prime to m and
n! divides (2n)!/n!, n! can be divided from both sides, giving the result.

But does this formula hold only when 2n 4+ 1 is prime, as conjectured? That
didn’t sound right to me, for logic that is dual to the randomized primality
testing algorithm. If we treat the residue mod 2n + 1 as a random integer, the
probability that it would happen to be (—1)" is very small, only 1/n. Thus,
not seeing a counterexample over a small number of tests is not very impressive
evidence, because chance counterexamples should be rare.

So I wrote a 16-line Mathematica program, and left it running for the week-
end. When I got back, the program has stopped at n = 2,953. It turns out that
(gggg) ~ 7.93285 x 10'7™ is congruent to 5,906 when taken modulo 5,907. But
since 5,907 = 3-11-179, this shows that 2n + 1 is not prime and the conjecture
is refuted.

It was a big thrill sending this result to Knuth himself, who said he would
put my name in the next edition of his book. A notorious stickler for detail,
he asked me to give him my middle initial. I proudly replied “S”, and asked
him when he would send me my check. Knuth famously offered $2.56 checks to
anyone who found mistakes in one of his books,? and I wanted one as a souvenir.
But he nixed it, explaining that solving an open problem did not count as fixing
an error in his book. I have always regretted that I did not send him my middle
initial as “T”, because then I would have had an error for him to correct in a
future printing.

6.10 Where do Random Numbers Come From?

All the clever randomized algorithms discussed in this chapter raises a question:
Where do we get random numbers? What happens when you call the random
number generator associated with your favorite programming language?

We are used to employing physical processes to generate randomness, such as
flipping coins, tossing dice, or even monitoring radioactive decay using a Geiger
counter. We trust these events to be unpredictable, and hence indicative of true
randomness.

21 would go broke were I ever to make such an offer.
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But this is not what your random number generator does. Most likely it
employs what is essentially a hash function, called a linear congruential gener-
ator. The nth random number R,, is a simple function of the previous random
number R, _1:

R, = (aR,—1 + ¢) mod m

where a, ¢, m, and Ry are large and carefully selected constants. Essentially,
we hash the previous random number (R, _1) to get the next one.

The alert reader may question exactly how random such numbers really
are. Indeed, they are completely predictable, because knowing R,,_; provides
enough information to construct R,. This predictability means that a suffi-
ciently determined adversary could in principle construct a worst-case input to
a randomized algorithm provided they know the current state of your random
number generator.

Linear congruential generators are more accurately called pseudo-random
number generators. The stream of numbers produced looks random, in that
they have the same statistical properties as would be expected from a truly
random source. This is generally good enough for randomized algorithms to
work well in practice. However, there is a philosophical sense of randomness
which has been lost that occasionally comes back to bite us, typically in cryp-
tographic applications whose security guarantees rest on an assumption of true
randomness.

Random number generation is a fascinating problem. Look ahead to section
16.7 in the Hitchhiker’s Guide for a more detailed discussion of how random
numbers should and should not be generated.

Chapter Notes

Readers interested in more formal and substantial treatments of randomized
algorithms are referred to the book of Mitzenmacher and Upfal [MU17] and the
older text by Motwani and Raghavan [MR95]. Minwise hashing was invented
by Broder [Bro97].

6.11 Exercises

Probability

6-1. /5] You are given n unbiased coins, and perform the following process to generate
all heads. Toss all n coins independently at random onto a table. Each round
consists of picking up all the tails-up coins and tossing them onto the table
again. You repeat until all coins are heads.

(a) What is the expected number of rounds performed by the process?
(b) What is the expected number of coin tosses performed by the process?
6-2. [5] Suppose we flip n coins each of known bias, such that p; is the probability of

the ith coin being a head. Present an efficient algorithm to determine the exact
probability of getting exactly k heads given p1,...,p, € [0,1].
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6-3. [5] An inversion of a permutation is a pair of elements that are out of order.

(a) Show that a permutation of n items has at most n(n — 1)/2 inversions.
Which permutation(s) have exactly n(n — 1)/2 inversions?

(b) Let P be a permutation and P" be the reversal of this permutation. Show
that P and P" have a total of exactly n(n — 1)/2 inversions.

(c) Use the previous result to argue that the expected number of inversions in
a random permutation is n(n — 1) /4.

6-4. [8] A derangement is a permutation p of {1,...,n} such that no item is in its
proper position, that is, p; # i for all 1 <4 < n. What is the probability that a
random permutation is a derangement?

Hashing

6-5. [easy] An all-Beatles radio station plays nothing but recordings by the Beatles,
selecting the next song at random (uniformly with replacement). They get
through about ten songs per hour. I listened for 90 minutes before hearing a
repeated song. Estimate how many songs the Beatles recorded.

6-6. [5] Given strings S and T of length n and m respectively, find the shortest
window in S that contains all the characters in 7" in expected O(n + m) time.

6-7. [8] Design and implement an efficient data structure to maintain a least recently
used (LRU) cache of n integer elements. A LRU cache will discard the least
recently accessed element once the cache has reached its capacity, supporting
the following operations:

e gel(k)— Return the value associated with the key k if it currently exists in
the cache, otherwise return -1.

e put(k,v) — Set the value associated with key k to v, or insert if k is not
already present. If there are already n items in the queue, delete the least
recently used item before inserting (k,v).

Both operations should be done in O(1) expected time.

Randomized Algorithms

6-8. [5] A pair of English words (w1, ws) is called a rotodrome if one can be circularly
shifted (rotated) to create the other word. For example, the words (windup,
upwind) are a rotodrome pair, because we can rotate “windup” two positions
to the right to get “upwind.”

Give an efficient algorithm to find all rotodrome pairs among n words of length
k, with a worst-case analysis. Also give a faster expected-time algorithm based
on hashing.

6-9. [5] Given an array w of positive integers, where w[i] describes the weight of
index ¢, propose an algorithm that randomly picks an index in proportion to its
weight.

6-10. /5] You are given a function rand7, which generates a uniform random integer
in the range 1 to 7. Use it to produce a function rand10, which generates a
uniform random integer in the range 1 to 10.
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6-11. /5] Let 0 < a < 1/2 be some constant, independent of the input array length
n. What is the probability that, with a randomly chosen pivot element, the
partition subroutine from quicksort produces a split in which the size of both
the resulting subproblems is at least « times the size of the original array?

6-12. [8] Show that for any given load m/n, the error probability of a Bloom filter is
minimized when the number of hash functions is k = exp(—1)/(m/n).

LeetCode

6-1. https://leetcode.com/problems/random-pick-with-blacklist/
6-2. https://leetcode.com/problems/implement-strstr/

6-3. https://leetcode.com/problems/random-point-in-non-overlapping-rectangles/

HackerRank

6-1. https://www.hackerrank.com/challenges/ctci-ransom-note/
6-2. https://www.hackerrank.com/challenges/matchstick-experiment/

6-3. https://www.hackerrank.com/challenges/palindromes/

Programming Challenges
These programming challenge problems with robot judging are available at
https://onlinejudge.org:

6-1. “Carmichael Numbers”—Chapter 10, problem 10006.

6-2. “Expressions”—Chapter 6, problem 10157.

6-3. “Complete Tree Labeling”—Chapter 6, problem 10247.


https://leetcode.com/problems/random-pick-with-blacklist/
https://leetcode.com/problems/implement-strstr/
https://leetcode.com/problems/random-point-in-non-overlapping-rectangles/
https://www.hackerrank.com/challenges/ctci-ransom-note/
https://www.hackerrank.com/challenges/matchstick-experiment/
https://www.hackerrank.com/challenges/palindromes/
https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=28
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Chapter 7

Graph Traversal

Graphs are one of the unifying themes of computer science—an abstract rep-
resentation that describes the organization of transportation systems, human
interactions, and telecommunication networks. That so many different struc-
tures can be modeled using a single formalism is a source of great power to the
educated programmer.

More precisely, a graph G = (V, E) consists of a set of vertices V' together
with a set E of vertex pairs or edges. Graphs are important because they
can be used to represent essentially any relationship. For example, graphs can
model a network of roads, with cities as vertices and roads between cities as
edges, as shown in Figure 7.1. Electrical circuits can also be modeled as graphs,
with junctions as vertices and components as edges (or alternately, electrical
components as vertices and direct circuit connections as edges).

The key to solving many algorithmic problems is to think of them in terms
of graphs. Graph theory provides a language for talking about the properties of
relationships, and it is amazing how often messy applied problems have a simple
description and solution in terms of classical graph properties.

Designing truly novel graph algorithms is a difficult task, but usually un-
necessary. The key to using graph algorithms effectively in applications lies in
correctly modeling your problem so you can take advantage of existing algo-
rithms. Becoming familiar with many different algorithmic graph problems is

Stony Brook Greenport
Orient Point I
Riverhead
Shelter Island I I ::
Montauk ‘ ‘
Islip Sag Harbor ‘ ‘

Figure 7.1: Modeling road networks and electrical circuits as graphs.
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Figure 7.2: Important properties / flavors of graphs.

more important than understanding the details of particular graph algorithms,
particularly since Part II of this book will point you to an implementation as
soon as you know the name of your problem.

Here I present the basic data structures and traversal operations for graphs,
which will enable you to cobble together solutions for elementary graph prob-
lems. Chapter 8 will present more advanced graph algorithms that find mini-
mum spanning trees, shortest paths, and network flows, but I stress the primary
importance of correctly modeling your problem. Time spent browsing through
the catalog now will leave you better informed of your options when a real job
arises.

7.1 Flavors of Graphs

A graph G = (V, F) is defined on a set of vertices V', and contains a set of edges E
of ordered or unordered pairs of vertices from V. In modeling a road network,
the vertices may represent the cities or junctions, certain pairs of which are
connected by roads/edges. In analyzing the source code of a computer program,
the vertices may represent lines of code, with an edge connecting lines x and y
if y is the next statement executed after x. In analyzing human interactions,
the vertices typically represent people, with edges connecting pairs of related
souls.

Several fundamental properties of graphs impact the choice of the data struc-
tures used to represent them and algorithms available to analyze them. The first
step in any graph problem is determining the flavors of the graphs that you will
be dealing with (see Figure 7.2):

e Undirected vs. directed — A graph G = (V| E) is undirected if the presence
of edge (z,y) in E implies that edge (y,z) is also in E. If not, we say
that the graph is directed. Road networks between cities are typically
undirected, since any large road has lanes going in both directions. Street
networks within cities are almost always directed, because there are at
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least a few one-way streets lurking somewhere. Program-flow graphs are
typically directed, because the execution flows from one line into the next
and changes direction only at branches. Most graphs of graph-theoretic
interest are undirected.

Weighted vs. unweighted — Each edge (or vertex) in a weighted graph G is
assigned a numerical value, or weight. The edges of a road network graph
might be weighted with their length, drive time, or speed limit, depending
upon the application. In unweighted graphs, there is no cost distinction
between various edges and vertices.

The difference between weighted and unweighted graphs becomes partic-
ularly apparent in finding the shortest path between two vertices. For
unweighted graphs, a shortest path is one that has the fewest number of
edges, and can be found using a breadth-first search (BFS) as discussed
in this chapter. Shortest paths in weighted graphs requires more sophis-
ticated algorithms, as discussed in Chapter 8.

Simple vs. non-simple — Certain types of edges complicate the task of
working with graphs. A self-loop is an edge (x,z) involving only one
vertex. An edge (x,y) is a multiedge if it occurs more than once in the
graph.

Both of these structures require special care in implementing graph al-
gorithms. Hence any graph that avoids them is called simple. 1 confess
that all implementations in this book are designed to work only on simple
graphs.

Sparse vs. dense:  Graphs are sparse when only a small fraction of the
possible vertex pairs actually have edges defined between them. Graphs
where a large fraction of the vertex pairs define edges are called dense. A
graph is complete if it contains all possible edges; for a simple undirected
graph on n vertices that is (}) = (n? — n)/2 edges. There is no official
boundary between what is called sparse and what is called dense, but
dense graphs typically have ©(n?) edges, while sparse graphs are linear in

size.

Sparse graphs are usually sparse for application-specific reasons. Road
networks must be sparse because of the complexity of road junctions. The
ghastliest intersection I have ever managed to identify is the endpoint of
just seven different roads. Junctions of electrical components are similarly
limited to the number of wires that can meet at a point, perhaps except
for power and ground.

Cyclic vs. acyclic — A cycle is a closed path of 3 or more vertices that has
no repeating vertices except the start/end point. An acyclic graph does
not contain any cycles. Trees are undirected graphs that are connected
and acyclic. They are the simplest interesting graphs. Trees are inherently
recursive structures, because cutting any edge leaves two smaller trees.



200

CHAPTER 7. GRAPH TRAVERSAL

Directed acyclic graphs are called DAGSs. They arise naturally in schedul-
ing problems, where a directed edge (x,y) indicates that activity x must
occur before y. An operation called topological sorting orders the vertices
of a DAG to respect these precedence constraints. Topological sorting is
typically the first step of any algorithm on a DAG, as will be discussed in
Section 7.10.1 (page 231).

Embedded vs. topological — The edge—vertex representation G = (V, E)
describes the purely topological aspects of a graph. We say a graph is
embedded if the vertices and edges are assigned geometric positions. Thus,
any drawing of a graph is an embedding, which may or may not have
algorithmic significance.

Occasionally, the structure of a graph is completely defined by the geom-
etry of its embedding. For example, if we are given a collection of points
in the plane, and seek the minimum cost tour visiting all of them (i.e.,
the traveling salesman problem), the underlying topology is the complete
graph connecting each pair of vertices. The weights are typically defined
by the Euclidean distance between each pair of points.

Grids of points are another example of topology from geometry. Many
problems on an nxm rectangular grid involve walking between neighboring
points, so the edges are implicitly defined from the geometry.

Implicit vs. explicit — Certain graphs are not explicitly constructed and
then traversed, but built as we use them. A good example is in backtrack
search. The vertices of this implicit search graph are the states of the
search vector, while edges link pairs of states that can be directly generated
from each other. Web-scale analysis is another example, where you should
try to dynamically crawl and analyze the small relevant portion of interest
instead of initially downloading the entire web. The cartoon in Figure 7.2
tries to capture this distinction between the part of the graph you explicitly
know from the fog that covers the rest, which dissipates as you explore
it. It is often easier to work with an implicit graph than to explicitly
construct and store the entire thing prior to analysis.

Labeled vs. unlabeled — Each vertex is assigned a unique name or identifier
in a labeled graph to distinguish it from all other vertices. In unlabeled
graphs, no such distinctions have been made.

Graphs arising in applications are often naturally and meaningfully la-
beled, such as city names in a transportation network. A common prob-
lem is that of isomorphism testing—determining whether the topological
structures of two graphs are identical either respecting or ignoring any
labels, as discussed in Section 19.9.
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Hermione Granger Ron Weasley

Voldemort

Dobby Harry Potter

Figure 7.3: A portion of the friendship graph from Harry Potter.

7.1.1 The Friendship Graph

To demonstrate the importance of proper modeling, let us consider a graph
where the vertices are people, and edge between two people indicates that they
are friends. Such graphs are called social networks and are well defined on any
set of people—Dbe they the people in your neighborhood, at your school /business,
or even spanning the entire world. An entire science analyzing social networks
has sprung up in recent years, because many interesting aspects of people and
their behavior are best understood as properties of this friendship graph.

We use this opportunity to demonstrate the graph theory terminology de-
scribed above. “Talking the talk” proves to be an important part of “walking
the walk”:

o [f I am your friend, does that mean you are my friend? — This question
really asks whether the graph is directed. A graph is undirected if edge
(z,y) always implies (y,x). Otherwise, the graph is said to be directed.
The “heard-of” graph is directed, since I have heard of many famous peo-
ple who have never heard of me! The “had-sex-with” graph is presumably
undirected, since the critical operation always requires a partner. I'd like
to think that the “friendship” graph is also an undirected graph.

o How close a friend are you? — In weighted graphs, each edge has an asso-
ciated numerical attribute. We could model the strength of a friendship
by associating each edge with an appropriate value, perhaps from —100
(enemies) to 100 (blood brothers). The edges of a road network graph
might be weighted with their length, drive time, or speed limit, depending
upon the application. A graph is said to be unweighted if all edges are
assumed to be of equal weight.

e Am I my own friend? — This question addresses whether the graph is
simple, meaning it contains no loops and no multiple edges. An edge of
the form (z,x) is said to be a self-loop. Sometimes people are friends in
several different ways. Perhaps x and y were college classmates that now
work together at the same company. We can model such relationships
using multiedges—multiple edges (z,y) perhaps distinguished by different
labels.
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Simple graphs really are simpler to work with in practice. Therefore, we
are generally better off declaring that no one is their own friend.

Who has the most friends? — The degree of a vertex is the number of edges
adjacent to it. The most popular person is identified by finding the vertex
of highest degree in the friendship graph. Remote hermits are associated
with degree-zero vertices.

Most of the graphs that one encounters in real life are sparse. The friend-
ship graph is a good example. Even the most gregarious person on earth
knows only an insignificant fraction of the world’s population.

In dense graphs, most vertices have high degrees, as opposed to sparse
graphs with relatively few edges. In a regular graph, each vertex has
exactly the same degree. A regular friendship graph is truly the ultimate
in social-ism.

Do my friends live near me? — Social networks are strongly influenced
by geography. Many of your friends are your friends only because they
happen to live near you (neighbors) or used to live near you (old college
roommates).

Thus, a full understanding of social networks requires an embedded graph,
where each vertex is associated with the point on this world where they
live. This geographic information may not be explicitly encoded, but the
fact that the graph is inherently embedded on the surface of a sphere
shapes our interpretation of the network.

Oh, you also know her? — Social networking services such as Instagram
and LinkedIn ezplicitly define friendship links between members. Such
graphs consist of directed edges from person/vertex = professing his or
her friendship with person/vertex y.

That said, the actual friendship graph of the world is represented implic-
itly. Each person knows who their friends are, but cannot find out about
other people’s friendships except by asking them. The “six degrees of sep-
aration” theory argues that there is a short path linking every two people
in the world (e.g. Skiena and the President) but offers us no help in ac-
tually finding this path. The shortest such path I know of contains three
hops:

Steven Skiena — Mark Fasciano — Michael Ashner — Donald Trump
but there could be a shorter one (say if Trump went to college with my

dentist). The friendship graph is stored implicitly, so I have no way of
easily checking.

IThere is also a path Steven Skiena — Steve Israel — Joe Biden, so I am covered regardless
of the outcome of the 2020 election.
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Figure 7.4: The adjacency matrix and adjacency list representation of a given
graph. Colors encode specific edges.

o Are you truly an individual, or just one of the faceless crowd? — This ques-
tion boils down to whether the friendship graph is labeled or unlabeled.
Are the names or vertex IDs important for our analysis?

Much of the study of social networks is unconcerned with labels on graphs.
Often the ID number given to a vertex in the graph data structure serves
as its label, either for convenience or the need for anonymity. You may
assert that you are a name, not a number—but try protesting to the fellow
who implements the algorithm. Someone studying how rumors or infec-
tious diseases spread through a friendship graph might examine network
properties such as connectedness, the distribution of vertex degrees, or
the distribution of path lengths. These properties aren’t changed by a
scrambling of the vertex IDs.

Take-Home Lesson: Graphs can be used to model a wide variety of structures
and relationships. Graph-theoretic terminology gives us a language to talk
about them.

7.2 Data Structures for Graphs

Selecting the right graph data structure can have an enormous impact on per-
formance. Your two basic choices are adjacency matrices and adjacency lists,
illustrated in Figure 7.4. We assume the graph G = (V, E) contains n vertices
and m edges.

o Adjacency matriz — We can represent GG using an n X n matrix M, where
element M[i, j] = 1 if (¢,7) is an edge of G, and 0 if it isn’t. This allows
fast answers to the question “is (i,7) in G?”, and rapid updates for edge
insertion and deletion. It may use excessive space for graphs with many
vertices and relatively few edges, however.

Consider a graph that represents the street map of Manhattan in New
York City. Every junction of two streets will be a vertex of the graph.
Neighboring junctions are connected by edges. How big is this graph?
Manhattan is basically a grid of 15 avenues each crossing roughly 200
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’ Comparison \ Winner ‘
Faster to test if (z,y) is in graph? adjacency matrices
Faster to find the degree of a vertex? adjacency lists
Less memory on sparse graphs? adjacency lists (m +n) vs. (n?)
Less memory on dense graphs? adjacency matrices (a small win)
Edge insertion or deletion? adjacency matrices O(1) vs. O(d)
Faster to traverse the graph? adjacency lists ©(m + n) vs. O(n?)
Better for most problems? adjacency lists

Figure 7.5: Relative advantages of adjacency lists and matrices.

streets. This gives us about 3,000 vertices and 6,000 edges, since almost
all vertices neighbor four other vertices and each edge is shared between
two vertices. This is a modest amount of data to store, yet an adjacency
matrix would have 3,000 x 3,000 = 9,000,000 elements, almost all of them
empty!

There is some potential to save space by packing multiple bits per word
or using a symmetric-matrix data structure (e.g. triangular matrix) for
undirected graphs. But these methods lose the simplicity that makes
adjacency matrices so appealing and, more critically, remain inherently
quadratic even for sparse graphs.

Adjacency lists — We can more efficiently represent sparse graphs by using
linked lists to store the neighbors of each vertex. Adjacency lists require
pointers, but are not frightening once you have experience with linked
structures.

Adjacency lists make it harder to verify whether a given edge (4, 7) is in
G, since we must search through the appropriate list to find the edge.
However, it is surprisingly easy to design graph algorithms that avoid any
need for such queries. Typically, we sweep through all the edges of the
graph in one pass via a breadth-first or depth-first traversal, and update
the implications of the current edge as we visit it. Table 7.5 summarizes
the tradeoffs between adjacency lists and matrices.

Take-Home Lesson:  Adjacency lists are the right data structure for most
applications of graphs.

We will use adjacency lists as our primary data structure to represent graphs.
We represent a graph using the following data type. For each graph, we keep a
count of the number of vertices, and assign each vertex a unique identification
number from 1 to nvertices. We represent the edges using an array of linked

lists:
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#define MAXV 100 /* mazimum number of vertices */

typedef struct edgenode {

int y; /* adjacency info */
int weight; /* edge weight, if any */
struct edgenode *next; /* next edge in list */

} edgenode;

typedef struct {
edgenode *edges[MAXV+1]; /* adjacency info */

int degree[MAXV+1]; /* outdegree of each vertex */
int nvertices; /* number of vertices in the graph */
int nedges; /* number of edges in the graph */
int directed; /* 1s the graph directed? */

} graph;

We represent directed edge (x,y) by an edgenode y in z’s adjacency list.
The degree field of the graph counts the number of meaningful entries for the
given vertex. An undirected edge (z,y) appears twice in any adjacency-based
graph structure, once as y in z’s list, and the other as x in y’s list. The Boolean
flag directed identifies whether the given graph is to be interpreted as directed
or undirected.

To demonstrate the use of this data structure, we show how to read a graph
from a file. A typical graph file format consists of an initial line giving the
number of vertices and edges in the graph, followed by a list of the edges, one
vertex pair per line. We start by initializing the structure:

void initialize_graph(graph *g, bool directed) {
int i; /* counter */

g->nvertices = 0;
g->nedges = 0;
g->directed = directed;

for (i = 1; i <= MAXV; i++) {
g->degree[i] = 0;
}

for (i = 1; i <= MAXV; i++) {
g—>edges[i] = NULL;
}
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Then we actually read the graph file, inserting each edge into this structure:

void read_graph(graph *g, bool directed) {

int 1i; /* counter */
int m; /* number of edges */
int x, y; /* vertices in edge (z,y) */

initialize_graph(g, directed);
scanf ("%d %d", &(g->nvertices), &m);

for (i = 1; 1 <=m; i++) {
scanf ("%d %d", &x, &y);
insert_edge(g, x, y, directed);

The critical routine is insert_edge. The new edgenode is inserted at the
beginning of the appropriate adjacency list, since order doesn’t matter. We
parameterize our insertion with the directed Boolean flag, to identify whether
we need to insert two copies of each edge or only one. Note the use of recursion
to insert the copy:

void insert_edge(graph *g, int x, int y, bool directed) {
edgenode *p; /* temporary pointer */

p = malloc(sizeof (edgenode)); /* allocate edgenode storage */

p—>weight = 0;
P>y = V;
p—>next = g->edges[x];

g—>edges[x] = p; /* insert at head of list */
g->degree [x]++;

if (!'directed) {

insert_edge(g, y, x, true);
} else {

g—>nedges++;

}

Printing the associated graph is just a matter of two nested loops: one
through the vertices, and the second through adjacent edges:
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Figure 7.6: Representative Combinatorica graphs: edge-disjoint paths (left),
Hamiltonian cycle in a hypercube (center), animated depth-first search tree
traversal (right).

void print_graph(graph *g) {
int 1i; /* counter */
edgenode *p; /* temporary pointer */

for (i = 1; i1 <= g->nvertices; i++) {
printf("%d: ", i);
p = g—>edges[il;
while (p != NULL) {
printf (" %d", p->y);
P = p~—>next;
¥
printf("\n");

It is a good idea to use a well-designed graph data type as a model for
building your own, or even better as the foundation for your application. I
recommend LEDA (see Section 22.1.1 (page 713)) or Boost (see Section 22.1.3
(page 714)) as the best-designed general-purpose graph data structures currently
available. They may be more powerful (and hence somewhat slower /larger) than
you need, but they do so many things right that you are likely to lose most of
the potential do-it-yourself benefits through clumsiness.

7.3 War Story: I was a Victim of Moore’s Law

I am the author of a popular library of graph algorithms called Combinator-
ica (www.combinatorica.com), which runs under the computer algebra system
Mathematica. Efficiency is a great challenge in Mathematica, due to its applica-
tive model of computation (it does not support constant-time write operations
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command/machine Sun-3  Sun-4 Sun-5 Ultra5 Blade
PlanarQ[GridGraph[4,4]] 234.10  69.65 27.50 3.60 0.40
Length[Partitions[30]] 289.85 73.20 24.40 3.44 1.58
VertexConnectivity[GridGraph[3,3]] | 239.67 47.76  14.70 2.00 0.91
RandomPartition[1000] 831.68 267.5  22.05 3.12 0.87

Table 7.1: Old Combinatorica benchmarks on five generations of workstations
(running time in seconds).

to arrays) and the overhead of interpretation (as opposed to compilation). Math-
ematica code is typically 1,000 to 5,000 times slower than C code.

Such slowdowns can be a tremendous performance hit. Even worse, Mathe-
matica is a memory hog, needing a then-outrageous 4MB of main memory to run
effectively when I completed Combinatorica in 1990. Any computation on large
structures was doomed to thrash in virtual memory. In such an environment,
my graph package could only hope to work effectively on very small graphs.

One design decision I made as a result was to use adjacency matrices as
the basic Combinatorica graph data structure instead of lists. This may sound
peculiar. If pressed for memory, wouldn’t it pay to use adjacency lists and
conserve every last byte? Yes, but the answer is not so simple for very small
graphs. An adjacency list representation of a weighted n-vertex, m-edge directed
graph should use about n + 2m words to represent; the 2m comes from storing
the endpoint and weight components of each edge. Thus, the space advantages
of adjacency lists only kick in when n+2m is substantially smaller than n?. The
adjacency matrix is still manageable in size for n < 100 and, of course, about
half the size of adjacency lists on dense graphs.

My more immediate concern was dealing with the overhead of using a slow in-
terpreted language. Check out the benchmarks reported in Table 7.1. Two par-
ticularly complex but polynomial-time problems on 9 and 16 vertex graphs took
several minutes to complete on my desktop machine in 1990! The quadratic-
sized data structure certainly could not have had much impact on these running
times, since 9 X 9 equals only 81. From experience, I knew the Mathematica pro-
gramming language handled regular structures like adjacency matrices better
than irregular-sized adjacency lists.

Still, Combinatorica proved to be a very good thing despite these perfor-
mance problems. Thousands of people have used my package to do all kinds of
interesting things with graphs. Combinatorica was never intended to be a high-
performance algorithms library. Most users quickly realized that computations
on large graphs were out of the question, but were eager to take advantage of
Combinatorica as a mathematical research tool and prototyping environment.
Everyone was happy.

But over the years, my users started asking why it took so long to do a
modest-sized graph computation. The mystery wasn’t that my program was
slow, because it had always been slow. The question was why did it take them
so many years to figure this out?
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Figure 7.7: Performance comparison between old and new Combinatorica: ab-
solute running times (left), and the ratio of these times (right).

The reason is that computers keep doubling in speed every two years or
so. People’s expectation of how long something should take moves in concert
with these technology improvements. Partially because of Combinatorica’s de-
pendence on a quadratic-size graph data structure, it didn’t scale as well as it
should on sparse graphs.

As the years rolled on, user demands became more insistent. Combinatorica
needed to be updated. My collaborator, Sriram Pemmaraju, rose to the chal-
lenge. We (mostly he) completely rewrote Combinatorica to take advantage of
faster graph data structures ten years after the initial version.

The new Combinatorica uses a list of edges data structure for graphs, largely
motivated by increased efficiency. Edge lists are linear in the size of the graph
(edges plus vertices), just like adjacency lists. This makes a huge difference
on most graph-related functions—for large enough graphs. The improvement
is most dramatic in “fast” graph algorithms—those that run in linear or near-
linear time, such as graph traversal, topological sort, and finding connected or
biconnected components. The implications of this change are felt throughout
the package in running time improvements and memory savings. Combinatorica
can now work with graphs that are fifty to a hundred times larger than what
the old package could deal with.

Figure 7.7(left) plots the running time of the MinimumSpanningTree func-
tions for both Combinatorica versions. The test graphs were sparse (grid graphs),
designed to highlight the difference between the two data structures. Yes, the
new version is much faster, but note that the difference only becomes important
for graphs larger than the old Combinatorica was designed for. However, the
relative difference in run time keeps growing with increasing n. Figure 7.7(right)
plots the ratio of the running times as a function of graph size. The difference
between linear size and quadratic size is asymptotic, so the consequences become
ever more important as n gets larger.
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What is the weird bump in running times that occurs around n ~ 2507 This
likely reflects a transition between levels of the memory hierarchy. Such bumps
are not uncommon in today’s complex computer systems. Cache performance in
data structure design should be an important but not overriding consideration.
The asymptotic gains due to adjacency lists more than trumped any impact of
the cache.

Three main lessons can be taken away from our experience developing Com-
binatorica:

o To make a program run faster, just wait — Sophisticated hardware even-
tually trickles down to everybody. We observe a speedup of more than
200-fold for the original version of Combinatorica as a consequence of 15
years of hardware evolution. In this context, the further speedups we
obtained from upgrading the package become particularly dramatic.

o Asymptotics eventually do matter — It was my mistake not to anticipate
future developments in technology. While no one has a crystal ball, it is
fairly safe to say that future computers will have more memory and run
faster than today’s. This gives the edge to asymptotically more efficient
algorithms/data structures, even if their performance is close on today’s
instances. If the implementation complexity is not substantially greater,
play it safe and go with the better algorithm.

e (Constant factors can matter — With the growing importance of the study
of networks, Wolfram Research has recently moved basic graph data struc-
tures into the core of Mathematica. This permits them to be written in a
compiled instead of interpreted language, speeding all operations by about
a factor of 10 over Combinatorica.

Speeding up a computation by a factor of 10 is often very important,
taking it from a week down to a day, or a year down to a month. This
book focuses largely on asymptotic complexity, because we seek to teach
fundamental principles. But constants can matter in practice.

7.4 War Story: Getting the Graph

“It takes five minutes just to read the data. We will never have time to make it
do something interesting.”

The young graduate student was bright and eager, but green to the power
of data structures. She would soon come to appreciate their power.

As described in a previous war story (see Section 3.6 (page 89)), we were
experimenting with algorithms to extract triangular strips for the fast rendering
of triangulated surfaces. The task of finding a small number of strips that cover
each triangle in a mesh can be modeled as a graph problem. The graph has
a vertex for every triangle of the mesh, with an edge between every pair of
vertices representing adjacent triangles. This dual graph representation (see
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Figure 7.8: The dual graph (dashed lines) of a triangulation

Figure 7.8) captures all information needed to partition the triangulation into
triangle strips.

The first step in crafting a program that constructs a good set of strips was
to build the dual graph of the triangulation. This I sent the student off to do.
A few days later, she came back and announced that it took her machine over
five minutes to construct the dual graph of a few thousand triangles.

“Nomnsense!” 1 proclaimed. “You must be doing something very wasteful in
building the graph. What format is the data in?”

“Well, it starts out with a list of the three-dimensional coordinates of the
vertices used in the model and then follows with a list of triangles. Each triangle
is described by a list of three indices into the vertex coordinates. Here is a small
example,”

VERTICES 4

0.000000 240.000000 0.000000
204.000000 240.000000 0.000000
204.000000 0.000000 0.000000
0.000000 0.000000 0.000000
TRIANGLES 2

013

123

“I see. So the first triangle uses all but the third point, since all the indices
start from zero. The two triangles must share an edge formed by points 1 and
37

“Yeah, that’s right,” she confirmed.

“OK. Now tell me how you built your dual graph from this file.”

“Well, the geometric position of the points doesn’t affect the structure of
the graph, so I can ignore it. My dual graph is going to have as many vertices
as the number of triangles. I set up an adjacency list data structure with that
many vertices. As I read in each triangle, I compare it to each of the others to
check whether it has two end points in common. If it does, then I add an edge
from the new triangle to this one.”

I started to sputter. “But that’s your problem right there! You are com-
paring each triangle against every other triangle, so that constructing the dual
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graph will be quadratic in the number of triangles. Reading the input graph
should take linear time!”

“I'm not comparing every triangle against every other triangle. On average,
it only tests against half or a third of the triangles.”

“Swell. But that still leaves us with an O(n?) algorithm. That is much too
slow.”

She stood her ground. “Well, don’t just complain. Help me fix it!”

Fair enough. I started to think. We needed some quick method to screen
away most of the triangles that would not be adjacent to the new triangle
(1,7, k). What we really needed was a separate list of all the triangles that go
through each of the points i, j, and k. By Euler’s formula for planar graphs,
the average point is incident to fewer than six triangles. This would compare
each new triangle against fewer than twenty others, instead of most of them.

“We are going to need a data structure consisting of an array with one
element for every vertex in the original data set. This element is going to be a
list of all the triangles that pass through that vertex. When we read in a new
triangle, we will look up the three relevant lists in the array and compare each
of these against the new triangle. Actually, only two of the three lists need be
tested, since any adjacent triangles will share two points in common. We will
add an edge to our graph for every triangle pair sharing two vertices. Finally,
we will add our new triangle to each of the three affected lists, so they will be
updated for the next triangle read.”

She thought about this for a while and smiled. “Got it, Chief. T’ll let you
know what happens.”

The next day she reported that the graph could be built in seconds, even
for much larger models. From here, she went on to build a successful program
for extracting triangle strips, as reported in Section 3.6 (page 89).

Take-Home Lesson: Even elementary problems like initializing data structures
can prove to be bottlenecks in algorithm development. Programs working with
large amounts of data must run in linear or near-linear time. Such tight per-
formance demands leave no room to be sloppy. Once you focus on the need for
linear-time performance, an appropriate algorithm or heuristic can usually be
found to do the job.

7.5 Traversing a Graph

Perhaps the most fundamental graph problem is to visit every edge and vertex
in a graph in a systematic way. Indeed, all the basic bookkeeping operations on
graphs (such as printing or copying graphs, and converting between alternative
representations) are applications of graph traversal.

Mazes are naturally represented by graphs, where each graph vertex denotes
a junction of the maze, and each graph edge denotes a passageway in the maze.
Thus, any graph traversal algorithm must be powerful enough to get us out of
an arbitrary maze. For efficiency, we must make sure we don’t get trapped in
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the maze and visit the same place repeatedly. For correctness, we must do the
traversal in a systematic way to guarantee that we find a way out of the maze.
Our search must take us through every edge and vertex in the graph.

The key idea behind graph traversal is to mark each vertex when we first visit
it and keep track of what we have not yet completely explored. Bread crumbs
and unraveled threads have been used to mark visited places in fairy-tale mazes,
but we will rely on Boolean flags or enumerated types.

Each vertex will exist in one of three states:

e Undiscovered — the vertex is in its initial, virgin state.

e Discovered — the vertex has been found, but we have not yet checked out
all its incident edges.

e Processed — the vertex after we have visited all of its incident edges.

Obviously, a vertex cannot be processed until after we discover it, so the
state of each vertex progresses from undiscovered to discovered to processed over
the course of the traversal.

We must also maintain a structure containing the vertices that we have
discovered but not yet completely processed. Initially, only the single start
vertex is considered to be discovered. To completely explore a vertex v, we
must evaluate each edge leaving v. If an edge goes to an undiscovered vertex ,
we mark = discovered and add it to the list of work to do in the future. If an edge
goes to a processed vertex, we ignore that vertex, because further contemplation
will tell us nothing new about the graph. Similarly, we can ignore any edge going
to a discovered but not processed vertex, because that destination already resides
on the list of vertices to process.

Fach undirected edge will be considered exactly twice, once when each of
its endpoints is explored. Directed edges will be considered only once, when
exploring the source vertex. Every edge and vertex in the connected component
must eventually be visited. Why? Suppose that there exists a vertex w that
remains unvisited, whose neighbor v was visited. This neighbor v will eventually
be explored, after which we will certainly visit u. Thus, we must find everything
that is there to be found.

I describe the mechanics of these traversal algorithms and the significance
of the traversal order below.

7.6 Breadth-First Search

The basic breadth-first search algorithm is given below. At some point during
the course of a traversal, every node in the graph changes state from undiscovered
to discovered. In a breadth-first search of an undirected graph, we assign a
direction to each edge, from the discoverer u to the discovered v. We thus denote
u to be the parent of v. Since each node has exactly one parent, except for the
root, this defines a tree on the vertices of the graph. This tree, illustrated in
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Figure 7.9: An undirected graph and its breadth-first search tree. Dashed
lines, which are not part of the tree, show graph edges that go to discovered or
processed vertices.

Figure 7.9, defines a shortest path from the root to every other node in the tree.
This property makes breadth-first search very useful in shortest path problems.

BFS(G, s)
Initialize each vertex u € V[G] so
state[u] = “undiscovered”
plu] = nil, i.e. no parent is in the BFS tree
state[s] = “discovered”
Q = {s}
while Q # 0 do
u = dequeue[Q)]
process vertex u if desired
for each vertex v that is adjacent to u
process edge (u,v) if desired
if state[v] = “undiscovered” then
state[v] = “discovered”
plv] =u
enqueue(Q, v]
state[u] = “processed”

The graph edges that do not appear in the breadth-first search tree also
have special properties. For undirected graphs, non-tree edges can point only
to vertices on the same level as the parent vertex, or to vertices on the level
directly below the parent. These properties follow easily from the fact that each
path in the tree must be a shortest path in the graph. For a directed graph,
a back-pointing edge (u,v) can exist whenever v lies closer to the root than u
does.

Implementation

Our breadth-first search implementation bfs uses two Boolean arrays to main-
tain our knowledge about each vertex in the graph. A vertex is discovered
the first time we visit it. A vertex is considered processed after we have tra-
versed all outgoing edges from it. Thus, each vertex passes from undiscovered
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to discovered to processed over the course of the search. This information
could have been maintained using one enumerated type variable, but we used
two Boolean variables instead.

bool processed[MAXV+1]; /* which vertices have been processed */
bool discovered[MAXV+1]; /* which vertices have been found */
int parent [MAXV+1]; /* discovery relation */

Each vertex is initialized as undiscovered:

void initialize_search(graph *g) {
int i; /* counter */

time = 0;

for (i = 0; i <= g->nvertices; i++) {
processed[i] = false;
discovered[i] = false;
parent[i] = -1;

Once a vertex is discovered, it is placed on a queue. Since we process these
vertices in first-in, first-out (FIFO) order, the oldest vertices are expanded first,
which are exactly those closest to the root:

void bfs(graph *g, int start) {

queue q; /* queue of vertices to visit */
int v; /* current vertex */

int y; /* successor vertex */

edgenode *p; /* temporary pointer */

init_queue (&q);
enqueue (&q, start);
discovered[start] = true;

while (!empty_queue(&q)) {
v = dequeue(&q);
process_vertex_early(v) ;
processed[v] = true;
p = g—>edges[v];
while (p !'= NULL) {
y =PV
if ((!processedl[y]) || g->directed) {
process_edge(v, y);
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}

if (!discoveredl[y]) {
enqueue (&q,y) ;
discovered[y] = true;
parent [y] = v;

}

P = p—>next;

}

process_vertex_late(v);

7.6.1 Exploiting Traversal

The exact behavior of bfs depends upon the functions process_vertex_early(),
process_vertex_late(), and process_edge(). Through these functions, we
can customize what the traversal does as it makes its one official visit to each
edge and each vertex. Initially, we will do all vertex processing on entry, so
process_vertex_late() returns without action:

void process_vertex_late(int v) {

3

By setting the active functions to

void process_vertex_early(int v) {
printf ("processed vertex J%d\n", v);

3

void process_edge(int x, int y) {
printf ("processed edge (%d,%d)\n", x, y);
}

we print each vertex and edge exactly once. If we instead set process_edge to

void process_edge(int x, int y) {
nedges = nedges + 1;

}

we get an accurate count of the number of edges. Different algorithms perform
different actions on vertices or edges as they are encountered. These functions
give us the freedom to easily customize these actions.
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7.6.2 Finding Paths

The parent array that is filled over the course of bfs () is very useful for finding
interesting paths through a graph. The vertex that first discovered vertex i is
defined as the parent[i]. Every vertex is discovered once during the course of
traversal, so every node has a parent, except for the start node. This parent
relation defines a tree of discovery, with the start node as the root of the tree.

Because vertices are discovered in order of increasing distance from the root,
this tree has a very important property. The unique tree path from the root to
each node 2 € V uses the smallest number of edges (or equivalently, intermediate
nodes) possible on any root-to-z path in the graph.

We can reconstruct this path by following the chain of ancestors from x
to the root. Note that we have to work backward. We cannot find the path
from the root to x, because this does not agree with the direction of the parent
pointers. Instead, we must find the path from z to the root. Since this is the
reverse of how we normally want the path, we can either (1) store it and then
explicitly reverse it using a stack, or (2) let recursion reverse it for us, as follows:

void find_path(int start, int end, int parents[]) {

if ((start == end) || (end == -1)) {
printf ("\n%d", start);
} else {

find_path(start, parents[end], parents);
printf (" %d", end);

On our breadth-first search graph example (Figure 7.9) our algorithm gen-
erated the following parent relation:

vertex | 1 2 3 4 5 6 7 8
parent‘—l 12 3 2 5 1 1
For the shortest path from 1 to 6, this parent relation yields the path {1,2,5,6}.
There are two points to remember when using breadth-first search to find a
shortest path from z to y: First, the shortest path tree is only useful if BF'S was
performed with x as the root of the search. Second, BFS gives the shortest path
only if the graph is unweighted. We will present algorithms for finding shortest
paths in weighted graphs in Section 8.3.1 (page 258).

7.7 Applications of Breadth-First Search

Many elementary graph algorithms perform one or two traversals of the graph,
while doing something along the way. Properly implemented using adjacency
lists, any such algorithm is destined to be linear, since BFS runs in O(n + m)
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time for both directed and undirected graphs. This is optimal, since this is as
fast as one can ever hope to just read an n-vertex, m-edge graph.

The trick is seeing when such traversal approaches are destined to work. I
present several examples below.

7.7.1 Connected Components

We say that a graph is connected if there is a path between any two vertices. Ev-
ery person can reach every other person through a chain of links if the friendship
graph is connected.

A connected component of an undirected graph is a maximal set of vertices
such that there is a path between every pair of vertices. The components are
separate “pieces” of the graph such that there is no connection between the
pieces. If we envision tribes in remote parts of the world that have not yet been
encountered, each such tribe would form a separate connected component in
the friendship graph. A remote hermit, or extremely uncongenial fellow, would
represent a connected component of one vertex.

An amazing number of seemingly complicated problems reduce to finding or
counting connected components. For example, deciding whether a puzzle such
as Rubik’s cube or the 15-puzzle can be solved from any position is really asking
whether the graph of possible configurations is connected.

Connected components can be found using breadth-first search, since the
vertex order does not matter. We begin by performing a search starting from
an arbitrary vertex. Anything we discover during this search must be part of the
same connected component. We then repeat the search from any undiscovered
vertex (if one exists) to define the next component, and so on until all vertices
have been found:

void connected_components(graph *g) {
int c; /* component number */
int i; /* counter */

initialize_search(g);

c = 0;
for (i = 1; i <= g->nvertices; i++) {
if (!discovered[i]) {
c=c+ 1;
printf ("Component %d:", c);
bfs(g, 1);
printf ("\n");
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void process_vertex_early(int v) { /* vertex to process */
printf (" %d", v);
}

void process_edge(int x, int y) {

3

Observe how we increment a counter ¢ denoting the current component num-
ber with each call to bfs. Alternatively, we could have explicitly bound each
vertex to its component number (instead of printing the vertices in each com-
ponent) by changing the action of process_vertex.

There are two distinct notions of connectivity for directed graphs, leading
to algorithms for finding both weakly connected and strongly connected com-
ponents. Both of these can be found in O(n + m) time, as discussed in Section
18.1 (page 542).

7.7.2 Two-Coloring Graphs

The vertez-coloring problem seeks to assign a label (or color) to each vertex of
a graph such that no edge links any two vertices of the same color. We can
easily avoid all conflicts by assigning each vertex a unique color. However, the
goal is to use as few colors as possible. Vertex coloring problems often arise in
scheduling applications, such as register allocation in compilers. See Section 19.7
(page 604) for a full treatment of vertex-coloring algorithms and applications.

A graph is bipartite if it can be colored without conflicts while using only
two colors. Bipartite graphs are important because they arise naturally in many
applications. Consider the “mutually interested-in” graph in a heterosexual
world, where people consider only those of opposing gender. In this simple
model, gender would define a two-coloring of the graph.

But how can we find an appropriate two-coloring of such a graph, thus
separating men from women? Suppose we declare by fiat that the starting
vertex is “male.” All vertices adjacent to this man must be “female,” provided
the graph is indeed bipartite.

We can augment breadth-first search so that whenever we discover a new
vertex, we color it the opposite of its parent. We check whether any non-tree
edge links two vertices of the same color. Such a conflict means that the graph
cannot be two-colored. If the process terminates without conflicts, we have
constructed a proper two-coloring.
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void twocolor(graph *g) {
int i; /* counter */

for (i = 1; 1 <= (g->nvertices); i++) {
color[i] = UNCOLORED;
}

bipartite = true;
initialize_search(g);

for (i = 1; 1 <= (g->nvertices); i++) {
if (!discovered[i]) {
color[i] = WHITE;
bfs(g, 1);

void process_edge(int x, int y) {
if (color[x] == colorl[yl) {
bipartite = false;
printf ("Warning: not bipartite, due to (%d,%d)\n", x, y);
}

color[y] = complement(color([x]);

int complement(int color) {
if (color == WHITE) {
return (BLACK) ;
}

if (color == BLACK) {
return (WHITE) ;
}

return (UNCOLORED) ;

We can assign the first vertex in any connected component to be whatever
color/gender we wish. BFS can separate men from women, but we can’t tell
which gender corresponds to which color just by using the graph structure. Also,
bipartite graphs require distinct and binary categorical attributes, so they don’t



7.8. DEPTH-FIRST SEARCH 221

model the real-world variation in sexual preferences and gender identity.

Take-Home Lesson: Breadth-first and depth-first search provide mechanisms
to visit each edge and vertex of the graph. They prove the basis of most simple,
efficient graph algorithms.

7.8 Depth-First Search

There are two primary graph traversal algorithms: breadth-first search (BFS)
and depth-first search (DFS). For certain problems, it makes absolutely no dif-
ference which you use, but in others the distinction is crucial.

The difference between BFS and DFS lies in the order in which they explore
vertices. This order depends completely upon the container data structure used
to store the discovered but not processed vertices.

e Queue — By storing the vertices in a first-in, first-out (FIFO) queue, we
explore the oldest unexplored vertices first. Our explorations thus radiate
out slowly from the starting vertex, defining a breadth-first search.

e Stack — By storing the vertices in a last-in, first-out (LIFO) stack, we
explore the vertices by forging steadily along along a path, visiting a new
neighbor if one is available, and backing up only when we are surrounded
by previously discovered vertices. Our explorations thus quickly wander
away from the starting point, defining a depth-first search.

Our implementation of dfs maintains a notion of traversal time for each
vertex. Our time clock ticks each time we enter or exit a vertex. We keep track
of the entry and exit times for each vertex.

Depth-first search has a neat recursive implementation, which eliminates the
need to explicitly use a stack:

DFS(G,u)
state[u] = “discovered”
process vertex u if desired
time = time + 1
entrylu] = time
for each vertex v that is adjacent to u
process edge (u,v) if desired
if state[v] = “undiscovered” then
plv] =wu
DFS(G,v)
state[u] = “processed”
exit[u] = time
time = time + 1

The time intervals have interesting and useful properties with respect to
depth-first search:
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v K\

Figure 7.10: An undirected graph and its depth-first search tree. Dashed lines,
which are not part of the tree, indicate back edges.

o Who is an ancestor? — Suppose that x is an ancestor of y in the DFS tree.
This implies that we must enter x before y, since there is no way we can
be born before our own parent or grandparent! We also must exit y before
we exit x, because the mechanics of DFS ensure we cannot exit z until
after we have backed up from the search of all its descendants. Thus, the
time interval of y must be properly nested within the interval of ancestor
x.

e How many descendants? — The difference between the exit and entry
times for v tells us how many descendants v has in the DFS tree. The
clock gets incremented on each vertex entry and vertex exit, so half the
time difference denotes the number of descendants of v.

We will use these entry and exit times in several applications of depth-
first search, particularly topological sorting and biconnected/strongly connected
components. We may need to take separate actions on each entry and exit, thus
motivating distinct process_vertex_early and process_vertex_late routines
called from dfs. For the DF'S tree example presented in Figure 7.10, the parent
of each vertex with its entry and exit times are:

vertex ‘ 1 2 3 4 5 6 7 8
parent | —1 1 2 3 4 5 2 1
entry 1 2 3 4 5 6 11 14
exit 16 13 10 9 8 7 12 15

The other important property of a depth-first search is that it partitions
the edges of an undirected graph into exactly two classes: tree edges and back
edges. The tree edges discover new vertices, and are those encoded in the parent
relation. Back edges are those whose other endpoint is an ancestor of the vertex
being expanded, so they point back into the tree.

An amazing property of depth-first search is that all edges fall into one of
these two classes. Why can’t an edge go to a sibling or cousin node, instead of
an ancestor? All nodes reachable from a given vertex v are expanded before we
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finish with the traversal from v, so such topologies are impossible for undirected
graphs. This edge classification proves fundamental to the correctness of DFS-
based algorithms.

Implementation

Depth-first search can be thought of as breadth-first search, but using a stack
instead of a queue to store unfinished vertices. The beauty of implementing dfs
recursively is that recursion eliminates the need to keep an explicit stack:

void dfs(graph *g, int v) {
edgenode *p; /* temporary pointer */
int y; /* successor vertex */

if (finished) {

return; /* allow for search termination */
}
discovered[v] = true;
time = time + 1;
entry_time[v] = time;

process_vertex_early(v);

p = g—>edges[v];
while (p !'= NULL) {
y = P2V
if (!discovered[y]) {
parent[y] = v;
process_edge (v, y);
dfs(g, y);
} else if (((!processed[y]) && (parent[v] != y)) || (g->directed)) {
process_edge (v, y);

}

if (finished) {
return;

}

P = p—>next;

}

process_vertex_late(v);
time = time + 1;
exit_time[v] = time;
processed[v] = true;
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Depth-first search uses essentially the same idea as backtracking, which we
study in Section 9.1 (page 281). Both involve exhaustively searching all pos-
sibilities by advancing if it is possible, and backing up only when there is no
remaining unexplored possibility for further advance. Both are most easily un-
derstood as recursive algorithms.

Take-Home Lesson: DFS organizes vertices by entry/exit times, and edges
into tree and back edges. This organization is what gives DFS its real power.

7.9 Applications of Depth-First Search

As algorithm design paradigms go, depth-first search isn’t particularly intimi-
dating. It is surprisingly subtle, however, meaning that its correctness requires
getting details right.

The correctness of a DFS-based algorithm depends upon specifics of exactly
when we process the edges and vertices. We can process vertex v either before we
have traversed any outgoing edge from v (process_vertex_ early()), or after
we have finished processing all of them (process_vertex_late()). Sometimes
we will take special actions at both times, say process_vertex_early() to ini-
tialize a vertex-specific data structure, which will be modified on edge-processing
operations and then analyzed afterwards using process_vertex_late().

In undirected graphs, each edge (x,y) sits in the adjacency lists of vertex x
and y. There are thus two potential times to process each edge (z,y), namely
when exploring x and when exploring y. The labeling of edges as tree edges or
back edges occurs the first time the edge is explored. This first time we see an
edge is usually a logical time to do edge-specific processing. Sometimes, we may
want to take different action the second time we see an edge.

But when we encounter edge (z,y) from x, how can we tell if we have pre-
viously traversed the edge from y? The issue is easy if vertex y is undiscovered:
(z,y) becomes a tree edge so this must be the first time. The issue is also easy
if y has been completely processed: we explored the edge when we explored y
so this must be the second time. But what if y is an ancestor of x, and thus in
a discovered state? Careful reflection will convince you that this must be our
first traversal unless y is the immediate ancestor of x—that is, (y,z) is a tree
edge. This can be established by testing if y == parent [x].

I find that the subtlety of depth-first search-based algorithms kicks me in
the head whenever I try to implement one.? I encourage you to analyze these
implementations carefully to see where the problematic cases arise and why.

7.9.1 Finding Cycles

Back edges are the key to finding a cycle in an undirected graph. If there is no
back edge, all edges are tree edges, and no cycle exists in a tree. But any back

2Indeed, the most horrifying errors in the previous edition of this book came in this section.
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Figure 7.11: An articulation vertex is the weakest point in the graph.

edge going from x to an ancestor y creates a cycle with the tree path from y to
x. Such a cycle is easy to find using dfs:

void process_edge(int x, int y) {
if (parent[y] !'= x) { /* found back edge! */
printf("Cycle from %d to %d:", y, x);
find_path(y, x, parent);
finished = true;

The correctness of this cycle detection algorithm depends upon process-
ing each undirected edge exactly once. Otherwise, a spurious two-vertex cycle
(x,y,x) could be composed from the two traversals of any single undirected
edge. We use the finished flag to terminate after finding the first cycle. With-
out it we would waste time discovering a new cycle with every back edge before
stopping; a complete graph has ©(n?) such cycles.

7.9.2 Articulation Vertices

Suppose you are a vandal seeking to disrupt the telephone trunk line network.
Which station in Figure 7.11 should you blow up to cause the maximum amount
of damage? Observe that there is a single point of failure—a single vertex whose
deletion disconnects a connected component of the graph. Such a vertex v is
called an articulation vertex or cut-node. Any graph that contains an articula-
tion vertex is inherently fragile, because deleting v causes a loss of connectivity
between other nodes.

I presented a breadth-first search-based connected components algorithm in
Section 7.7.1 (page 218). In general, the connectivity of a graph is the smallest
number of vertices whose deletion will disconnect the graph. The connectivity
is 1 if the graph has an articulation vertex. More robust graphs without such
a vertex are said to be biconnected. Connectivity will be further discussed in
Section 18.8 (page 568).

Testing for articulation vertices by brute force is easy. Temporarily delete
each candidate vertex v, and then do a BFS or DFS traversal of the remaining
graph to establish whether it is still connected. The total time for n such
traversals is O(n(m + n)). There is a clever linear-time algorithm, however,
that tests all the vertices of a connected graph using a single depth-first search.
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Figure 7.12: DFS tree of a graph containing three articulation vertices (namely
1, 2, and 5). Back edges keep vertices 3 and 4 from being cut-nodes, while green
vertices 6, 7, and 8 escape by being leaves of the DFS tree. Red edges (1,8) and
(5,6) are bridges whose deletion disconnect the graph.

What might the depth-first search tree tell us about articulation vertices?
This tree connects all the vertices of a connected component of the graph. If
the DF'S tree represented the entirety of the graph, all internal (non-leaf) nodes
would be articulation vertices, since deleting any one of them would separate a
leaf from the root. But blowing up a leaf (shown in green in Figure 7.12) would
not disconnect the tree, because it connects no one but itself to the main trunk.

The root of the search tree is a special case. If it has only one child, it func-
tions as a leaf. But if the root has two or more children, its deletion disconnects
them, making the root an articulation vertex.

General graphs are more complex than trees. But a depth-first search of
a general graph partitions the edges into tree edges and back edges. Think of
these back edges as security cables linking a vertex back to one of its ancestors.
The security cable from z back to y ensures that none of the vertices on the tree
path between z and y can be articulation vertices. Delete any of these vertices,
and the security cable will still hold all of them to the rest of the tree.

Finding articulation vertices requires keeping track of the extent to which
back edges (i.e., security cables) link chunks of the DFS tree back to ancestor
nodes. Let reachable_ancestor[v] denote the earliest reachable ancestor of
vertex v, meaning the oldest ancestor of v that we can reach from a descendant
of v by using a back edge. Initially, reachable_ancestor[v] = v:

int reachable_ancestor [MAXV+1]; /* earliest reachable ancestor of v */
int tree_out_degree[MAXV+1]; /* DFS tree outdegree of v */
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root cutnode

bridge cutnode parent cutnode (of v)

bridge cutnode

Figure 7.13: The three cases of articulation vertices: root, bridge, and parent
cut-nodes.

void process_vertex_early(int v) {
reachable_ancestor([v] = v;

}

We update reachable_ancestor[v] whenever we encounter a back edge
that takes us to an earlier ancestor than we have previously seen. The relative
age/rank of our ancestors can be determined from their entry_time’s:

void process_edge(int x, int y) {
int class; /* edge class */

class = edge_classification(x, y);

if (class == TREE) {
tree_out_degree[x] = tree_out_degree[x] + 1;

}

if ((class == BACK) && (parent[x] != y)) {
if (entry_time[y] < entry_time[reachable_ancestor[x]]) {
reachable_ancestor[x] = y;

}

The key issue is determining how the reachability relation impacts whether
vertex v is an articulation vertex. There are three cases, illustrated in Figure
7.13 and discussed below. Note that these cases are not mutually exclusive. A
single vertex v might be an articulation vertex for multiple reasons:
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e Root cut-nodes — If the root of the DFS tree has two or more children, it
must be an articulation vertex. No edges from the subtree of the second
child can possibly connect to the subtree of the first child.

e Bridge cut-nodes — If the earliest reachable vertex from v is v, then deleting
the single edge (parent[v],v) disconnects the graph. Clearly parent[v]
must be an articulation vertex, since it cuts v from the graph. Vertex v
is also an articulation vertex unless it is a leaf of the DFS tree. For any
leaf, nothing falls off when you cut it.

e Parent cut-nodes — If the earliest reachable vertex from v is the parent of
v, then deleting the parent must sever v from the tree unless the parent is
the root. This is always the case for the deeper vertex of a bridge, unless
it is a leaf.

The routine below systematically evaluates each of these three conditions
as we back up from the vertex after traversing all outgoing edges. We use
entry_time[v] to represent the age of vertex v. The reachability time time_v
calculated below denotes the oldest vertex that can be reached using back edges.
Getting back to an ancestor above v rules out the possibility of v being a cut-
node:

void process_vertex_late(int v) {

bool root; /* is parent[v] the root of the DFS tree? */
int time_v; /* earliest reachable time for v */

int time_parent; /* earliest reachable time for parent[v] */
if (parent[v] == -1) { /* test if v is the root */

if (tree_out_degreel[v] > 1) {
printf ("root articulation vertex: %d \n",v);

}

return;

root = (parent[parent[v]] == -1); /* 1is parent[v] the root? */

if ('root) {
if (reachable_ancestor[v] == parent[v]) {
printf ("parent articulation vertex: %d \n", parent[v]);

}

if (reachable_ancestor[v] == v) {
printf ("bridge articulation vertex: %d \n",parent[v]);

if (tree_out_degree[v] > 0) { /* 45 v 15 not a leaf? */
printf ("bridge articulation vertex: %d \n", v);
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Tree Edges Forward Edge Back Edge Cross Edges

Figure 7.14: The possible edge cases for graph traversal. Forward edges and
cross edges can occur in DFS only on directed graphs.

time_v = entry_time[reachable_ancestor[v]];
time_parent = entry_time[reachable_ancestor[parent[v]]];

if (time_v < time_parent) {
reachable_ancestor[parent [v]] = reachable_ancestor[v];

3

The last lines of this routine govern when we back up from a node’s highest
reachable ancestor to its parent, namely whenever it is higher than the parent’s
earliest ancestor to date.

We can alternatively talk about vulnerability in terms of edge failures instead
of vertex failures. Perhaps our vandal would find it easier to cut a cable instead
of blowing up a switching station. A single edge whose deletion disconnects the
graph is called a bridge; any graph without such an edge is said to be edge-
biconnected.

Identifying whether a given edge (z,y) is a bridge is easily done in linear
time, by deleting the edge and testing whether the resulting graph is connected.
In fact all bridges can be identified in the same O(n+m) time using DFS. Edge
(x,y) is a bridge if (1) it is a tree edge, and (2) no back edge connects from y
or below to x or above. This can be computed with a appropriate modification
to the process_late_vertex function.
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7.10 Depth-First Search on Directed Graphs

Depth-first search on an undirected graph proves useful because it organizes the
edges of the graph in a very precise way. Over the course of a DFS from a given
source vertex, each edge will be assigned one of potentially four labels, as shown
in Figure 7.14.

When traversing undirected graphs, every edge is either in the depth-first
search tree or will be a back edge to an ancestor in the tree. It is important to
understand why. Might we encounter a “forward edge” (z,y), directed toward
a descendant vertex? No, because in this case, we would have first traversed
(x,y) while exploring y, making it a back edge. Might we encounter a “cross
edge” (z,vy), linking two unrelated vertices? Again no, because we would have
first discovered this edge when we explored y, making it a tree edge.

But for directed graphs, depth-first search labelings can take on a wider range
of possibilities. Indeed, all four of the edge cases in Figure 7.14 can occur in
traversing directed graphs. This classification still proves useful in organizing
algorithms on directed graphs, because we typically take a different action on
edges from each different class.

The correct labeling of each edge can be readily determined from the state,
discovery time, and parent of each vertex, as encoded in the following function:

int edge_classification(int x, int y) {
if (parent[y] == x) {
return(TREE) ;
}

if (discoveredl[y] && !processedly]) {
return (BACK) ;
}

if (processedl[y] && (entry_timel[y]>entry_timel[x])) {
return (FORWARD) ;
}

if (processed[y] && (entry_time[y]<entry_time[x])) {
return(CROSS) ;
¥
printf ("Warning: self loop (%d,%d)\n", x, y);
return -1;
Just as with BFS, this implementation of the depth-first search algorithm

includes places to optionally process each vertex and edge—say to copy them,
print them, or count them. Both DFS and BF'S will traverse all edges in the same
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Figure 7.15: A DAG with only one topological sort (G, A, B,C, F, E, D)

connected component as the starting point. Both must start with a vertex in
each component to traverse a disconnected graph. The only important difference
between them is the way they organize and label the edges.

I encourage the reader to convince themselves of the correctness of the four
conditions above. What I said earlier about the subtlety of depth-first search
goes double for directed graphs.

7.10.1 Topological Sorting

Topological sorting is the most important operation on directed acyclic graphs
(DAGsS). It orders the vertices on a line such that all directed edges go from left
to right. Such an ordering cannot exist if the graph contains a directed cycle,
because there is no way you can keep moving right on a line and still return
back to where you started from!

Each DAG has at least one topological sort. The importance of topological
sorting is that it gives us an ordering so we can process each vertex before any of
its successors. Suppose the directed edges represented precedence constraints,
such that edge (x,y) means job & must be done before job y. Any topological
sort then defines a feasible schedule. Indeed, there can be many such orderings
for a given DAG.

But the applications go deeper. Suppose we seek the shortest (or longest)
path from z to y in a DAG. No vertex v appearing after y in the topological
order can possibly contribute to any such path, because there will be no way
to get from v back to y. We can appropriately process all the vertices from left
to right in topological order, considering the impact of their outgoing edges,
and know that we will have looked at everything we need before we need it.
Topological sorting proves very useful in essentially any algorithmic problem on
DAGs, as discussed in the catalog in Section 18.2 (page 546).

Topological sorting can be performed efficiently using depth-first search. A
directed graph is a DAG iff no back edges are encountered. Labeling the vertices
in the reverse order that they are marked processed defines a topological sort
of a DAG. Why? Consider what happens to each directed edge (z,y) as we
encounter it exploring vertex x:

o If y is currently undiscovered, then we start a DFS of y before we can
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continue with x. Thus, y must be marked processed before x is, so z
appears before y in the topological order, as it must.

o If y is discovered but not processed, then (x,y) is a back edge, which is
impossible in a DAG because it creates a cycle.

e If y is processed, then it will have been so labeled before x. Therefore, x
appears before y in the topological order, as it must.

Study the following implementation:

void process_vertex_late(int v) {
push(&sorted, v);
}

void process_edge(int x, int y) {
int class; /* edge class */

class = edge_classification(x, y);

if (class == BACK) {
printf ("Warning: directed cycle found, not a DAG\n");
}

void topsort(graph *g) {
int i; /* counter */

init_stack(&sorted);

for (i = 1; i <= g->nvertices; i++) {
if (!discovered[i]) {
dfs(g, 1);
}

}
print_stack(&sorted); /* report topological order */

We push each vertex onto a stack as soon as we have evaluated all outgoing
edges. The top vertex on the stack always has no incoming edges from any
vertex on the stack. Repeatedly popping them off yields a topological ordering.

7.10.2 Strongly Connected Components

A directed graph is strongly connected if there is a directed path between any two
vertices. Road networks had better be strongly connected: otherwise there will
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be places you can drive to but not drive home from without violating one-way
signs.

It is straightforward to use graph traversal to test whether a graph G =
(V,E) is strongly connected in linear time. The graph is strongly connected
iff from any vertex v in G (1) all vertices are reachable from v and (2) all
vertices can reach v. To test if condition (1) holds, we can do a BFS or DFS
traversal from v to establish whether all vertices get discovered. If so, all must
be reachable from v.

To test if there are paths from every vertex to v, we construct the transpose
graph GT = (V, E'), which has the same vertex and edge set as G' but with all
edges reversed—that is, directed edge (z,y) € F iff (y,z) € E'.

graph *transpose(graph *g) {
graph *gt; /* transpose of graph g */
int x; /* counter */
edgenode *p; /* temporary pointer */

gt = (graph *) malloc(sizeof (graph));
initialize_graph(gt, true); /* initialize directed graph */
gt->nvertices = g->nvertices;

for (x = 1; x <= g->nvertices; x++) {
p = g—>edges[x];
while (p !'= NULL) {
insert_edge(gt, p->y, x, true);
P = p—>next;

}

return(gt) ;

Any path from v to z in GT corresponds to a path from z to v in G. By doing
a second DFS, this one from v in G7', we identify all vertices that have paths to
v in G.

All directed graphs can be partitioned into strongly connected components,
such that a directed path exists between every pair of vertices in the component,
as shown in Figure 7.16 (left). The set of such components can be determined
using a more subtle variation of this double DFS approach:

void strong_components(graph *g) {
graph *gt; /* transpose of graph g */
int i; /* counter */
int v; /* vertex in component */
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Figure 7.16: The strongly connected components of a graph G (left), with its
associated DFS tree (center). The reverse of its DFS finishing order from vertex
11is [3,5,7,6,8,4,2,1], which defines the vertex order for the second traversal
of the transpose G7 (right).

init_stack(&dfslorder);
initialize_search(g);
for (i = 1; 1 <= (g->nvertices); i++) {
if (!discovered[i]) {
dfs(g, i);
}
}

gt = transpose(g);
initialize_search(gt);

components_found = O;
while (!empty_stack(&dfslorder)) {
v = pop(&dfslorder);
if (!discovered[v]) {
components_found ++;
printf ("Component %d:", components_found);
dfs2(gt, v);
printf("\n");

The first traversal pushes the vertices on a stack in the reverse order they
were processed, just as with topological sort in Section 7.10.1 (page 231). The
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connection makes sense: DAGs are directed graphs where each vertex forms its
own strongly connected component. On a DAG, the top vertex on the stack will
be one that cannot reach any other vertex. The bookkeeping here is identical
to topological sort:

void process_vertex_late(int v) {
push(&dfslorder,v) ;
}

The second traversal, on the transposed graph, behaves like the connected
component algorithm of Section 7.7.1 (page 218), except we consider starting
vertices in the order they appear on the stack. Each traversal from v will
discover all reachable vertices from the transpose G7, meaning the vertices that
have paths to v in G. These reachable vertices define the strongly connected
component of v, because they represent the least reachable vertices in G:

void process_vertex_early2(int v) {
printf (" %d", v);
}

The correctness of this is subtle. Observe that first DFS places vertices on
the stack in groups based on reachability from successive starting vertices in
the original directed graph G. Thus, the vertices in the top group have the
property that none were reachable from any earlier group vertex. The second
traversal in G7', starting from the last vertex v of G, finds all the reachable
vertices from v in GT that themselves reach v, meaning they define a strongly
connected component.

Chapter Notes

Our treatment of graph traversal represents an expanded version of material
from chapter 9 of Skiena and Revilla [SR03]. The Combinatorica graph library
discussed in the war story is best described in the old [Ski90] and new editions
[PS03] of the associated book. Accessible introductions to the science of social
networks include Barabasi [Bar03], Easley and Kleinberg [EK10], and Watts
[Wat04]. Interest in graph theory has surged with the emergence of the multi-
disciplinary field of network science, see the introductory textbooks by Barabasi
[BT16] and Newman [New18].

7.11 Exercises

Simulating Graph Algorithms
7-1. [3] For the following weighted graphs G1 (left) and G2 (right):
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(a) Report the order of the vertices encountered on a breadth-first search start-
ing from vertex A. Break all ties by picking the vertices in alphabetical
order (i.e. A before 7).

(b) Report the order of the vertices encountered on a depth-first search starting
from vertex A. Break all ties by picking the vertices in alphabetical order
(i.e. A before Z).

[3] Do a topological sort of the following graph G:
A B N

Traversal

7-3.
7-4.

7-5.

7-6.

7-7.

[8] Prove that there is a unique path between any pair of vertices in a tree.

[3] Prove that in a breadth-first search on a undirected graph G, every edge is
either a tree edge or a cross edge, where x is neither an ancestor nor descendant
of y in cross edge (z,y).

[8] Give a linear algorithm to compute the chromatic number of graphs where
each vertex has degree at most 2. Any bipartite graph has a chromatic number
of 2. Must such graphs be bipartite?

[8] You are given a connected, undirected graph G with n vertices and m edges.
Give an O(n + m) algorithm to identify an edge you can remove from G while
still leaving G connected, if one exists. Can you reduce the running time to

O(n)?

[5] In breadth-first and depth-first search, an undiscovered node is marked dis-
covered when it is first encountered, and marked processed when it has been
completely searched. At any given moment, several nodes might be simultane-
ously in the discovered state.
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K5 5

Figure 7.17: Expression 2+3*4+(3%4) /5 as a tree and a DAG

(a) Describe a graph on n vertices and a particular starting vertex v such that
O(n) nodes are simultaneously in the discovered state during a breadth-first
search starting from v.

(b) Describe a graph on n vertices and a particular starting vertex v such that
O(n) nodes are simultaneously in the discovered state during a depth-first search
starting from v.

(c) Describe a graph on n vertices and a particular starting vertex v such that
at some point ©(n) nodes remain undiscovered, while ©(n) nodes have been
processed during a depth-first search starting from v. (Hint: there may also be
discovered nodes.)

[4] Given pre-order and in-order traversals of a binary tree (discussed in Section
3.4.1), is it possible to reconstruct the tree? If so, sketch an algorithm to do it.
If not, give a counterexample. Repeat the problem if you are given the pre-order
and post-order traversals.

[3] Present correct and efficient algorithms to convert an undirected graph G
between the following graph data structures. Give the time complexity of each
algorithm, assuming n vertices and m edges.

(a) Convert from an adjacency matrix to adjacency lists.

(b) Convert from an adjacency list representation to an incidence matrix. An
incidence matrix M has a row for each vertex and a column for each edge,
such that M[i, j] = 1 if vertex 7 is part of edge j, otherwise M[i, j] = 0.

(c) Convert from an incidence matrix to adjacency lists.

[8] Suppose an arithmetic expression is given as a tree. Each leaf is an integer
and each internal node is one of the standard arithmetical operations (+, —, *, /).
For example, the expression 2+3%4+(3%4) /5 is represented by the tree in Figure
7.17(a). Give an O(n) algorithm for evaluating such an expression, where there
are n nodes in the tree.

[5] Suppose an arithmetic expression is given as a DAG (directed acyclic graph)
with common subexpressions removed. Each leaf is an integer and each internal
node is one of the standard arithmetical operations (4, —, *, /). For example, the
expression 2+3%4+(3%4) /5 is represented by the DAG in Figure 7.17(b). Give
an O(n+m) algorithm for evaluating such a DAG, where there are n nodes and
m edges in the DAG. (Hint: modify an algorithm for the tree case to achieve
the desired efficiency.)
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7-12. [8] The war story of Section 7.4 (page 210) describes an algorithm for construct-
ing the dual graph of the triangulation efficiently, although it does not guarantee
linear time. Give a worst-case linear algorithm for the problem.

Applications

7-13. [3] The Chutes and Ladders game has a board with n cells where you seck to
travel from cell 1 to cell n. To move, a player throws a six-sided dice to determine
how many cells forward they move. This board also contains chutes and ladders
that connect certain pairs of cells. A player who lands on the mouth of a chute
immediately falls back down to the cell at the other end. A player who lands on
the base of a ladder immediately travels up to the cell at the top of the ladder.
Suppose you have rigged the dice to give you full control of the number for each
roll. Give an efficient algorithm to find the minimum number of dice throws to
win.

7-14. [8] Plum blossom poles are a Kung Fu training technique, consisting of n large
posts partially sunk into the ground, with each pole p; at position (z;,y;). Stu-
dents practice martial arts techniques by stepping from the top of one pole to
the top of another pole. In order to keep balance, each step must be more than
d meters but less than 2d meters. Give an efficient algorithm to find a safe path
from pole ps to p; if it exists.

7-15. [5] You are planning the seating arrangement for a wedding given a list of guests,
V. For each guest g you have a list of all other guests who are on bad terms
with them. Feelings are reciprocal: if h is on bad terms with g, then g is on bad
terms with h. Your goal is to arrange the seating such that no pair of guests
sitting at the same table are on bad terms with each other. There will be only
two tables at the wedding. Give an efficient algorithm to find an acceptable
seating arrangement if one exists.

Algorithm Design

7-16. [5] The square of a directed graph G = (V, E) is the graph G? = (V, E?) such
that (u,w) € E? iff there exists v € V such that (u,v) € E and (v,w) € E; that
is, there is a path of exactly two edges from u to w.
Give efficient algorithms for both adjacency lists and matrices.

7-17. [5] A wertex cover of a graph G = (V, E) is a subset of vertices V' such that
each edge in E is incident to at least one vertex of V'.

(a) Give an efficient algorithm to find a minimum-size vertex cover if G is a
tree.

(b) Let G = (V, E) be a tree such that the weight of each vertex is equal to the
degree of that vertex. Give an efficient algorithm to find a minimum-weight
vertex cover of G.

(¢c) Let G = (V, E) be a tree with arbitrary weights associated with the ver-
tices. Give an efficient algorithm to find a minimum-weight vertex cover
of G.

7-18. [3] A wertex cover of a graph G = (V, E) is a subset of vertices V' such that each
edge in E is incident to at least one vertex of V’. Delete all the leaves from any
depth-first search tree of G. Must the remaining vertices form a vertex cover of
G?7 Give a proof or a counterexample.
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7-19. [5] An independent set of an undirected graph G = (V, E) is a set of vertices U
such that no edge in F is incident to two vertices of U.

(a) Give an efficient algorithm to find a maximum-size independent set if G is
a tree.

(b) Let G = (V, E) be a tree with weights associated with the vertices such
that the weight of each vertex is equal to the degree of that vertex. Give
an efficient algorithm to find a maximum-weight independent set of G.

(c) Let G = (V, E) be a tree with arbitrary weights associated with the ver-
tices. Give an efficient algorithm to find a maximum-weight independent
set of G.

7-20. [5] A wertex cover of a graph G = (V, E) is a subset of vertices V' such that

each edge in E is incident on at least one vertex of V'. An independent set of
graph G = (V, E) is a subset of vertices V' € V such that no edge in F contains
both vertices from V.
An independent vertex cover is a subset of vertices that is both an independent
set and a vertex cover of GG. Give an efficient algorithm for testing whether G
contains an independent vertex cover. What classical graph problem does this
reduce to?

7-21. [5] Consider the problem of determining whether a given undirected graph G =
(V, E) contains a triangle, that is, a cycle of length 3.

(a) Give an O(|V|®) algorithm to find a triangle if one exists.

(b) Improve your algorithm to run in time O(|V]| - |E|). You may assume
V| < |E].

Observe that these bounds give you time to convert between the adjacency
matrix and adjacency list representations of G.

7-22. [5] Consider a set of movies My, Ma,..., My. There is a set of customers,

each one of which indicates the two movies they would like to see this weekend.
Movies are shown on Saturday evening and Sunday evening. Multiple movies
may be screened at the same time.
You must decide which movies should be televised on Saturday and which on
Sunday, so that every customer gets to see the two movies they desire. Is there a
schedule where each movie is shown at most once? Design an efficient algorithm
to find such a schedule if one exists.

7-23. [5] The diameter of a tree T' = (V, E) is given by

é

gy oLe)

(where §(u,v) is the number of edges on the path from u to v). Describe an
efficient algorithm to compute the diameter of a tree, and show the correctness
and analyze the running time of your algorithm.

7-24. [5] Given an undirected graph G with n vertices and m edges, and an integer k,
give an O(m + n) algorithm that finds the maximum induced subgraph F of G
such that each vertex in F' has degree > k, or prove that no such graph exists.
Graph F = (U, R) is an induced subgraph of graph G = (V, E) if its vertex set
U is a subset of the vertex set V' of G, and R consists of all edges of G whose
endpoints are in U.
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7-25.

7-26.
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[6] Let v and w be two vertices in an unweighted directed graph G = (V, E).
Design a linear-time algorithm to find the number of different shortest paths
(not necessarily vertex disjoint) between v and w.

[6] Design a linear-time algorithm to eliminate each vertex v of degree 2 from
a graph by replacing edges (u,v) and (v, w) by an edge (u,w). It should also
eliminate multiple copies of edges by replacing them with a single edge. Note
that removing multiple copies of an edge may create a new vertex of degree 2,
which has to be removed, and that removing a vertex of degree 2 may create
multiple edges, which also must be removed.

Directed Graphs

7-27.

7-28.

7-29.

7-30.

7-31.

7-32.

[3] The reverse of a directed graph G = (V,E) is another directed graph
G = (V,E®) on the same vertex set, but with all edges reversed; that is,
Ef = {(v,u) : (u,v) € E}. Give an O(n + m) algorithm for computing the
reverse of an n-vertex m-edge graph in adjacency list format.

[5] Your job is to arrange n ill-behaved children in a straight line, facing front.
You are given a list of m statements of the form “i hates 7.” If ¢ hates j, then
you do not want to put ¢ somewhere behind j, because then ¢ is capable of
throwing something at j.

(a) Give an algorithm that orders the line (or says that it is not possible) in
O(m + n) time.

(b) Suppose instead you want to arrange the children in rows such that if ¢
hates 7, then i must be in a lower numbered row than j. Give an efficient
algorithm to find the minimum number of rows needed, if it is possible.

[3] A particular academic program has n required courses, certain pairs of which
have prerequisite relations so that (z,y) means you must take course x before
y. How would you analyze the prerequisite pairs to make sure it is possible for
people to complete the program?

[5] Gotcha-solitaire is a game on a deck with n distinct cards (all face up) and
m gotcha pairs (i,7) such that card ¢ must be played sometime before card j.
You play by sequentially choosing cards, and win if you pick up the entire deck
without violating any gotcha pair constraints. Give an efficient algorithm to
find a winning pickup order if one exists.

[5] You are given a list of n words each of length k in a language you don’t know,
although you are told that words are sorted in lexicographic (alphabetical) order.
Reconstruct the order of the a alphabet letters (characters) in that language.
For example, if the strings are {QQZ,QZZ, XQZ, XQX, X X X }, the character
order must be @ before Z before X.

(a) Give an algorithm to efficiently reconstruct this character order. (Hint: use
a graph structure, where each node represents one letter.)

(b) What is its running time, as a function of n, k, and «?

[3] A weakly connected component in a directed graph is a connected compo-
nent ignoring the direction of the edges. Adding a single directed edge to a
directed graph can reduce the number of weakly connected components, but by
at most how many components? What about the number of strongly connected
components?
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[5] Design a linear-time algorithm that, given an undirected graph G and a
particular edge e in it, determines whether G has a cycle containing e.

[5] An arborescence of a directed graph G is a rooted tree such that there is a
directed path from the root to every other vertex in the graph. Give an efficient
and correct algorithm to test whether GG contains an arborescence, and its time
complexity.

[5] A mother vertex in a directed graph G = (V, E) is a vertex v such that all
other vertices G' can be reached by a directed path from v.

(a) Give an O(n + m) algorithm to test whether a given vertex v is a mother
of G, where n = |V| and m = |E|.

(b) Give an O(n + m) algorithm to test whether graph G contains a mother
vertex.

[8] Let G be a directed graph. We say that G is k-cyclic if every (not necessarily
simple) cycle in G contains at most k distinct nodes. Give a linear-time algo-
rithm to determine if a directed graph G is k-cyclic, where G and k are given
as inputs. Justify the correctness and running time of your algorithm.

[9] A tournament is a directed graph formed by taking the complete undirected
graph and assigning arbitrary directions on the edges—that is, a graph G =
(V, E) such that for all u,v € V, exactly one of (u,v) or (v,u) is in E. Show
that every tournament has a Hamiltonian path—that is, a path that visits every
vertex exactly once. Give an algorithm to find this path.

Articulation Vertices

7-38.

7-39.

7-40.

7-41.

[5] An articulation vertex of a connected graph G is a vertex whose deletion
disconnects GG. Let G be a graph with n vertices and m edges. Give a simple
O(n+m) algorithm for finding a vertex of G that is not an articulation vertex—
that is, whose deletion does not disconnect G.

[5] Following up on the previous problem, give an O(n+m) algorithm that finds
a deletion order for the n vertices such that no deletion disconnects the graph.
(Hint: think DFS/BFS.)

[3] Suppose G is a connected undirected graph. An edge e whose removal dis-
connects the graph is called a bridge. Must every bridge e be an edge in a
depth-first search tree of G7 Give a proof or a counterexample.

[5] A city that only has two-way streets has decided to change them all into one-
way streets. They want to ensure that the new network is strongly connected
so everyone can legally drive anywhere in the city and back.

(a) Let G be the original undirected graph. Prove that there is a way to
properly orient/direct the edges of G provided G does not contain a bridge.

(b) Give an efficient algorithm to orient the edges of a bridgeless graph G so
the result is strongly connected.

Interview Problems

7-42.
7-43.

[8] Which data structures are used in depth-first and breath-first search?

[4] Write a function to traverse binary search tree and return the ith node in
sorted order.
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LeetCode

7-1. https://leetcode.com/problems/minimum-height-trees/
7-2. https://leetcode.com/problems/redundant-connection/

7-3. https://leetcode.com/problems/course-schedule/

HackerRank

7-1. https://www.hackerrank.com/challenges/bfsshortreach/
7-2. https://www.hackerrank.com/challenges/dfs-edges/
7-3. https://www.hackerrank.com/challenges/even-tree/
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Chapter 8

Weighted Graph
Algorithms

The data structures and traversal algorithms of Chapter 7 provide the basic
building blocks for any computation on graphs. However, all the algorithms
presented there dealt with unweighted graphs—in other words, graphs where
each edge has identical value or weight.

There is an alternate universe of problems for weighted graphs. The edges
of road networks are naturally bound to numerical values such as construction
cost, traversal time, length, or speed limit. Identifying the shortest path in such
graphs proves more complicated than breadth-first search in unweighted graphs,
but opens the door to a wide range of applications.

The graph data structure from Chapter 7 quietly supported edge-weighted
graphs, but here this is made explicit. Our adjacency list structure again consists
of an array of linked lists, such that the outgoing edges from vertex x appear in
the list edges[x]:

typedef struct {
edgenode *edges[MAXV+1]; /* adjacency info */

int degree[MAXV+1]; /* outdegree of each vertex */
int nvertices; /* number of vertices in the graph */
int nedges; /* number of edges in the graph */
int directed; /* is the graph directed? */

} graph;

Each edgenode is a record containing three fields, the first describing the
second endpoint of the edge (y), the second enabling us to annotate the edge
with a weight (weight), and the third pointing to the next edge in the list
(next):
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(a) (b) ©

Figure 8.1: (a) The distances between points define a complete weighted graph,
(b) its minimum spanning tree, and (c¢) the shortest path from center tree.

typedef struct edgenode {

int y; /* adjacency info */
int weight; /* edge wetight, if any */
struct edgenode *next; /* next edge in list */

} edgenode;

We now describe several sophisticated algorithms for weighted graphs that
use this data structure, including minimum spanning trees, shortest paths, and
maximum flows. That all of these optimization problems can be solved efficiently
is a feat quite worthy of our respect. Recall that no such algorithm exists for
the first weighted graph problem we encountered, namely the traveling salesman
problem.

8.1 Minimum Spanning Trees

A spanning tree of a connected graph G = (V, E) is a subset of edges from E
forming a tree connecting all vertices of V. For edge-weighted graphs, we are
particularly interested in the minimum spanning tree—the spanning tree whose
sum of edge weights is as small as possible.

Minimum spanning trees are the answer whenever we need to connect a set
of points (representing cities, homes, junctions, or other locations) cheaply using
the smallest amount of roadway, wire, or pipe. Any tree is the smallest possible
connected graph in terms of number of edges, but the minimum spanning tree
is the smallest connected graph in terms of edge weight. In geometric problems,
the point set p1,...,p, defines a complete graph, with edge (v;,v;) assigned a
weight equal to the distance from p; to p;. An example of a geometric minimum
spanning tree is illustrated in Figure 8.1. Additional applications of minimum
spanning trees are discussed in Section 18.3 (page 549).

A minimum spanning tree minimizes the total edge weight over all possi-
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ble spanning trees. However, there can be more than one minimum spanning
tree of a given graph. Indeed, all spanning trees of an unweighted (or equally
weighted) graph G are minimum spanning trees, since each contains exactly
n — 1 equal-weight edges. Such a spanning tree can be found using either DFS
or BFS. Finding a minimum spanning tree is more difficult for general weighted
graphs. But two different algorithms are presented below, both demonstrating
the optimality of specific greedy heuristics.

8.1.1 Prim’s Algorithm

Prim’s minimum spanning tree algorithm starts from one vertex and grows the
rest of the tree one edge at a time until all vertices are included.

Greedy algorithms make the decision of what to do next by selecting the best
local option from all available choices without regard to the global structure.
Since we seek the tree of minimum weight, the natural greedy algorithm for
minimum spanning tree (MST) repeatedly selects the smallest weight edge that
will enlarge the number of vertices in the tree.

Prim-MST(G)
Select an arbitrary vertex s to start the tree T}, from.
While (there are still non-tree vertices)
Find the minimum-weight edge between a tree and non-tree vertex
Add the selected edge and vertex to the tree Tppim.

Prim’s algorithm clearly creates a spanning tree, because no cycle can be
introduced by adding edges between tree and non-tree vertices. But why should
it be of minimum weight over all spanning trees? We have seen ample evidence
of other natural greedy heuristics that do not yield a global optimum. Therefore,
we must be particularly careful to demonstrate any such claim.

We use proof by contradiction. Suppose that there existed a graph G for
which Prim’s algorithm did not return a minimum spanning tree. Since we are
building the tree incrementally, this means that there must have been some
particular instant where we went wrong. Before we inserted edge (x,v), Tprim
consisted of a set of edges that was a subtree of some minimum spanning tree
Tnin, but choosing edge (z,y) fatally took us away from any possible minimum
spanning tree (see Figure 8.2(a)).

But how could we have gone wrong? There must be a path p from x to y
in Tynin, as shown in Figure 8.2(b). This path must use an edge (v1,vy), where
v1 is already in Tppim, but v is not. This edge (v, v2) must have weight at
least that of (z,y), or else Prim’s algorithm would have selected it before (z,y)
when it had the chance. Inserting (x,y) and deleting (vi,vs2) from T, leaves
a spanning tree no larger than before, meaning that Prim’s algorithm could not
have made a fatal mistake in selecting edge (z,y). Therefore, by contradiction,
Prim’s algorithm must construct a minimum spanning tree.
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(a) (b)

Figure 8.2: Does Prim’s algorithm go bad? No, because picking edge (x,y)
before (v1,v2) implies that weight(vy,ve) > weight(x,y).

Implementation

Prim’s algorithm grows the minimum spanning tree in stages, starting from
a given vertex. At each iteration, we add one new vertex into the spanning
tree. A greedy algorithm suffices for correctness: we always add the lowest-
weight edge linking a vertex in the tree to a vertex on the outside. The simplest
implementation of this idea would assign to each vertex a Boolean variable
denoting whether it is already in the tree (the array intree in the code below),
and then search all edges at each iteration to find the minimum-weight edge
with exactly one intree vertex.

Our implementation is somewhat smarter. It keeps track of the cheapest
edge linking every non-tree vertex in the tree. The cheapest such edge over all
remaining non-tree vertices gets added in the next iteration. We must update
the costs of getting to the non-tree vertices after each insertion. However, since
the most recently inserted vertex is the only change in the tree, all possible
edge-weight updates must come from its outgoing edges:

int prim(graph *g, int start) {
int i; /* counter */
edgenode *p; /* temporary pointer */
bool intree[MAXV+1];  /* ¢s the vertez in the tree yet? */
int distance[MAXV+1]; /* cost of adding to tree */

int v; /* current vertexr to process */

int w; /* candidate mext vertexr */

int dist; /* cheapest cost to enlarge tree */
int weight = 0; /* tree weight */

for (i = 1; 1 <= g->nvertices; i++) {
intree[i] = false;
distance[i] = MAXINT;
parent[i] = -1;
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}

distance[start] = 0;
v = start;

while (!intreel[v]) {
intreel[v] = true;
if (v !'= start) {
printf("edge (%d,%d) in tree \n",parent[v],v);
weight = weight + dist;
}
p = g—>edges[v];
while (p !'= NULL) {
W = p>y;
if ((distancel[w] > p->weight) && (!intreel[w])) {
distance[w] = p->weight;
parent [w] = v;
}
P

= p—>next;

dist = MAXINT;
for (i = 1; i <= g->nvertices; i++) {
if (('intree[i]) && (dist > distancel[i])) {
dist = distanceli];

v = ij;
}
}
}
return(weight) ;
}
Analysis

Prim’s algorithm is correct, but how efficient is it? This depends on which data
structures are used to implement it. In the pseudocode, Prim’s algorithm makes
n iterations sweeping through all m edges on each iteration—yielding an O(mn)
algorithm.

But our implementation avoids the need to test all m edges on each pass. It
only considers the < n cheapest known edges represented in the parent array
and the < n edges out of a new tree vertex v to update parent. By maintaining
a Boolean flag along with each vertex to denote whether it is in the tree, we test
whether the current edge joins a tree with a non-tree vertex in constant time.
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Figure 8.3: A graph G (left) with minimum spanning trees produced by Prim’s
(center) and Kruskal’s (right) algorithms. The numbers and edge colors on the
trees denote the order of insertion; ties are broken arbitrarily.

The result is an O(n?) implementation of Prim’s algorithm, and a good il-
lustration of the power of data structures to speed up algorithms. In fact, more
sophisticated priority-queue data structures lead to an O(m+nlgn) implemen-
tation, by making it faster to find the minimum-cost edge to expand the tree at
each iteration.

The minimum spanning tree itself can be reconstructed in two different ways.
The simplest method would be to augment this procedure with statements that
print the edges as they are found, and totals the weight of all selected edges to
get the cost. Alternatively, the tree topology is encoded by the parent array,
so it completely describes edges in the minimum spanning tree.

8.1.2 Kruskal’s Algorithm

Kruskal’s algorithm is an alternative approach to finding minimum spanning
trees that proves more efficient on sparse graphs. Like Prim’s, Kruskal’s al-
gorithm is greedy. Unlike Prim’s, it does not start with a particular vertex.
As shown in Figure 8.3, Kruskal might produce a different spanning tree than
Prim’s algorithm, although both will have the same weight.

Kruskal’s algorithm builds up connected components of vertices, culminating
in the complete minimum spanning tree. Initially, each vertex forms its own
separate component in the tree-to-be. The algorithm repeatedly considers the
lightest remaining edge and tests whether its two endpoints lie within the same
connected component. If so, this edge will be discarded, because adding it
would create a cycle. If the endpoints lie in different components, we insert the
edge and merge the two components into one. Since each connected component
always is a tree, we never need to explicitly test for cycles.

Kruskal-MST(G)
Put the edges into a priority queue ordered by increasing weight.
count =0
while (count < n —1) do
get next edge (v, w)
if (component (v) # component(w))
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Figure 8.4: Could Kruskal’s algorithm go bad after selecting red edge (x,y) (on
left)? No, because edge (v1,v2), inserted later, must be heavier than (z,y) (on
right).

increment count
add (v, w) to Trruskal
merge component(v) and component(w)

This algorithm adds n — 1 edges without creating a cycle, so it must create a
spanning tree for any connected graph. But why does this have to be a minimum
spanning tree? Suppose it wasn’t. As with the correctness proof of Prim’s
algorithm, there must be a particular graph G on which it fails. In particular,
there must an edge (x,y) in G whose insertion first prevented Ty yskar from
being a minimum spanning tree T,,;,. Inserting this edge (z,y) into T, will
create a cycle with the path from x to y, as shown in Figure 8.4. Since x and
y were in different components at the time of inserting (z,y), at least one edge
(say (v1,v2)) on this path must have been evaluated by Kruskal’s algorithm at
a later time than (x,y). But this means that weight(vy,v2) > weight(x,y), so
exchanging the two edges yields a tree of weight at most T5,,;,. Thus, we could
not have made a fatal mistake in selecting (x,y), and the correctness follows.

What is the time complexity of Kruskal’s algorithm? Sorting the m edges
takes O(mlgm) time. The while loop makes at most m iterations, each testing
the connectivity of two trees plus an edge. In the most simple-minded imple-
mentation, this can be done by breadth-first or depth-first search in the sparse
partial tree graph with at most n edges and n vertices, thus yielding an O(mn)
algorithm.

However, a faster implementation results if we can implement the component
test in faster than O(n) time. In fact, a clever data structure called union—find,
can support such queries in O(lgn) time, and it is discussed in Section 8.1.3
(page 250). With this data structure, Kruskal’s algorithm runs in O(mlgm)
time, which is faster than Prim’s for sparse graphs. Observe again the impact
that the right data structure can have when implementing a straightforward
algorithm.
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Implementation

The implementation of the main routine follows directly from the pseudocode:

int kruskal(graph *g) {

int 1i; /* counter */

union_find s; /* unton-find data structure */
edge_pair e[MAXV+1]; /* array of edges data structure */
int weight=0; /* cost of the minimum spanning tree */

union_find_init(&s, g->nvertices);

to_edge_array(g, e);
gsort(&e,g->nedges, sizeof (edge_pair), &weight_compare);

for (i = 0; i < (g->nedges); i++) {
if (!same_component(&s, e[i].x, el[i].y)) {
printf("edge (%d,%d) in MST\n", elil.x, elil.y);
weight = weight + e[i] .weight;
union_sets(&s, elil.x, el[il.y);

}

return(weight) ;

8.1.3 The Union—Find Data Structure

A set partition parcels out the elements of some universal set (say the integers
1 to n) into a collection of disjoint subsets, where each element is in exactly one
subset. Set partitions naturally arise in graph problems such as connected com-
ponents (each vertex is in exactly one connected component) and vertex coloring
(a vertex may be white or black in a bipartite graph, but not both or neither).
Section 17.6 (page 524) presents algorithms for generating set partitions and
related objects.

The connected components in a graph can be represented as a set parti-
tion. For Kruskal’s algorithm to run efficiently, we need a data structure that
efficiently supports the following operations:

e Same component(vy,vs) — Do vertices v and ve occur in the same con-
nected component of the current graph?

e Merge components(Cy,Cy) — Merge the given pair of connected compo-
nents into one component in response to the insertion of an edge between
them.
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Figure 8.5: Union—find example—the structure represented as a forest of trees
(left), and an array of parent pointers (right).

The two obvious data structures for this task each support only one of these
operations efficiently. Explicitly labeling each element with its component num-
ber enables the same component test to be performed in constant time, but
updating the component numbers after a merger would require linear time. Al-
ternatively, we can treat the merge components operation as inserting an edge
in a graph, but then we must run a full graph traversal to identify the connected
components on demand.

The union—find data structure represents each subset as a “backwards” tree,
with pointers from a node to its parent. Each node of this tree contains a set
element, and the name of the set is taken from the key at the root, as shown in
Figure 8.5. For reasons that will become clear, we also keep track of the number
of elements in the subtree rooted in each vertex v:

typedef struct {

int p[SET_SIZE+1]; /* parent element */
int size[SET_SIZE+1]; /* number of elements in subtree i */
int n; /* number of elements in set */

} union_find;

We implement our desired component operations in terms of two simpler
operations, union and find:

e Find(i) — Find the root of the tree containing element i, by walking up
the parent pointers until there is nowhere to go. Return the label of the
root.

e Union(i,j) — Link the root of one of the trees (say containing ¢) to the root
of the tree containing the other (say j) so find (i) now equals find(j).

We seek to minimize the time it takes to execute the worst possible sequence
of unions and finds. Tree structures can be very unbalanced, so we must limit
the height of our trees. Our most obvious means of control is the choice of which
of the two component roots becomes the root of the merged component on each
UNLON.
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To minimize the tree height, it is better to make the smaller tree the subtree
of the bigger one. Why? The heights of all the nodes in the root subtree stay
the same, but the height of the nodes merged into this tree all increase by one.
Thus, merging in the smaller tree leaves the height unchanged on the larger set
of vertices.

Implementation
The implementation details are as follows:

void union_find_init(union_find *s, int n) {
int i; /* counter */

for (i = 1; 1 <= n; i++) {
s—>plil =
s->size[i]

i

1;

s->n = n;

int find(union_find *s, int x) {
if (s—>plx] == x) {
return(x) ;
}
return(find(s, s->p[x]));

void union_sets(union_find *s, int s1, int s2) {
int r1, r2; /* roots of sets */

ril
r2

find(s, s1);
find(s, s2);

if (r1 == r2) {
return; /* already in same set */

}

if (s->sizelrl] >= s->sizelr2]) {
s->sizel[rl] = s->sizelrl] + s->sizel[r2];
s—>plr2] = ri;

} else {
s->size[r2] = s->sizelrl] + s->sizel[r2];
s—>plril] = r2;
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bool same_component (union_find *s, int sl1, int s2) {
return (find(s, s1) == find(s, s2));
}

Analysis

On each union, the tree with fewer nodes becomes the child. But how tall can
such a tree get as a function of the number of nodes in it? Consider the smallest
possible tree of height h. Single-node trees have height 1. The smallest tree
of height 2 has two nodes: it is made from the union of two single-node trees.
Merging in more single-node trees won’t further increase the height, because
they just become children of the rooted tree of height 2. Only when we merge
two height 2 trees together can we get a tree of height 3, now with at least four
nodes.

See the pattern? We must double the number of nodes in the tree to get
an extra unit of height. How many doublings can we do before we use up all
n nodes? At most lgn doublings can be performed. Thus, we can do both
unions and finds in O(logn), fast enough to make Kruskal’s algorithm efficient
on sparse graphs. In fact, union—find can be done even faster, as discussed in
Section 15.5 (page 456).

8.1.4 Variations on Minimum Spanning Trees

The algorithms that construct minimum spanning trees can also be used to solve
several closely related problems:

o Mazimum spanning trees — Suppose an evil telephone company is con-
tracted to connect a bunch of houses together, such that they will be paid
a price proportional to the amount of wire they install. Naturally, they
will seek to build the most expensive possible spanning tree! The maz-
imum spanning tree of any graph can be found by simply negating the
weights of all edges and running Prim’s or Kruskal’s algorithm. The most
negative spanning tree in the negated graph is the maximum spanning
tree in the original.

Most graph algorithms do not adapt so easily to negative numbers. In-
deed, shortest path algorithms have trouble with negative weights, and
certainly do not generate the longest possible path using this weight nega-
tion technique.

o Minimum product spanning trees — Suppose we seek the spanning tree
that minimizes the product of edge weights, assuming all edge weights are
positive. Since lg(a - b) = lg(a) + lg(b), the minimum spanning tree on
a graph whose edge weights are replaced with their logarithms gives the
minimum product spanning tree on the original graph.
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e Minimum bottleneck spanning tree — Sometimes we seek a spanning tree
that minimizes the maximum edge weight over all possible trees. In fact,
every minimum spanning tree has this property. The proof follows directly
from the correctness of Kruskal’s algorithm.

Such bottleneck spanning trees have interesting applications when the edge
weights are interpreted as costs, capacities, or strengths. A less efficient
but conceptually simpler way to solve such problems might be to delete all
“heavy” edges from the graph and ask whether the result is still connected.
These kinds of tests can be done with BFS or DFS.

The minimum spanning tree of a graph is unique if all m edge weights in the
graph are distinct. Otherwise the order in which Prim’s/Kruskal’s algorithm
breaks ties determines which minimum spanning tree is returned.

There are two important variants of a minimum spanning tree that are not
solvable with the techniques presented in this section:

e Steiner tree — Suppose we want to wire a bunch of houses together, but
have the freedom to add extra intermediate vertices to serve as a shared
junction. This problem is known as a minimum Steiner tree, and is dis-
cussed in the catalog in Section 19.10.

e Low-degree spanning tree — Alternatively, what if we want to find the
minimum spanning tree where the highest degree of a node in the tree
is small? The lowest max-degree tree possible would be a simple path,
consisting of n — 2 nodes of degree 2 and two endpoints of degree 1. Such
a path that visits each vertex once is called a Hamiltonian path, and is
discussed in the catalog in Section 19.5.

8.2 War Story: Nothing but Nets

I’d been tipped off about a small printed circuit board testing company in need
of some algorithmic consulting. And so I found myself inside a nondescript
building in a nondescript industrial park, talking with the president of Integri-
Test and one of his lead technical people.

“We're leaders in robotic printed circuit board testing devices. Our cus-
tomers have very high reliability requirements for their PC boards. They must
check that each and every board has no wire breaks before filling it with com-
ponents. This means testing that each and every pair of points on the board
that are supposed to be connected are connected.”

“How do you do the testing?” I asked.

“We have a robot with two arms, each with electric probes. The arms
simultaneously contact both of the points to test whether two points are properly
connected. If they are properly connected, then the probes will complete a
circuit. For each net, we hold one arm fixed at one point and move the other to
cover the rest of the points.”

“Wait!” I cried. “What is a net?”
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Figure 8.6: An example net showing (a) the metal connection layer, (b) the
contact points, (¢) their minimum spanning tree, and (d) the points partitioned
into clusters.

“Circuit boards have certain sets of points that are all connected together
with a metal layer. This is what we mean by a net. Often a net is just a direct
connection between two points. But sometimes a net can have 100 to 200 points,
such as all the connections to power or ground.”

“I see. So you have a list of all the connections between pairs of points on
the circuit board, and you want to trace out these wires.”

He shook his head. “Not quite. The input for our testing program consists
only of the net contact points, as shown in Figure 8.6(b). We don’t know where
the actual wires are, but we don’t have to. All we must do is verify that all the
points in a net are connected together. We do this by putting the left robot arm
on the left-most point in the net, and then have the right arm move around to
test its connectivity with all the other points in the net. If it is, they must all
be connected to each other.”

I thought for a moment. “OK. So your right arm has to visit all the other
points in the net. How do you choose the order to visit them?”

The technical guy spoke up. “Well, we sort the points from left to right and
then go in that order. Is that a good thing to do?”

“Have you ever heard of the traveling salesman problem?” I asked.

He was an electrical engineer, not a computer scientist. “No, what’s that?”

“Traveling salesman is the name of the problem that you are trying to solve.
Given a set of points to visit, how do you best order them to minimize travel
time? Algorithms for the traveling salesman problem have been extensively
studied. For small nets, you will be able to find the optimal tour by doing an
exhaustive search. For big nets, there are heuristics that will get you close to
the optimal tour.” T would have pointed them to Section 19.4 (page 594) if I'd
had this book handy.

The president scribbled down some notes and then frowned. “Fine. Maybe
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you can order the points in a net better for us. But that’s not our real problem.
When you watch our robot in action, the right arm sometimes has to run all
the way to the right side of the board on a given net, while the left arm just sits
there. It seems we would benefit by breaking nets into smaller pieces to balance
things out.”

I sat down and thought. The left and right arms each have interlocking
TSPs to solve. The left arm would move between the left-most points of each
net, while the right arm visits all the other points in each net. By breaking each
net into smaller nets we would avoid making the right arm cross all the way
across the board. Further, a lot of little nets meant there would be more points
in the left TSP, so each left-arm movement was likely to be short as well.

“You are right. We should win if we can break big nets into small nets.
We want the nets to be small, both in the number of points and in physical
area. But we must ensure that by validating the connectivity of each small net,
we will have confirmed that the big net is connected. One point in common
between two little nets is sufficient to show that the bigger net formed by their
union is connected, because current can flow between any pair of points.”

We thus had to break each net into overlapping pieces, where each piece was
small. This is a clustering problem. Minimum spanning trees are often used
for clustering, as discussed in Section 18.3 (page 549). In fact, that was the
answer! We could find the minimum spanning tree of the net points and break
it into small clusters whenever a spanning tree edge got too long. As shown
in Figure 8.6(d), each cluster would share exactly one point in common with
another cluster, with connectivity ensured because we are covering the edges of
a spanning tree. The shape of the clusters will reflect the points in the net. If
the points lay along a line across the board, the minimum spanning tree would
be a path, and the clusters would be pairs of points. If the points all fell in
a tight region, there would be one nice fat cluster for the right arm to scoot
around.

So I explained the idea of constructing the minimum spanning tree of a
graph. The boss listened, scribbled more notes, and frowned again.

“I like your clustering idea. But minimum spanning trees are defined on
graphs. All you've got are points. Where do the weights of the edges come
from?”

“Oh, we can think of it as a complete graph, where every pair of points is
connected. The weight of each edge will be the distance between the two points.
Orisit...?”

I went back to thinking. The edge cost should reflect the travel time between
two points. While distance is related to travel time, it isn’t necessarily the same
thing.

“Hey. I have a question about your robot. Does it take the same amount of
time to move the arm left-right as it does up—down?”

They thought a minute. “Sure it does. We use the same type of motor to
control horizontal and vertical movements. Since these two motors are indepen-
dent, we can simultaneously move each arm both horizontally and vertically.”

“So the time to move both one foot left and one foot up is exactly the same
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as just moving one foot left? This means that the weight for each edge should
not be the Euclidean distance between the two points, but instead the biggest
difference between either the x- or y-coordinates. This is something we call the
L, metric, but we can capture it by changing the edge weights in the graph.
Anything else funny about your robots?” I asked.

“WEell, it takes some time for the arm to come up to full speed. I guess we
should factor in its acceleration and deceleration time.”

“Darn right. The more accurately you can model the time your arm takes
to move between two points, the better our solution will be. But now we have
a very clean formulation. Let’s code it up and let’s see how well it works!”

They were somewhat skeptical about whether this approach would do any
good. But a few weeks later they called me back and reported that the new
algorithm reduced the distance traveled by about 30% over their previous ap-
proach, at a cost of a little extra computation. But their testing machine cost
$200,000 a pop compared to a lousy $2,000 for a computer, so this was an ex-
cellent tradeoff, particularly since the algorithm need only be run once when
testing repeated instances of a particular board design.

The key idea here was modeling the job in terms of classical algorithmic
graph problems. I smelled TSP the instant they started talking about minimiz-
ing robot motion. Once I realized that they were implicitly using a star-shaped
spanning tree to ensure connectivity, it was natural to ask whether the mini-
mum spanning tree would perform any better. This idea led to clustering, and
thus partitioning each net into smaller nets. Finally, by carefully designing our
distance metric to accurately model the costs of the robot, we could incorporate
complicated properties (such as acceleration) without changing our fundamental
graph model or algorithm design.

Take-Home Lesson: Most applications of graphs can be reduced to standard
graph properties where well-known algorithms can be used. These include
minimum spanning trees, shortest paths, and other problems presented in the
catalog.

8.3 Shortest Paths

A path is a sequence of edges connecting two vertices. There are typically an
enormous number of possible paths connecting two nodes in any given road or
social network. The path that minimizes the sum of edge weights, that is, the
shortest path, is likely to be the most interesting, reflecting the fastest travel
path or the closest kinship between the nodes.

A shortest path from s to ¢ in an unweighted graph can be identified using a
breadth-first search from s. The minimum-link path is recorded in the breadth-
first search tree, and hence provides the shortest path when all edges have equal
weight.

But BFS does not suffice to find shortest paths in weighted graphs. The
shortest weighted path might require a large number of edges, just as the fastest
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route from home to office may involve complicated backroad shortcuts, as shown
in Figure 8.7.

This section will present two distinct algorithms for finding the shortest
paths in weighted graphs.

8.3.1 Dijkstra’s Algorithm

Dijkstra’s algorithm is the method of choice for finding shortest paths in an
edge- and/or vertex-weighted graph. Starting from a particular vertex s, it
finds the shortest path from s to all other vertices in the graph, including your
desired destination ¢.

Suppose the shortest path from s to ¢t in graph G passes through a particular
intermediate vertex x. Clearly, the best s-to-t path must contain the shortest
path from s to x as its prefix, because if it doesn’t we can improve the path
by starting with the shorter s-to-x prefix. Thus, we must compute the shortest
path from s to x before we find the path from s to t.

Dijkstra’s algorithm proceeds in a series of rounds, where each round estab-
lishes the shortest path from s to some new vertex. Specifically, = is the vertex
that minimizes dist(s,v;) + w(v;, ) over all unfinished vertices v;. Here w(a,b)
denotes the weight of the edge from vertex a to vertex b, and dist(a,b) is the
length of the shortest path between them.

This suggests a dynamic programming-like strategy. The shortest path from
s to itself is trivial, so dist(s,s) = 0.} If (s,y) is the lightest edge incident to s,
then dist(s,y) = w(s,y). Once we determine the shortest path to a node x, we
check all the outgoing edges of x to see whether there is a shorter path from s
through x to some unknown vertex.

ShortestPath-Dijkstra(G, s, t)

known = {s}

for each vertex v in G, dist[v] = 0o

dist[s] =0

for each edge (s,v), dist[v] = w(s,v)

last = s

while (last # t)
select Upept, the unknown vertex minimizing dist|[v]
for each edge (vnest, ), dist[z] = min[dist[z], dist[vnert] + W(Vnext, T)]
last = Vpext
known = known U {v,eqt }

The basic idea is very similar to Prim’s algorithm. In each iteration, we add
exactly one vertex to the tree of vertices for which we know the shortest path
from s. As in Prim’s, we keep track of the best path seen to date for all vertices
outside the tree, and insert them in order of increasing cost.

L Actually, this is true only when the graph does not contain negative weight edges, which
is why we assume that all edges are of positive weight in the discussion that follows.
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t

Figure 8.7: The shortest path from s to ¢ might pass through many intermediate
vertices rather than use the fewest possible edges.

In fact, the only difference between Dijkstra’s and Prim’s algorithms is how
they rate the desirability of each outside vertex. In the minimum spanning tree
algorithm, we sought to minimize the weight of the next potential tree edge. In
shortest path, we want to identify the closest outside vertex (in shortest-path
distance) to s. This desirability is a function of both the new edge weight and
the distance from s to the tree vertex it is adjacent to.

Implementation

The pseudocode above obscures just how similar the two algorithms are. Below,
we give an implementation of Dijkstra’s algorithm based on changing exactly
four lines from our Prim’s implementation—one of which is simply the name of
the function!

int dijkstra(graph *g, int start) {
int i; /* counter */
edgenode *p; /* temporary pointer */
bool intree[MAXV+1]; /* is the vertex in the tree yet? */
int distance[MAXV+1]; /* cost of adding to tree */

int v; /* current vertexr to process */
int w; /* candidate next vertex */

int dist; /* cheapest cost to enlarge tree */
int weight = 0; /* tree weight */

for (i = 1; i <= g->nvertices; i++) {
intree[i] = false;
distance[i] = MAXINT;
parent[i] = -1;

}

distance[start] = 0;
v = start;
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while (!intreel[v]) {

intree[v] = true;

if (v !'= start) {
printf("edge (%d,%d) in tree \n",parent([v],v);
weight = weight + dist;

}

p = g—>edges([v];

while (p != NULL) {

W = Py

if (distancelw] > (distancel[v]+p->weight)) { /* CHANGED */
distance[w] = distance[v]+p->weight; /* CHANGED */
parent [w] = v; /* CHANGED */

}

P = p—>next;

dist = MAXINT;
for (i = 1; i <= g->nvertices; i++) {
if (('intree[i]) && (dist > distancel[i])) {
dist = distancel[i];
v = i;

}

return(weight) ;

This algorithm defines a shortest-path spanning tree rooted in s. For un-
weighted graphs, this would be the breadth-first search tree, but in general it
provides the shortest path from s to all other vertices, not just .

Analysis

What is the running time of Dijkstra’s algorithm? As implemented here, the
complexity is O(n?), exactly the same running time as a proper version of Prim’s
algorithm. This is because, except for the extension condition, it is exactly the
same algorithm as Prim’s.

The length of the shortest path from start to a given vertex t is exactly
the value of distance[t]. How do we use dijkstra to find the actual path?
We follow the backward parent pointers from ¢ until we hit start (or -1 if no
such path exists), exactly as was done in the BFS/DFS find path() routine of
Section 7.6.2 (page 217).
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Dijkstra works correctly only on graphs without negative-cost edges. The
reason is that during the execution we may encounter an edge with weight so
negative that it changes the cheapest way to get from s to some other vertex
already in the tree. Indeed, the most cost-effective way to get from your house
to your next-door neighbor would be to repeatedly cycle through the lobby of
any bank offering you enough free money to make the detour worthwhile. Unless
that bank limits its reward to one per customer, you might so benefit by making
an unlimited number of trips through the lobby that you would never actually
reach your destination!

Fortunately, most applications don’t have negative weights, making this dis-
cussion largely academic. Floyd’s algorithm, discussed below, works correctly
with negative-cost edges provided there are no negative cost cycles, which grossly
distort the shortest-path structure.

Stop and Think: Shortest Path with Node Costs

Problem:  Suppose we are given a directed graph whose weights are on the
vertices instead of the edges. Thus, the cost of a path from x to y is the sum of
the weights of all vertices on the path. Give an efficient algorithm for finding
shortest paths on vertex-weighted graphs.

Solution: A natural idea would be to adapt the algorithm we have for edge-
weighted graphs (Dijkstra’s) to the new vertex-weighted domain. It should be
clear that this will work. We replace any reference to the weight of any directed
edge (z,y) with the weight of the destination vertex y. This can be looked up
as needed from an array of vertex weights.

However, my preferred approach would leave Dijkstra’s algorithm intact and
instead concentrate on constructing an edge-weighted graph on which Dijkstra’s
algorithm will give the desired answer. Set the weight of each directed edge (¢, 5)
in the input graph to the cost of vertex j. Dijkstra’s algorithm now does the
job. Try to design graphs, not algorithms, as I will encourage in Section 8.7.

This technique can be extended to a variety of different domains, including
when there are costs on both vertices and edges. 1

8.3.2 All-Pairs Shortest Path

Suppose you want to find the “center” vertex in a graph—the one that min-
imizes the longest or average distance to all the other nodes. This might be
the best place to start a new business. Or perhaps you need to know a graph’s
diameter—the largest shortest-path distance over all pairs of vertices. This
might correspond to the longest possible time it can take to deliver a letter or
network packet. These and other applications require computing the shortest
path between all pairs of vertices in a given graph.
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We could solve all-pairs shortest path by calling Dijkstra’s algorithm from
each of the n possible starting vertices. But Floyd’s all-pairs shortest-path
algorithm is a slick way to construct this n x n distance matrix from the original
weight matrix of the graph.

Floyd’s algorithm is best employed on an adjacency matrix data structure,
which is no extravagance since we must store all n? pairwise distances anyway.
Our adjacency matrix type allocates space for the largest possible matrix, and
keeps track of how many vertices are in the graph:

typedef struct {

int weight [MAXV+1] [MAXV+1]; /* adjacency/weight info */

int nvertices; /* number of vertices in graph */
} adjacency_matrix;

The critical issue in an adjacency matrix implementation is how we denote
the edges absent from the graph. A common convention for unweighted graphs
denotes graph edges by 1 and non-edges by 0. This gives exactly the wrong
interpretation if the numbers denote edge weights, because the non-edges get
interpreted as a free ride between vertices. Instead, we should initialize each
non-edge to MAXINT. This way we can both test whether it is present and auto-
matically ignore it in shortest-path computations.

There are several ways to characterize the shortest path between two nodes
in a graph. The Floyd-Warshall algorithm starts by numbering the vertices of
the graph from 1 to n. We use these numbers not to label the vertices, but to
order them. Define Wi, j]* to be the length of the shortest path from i to j
using only vertices numbered from 1,2, ...,k as possible intermediate vertices.

What does this mean? When k = 0, we are allowed no intermediate vertices,
so the only allowed paths are the original edges in the graph. The initial all-
pairs shortest-path matrix thus consists of the initial adjacency matrix. We will
perform n iterations, where the kth iteration allows only the first k vertices as
possible intermediate steps on the path between each pair of vertices x and y.

With each iteration, we allow a richer set of possible shortest paths by adding
a new vertex as a possible intermediary. The kth vertex helps only if there is a
shortest path that goes through k, so

Wi, j1¥ = min(W[i, j]* 1, Wi, kIF~1 + Wk, 51571)

The correctness of this is somewhat subtle, and I encourage you to convince
yourself of it. Indeed, it is a great example of dynamic programming, the
algorithmic paradigm that is the focus of Chapter 10. But there is nothing
subtle about how simple the implementation is:
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void floyd(adjacency_matrix *g) {

int i, j; /* dimension counters */
int k; /* intermediate vertex counter */
int through_k; /* distance through vertex k */

for (k = 1; k <= g->nvertices; k++) {
for (i = 1; i <= g->nvertices; i++) {
for (j = 1; j <= g->nvertices; j++) {
through_k = g->weight[i] [k]+g->weight [k] [j];
if (through_k < g->weight[i][j]1) {
g->weight [i] [j] = through_k;
}

The Floyd-Warshall all-pairs shortest-path algorithm runs in O(n?) time,
which is asymptotically no better than n calls to Dijkstra’s algorithm. However,
the loops are so tight and the program so short that it runs better in practice.
It is notable as one of the rare graph algorithms that work better on adjacency
matrices than adjacency lists.

The output of Floyd’s algorithm, as it is written, does not enable one to
reconstruct the actual shortest path between any given pair of vertices. These
paths can be recovered if we retain a parent matrix P containing our choice of
the last intermediate vertex used for each vertex pair (z,y). Say this value is k.
The shortest path from x to y is the concatenation of the shortest path from z
to k with the shortest path from k to y, which can be reconstructed recursively
given the matrix P. Note, however, that most all-pairs applications only need
the resulting distance matrix. These are the jobs that Floyd’s algorithm was
designed for.

8.3.3 Transitive Closure

Floyd’s algorithm has another important application, that of computing tran-
sitive closure. We are often interested in which vertices in a directed graph
are reachable from a given node. As an example, consider the blackmail graph,
where there is a directed edge (i, ) if person ¢ has sensitive-enough private in-
formation on person j so that i can get j to do whatever they want. You wish
to hire one of these n people to be your personal representative. Who has the
most power in terms of blackmail potential?

A simplistic answer would be the vertex of highest out-degree, but an even
better representative would be the person who has blackmail chains leading to
the most other parties. Steve might only be able to blackmail Miguel directly,
but if Miguel can blackmail everyone else then Steve is the person you want to
hire.
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The vertices reachable from any single node can be computed using breadth-
first or depth-first search. But the complete set of relationships can be found
using an all-pairs shortest path. If the shortest path from ¢ to j remains MAXINT
after running Floyd’s algorithm, you can be sure that no directed path exists
from 7 to j. Any vertex pair of weight less than MAXINT must be reachable, both
in the graph-theoretic and blackmail senses of the word.

Transitive closure is discussed in more detail in the catalog in Section 18.5.

8.4 War Story: Dialing for Documents

I was part of a group visiting Periphonics, then an industry leader in building
telephone voice-response systems. These are more advanced versions of the
Press 1 for more options, Press 2 if you didn’t press 1 telephone systems that
blight everyone’s lives. The tour guide was so enthusiastic about the joy of using
their product it set off the crustiest member of our delegation.

“Like typing, my pupik!” came a voice from the rear of our group. “I hate
typing on a telephone. Whenever I call my brokerage house to get stock quotes
some machine tells me to type in the three letter code. To make things worse,
I have to hit two buttons to type in one letter, in order to distinguish between
the three letters printed on each key of the telephone. I hit the 2 key and it
says Press 1 for A, Press 2 for B, Press 3 for C. Pain in the neck if you ask me.”

“Maybe you don’t have to hit two keys for each letter!” I chimed in. “Maybe
the system could figure out the correct letter from context!”

“There isn’t a whole lot of context when you type in three letters of stock
market code.”

“Sure, but there would be plenty of context if we typed in English sentences.
I’ll bet that we could reconstruct English text correctly if it was typed in a
telephone at one keystroke per letter.”

The guy from Periphonics gave me a disinterested look, then continued the
tour. But when I got back to the office, I decided to give it a try.

Not all letters are equally likely to be typed on a telephone. In fact, not
all letters can be typed, since Q and Z are not labeled on a standard American
telephone. Therefore, we adopted the convention that Q, Z, and “space” all
sat on the * key. We could take advantage of the uneven distribution of letter
frequencies to help us decode the text. For example, if you hit the 3 key while
typing English, you more likely meant to type an E than either a D or F. Our
first attempt to predict the typed text used the frequencies of three characters
(trigrams) in a window of the text. But the results were not good. The trigram
statistics did a decent job of translating it into gibberish, but a terrible job of
transcribing English.

One reason was clear. This algorithm knew nothing about English words.
If we coupled it with a dictionary, we might be onto something. But two words
in the dictionary are often represented by the exact same string of phone codes.
For an extreme example, the code string “22737” collides with eleven distinct
English words, including cases, cares, cards, capes, caper, and bases. For our
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Figure 8.8: The phases of the telephone code reconstruction process.

next attempt, we reported the unambiguous characters of any words that col-
lided in the dictionary, and used trigrams to fill in the rest of the characters.

This also did a terrible job. Most words appearing in the text came from
ambiguous codes mapping to more than one vocabulary word. Somehow, we
had to distinguish between the different dictionary words that got hashed to
the same code. We could factor in the relative popularity of each word, but this
still made too many mistakes.

At this point, I started working with Harald Rau on the project, who proved
to be a great collaborator. First, he was a bright and persistent graduate stu-
dent. Second, as a native German speaker, he believed every lie I told him
about English grammar. Harald built up a phone code reconstruction program
along the lines of Figure 8.8. It worked on the input one sentence at a time,
identifying dictionary words that matched each code string. The key problem
was how to incorporate grammatical constraints.

“We can get good word-use frequencies and grammatical information from
a big text database called the Brown Corpus. It contains thousands of typical
English sentences, each parsed according to parts of speech. But how do we
factor it all in?” Harald asked.

“Let’s think about it as a graph problem,” T suggested.

“Graph problem? What graph problem? Where is there even a graph?”

“Think of a sentence as a series of tokens, each representing a word in the
sentence. Each token has a list of words from the dictionary that match it.
How can we choose which one is right? Each possible sentence interpretation
can be thought of as a path in a graph. Each vertex of this graph is one word
from the complete set of possible word choices. There will be an edge from
each possible choice for the ith word to each possible choice for the (i + 1)st
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Figure 8.9: The minimum-cost path defines the best interpretation for a sen-
tence.

word. The cheapest path across this graph defines the best interpretation of the
sentence.”

“But all the paths look the same. They have the same number of edges.
Now I see! We have to add weight to the edges to make the paths different.”

“Exactly! The cost of an edge will reflect how likely it is that we will travel
through the given pair of words. Perhaps we can count how often that pair of
words occurred together in previous texts. Or we can weigh them by the part
of speech of each word. Maybe nouns don’t like to be next to nouns as much as
they like being next to verbs.”

“It will be hard to keep track of word-pair statistics, since there are so many
possible pairs. But we certainly know the frequency of each word. How can we
factor that into things?”

“We can pay a cost for walking through a particular vertex that depends
upon the frequency of the word. Our best sentence will be given by the shortest
path across the graph.”

“But how do we figure out the relative weights of these factors?”

“Try what seems natural to you and then we can experiment with it.”

Harald implemented this shortest-path algorithm. With proper grammatical
and statistical constraints, the system performed great. Look at the Gettysburg
Address, with all the reconstruction errors highlighted:

FOURSCORE AND SEVEN YEARS AGO OUR FATHERS BROUGHT FORTH
ON THIS CONTINENT A NEW NATION CONCEIVED IN LIBERTY AND DED-
ICATED TO THE PROPOSITION THAT ALL MEN ARE CREATED EQUAL.
NOW WE ARE ENGAGED IN A GREAT CIVIL, WAR TESTING WHETHER
THAT NATION OR ANY NATION SO CONCEIVED AND SO DEDICATED CAN
LONG ENDURE. WE ARE MET ON A GREAT BATTLEFIELD OF THAT WAS.
WE HAVE COME TO DEDICATE A PORTION OF THAT FIELD AS A FINAL
SERVING PLACE FOR THOSE WHO HERE HAVE THEIR LIVES THAT THE
NATION MIGHT LIVE. IT IS ALTOGETHER FITTING AND PROPER THAT
WE SHOULD DO THIS. BUT IN A LARGER SENSE WE CAN NOT DEDICATE
WE CAN NOT CONSECRATE WE CAN NOT HALLOW THIS GROUND. THE
BRAVE MEN LIVING AND DEAD WHO STRUGGLED HERE HAVE CONSE-
CRATED IT FAR ABOVE OUR POOR POWER TO ADD OR DETRACT. THE

WORLD WILL LITTLE NOTE NOR LONG REMEMBER WHAT WE SAY HERE
BUT IT CAN NEVER FORGET WHAT THEY DID HERE. IT IS FOR US THE
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LIVING RATHER TO BE DEDICATED HERE TO THE UNFINISHED WORK
WHICH THEY WHO FOUGHT HERE HAVE THUS FAR SO NOBLY ADVANCED.
IT IS RATHER FOR US TO BE HERE DEDICATED TO THE GREAT TASK
REMAINING BEFORE US THAT FROM THESE HONORED DEAD WE TAKE
INCREASED DEVOTION TO THAT CAUSE FOR WHICH THEY HERE HAVE
THE LAST FULL MEASURE OF DEVOTION THAT WE HERE HIGHLY RE-
SOLVE THAT THESE DEAD SHALL NOT HAVE DIED IN VAIN THAT THIS
NATION UNDER GOD SHALL HAVE A NEW BIRTH OF FREEDOM AND THAT
GOVERNMENT OF THE PEOPLE BY THE PEOPLE FOR THE PEOPLE SHALL
NOT PERISH FROM THE EARTH.

While we still made a few mistakes, we typically guessed about 99% of all
characters correctly. The results were clearly good enough for many applica-
tions. Periphonics certainly thought so, for they licensed our program to incor-
porate into their products. The reconstruction time was faster than anyone can
type text in on a phone keypad.

The constraints for many pattern recognition problems can be naturally for-
mulated as shortest-path problems in graphs. There is a particularly convenient
dynamic programming solution for these problems (the Viterbi algorithm) that
is widely used in speech and handwriting recognition systems. Despite the fancy
name, the Viterbi algorithm is basically solving a shortest-path problem on a
DAG. Hunting for a graph formulation to solve your problem is often the right
idea.

8.5 Network Flows and Bipartite Matching

An edge-weighted graph can be interpreted as a network of pipes, where the
weight of an edge determines the capacity of the pipe. Capacities can be thought
of as a function of the cross-sectional area of the pipe. A wide pipe might be
able to carry 10 units of flow, that is, the amount of material in a given time,
whereas a narrower pipe can only carry 5 units. The network flow problem asks
for the maximum amount of flow that can be sent from vertices s to ¢ in a given
weighted graph G while respecting the maximum capacities of each pipe.

8.5.1 Bipartite Matching

While the network flow problem is of independent interest, its primary impor-
tance lies in solving other important graph problems. A classic example is
bipartite matching. A matching in a graph G = (V, E) is a subset of edges
E’ C FE such that no two edges of E’ share a vertex. A matching pairs off
certain vertices such that every vertex is in at most one such pair, as shown in
Figure 8.10.

Graph G is bipartite or two-colorable if the vertices can be divided into two
sets, L and R, such that all edges in G have one vertex in L and one vertex
in R. Many naturally defined graphs are bipartite. For example, one class of
vertices may represent jobs to be done and the remaining vertices represent
people who can potentially do them. The existence of edge (j,p) means that
job j can be done by person p. Or let certain vertices represent boys and certain
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0 o

Figure 8.10: Bipartite graph with a maximum matching (left). The correspond-
ing network flow instance highlighting the maximum s—t flow (right).

vertices represent girls, with edges representing compatible pairs. Matchings in
these graphs have natural interpretations as job assignments or as traditional
marriages, and are the focus of Section 18.6 (page 562).

The maximum cardinality bipartite matching can be readily found using
network flow. Create a source node s that is connected to every vertex in L by
an edge of weight 1. Create a sink node ¢t and connect it to every vertex in R by
an edge of weight 1. Finally, assign each edge in the central bipartite graph G
a weight of 1. Now, the maximum possible flow from s to t defines the largest
matching in G. Certainly we can find a flow as large as the matching, by using
the matching edges and their source-to-sink connections. Further, there can be
no other solution that achieves greater flow, because we can’t possibly get more
than one flow unit through any given vertex.

8.5.2 Computing Network Flows

Traditional network flow algorithms are based on the idea of augmenting paths:
finding a path of positive capacity from s to ¢ and adding it to the flow. It can be
shown that the flow through a network is optimal iff it contains no augmenting
path. Since each augmentation increases the flow, by repeating the process until
no such path remains we must eventually find the global maximum.

The key structure is the residual flow graph, denoted as R(G, f), where G is
the input graph whose weights are the capacities, and f is array of flows through
G. The directed, edge-weighted graph R(G, f) contains the same vertices as G.
For each edge (4,j) in G with capacity c(i,j) and flow f(i,7), R(G, f) may
contain two edges:

(i) an edge (7, ) with weight ¢(i, j) — f(4,4), if ¢(i,7) — f(i,7) > 0 and
(ii) an edge (j,¢) with weight f(,j), if f(i,7) > 0.

The weight of the edge (i,7) in the residual graph gives the exact amount of
extra flow that can be pushed from ¢ to j. A path in the residual flow graph
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G

Figure 8.11: Maximum s—¢ flow in a graph G (on left) showing the associated
residual graph R(G, f) and minimum s-¢ cut (dotted line near t) on right. The
undirected edges in R(G, f) have zero flow, so they have residual capacity in
both directions.

from s to t implies that more flow can be pushed from s to t. The smallest edge
weight on this path defines the amount of extra flow that can be pushed along
it.

Figure 8.11 illustrates this idea. The maximum s—¢ flow in graph G is 7.
Such a flow is revealed by the two directed ¢ to s paths in the residual graph
R(G), of flows 2 and 5 respectively. These flows completely saturate the capacity
of the two edges incident to vertex ¢, so no augmenting path remains. Thus,
the flow is optimal. A set of edges whose deletion separates s from ¢ (like the
two edges incident to t) is called an s—t cut. Clearly, no s to ¢ flow can exceed
the weight of the minimum such cut. In fact, a flow equal to the minimum cut
is always possible.

Take-Home Lesson: The maximum flow from s to ¢ always equals the weight
of the minimum s—¢ cut. Thus, flow algorithms can be used to solve general
edge and vertex connectivity problems in graphs.

Implementation

We cannot do full justice to the theory of network flows here. However, it is
instructive to see how augmenting paths can be identified and the optimal flow
computed.

For each edge in the residual flow graph, we must keep track of both the
amount of flow currently going through the edge, as well as its remaining residual
capacity. Thus, we must modify our edge structure to accommodate the extra
fields:
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typedef struct {

int v; /* neighboring vertex */

int capacity; /* capacity of edge */

int flow; /* flow through edge */

int residual; /* residual capacity of edge */

struct edgenode *next; /* next edge in list */
} edgenode;

We use a breadth-first search to look for any path from source to sink that
increases the total flow, and use it to augment the total. We terminate with the
optimal flow when no such augmenting path exists.

void netflow(flow_graph *g, int source, int sink) {
int volume; /* wetght of the augmenting path */

add_residual_edges(g) ;

initialize_search(g);
bfs(g, source);

volume = path_volume(g, source, sink);

while (volume > 0) {
augment_path(g, source, sink, volume);
initialize_search(g);
bfs(g, source);
volume = path_volume(g, source, sink);

Any augmenting path from source to sink increases the flow, so we can use
bfs to find such a path. We only consider network edges that have remaining
capacity or, in other words, positive residual flow. The predicate below helps
bfs distinguish between saturated and unsaturated edges:

bool valid_edge(edgenode *e) {
return (e->residual > 0);

3

Augmenting a path transfers the maximum possible volume from the residual
capacity into positive flow. This amount is limited by the path edge with the
smallest amount of residual capacity, just as the rate at which traffic can flow
is limited by the most congested point.
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int path_volume(flow_graph *g, int start, int end) {

edgenode *e; /* edge in question */
if (parent([end] == -1) {

return(0) ;
}

e = find_edge(g, parent[end], end);

if (start == parent[end]) {
return(e->residual);
} else {
return(min(path_volume(g, start, parent[end]), e->residual));

3

Recall that bfs uses the parent array to record the discoverer of each ver-
tex on the traversal, enabling us to reconstruct the shortest path back to the
root from any vertex. The edges of this tree are vertex pairs, not the actual
edges in the graph data structure on which the search was performed. The
call find edge(g,x,y) returns a pointer to the record encoding edge (z,y) in
graph ¢, necessary to obtain its residual capacity. The find_edge routine can
find this pointer by scanning the adjacency list of = (g->edges[x]), or (even
better) from an appropriate table lookup data structure.

Sending an additional unit of flow along directed edge (i,j) reduces the
residual capacity of edge (7, j) but increases the residual capacity of edge (j,1).
Thus, the act of augmenting a path requires modifying both forward and reverse
edges for each link on the path.

void augment_path(flow_graph *g, int start, int end, int volume) {
edgenode *e; /* edge in question */

if (start == end) {
return;

}
e = find_edge(g, parent[end], end);
e->flow += volume;

e->residual -= volume;

e = find_edge(g, end, parent[end]);
e->residual += volume;

augment_path(g, start, parent[end], volume);
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Initializing the flow graph requires creating directed flow edges (i,7) and
(4,4) for each network edge e = (4, 7). Initial flows are all set to 0. The initial
residual flow of (7, j) is set to the capacity of e, while the initial residual flow of
(,4) is set to 0.

Analysis

The augmenting path algorithm above eventually converges to the optimal so-
lution. However, each augmenting path may add only a little to the total flow,
S0, in principle, the algorithm might take an arbitrarily long time to converge.

However, Edmonds and Karp [EK72] proved that always selecting a shortest
unweighted augmenting path guarantees that O(n®) augmentations suffice for
optimization. In fact, the Edmonds—Karp algorithm is what is implemented
above, since a breadth-first search from the source is used to find the next
augmenting path.

8.6 Randomized Min-Cut

Clever randomized algorithms have been developed for many different types of
problems. We have so far seen randomized algorithms for sorting (quicksort),
searching (hashing), string matching (Rabin-Karp), and number-theoretic (pri-
mality testing) problems. Here we expand this list to graph algorithms.

The minimum-cut problem in graphs seeks to partition the vertices of graph
G into sets V; and V3 so that the smallest possible number of edges (x,y) span
across these two sets, meaning x € V1 and y € V5. Identifying the minimum cut
often arises in network reliability analysis: what is the smallest failure set whose
deletion will disconnect the graph? The minimum-cut problem is discussed in
greater detail in Section 18.8. The graph shown there has a minimum-cut set
size of 2, while the graph in Figure 8.12 (left) can be disconnected with just one
edge deletion.

Suppose the minimum cut C' in G is of size k, meaning that k edge deletions
are necessary to disconnect GG. Each vertex v must therefore be connected to
at least k other vertices, because if not there would be a smaller cut-set discon-
necting v from the rest of the graph. This implies that G must contain at least
kn/2 edges, where n is the number of vertices, because each edge contributes
one to the degree of exactly two vertices.

A contraction operation for edge (z,y) collapses vertices x and y into a single
merged vertex called (say) zy. Any edge of the form (z, 2) or (y, z) gets replaced
by (zy, z). The upshot is that the number of vertices shrinks by one on an edge
contraction. The number of edges stays the same, although a self-loop (xy, zy)
replaces (z,y), and two copies of edge (zy, z) are created if both (z, z) and (y, z)
were in G before the contraction.

What happens to the size of the minimum cut after contracting (x,y) in
G? Each contraction reduces the space of possible V;, V5 partitions, since the
new vertex xy cannot ever be subdivided. The critical observation is that the
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Figure 8.12: If we get lucky, a sequence of random edge contractions does not
increase the size of the smallest cut set.

minimum-cut size is unchanged unless we contract one of the k edges of the
optimal cut. If we did contract one of these cut edges, the minimum-cut size of
the resulting graph might grow, because the best partition is no longer available.

This suggests the following randomized algorithm. Pick a random edge of G
and contract it. Repeat a total of n—2 times, until we are left with a two-vertex
graph with multiple parallel edges between them. These edges describe a cut in
the graph, although it might not be the smallest possible cut of G. We could
repeat this entire procedure r times, and report the smallest cut we ever see as
our proposed minimum cut. Properly implemented, this contraction series for
one given graph can be implemented in O(nm) time, resulting in a Monte Carlo
algorithm with O(rmn) running time, but no guarantee of an optimal solution.

What are the chances of success on any given iteration? Consider the initial
graph. A contraction of a random edge e preserves the minimum cut C' provided
e is not one of the k cut edges. Since G has at least kn/2 edges, the probability
p; of a successful ¢th edge contraction is:

k 2 n—i—1

S -
P T k=it 1)/2 n—itl n—itl

The odds on success for all but the last few contractions in a large graph are
strongly in our favor.

To end up with a minimum cut C for a particular run, we must succeed on
every one of our n — 2 contractions, which occurs with probability

’iif ‘_nl:fn—i—l_ n—2\ (n-3\ (n—4 3\ (2) (1) _ 2
Hr= A= = U n—1)\n-2)"\5)\1)\3) " nn-1
The product cancels magically, and leaves a success probability of ©(1/n?).

That isn’t very large, but if we run r» = n?logn times it becomes very likely we
will stumble upon the minimum cut at least once.

Take-Home Lesson: The key to success in any randomized algorithm is setting
up a situation where we can bound our probability of success. The analysis
can be tricky, but the resulting algorithms are often quite simple, as they are
here. After all, complicated randomized algorithms likely become too difficult
to analyze.
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8.7 Design Graphs, Not Algorithms

Proper modeling is the key to making effective use of graph algorithms. Several
properties of graphs have been defined, and efficient algorithms for computing
them developed. All told, about two dozen different algorithmic graph problems
are presented in the catalog, mostly in Sections 18 and 19. These classical graph
problems provide a framework for modeling most applications.

The secret is learning to design graphs, not algorithms. We have already
seen a few instances of this idea:

e The mazimum spanning tree can be found by negating the edge weights
of the input graph G and using a minimum spanning tree algorithm on
the result. The spanning tree of —G that has the most negative weight
will define the maximum-weight tree in G.

e To solve bipartite matching, we constructed a special network flow graph
such that the maximum flow corresponds to a matching having the largest
number of edges.

The applications below demonstrate the power of proper modeling. Each
arose in a real-world application, and each can be modeled as a graph problem.
Some of the modelings are quite clever, but they illustrate the versatility of
graphs in representing relationships. As you read a problem, try to devise an
appropriate graph representation before peeking to see how it was done.

Stop and Think: The Pink Panther’s Passport to Peril

Problem: I'm looking for an algorithm to design natural routes for video-game
characters to follow through an obstacle-filled room. How should I do it?

Solution: Presumably the desired route should look like a path that an intel-
ligent being would choose. Since intelligent beings are either lazy or efficient,
this should be modeled as a shortest-path problem.

But what is the graph? One approach might be to lay a grid of points in the
room. Create a vertex for each grid point that is a valid place for the character
to stand, one that does not lie within an obstacle. Construct an edge between
any pair of nearby vertices, weighted proportionally to the distance between
them. Although direct geometric methods are known for shortest paths (see
Section 18.4 (page 554)), it is easier to model this discretely as a graph. ||

Stop and Think: Ordering the Sequence

Problem: A DNA sequencing project generates experimental data consisting of
small fragments. For each given fragment f, we know certain other fragments
are forced to lie to the left of f, and certain other fragments are forced to be on
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f’s right. How can we find a consistent ordering of the fragments from left to
right that satisfies all the constraints?

Solution: Create a directed graph, where each fragment is assigned a unique
vertex. Insert a directed edge (I, f) from any fragment [ that is forced to be to
the left of f, and a directed edge (f,r) to any fragment r forced to be to the
right of f. We seek an ordering of the vertices such that all the edges go from left
to right. This is a topological sort of the resulting directed acyclic graph. The
graph must be acyclic, because cycles would make finding a consistent ordering
impossible. 1

Stop and Think: Bucketing Rectangles

Problem: In my graphics work I must solve the following problem. Given an
arbitrary set of rectangles in the plane, how can I distribute them into a min-
imum number of buckets such that no rectangles in any given bucket intersect
one another? In other words, there cannot be any overlapping area between two
rectangles in the same bucket.

Solution: ~ We formulate a graph where each vertex represents a rectangle,
and there is an edge if two rectangles intersect. Each bucket corresponds to an
independent set (see Section 19.2 (page 589)) of rectangles, so there is no overlap
between any two. A wertex coloring (see Section 19.7 (page 604)) of a graph is
a partition of the vertices into independent sets, so minimizing the number of
colors is exactly what the problem is asking for. |

Stop and Think: Names in Collision

Problem: In porting code from Unix to DOS, I have to shorten several hundred
file names down to at most eight characters each. I can’t just use the first
eight characters from each name, because “filenamel” and “filename2” would
be assigned the exact same name. How can I meaningfully shorten the names
while ensuring that they do not collide?

Solution: Construct a bipartite graph with vertices corresponding to each orig-
inal file name f; for 1 < ¢ < n, as well as a collection of acceptable shortenings
for each name f;1,..., fir. Add an edge between each original and shortened
name. We now seek a set of n edges that have no vertices in common, so each
file name is mapped to a distinct acceptable substitute. Bipartite matching is
exactly this problem of finding an independent set of edges in a graph. i
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Stop and Think: Separate the Text

Problem: We need a way to separate the lines of text in the optical character-
recognition system that we are building. Although there is some white space
between the lines, problems like noise and the tilt of the page make it hard to
find. How can we do line segmentation?

Solution: Consider the following graph formulation. Treat each pixel in the
image as a vertex in the graph, with an edge between two neighboring pixels.
The weight of this edge should be proportional to how dark the pixels are. A
segmentation between two lines is a path in this graph from the left to right side
of the page. We seek a relatively straight path that avoids as much blackness
as possible. This suggests that the shortest path in the pixel graph will likely
find a good line segmentation. |

Take-Home Lesson: Designing novel graph algorithms is very hard, so don’t do
it. Instead, try to design graphs that enable you to use classical algorithms to
model your problem.

Chapter Notes

Network flows are an advanced algorithmic technique, and recognizing whether
a particular problem can be solved by network flow requires experience. I point
the reader to books by Williamson [Will9] and Cook and Cunningham [CC97]
for more detailed treatments of the subject.

The augmenting path method for network flows is due to Ford and Fulker-
son [FF62]. Edmonds and Karp [EK72] proved that always selecting a shortest
geodesic augmenting path guarantees that O(n?) augmentations suffice for op-
timization.

The phone code reconstruction system that was the subject of the war story
is described in more technical detail in Rau and Skiena [RS96].

8.8 Exercises

Simulating Graph Algorithms
8-1. [3] For the graphs in Problem 7-1:
(a) Draw the spanning forest after every iteration of the main loop in Kruskal’s
algorithm.

(b) Draw the spanning forest after every iteration of the main loop in Prim’s
algorithm.

(c) Find the shortest-path spanning tree rooted in A.

(d) Compute the maximum flow from A to H.
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Minimum Spanning Trees

8-2.

8-3.

8-5.

8-6.

8-7.

8-8.

8-9.

8-10.

8-11.

[3] Is the path between two vertices in a minimum spanning tree necessarily
a shortest path between the two vertices in the full graph? Give a proof or a
counterexample.

[3] Assume that all edges in the graph have distinct edge weights (i.e., no pair
of edges have the same weight). Is the path between a pair of vertices in a
minimum spanning tree necessarily a shortest path between the two vertices in
the full graph? Give a proof or a counterexample.

. [8] Can Prim’s and Kruskal’s algorithms yield different minimum spanning trees?

Explain why or why not.

[3] Does either Prim’s or Kruskal’s algorithm work if there are negative edge
weights? Explain why or why not.

[3] (a) Assume that all edges in the graph have distinct edge weights (i.e., no
pair of edges have the same weight). Is the minimum spanning tree of this graph
unique? Give a proof or a counterexample.

(b) Again, assume that all edges in the graph have distinct edge weights (i.e. no
pair of edges have the same weight). Is the shortest-path spanning tree of this
graph unique? Give a proof or a counterexample.

[5] Suppose we are given the minimum spanning tree 7" of a given graph G (with
n vertices and m edges) and a new edge e = (u, v) of weight w that we will add
to G. Give an efficient algorithm to find the minimum spanning tree of the
graph G + e. Your algorithm should run in O(n) time to receive full credit.

[5] (a) Let T be a minimum spanning tree of a weighted graph G. Construct a
new graph G’ by adding a weight of k to every edge of G. Do the edges of T form
a minimum spanning tree of G’? Prove the statement or give a counterexample.
(b) Let P = {s,...,t} describe a shortest path between vertices s and t of a
weighted graph G. Construct a new graph G’ by adding a weight of k to every
edge of G. Does P describe a shortest path from s to ¢t in G'? Prove the
statement or give a counterexample.

[5] Devise and analyze an algorithm that takes a weighted graph G and finds
the smallest change in the cost to a non-minimum spanning tree edge that would
cause a change in the minimum spanning tree of GG. Your algorithm must be
correct and run in polynomial time.

[4] Consider the problem of finding a minimum-weight connected subset 1" of
edges from a weighted connected graph G. The weight of T is the sum of all the
edge weights in T'.

(a) Why is this problem not just the minimum spanning tree problem? (Hint:
think negative weight edges.)

(b) Give an efficient algorithm to compute the minimum-weight connected
subset 7.

/5] Let T = (V,E') be a minimum spanning tree of a given graph G = (V, E)
with positive edge weights. Now suppose the weight of a particular edge e € F
is modified from w(e) to a new value w(e). We seek to update the minimum
spanning tree T' to reflect this change without recomputing the entire tree from
scratch. For each of the following four cases, give a linear-time algorithm to
update the tree:
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(a) e ¢ E’ and w(e) > w(e)
(b) e ¢ E' and w(e) < w(e)
(c) e€ E" and w(e) < w(e)
(d) e € E’ and w(e) > w(e)
8-12. [4] Let G = (V, E) be an undirected graph. A set FF C E of edges is called a

feedback-edge set if every cycle of G has at least one edge in F'.

(a) Suppose that G is unweighted. Design an efficient algorithm to find a
minimum-size feedback-edge set.

(b) Suppose that G is a weighted undirected graph with positive edge weights.
Design an efficient algorithm to find a minimum-weight feedback-edge set.

Union—Find

8-13. [5] Devise an efficient data structure to handle the following operations on a
weighted directed graph:

(a) Merge two given components.
(b) Locate which component contains a given vertex v.

(c) Retrieve a minimum edge from a given component.

8-14. [5] Design a data structure that enables a sequence of m union and find op-
erations on a universal set of n elements, consisting of a sequence of all unions
followed by a sequence of all finds, to be performed in time O(m + n).

Shortest Paths

8-15. [3] The single-destination shortest-path problem for a directed graph seeks the
shortest path from every vertex to a specified vertex v. Give an efficient algo-
rithm to solve the single-destination shortest-path problem.

8-16. [3] Let G = (V, E) be an undirected weighted graph, and let T' be the shortest-
path spanning tree rooted at a vertex v. Suppose now that all the edge weights
in G are increased by a constant number k. Is T still the shortest-path spanning
tree from v?

8-17. [3] (a) Give an example of a weighted connected graph G = (V, E) and a vertex
v, such that the minimum spanning tree of G is the same as the shortest-path
spanning tree rooted at v.

(b) Give an example of a weighted connected directed graph G = (V, E) and a
vertex v, such that the minimum spanning tree of G is very different from the
shortest-path spanning tree rooted at v.

(c) Can the two trees be completely disjoint?

8-18. [3] Either prove the following or give a counterexample:

(a) Is the path between a pair of vertices in a minimum spanning tree of an
undirected graph necessarily the shortest (minimum-weight) path?

(b) Suppose that the minimum spanning tree of the graph is unique. Is the
path between a pair of vertices in a minimum spanning tree of an undi-
rected graph necessarily the shortest (minimum-weight) path?
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8-19.

8-20.

8-21.

8-22.

8-23.

8-24.

8-25.

8-26.

8-27.

[3] Give an efficient algorithm to find the shortest path from z to y in an undi-
rected weighted graph G = (V, E) with positive edge weights, subject to the
constraint that this path must pass through a particular vertex z.

[5] In certain graph problems, vertices can have weights instead of or in addition
to the weights of edges. Let C, be the cost of vertex v, and C(, ) the cost of the
edge (z,y). This problem is concerned with finding the cheapest path between
vertices a and b in a graph G. The cost of a path is the sum of the costs of the
edges and vertices encountered on the path.

(a) Suppose that each edge in the graph has a weight of zero (while non-edges
have a cost of c0). Assume that C, = 1 for all vertices 1 < v < n (i.e.,
all vertices have the same cost). Give an efficient algorithm to find the
cheapest path from a to b and its time complexity.

(b) Now suppose that the vertex costs are not constant (but are all positive)
and the edge costs remain as above. Give an efficient algorithm to find
the cheapest path from a to b and its time complexity.

(¢c) Now suppose that both the edge and vertex costs are not constant (but are
all positive). Give an efficient algorithm to find the cheapest path from a
to b and its time complexity.

[5] Give an O(n®) algorithm that takes an n-vertex directed graph G with posi-
tive edge lengths, and returns the length of the shortest cycle in the graph. This
length is oo in the case of an acyclic graph.

[5] A highway network is represented by a weighted graph G, with edges corre-
sponding to roads and vertices corresponding to road intersections. Each road
is labeled with the maximum possible height of vehicles that can pass through
the road. Give an efficient algorithm to compute the maximum possible height
of vehicles that can successfully travel from s to t. What is the runtime of your
algorithm?

[5] You are given a directed graph G with possibly negative weighted edges, in
which the shortest path between any two vertices is guaranteed to have at most
k edges. Give an algorithm that finds the shortest path between two vertices u
and v in O(k - (n +m)) time.

[5] Can we solve the single-source longest-path problem by changing minimum
to mazimum in Dijkstra’s algorithm? If so, then prove your algorithm correct.
If not, then provide a counterexample.

[5] Let G = (V, E) be a weighted acyclic directed graph with possibly negative
edge weights. Design a linear-time algorithm to solve the single-source shortest-
path problem from a given source v.

[5] Let G = (V, E) be a directed weighted graph such that all the weights are
positive. Let v and w be two vertices in G and k < |V| be an integer. Design an
algorithm to find the shortest path from v to w that contains exactly k edges.
Note that the path need not be simple.

[5] Arbitrage is the use of discrepancies in currency-exchange rates to make a
profit. For example, there may be a small window of time during which 1 U.S.
dollar buys 0.75 British pounds, 1 British pound buys 2 Australian dollars, and
1 Australian dollar buys 0.70 U.S. dollars. At such a time, a smart trader can
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trade one U.S. dollar and end up with 0.75x 2 x 0.7 = 1.05 U.S. dollars—a profit
of 5%. Suppose that there are n currencies ci,...,c, and an n x n table R of
exchange rates, such that one unit of currency ¢; buys R[i, j] units of currency
¢j. Devise and analyze an algorithm to determine the maximum value of

R[Clv Cil] ’ R[Cil ) Ciz] t R[cik—l ) C'ik] ’ R[cik7 Cl]

(Hint: think all-pairs shortest path.)

Network Flow and Matching

8-28. [3] A matching in a graph is a set of disjoint edges—that is, edges that do
not have common vertices. Give a linear-time algorithm to find a maximum
matching in a tree.

8-29. [5] An edge cover of an undirected graph G = (V, E) is a set of edges such that
each vertex in the graph is incident to at least one edge from the set. Give an
efficient algorithm, based on matching, to find the minimum-size edge cover for

G.

LeetCode

8-1. https://leetcode.com/problems/cheapest-flights-within-k-stops/
8-2. https://leetcode.com/problems/network-delay-time/

8-3. https://leetcode.com/problems/find-the-city-with-the-smallest-number-
of-neighbors-at-a-threshold-distance/

HackerRank

8-1. https://www.hackerrank.com/challenges/kruskalmstrsub/
8-2. https://www.hackerrank.com/challenges/jack-goes—-to-rapture/

8-3. https://www.hackerrank.com/challenges/tree-pruning/

Programming Challenges
These programming challenge problems with robot judging are available at
https://onlinejudge.org:

8-1. “Freckles”—Chapter 10, problem 10034.

8-2. “Necklace”—Chapter 10, problem 10054.

8-3. “Railroads”—Chapter 10, problem 10039.

8-4. “Tourist Guide”—Chapter 10, problem 10199.

8-5. “The Grand Dinner”—Chapter 10, problem 10249.


https://leetcode.com/problems/cheapest-flights-within-k-stops/
https://leetcode.com/problems/network-delay-time/
https://leetcode.com/problems/find-the-city-with-the-smallest-number-of-neighbors-at-a-threshold-distance/
https://leetcode.com/problems/find-the-city-with-the-smallest-number-of-neighbors-at-a-threshold-distance/
https://www.hackerrank.com/challenges/kruskalmstrsub/
https://www.hackerrank.com/challenges/jack-goes-to-rapture/
https://www.hackerrank.com/challenges/tree-pruning/
https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=28
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Chapter 9

Combinatorial Search

Surprisingly large problems can be solved using exhaustive search techniques,
albeit at great computational cost. But for certain applications, it may be worth
it. A good example occurs in testing a circuit or a program. You can prove the
correctness of the device by trying all possible inputs and verifying that they
give the correct answer. Verified correctness is a property to be proud of: just
claiming that it works correctly on all the inputs you tried is worth much less.

Modern computers have clock rates of a few gigahertz, meaning billions of
operations per second. Since doing something interesting takes a few hundred
instructions, you can hope to search millions of items per second on contempo-
rary machines.

It is important to realize how big (or how small) one million is. One mil-
lion permutations means all arrangements of roughly 10 objects, but not more.
One million subsets means all combinations of roughly 20 items, but not more.
Solving significantly larger problems requires carefully pruning the search space
to ensure we look at only the elements that really matter.

This section introduces backtracking as a technique for listing all possible
solutions for a combinatorial algorithm problem. I illustrate the power of clever
pruning techniques to speed up real search applications. For problems that
are too large to contemplate using combinatorial search, heuristic methods like
simulated annealing are presented in Chapter 12. Such heuristics are important
weapons in any practical algorist’s arsenal.

9.1 Backtracking

Backtracking is a systematic way to run through all the possible configurations
of a search space. These configurations may represent all possible arrangements
of objects (permutations) or all possible ways of building a collection of them
(subsets). Other common situations demand enumerating all spanning trees of
a graph, all paths between two vertices, or all possible ways to partition vertices
into color classes.
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What these problems have in common is that we must generate each possi-
ble configuration exactly once. Avoiding repetitions and missed configurations
means that we must define a systematic generation order. We will model our
combinatorial search solution as a vector a = (a1, as, ..., a, ), where each element
a; is selected from a finite ordered set S;. Such a vector might represent an ar-
rangement where a; contains the ith element of the permutation. Or perhaps
a is a Boolean vector representing a given subset .S, where a; is true iff the ith
element of the universal set is in S. The solution vector can even represent a
sequence of moves in a game or a path in a graph, where a; contains the ith
game move or graph edge in the sequence.

At each step in the backtracking algorithm, we try to extend a given partial
solution a = (a1, as,...,ar) by adding another element at the end. After this
extension, we must test whether what we now have is a complete solution: if
so, we should print it or count it. If not, we must check whether the partial
solution is still potentially extendable to some complete solution.

Backtracking constructs a tree of partial solutions, where each node repre-
sents a partial solution. There is an edge from x to y if node y was created by
extending x. This tree of partial solutions provides an alternative way to think
about backtracking, for the process of constructing the solutions corresponds
exactly to doing a depth-first traversal of the backtrack tree. Viewing back-
tracking as a depth-first search on an implicit graph yields a natural recursive
implementation of the basic algorithm.

Backtrack-DFS(a, k)
if a = (a1, as,...,ax) is a solution, report it.
else
k=k+1
construct Si, the set of candidates for position k of a
while Sy # 0 do
ap = an element in Sy,
Sk = Sk — {ak}
Backtrack-DFS(a, k)

Although a breadth-first search could also be used to enumerate solutions,
a depth-first search is greatly preferred because it uses much less space. The
current state of a search is completely represented by the path from the root
to the current depth-first search node. This requires space proportional to the
height of the tree. In breadth-first search, the queue stores all the nodes at the
current level, which is proportional to the width of the search tree. For most
interesting problems, the width of the tree grows exponentially with its height.

Implementation

Backtracking ensures correctness by enumerating all possibilities. It ensures
efficiency by never visiting a state more than once. To help you understand
how this works, my generic backtrack code is given below:
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void backtrack(int al], int k, data input) {

int c[MAXCANDIDATES]; /* candidates for next position */
int nc; /* next position candidate count */
int 1i; /* counter */

if (is_a_solution(a, k, input)) {
process_solution(a, k,input);
} else {
k =k + 1;
construct_candidates(a, k, input, c, &nc);
for (i = 0; 1 < nc; i++) {
alk] = c[il;
make_move(a, k, input);
backtrack(a, k, input);
unmake_move(a, k, input);

if (finished) {
return; /* terminate early */

}

Study how recursion yields an elegant and easy implementation of the back-

tracking algorithm. Because a new candidates array c is allocated with each
recursive procedure call, the subsets of not-yet-considered extension candidates
at each position will not interfere with each other.

The application-specific parts of this algorithm consist of five subroutines:

e is_ a solution(a,k,input) — This Boolean function tests whether the

first k elements of vector a form a complete solution for the given problem.
The last argument, input, allows us to pass general information into the
routine. We can use it to specify n—the size of a target solution. This
makes sense when constructing permutations or subsets of n elements, but
other data may be relevant when constructing variable-sized objects such
as sequences of moves in a game.

construct_candidates(a,k,input,c,&nc) — This routine fills an array
c with the complete set of possible candidates for the kth position of a,
given the contents of the first £ — 1 positions. The number of candidates
returned in this array is denoted by nc. Again, input may be used to pass
auxiliary information.

process_solution(a,k,input) — This routine prints, counts, stores, or
processes a complete solution once it is constructed.

make move (a,k,input) and unmake move(a,k,input) — These routines
enable us to modify a data structure in response to the latest move, as well
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as clean up this data structure if we decide to take back the move. Such a
data structure can always be rebuilt from scratch using the solution vector
a, but this can be inefficient when each move involves small incremental
changes that can easily be undone.

These calls will function as null stubs in all of this section’s examples, but
will be employed in the Sudoku program of Section 9.4 (page 290).

A global finished flag is included to allow for premature termination, which
could be set in any application-specific routine.

9.2 Examples of Backtracking

To really understand how backtracking works, you must see how such objects as
permutations and subsets can be constructed by defining the right state spaces.
Examples of several state spaces are described in the following subsections.

9.2.1 Constructing All Subsets

Designing an appropriate state space to represent combinatorial objects starts
by counting how many objects need representing. How many subsets are there
of an n-element set, say the integers {1,...,n}? There are exactly two subsets
for n = 1, namely {} and {1}. There are four subsets for n = 2, and eight
subsets for n = 3. Each new element doubles the number of possibilities, so
there are 2" subsets of n elements.

Each subset is described by the elements that are contained in it. To con-
struct all 2™ subsets, we set up a Boolean array/vector of n cells, where the value
of a; (true or false) signifies whether the ith item is in the given subset. In the
scheme of our general backtrack algorithm, Sy = (true, false) and a is a solution
whenever £ = n. We can now construct all subsets with simple implementations
of is_a_solution(), construct_candidates(), and process_solution().

int is_a_solution(int a[], int k, int n) {
return (k == n);

}

void construct_candidates(int al[l], int k, int n, int c[], int *nc) {
c[0] = true;
c[1] = false;
*nc = 2;
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{123} {1.2} {1.3} {1} {23} {2} {3} {1 123 132 213 231 312 321

Figure 9.1: Search tree enumerating all subsets (left) and permutations (right)
of {1,2,3}. The color of the search tree edges reflects the element being inserted
into the partial solution.

void process_solution(int a[], int k, int input) {
int i; /* counter */

printf("{");
for (i = 1; i <= k; i++) {
if (ali] == true) {
printf (" %d", 1i);
+
}

printf (" X\n");

Ironically, printing out each subset after constructing it proves to be the
most complex of these three routines!

Finally, we must instantiate the call to backtrack with the right arguments.
Specifically, this means giving a pointer to the empty solution vector, setting
k = 0 to denote that it is in fact empty, and specifying the number of elements
in the universal set:

void generate_subsets(int n) {
int a[NMAX]; /* solution vector */

backtrack(a, 0, n);

In what order will the subsets of {1,2,3} be generated? It depends on the
order of moves as returned from construct_candidates. Since true always
appears before false, the subset of all trues is generated first, and the all-false

empty set is generated last: {123}, {12}, {13}, {1}, {23}, {2}, {3}, and {}.
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Trace through this example (shown in Figure 9.1 (left)) carefully to make
sure you understand the backtracking procedure. The problem of generating
subsets is more thoroughly discussed in Section 17.5 (page 521).

9.2.2 Constructing All Permutations

Counting permutations of {1,...,n} is a necessary prerequisite to generating
them. There are n distinct choices for the value of the first element of a per-
mutation. Once we have fixed a1, there are n — 1 candidates remaining for the
second position, since we can have any value except a; in this slot (because
repetitions are forbidden in permutations). Repeating this argument yields a
total of n! =[], ¢ distinct permutations.

This counting argument suggests a suitable representation. Set up an ar-
ray/vector a of n cells. The set of candidates for the ith position will be all
elements that have not appeared in the (i — 1) elements of the partial solution,
corresponding to the first ¢ — 1 elements of the permutation.

In the scheme of the general backtrack algorithm, S, = {1,...,n}—{a1,...,ax},
and a is a solution whenever k = n:

void construct_candidates(int al[], int k, int n, int c[], int *nc) {
int i; /* counter */
bool in_perm[NMAX]; /* what is now in the permutation? */

for (i = 1; 1 < NMAX; i++) {
in_perm[i] = false;

}

for (1 = 1; i < k; i++) {
in_perm[a[i]] = true;

}

*nc = 0;
for (i = 1; i <= n; i++) {
if (lin_perm[i]) {
cl *nc ] = i;
*nc = *nc + 1;

Testing whether 7 is a candidate for the kth slot in the permutation could be
done by iterating through all £ —1 elements of a and verifying that none of them
matched. However, we prefer to set up a bit-vector data structure (see Section
15.5 (page 456)) to keep track of which elements are in the partial solution.
This gives a constant-time legality check.
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Completing the job requires specifying process_solution and is_a_solution,
as well as setting the appropriate arguments to backtrack. All are essentially
the same as for subsets:

void process_solution(int a[], int k, int input) {
int i; /* counter */

for (i = 1; i <= k; i++) {
printf (" %d", alil);

}

printf("\n");

int is_a_solution(int a[], int k, int n) {
return (k == n);

}

void generate_permutations(int n) {
int a[NMAX]; /* solution vector */

backtrack(a, 0, n);

As a consequence of the candidate order, these routines generate permuta-
tions in lexicographic, or sorted order—that is, 123, 132, 213, 231, 312, and
321, as shown in Figure 9.1 (right). The problem of generating permutations is
more thoroughly discussed in Section 17.4 (page 517).

9.2.3 Constructing All Paths in a Graph

In a simple path no vertex appears more than once. Enumerating all the simple
s to t paths in a given graph is a more complicated problem than just listing
permutations or subsets. There is no explicit formula that counts solutions as
a function of the number of edges or vertices, because the number of paths
depends upon the structure of the graph.

The input data we must pass to backtrack to construct the paths consists
of the input graph g, the source vertex s, and target vertex t:

typedef struct {

int s; /* source wvertex */
int t; /* destination wvertex */
graph g; /* graph to find paths in */

} paths_data;
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The starting point of any path from s to ¢ is always s. Thus, s is the only
candidate for the first position and S; = {s}. The possible candidates for the
second position are the vertices v such that (s,v) is an edge of the graph, for
the path wanders from vertex to vertex using edges to define the legal steps. In
general, Siy1 consists of the set of vertices adjacent to aj that have not been
used elsewhere in the partial solution a.

void construct_candidates(int al[], int k, paths_data *g, int c[],
int *nc) {

int 1i; /* counters */

bool in_sol[NMAX+1]; /* what's already in the solution? */
edgenode *p; /* temporary pointer */

int last; /* last vertex on current path */

for (i = 1; i <= g->g.nvertices; i++) {
in_sol[i] = false;

}

for (i = 0; i < k; i++) {
in_sol[a[i]l] = true;

}

if (k== 1) {
clo] = g->s; /% always start from vertex s */
*nc = 1;

} else {
*nc = 0;

last = al[k-1];
p = g—>g.edges[last];
while (p != NULL) {
if ('in_sol[ p—>y 1) {
c[*nc] = p->y;
*nc= *nc + 1;
}
p

= p—>next;

We report a successful path whenever a;, = t.

int is_a_solution(int a[], int k, paths_data *g) {
return (alk] == g->t);
}
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6

Figure 9.2: Search tree (right) enumerating all simple s—¢ paths in the given
graph (left). The color of a search tree edge reflects the color of the correspond-
ing graph edge.

The number of paths discovered can be counted in process_solution by
incrementing a global variable solution_count. The sequence of vertices for
each path is stored in the solution vector a, ready to be printed:

void process_solution(int al], int k, paths_data *input) {
int i; /* counter */

solution_count ++;

printf ("{");

for (i = 1; i <= k; i++) {
printf (" %d",alil);

}

printf (" }\n");

This solution vector must have room for all n vertices, although most paths
should be shorter than this. Figure 9.2 shows the search tree giving all paths
from the source vertex in a particular graph.

9.3 Search Pruning

Backtracking ensures correctness by enumerating all possibilities. A correct
algorithm to find the optimal traveling salesman tour constructs all n! permu-
tations of the n vertices of graph G. For each permutation, we check whether
all edges implied by the tour really exist in G and if so add the weights of these
edges together. The tour with minimum weight is the solution.

However, it is wasteful to construct all the permutations first and then an-
alyze them later. Suppose our search started from vertex vy, and it happened
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that vertex-pair (v1,vs) was not an edge in G. The (n — 2)! permutations enu-
merated starting with (v, v9) as its prefix would be a complete waste of effort.
Much better would be to stop the search after [vi,vs] and then continue from
[v1,v3]. By restricting the set of next elements to reflect only legal moves with
respect to the current partial configuration, we significantly reduce the total
search complexity.

Pruning is the technique of abandoning a search direction the instant we can
establish that a given partial solution cannot be extended into a full solution.
For traveling salesman, we seek the cheapest tour that visits all vertices. Sup-
pose that in the course of our search we find a tour ¢ whose cost is Cy. Later,
we may have a partial solution a whose edge sum C, > C;. Is there any reason
to continue exploring this node? No, because any tour with a as its prefix will
have cost greater than tour ¢, and hence is doomed to be non-optimal. Cutting
away such failed partial tours from the search tree as soon as possible can have
an enormous impact on running time.

Exploiting symmetry is another avenue for reducing combinatorial search.
Pruning away partial solutions equivalent to those previously considered requires
recognizing underlying symmetries in the search space. For example, consider
the state of our TSP search after we have tried all partial positions beginning
with v;. Does it pay to continue the search with partial solutions beginning
with v2?7 No. Any tour starting and ending at v, can be viewed as a rotation of
one starting and ending at vy, for TSP tours are closed cycles. There are thus
only (n—1)! distinct tours on n vertices, not n!. By restricting the first element
of the tour to vy, we save a factor of n in time without missing any interesting
solutions. Detecting such symmetries can be subtle, but once identified they
can usually be easily exploited.

Take-Home Lesson: Combinatorial search, when augmented with tree-pruning
techniques, can be used to find the optimal solution for small optimization
problems. How small depends upon the specific problem, but typical size limits
are somewhere between twenty and a hundred items.

9.4 Sudoku

A Sudoku craze has swept the world. Many newspapers publish daily Sudoku
puzzles, and millions of books about Sudoku have been sold. British Airways
sent a formal memo forbidding its cabin crews from doing Sudoku during takeoffs
and landings. Indeed, I have noticed plenty of Sudoku going on in the back of
my algorithms classes during lecture.

What is Sudoku? In its most common form, it consists of a 9 x 9 grid filled
with blanks and the digits 1 to 9. The puzzle is completed when every row,
column, and sector (3 x 3 subproblems corresponding to the nine sectors of a
tic-tac-toe puzzle) contain the digits 1 through 9 with no omissions or repetition.
Figure 9.3 presents a challenging Sudoku puzzle and its solution.

Backtracking lends itself nicely to the task of solving Sudoku puzzles. We will
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Figure 9.3: A challenging Sudoku puzzle (left) with its completed solution
(right).

use Sudoku here to illustrate pruning techniques for combinatorial search. Our
state space will be the collection of open squares, each of which must ultimately
be filled in with a digit. The candidates for open squares (i,7) are exactly the
integers from 1 to 9 that have not yet appeared in row i, column j, or the 3 x 3
sector containing (4, 7). We backtrack as soon as we are out of candidates for a
square.

The solution vector a supported by backtrack only accepts a single integer
per position. This is enough to store the contents of a square (1-9) but not the
coordinates of the square. Thus, we keep a separate array of move positions as
part of our boardtype data type provided below. The basic data structures we
need to support our solution are:

#define DIMENSION 9 /* 9%9 board */
#define NCELLS DIMENSION*DIMENSION — /* 81 cells in 9-by-9-board */
#define MAXCANDIDATES  DIMENSION+1 /* maz digit choices per cell */

bool finished = false;
typedef struct {
int x, y; /* row and column coordinates of square */

} point;

typedef struct {

int m[DIMENSION+1] [DIMENSION+1]; /* board contents */
int freecount; /* open square count */
point move [NCELLS+1]; /* which cells have we filled? */

} boardtype;
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Constructing the move candidates for the next position requires first picking
which open square we want to fill next (next_square), and then identifying
which digits are candidates to fill that square (possible_values). These rou-
tines are basically bookkeeping, although the details of how they work can have
a substantial impact on performance.

void comnstruct_candidates(int a[], int k, boardtype *board, int c[],
int *nc) {
int 1i; /* counter */
bool possible[DIMENSION+1]; /* which digits fit in this square */

next_square (& (board->move [k]), board); /* pick square to fill next */
*nc = 0;

if ((board->movel[k].x < 0) && (board->movelk].y < 0)) {
return; /* error condition, mo moves possible */

}

possible_values(board->move[k], board, possible);
for (i = 1; i <= DIMENSION; i++) {
if (possible[i]) {
cl*nc] = i;
*nc = *nc + 1;

We must update our board data structure to reflect the effect of putting
a candidate value into a square, as well as remove these changes should we
backtrack from this position. These updates are handled by make move and
unmake move, both of which are called directly from backtrack:

void make_move(int a[], int k, boardtype *board) {
fill_square(board->move[k], al[k], board);
}

void unmake_move(int al[], int k, boardtype *board) {
free_square(board->move[k], board);

3

One important job for these board update routines is maintaining how many
free squares remain on the board. A solution is found when there are no more
free squares remaining to be filled. Here, steps is a global variable recording
the complexity of our search for Table 9.4:
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bool is_a_solution(int a[], int k, boardtype *board) {
steps = steps + 1; /* count steps for results table */

return (board->freecount == 0);

We print the configuration and then turn off the backtrack search after
finding a solution by setting the global finished flag. This can be done without
consequence because “official” Sudoku puzzles are allowed to have only one
solution. But there can be non-official Sudoku puzzles with enormous numbers
of solutions. The empty puzzle, where initially no digits are specified anywhere,
can be filled in exactly 6,670,903,752,021,072,936,960 ways. We ensure we don’t
see all of them by turning off the search:

void process_solution(int a[], int k, boardtype *board) {
finished = true;
printf ("process solution\n");
print_board(board) ;

This completes the program modulo details of identifying the next open
square to fill (next_square) and identifying the candidates that might fill it
(possible_values). Two natural heuristics to select the next square are:

o Arbitrary square selection — Pick the first open square we encounter, be
it the first, the last, or a random open square. All are equivalent in that
there seems to be no reason to believe that one variant will perform better
than the others.

e Most constrained square selection — Here, we check each open square (i, j)
to see how many digits remain possible candidates to fill it—that is, digits
that have not already been used in row ¢, column j, or the sector containing
(4,7). We pick the square with the smallest number of candidates.

Although both possibilities work correctly, the second option is much, much
better. If there are open squares with only one remaining candidate, the choice
is forced. We might as well fill them first, especially since pinning these squares
down will help trim the possibilities for other open squares. Of course, we
will spend more time selecting each candidate square, but if the puzzle is easy
enough we may never have to backtrack at all.

If the most constrained square has two possibilities, we have a 50% chance of
guessing right the first time, as opposed to a probability of 1/9 for a completely
unconstrained square. Reducing our average number of choices from (say) three
per square to two per square is an enormous win, because it multiplies with
each position. If we have (say) twenty positions to fill, we must enumerate only
220 — 1,048,576 solutions. A branching factor of 3 at each of twenty positions
requires over 3,000 times as much work!
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Pruning condition Puzzle complexity
next_square possible_values Easy | Medium Hard
arbitrary local count 1,904,832 | 863,305 | never finished
arbitrary look ahead 127 142 12,507,212
most constrained local count 48 84 1,243,838
most constrained look ahead 48 65 10,374

Figure 9.4: Sudoku run times (in number of steps) for different pruning strate-
gies.

Our final decision concerns the possible_values we allow for each square.
We have two possibilities:

e Local count — Our backtrack search works correctly if the routine that
generates candidates for board position (i, j) (possible_values) does the
obvious thing and allows all digits 1 to 9 that have not appeared in the
given row, column, or sector.

e Look ahead — But what if our current partial solution has some other open
square where there are no candidates remaining under the local count
criteria? There is no possible way to complete this partial solution into
a full Sudoku grid. Thus, there really are zero possible moves to consider
for (i,7) because of what is happening elsewhere on the board!

We will discover this obstruction eventually, when we pick this square for
expansion, discover it has no moves, and then have to backtrack. But why
wait, since all our efforts until then will be wasted? We are much better
off backtracking immediately and moving on.!

Successful pruning requires looking ahead to see when a partial solution is
doomed to go nowhere, and backing off as soon as possible.

Figure 9.4 presents the number of calls to is_a_solution for all four back-
tracking variants on three Sudoku instances of varying complexity:

e The Fasy board was intended to be easy for a human player. Indeed,
my program solved it without any backtracking steps when the most con-
strained square was selected as the next position.

e The Medium board stumped all the contestants at the finals of the World
Sudoku Championship in March 2006. But the decent search variants here
required only a few backtrack steps to dispatch this problem.

IThis look-ahead condition might have naturally followed from the most-constrained square
selection, had it been permitted to select squares with no moves. However, my implementation
credited squares that already contained digits as having no moves, thus limiting the next
square choices to squares with at least one move.
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Figure 9.5: Configurations covering 63 but not 64 squares.

e The Hard problem is the board displayed in Figure 9.3, which initially
contains only 17 filled squares. This is the fewest specified number of
positions of any problem instance known to have a unique solution.

What is considered to be a “hard” problem instance depends upon the given
heuristic. Some people find math/theory harder than programming, but others
think differently. Heuristic A may well think instance I; is easier than I, while
heuristic B ranks them in the other order.

What can we learn from these experiments? Looking ahead to eliminate
dead positions as soon as possible is the best way to prune a search. Without
this operation, we could not finish the hardest puzzle and took thousands of
times longer on the easier ones than we should have.

Smart square selection had a similar impact, even though it nominally just
rearranges the order in which we do the work. But doing more constrained
positions first is tantamount to reducing the out-degree of each node in the
tree, and each additional position we fix adds constraints that help lower the
degree of subsequent selections.

It took the better part of an hour (48:44) to solve the puzzle in Figure 9.3
when I selected an arbitrary square for my next move. Sure, my program was
faster in most instances, but Sudoku puzzles are designed to be solved by people
using pencils in much less time than this. Making the next move in the most
constrained square reduced search time by a factor of over 1,200. Each puzzle
we tried can now be solved in seconds—the time it takes to reach for the pencil
if you prefer to do it by hand.

This is the power of search pruning. Even simple pruning strategies can
suffice to reduce running times from impossible to instantaneous.

9.5 War Story: Covering Chessboards

Every researcher dreams of solving a classical problem—one that has remained
open and unsolved for over a century. There is something romantic about com-
municating across the generations, being part of the evolution of science, and
helping to climb another rung up the ladder of human progress. There is also a
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Figure 9.6: The ten unique positions for the queen, with respect to rotational
and reflective symmetry.

pleasant sense of smugness that comes from figuring out how to do something
that nobody could do before you.

There are several possible reasons why a problem might stay open for such
a long period of time. Perhaps it is so difficult and profound as to require
a uniquely powerful intellect to solve. A second reason is technological—the
ideas or techniques required to solve the problem may not have existed when it
was first posed. The final possibility is that no one may have cared about the
problem enough in the interim to seriously bother with it. Once, I helped solve
a problem that had been open for over a hundred years. Decide for yourself
which reason best explains why.

Chess is a game that has fascinated people for thousands of years. In ad-
dition, it has inspired many combinatorial problems of independent interest.
The combinatorial explosion was first recognized with the legend that the in-
ventor of chess demanded payment of one grain of rice for the first square of
the board, and twice as much for the (i + 1)st square than the ith square.
The king was astonished to learn he had to cough up Z?il 2171 =264 _ 1 =
18,446,744,073,709,551,615 grains of rice. In beheading the inventor, the wise
king first established pruning as a technique for dealing with the combinatorial
explosion.

In 1849, Kling posed the question of whether all 64 squares on the board
could be simultaneously threatened by an arrangement of the eight main pieces
on the chess board—the king, queen, two knights, two rooks, and two bishops
on oppositely colored squares. Pieces do not threaten the square they sit on.
Configurations that simultaneously threaten 63 squares, such as those in Figure
9.5, have been long known, but whether this was the best possible remained an
open problem. This problem seemed ripe for solution by exhaustive combinato-
rial searching, although whether it was solvable depended upon the size of the
search space.

How many ways can the eight main chess pieces be positioned on a chess-
board? The trivial bound is 64!/(64 — 8)! = 178,462,987,637,760 ~ 2 x 104
positions. That’s far too many: anything larger than about 10? positions would
be unreasonable to search on a modest computer in a modest amount of time.
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Getting the job done would require significant pruning. Our first idea was
to remove symmetries. Accounting for orthogonal and diagonal symmetries left
only ten distinct positions for the queen, as shown in Figure 9.6.

Once the queen is placed, there remain 32 - 31 distinct positions for the
bishops, then 61 -60/2 for the rooks, 59-58/2 for the knights, and 57 remaining
for the king. Such an exhaustive search would test 1,770466,147,200 ~ 1.8-10'2
distinct positions—still much too large to try.

We could use backtracking to construct all possible chess boards, but we had
to find a way to prune the search space significantly. To prune the search we
needed a quick way to detect when there was no way to complete a partially
filled-in position to cover all 64 squares. Suppose we had already placed seven
pieces on the board, and together they covered all but 10 squares of the board.
Say the remaining piece was the king. Can there possibly be a way to place the
king so that all squares are threatened? The answer must be no, because the
king can threaten at most 8 squares according to the rules of chess. There can
be no reason to test any king position. We might win big pruning away such
partial configurations.

This pruning strategy required carefully ordering the evaluation of the pieces.
Each piece can threaten a certain maximum number of squares: the queen 27,
the king/knight 8, the rook 14, and the bishop 13. We would want to insert
the pieces in decreasing order of mobility: @, Ry, Rs, By, Bs, K, N1, No. We
can prune whenever the number of unthreatened squares exceeds the sum of the
maximum coverage of the unplaced pieces. This sum is minimized by using the
decreasing order of mobility.

When we implemented a backtrack search using this pruning strategy, it
eliminated over 95% of the search space. After optimizing our move generation,
our program could search over 1,000 positions per second on a machine of its
day. But this was still too slow, for 101 /10% = 10® seconds meant 1,000 days!
Although we might further tweak the program to speed it up by an order of
magnitude or so, what we really needed was to find a way to prune more nodes.

Effective pruning means eliminating large numbers of positions at a single
stroke. Our previous attempt was too weak. What if instead of placing up
to eight pieces on the board simultaneously, we placed more than eight pieces.
Obviously, the more pieces we placed simultaneously, the more likely they would
threaten all 64 squares. But if they didn’t cover, no subset of eight distinct
pieces from the set could possibly threaten all squares. The potential existed to
eliminate a vast number of positions by pruning a single node.

So in our final version, the nodes of our search tree corresponded to chess-
boards that could have any number of pieces, and more than one piece on
a square. For a given board, we distinguished strong and weak attacks on a
square. A strong attack corresponds to the usual notion of a threat in chess. A
weak attack ignores any possible blocking effects of intervening pieces. All 64
squares can be weakly attacked with eight pieces, as shown in Figure 9.7.

Our algorithm consisted of two passes. The first pass listed boards where
every square was weakly attacked. The second pass filtered the list by consid-
ering blocking pieces. A weak attack is much faster to compute (no blocking
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Figure 9.8: Seven pieces suffice when superimposing queen and knight (shown
as a white queen).

to worry about), and any strong attack set is always a subset of a weak attack
set. The position could be pruned whenever there was a non-weakly threatened
square.

This program was efficient enough to complete the search in under a day.
It did not find a single position covering all 64 squares with the bishops on
opposite colored squares. However, our program showed that it is possible to
cover the board with seven pieces provided a queen and a knight can occupy
the same square, as shown in Figure 9.8.

Take-Home Lesson: Clever pruning can make short work of surprisingly hard
combinatorial search problems. Proper pruning will have a greater impact on
search time than other factors like data structures or programming language.

9.6 Best-First Search

An important idea to speed up search is to explore your best options before
the less promising choices. In the backtrack implementation presented above,
the search order was determined by the sequence of elements generated by the
construct_candidates routine. Items near the front of the candidates array
were tried before those further back. A good candidate ordering can have a very
powerful effect on the time to solve the problem.
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The examples so far in this chapter have focused on ezistential search prob-
lems, where we look for a single solution (or all solutions) satisfying a given
set of constraints. Optimization problems seek the solution with the lowest or
highest value of some objective function. A simple strategy to deal with opti-
mization problems is to construct all possible solutions, and then report the one
that scores best by the optimization criterion. But this can be expensive. Much
better would be to generate solutions in order from best to worst, and report
the best as soon as we can prove it is the best.

Best-first search, also called branch and bound, assigns a cost to every par-
tial solution we have generated. We use a priority queue (named q below)
to keep track of these partial solutions by cost, so the most promising par-
tial solution can be easily identified and expanded. As in backtracking, we
explore the next partial solution by testing if it is_a_solution and calling
process_solution if it is. We identify all ways to expand this partial solution
by calling construct_candidates, each of which gets inserted into the priority
queue with its associated cost. A generic best-first search, which we apply to
the traveling salesman problem (TSP), is implemented as follows:

void branch_and_bound (tsp_solution *s, tsp_instance *t) {

int c[MAXCANDIDATES]; /* candidates for next position */
int nc; /* next position candidate count */
int i; /* counter */

first_solution(&best_solution,t);

best_cost = solution_cost(&best_solution, t);
initialize_solution(s,t);
extend_solution(s,t,1);

pq_init(&q);

pg_insert(&q,s);

while (top_pq(&q).cost < best_cost) {
*s = extract_min(&q);
if (is_a_solution(s, s—>n, t)) {
process_solution(s, s->n, t);

}
else {
construct_candidates(s, (s->n)+1, t, c, &nc);
for (i=0; i<nc; i++) {
extend_solution(s,t,c[i]);
pg_insert(&q,s);
contract_solution(s,t);
}
}
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The extend_solution and contract_solution routines handle the book-
keeping of creating and pricing the partial solutions associated with each new
candidate:

void extend_solution(tsp_solution *s, tsp_instance *t, int v) {
s—>n++;
s->pls->n] = v;
s->cost = partial_solution_1b(s,t);

}

void contract_solution(tsp_solution *s, tsp_instance *t) {
s—>n--;
s->cost = partial_solution_1b(s,t);

What should be the cost of a partial solution? There are (n — 1)! circular
permutations on n points, so we can represent each tour as an n-element per-
mutation starting with 1 so there are no repetitions. Partial solutions construct
a prefix of the tour starting with vertex v, so a natural cost function might
be the sum of the edge weights on this prefix source. An interesting property
of such a cost function is that it serves as a lower bound on the cost of any
expanded tour, assuming that all edge weights are positive.

But does the first full solution from a best-first search have to be an optimal
solution? No, not necessarily. There was certainly no cheaper partial solution
available when we pulled it off the priority queue. But extending this partial
solution came with a cost, that of the next edge we added to this tour. It is
certainly possible that a slightly more costly partial tour might be finishable
using a less-expensive next edge, thus producing a better solution.

Thus, to get the global optimal, we must continue to explore the partial
solutions coming off the priority queue until they are more expensive than the
best solution we already know about. Note that this requires that the cost
function for partial solutions be a lower bound on the cost of an optimal solution.
Otherwise, there might be something deeper in the queue that would expand to
a better solution. That would leave us with no choice but to expand everything
on the priority queue completely to be sure we found the right solution.

9.7 The A* Heuristic

Best-first search can take a while, even if our partial cost function is a lower
bound on the optimal tour, so we can stop as soon as we have a solution cheaper
than the best unexplored partial solution. Consider the partial solutions we will
encounter on a search for the optimal traveling salesman tour. Costs increase
with the number of edges in the partial solution, so partial solutions with few
nodes will always look more promising than longer ones nearer to completion.
Even the most awful prefix path on n/2 nodes will likely be cheaper than the
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Backtracking Branch and Bound
n all cost < best Ib < best | cost < best b < best
5 24 22 17 11 7
6 120 86 62 28 20
7 720 217 153 51 42
8 5,040 669 443 111 85
9 40,320 2,509 1,619 354 264
10 362,880 5,042 3,025 655 475
11 | 3,628,800 12,695 6,391 848 705

Figure 9.9: Number of complete TSP solutions evaluated by different search
variants. The A* heuristic employed with branch and bound did best, substan-
tially better than backtracking.

optimal solution on all n nodes, meaning that we must expand all partial solu-
tions until their prefix cost is greater than the cost of the best full tour. This
will be horribly expensive to work through.

The A* heuristic (pronounced “A-star”) is an elaboration on the branch-
and-bound search presented above, where at each iteration we expanded the
best (cheapest) partial solution that we have found so far. The idea is to use a
lower bound on the cost of all possible partial solution extensions that is stronger
than just the cost of the current partial tour. This will make promising partial
solutions look more interesting than those that have the fewest vertices.

How can we lower bound the cost of the full tour, which contains n edges,
from a partial solution with k vertices (and thus k& — 1 edges)? We know it
will eventually get n — k + 1 additional edges. If minlb is a lower bound on the
cost of any edge, specifically the distance between the two closest points, adding
(n—k+1) Xxminlb gives a cost lower bound that is much more realistic for the
partial solution:

double partial_solution_cost(tsp_solution *s, tsp_instance *t) {
int i; /* counter */
double cost = 0.0; /* cost of solution */

for (i = 1; 1 < (s—>n); i++) {
cost = cost + distance(s, i, i + 1, t);

}

return(cost) ;

}

double partial_solution_lb(tsp_solution *s, tsp_instance *t) {
return(partial_solution_cost(s,t) + (t->n - s->n + 1) * minlb);

3
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Figure 9.9 presents the number of full solution cost evaluations in finding the
optimal TSP tour for several search variants. Brute-force backtracking without
pruning requires (n — 1)! such calls, but we do much better when we prune on
partial costs—and even better when we prune using the full lower bound. But
branch and bound and A* do even better here.

Note that the number of full solutions encountered is a gross underestimate
of the total work done on the search, which includes even partial solutions that
got pruned just one move before the end of the tour. But Figure 9.9 does capture
the fact that best-first search might have to look at a substantially smaller part
of the search tree than backtracking, even with the same pruning criteria.

Best-first search is sort of like breadth-first search. A disadvantage of BFS
over DF'S is the space required. A backtracking/DFS tree uses memory propor-
tional to the height of the tree, but a best-first/BFS tree requires maintaining
all partial solutions, more akin to the width of the tree.

The resulting size of the priority queue for best-first search is a real problem.
Consider the TSP experiments above. For n = 11, the queue size got to 202,063
compared to a stack size of just 11 for backtracking. Space will kill you quicker
than time. To get an answer from a slow program you just have to be patient
enough, but a program that crashes because of lack of memory will not give an
answer no matter how long you wait.

Take-Home Lesson: The promise of a given partial solution is not just its
cost, but also includes the potential cost of the remainder of the solution. A
tight solution cost estimate which is still a lower bound makes best-first search
much more efficient.

The A* heuristic proves useful in a variety of different problems, most no-
tably finding shortest paths from s to t in a graph. Recall that Dijkstra’s
algorithm for shortest path starts from s and with each iteration adds a new
vertex to which it knows the shortest path. When the graph describes a road
network on the surface of the earth, this known region should expand like a
growing disk around s.

But that means that half the growth is in a direction away from ¢, thus
moving farther from the goal. A best-first search, with the as-the-crow-flies
straight line distance from each in-tree vertex v to t added to the in-tree distance
from s to v, gives a lower bound on the driving distance from s to ¢, favoring
growth in the right direction. The existence of such heuristics for shortest path
computations explains how online mapping services can supply you with the
route home so quickly.

Chapter Notes

My treatment of backtracking here is partially based on my book Programming
Challenges [SR03]. In particular, the backtrack routine presented here is a
generalization of the version in chapter 8 of [SR03]. Look there for my solution
to the famous eight queens problem, which seeks all chessboard configurations
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of eight mutually non-attacking queens on an 8 x 8 board.
More details on our combinatorial search for optimal chessboard-covering
positions appear in Robison et al. [RHS89].

9.8 Exercises

Permutations

9-1.

9-2.

9-3.

9-4.

9-5.

[8] A derangement is a permutation p of {1,...,n} such that no item is in its
proper position, that is, p; % i for all 1 < i < n. Write an efficient backtracking
program with pruning that constructs all the derangements of n items.

[4] Multisets are allowed to have repeated elements. A multiset of n items may
thus have fewer than n! distinct permutations. For example, {1, 1, 2,2} has only
six distinct permutations: [1,1,2,2], [1,2,1,2], [1,2,2,1], [2,1,1,2], [2,1,2,1],
and [2,2,1,1]. Design and implement an efficient algorithm for constructing all
permutations of a multiset.

[5] For a given a positive integer n, find all permutations of the 2n elements
of the multiset S = {1,1,2,2,3,3,...,n,n} such that for each integer from 1 to
n the number of intervening elements between its two appearances is equal to
value of the element. For example, when n = 3 the two possible solutions are
[3,1,2,1,3,2] and [2,3,1,2,1,3].

[5] Design and implement an algorithm for testing whether two graphs are iso-
morphic. The graph isomorphism problem is discussed in Section 19.9 (page
610). With proper pruning, graphs on hundreds of vertices can be tested in a
reasonable time.

[5] The set {1,2,3,...,n} contains a total of n! distinct permutations. By listing
and labeling all of the permutations in ascending lexicographic order, we get the
following sequence for n = 3:

[123,132,213, 231,312, 321]

Give an efficient algorithm that returns the kth of n! permutations in this se-
quence, for inputs n and k. For efficiency it should not construct the first £k — 1
permutations in the process.

Backtracking

9-6.

9-7.

9-8.
9-9.

[5] Generate all structurally distinct binary search trees that store values 1...n,
for a given value of n.

[5] Implement an algorithm to print all valid (meaning properly opened and
closed) sequences of n pairs of parentheses.

[5] Generate all possible topological orderings of a given DAG.

[5] Given a specified total ¢ and a multiset S of n integers, find all distinct
subsets from S whose elements add up to t. For example, if ¢t = 4 and S =
{4,3,2,2,1,1}, then there are four different sums that equal ¢: 4, 3+ 1, 2 + 2,
and 2+ 1+ 1. A number can be used within a sum up to the number of times
it appears in S, and a single number counts as a sum.
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9-10.

9-12.

9-14.

9-15.
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/8] Design and implement an algorithm for solving the subgraph isomorphism
problem—given graphs G and H, does there exist a subgraph H’ of H such
that G is isomorphic to H’? Report how your program performs on such special
cases of subgraph isomorphism as Hamiltonian cycle, clique, independent set,
and graph isomorphism.

. [5] A team assignment of n = 2k players is a partitioning of them into two

teams with exactly k people per team. For example, if the players are named
{A, B,C, D}, there are three distinct ways to partition them into two equal
teams: {{A, B},{C,D}}, {{A,C},{B,D}}, and {{A, D},{B,C}}. (a) List the
10 possible team assignments for n = 6 players. (b) Give an efficient back-
tracking algorithm to construct all possible team assignments. Be sure to avoid
repeating any solution.

[5] Given an alphabet 3, a set of forbidden strings S, and a target length n,
give an algorithm to construct a string of length n on ¥ without any element
of S as a substring. For ¥ = {0,1}, S = {01, 10}, and n = 4, the two possible
solutions are 0000 and 1111. For S = {0,11} and n = 4, no such string exists.

. [5] In the k-partition problem, we need to partition a multiset of positive integers

into k disjoint subsets that have equal sum. Design and implement an algorithm
for solving the k-partition problem.

[5] You are given a weighted directed graph G with n vertices and m edges. The
mean weight of a cycle is the sum of its edge weights divided by the number of
its edges. Find a cycle in G of minimum mean weight.

/8] In the turnpike reconstruction problem, you are given a multiset D of n(n —
1)/2 distances. The problem is to place n points on the line such that their
pairwise distances are D. For example, the distances D = {1,2,3,4,5,6} can be
obtained by placing the second point 1 unit from the first, the third point 3 from
the second, and the fourth point 2 from the third. Design and implement an
efficient algorithm to find all solutions to the turnpike reconstruction problem.
Exploit additive constraints when possible to accelerate the search. With proper
pruning, problems with hundreds of points can be solved in reasonable time.

Games and Puzzles

9-16.

[5] Anagrams are rearrangements of the letters of a word or phrase into a dif-
ferent word or phrase. Sometimes the results are quite striking. For example,
“MANY VOTED BUSH RETIRED” is an anagram of “TUESDAY NOVEM-
BER THIRD,” which correctly predicted the result of the 1992 US presidential
election. Design and implement an algorithm for finding anagrams using com-
binatorial search and a dictionary.

. [5] Construct all sequences of moves that a knight on an n X n chessboard can

make where the knight visits every square only once.

. [5] A Boggle board is an n x m grid of characters. For a given board, we seek to

find all possible words that can be formed by a sequence of adjacent characters
on the board, without repetition. For example, the board:

e t h t
n d t i
a 1 h n
r h u b
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9-19.

9-20.

contains words like tide, dent, raid, and hide. Design an algorithm to construct
the most words for a given board B consistent with a dictionary D.

[5] A Babbage square is a grid of words that reads the same across as it does
down. Given a k-letter word w and a dictionary of n words, find all Babbage
squares starting with that word. For example, two squares for the word hair
are:

== T
O — QO -
o T
o8 o =

a 1
It
t e
o m

o Qo=
-0 0 =

[5] Show that you can solve any given Sudoku puzzle by finding the minimum
vertex coloring of a specific, appropriately constructed 9 x 9+ 9 vertex graph.

Combinatorial Optimization

9-21.

9-22.

9-23.

9-24.

9-25.

9-26.

9-27.

For problems 9-21 to 9-27, implement a combinatorial search program to solve
it for small instances. How well does your program perform in practice?

[5] Design and implement an algorithm for solving the bandwidth minimization
problem discussed in Section 16.2 (page 470).

[5] Design and implement an algorithm for solving the maximum satisfiability
problem discussed in Section 17.10 (page 537).

[5] Design and implement an algorithm for solving the maximum clique problem
discussed in Section 19.1 (page 586).

[5] Design and implement an algorithm for solving the minimum vertex coloring
problem discussed in Section 19.7 (page 604).

[5] Design and implement an algorithm for solving the minimum edge coloring
problem discussed in Section 19.8 (page 608).

[5] Design and implement an algorithm for solving the minimum feedback vertex
set problem discussed in Section 19.11 (page 618).

[5] Design and implement an algorithm for solving the set cover problem dis-
cussed in Section 21.1 (page 678).

Interview Problems

9-28.
9-29.
9-30.

9-31.

9-32.

[4] Write a function to find all permutations of the letters in a given string.
[4] Implement an efficient algorithm for listing all k-element subsets of n items.

[5] An anagram is a rearrangement of the letters in a given string into a sequence
of dictionary words, like Steven Skiena into Vainest Knees. Propose an algorithm
to construct all the anagrams of a given string.

[5] Telephone keypads have letters on each numerical key. Write a program that
generates all possible words resulting from translating a given digit sequence
(e.g. 145345) into letters.

[7] You start with an empty room and a group of n people waiting outside. At
each step, you may either admit one person into the room, or let one out. Can
you arrange a sequence of 2" steps, so that every possible combination of people
is achieved exactly once?
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9-33. [4] Use a random number generator (rng04) that generates numbers from {0, 1,2, 3,4}
with equal probability to write a random number generator that generates num-
bers from 0 to 7 (rng07) with equal probability. What is the expected number
of calls to rng04 per call of rng07?

LeetCode

9-1. https://leetcode.com/problems/subsets/
9-2. https://leetcode.com/problems/remove-invalid-parentheses/
9-3. https://leetcode.com/problems/word-search/

HackerRank

9-1. https://www.hackerrank.com/challenges/sudoku/

9-2. https://www.hackerrank.com/challenges/crossword-puzzle/

Programming Challenges
These programming challenge problems with robot judging are available at
https://onlinejudge.org:

9-1. “Little Bishops”—Chapter 8, problem 861.

9-2. “15-Puzzle Problem” —Chapter 8, problem 10181.

9-3. “Tug of War”—Chapter 8, problem 10032.

9-4. “Color Hash”—Chapter 8, problem 704.


https://leetcode.com/problems/subsets/
https://leetcode.com/problems/remove-invalid-parentheses/
https://leetcode.com/problems/word-search/
https://www.hackerrank.com/challenges/sudoku/
https://www.hackerrank.com/challenges/crossword-puzzle/
https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=28
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Chapter 10

Dynamic Programming

The most challenging algorithmic problems involve optimization, where we seek
to find a solution that maximizes or minimizes an objective function. Traveling
salesman is a classic optimization problem, where we seek the tour visiting all
vertices of a graph at minimum total cost. But as shown in Chapter 1, it is easy
to propose TSP “algorithms” that generate reasonable-looking solutions but do
not always produce the minimum cost tour.

Algorithms for optimization problems require proof that they always return
the best possible solution. Greedy algorithms that make the best local decision
at each step are typically efficient, but usually do not guarantee global optimal-
ity. Exhaustive search algorithms that try all possibilities and select the best
always produce the optimum result, but usually at a prohibitive cost in terms
of time complexity.

Dynamic programming combines the best of both worlds. It gives us a way to
design custom algorithms that systematically search all possibilities (thus guar-
anteeing correctness) while storing intermediate results to avoid recomputing
(thus providing efficiency). By storing the consequences of all possible decisions
and using this information in a systematic way, the total amount of work is
minimized.

After you understand it, dynamic programming is probably the easiest al-
gorithm design technique to apply in practice. In fact, I find that dynamic
programming algorithms are often easier to reinvent than to try to look up.
That said, until you understand dynamic programming, it seems like magic.
You have to figure out the trick before you can use it.

Dynamic programming is a technique for efficiently implementing a recursive
algorithm by storing partial results. It requires seeing that a naive recursive
algorithm computes the same subproblems over and over and over again. In
such a situation, storing the answer for each subproblem in a table to look up
instead of recompute can lead to an efficient algorithm. Dynamic programming
starts with a recursive algorithm or definition. Only after we have a correct
recursive algorithm can we worry about speeding it up by using a results matrix.

Dynamic programming is generally the right method for optimization prob-
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lems on combinatorial objects that have an inherent left-to-right order among
components. Left-to-right objects include character strings, rooted trees, poly-
gons, and integer sequences. Dynamic programming is best learned by carefully
studying examples until things start to click. I present several war stories where
dynamic programming played the decisive role to demonstrate its utility in prac-
tice.

10.1 Caching vs. Computation

Dynamic programming is essentially a tradeoff of space for time. Repeatedly
computing a given quantity can become a drag on performance. If so, we are
better off storing the results of the initial computation and looking them up
instead of recomputing them.

The tradeoff between space and time exploited in dynamic programming
is best illustrated when evaluating recurrence relations such as the Fibonacci
numbers. We look at three different programs for computing them below.

10.1.1 Fibonacci Numbers by Recursion

The Fibonacci numbers were defined by the Italian mathematician Fibonacci
in the thirteenth century to model the growth of rabbit populations. Rabbits
breed, well, like rabbits. Fibonacci surmised that the number of pairs of rabbits
born in a given month is equal to the number of pairs of rabbits born in each of
the two previous months, starting from one pair of rabbits at the start. Thus, the
number of rabbits born in the nth month is defined by the recurrence relation:

Fn:anl"_anQ

with basis cases Fy = 0 and F; = 1. Thus, Fy, = 1, F3 = 2, and the series
continues 3, 5,8,13,21,34,55,89,144,.... As it turns out, Fibonacci’s formula
didn’t do a great job of counting rabbits, but it does have a host of interesting
properties and applications.

That they are defined by a recursive formula makes it easy to write a re-
cursive program to compute the nth Fibonacci number. A recursive function
written in C looks like this:

long fib_r(int n) {
if (n == 0) {
return(0) ;

}
if (n==1) {
return(1);

}

return(fib_r(n-1) + fib_r(n-2));
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Figure 10.1: The recursion tree for computing Fibonacci numbers.

The course of execution for this recursive algorithm is illustrated by its
recursion tree, as illustrated in Figure 10.1. This tree is evaluated in a depth-
first fashion, as are all recursive algorithms. I encourage you to trace this
example by hand to refresh your knowledge of recursion.

Note that F'(4) is computed on both sides of the recursion tree, and F'(2) is
computed no less than five times in this small example. The weight of all this
redundancy becomes clear when you run the program. It took 4 minutes and
40 seconds for this program to compute F(50) on my laptop. You might well
do it faster by hand using the algorithm below.

How much time does the recursive algorithm take to compute F'(n)? Since
Foi1/F, ~ ¢ = (1++/5)/2 =~ 1.61803, this means that F,, > 1.6™ for sufficiently
large n. Since our recursion tree has only 0 and 1 as leaves, summing them up
to get such a large number means we must have at least 1.6™ leaves or procedure
calls. This humble little program takes exponential time to run!

10.1.2 Fibonacci Numbers by Caching

In fact, we can do much better. We can explicitly store (or cache) the results
of each Fibonacci computation F'(k) in a table data structure indexed by the
parameter k—a technique also known as memoization. The key to implement
the recursive algorithm efficiently is to explicitly check whether we already know
a particular value before trying to compute it:

#define MAXN 92 /* largest n for which F(n) fits in a long */

#define UNKNOWN -1 /* contents denote an empty cell */
long f[MAXN+1]; /* array for caching fib values */
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Figure 10.2: The recursion tree for computing Fibonacci numbers with caching.

long fib_c(int n) {
if (f[n] == UNKNOWN) {
f[n] = fib_c(n-1) + fib_c(n-2);
}

return(f[n]);

long fib_c_driver(int n) {

int i; /* counter */
£[0] = 0;
f[1] = 1;

for (i = 2; 1 <= n; i++) {
f[i] = UNKNOWN;
}

return(fib_c(n));

To compute F'(n), we call fib_c_driver(n). This initializes our cache to
the two values we initially know (F'(0) and F'(1)) as well as the UNKNOWN flag for
all the rest that we don’t. It then calls a look-before-crossing-the-street version
of the recursive algorithm.

This cached version runs instantly up to the largest value that can fit in
a long integer. The new recursion tree (Figure 10.2) explains why. There is
no meaningful branching, because only the left-side calls do computation. The
right-side calls find what they are looking for in the cache and immediately
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return.

What is the running time of this algorithm? The recursion tree provides
more of a clue than looking at the code. In fact, it computes F'(n) in linear time
(in other words, O(n) time) because the recursive function fib_c (k) is called
at most twice for each value 0 < k <n — 1.

This general method of explicitly caching (or tabling) results from recursive
calls to avoid recomputation provides a simple way to get most of the benefits
of full dynamic programming. It is thus worth a careful look. In principle, such
caching can be employed on any recursive algorithm. However, storing partial
results would have done absolutely no good for such recursive algorithms as
quicksort, backtracking, and depth-first search because all the recursive calls
made in these algorithms have distinct parameter values. It doesn’t pay to store
something you will use once and never refer to again.

Caching makes sense only when the space of distinct parameter values is
modest enough that we can afford the cost of storage. Since the argument to
the recursive function fib_c (k) is an integer between 0 and n, there are only
O(n) values to cache. A linear amount of space for an exponential amount of
time is an excellent tradeoff. But as we shall see, we can do even better by
eliminating the recursion completely.

Take-Home Lesson: Explicit caching of the results of recursive calls provides
most of the benefits of dynamic programming, usually including the same run-
ning time as the more elegant full solution. If you prefer doing extra program-
ming to more subtle thinking, I guess you can stop here.

10.1.3 Fibonacci Numbers by Dynamic Programming

We can calculate F), in linear time more easily by explicitly specifying the order
of evaluation of the recurrence relation:

long fib_dp(int n) {

int i; /* counter */

long f[MAXN+1]; /* array for caching values */
£[0] = 0;

L1 = 1;

for (i

= 2; i <= n; i++) {
f[i] = f[i-1] + f[i-2];

}

return(f[n]);

Observe that we have removed all recursive calls! We evaluate the Fibonacci
numbers from smallest to biggest and store all the results, so we know that we
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have F;_1 and F;_o ready whenever we need to compute F;. The linearity of
this algorithm is now obvious. Each of the n values is simply computed as the
sum of two integers, in O(n) total time and space.

More careful study shows that we do not need to store all the intermediate
values for the entire period of execution. Because the recurrence depends on
two arguments, we only need to retain the last two values we have seen:

long fib_ultimate(int n)

{
int i; /* counter */
long back2=0, backl=1l; /* last two values of f[n] */
long next; /* placeholder for sum */
if (n == 0) return (0);
for (i=2; i<n; i++) {
next = backl+back?2;
back2 = backl;
backl = next;
}
return(backl+back?) ;
}

This analysis reduces the storage demands to constant space with no asymp-
totic degradation in running time.

10.1.4 Binomial Coefficients

We now show how to compute binomial coefficients as another example of how
to eliminate recursion by specifying the order of evaluation. The binomial co-
efficients are the most important class of counting numbers, where (Z) counts
the number of ways to choose k things out of n possibilities.

How do you compute binomial coefficients? First, (Z) = #’_k),, S0 in
principle you can compute them straight from factorials. However, this method
has a serious drawback. Intermediate calculations can easily cause arithmetic
overflow, even when the final coefficient fits comfortably within an integer.

A more stable way to compute binomial coefficients is using the recurrence
relation implicit in the construction of Pascal’s triangle:
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n/k[{0 1 2 3 4 5 n/k|0 1 2 3 4
0 A 0 1

1 B G 1 1 1

2 cC 1 H 2 1 2 1

3 D 2 I 3 1 3 1

4 E 4 5 6 J 4 1 4 6 4 1
5 F 7 8 9 10 K 5 1 5 10 10 5

Figure 10.3: Evaluation order for binomial _coefficient at M[5,4] (left). The
initialization conditions are labeled A-K and recurrence evaluations labeled 1—
10. The matrix contents after evaluation are shown on the right.

Each number is the sum of the two numbers directly above it. The recurrence
relation implicit in this is

n n—1 n—1
()= (o) ()

Why does this work? Consider whether the nth element appears in one of
the (Z) subsets having k elements. If it does, we can complete the subset by
picking k — 1 other items from the remaining n — 1. If it does not, we must pick
all k items from the remaining n — 1. There is no overlap between these cases,
and all possibilities are included, so the sum counts all k-element subsets.

No recurrence is complete without basis cases. What binomial coefficient
values do we know without computing them? The left term of the sum eventu-
ally drives us down to (76‘) How many ways are there to choose zero things from
a set? Exactly one, the empty set. If this is not convincing, then it is equally
good to accept (T) = m as the basis case. The right term of the sum runs us
up to (z) How many ways are there to choose m things from a m-element set?
Exactly one—the complete set. Together, these basis cases and the recurrence
define the binomial coefficients on all interesting values.

Figure 10.3 demonstrates a proper evaluation order for the recurrence. The
initialized cells are marked A—K, denoting the order in which they were assigned
values. Each remaining cell is assigned the sum of the cell directly above it and
the cell immediately above and to the left. The triangle of cells marked 1-10
denote the evaluation order in computing (i) = 5 using the following code:

long binomial_coefficient(int n, int k) {
int i, j; /* counters */
long bc[MAXN+1] [MAXN+1]; /* binomial coefficient table */

for (i = 0; i <= n; i++) {
bc[il[0] = 1;
}
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for (j = 0; j <= n; j++) {
bc[jI1[j] = 1;
}

for (i = 2; i <= n; i++) {
for (j = 1; j < 1i; j++) {
bc[il[j1 = beli-11[j-11 + becli-11[j];
}
}

return(bc[n] [k]);

Study this function carefully to make sure you see how we did it. The rest
of this chapter will focus more on formulating and analyzing the appropriate
recurrence than the mechanics of table manipulation demonstrated here.

10.2 Approximate String Matching

Searching for patterns in text strings is a problem of unquestionable importance.
Back in Section 6.7 (page 188) I presented algorithms for ezact string matching—
finding where the pattern string P occurs as a substring of the text string 7.
But life is often not that simple. Words in either the text or pattern can be
mispelled (sic), robbing us of exact similarity. Evolutionary changes in genomic
sequences or language usage mean that we often search with archaic patterns in
mind: “Thou shalt not kill” morphs over time into “You should not murder.”

How can we search for the substring closest to a given pattern, to compensate
for spelling errors? To deal with inexact string matching, we must first define
a cost function telling us how far apart two strings are. A reasonable distance
measure reflects the number of changes that must be made to convert one string
to another. There are three natural types of changes:

e Substitution — Replace a single character in pattern P with a different
character, such as changing shot to spot.

e [Insertion — Insert a single character into pattern P to help it match text
T, such as changing ago to agog.

e Deletion — Delete a single character from pattern P to help it match text
T, such as changing hour to our.

Properly posing the question of string similarity requires us to set the cost
of each such transform operation. Assigning each operation an equal cost of
1 defines the edit distance between two strings. Approximate string matching
arises in many applications, as detailed in Section 21.4 (page 688).
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1 1
P ST AR 18T A Ry 'S T A R
T S CAB SCABJR iSCAB
1 1

Substitution Insertion Deletion

Figure 10.4: In a single string edit operation, the last character must be either
matched /substituted, inserted, or deleted.

Approximate string matching seems like a difficult problem, because we must
decide exactly where to best perform a complicated sequence of insert/delete
operations in pattern and text. To solve it, let’s think about the problem in
reverse. What information would we need to select the final operation correctly?
What can happen to the last character in the matching for each string?

10.2.1 Edit Distance by Recursion

We can define a recursive algorithm using the observation that the last character
in the string must either be matched, substituted, inserted, or deleted. There is
no other possible choice, as shown in Figure 10.4. Chopping off the characters
involved in this last edit operation leaves a pair of smaller strings. Let ¢ and j be
the indices of the last character of the relevant prefix of P and T, respectively.
There are three pairs of shorter strings after the last operation, corresponding
to the strings after a match/substitution, insertion, or deletion. If we knew the
cost of editing these three pairs of smaller strings, we could decide which option
leads to the best solution and choose that option accordingly. We can learn this
cost through the magic of recursion.

More precisely, let DJi,j] be the minimum number of differences between
the substrings P1 P ... P; and T4T5 ... T;. DJi,j] is the minimum of the three
possible ways to extend smaller strings:

o If (P, = Tj), then D[i —1,j — 1], else D[¢ — 1,5 — 1] + 1. This means
we either match or substitute the 7th and jth characters, depending upon
whether these tail characters are the same. More generally, the cost of a
single character substitution can be returned by a function match(P;,T;).

e Dli,j — 1]+ 1. This means that there is an extra character in the text to
account for, so we do not advance the pattern pointer and we pay the cost
of an insertion. More generally, the cost of a single character insertion can
be returned by a function indel(T; ).

e D[i—1,j]+ 1. This means that there is an extra character in the pattern
to remove, so we do not advance the text pointer and we pay the cost of
a deletion. More generally, the cost of a single character deletion can be
returned by a function indel(P; ).
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#define MATCH 0 /* enumerated type symbol for match */
#define INSERT 1 /* enumerated type symbol for insert */
#define DELETE 2 /* enumerated type symbol for delete */

int string_compare_r(char *s, char *t, int i, int j) {
int k; /* counter */
int opt[3]; /* cost of the three options */
int lowest_cost; /* lowest cost */

if (1 == 0) { /* indel ts the cost of an insertion or deletion */
return(j * indel(' '));

}

if (j == 0) {
return(i * indel(' '));

}

/* match ts the cost of a match/substitution */

opt [MATCH] = string_compare_r(s,t,i-1,j-1) + match(s[i],t[j]1);
opt [INSERT] string_compare_r(s,t,i,j-1) + indel(t[jl);
opt [DELETE] = string_compare_r(s,t,i-1,j) + indel(s[i]);

lowest_cost = opt[MATCH];
for (k = INSERT; k <= DELETE; k++) {
if (opt[k] < lowest_cost) {
lowest_cost = opt[k];
}
}

return(lowest_cost);

This program is absolutely correct—convince yourself. It also turns out to
be impossibly slow. Running on my computer, the computation takes several
seconds to compare two 11-character strings, and disappears into Never-Never
Land on anything longer.

Why is the algorithm so slow? It takes exponential time because it re-
computes values again and again and again. At every position in the string, the
recursion branches three ways, meaning it grows at a rate of at least 3"—indeed,
even faster since most of the calls reduce only one of the two indices, not both
of them.
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10.2.2 Edit Distance by Dynamic Programming

So, how can we make this algorithm practical? The important observation is
that most of these recursive calls compute things that have been previously com-
puted. How do we know? There can only be |P| - |T| possible unique recursive
calls, since there are only that many distinct (¢, j) pairs to serve as the argument
parameters of the recursive calls. By storing the values for each of these (i, )
pairs in a table, we can look them up as needed and avoid recomputing them.

A table-based, dynamic programming implementation of this algorithm is
given below. The table is a two-dimensional matrix m where each of the |P|-|T|
cells contains the cost of the optimal solution to a subproblem, as well as a parent
field explaining how we got to this location:

typedef struct {

int cost; /* cost of reaching this cell */
int parent; /* parent cell */

} cell;

cell m[MAXLEN+1] [MAXLEN+1]; /* dynamic programming table */

Our dynamic programming implementation has three differences from the
recursive version. First, it gets its intermediate values using table lookup
instead of recursive calls. Second, it updates the parent field of each cell,
which will enable us to reconstruct the edit sequence later. Third, it is imple-
mented using a more general goal_cell() function instead of just returning
m[|PITLITI].cost. This will enable us to apply this routine to a wider class
of problems.

Be aware that we adhere to special string and index conventions in the
routine below. In particular, we assume that each string has been padded with
an initial blank character, so the first real character of string s sits in s[1].
Why did we do this? It enables us to keep the matrix indices in sync with those
of the strings for clarity. Recall that we must dedicate the zeroth row and column
of m to store the boundary values matching the empty prefix. Alternatively, we
could have left the input strings intact and adjusted the indices accordingly.

int string_compare(char *s, char *t, cell m[MAXLEN+1] [MAXLEN+1]) {
int i, j, k; /* counters */
int optl[3]; /* cost of the three options */

for (i = 0; i <= MAXLEN; i++) {
row_init(i, m);
column_init(i, m);
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for (i = 1; i < strlen(s); i++) {
for (j = 1; j < strlen(t); j++) {
opt [MATCH] = m[i-1][j-1].cost + match(s[i]l, t[jl);
opt [INSERT] = m[i][j-1].cost + indel(t[j]);
opt [DELETE] = m[i-1][j].cost + indel(s[il);

m[i] [j].cost = opt[MATCH];
m[i] [j].parent = MATCH;
for (k = INSERT; k <= DELETE; k++) {
if (optlk] < m[il[j].cost) {
m[i] [j].cost = optl[k];
m[i] [j].parent = k;

}

goal_cell(s, t, &i, &j);
return(m[i] [j].cost);

To determine the value of cell (7, j), we need to have three values sitting and
waiting for us in matrix m—mnamely, the cells m(i — 1,5 — 1), m(i,j — 1), and
m(i—1, 7). Any evaluation order with this property will do, including the row-
major order used in this program.! The two nested loops do in fact evaluate m
for every pair of string prefixes, one row at a time. Recall that the strings are
padded such that s[1] and t[1] hold the first character of each input string, so
the lengths (strlen) of the padded strings are one character greater than those
of the input strings.

As an example, we show the cost matrix for turning P = “thou shalt” into
T = “you should” in five moves in Figure 10.5. I encourage you to evaluate
this example matrix by hand, to nail down exactly how dynamic programming
works.

10.2.3 Reconstructing the Path

The string comparison function returns the cost of the optimal alignment, but
not the alignment itself. Knowing you can convert “thou shalt” to “you should”
in only five moves is dandy, but what is the sequence of editing operations that
does it?

The possible solutions to a given dynamic programming problem are de-
scribed by paths through the dynamic programming matrix, starting from the

ISuppose we create a graph with a vertex for every matrix cell, and a directed edge (z,y),
when the value of cell z is needed to compute the value of cell y. Any topological sort on the
resulting DAG (why must it be a DAG?) defines an acceptable evaluation order.
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T y o u - s h o u 1 d

P pos| O 1 2 3 4 5 6 7 8 9 10
: o 1 2 3 4 5 6 7 8 9 10

t: 171 1 2 3 4 5 6 7 8 9 10
h: 212 2 2 3 4 5 5 6 7 8 9
o: 313 3 2 3 4 5 6 5 6 7 8
u: 41 4 4 3 2 3 4 5 6 5 6 7
- 5/ 5 5 4 3 2 3 4 5 6 6 7
s 6/ 6 6 5 4 3 2 3 4 5 6 7
h: T 7T 7 6 5 4 3 2 3 4 5 6
a: 8 8 8 7 6 5 4 3 3 4 5 6
I: 919 9 8 7 6 5 4 4 4 4 5
t: 0110 10 9 8 7 6 5 5 5 5 5

Figure 10.5: Example of a dynamic programming matrix for editing distance
computation, with the underlined entries appearing on the optimal alignment
path. Blue values denote insertions, green values deletions, and red values
match /substitution.

initial configuration (the pair of empty strings (0,0)) down to the final goal
state (the pair of full strings (|P|,|T"|)). The key to building the solution is
reconstructing the decisions made at every step along the optimal path that
leads to the goal state. These decisions have been recorded in the parent field
of each array cell.

Reconstructing these decisions is done by walking backward from the goal
state, following the parent pointer back to an earlier cell. We repeat this process
until we arrive back at the initial cell, analogous to how we reconstructed the
path found by BFS or Dijkstra’s algorithm. The parent field for m[i] [j] tells
us whether the operation at (,j) was MATCH, INSERT, or DELETE. Tracing back
through the parent matrix in Figure 10.6 yields the edit sequence DSMMMMMISMS
from “thou_shalt” to “you_should”—meaning delete the first “t”; replace the
“h” with “y”; match the next five characters before inserting an “o0”; replace
“a” with “u”; and finally replace the “t” with a “d”.

Walking backward reconstructs the solution in reverse order. However, clever
use of recursion can do the reversing for us:

void reconstruct_path(char *s, char *t, int i, int j,
cell m[MAXLEN+1] [MAXLEN+1]) {
if (m[i] [j].parent == -1) {
return;

}

if (m[i][j].parent == MATCH) {
reconstruct_path(s, t, i-1, j-1, m);
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T y o u - s h o u 1 d
P pos| O 1 2 3 4 5 6 7 8 9 10

O({-1 11 1 1 1 1 1 1 1 1
t: 112 0 0 0 0 0 0 0 O 0 O
h: 212 0 0 OO O O 1 1 1 1
o: 312 00 00O 0O 0 1 1 1
u: 412 0 2 0 1 1 1 1 0 1 1
- 5/ 2 0 2 2 0 1 1 1 1 0 O
s: 6/ 2 0 2 2 2 0 1 1 1 1 O
h: 712 0 2 2 2 2 0 1 1 1 1
a: 81 2 0 2 2 2 2 2 0 0 0 0
I: 9/ 2 0 2 2 2 2 2 0 0 0o 1
t: w2 0 2 2 2 2 2 0 0 0 0

Figure 10.6: Parent matrix for edit distance computation, with the optimal
alignment path underlined to highlight. Again, blue values denote insertions,
green values deletions, and red values match/substitution.

match_out(s, t, i, j);
return;

3

if (m[i][j].parent == INSERT) {
reconstruct_path(s, t, i, j-1, m);
insert_out(t, j);
return;

}

if (m[i][j].parent == DELETE) {
reconstruct_path(s, t, i-1, j, m);
delete_out(s, i);
return;

For many problems, including edit distance, the solution can be recon-
structed from the cost matrix without explicitly retaining the last-move array.
In edit distance, the trick is working backward from the costs of the three pos-
sible ancestor cells and corresponding string characters to reconstruct the move
that took you to the current cell at the given cost. But it is cleaner and easier
to explicitly store the moves.
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10.2.4 Varieties of Edit Distance

The string compare and path reconstruction routines reference several func-
tions that we have not yet defined. These fall into four categories:

o Table initialization — The functions row_init and column_init initialize
the zeroth row and column of the dynamic programming table, respec-
tively. For the string edit distance problem, cells (i,0) and (0,4) corre-
spond to matching length-i strings against the empty string. This requires
exactly ¢ insertions/deletions, so the definition of these functions is clear:

row_init(int i) column_init(int i)
{ {
m[0] [i] .cost = 1i; m[i] [0] .cost = 1i;
if (i>0) if (i>0)
m[0] [i] .parent = INSERT; m[i] [0] .parent = DELETE;
else else

m[0] [i] .parent = -1; m[i] [0] . parent
} }

e Penalty costs — The functions match(c,d) and indel(c) present the costs
for transforming character ¢ to d and inserting/deleting character ¢. For
standard edit distance, match should cost 0 if the characters are identical,
and 1 otherwise; while indel returns 1 regardless of what the argument
is. But application-specific cost functions can be employed, perhaps with
substitution more forgiving for characters located near each other on stan-
dard keyboard layouts or those that sound or look similar.

_1’

int match(char c, char d) int indel(char c)
{ {
if (¢ == d) return(0); return(1l);
else return(l); T
}

e Goal cell identification — The function goal_cell returns the indices of
the cell marking the endpoint of the solution. For edit distance, this is
always defined by the length of the two input strings. However, other
applications we will soon encounter do not have fixed goal locations.

void goal_cell(char *s, char *t, int *i, int *j) {
*i = strlen(s) - 1;
*j = strlen(t) - 1;

e Traceback actions— The functions match_out, insert_out, and delete_out
perform the appropriate actions for each edit operation during traceback.
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For edit distance, this might mean printing out the name of the operation
or character involved, as determined by the needs of the application.

insert_out(char *t, int j) match_out(char *s, char *t,

{ int i, int j)
printf("I"); {

} if (s[i]l==t[j]1) printf("M");

else printf("S");

delete_out(char *s, int i) T

{
printf ("D");

+

All of these functions are quite simple for edit distance computation. How-
ever, we must confess it is difficult to get the boundary conditions and index
manipulations correct. Although dynamic programming algorithms are easy
to design once you understand the technique, getting the details right requires
clear thinking and thorough testing.

This may seem like a lot of infrastructure to develop for such a simple algo-
rithm. However, several important problems can be solved as special cases of
edit distance using only minor changes to some of these stub functions:

e Substring matching — Suppose we want to find where a short pattern P
best occurs within a long text T—say searching for “Skiena” in all its
misspellings (Skienna, Skena, Skina, ...) within a long file. Plugging this
search into our original edit distance function will achieve little sensitivity,
since the vast majority of any edit cost will consist of deleting all that is
not “Skiena” from the body of the text. Indeed, matching any scattered

Sook.ovicce . n. . a. .. and deleting the rest will yield an optimal
solution.

We want an edit distance search where the cost of starting the match
is independent of the position in the text, so that we are not prejudiced
against a match that starts in the middle of the text. Now the goal state is
not necessarily at the end of both strings, but the cheapest place to match
the entire pattern somewhere in the text. Modifying these two functions
gives us the correct solution:

void row_init(int i, cell m[MAXLEN+1] [MAXLEN+1]) {
m[0] [i] .cost = O; /* NOTE CHANGE */
m[0] [i] .parent = -1; /* NOTE CHANGE */
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void goal_cell(char *s, char *t, int *i, int *j) {

int k; /* counter */
*i = strlen(s) - 1;
*J = 0;

for (k = 1; k < strlen(t); k++) {
if (m[*i] [k].cost < m[*i] [*j].cost) {
*J = k;
}

e Longest common subsequence — Perhaps we are interested in finding the
longest scattered string of characters included within both strings, without
changing their relative order. Indeed, this problem will be discussed in
Section 21.8. Do Democrats and Republicans have anything in common?
Certainly! The longest common subsequence (LCS) between “democrats”
and “republicans” is ecas.

A common subsequence is defined by all the identical-character matches in
an edit trace. To maximize the number of such matches, we must prevent
substitution of non-identical characters. With substitution forbidden, the
only way to get rid of the non-common subsequence will be through in-
sertion and deletion. The minimum cost alignment has the fewest such
“in-dels,” so it must preserve the longest common substring. We get the
alignment we want by changing the match-cost function to make substi-
tutions expensive:

int match(char c, char d) {
if (c == d) {
return(0);
}
return (MAXLEN) ;

Actually, it suffices to make the substitution penalty greater than that of
an insertion plus a deletion for substitution to lose any allure as a possible
edit operation.

e Mazimum monotone subsequence — A numerical sequence is monotonically
increasing if the ith element is at least as big as the (i — 1)st element. The
mazximum monotone subsequence problem seeks to delete the fewest num-
ber of elements from an input string S to leave a monotonically increasing
subsequence. A maximum monotone subsequence of 243517698 is 23568.
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In fact, this is just a longest common subsequence problem, where the
second string is the elements of S sorted in increasing order: 123456789.
Any common sequence of these two must (a) represent characters in proper
order in S, and (b) use only characters with increasing position in the col-
lating sequence—so the longest one does the job. Of course, this approach
can be modified to give the longest decreasing sequence simply by revers-
ing the sorted order.

As you can see, our edit distance routine can be made to do many amazing
things easily. The trick is observing that your problem is just a special case of
approximate string matching.

The alert reader may notice that it is unnecessary to keep all O(mn) cells
to compute the cost of an alignment. If we evaluate the recurrence by filling
in the columns of the matrix from left to right, we will never need more than
two columns of cells to store what is necessary to complete the computation.
Thus, O(m) space is sufficient to evaluate the recurrence without changing the
time complexity. This is good, but unfortunately we cannot reconstruct the
alignment without the full matrix.

Saving space in dynamic programming is very important. Since memory on
any computer is limited, using O(nm) space proves more of a bottleneck than
O(nm) time. Fortunately, there is a clever divide-and-conquer algorithm that
computes the actual alignment in the same O(nm) time but only O(m) space.
It is discussed in Section 21.4 (page 688).

10.3 Longest Increasing Subsequence

There are three steps involved in solving a problem by dynamic programming;:

1. Formulate the answer you want as a recurrence relation or recursive algo-
rithm.

2. Show that the number of different parameter values taken on by your
recurrence is bounded by a (hopefully small) polynomial.

3. Specify an evaluation order for the recurrence so the partial results you
need are always available when you need them.

To see how this is done, let’s see how we would develop an algorithm to
find the longest monotonically increasing subsequence within a sequence of n
numbers. Truth be told, this was described as a special case of edit distance in
Section 10.2.4 (page 323), where it was called mazimum monotone subsequence.
Still, it is instructive to work it out from scratch. Indeed, dynamic programming
algorithms are often easier to reinvent than look up.

We distinguish an increasing sequence from a run, where the elements must
be physical neighbors of each other. The selected elements of both must be
sorted in increasing order from left to right. For example, consider the sequence

5=1(2,4,3,5,1,7,6,9,8)
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The longest increasing subsequence of S is of length 5: for example, (2,3,5,6,8).
In fact, there are eight of this length (can you enumerate them?). There are
four increasing runs of length 2: (2,4), (3,5), (1,7), and (6,9).

Finding the longest increasing run in a numerical sequence is straightforward.
Indeed, you should be able to easily devise a linear-time algorithm. But finding
the longest increasing subsequence is considerably trickier. How can we identify
which scattered elements to skip?

To apply dynamic programming, we need to design a recurrence relation
for the length of the longest sequence. To find the right recurrence, ask what
information about the first n — 1 elements of S = (sq,..., s,) would enable you
to find the answer for the entire sequence:

e The length L of the longest increasing sequence in (s1, S2, ..., Sp—1) Seems
a useful thing to know. In fact, this will be the length of the longest
increasing sequence in S, unless s, extends some increasing sequence of
the same length.

Unfortunately, this length L is not enough information to complete the
full solution. Suppose I told you that the longest increasing sequence in
(s1,82,-.,8n—1) was of length 5 and that s,, = 8. Will the length of the
longest increasing subsequence of S be 5 or 67 It depends on whether the
length-5 sequence ended with a value < 8.

o We need to know the length of the longest sequence that s,, will extend. To
be certain we know this, we really need the length of the longest sequence
ending at every possible value s;.

This provides the idea around which to build a recurrence. Define L; to
be the length of the longest sequence ending with s;. The longest increasing
sequence containing s,, will be formed by appending it to the longest increasing
sequence to the left of n that ends on a number smaller than s,,. The following
recurrence computes L;:

Li = 1—|— max Lj,
0<5<1i
55 <8i

Ly = 0

These values define the length of the longest increasing sequence ending at each
sequence element. The length of the longest increasing subsequence of S is given
by L = max;<;<p Lj, since the winning sequence must end somewhere. Here is
the table associated with our previous example:

Index+ |1 2 3 4 5 6 7 8 9
Sequences; |2 4 3 5 1 7 6 9 8
Length L; |1 2 2 3 1 4 4 5 5
Predecessorp; | - 1 1 2 - 4 4 6 6
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What auxiliary information will we need to store to reconstruct the actual se-
quence instead of its length? For each element s;, we will store its predecessor—
the index p; of the element that appears immediately before s; in a longest
increasing sequence ending at s;. Since all of these pointers go towards the left,
it is a simple matter to start from the last value of the longest sequence and
follow the pointers back so as to reconstruct the other items in the sequence.

What is the time complexity of this algorithm? Each one of the n values of
L; is computed by comparing s; against the ¢ — 1 < n values to the left of it,
so this analysis gives a total of O(n?) time. In fact, by using dictionary data
structures in a clever way, we can evaluate this recurrence in O(nlgn) time.
However, the simple recurrence would be easy to program and therefore is a
good place to start.

Take-Home Lesson: Once you understand dynamic programming, it can be
easier to work out such algorithms from scratch than to try to look them up.

10.4 War Story: Text Compression for Bar Codes

Ynjiun waved his laser wand over the torn and crumpled fragments of a bar code
label. The system hesitated for a few seconds, then responded with a pleasant
blip sound. He smiled at me in triumph. “Virtually indestructible.”

I was visiting the research laboratories of Symbol Technologies (now Zebra),
the world’s leading manufacturer of bar code scanning equipment. Although we
take bar codes for granted, there is a surprising amount of technology behind
them. Bar codes exist because conventional optical character recognition (OCR)
systems are not sufficiently reliable for inventory operations. The bar code
symbology familiar to us on each box of cereal, pack of gum, or can of soup
encodes a ten-digit number with enough error correction that it is virtually
impossible to scan the wrong number, even if the can is upside-down or dented.
Occasionally, the cashier won’t be able to get a label to scan at all, but once
you hear that blip you know it was read correctly.

The ten-digit capacity of conventional bar code labels provides room enough
to only store a single ID number in a label. Thus, any application of supermarket
bar codes must have a database mapping (say) 11141-47011 to a particular
brand and size of soy sauce. The holy grail of the bar code world had long been
the development of higher-capacity bar code symbologies that can store entire
documents, yet still be read reliably.

“PDF-417 is our new, two-dimensional bar code symbology,” Ynjiun ex-
plained. A sample label is shown in Figure 10.7. Although you may be more
familiar with QR codes, PDF-417 is now a well accepted standard. Indeed, the
back of every New York State drivers license contains the criminal record of its
owner, elegantly rendered in PDF-417.

“How much data can you fit in a typical 1-inch label?” T asked him.

“It depends upon the level of error correction we use, but about 1,000 bytes.
That’s enough for a small text file or image,” he said.
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Figure 10.7: A two-dimensional barcode label of the Gettysburg Address using
PDF-417.

“Interesting. You should use some data compression technique to maximize
the amount of text you can store in a label.” See Section 21.5 (page 693) for a
discussion of standard data compression algorithms.

“We do incorporate a data compaction method,” he explained. “We under-
stand the different types of files our customers will want to make labels for.
Some files will be all in uppercase letters, while others will use mixed-case let-
ters and numbers. We provide four different text modes in our code, each with
a different subset of alphanumeric characters available. We can describe each
character using only 5 bits as long as we stay within a mode. To switch modes,
we issue a mode switch command first (taking an extra 5 bits) and then code
for the new character.”

“I see. So you designed the mode character sets to minimize the number
of mode switch operations on typical text files.” The modes are illustrated in
Figure 10.8.

“Right. We put all the digits in one mode and all the punctuation characters
in another. We also included both mode shift and mode latch commands. We
can shift into a new mode just for the next character, perhaps to produce a
punctuation mark. Or we can latch permanently into a different mode, if we are
at the start of a run of several characters from there, like a phone number.”

“Wow!” T said. “With all of this mode switching going on, there must be
many different ways to encode any given text as a label. How do you find the
smallest such encoding?”

“We use a greedy algorithm. We look a few characters ahead and then decide
which mode we would be best off in. It works fairly well.”

I pressed him on this. “How do you know it works fairly well? There might
be significantly better encodings that you are simply not finding.”

“I guess I don’t know. But it’s probably NP-complete to find the optimal
coding.” Ynjiun’s voice trailed off. “Isn’t it?”

I started to think. Every encoding starts in a given mode and consists of a
sequence of intermixed character codes and mode shift/latch operations. From
any given position in the text, we can either output the next character code (as-
suming it is available in our current mode) or decide to shift. As we moved from
left to right through the text, our current state would be completely reflected
by our current character position and current mode. For a given position/mode
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Punctuation
;<> @S/

Figure 10.8: Mode switching in PDF-417.

pair, we would have been interested in the cheapest way of getting there, over
all possible encodings. ...

My eyes lit up so bright they cast shadows on the walls.

“The optimal encoding for any given text in PDF-417 can be found using
dynamic programming. For each possible mode 1 < m < 4, and each character
position 1 < ¢ < n, we fill a matrix M[i, m] with the cost of the cheapest
encoding of the first ¢ characters ending in mode m. Our next move from each
mode/position is either match, shift, or latch, so there are only a few possible
operations to consider at each position.”

Basically,

M[Zaj] - 1?#24(]\4[1 - 15 m} + C(Siv TTL,]))

where ¢(S;, m, j) is the cost of encoding character S; and switching from mode
m to mode j. The cheapest possible encoding results from tracing back from
M {n, m], where m is the value of k that minimizes M [n, k]. Each of the 4n cells
can be filled in constant time, so it takes time linear in the length of the string
to find the optimal encoding.

Ynjiun was skeptical, but he encouraged us to implement an optimal encoder.
A few complications arose due to weirdnesses of PDF-417 mode switching, but
my student Yaw-Ling Lin rose to the challenge. Symbol compared our encoder
to theirs on 13,000 labels and concluded that dynamic programming gave an 8%
tighter encoding on average. This was significant, because no one wants to waste
8% of their potential storage capacity, particularly in an environment where the
capacity is only a few hundred bytes. Of course, an 8% average improvement
meant that it did much better than that on certain labels, and it never did
worse than the original encoder. While our encoder took slightly longer to run
than the greedy encoder, this was not significant, because the bottleneck would
be the time needed to print the label.

Our observed impact of replacing a heuristic solution with the global opti-
mum is probably typical of most applications. Unless you really botch up your
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heuristic, you should get a decent solution. Replacing it with an optimal result,
however, usually gives a modest but noticeable improvement, which can have
pleasing consequences for your application.

10.5 Unordered Partition or Subset Sum

The knapsack or subset sum problem asks whether there exists a subset S’ of
an input multiset of n positive integers S = {s1, ..., s, } whose elements add up
a given target k. Think of a backpacker trying to completely fill a knapsack of
capacity k with possible selections from set S. Applications of this important
problem are discussed in greater detail in Section 16.10.

Dynamic programming works best on linearly ordered items, so we can con-
sider them from left to right. The ordering of items in S from s; to s, provides
such an arrangement. To formulate a recurrence relation, we need to determine
what information we need on items s; to s,_1 in order to decide what to do
about s,,.

Here is the idea. Either the nth integer s, is part of a subset adding up to
k, or it is not. If it is, then there must be a way to make a subset of the first
n — 1 elements of S adding up to k — s,, so the last element can finish the job.
If not, there may well be a solution that does not use s,,. Together this defines
the recurrence:

Tn,k = Tn—l,k: \ Tn—l,k—sn

This gives an O(nk) algorithm to decide whether target & is realizable:

bool sum[MAXN+1] [MAXSUM+1]; /* table of realizable sums */
int parent [MAXN+1] [MAXSUM+1] ; /* table of parent pointers */

bool subset_sum(int s[], int n, int k) {
int i, j; /* counters */

sum[0] [0] = true;
parent[0] [0] = NIL;

for (i = 1; i <= k; i++) {
sum[0] [i] = false;
parent[0] [i] = NIL;

}

for (i = 1; i <= n; i++) { /* build table */
for (j = 0; j <= k; j++) {
sum[i] [j] = sum[i-11[j];
parent[i] [j] = NIL;

if ((§ >= s[i-11) && (sum[i-1][j-s[i-1]]==true)) {
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sum[i] [j1 = true;
parent [i] [j] = j-s[i-1];

}

return(sum[n] [k]);

The parent table encodes the actual subset of numbers totaling to k. An
appropriate subset exists whenever sum[n] [k]==true, but it does not use s,, as
an element when parent [n] [k]==NIL. Instead, we walk up the matrix until we
find an interesting parent, and follow the corresponding pointer:

void report_subset(int n, int k) {
if (k == 0) {
return;

}

if (parent[n][k] == NIL) {
report_subset(n-1,k);

}
else {
report_subset (n-1,parent [n] [k]);
printf (" J%d ",k-parent[n] [k]);
}

Below is an example showing the sum table for input set S = {1,2,4,8}
and target K = 11. The true in the lower right corner signals that the sum is
realizable. Because S here represents all the powers of twos, and every target
integer can be written in binary, the entire bottom row consists of trues:

t s |0 1 2 3 4 5 6 7 8 9 10 11
o o|jT F ¥ F F ¥ F ¥F F F F F
1 r|T T F F F F F F F F F F
2 2yT T T T F ¥ ¥ F F F F F
3 4|7 T T T T T T T F F F F
4 8/T T T T T T T T T T T T

Below is the corresponding parents array, encoding the solution 1+2+8 =
11. The 3 in the lower right corner reflects that 11 — 8 = 3. The red bolded
cells represent those encountered on the walk back to recover the solution.
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t s |0 1 2 3 4 5 6 7 8 9 10 11
o 01 -1t -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
1 1}t 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
221 -1 0 1 -1 -1 -1 -1 -1 -1 -1 -1
3 4,1 -1 -1 -1 0 1 2 3 -1 -1 -1 -1
4 8/-1 -1 -1 -1 -1 -1 -1 -1 0 1 2 3

The alert reader might wonder how we can have an O(nk) algorithm for
subset sum when subset sum in an NP-complete problem? Isn’t this polynomial
in n and k? Did we just prove that P = N P?

Unfortunately, no. Note that the target number k can be specified using
O(log k) bits, meaning that this algorithm runs in time exponential in the size
of the input, which is O(nlog k). This is the same reason why factoring integer
N by explicitly testing all v/N candidates for smallest factor is not polynomial,
because the running time is exponential in the O(log N) bits of the input.

Another way to see the problem is to consider what happens to the algo-
rithm when we take a specific problem instance and multiply each integer by
1,000,000. Such a transform would not have affected the running time of sorting
or minimum spanning tree, or any other algorithm we have seen so far in this
book. But it would slow down our dynamic programming algorithm by a factor
of 1,000,000, and require a million times as much space for storing the table.
The range of the numbers matters in the subset sum problem, which becomes
hard for large integers.

10.6 War Story: The Balance of Power

One of the many (presumably too many) uncharitable suspicions I hold is that
most electrical engineering (EE) students today would not know how to build
a radio. The reason for this is that the EE students I encounter study electri-
cal and computer engineering, focusing on computer architecture and embedded
systems that involve as much software as hardware. When a natural disas-
ter comes, these guys are not going to be very concerned about restoring the
operation of my favorite AM radio station.

Thus, it was a relief when an EE professor and his students came to me with
an honest EE problem, about optimizing the performance of the power grid.

“Alternating current (AC) power systems transmit electricity on each of
three different phases. Call them A, B, and C. The system works best when
the loads on each phase are roughly equal.” he explained.

“I guess loads are the machines needing power, right?” T asked insightfully.

“Yeah, think of every house on the street as being a load. Each house will
get assigned one of the three phases as its source of power.”

“Presumably they connect every third house A, B, C, A, B, C as they wire
up the street to balance the load.”

“Something like that,” the EE professor confirmed. “But not all houses
use the same amount of power, and it is even worse in industrial areas. One



332 CHAPTER 10. DYNAMIC PROGRAMMING

company might just turn on the lights when another runs an arc furnace. After
we measure the loads people are actually using, we would like to move some to
different phases to balance the loads.”

Now I saw the algorithmic problem. “So given a set of numbers representing
the various loads, you want to assign them phases A, B, and C so the load is
balanced as well as possible, right?”

“Yeah. Can you give me a fast algorithm to do this?,” he asked.

This seemed clear enough to me. It smelled like an integer partition problem,
namely the subset sum problem of the previous section where the target k =
(37, sn)/2. The most balanced possible partition occurs when the sum of
elements in the selected subset (here k) equals the sum of the elements left
behind (here Y"1 | s, — k).

The generalization of the problem to partition into three subsets instead of
two was straightforward, but it wasn’t going to get any easier to solve. Adding
a single new item s, = k and asking for a partitioning of S into three equal
weight subsets requires solving an integer partition on the original elements.

I broke the bad news gently. “Integer partition is an NP-complete problem,
and three-phase balancing is just as hard as it is. There is no polynomial-time
algorithm for your problem.”

They got up and started to leave. But then I remembered the dynamic
programming algorithm for subset sum described in Section 10.5 (page 329).
Why couldn’t this be extended to three phases? Indeed, define the function
C[n, A, B] for a given set of loads S, where C[n, w4, wg] is true if there is a way
to partition the first n loads of S such that the weight on phase A is ws and
the weight on phase B is wp. Note that there is no need to explicitly keep track
of the weight on phase C, because we = 2?21 s;i —wa —wp. Then we get the
following recurrence, defined by which subset we put the nth load on:

Clnywa,wp] =Cln—1,wa—sp,,wg] VCn—1wa,wg—s,] VC[n—1,wa, wg]

This took constant time per cell to update, but there were nk? cells to
update, where k is the maximum amount of power we are willing to consider on
any single phase. Thus, we could optimally balance the phases in O(nk?) time.

This pleased them immensely, and they set to work to implement the algo-
rithm. But I had one question before they went off, which I purposely directed
to one of the computer engineering students. “Why is it that AC power has
three phases?”

“Uh, maybe impedance matching and, uh, complex numbers?” he fumphered.
His advisor shot him a dirty look, as I felt the warm glow of reassurance.

But that computer engineering student could code, and that was what mat-
tered here. He quickly implemented the dynamic programming algorithm and
performed experiments on representative problems, reported in [WSR13].

Our dynamic programming algorithm always produced at least as good a
solution as several heuristics, and usually better. This is no surprise, since we
always produced an optimal solution and they didn’t. Our dynamic program
had a running time that grew quadratically in the range of the loads, which
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could be a problem, but binning the loads by (say) |s;/10] would reduce the
running time by a factor of 100 and produce solutions that were still pretty
good for the original problem.

Dynamic programming really proved its worth when our electrical engineers
got interested in more ambitious objective functions. It is not a cost-free opera-
tion to change which phase a load is on, and so they wanted to find a relatively
balanced load assignment which minimized the number of changes required to
achieve it. This is essentially the same recurrence, storing the cheapest cost to
realize each state instead of just a flag indicating that you could reach it:

Cln,wa,wpg] = min(Cln — 1,wa — sy, wp| + 1,
Cln—1liwa,wg — s,] + 1,
Cln —1,wa,wp])

They then got greedy, and wanted the lowest cost solution that never got
seriously unbalanced at any point on the line. A globally balanced solution
might choose to fill the total load on A before any loads on B or C, and that
this would be bad. But the same recurrence above still does the job, provided
we set Cn,wa,wp] = oo whenever the loads at this state are deemed too
unbalanced to be desirable.

That is the power of dynamic programming. Once you can reduce your state
space to a small enough size, you can optimize just about anything. Just walk
through each possible state and score it appropriately.

10.7 The Ordered Partition Problem

Suppose that three workers are given the task of scanning through a shelf of
books in search of a given piece of information. To get the job done fairly and
efficiently, the books are to be partitioned among the three workers. To avoid
the need to rearrange the books or separate them into piles, it is simplest to
divide the shelf into three regions and assign each region to one worker.

But what is the fairest way to divide up the shelf? If all books are the same
length, the job is pretty easy. Just partition the books into equal-sized regions,

100 100 100 | 100 100 100 | 100 100 100

so that everyone has 300 pages to deal with.
But what if the books are not the same length? Suppose we used the same
partition when the book sizes looked like this:

100 200 300 | 400 500 600 | 700 800 900

I would volunteer to take the first section, with only 600 pages to scan, instead
of the last one, with 2,400 pages. The fairest possible partition for this shelf
would be

100 200 300 400 500 | 600 700 | 800 900
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where the largest job is only 1,700 pages.
In general, we have the following problem:

Problem: Integer Partition without Rearrangement

Input: An arrangement S of non-negative numbers s1,..., s, and an integer k.
Output: Partition S into k or fewer ranges, to minimize the maximum sum over
all the ranges, without reordering any of the numbers.

This so-called ordered partition problem arises often in parallel processing.
We seek to balance the work done across processors to minimize the total elapsed
running time. The bottleneck in this computation will be the processor assigned
the most work. Indeed, the war story of Section 5.8 (page 161) revolves around
a botched solution to the very problem discussed here.

Stop for a few minutes and try to find an algorithm to solve the linear
partition problem.

A novice algorist might suggest a heuristic as the most natural approach to
solving the partition problem, perhaps by computing the average weight of a
partition, Y . | s;/k, and then trying to insert the dividers to come close to this
average. However, such heuristic methods are doomed to fail on certain inputs
because they do not systematically evaluate all possibilities.

Instead, consider a recursive, exhaustive search approach to solving this
problem. Notice that the kth partition starts right after the (k — 1)st divider.
Where can we place this last divider? Between the ith and (i + 1)st elements
for some i, where 1 < i < n. What is the cost after this insertion? The total
cost will be the larger of two quantities:

e the cost of the last partition Z?:H_l s, and
e the cost of the largest partition formed to the left of the last divider.

What is the size of this left partition? To minimize our total, we must use
the k — 2 remaining dividers to partition the elements si,...,s; as equally as
possible. This is a smaller instance of the same problem, and hence can be
solved recursively!

Therefore, define M [n, k] to be the minimum possible cost over all partition-
ings of s1,...,s, into k ranges, where the cost of a partition is the largest sum
of elements in one of its parts. This function can be evaluated:

Min, k] = mT;n max(M|i, k — 1], Z s5)
= j=itl

We also need to specify the boundary conditions of the recurrence relation.
These boundary conditions resolve the smallest possible values for each of the
arguments of the recurrence. For this problem, the smallest reasonable value of
the first argument is n = 1, meaning that the first partition consists of a single
element. We can’t create a first partition smaller than s; regardless of how
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M k D k M k D k

s 1 2 3 s 1 2 3 s 1 2 3 s 1 2 3
1 1 1 1 1 - - = 1 1 1 1 1 - - =
1 2 1 1 1 — 1 1 2 3 2 2 2 - 1 1
1 3 2 1 1 - 1 2 3 6 3 3 3 - 2 2
1 4 2 2 1 - 2 2 4 10 6 4 4 - 3 3
1 5 3 2 1 2 3 5 15 9 6 5 3 4
1 6 3 2 1 - 3 4 6 21 11 9 6 - 4 5
1 7T 4 3 1 - 3 4 7 28 15 11 7 - 5 6
1 8 4 3 1 - 4 5 8 36 21 15 8 - 5 6
1 9 5 3 1 - 4 6 9 45 24 17 9 — 6 7

Figure 10.9: Dynamic programming matrices M and D for two instances
of the ordered partition problem. Partitioning (1,1,1,1,1,1,1,1,1)
into  ((1,1,1),(1,1,1),(1,1,1))  (left) and (1,2,3,4,5,6,7,8,9) into
((1,2,3,4,5),(6,7),(8,9)) (right). Prefix sum entries appear in red and
the optimal solution divider positions in blue.

many dividers are used. The smallest reasonable value of the second argument
is k = 1, implying that we do not partition S at all. In summary:

MI1,k] = s, forall k >0
Min, 1] = ZS’
i=1

How long does it take to compute this when we store the partial results?
There are a total of k- n cells in the table. How much time does it take to
compute the values of M[n/ k'] for 1 < n’ < n, 1 <k <k ? Calculating
this quantity using the general recurrence involves finding the minimum of n’
quantities, each of which is the larger of two numbers: a table lookup and the
sum of at most n’ elements (taking O(n') time). If filling each of kn boxes takes
at most n? time per box, the total recurrence can be computed in O(kn?) time.

The evaluation order computes the smaller values before the bigger values,
so that each evaluation has what it needs waiting for it. Full details are provided
in the following implementation:

void partition(int s[], int n, int k) {

int p[MAXN+1]; /* prefix sums array */
int m[MAXN+1] [MAXK+1]; /* DP table for values */
int d[MAXN+1] [MAXK+1]; /* DP table for dividers */
int cost; /* test split cost */
int i,j,x; /* counters */
plo]l = 0; /* construct prefiz sums */
for (i = 1; i <= n; i++) {

plil = pli-1]1 + s[il;

}
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for (i = 1; i <= n; i++) {
m[i] [1] plil; /* initialize boundaries */

}

for (j = 1; j <= k; j++) {
m[1]1[j] = s[1];

3

for (i = 2; 1 <=n; i++) { /* evaluate main recurrence */
for (j = 2; j <= k; j++) {
m[i] [j] = MAXINT;
for (x = 1; x <= (i-1); x++) {
cost = max(m[x] [j-11, p[il-p[x]1);
if (m[i][j] > cost) {
m[i] [j] = cost;
dlfil [j]

X3

}
}

reconstruct_partition(s, d, n, k); /* print book partition */

This implementation above, in fact, runs faster than advertised. Our original
analysis assumed that it took O(n?) time to update each cell of the matrix. This
is because we selected the best of up to n possible points to place the divider,
each of which requires the sum of up to n possible terms. In fact, it is easy to
avoid the_ need to compute these sums by storing the n prefix sums p; = 22:1 Sk,
since Zi:z‘ s = pj — pi—1. This enables us to evaluate the recurrence in linear
time per cell, yielding an O(kn?) algorithm. These prefix sums also appear as
the initialization values for £ = 1, and are shown in the dynamic programming
matrices of Figure 10.9.

By studying the recurrence relation and the dynamic programming matrices
of these two examples, you should be able to convince yourself that the final
value of M[n, k] will be the cost of the largest range in the optimal partition. But
for most applications, we need the actual partition that does the job. Without
it, all we are left with is a coupon with a great price on an out-of-stock item.

The second matrix, D, is used to reconstruct the optimal partition. When-
ever we update the value of M[i, j], we record which divider position was used
to achieve this value. We reconstruct the path used to get the optimal solution
by working backwards from D[n, k], and add a divider at each specified position.
This backwards walking is best achieved by a recursive subroutine:
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void reconstruct_partition(int s[],int d[MAXN+1] [MAXK+1], int n, int k) {
if (k == 1) {
print_books(s, 1, n);
} else {
reconstruct_partition(s, d, d[n][k], k-1);
print_books(s, d[n][k]+1, n);

void print_books(int s[], int start, int end) {
int i; /* counter */

printf ("\{");

for (i = start; i <= end; i++) {
printf (" %d ", s[il);

}

printf ("}\n");

10.8 Parsing Context-Free Grammars

Compilers identify whether a particular program is a legal expression in a par-
ticular programming language, and reward you with syntax errors if it is not.
This requires a precise description of the language syntax, typically given by a
contezt-free grammar, as shown in Figure 10.10(1). Each rule or production of
the grammar defines an interpretation for the named symbol on the left side of
the rule as a sequence of symbols on the right side of the rule. The right side
can be a combination of nonterminals (themselves defined by rules) or terminal
symbols defined simply as strings, such as the, a, cat, milk, and drank.

Parsing a given text sequence S as per a given context-free grammar G is the
algorithmic problem of constructing a parse tree of rule substitutions defining
S as a single nonterminal symbol of G. Figure 10.10(right) presents the parse
tree of a simple sentence using our sample grammar.

Parsing seemed like a horribly complicated subject when I took a compilers
course as a graduate student. But, more recently a friend easily explained it to
me over lunch. The difference is that I understand dynamic programming much
better now than when I was a student.

We assume that the sequence S has length n while the grammar G itself
is of constant size. This is fair, because the grammar defining a particular
programming language (say C or Java) is of fixed length regardless of the size
of the program we seek to compile.

Further, we assume that the definitions of each rule are in Chomsky normal
form, like the example of Figure 10.10. This means that the right sides of every
rule consists of either (a) exactly two nonterminals, for example, X — Y Z, or
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sentence ::= noun—phrase sentence

verb—phrase —

I]()Lll]*])hl'llﬁc

noun—phrase ::= article noun / / \
‘ article noun verb noun—phrase
article ::=the, a \

noun ::= cat, milk
verb ::= drank

article nolun

the cat  drank the milk

Figure 10.10: A context-free grammar (on left) with an associated parse tree
(right)

(b) exactly one terminal symbol, X — «. Any context-free grammar can be
easily and mechanically transformed into Chomsky normal form by repeatedly
shortening long right-hand sides at the cost of adding extra nonterminals and
productions. Thus, there is no loss of generality with this assumption.

So how can we efficiently parse S using a context-free grammar where each
interesting rule produces two nonterminals? The key observation is that the rule
applied at the root of the parse tree (say X — Y Z) splits S at some position i
such that the left part, S7---S;, must be generated by nonterminal Y, and the
right part (S;11---Sp) generated by Z.

This suggests a dynamic programming algorithm, where we keep track of all
nonterminals generated by each contiguous subsequence of S. Define M|z, j, X]
to be a Boolean function that is true iff subsequence S;---S; is generated by
nonterminal X. This is true if there exists a production X — Y Z and breaking
point k& between ¢ and j such that the left part generates Y and the right part
Z. In other words, for i < j we have

Mli, j, X] = \/ (J\_/M[i,k,Y]AM[k—i—l,j,Z])

(X—>YZ)eG \k=i

where V denotes the logical or over all productions and split positions, and A
denotes the logical and of two Boolean values.

The terminal symbols define the boundary conditions of the recurrence. In
particular, M[i,i, X] is true iff there exists a production X — « such that
Sl' = Q.

What is the complexity of this algorithm? The size of our state-space is
O(n?), as there are n(n + 1)/2 subsequences defined by (4,5) pairs with i > j.
Multiplying this by the number of nonterminals, which is finite because the
grammar was defined to be of constant size, has no impact on the Big Oh.
Evaluating M, j, X] requires testing all intermediate values k where i < k < j,
so it takes O(n) in the worst case to evaluate each of the O(n?) cells. This yields
an O(n?) or cubic-time algorithm for parsing.
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Stop and Think: Parsimonious Parserization

Problem: Programs often contain trivial syntax errors that prevent them from
compiling. Given a context-free grammar G and input sequence S, find the
smallest number of character substitutions you must make to S so that the
resulting sequence is accepted by G.

Solution: This problem seemed extremely difficult when I first encountered it.
But on reflection, it is just a very general version of edit distance, addressed
naturally by dynamic programming. Parsing first sounded difficult, too, but
fell to the same technique. Indeed, we can solve the combined problem by
generalizing the recurrence relation we used for simple parsing.

Define M'[i, j, X] to be an integer function that reports the minimum number
of changes to subsequence S;---S; so it can be generated by nonterminal X.
This symbol will be generated by some production X — Y Z. Some of the
changes to S may be to the left of the breaking point and some to the right,
but all we care about is minimizing the sum. In other words, for ¢ < j we have

M'[i,j,X]= min (énf;M'[i,k,Y] + M'[k+ 1,7, Z])
(X—=YZ)eG \ k=i

The boundary conditions also change mildly. If there exists a production
X — «, the cost of matching at position ¢ depends on the contents of S;. If
S; = a, M'[i,i,X] = 0. Otherwise, we can pay one substitution to change S;
to a, so M'[i,i,X] = 1if S; # . If the grammar does not have a production
of the form X — «, there is no way to substitute a single character string into
something generating X, so M'[i,i, X| = oo for all i. |

Take-Home Lesson: For optimization problems on left-to-right objects, such
as characters in a string, elements of a permutation, points around a polygon,
or leaves in a search tree, dynamic programming likely leads to an efficient
algorithm to find the optimal solution.

10.9 Limitations of Dynamic Programming: TSP

Dynamic programming doesn’t always work. It is important to see why it can
fail, to help avoid traps leading to incorrect or inefficient algorithms.

Our algorithmic poster child will once again be the traveling salesman prob-
lem, where we seek the shortest tour visiting all the cities in a graph. We will
limit attention here to an interesting special case:

Problem: Longest Simple Path

Input: A weighted graph G = (V, E), with specified start and end vertices s and
t.

Output: What is the most expensive path from s to ¢ that does not visit any
vertex more than once?
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This problem differs from TSP in two quite unimportant ways. First, it
asks for a path instead of a closed tour. This difference isn’t substantial: we
get a closed tour simply by including the edge (¢,s). Second, it asks for the
most expensive path instead of the least expensive tour. Again this difference
isn’t very significant: it encourages us to visit as many vertices as possible
(ideally all), just as in TSP. The critical word in the problem statement is
simple, meaning we are not allowed to visit any vertex more than once.

For wunweighted graphs (where each edge has cost 1), the longest possible
simple path from s to ¢ is of weight n — 1. Finding such Hamiltonian paths (if
they exist) is an important graph problem, discussed in Section 19.5 (page 598).

10.9.1 When is Dynamic Programming Correct?

Dynamic programming algorithms are only as correct as the recurrence relations
they are based on. Suppose we define LP[i,j] to be the length of the longest
simple path from ¢ to j. Note that the longest simple path from ¢ to j has to
visit some vertex x right before reaching j. Thus, the last edge visited must be
of the form (z, 7). This suggests the following recurrence relation to compute
the length of the longest path, where ¢(x, j) is the cost/weight of edge (z,j):

LPli,j] = max LP[i,x] + ¢(x, j)
B
(z.4)€E

This idea seems reasonable, but can you see the problem? I see at least two of
them.

First, this recurrence does nothing to enforce simplicity. How do we know
that vertex j has not appeared previously on the longest simple path from i to
x? If it did, then adding the edge (x,j) will create a cycle. To prevent this,
we must define a recursive function that explicitly remembers where we have
been. Perhaps we could define LP'[i, j, k] to denote the length of the longest
path from i to j avoiding vertex k7 This would be a step in the right direction,
but still won’t lead to a viable recurrence.

The second problem concerns evaluation order. What can you evaluate first?
Because there is no left-to-right or smaller-to-bigger ordering of the vertices on
the graph, it is not clear what the smaller subprograms are. Without such an
ordering, we get stuck in an infinite loop as soon as we try to do anything.

Dynamic programming can be applied to any problem that obeys the prin-
ciple of optimality. Roughly stated, this means that partial solutions can be
optimally extended given the state after the partial solution, instead of the
specifics of the partial solution itself. For example, in deciding whether to ex-
tend an approximate string matching by a substitution, insertion, or deletion,
we did not need to know the sequence of operations that had been performed
to date. In fact, there may be several different edit sequences that achieve a
cost of C' on the first p characters of pattern P and t characters of string T
Future decisions are made based on the consequences of previous decisions, not
the actual decisions themselves.
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Problems do not satisfy the principle of optimality when the specifics of the
operations matter, as opposed to just their cost. Such would be the case with
a special form of edit distance where we are not allowed to use combinations
of operations in certain particular orders. Properly formulated, however, many
combinatorial problems respect the principle of optimality.

10.9.2 When is Dynamic Programming Efficient?

The running time of any dynamic programming algorithm is a function of two
things: (1) the number of partial solutions we must keep track of, and (2) how
long it takes to evaluate each partial solution. The first issue—namely the size
of the state space—is usually the more pressing concern.

In all of the examples we have seen, the partial solutions are completely de-
scribed by specifying the possible stopping places in the input. This is because
the combinatorial objects being worked on (typically strings and numerical se-
quences) have an implicit order defined upon their elements. This order cannot
be scrambled without completely changing the problem. Once the order is fixed,
there are relatively few possible stopping places or states, so we get efficient al-
gorithms.

When the objects are not firmly ordered, however, we likely have an expo-
nential number of possible partial solutions. Suppose the state of our partial
longest simple path solution is the entire path P taken from the start to end
vertex. Thus, LP[i, j, P;;] denotes the cost of longest simple path from i to j,
where P;; is the sequence of intermediate vertices between 7 and j on this path.
The following recurrence relation works correctly to compute this, where P + x
denotes appending x to the end of P:

LPli.j.Py) = max  LPli.z. P +c(x.j)
JE L
(z.J)eE
Pij=Piz+j

This formulation is correct, but how efficient is it? The path P;; consists
of an ordered sequence of up to n — 3 vertices, so there can be up to (n — 3)!
such paths! Indeed, this algorithm is really using combinatorial search (like
backtracking) to construct all the possible intermediate paths. In fact, the max
here is somewhat misleading, as there can only be one value of P;; to construct
the state LP[i, j, Pi;].

We can do something better with this idea, however. Let LP’[i, j, S;;] denote
the longest simple path from i to j, where where S;; is the set of the intermediate
vertices on this path. Thus, if S;; = {a,b,c,i,j}, there are exactly six paths
consistent with S;;: iabcj, iacbj, ibacj, ibcaj, icabj, and icbaj. This state space
has at most 2" elements, and is thus smaller than the enumeration of all the
paths. Further, this function can be evaluated using the following recurrence
relation:

LP'[i,j,5;;] = max LP'[i,z,Siz] + c(z, )

(z,j)€E
Sij=8i.U{j}
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where S U {z} denotes unioning S with z.
The longest simple path from 4 to j can then be found by maximizing over
all possible intermediate vertex subsets:

LP[i, j] = max LP'[i, j. 5]

There are only 2™ subsets of n vertices, so this is a big improvement over
enumerating all n! tours. Indeed, this method can be used to solve TSPs for up
to thirty vertices or more, where n = 20 would be impossible using the O(n!)
algorithm. Still, dynamic programming proves most effective on well-ordered
objects.

Take-Home Lesson: ~ Without an inherent left-to-right ordering on the ob-
jects, dynamic programming is usually doomed to require exponential space
and time.

10.10 War Story: What’s Past is Prolog

“But our heuristic works very, very well in practice.” My colleague was simul-
taneously boasting and crying for help.

Unification is the basic computational mechanism in logic programming lan-
guages like Prolog. A Prolog program consists of a set of rules, where each rule
has a head and an associated action whenever the rule head matches or unifies
with the current computation.

An execution of a Prolog program starts by specifying a goal, say p(a, X,Y),
where a is a constant and X and Y are variables. The system then systematically
matches the head of the goal with the head of each of the rules that can be unified
with the goal. Unification means binding the variables with the constants, if it
is possible to match them. For the nonsense program below, p(X,Y,a) unifies
with either of the first two rules, since X and Y can be bound to match the
extra characters. The goal p(X, X, a) would only match the first rule, since the
variable bound to the first and second positions must be the same.

p(a, a, CL) - h(CL),

p(b,a,a) := h(a) * h(b);
p(e,b,b) := h(b) + h(c);
p(d, b, b) := h(d) + h(b);

“In order to speed up unification, we want to preprocess the set of rule
heads so that we can quickly determine which rules match a given goal. We
must organize the rules in a trie data structure for fast unification.”

Tries are extremely useful data structures in working with strings, as dis-
cussed in Section 15.3 (page 448). Every leaf of the trie represents one string.
Each node on the path from root to leaf is labeled with exactly one character
of the string, with the ith node of the path corresponding to the string’s ith
character.
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O O
aaa baa cbb dbb aaa baa chh dbb

Figure 10.11: Two different tries for the same set of Prolog rule heads, where
the trie on the right has four less edges.

“I agree. A trie is a natural way to represent your rule heads. Building a
trie on a set of strings of characters is straightforward: just insert the strings
starting from the root. So what is your problem?” I asked.

“The efficiency of our unification algorithm depends very much on minimiz-
ing the number of edges in the trie. Since we know all the rules in advance,
we have the freedom to reorder the character positions in the rules. Instead of
the root node always representing the first argument in the rule, we can choose
to have it represent the third argument. We would like to use this freedom to
build a minimum-size trie for a set of rules.”

He showed me the example in Figure 10.11. A trie constructed according to
the original string position order (1,2,3) uses a total of 12 edges. However, by
permuting the character order to (2,3,1) on both sides, we could obtain a trie
with only 8 edges.

“Interesting...” I started to reply before he cut me off again.

“There’s one other constraint. We must keep the leaves of the trie ordered,
so that the leaves of the underlying tree go left to right in the same order as the
rules appear on the page. The order of rules in Prolog programs is very, very
important. If you change the order of the rules, the program returns different
results.”

Then came my mission.

“We have a greedy heuristic for building good, but not optimal, tries that
picks as the root the character position that minimizes the degree of the root.
In other words, it picks the character position that has the smallest number of
distinct characters in it. This heuristic works very, very well in practice. But
we need you to prove that finding the best trie is NP-complete so our paper is,
well, complete.”

I agreed to try to prove the hardness of the problem, and chased him from my
office. The problem did seem to involve some nontrivial combinatorial optimiza-
tion to build the minimal tree, but I couldn’t see how to factor the left-to-right
order of the rules into a hardness proof. In fact, I couldn’t think of any NP-
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complete problem that had such a left-to-right ordering constraint. After all, if
a given set of n rules contained a character position in common to all the rules,
this character position must be probed first in any minimum-size tree. Since the
rules were ordered, each node in the subtree must represent the root of a run of
consecutive rules. Thus, there were only (g) possible nodes to choose from for
this tree. ...

Bingo! That settled it.

The next day I went back to my colleague and told him. “I can’t prove
that your problem is NP-complete. But how would you feel about an efficient
dynamic programming algorithm to find the best possible trie!” It was a pleasure
watching his frown change to a smile as the realization took hold. An efficient
algorithm to compute what you need is infinitely better than a proof saying you
can’t do it!

My recurrence looked something like this. Suppose that we are given n

ordered rule heads si,...,$,, each with m arguments. Probing at the pth
position, 1 < p < m, partitions the rule heads into runs Ry, ..., R,, where each
rule in a given run R, = s;,...,s; has the same character value as s;[p]. The

rules in each run must be consecutive, so there are only (g) possible runs to
worry about. The cost of probing at position p is the cost of finishing the trees
formed by each created run, plus one edge per tree to link it to probe p:

T

Cli,j] = 3111 (Z(C[ikajk] + 1))

P k=1

A graduate student immediately set to work implementing this algorithm to
compare with their heuristic. On many inputs, the optimal and greedy algo-
rithms constructed the exact same trie. However, for some examples, dynamic
programming gave a 20% performance improvement over greedy—that is, 20%
better than very, very well in practice. The run time spent in doing the dynamic
programming was a bit larger than with greedy, but in compiler optimization
you are always happy to trade off a little extra compilation time for better exe-
cution time in the performance of your program. Is a 20% improvement worth
this effort? That depends upon the situation. How useful would you find a 20%
increase in your salary?

The fact that the rules had to remain ordered was the crucial property that
we exploited in the dynamic programming solution. Indeed, without it I was
able to prove that the problem was NP-complete with arbitrary rule orderings,
something we put in the paper to make it complete.

Take-Home Lesson: The global optimum (found perhaps using dynamic pro-
gramming) is often noticeably better than the solution found by typical heuris-
tics. How important this improvement is depends on your application, but it
can never hurt.
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Chapter Notes

Bellman [Bel58] is credited with inventing the technique of dynamic program-
ming. The edit distance algorithm is originally due to Wagner and Fischer
[WFT4]. A faster algorithm for the book partition problem appears in Khanna
et al. [KMS97].

Techniques such as dynamic programming and backtracking can be used
to generate worst-case efficient (although still non-polynomial) algorithms for
many NP-complete problems. See Downey and Fellows [DF12] and Woeginger
[Woe03] for nice surveys of such techniques.

More details about the war stories in this chapter are available in published
papers. See Dawson et al. [DRR195] for more on the Prolog trie minimization
problem. Our algorithm for phase-balancing power loads from Section 10.6
(page 331) is reported in Wang et al. [WSR13]. Two-dimensional bar codes,
presented in Section 10.4 (page 326), were developed largely through the efforts
of Theo Pavlidis and Ynjiun Wang at Stony Brook [PSW92].

The dynamic programming algorithm presented for parsing is known as
the CKY algorithm after its three independent inventors (Cocke, Kasami, and
Younger). See [You67]. The generalization of parsing to edit distance is due to
Aho and Peterson [AP72].

10.11 Exercises

Elementary Recurrences

10-1. /3] Up to k steps in a single bound! A child is running up a staircase with n
steps and can hop between 1 and k steps at a time. Design an algorithm to
count how many possible ways the child can run up the stairs, as a function of
n and k. What is the running time of your algorithm?

10-2. /3] Imagine you are a professional thief who plans to rob houses along a street
of n homes. You know the loot at house ¢ is worth m;, for 1 < i < n, but you
cannot rob neighboring houses because their connected security systems will
automatically contact the police if two adjacent houses are broken into. Give an
efficient algorithm to determine the maximum amount of money you can steal
without alerting the police.

10-3. [5] Basketball games are a sequence of 2-point shots, 3-point shots, and 1-
point free throws. Give an algorithm that computes how many possible mixes
(1s,28,3s) of scoring add up to a given n. For n = 5 there are four possible
solutions: (5,0,0), (2,0,1), (1,2,0), and (0,1,1).

10-4. [5] Basketball games are a sequence of 2-point shots, 3-point shots, and 1-point
free throws. Give an algorithm that computes how many possible scoring se-
quences add up to a given n. For n = 5 there are thirteen possible sequences,
including 1-2-1-1, 3-2, and 1-1-1-1-1.

10-5. /5] Given an s x t grid filled with non-negative numbers, find a path from top
left to bottom right that minimizes the sum of all numbers along its path. You
can only move either down or right at any point in time.
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(a) Give a solution based on Dijkstra’s algorithm. What is its time complexity
as a function of s and 7
(b) Give a solution based on dynamic programming. What is its time complexity
as a function of s and 7

Edit Distance

10-6.

10-7.

10-8.

10-9.

10-10.

[8] Typists often make transposition errors exchanging neighboring characters,
such as typing “setve” for “steve.” This requires two substitutions to fix under
the conventional definition of edit distance.

Incorporate a swap operation into our edit distance function, so that such neigh-
boring transposition errors can be fixed at the cost of one operation.

[4] Suppose you are given three strings of characters: X, Y, and Z, where
|X| =n, |Y| =m, and |Z| = n+m. Z is said to be a shuffle of X and Y iff
Z can be formed by interleaving the characters from X and Y in a way that
maintains the left-to-right ordering of the characters from each string.

(a) Show that cchocohilaptes is a shuffle of chocolate and chips, but chocochi-
latspe is not.

(b) Give an efficient dynamic programming algorithm that determines whether
Z is a shuffle of X and Y. (Hint: the values of the dynamic programming
matrix you construct should be Boolean, not numeric.)

[4] The longest common substring (not subsequence) of two strings X and Y is
the longest string that appears as a run of consecutive letters in both strings.
For example, the longest common substring of photograph and tomography is
ograph.

(a) Let n = |X| and m = |Y|. Give a ©(nm) dynamic programming algo-
rithm for longest common substring based on the longest common subse-
quence/edit distance algorithm.

(b) Give a simpler O(nm) algorithm that does not rely on dynamic program-
ming.

[6] The longest common subsequence (LCS) of two sequences T and P is the
longest sequence L such that L is a subsequence of both T" and P. The shortest
common supersequence (SCS) of T and P is the smallest sequence L such that
both T and P are a subsequence of L.

(a) Give efficient algorithms to find the LCS and SCS of two given sequences.

(b) Let d(T,P) be the minimum edit distance between 7" and P when no
substitutions are allowed (i.e., the only changes are character insertion
and deletion). Prove that d(T,P) = |SCS(T, P)| — |LCS(T, P)| where
|SCS(T, P)| (|JLCS(T, P)|) is the size of the shortest SC'S (longest LCS)
of T and P.

[5] Suppose you are given n poker chips stacked in two stacks, where the edges
of all chips can be seen. Each chip is one of three colors. A turn consists of
choosing a color and removing all chips of that color from the tops of the stacks.
The goal is to minimize the number of turns until the chips are gone.

For example, consider the stacks (RRGG,GBBB). Playing red, green, and
then blue suffices to clear the stacks in three moves. Give an O(n?) dynamic
programming algorithm to find the best strategy for a given pair of chip piles.
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Greedy Algorithms

10-11.

10-12.

10-13.

10-14.

[4] Let P1,Ps,..., P, be n programs to be stored on a disk with capacity D
megabytes. Program P; requires s; megabytes of storage. We cannot store them
all because D < Y77 | s;

(a) Does a greedy algorithm that selects programs in order of non-decreasing
s; maximize the number of programs held on the disk? Prove or give a
counter-example.

(b) Does a greedy algorithm that selects programs in order of non-increasing
s; use as much of the capacity of the disk as possible? Prove or give a
counter-example.

[5] Coins in the United States are minted with denominations of 1, 5, 10, 25, and
50 cents. Now consider a country whose coins are minted with denominations
of {d1,...,dr} units. We seek an algorithm to make change of n units using the
minimum number of this country’s coins.

(a) The greedy algorithm repeatedly selects the biggest coin no bigger than
the amount to be changed and repeats until it is zero. Show that the greedy
algorithm does not always use the minimum number of coins in a country whose
denominations are {1, 6,10}.

(b) Give an efficient algorithm that correctly determines the minimum number
of coins needed to make change of n units using denominations {di,...,dx}.
Analyze its running time.

[5] In the United States, coins are minted with denominations of 1, 5, 10, 25, and
50 cents. Now consider a country whose coins are minted with denominations
of {d1,...,dr} units. We want to count how many distinct ways C'(n) there are
to make change of n units. For example, in a country whose denominations are
{1,6,10}, C'(5) =1, C(6) to C(9) =2, C(10) = 3, and C(12) = 4.

(a) How many ways are there to make change of 20 units from {1,6,10}7

(b) Give an efficient algorithm to compute C(n), and analyze its complex-
ity. (Hint: think in terms of computing C(n,d), the number of ways to
make change of n units with highest denomination d. Be careful to avoid
overcounting.)

[6] In the single-processor scheduling problem, we are given a set of n jobs J.
Each job ¢ has a processing time t;, and a deadline d;. A feasible schedule
is a permutation of the jobs such that when the jobs are performed in that
order, every job is finished before its deadline. The greedy algorithm for single-
processor scheduling selects the job with the earliest deadline first.

Show that if a feasible schedule exists, then the schedule produced by this greedy
algorithm is feasible.
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Number Problems

10-15.

10-16.

10-17.

10-18.

10-19.

10-20.

10-21.

10-22.

10-23.

[3] You are given a rod of length n inches and a table of prices obtainable for
rod-pieces of size n or smaller. Give an efficient algorithm to find the maximum
value obtainable by cutting up the rod and selling the pieces. For example, if
n = 8 and the values of different pieces are:

2 3 4 5 6 7 8
5 8 9 10 17 17 20

length ‘
price ‘

1
1

then the maximum obtainable value is 22, by cutting into pieces of lengths 2
and 6.

[5] Your boss has written an arithmetic expression of n terms to compute your
annual bonus, but permits you to parenthesize it however you wish. Give an
efficient algorithm to design the parenthesization to maximize the value. For
the expression:

64+2x0—4

there exist parenthesizations with values ranging from —32 to 2.

[5] Given a positive integer n, find an efficient algorithm to compute the smallest
number of perfect squares (e.g. 1,4,9,16,...) that sum to n. What is the running
time of your algorithm?

[5] Given an array A of n integers, find an efficient algorithm to compute the
largest sum of a continuous run. For A = [-3,2,7,-3,4,—2,0,1], the largest
such sum is 10, from the second through fifth positions.

[5] Two drivers have to divide up m suitcases between them, where the weight
of the ith suitcase is w;. Give an efficient algorithm to divide up the loads so
the two drivers carry equal weight, if possible.

[6] The knapsack problem is as follows: given a set of integers S = {s1,s2,...,8n},
and a given target number 7', find a subset of S that adds up exactly to T'. For
example, within S = {1,2,5,9,10} there is a subset that adds up to 7" = 22 but
not T' = 23.

Give a dynamic programming algorithm for knapsack that runs in O(nT’) time.

[6] The integer partition takes a set of positive integers S = {s1,...,s,} and
seeks a subset I C S such that

IIEDIN

iel igl

Let > ,cq8i = M. Give an O(nM) dynamic programming algorithm to solve
the integer partition problem.

[5] Assume that there are n numbers (some possibly negative) on a circle, and
we wish to find the maximum contiguous sum along an arc of the circle. Give
an efficient algorithm for solving this problem.

[5] A certain string processing language allows the programmer to break a string
into two pieces. It costs n units of time to break a string of n characters into
two pieces, since this involves copying the old string. A programmer wants to
break a string into many pieces, and the order in which the breaks are made can
affect the total amount of time used. For example, suppose we wish to break
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10-24.

10-25.

10-26.

a 20-character string after characters 3, 8, and 10. If the breaks are made in
left-to-right order, then the first break costs 20 units of time, the second break
costs 17 units of time, and the third break costs 12 units of time, for a total of
49 units. If the breaks are made in right-to-left order, the first break costs 20
units of time, the second break costs 10 units of time, and the third break costs
8 units of time, for a total of only 38 units.

Give a dynamic programming algorithm that takes a list of character positions
after which to break and determines the cheapest break cost in O(n®) time.

[5] Consider the following data compression technique. We have a table of m
text strings, each at most k in length. We want to encode a data string D of
length n using as few text strings as possible. For example, if our table contains
(a,ba,abab,b) and the data string is bababbaababa, the best way to encode it is
(b,abab,ba,abab,a)—a total of five code words. Give an O(nmk) algorithm to
find the length of the best encoding. You may assume that every string has at
least one encoding in terms of the table.

[5] The traditional world chess championship is a match of 24 games. The
current champion retains the title in case the match is a tie. Each game ends
in a win, loss, or draw (tie) where wins count as 1, losses as 0, and draws as
1/2. The players take turns playing white and black. White plays first and so
has an advantage. The champion plays white in the first game. The champ has
probabilities wy,, wa, and w; of winning, drawing, and losing playing white, and
has probabilities by, ba, and by of winning, drawing, and losing playing black.

(a) Write a recurrence for the probability that the champion retains the title.
Assume that there are g games left to play in the match and that the
champion needs to get ¢ points (which may be a multiple of 1/2).

(b) Based on your recurrence, give a dynamic programming algorithm to cal-
culate the champion’s probability of retaining the title.

(c) Analyze its running time for an n game match.

[8] Eggs break when dropped from great enough height. Specifically, there must
be a floor f in any sufficiently tall building such that an egg dropped from the
fth floor breaks, but one dropped from the (f — 1)st floor will not. If the egg
always breaks, then f = 1. If the egg never breaks, then f =n + 1.

You seek to find the critical floor f using an n-floor building. The only operation
you can perform is to drop an egg off some floor and see what happens. You
start out with k eggs, and seek to make as few drops as possible. Broken eggs
cannot be reused. Let F(k,n) be the minimum number of egg drops that will
always suffice.

(a) Show that E(1,n) =n.
(b) Show that E(k,n) = G(n%)

(¢) Find a recurrence for E(k,n). What is the running time of the dynamic
program to find E(k,n)?
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Graph Problems

10-27.

10-28.

10-29.

[4] Consider a city whose streets are defined by an X XY grid. We are interested
in walking from the upper left-hand corner of the grid to the lower right-hand
corner.

Unfortunately, the city has bad neighborhoods, whose intersections we do not
want to walk in. We are given an X X Y matrix bad, where badfi,j] = “yes” iff
the intersection between streets ¢ and j is in a neighborhood to avoid.

(a) Give an example of the contents of bad such that there is no path across the
grid avoiding bad neighborhoods.

(b) Give an O(XY) algorithm to find a path across the grid that avoids bad
neighborhoods.

(c) Give an O(XY) algorithm to find the shortest path across the grid that
avoids bad neighborhoods. You may assume that all blocks are of equal length.
For partial credit, give an O(X?Y?) algorithm.

[5] Consider the same situation as the previous problem. We have a city whose
streets are defined by an X x Y grid. We are interested in walking from the
upper left-hand corner of the grid to the lower right-hand corner. We are given
an X X Y matrix bad, where badfi,j] = “yes” iff the intersection between streets
i and j is somewhere we want to avoid.

If there were no bad neighborhoods to contend with, the shortest path across
the grid would have length (X — 1) + (Y — 1) blocks, and indeed there would
be many such paths across the grid. Each path would consist of only rightward
and downward moves.

Give an algorithm that takes the array bad and returns the number of safe paths
of length X +Y — 2. For full credit, your algorithm must run in O(XY).

[5] You seek to create a stack out of n boxes, where box ¢ has width w;, height
hi, and depth d;. The boxes cannot be rotated, and can only be stacked on
top of one another when each box in the stack is strictly larger than the box
above it in width, height, and depth. Give an efficient algorithm to construct
the tallest possible stack, where the height is the sum of the heights of each box
in the stack.

Design Problems

10-30.

10-31.

[4] Consider the problem of storing n books on shelves in a library. The order
of the books is fixed by the cataloging system and so cannot be rearranged.
Therefore, we can speak of a book b;, where 1 < i < n, that has a thickness ¢;
and height h;. The length of each bookshelf at this library is L.

Suppose all the books have the same height h (i.e., h = h; for all ¢) and the
shelves are all separated by a distance greater than h, so any book fits on any
shelf. The greedy algorithm would fill the first shelf with as many books as
we can until we get the smallest ¢ such that b; does not fit, and then repeat
with subsequent shelves. Show that the greedy algorithm always finds the book
placement that uses the minimum number of shelves, and analyze its time com-
plexity.

[6] This is a generalization of the previous problem. Now consider the case where
the height of the books is not constant, but we have the freedom to adjust the
height of each shelf to that of the tallest book on the shelf. Here the cost of a
particular layout is the sum of the heights of the largest book on each shelf.
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10-32.

10-33.

10-34.

10-35.

10-36.

e Give an example to show that the greedy algorithm of stuffing each shelf
as full as possible does not always give the minimum overall height.

e Give an algorithm for this problem, and analyze its time complexity. (Hint:
use dynamic programming.)

[5] Consider a linear keyboard of lowercase letters and numbers, where the left-
most 26 keys are the letters A-Z in order, followed by the digits 0-9 in order,
followed by the 30 punctuation characters in a prescribed order, and ended on a
blank. Assume you start with your left index finger on the “A” and your right
index finger on the blank.

Give a dynamic programming algorithm that finds the most efficient way to type
a given text of length n, in terms of minimizing total movement of the fingers
involved. For the text ABABABAB ... ABAB, this would involve shifting both
fingers all the way to the left side of the keyboard. Analyze the complexity of
your algorithm as a function of n and k, the number of keys on the keyboard.

[5] You have come back from the future with an array G, where G[i] tells you
the price of Google stock i days from now, for 1 < ¢ < n. You seek to use
this information to maximize your profit, but are only permitted to complete at
most one transaction (i.e. either buy one or sell one share of the stock) per day.
Design an efficient algorithm to construct the buy-sell sequence to maximize
your profit. Note that you cannot sell a share unless you currently own one.

[8] You are given a string of n characters S = s1...$n, which you believe to
be a compressed text document in which all spaces have been removed, like
itwasthebestoftimes.

(a) You seek to reconstruct the document using a dictionary, which is available
in the form of a Boolean function dict(w), where dict(w) is true iff string w is
a valid word in the language. Give an O(n?) algorithm to determine whether
string S can be reconstituted as a sequence of valid words, assuming calls to
dict(w) take unit time.

(b) Now assume you are given the dictionary as a set of m words each of length
at most [. Give an efficient algorithm to determine whether string S can be
reconstituted as a sequence of valid words, and its running time.

[8] Consider the following two-player game, where you seek to get the biggest
score. You start with an n-digit integer N. With each move, you get to take
either the first digit or the last digit from what is left of NV, and add that to
your score, with your opponent then doing the same thing to the now smaller
number. You continue taking turns removing digits until none are left. Give an
efficient algorithm that finds the best possible score that the first player can get
for a given digit string N, assuming the second player is as smart as can be.

[6] Given an array of n real numbers, consider the problem of finding the max-
imum sum in any contiguous subarray of the input. For example, in the array

[31,—41,59, 26, —53, 58,97, —93, —23, 84]

the maximum is achieved by summing the third through seventh elements, where
59426+ (—53) + 58497 = 187. When all numbers are positive, the entire array
is the answer, while when all numbers are negative, the empty array maximizes
the total at 0.
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e Cive a simple and clear ©(n?)-time algorithm to find the maximum con-
tiguous subarray.

e Now give a O(n)-time dynamic programming algorithm for this problem.
To get partial credit, you may instead give a correct O(nlogn) divide-and-
conquer algorithm.

10-37. [7] Consider the problem of examining a string = z1x2 ...z, from an alphabet
of k symbols, and a multiplication table over this alphabet. Decide whether or
not it is possible to parenthesize x in such a way that the value of the resulting
expression is a, where a belongs to the alphabet. The multiplication table is
neither commutative or associative, so the order of multiplication matters.

For example, consider the above multiplication table and the string bbbba. Paren-
thesizing it (b(bb))(ba) gives a, but ((((bb)b)b)a) gives c.

Give an algorithm, with time polynomial in n and k, to decide whether such
a parenthesization exists for a given string, multiplication table, and goal sym-
bol.

10-38. [6/ Let o and (8 be constants. Assume that it costs a to go left in a binary
search tree, and ( to go right. Devise an algorithm that builds a tree with
optimal expected query cost, given keys ki,...,k, and the probabilities that
each will be searched p1,...,pn.

Interview Problems

10-39. [5] Given a set of coin denominations, find the minimum number of coins to
make a certain amount of change.

10-40. /5] You are given an array of n numbers, each of which may be positive, negative,
or zero. Give an efficient algorithm to identify the index positions ¢ and j to
obtain the maximum sum of the ith through jth numbers.

10-41. [7] Observe that when you cut a character out of a magazine, the character on the
reverse side of the page is also removed. Give an algorithm to determine whether
you can generate a given string by pasting cutouts from a given magazine.
Assume that you are given a function that will identify the character and its
position on the reverse side of the page for any given character position.

LeetCode

10-1. https://leetcode.com/problems/binary-tree-cameras/
10-2. https://leetcode.com/problems/edit-distance/

10-3. https://leetcode.com/problems/maximum-product-of-splitted-binary-tree/


https://leetcode.com/problems/binary-tree-cameras/
https://leetcode.com/problems/edit-distance/
https://leetcode.com/problems/maximum-product-of-splitted-binary-tree/
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HackerRank

10-1. https://www.hackerrank.com/challenges/ctci-recursive-staircase/
10-2. https://www.hackerrank.com/challenges/coin-change/

10-3. https://www.hackerrank.com/challenges/longest-increasing-subsequent/

Programming Challenges

These programming challenge problems with robot judging are available at
https://onlinejudge.org:

10-1. “Is Bigger Smarter?”—Chapter 11, problem 10131.

10-2. “Weights and Measures”—Chapter 11, problem 10154.

10-3. “Unidirectional TSP”—Chapter 11, problem 116.

10-4. “Cutting Sticks”—Chapter 11, problem 10003.

10-5. “Ferry Loading”—Chapter 11, problem 10261.


https://www.hackerrank.com/challenges/ctci-recursive-staircase/
https://www.hackerrank.com/challenges/coin-change/
https://www.hackerrank.com/challenges/longest-increasing-subsequent/
https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=28
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Chapter 11

NP-Completeness

I will now introduce techniques for proving that no efficient algorithm can exist
for a given problem. The practical reader is probably squirming at the notion
of proving anything, and will be particularly alarmed at the idea of investing
time to prove that something does not exist. Why are you better off knowing
that something you don’t know how to do in fact can’t be done at all?

The truth is that the theory of NP-completeness is an immensely useful tool
for the algorithm designer, even though all it provides are negative results. The
theory of NP-completeness enables us to focus our efforts more productively,
by revealing when the search for an efficient algorithm is doomed to failure.
Whenever one tries and fails to show a problem is hard, that suggests there
may well be an efficient algorithm to solve it. Two war stories in Chapter 10
described happy results springing from bogus claims of hardness.

The theory of NP-completeness also enables us to identify which proper-
ties make a particular problem hard. This can provide direction to model it in
different ways, or exploit more benevolent characteristics of the problem. De-
veloping a sense for which problems are hard is an important skill for algorithm
designers, and only comes from hands-on experience with proving hardness.

The fundamental concept we will use here is reduction, showing that two
problems are really equivalent. We illustrate this idea through a series of re-
ductions, each of which either yields an efficient algorithm for one problem or
an argument that no such algorithm can exist for the other. We also provide a
brief introduction to the complexity-theoretic aspects of NP-completeness, one
of the most fundamental notions in computer science.

11.1 Problems and Reductions

We have encountered several problems in this book where we couldn’t find any

efficient algorithm. The theory of NP-completeness provides the tools needed

to show that these problems are all, on some level, really the same problem.
The key idea to demonstrating the hardness of a problem is that of a re-

© The Editor(s) (if applicable) and The Author(s), under exclusive license to 355
Springer Nature Switzerland AG 2020

S. S. Skiena, The Algorithm Design Manual, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-54256-6_11


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54256-6_11&domain=pdf

356 CHAPTER 11. NP-COMPLETENESS

duction, or translation, between two problems. The following allegory of NP-
completeness may help explain the idea. A bunch of kids take turns fighting
each other in the school yard to prove how “tough” they are. Adam beats
up Bill, who then beats up Dwayne. So who if any among them qualifies as
“tough?” The truth is that there is no way to know without an external stan-
dard. If T tell you that the action takes place in a kindergarten school yard,
then the fight results don’t mean very much. But suppose instead that I tell
you Dwayne was in fact Dwayne “The Rock” Johnson, certified tough guy. You
have to be impressed—both Adam and Bill must be at least as tough as he is.
In this telling, each fight represents a reduction, and Dwayne Johnson takes on
the role of satisfiability—a certifiably hard problem.

Reductions are algorithms that convert one problem into another. To de-
scribe them, we must be somewhat rigorous in our definitions. An algorithmic
problem is a general question, with parameters for input and conditions on what
constitutes a satisfactory answer or solution. An instance is a problem with the
input parameters specified. The difference can be made clear by an example:

Problem: The Traveling Salesman Problem (TSP)
Input: A weighted graph G.
Output: Which tour (vy,va, ..., v,) minimizes Z?;ll d[vi, vig1] + d[vg, v1]?

Any weighted graph defines an instance of TSP. Each particular instance has
at least one minimum cost tour. The general traveling salesman problem asks
for an algorithm to find the optimal tour for any possible instance.

11.1.1 The Key Idea

Now consider two algorithmic problems, called Bandersnatch and Bo-billy. Sup-
pose that I gave you the following reduction/algorithm to solve the Bandersnatch
problem:

Bandersnatch(G)
Translate the input G to an instance Y of the Bo-billy problem.
Call the subroutine Bo-billy to solve instance Y.
Return the answer of Bo-billy(Y') as the answer to Bandersnatch(G).

This algorithm will correctly solve the Bandersnatch problem provided that
the translation to Bo-billy always preserves the correctness of the answer. In
other words, provided that the translation has the property that for any instance
G7

Bandersnatch(G) = Bo-billy(Y)

A translation of instances from one type of problem to instances of another such
that the answers are preserved is what we mean by a reduction.

Now suppose this reduction translates instance G to Y in O(P(n)) time.
There are two possible implications:
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e If my Bo-billy subroutine ran in O(P’(n)), this yields an algorithm to
solve the Bandersnatch problem in O(P(n) + P’(n)), by translating the
problem and then executing the Bo-billy subroutine to solve it.

e If I know that Q(P’(n)) is a lower bound on computing Bandersnatch,
meaning there definitely cannot exist a faster algorithm to solve it, then
Q(P'(n) — P(n)) must be a lower bound to compute Bo-billy. Why? If I
could solve Bo-billy faster than this, the above reduction would violate my
lower bound on solving Bandersnatch. Because this is impossible, there
can be no way to solve Bo-billy any faster than claimed.

Essentially, this reduction shows that Bo-billy is no easier than Bander-
snatch. Therefore, if Bandersnatch is hard this means Bo-billy must also be
hard. We will illustrate this point by giving a variety of problem reductions in
this chapter.

Take-Home Lesson: Reductions are a way to show that two problems are es-
sentially identical. A fast algorithm (or the lack of one) for one of the problems
implies a fast algorithm (or the lack of one) for the other.

11.1.2 Decision Problems

Reductions translate between problems so that their answers are identical in
every problem instance. Problems differ in the range or type of possible answers.
The traveling salesman problem returns a permutation of vertices as the answer,
while other types of problems may return strings or numbers as answers, perhaps
restricted to positive numbers or integers.

The simplest interesting class of problems have answers restricted to true
and false. These are called decision problems. It proves convenient to re-
duce/translate answers between decision problems because both only allow true
and false as possible answers.

Fortunately, most interesting optimization problems can be phrased as de-
cision problems that capture the essence of the computation. For example, the
traveling salesman decision problem is defined as:

Problem: The Traveling Salesman Decision Problem (TSDP)
Input: A weighted graph G and integer k.
Output: Does there exist a TSP tour with cost < k7

This decision version captures the heart of the traveling salesman problem,
in that if you had a fast algorithm for the decision problem, you could do a
binary search with different values of k and quickly home in on the cost of the
optimal TSP solution. With just a bit more cleverness, you could reconstruct
the actual tour permutation using a fast solution to the decision problem.

From now on I will generally talk about decision problems, because they
prove easier to work with and still capture the power of the theory of NP-
completeness.
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11.2 Reductions for Algorithms

Reductions are an honorable way to generate new algorithms from old ones.
Whenever we can translate the input for a problem we want to solve into input
for a problem we know how to solve, we can compose the translation and the
solution into an algorithm to deal with our problem.

In this section, we look at several reductions that lead to efficient algorithms.
To solve problem A, we translate/reduce the A instance to an instance of B,
and then solve this instance using an efficient algorithm for problem B. The
overall running time is the time needed to perform the reduction plus that to
solve the B instance.

11.2.1 Closest Pair

The closest-pair problem asks to find the pair of numbers within a set S that
have the smallest difference between them. For example, the closest pair in
S = {10,4,8,3,12} is (3,4). We can make it a decision problem by asking if
this value is less than some threshold:

Input: A set S of n numbers, and threshold t.
Output: Is there a pair s;,s; € S such that [s; — s;| < t?

Finding the closest pair is a simple application of sorting, since the closest
pair must be neighbors after sorting. This gives the following algorithm:

CloseEnoughPair(S,t)
Sort S.

Is min1§i<n |8i+1 — Sil S t?
There are several things to note about this simple reduction:

e The decision version captured what is interesting about the general prob-
lem, meaning it is no easier than finding the actual closest pair.

e The complexity of this algorithm depends upon the complexity of sorting.
Use an O(nlogn) algorithm to sort, and it takes O(nlogn+n) to find the
closest pair.

e This reduction and the fact that there is an Q(nlog n) lower bound on sort-
ing does not prove that the close-enough pair problem must take Q(nlogn)
time in the worst case. Perhaps this is just a slow algorithm for close-
enough pair, and there is a faster approach that avoids sorting?

e On the other hand, if we knew that a close-enough pair required ©(n logn)
time to solve in the worst case, this reduction would suffice to prove that
sorting couldn’t be solved any faster than Q(nlogn) because that would
imply a faster algorithm for close-enough pair.
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11.2.2 Longest Increasing Subsequence

Recall Chapter 10, where dynamic programming was used to solve a variety of
problems, including string edit distance. To review:

Problem: Edit Distance

Input: Integer or character sequences S and T'; penalty costs for each insertion
(Cins), deletion (cger), and substitution (csyp)-

Output: What is the cost of the least expensive sequence of operations that
transforms S to T'7

It was shown that many other problems can be solved using edit distance.
But these algorithms can often be viewed as reductions. Consider:

Problem: Longest Increasing Subsequence (LIS)

Input: An integer or character sequence S.

Output: What is the length of the longest sequence of positions py, ..., p, such
that p; < piy1 and S, < Sp,, .7

In Section 10.3 (page 324) I demonstrated that longest increasing subse-
quence can be solved as a special case of edit distance:

LongestIncreasingSubsequence(,S)

T = Sort(S)
Cins = Cdel = 1
Csub = OO

Return (|S|— EditDistance(S,T,Cins,CdelsCsub)/2)

Why does this work? By constructing the second sequence 7" as the elements
of S sorted in increasing order, we ensure that any common subsequence must
be an increasing subsequence. If we are never allowed to do any substitutions
(because c¢gyp = 00), the optimal alignment of S and T finds the longest common
subsequence between them and removes everything else. For example, trans-
forming S = cab to abc costs two, namely inserting and deleting the unmatched
c. The length of S minus half this cost gives the length of the LIS.

What are the implications of this reduction? The reduction takes O(nlogn)
time because of the cost of sorting. Because edit distance takes time O(|S|-|T),
this gives a quadratic algorithm to find the longest increasing subsequence of
S. In fact, there exists a faster O(nlogn) algorithm for LIS using clever data
structures, while edit distance is known to be quadratic in the worst case. Hence,
our reduction gives us a simple but not optimal polynomial-time algorithm.

11.2.3 Least Common Multiple

The least common multiple (lem) and greatest common divisor (ged) problems
arise often in working with integers. We say b divides a (written b | a) if there
exists an integer d such that a = bd. Then:
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Problem: Least Common Multiple (lem)

Input: Two positive integers x and y.

Output: Return the smallest positive integer m such that m is a multiple of z
and also a multiple of y.

Problem: Greatest Common Divisor (ged)
Input: Two positive integers x and y.
Output: Return the largest integer d such that d divides both = and y.

For example, lem(24,36) = 72 and ged(24,36) = 12. Both problems can
be solved easily after reducing = and y to their prime factorizations, but no
efficient algorithm is known for factoring integers (see Section 16.8 (page 490)).
Fortunately, Euclid’s algorithm gives an efficient way to solve greatest common
divisor without factoring. It is a recursive algorithm that rests on two observa-
tions. First,

if (b | a), then ged(a,b) = b.

This should be pretty clear. if b divides a, then a = bk for some integer k, and
thus ged(bk,b) = b. Second,

If @ = bt + r for integers ¢t and r, then gcd(a,b) = ged(b,r).

Then, for a > b, Euclid’s algorithm repeatedly replaces (a,b) by (b, a mod b)
until b = 0. Its worst-case running time is O(logb).

Since z - y is a multiple of both x and y, lem(z,y) < xy. The only way that
there can be a smaller common multiple is if there is some non-trivial factor
shared between = and y. This observation, coupled with Euclid’s algorithm,
provides an efficient way to compute least common multiple, namely:

LeastCommonMultiple(z,y)
Return (zy/ged(z,y)).

This reduction gives us a nice way to reuse Euclid’s efforts for lem.

11.2.4 Convex Hull (*)

My final example of a reduction from an “easy” problem (meaning one that
can be solved in polynomial time) involves finding convex hulls of point sets.
A polygon is convex if the straight line segment drawn between any two points
inside the polygon P lies completely within the polygon. This is the case when
P contains no notches or concavities, so convex polygons are nicely shaped.
The convex hull provides a very useful way to provide structure to a point set.
Applications are presented in Section 20.2 (page 626).

Problem: Convex Hull
Input: A set S of n points in the plane.
Output: Find the smallest convex polygon containing all the points of S.
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Figure 11.1: Reducing sorting to convex hull by mapping points to a parabola

I will now show how to transform an instance of sorting (say {13,5,11,17})
to an instance of the convex hull problem. This means we must translate each
number to a point in the plane. We do so by mapping  to (x,22). Why? This
maps each integer to a point on the parabola y = 22, as shown in Figure 11.1.
Since the region above this parabola is convex, every point must be on the convex
hull. Furthermore, since neighboring points on the convex hull have neighboring
x values, the convex hull returns the points sorted by the z-coordinate—that is,
the original numbers. Creating and reading off these points takes O(n) time:

Sort(.5)
For each i € S, create point (i,i?).
Call subroutine convex-hull on this point set.
From the left-most point in the hull,
read off the points from left to right.

What does this mean? Recall the sorting lower bound of Q(nlogn). If we
could compute convex hull in better than nlogn, this reduction would imply
that we could sort faster than 2(nlogn), which violates our lower bound. Thus,
convex hull must take ©(nlogn) as welll Observe that any O(nlogn) convex hull
algorithm also gives us a complicated but correct O(nlogn) sorting algorithm
when coupled with this reduction.

11.3 Elementary Hardness Reductions

The reductions in Section 11.2 (page 358) demonstrate transformations between
pairs of problems for which efficient algorithms exist. However, we are mainly
concerned with using reductions to prove hardness, by showing that Bo-billy is
at least as hard as Bandersnatch.

For now, I want you to trust me when I say that Hamiltonian cycle and
vertex cover are hard problems. The entire picture (presented in Figure 11.2)
will become clear by the end of the chapter.
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Figure 11.2: A portion of the reduction tree for NP-complete problems. Blue
lines denote the reductions presented in this chapter.

11.3.1 Hamiltonian Cycle

The Hamiltonian cycle problem is one of the most famous in graph theory. It
seeks a tour that visits each vertex of a given graph exactly once. Hamiltonian
cycle has a long history and many applications, as discussed in Section 19.5.
Formally, it is defined as:

Problem: Hamiltonian Cycle

Input: An unweighted graph G.

Output: Does there exist a simple tour that visits each vertex of G without
repetition?

Hamiltonian cycle has some obvious similarity to the traveling salesman
problem. Both problems seek a tour that visits each vertex exactly once. There
are also differences between the two problems. TSP works on weighted graphs,
while Hamiltonian cycle works on unweighted graphs. The following reduction
from Hamiltonian cycle to traveling salesman shows that the similarities are
greater than the differences:

HamiltonianCycle(G = (V, E))
Construct a complete weighted graph G’ = (V’, E’) where V' = V.
n=|V|
fori=1ton do
for j =1tondo
if (i,7) € E then w(i,j) = 1 else w(i,j) = 2
Return the answer to Traveling-Salesman-Decision-Problem(G’, n).
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Figure 11.3: Graphs with (left) and without (right) a Hamiltonian cycle.

The actual reduction is quite simple, with the translation from unweighted
to weighted graph designed to ensure that the answers of the two problems will
be identical. If the graph G has a Hamiltonian cycle (v1,...,v,), then this very
same tour will correspond to n edges in E’ each of weight 1: this defines a TSP
tour in G’ of weight exactly n. If G does not have a Hamiltonian cycle, then
every tour in G/ must contain at least one weight 2 edge, so there cannot be a
TSP tour of weight n.

This reduction is truth preserving and fast, running in ©(n?) time. A fast
algorithm for TSP would imply a fast algorithm for Hamiltonian cycle, while a
hardness proof for Hamiltonian cycle would imply that TSP is hard. Since the
latter is the case, this reduction shows that TSP is hard, at least as hard as
Hamiltonian cycle.

11.3.2 Independent Set and Vertex Cover

The vertex cover problem, discussed more thoroughly in Section 19.3 (page 591),
asks for a small set of vertices that touch every edge in a graph. More formally:

Problem: Vertex Cover

Input: A graph G = (V, E) and integer k < |V].

Output: Is there a subset S of at most k vertices such that every e € E contains
at least one vertex in S7

It is trivial to find a vertex cover of a graph: consider the cover that consists
of all the vertices. More tricky is to cover the edges using as small a set of
vertices as possible. For the graph in Figure 11.4, four of the eight vertices are
sufficient to cover.

A set of vertices S of graph G is independent if there are no edges (z,v)
where both = € S and y € S. This means there are no edges between any two
vertices in an independent set. Again, finding an independent set is trivial: just
take any single vertex. As discussed in Section 19.2 (page 589), independent
set arises in facility location problems. The maximum independent set decision
problem is defined:

Problem: Independent Set
Input: A graph G and integer k < |V].
Output: Does there exist a set of k independent vertices in G?7



364 CHAPTER 11. NP-COMPLETENESS

Figure 11.4: Red vertices form a vertex cover of GG, so the blue vertices must
define an independent set.

Both vertex cover and independent set are problems that revolve around
finding special subsets of vertices: the first with representatives of every edge,
the second with no edges. If S is a vertex cover of G, then the remaining vertices
V — S must form an independent set, for if there was an edge (z,y) that had
both vertices in V' — S, then S could not have been a vertex cover. This gives
us a reduction between the two problems:

VertexCover (G, k)
G'=G
K o=V|—k
Return the answer to IndependentSet(G’, k')

Again, a simple reduction shows that one problem is at least as hard as the
other. Notice how translation occurs without any knowledge of the answer: we
transform the input, not the solution. This reduction shows that the hardness
of vertex cover implies that independent set must also be hard. It is easy to
reverse the roles of the two problems in this particular reduction, thus proving
that the two problems are equally hard.

Stop and Think: Hardness of General Movie Scheduling

Problem: Recall the movie scheduling problem, discussed in Section 1.2 (page
8). There, each possible movie project came with a single time interval during
which filming took place. We sought the largest possible subset of movie projects
such that no two conflicting projects (meaning both requiring the actor at the
same time) were selected.

The general problem allows movie projects to have discontinuous schedules.
For example, Project A running both January—March and May—June does not
intersect Project B running in April and August, but does collide with Project
C running from June to July.

Prove that the general movie scheduling problem is NP-complete, with a
reduction from independent set.
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Figure 11.5: Reduction from independent set to generalized movie scheduling,
with numbered vertices and lettered edges.

Problem: General Movie Scheduling Decision Problem

Input: A set I ={I,...,I,} of n sets of intervals on the line, integer k.
Output: Can a subset of at least & mutually non-overlapping interval sets be
selected from 17

Solution: To prove a problem hard, we first need to establish which is Ban-
dersnatch and which is Bo-billy. Here we need to show how to translate all
independent set instances into instances of general movie scheduling—meaning
sets of disjoint line intervals. Thus, independent set is Bandersnatch and general
movie scheduling is Bo-billy.

What is the correspondence between the two problems? Both problems
involve selecting the largest subsets possible—of vertices and movies, respec-
tively. This suggests we must translate vertices into movies. Furthermore, both
require the selected elements not to interfere, by sharing an edge or overlapping
an interval, respectively.

My construction is as follows. Create an interval on the line for each of the
m edges of the graph. The movie associated with each vertex will contain the
intervals for the edges adjacent with it, as shown in Figure 11.5.

IndependentSet(G, k)
I=19
For the ith edge (z,y), 1 <i<m
Add interval [i,7 4 0.5] to movie «’s interval set I, in T
Add interval [z,7 + 0.5] to movie y’s interval set I, in [
Return the answer to GeneralMovieScheduling(7, k)

Each pair of vertices sharing an edge (forbidden to be in an independent
set) defines a pair of movies sharing a time interval (forbidden to be in the
actor’s schedule). Thus, the largest satisfying subsets for both problems are the
same, and a fast algorithm for solving general movie scheduling gives us a fast
algorithm for solving independent set. Thus, general movie scheduling must be
at least as hard as independent set, and hence NP-complete. ]
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Figure 11.6: A small graph with a four-vertex clique (left), with the corre-
sponding independent set in black forming a two-vertex clique in the graph’s
complement (right).

11.3.3 Clique

A social clique is a group of mutual friends who all hang around together.
Everyone knows everybody. A graph-theoretic clique is a complete subgraph,
where each vertex pair has an edge between them. Cliques are the densest
possible subgraphs:

Problem: Maximum Clique

Input: A graph G = (V, E) and integer k < |V].

Output: Does the graph contain a clique of k vertices, meaning is there a subset
of vertices S where |S| = k such that every pair of vertices in S defines an edge

of G7

The graph in Figure 11.6 contains a clique of four blue vertices. Within the
friendship graph, we would expect to see large cliques corresponding to families,
workplaces, neighborhoods, religious organizations, and schools. Applications
of clique are further discussed in Section 19.1 (page 586).

In the independent set problem, we looked for a subset S with no edges
between two vertices of S. This contrasts with clique, where we insist that there
always be an edge between two vertices. A reduction between these problems
follows by reversing the roles of edges and non-edges—an operation known as
complementing the graph:

IndependentSet(G, k)
Construct a graph G’ = (V' E’) where V' =V, and
For all (4,7) € E, add (4,j) to E’
Return Clique(G’, k)

These last two reductions provide a chain linking three different problems
together. The hardness of clique is implied by the hardness of independent set,
which is implied by the hardness of vertex cover. By constructing reductions
in a chain, we link together pairs of problems in implications of hardness. Our
work is complete once all these chains begin with a single “Dwayne Johnson”
problem that is accepted as hard. Satisfiability is the problem that will serve
as the first link in this chain.
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11.4 Satisfiability

To demonstrate the hardness of problems by using reductions, we must start
from a single problem that is absolutely, certifiably, undeniably hard to compute.
The mother of all NP-complete problems is a logic problem named satisfiability:

Problem: Satisfiability (SAT)

Input: A set of Boolean variables V' and a set of logic clauses C' over V.
Output: Does there exist a satisfying truth assignment for C—in other words,
a way to set each of the variables {vy,...,v,} either true or false so that every
clause contains at least one true literal?

This can be made clear with two examples. Consider C' = {{v,72}, {71, v2}}
over the Boolean variables V' = {vy,v2}. We use 7; to denote the complement
of the variable v;, because v; means “not v;.” We get credit for satisfying a
particular clause containing v; if v; = true, or a clause containing v; if v; = false.
Therefore, satisfying a particular set of clauses involves making a series of n
true or false decisions, trying to find the right truth assignment to satisfy all
of them. The example clause set C = {{v1,02},{v1,v2}} corresponds to the
logical expression

(Ul V 1_)2) A (171 vV 1)2)

and can be satisfied either by setting v; = vo = true or vy = vy = false.

However, consider the set of clauses {{vi,va}, {v1,72}, {v1}}. Here there
can be no satisfying assignment, because v, must be false to satisfy the third
clause, which means that vy must be false to satisfy the second clause, which
then leaves the first clause unsatisfiable. Although you try, and you try, and
you try, you can’t get no satisfaction.

For a combination of social and technical reasons, it is well accepted that
satisfiability is a hard problem; one for which no worst-case polynomial-time
algorithm exists. Literally every top-notch algorithm expert in the world (and
countless lesser lights) has directly or indirectly tried to come up with a fast
algorithm to test whether any given set of clauses is satisfiable. All have failed.
Furthermore, many strange and impossible-to-believe things in the field of com-
putational complexity have been shown to be true if there exists a fast satisfia-
bility algorithm. Proving something is as hard as satisfiability means that it is
hard. See Section 17.10 (page 537) for more on the satisfiability problem and
its applications.

11.4.1 3-Satisfiability

Satisfiability’s role as the first NP-complete problem implies that the problem
is hard to solve in the worst case. But certain special-case instances of the
problem are not necessarily so tough. Suppose that each clause contains exactly
one literal, say {v;} or {0;}. There is only one way to set the literal so as to
satisfy such a clause: clearly v; had better be set true and v; set false to have
any hope of satisfying the full set of clauses. Only when we have two clauses
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that directly contradict each other, such as C' = {{v1},{71}}, will the set not
be satisfiable.

Since it is so easy to determine whether clause sets with exactly one literal
per clause are satisfiable, we are interested in slightly larger classes. How many
literals per clause do you need to turn the problem from polynomial to hard?
This transition occurs when each clause contains three literals, that is,

Problem: 3-Satisfiability (3-SAT)

Input: A collection of clauses C' where each clause contains exactly 3 literals,
over a set of Boolean variables V.

Output: Is there a truth assignment to V' such that each clause is satisfied?

Since 3-SAT is a restricted case of satisfiability, the hardness of 3-SAT would
imply that general satisfiability is hard. The converse isn’t true, since the hard-
ness of general satisfiability could conceivably depend upon having long clauses.
But we can show the hardness of 3-SAT using a reduction that translates every
instance of satisfiability into an instance of 3-SAT without changing whether it
is satisfiable.

This reduction transforms each clause independently based on its length, by
adding new clauses and Boolean variables along the way. Suppose clause Cj
contained k literals:

o k=1, say C; = {z1} — We create two new variables v, vs and four new
3-literal clauses: {vy,va, 21}, {v1,T2, 21}, {U1, v2, 21}, {1,702, 21}. Observe
that the only way that all four of these clauses can be simultaneously sat-
isfied is if z; = true, which means the original C; will have been satisfied.

o k=2 say C; = {z1,22} — We create one new variable v; and two new
clauses: {v1, 21,22}, {U1,21,22}. Again, the only way to satisfy both of
these clauses is to have at least one of z; and zy be true, thus satisfying
C;.

o k=3, say C; = {z1, 22,23} — We copy C; into the 3-SAT instance un-
changed: {z1, 22, 23}.

o k> 3,say C; = {z1, 22, ..., 2 } — Here we create k—3 new variables and k—2
new clauses in a chain, where Ci,l = {2’1, 22,@,'71}, Ci,j = {'Ui,j—la Zj415 @@j}
for 2 <j<k—3,and C; —2 = {v; k3, Zk—1, 2 }. This is best illustrated
with an example. The clause

Ci = {21, 22, 23, 24, %5, %6 }

gets transformed into the following set of four 3-literal clauses with three
new Boolean variables: v; 1, v; 2, and v; 3:

{{z1, 22,051}, {vi1, 23, Vi 2}, {vij2, 24, Vi 3}, {vi3, 25, 26 } }

The most complicated case is that of the large clauses. If none of the original
literals in C; are true, then there are not enough new free variables to be able
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to satisfy all the new subclauses. You can satisfy C;; by setting v; ; = false,
but this forces v; o = false, and so on until finally C;j_2 cannot be satisfied.
However, if any single literal z; = true, then we have & — 3 free variables and
k — 3 remaining 3-clauses, so we can satisfy all of them.

This transform takes O(n+c) time if there were ¢ clauses and n total literals
in the SAT instance. Since any solution to the original SAT problem instance
also satisfies the 3-SAT instance we have constructed, and vice versa, the trans-
formed problem is equivalent to the original.

Note that a slight modification to this construction would serve to prove
that 4-SAT, 5-SAT, or any (k > 3)-SAT is also NP-complete. However, this
construction breaks down if we try to use it for 2-SAT, since there is no way to
stuff anything into the chain of clauses. It turns out that a breadth-first search
on an appropriate graph can be used to give a linear-time algorithm for 2-SAT,
as discussed in Section 17.10 (page 537).

11.5 Creative Reductions from SAT

Since both satisfiability and 3-SAT are known to be hard, we can use either
of them in future reductions. Usually 3-SAT is the better choice, because it
is simpler to work with. What follows are a pair of more complicated reduc-
tions, designed to serve as examples and also increase our repertoire of known
hard problems. Many reductions are quite intricate, because we are essentially
programming one problem in the language of a significantly different problem.

One perpetual point of confusion is getting the direction of the reduction
right. Recall that we must transform any instance of a known NP-complete
problem (Bandersnatch) into an instance of the problem we are really interested
in (Bo-billy). If we perform the reduction the other way, all we get is a slow way
to solve the problem of interest, by using a subroutine that takes exponential
time. This always is confusing at first, because it seems backwards. Make sure
you understand the direction of reduction now, and think back to this whenever
you get confused.

11.5.1 Vertex Cover

Algorithmic graph theory proves to be a fertile ground for hard problems. The
prototypical NP-complete graph problem is vertex cover, previously defined in
Section 11.3.2 (page 363) as follows:

Problem: Vertex Cover

Input: A graph G = (V, E) and integer k < |V].

Output: Is there a subset S of at most k vertices such that every e € E has at
least one vertex in S?

Demonstrating the hardness of vertex cover proves more difficult than the
previous reductions we have seen, because the structure of the two relevant
problems seems very different. A reduction from 3-SAT to vertex cover must
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Figure 11.7: Reducing 3-SAT instance {{v1, U3, U4 }, {01, v2, U4} } to vertex cover
(left). The red vertices (on right) define a minimum vertex cover, and hence the
red variable vertices on top define a satisfying truth assignment.

construct a graph G and bound k from the variables and clauses of the satisfi-
ability instance.

Here is a way to do it. First, we translate the variables of the 3-SAT problem.
For each Boolean variable v;, we create two vertices v; and ©; connected by an
edge. At least n of these 2n vertices will be needed just to cover these edges,
because we need at least one vertex per pair.

Second, we translate the clauses of the 3-SAT problem. For each of the ¢
clauses, we create three new vertices: one for each literal in the clause. These
three vertices will be connected so as to form a triangle for each clause. At least
two vertices per triangle must be included in any vertex cover of these triangles,
for a total of 2¢ cover vertices.

Finally, we will connect these two sets of components together. Each literal
in a vertex “gadget” is connected to vertices in the clause gadgets (triangles)
that share the given literal. From a 3-SAT instance with n variables and ¢
clauses, this constructs a graph with 2n + 3¢ vertices. The complete reduction
for the 3-SAT problem {{vy, 03,94}, {01, v2,04}} is shown in Figure 11.7.

This graph has been very carefully designed to have a vertex cover of size
n—+2c iff the original expression is satisfiable. By the earlier analysis, any vertex
cover must contain at least n+2c vertices. To show that our reduction is correct,
we must demonstrate that:

o Fuvery satisfying truth assignment gives a vertex cover of size n + 2¢ —
Given a satisfying truth assignment for the clauses, select the n vertices
from the vertex gadgets that correspond to true literals to be members of
the vertex cover. Since this defines a satisfying truth assignment, a true
literal from each clause must cover at least one of the three cross edges
connecting each triangle vertex to a vertex gadget. Therefore, by selecting
the other two vertices of each clause triangle, we also pick up all remaining
cross edges.

e FBuvery vertex cover of size n + 2¢ gives a satisfying truth assignment — In
any vertex cover C' of this size, exactly n of the vertices must belong to the
vertex gadgets. Let these first stage vertices define the truth assignment,
with the remaining 2¢ cover vertices distributed at two per clause-gadget
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for otherwise a clause-gadget edge would go uncovered. These clause-
gadget vertices can cover only two of the three connecting edges per clause.
Therefore, if C' gives a vertex cover, at least one connecting edge per clause
must be covered by first-stage vertices, meaning that the corresponding
truth assignment satisfies all clauses.

This proof of the hardness of vertex cover, chained with the clique and
independent set reductions of Section 11.3.2 (page 363), gives us a library of
hard graph problems that we can use to make future hardness proofs easier.

Take-Home Lesson: A small set of NP-complete problems (3-SAT, vertex
cover, integer partition, and Hamiltonian cycle) suffice to prove the hardness
of most other hard problems.

11.5.2 Integer Programming

As discussed in Section 16.6 (page 482), integer programming is a fundamental
combinatorial optimization problem. It is best thought of as linear program-
ming, with the variables restricted to take only integer (instead of real) values.

Problem: Integer Programming (IP)

Input: A set of integer variables V', a set of linear inequalities over V', a linear
maximization function f(V'), and an integer B.

Output: Does there exist an assignment of integers to V' such that all inequalities
are true and f(V) > B?

Consider the following two examples. Suppose
‘/1 Z 17 V2 Z 0

i+ <3
F(V):2Vh, B=3

A solution to this would be V4 =1, V5 = 2. Note that this respects integrality,
and yields an objective value f(V) =4 > B. Not all problems have realizable
solutions, however. For the following problem:

Vi+V2<3
F(V):2Ve, B=5

the maximum possible value of f(V') given the constraints is 2 x 2 = 4, so there
can be no solution to the associated decision problem.

We show that integer programming is hard using a reduction from general
satisfiability. 3-SAT generally makes reductions easier, and would work equally
as well here—in an identical manner.



372 CHAPTER 11. NP-COMPLETENESS

In which direction must the reduction go? We want to prove integer program-
ming is hard, and know that satisfiability is hard. If we could solve satisfiability
using integer programming and integer programming were easy, this would mean
that satisfiability would be easy. Now the direction should be clear: we must
translate satisfiability (Bandersnatch) into integer programming (Bo-billy).

What should the translation look like? Every satisfiability instance contains
Boolean (true/false) variables and clauses. Every integer programming instance
contains integer variables and constraints. A reasonable idea is to make the
integer variables correspond to Boolean variables and use constraints to serve
the same role as the clauses do in the original problem.

Our translated integer programming problem will have twice as many vari-
ables as the SAT instance—one for each Boolean variable and one for its com-
plement. For each variable v; in the satisfiability problem, we add the following
constraints:

e We restrict each integer programming variable V; to values of either 0 or
1, by adding constraints 0 < V; < 1 and 0 < V; < 1. Coupled with
integrality, they correspond to values of true and false.

e We ensure that exactly one of the two integer programming variables
associated with a given SAT variable is true, by adding constraints so
that 1< Vi +V; <1

For each clause C; = {z1,..., 2}, construct the constraint
Zi+...+2Z,>1

To satisfy this constraint, at least one literal per clause must be set to 1, thus
corresponding to a true literal. Satisfying this constraint is therefore equivalent
to satisfying the clause.

The maximization function and bound prove relatively unimportant here,
because we have already encoded the entire satisfiability instance. By using
f(V)="V; and B = 0, we ensure that they will not interfere with any variable
assignment satisfying all the inequalities. Clearly, this reduction can be done
in polynomial time. To establish that this reduction preserves the answer, we
must verify two things:

o Fvery SAT solution gives a solution to the IP problem — In any SAT
solution, a true literal corresponds to a 1 in the integer program, since the
clause is satisfied. Therefore, the sum in each clause inequality is > 1.

e FEvery IP solution gives a solution to the original SAT problem — All vari-
ables must be set to either 0 or 1 in any solution to this integer program-
ming instance. If V; = 1, then set literal z; = true. If V; = 0, then set
literal z; = false. This is a legal assignment that satisfies all the clauses.

This reduction works both ways, so integer programming must be hard.
Notice the following properties, which hold true in general for NP-completeness
proofs:
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e This reduction preserved the structure of the problem. It did not solve
the problem, just put it into a different format.

e The possible IP instances resulting from this transformation represent only
a small subset of all possible IP instances. But because the instances in
this small subset are hard, the more general problem is obviously hard.

e The transformation captures the essence of why IP is hard. It has noth-
ing to do with big coefficients or large ranges on the variables, because
restricting them all to 0/1 is enough. It has nothing to do with having in-
equalities having large numbers of variables. Integer programming is hard
because satisfying a large set of constraints is hard. A careful study of the
properties needed for a reduction can tell us a lot about the problem.

11.6 The Art of Proving Hardness

Proving that problems are hard is a skill. But once you get the hang of it,
reductions can be surprisingly straightforward and pleasurable to do. Indeed,
the dirty little secret of NP-completeness proofs is that they are usually easier
to create than explain, in much the same way that it can be easier to rewrite
old code than to understand and modify it.

It takes experience to judge which problems are likely to be hard. The
quickest way to gain this experience is through careful study of the catalog.
Slightly changing the wording of a problem can make the difference between it
being polynomial or NP-complete. Finding the shortest path in a graph is easy,
but finding the longest path in a graph is hard. Constructing a tour that visits
all the edges once in a graph is easy (Eulerian cycle), but constructing a tour
that visits all the vertices once is hard (Hamiltonian cycle).

The first place to look when you suspect a problem might be NP-complete is
Garey and Johnson’s book Computers and Intractability [GJ79], which contains
a list of several hundred problems known to be NP-complete. Likely one of these
is the problem you are interested in.

Otherwise I offer the following advice to those seeking to prove the hardness
of a given problem:

e Make your source problem as simple (meaning restricted) as possible —
Never try to use the general traveling salesman problem (T'SP) as a source
problem. Better, use Hamiltonian cycle: TSP where all the weights are
restricted 1 or co. Even better, use Hamiltonian path instead of cycle,
so you never have to worry about closing up the cycle. Best of all, use
Hamiltonian path on directed planar graphs where each vertex has total
degree 3. All of these problems are equally hard, but the more you can
restrict the problem that you are translating from, the less work your
reduction has to do.

As another example, never try to use full satisfiability to prove hardness.
Start with 3-satisfiability. In fact, you don’t even have to use full 3-
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satisfiability. Instead, you can use planar 3-satisfiability, where there must
exist a way to draw the clauses as a graph in the plane such that you can
connect all instances of the same literal together without edges crossing.
This property tends to be useful in proving the intractability of geometric
problems. All these variants are equally hard, and hence NP-completeness
reductions using any of them are equally convincing.

Make your target problem as hard as possible — Don’t be afraid to add
extra constraints or freedoms to make your target problem more general
and therefore harder. Perhaps your undirected graph problem can be
generalized into a directed graph problem, and can hence only be easier
to prove hard. After you have a proof of hardness for the harder problem,
you can then go back and try to simplify the target.

Select the right source problem for the right reason — Selecting the right
source problem makes a big difference in how difficult it is to prove hard-
ness. This is the first and easiest place to go wrong, although theoretically
any NP-complete problem works as well as any other. When trying to
prove that a problem is hard, some people fish around through lists of
dozens of problems, looking for the best fit. These people are amateurs:
odds are they will never recognize the problem they are looking for when
they see it.

I use four (and only four) problems as candidates for my hard source
problem. Limiting them to four means that I can know a lot about each
one, like which variants of the problems are hard and which are not. My
favorite source problems are:

— 3-SAT: The old reliable. When none of the three problems below
seem appropriate, I go back to the original source.

— Integer partition: This is the one and only choice for problems whose
hardness seems to require using large numbers.

— Vertex cover: This is the answer for any graph problem whose hard-
ness depends upon selection. Chromatic number, clique, and inde-
pendent set all involve trying to select the right subset of vertices or
edges.

— Hamiltonian path: This is my choice for any graph problem whose
hardness depends upon ordering. If you are trying to route or sched-
ule something, Hamiltonian path is likely your lever into the problem.

Amplify the penalties for making the undesired selection — Many people are
too timid in their thinking about hardness proofs. You want to translate
one problem into another, while keeping the problems as close to their
original identities as possible. The easiest way to do this is by being bold
with your penalties, to punish for deviating from your intended solution.
Your thinking should be, “if you select this element, then you must pick
up this huge set that blocks you from finding an optimal solution.” The
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sharper the consequences for doing what is undesired, the easier it is to
prove the equivalence of the results.

o Think strategically at a high level, then build gadgets to enforce tactics —
You should be asking yourself questions, like:

1. How can I force that A or B is chosen but not both?
2. How can I force that A is taken before B?
3. How can I clean up the things I did not select?

Once you know what you want your gadgets to do, you can then worry
about how to actually craft them.

o When you get stuck, switch between looking for an algorithm and a Te-
duction — Sometimes the reason you cannot prove hardness is that there
exists an efficient algorithm to solve your problem! Techniques such as
dynamic programming or reducing problems to powerful but polynomial-
time graph problems like matching or network flow can yield surprising
algorithms. When you can’t prove hardness, it pays to stop and try to
find an algorithm—just to keep yourself honest.

11.7 War Story: Hard Against the Clock

My class’s attention span was running down like sand through an hourglass.
Eyes were starting to glaze, even in the front row. Breathing had become soft
and regular in the middle of the room. Heads were tilted back and eyes shut in
the back.

There were twenty minutes left to go in my lecture on NP-completeness, and
I couldn’t really blame them. They had already seen several reductions like the
ones presented here. But NP-completeness reductions are often easier to create
than to explain. They had to watch one being created in order to appreciate
how things worked.

I reached for my trusty copy of Garey and Johnson’s book [GJ79], which
contains a list of over three hundred different known NP-complete problems in
an appendix.

“Enough of this!” I announced loudly enough to startle those in the back
row. “NP-completeness proofs are sufficiently routine that we can construct
them on demand. I need a volunteer with a finger. Can anyone help me?”

A few students in the front held up their hands. A few students in the back
held up their fingers. I opted for one from the front row.

“Select a problem at random from the back of this book. I can prove the
hardness of any of these problems in the now seventeen minutes remaining in
this class. Stick your finger in and read me a problem.”

I had definitely gotten their attention. But I could have done that by offering
to juggle chain saws. Now I had to deliver results without cutting myself into
ribbons.
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The student picked out a problem. “OK, prove that Inequivalence of Pro-
grams with Assignments is hard,” she said.

“Huh? I've never heard of that problem before. What is it? Read me the
entire problem description so I can write it on the board.” The problem was as
follows:

Problem: Inequivalence of Programs with Assignments
Input: A finite set X of variables, two programs P; and Ps, each a sequence of
assignments of the form

xo + if (x1 = 22) then x3 else x4

where the x; are in X; and a value set V.

Output: Is there an initial assignment of a value from V to each variable in X
such that programs P; and P, yield different final values for some variable in
X7

I looked at my watch. Fifteen minutes to go. But everything was now on
the table. I was faced with a language problem. The input was two programs
with variables, and I had to test whether they always do the same thing.

“First things first. We need to select a source problem for our reduction. Do
we start with integer partition? 3-SAT? Vertex cover or Hamiltonian path?”

Since I had an audience, I tried thinking out loud. “Our target is not a
graph problem or a numerical problem, so let’s start thinking about the old
reliable: 3-SAT. There seem to be some similarities. 3-SAT has variables. This
thing has variables. To be more like 3-SAT, we could try limiting the variables
in this problem so they only take on Boolean values—V = {true, false}. Yes.
That seems convenient.”

My watch said fourteen minutes left. “So, class, which way does the reduc-
tion go? 3-SAT to program or program to 3-SAT?”

The front row correctly murmured, “3-SAT to program.”

“Right. So we have to translate our set of clauses into two programs. How
can we do that? We might consider trying to split the clauses into two sets
and write separate programs for each of them. But how do we split them?
I don’t see any natural way to do it, because eliminating any single clause
from the problem might suddenly make an unsatisfiable formula satisfiable, thus
completely changing the answer.

Instead, let’s try something else. We can translate all the clauses into one
program, and then let the second program be trivial. For example, the second
program might ignore the input and always output either only true or only false.
This sounds better. Much better.”

I was still talking out loud to myself, which wasn’t that unusual. But I had
people listening to me, which was.

“Now, how can we turn a set of clauses into a program? We want to know
whether the set of clauses can be satisfied, or in other words if there is an
assignment of the variables to make it true. Suppose we constructed a program
to evaluate whether Cy = {1, T2, 23} is satisfied.”
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It took me a few minutes of scratching before I found the right program to
simulate a clause. I assumed that I had access to constants for true and false:

Cy = if (z1 = true) then true else false
Cy = if (w9 = false) then true else C}
Cy = if (x3 = true) then true else C;

“Great. Now I have a way to evaluate the truth of each clause. I can do the
same thing at the end to evaluate whether all the clauses are satisfied:”

sat = if (Cy = true) then true else false
sat = if (Cy = true) then sat else false

sat = if (C, = true) then sat else false

Now the back of the classroom was getting excited. They were starting to
see a ray of hope that class would end on time.

“Great. So now we have a program that can evaluate to be true if and only
if there is a way to assign the variables to satisfy the set of clauses. We need a
second program to finish the job. What about sat = false? Yes, that is all we
need. Our language problem asks whether the two programs always output the
same thing, regardless of the possible variable assignments. If the clauses are
satisfiable, that means that there must be an assignment of the variables such
that the long program would output true. Testing whether the programs are
equivalent is exactly the same as asking if the clauses are satisfiable.”

I lifted my arms in triumph. “And so, the problem is neat, sweet, and
NP-complete.” T got the last word out just before the bell rang.

11.8 War Story: And Then I Failed

This exercise of picking a random NP-complete problem from Garey and John-
son’s book and proving hardness on demand was so much fun that I have re-
peated it each time I have taught the algorithms course. Sure enough, I got it
eight times in a row. But just as Joe DiMaggio’s 56-game hitting streak came
to an end, and Google will eventually have a losing quarter financially, the time
came for me to get my comeuppance.

The class had voted to see a reduction from the graph theory section of the
catalog, and a randomly selected student picked number 30. Problem GT30
turned out to be the following:

Problem: Uniconnected Subgraph

Input: A directed graph G = (V, A), positive integer k < |A|.

Output: TIs there a subset of arcs A’ C A with |A’| > k such that G’ = (V, 4")
has at most one directed path between any pair of vertices?

It took a while for me to grok this problem. An undirected version of this
would be finding a spanning tree, because that defines exactly one path between
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any pair of vertices. Adding even a single edge (x,y) to this tree would create
a cycle, meaning two distinct paths between = and y.

Any form of directed tree would also be uniconnected. But this problem asks
for the largest such subgraph. Consider a bipartite-DAG consisting of directed
edges (l;,7;) all going from a given set of “left” vertices to distinct “right”
vertices. No path in this graph consists of more than one edge, yet the graph
can contain Q(n?) edges.

“It is a selection problem,” I realized after grokking. After all, we had to
select the largest possible subset of arcs so that there were no pair of vertices with
multiple paths between them. This meant that vertex cover was the problem of
choice.

I worked through how the two problems stacked up. Both sought subsets,
although vertex cover wanted subsets of vertices and uniconnected subgraph
wanted subsets of edges. Vertex cover wanted the smallest possible subset, while
unidirected subgraph wanted the largest possible subset. My source problem
had undirected edges while my target had directed arcs, so somehow I would
have to add edge direction into the reduction.

I had to do something to direct the edges of the vertex cover graph. I could
try to replace each undirected edge (z,y) with a single arc, say from y to x. But
quite different directed graphs would result depending upon which direction I
selected. Finding the “right” orientation of edges might be a hard problem,
certainly too hard to use in the translation phase of the reduction.

I realized I could direct the edges so the resulting graph was a DAG. But
then, so what? DAGs certainly can have many different directed paths between
pairs of vertices.

Alternately, I could try to replace each undirected edge (x,y) with two arcs,
from x to y and y to x. Now there was no need to chose the right arcs for my
reduction, but the graph certainly got complicated. I couldn’t see how to force
things to prevent vertex pairs from having unwanted multiple paths between
them.

Meanwhile, the clock was running and I knew it. A sense of panic set in
during the last ten minutes of the class, and I realized I wasn’t going to get it
this time.

There is no feeling worse for a professor than botching up a lecture. You
stand up there flailing away, knowing (1) that the students don’t understand
what you are saying, but (2) they do understand that you also don’t understand
what you are saying. The bell rang and the students left the room with faces
either sympathetic or smirking.

I promised them a solution for the next class, but somehow I kept getting
stuck in the same place each time I thought about it. I even tried to cheat and
look up the proof in a journal. But the reference cited by Garey and Johnson
was a 30-year old unpublished technical report. It wasn’t on the web or in our
library.

I dreaded returning to give my next class, the last lecture of the semester.
But the night before class the answer came to me in a dream. “Split the edges,”
the voice said. I awoke with a start and looked at the clock. It was 3:00 AM.
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Figure 11.8: Reducing vertex cover to unidirected subgraph, by dividing edges
and adding a sink node.

I sat up in bed and scratched out the proof. Suppose I replace each undi-
rected edge (z,y) with a gadget consisting of a new central vertex v, with arcs
going from it to x and y, respectively. This is nice. Now, which vertices are
capable of having multiple paths between them? The new vertices have only
outgoing edges, so only they can serve as the source of multiple paths. The old
vertices have only incoming edges. There is at most one way to get from one of
the new source vertices to any of the original vertices of the vertex cover graph,
so these could not result in multiple paths.

But now add a sink node s with edges from all the original vertices. There
are exactly two paths from each new source vertex to this sink—one through
each of the two original vertices it is adjacent to. One of these has to be broken
to create a uniconnected subgraph. How could we break it? We could pick one
of these two vertices to disconnect from the sink by deleting either arc (z,s)
or (y,s) for new vertex v,,. We maximize the size of our subgraph by finding
the smallest number of arcs to delete. We must delete the outgoing arc from at
least one of the two vertices defining each original edge. But this is exactly the
same as finding the vertex cover in this graph! The reduction is illustrated in
Figure 11.8.

Presenting this proof in class provided some personal vindication, because it
validates the principles I teach for proving hardness. Observe that the reduction
really wasn’t that difficult after all: just split the edges and add a sink node.
NP-completeness reductions are often surprisingly simple once you look at them
the right way.

11.9 P vs. NP

The theory of NP-completeness rests on a foundation of rigorous but subtle
definitions from automata and formal language theory. This terminology is
typically confusing to (or misused by) beginners who lack a mastery of these
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foundations. These details are not really essential to the practical aspects of
designing and applying reductions. That said, the question “Is P=NP?” is
the most profound open problem in computer science, so any educated algorist
should have some idea what the stakes are.

11.9.1 Verification vs. Discovery

The primary issue in P vs. NP is whether verification is really an easier task
than initial discovery. Suppose that while taking an exam you “happen” to
notice the answer of the student next to you. Are you now better off? You
wouldn’t dare turn it in without checking, since an able student like you could
answer the question correctly if you spent enough time to solve it. The question
here is whether you really can verify the answer faster than you can find it from
scratch.

For the NP-complete decision problems we have studied here, the answer
seems obvious:

e Can you verify that a proposed TSP tour has weight of at most k in a
given graph? Sure. Just add up the weights of the edges on the tour and
show it is at most k. That is easier than finding the tour from scratch,
isn’t it?

e Can you verify that a given truth assignment represents a solution to a
given satisfiability problem? Sure. Just check each clause and make sure
it contains at least one true literal from the given truth assignment. That
is easier than finding the satisfying assignment from scratch, isn’t it?

e Can you verify that a given k-vertex subset S is a vertex cover of graph
G? Sure. Just traverse each edge (u,v) of G, and check that either u or v
is in S. That is easier than finding the vertex cover from scratch, isn’t it?

At first glance, this seems obvious. The given solutions can be verified
in linear time for all three of these problems, while no algorithm faster than
exponential brute-force search is known for any of them. The catch is that we
have no rigorous lower bound proof that prevents the existence of fast algorithms
to solve these problems. Perhaps there are in fact polynomial algorithms (say
O(n®")) that we have just been too blind to see yet.

11.9.2 The Classes P and NP

Every well-defined algorithmic problem must have an asymptotically fastest-
possible algorithm solving it, as measured in the Big Oh, worst-case sense of
fastest.

We can think of the class P as an exclusive club for algorithmic problems
where there exists a polynomial-time algorithm to solve it from scratch. Shortest
path, minimum spanning tree, and the original movie scheduling problem are
all members in good standing of this class P. The P stands for polynomial time.



11.9. P VS. NP 381

A less exclusive club welcomes all the algorithmic problems whose solutions
can be verified in polynomial time. As shown above, this club contains travel-
ing salesman, satisfiability, and vertex cover, none of which currently have the
credentials to join P. However, all the members of P get a free pass into this
less exclusive club. If you can solve a decision problem from scratch in polyno-
mial time, you certainly can verify another solution to it that fast: just check
whether you agree on the yes—no answer.

We call this less-exclusive club NP. You can think of this as standing for Not
necessarily Polynomial time.!

The $1,000,000 question is whether there are problems in NP that are not
members of P. If no such problem exists, the classes must be the same and
P = NP. If even one such a problem exists, the two classes are different and
P # NP. The opinion of most algorists and complexity theorists is that P #
NP, meaning that some NP problems do not have polynomial-time algorithms,
but a much stronger proof than “I can’t find a fast enough algorithm” is needed.

11.9.3 Why Satisfiability is Hard

An enormous tree of NP-completeness reductions has been established that
entirely rests on the hardness of satisfiability. The portion of this tree demon-
strated and/or stated in this chapter is shown in Figure 11.2.

This may seem like a fragile foundation. What would it mean if someone
did find a polynomial-time algorithm for satisfiability? A fast algorithm for any
given NP-complete problem (say traveling salesman) implies fast algorithm for
all the problems on the path in the reduction tree between TSP and satisfia-
bility (Hamiltonian cycle, vertex cover, and 3-SAT). But a fast algorithm for
satisfiability doesn’t immediately yield us anything because the reduction path
from SAT to SAT is empty.

Fear not. There exists an extraordinary super-reduction called Cook’s the-
orem reducing all the problems in NP to satisfiability. Thus, if you prove that
satisfiability (or equivalently any single NP-complete problem) is in P, then all
other problems in NP follow and P = NP. Since essentially every problem
mentioned in this book is in NP, this would be an enormously powerful and
surprising result.

Cook’s theorem proves that satisfiability is as hard as any problem in NP.
Furthermore, it proves that every NP-complete problem is as hard as any other.
Any domino falling (meaning a polynomial-time algorithm to solve just one NP-
complete problem) knocks them all down. Our inability to find a fast algorithm
for any of these problems is a strong reason for believing that they are all truly
hard, meaning P # NP.

Hn fact, it stands for non-deterministic polynomial time. This is in the sense of non-
deterministic automata, if you happen to know about such things.
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11.9.4 NP-hard vs. NP-complete?

The final technicality we will discuss is the difference between a problem being
NP-hard and NP-complete. I tend to be somewhat loose with my terminology,
but there is a subtle (usually irrelevant) distinction between the two concepts.

We say that a problem is NP-hard if, like satisfiability, it is at least as hard as
any problem in NP. We say that a problem is NP-complete if it is NP-hard, and
also in NP itself. Because NP is such a large class of problems, most NP-hard
problems you encounter will actually be in NP and thus NP-complete. The
issue can always be settled by giving a (usually simple) verification strategy
for the problem. All the NP-hard problems encountered in this book are also
NP-complete.

That said, there are some problems that appear to be NP-hard yet are not
in NP. These problems might be even harder than NP-complete! Two-player
games such as chess provide examples of problems that are not in NP. Imagine
sitting down to play chess with some know-it-all who is playing white. He pushes
his king’s pawn up two squares to start the game, and announces “checkmate.”
The only obvious way to verify that he is right would be to construct the full
tree of all your possible moves with his irrefutable replies and demonstrate that
you, in fact, cannot win from the current position. This full tree will have a
number of nodes exponential in its height, which is the number of moves before
you lose playing your most spirited possible defense. Clearly this tree cannot
be constructed and analyzed in polynomial time, so the problem is not in NP.

Chapter Notes

The notion of NP-completeness was first developed by Cook [Coo71]. Satisfia-
bility really is a $1,000,000 problem, and the Clay Mathematics Institute has
offered such a prize to any person who resolves the P = NP question. See
http://www.claymath.org/ for more on the problem and the prize.

Karp [Kar72] showed the importance of Cook’s result by providing reduc-
tions from satisfiability to more than twenty important algorithmic problems.
I recommend Karp’s paper for its sheer beauty and economy—he condenses
each reduction to three line descriptions showing the problem equivalence. To-
gether, these provided the tools to resolve the complexity of literally hundreds
of important problems where no efficient algorithms were known.

The best introduction to the theory of NP-completeness remains Garey and
Johnson’s book Computers and Intractability [GJ79]. Tt introduces the general
theory, including an accessible proof of Cook’s theorem [Coo71] that satisfiabil-
ity is as hard as anything in NP. They also provide an essential reference catalog
of more than 300 NP-complete problems, which is a great resource for learn-
ing what is known about the most interesting hard problems. The reductions
claimed but omitted from this chapter can be found in Garey and Johnson, or
textbooks like Cormen et al. [CLRS09].

Factor Man [Ginl8] is an exciting novel about a man who discovers a polynomial-
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time algorithm for satisfiability, and must dodge government agents and assas-
sins for his troubles. I give it two thumbs up. The Golden Ticket [Forl3] is an
accessible tour of complexity theory, and the question of P = NP.

A few catalog problems exist in a limbo state where it is not yet known
whether the problem has a fast algorithm or is NP-complete. The most promi-
nent of these are graph isomorphism (see Section 19.9 (page 610)) and integer
factorization (see Section 16.8 (page 490)). That this limbo list is so short is
quite a tribute to the state-of-the-art in algorithm design, and the power of
the theory of NP-completeness. For almost every important problem we either
know a fast algorithm or have a good solid reason why one doesn’t exist.

For an alternative and inspiring view of NP-completeness, check out the
videos of Erik Demaine’s MIT course Algorithmic Lower Bounds: Fun with
Hardness Proofs at http://courses.csail.mit.edu/6.890/fall14/. The war
story problem on unidirected subgraph was originally proven hard in Mahesh-
wari [Mah76].

11.10 Exercises

Transformations and Satisfiability

11-1. /2] Give the 3-SAT formula that results from applying the reduction of satisfi-
ability to 3-SAT for the formula:

(xVyVEVwVuVDO)AEZVYVzVOVuV)A(xVIVZEVwVuVD)A(zVTY)

11-2. [3] Draw the graph that results from the reduction of 3-SAT to vertex cover for
the expression

(xVygV2)AEZTVYVZIA(ZTVyVz)A(xVyVT)

11-3. [3] Prove that 4-SAT is NP-hard.

11-4. [8] Stingy SAT is the following problem: given a set of clauses (each a disjunction
of literals) and an integer k, find a satisfying assignment in which at most k
variables are true, if such an assignment exists. Prove that stingy SAT is NP-
hard.

11-5. [8] The Double SAT problem asks whether a given satisfiability problem has
at least two different satisfying assignments. For example, the prob-
lem {{vi,v2},{v1,v2},{v1,02}} is satisfiable, but has only one solution (v; =
F,v; = T). In contrast, {{vi,v2},{v1,v2}} has exactly two solutions. Show
that Double-SAT is NP-hard.

11-6. [4] Suppose we are given a subroutine that can solve the traveling salesman
decision problem on page 357 in (say) linear time. Give an efficient algorithm
to find the actual TSP tour by making a polynomial number of calls to this
subroutine.

11-7. [7] Implement a SAT to 3-SAT reduction that translates satisfiability instances
into equivalent 3-SAT instances.
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11-8.

11-9.

Basic
11-10.

11-11.

11-12.

CHAPTER 11. NP-COMPLETENESS

[7] Design and implement a backtracking algorithm to test whether a set of
clause sets is satisfiable. What criteria can you use to prune this search?

[8] Implement the vertex cover to satisfiability reduction, and run the resulting
clauses through a satisfiability solver code. Does this seem like a practical way
to compute things?

Reductions

/4] An instance of the set cover problem consists of a set X of n elements, a
family F' of subsets of X, and an integer k. The question is, does there exist k
subsets from F' whose union is X7

For example, if X = {1,2,3,4} and F = {{1,2},{2,3},{4},{2,4}}, there
does not exist a solution for k = 2, but there does for k¥ = 3 (for example,
{1,2},{2,3}, {4}).

Prove that set cover is NP-hard with a reduction from vertex cover.

[4] The baseball card collector problem is as follows. Given packets Pi,..., Pm,
each of which contains a subset of this year’s baseball cards, is it possible to
collect all the year’s cards by buying < k packets?

For example, if the players are {Aaron, Mays, Ruth, Skiena} and the packets
are
{{Aaron, Mays},{Mays, Ruth}, {Skiena}, {Mays, Skiena}},

there does not exist a solution for k = 2, but there does for k = 3, such as

{Aaron, Mays}, {Mays, Ruth},{Skiena}

Prove that the baseball card collector problem is NP-hard using a reduction
from vertex cover.

[4] The low-degree spanning tree problem is as follows. Given a graph G and an
integer k, does GG contain a spanning tree such that all vertices in the tree have
degree at most k (obviously, only tree edges count towards the degree)? For
example, in the following graph, there is no spanning tree such that all vertices
have a degree at most three.

(a) Prove that the low-degree spanning tree problem is NP-hard with a reduc-
tion from Hamiltonian path.

(b) Now consider the high-degree spanning tree problem, which is as follows.
Given a graph G and an integer k, does GG contain a spanning tree whose
highest degree vertex is at least k7 In the previous example, there exists
a spanning tree with a highest degree of 7. Give an efficient algorithm to
solve the high-degree spanning tree problem, and an analysis of its time
complexity.
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11-13.

11-14.

11-15.

11-16.

11-17.

11-18.

11-19.

11-20.

11-21.

[5] In the minimum element set cover problem, we seek a set cover S C C of
a universal set U = {1,...,n} such that sum of the sizes of the subsets in S is
at most k. (a) Show that C' = {{1,2,3},{1,3,4},{2,3,4},{3,4,5}} has a cover
of size 6, but none of size 5 because of a repeated element. (b) Prove that this
problem is NP-hard. (Hint: set cover remains hard if all subsets are of the same
size.)

[3] The half-Hamiltonian cycle problem is, given a graph G with n vertices,
determine whether G has a simple cycle of length exactly |n/2], where the floor
function rounds its input down to the nearest integer. Prove that this problem
is NP-hard.

[5] The 3-phase power balance problem asks for a way to partition a set of n
positive integers into three sets A, B, or C such that >, a; = >, b = >, ¢i.
Prove that this problem is NP-hard using a reduction from integer partition or
subset sum (see Section 10.5 (page 329)).

[4] Show that the following problem is NP-hard:

Problem: Dense Subgraph
Input: A graph G, and integers k and y.
Output: Does G contain a subgraph of exactly k vertices and at least y edges?

[4] Show that the following problem is NP-hard:

Problem: Clique, No-clique
Input: An undirected graph G = (V, F) and an integer k.

Output: Does G contain both a clique of size k£ and an independent set of size
k?

[5] An Eulerian cycle is a tour that visits every edge in a graph exactly once.
An FEulerian subgraph is a subset of the edges and vertices of a graph that has
an Eulerian cycle. Prove that the problem of finding the number of edges in the
largest Eulerian subgraph of a graph is NP-hard. (Hint: the Hamiltonian circuit
problem is NP-hard even if each vertex in the graph is incident upon exactly
three edges.)

[5] Show that the following problem is NP-hard:

Problem: Maximum Common Subgraph

Input: Two graphs G1 = (V1, E1) and G2 = (V2, E2), and a budget b.

Output: Two sets of nodes S1 C V1 and S2 C Va whose deletion leaves at least
b nodes in each graph, and makes the two graphs identical.

[5] A strongly independent set is a subset of vertices S in a graph G such that for
any two vertices in S, there is no path of length two in GG. Prove that strongly
independent set is NP-hard.

[5] A kite is a graph on an even number of vertices, say 2n, in which n of the
vertices form a clique and the remaining n vertices are connected in a tail that
consists of a path joined to one of the vertices of the clique. Given a graph and
a goal g, the max kite problem asks for a subgraph that is a kite and contains
2g nodes. Prove that maz kite is NP-hard.
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Creative Reductions

11-22.

11-23.

11-24.

11-25.

11-26.

11-27.

11-28.

[5] Prove that the following problem is NP-hard:

Problem: Hitting Set
Input: A collection C' of subsets of a set S, positive integer k.

Output: Does S contain a subset S’ such that |S’| < k and each subset in C
contains at least one element from S’?

[5] Prove that the following problem is NP-hard:

Problem: Knapsack
Input: A set S of n items, such that the ith item has value v; and weight w;.
Two positive integers: weight limit W and value requirement V.

Output: Does there exist a subset S’ C S such that Y. o, w; < W and
Y e Vi > V7 (Hint: start from integer partition.)

i€S

[5] Prove that the following problem is NP-hard:

Problem: Hamiltonian Path
Input: A graph GG, and vertices s and t.

Output: Does G contain a path that starts from s, ends at ¢, and visits all vertices
without visiting any vertex more than once? (Hint: start from Hamiltonian
cycle.)

[5] Prove that the following problem is NP-hard:

Problem: Longest Path

Input: A graph G and positive integer k.

Output: Does G contain a path that visits at least k different vertices without
visiting any vertex more than once?

[6] Prove that the following problem is NP-hard:

Problem: Dominating Set

Input: A graph G = (V, E) and positive integer k.

Output: Ts there a subset V' C V such that |[V’| < k where for each vertex x € V
either x € V' or there exists an edge (z,y) € F such that y € V.

[7] Prove that the vertex cover problem (does there exist a subset .S of k vertices
in a graph G such that every edge in G is incident upon at least one vertex in
S7?) remains NP-hard even when all the vertices in the graph are restricted to
have even degrees.

[7] Prove that the following problem is NP-hard:

Problem: Set Packing
Input: A collection C' of subsets of a set S, positive integer k.

Output: Does C contain at least k disjoint subsets (i.e., such that no pair of
subsets has any elements in common)?
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11-29.

11-30.

[7] Prove that the following problem is NP-hard:

Problem: Feedback Vertex Set

Input: A directed graph G = (V, A) and positive integer k.

Output: Is there a subset V' C V such that |V’| < k, such that deleting the
vertices of V' from G leaves a DAG?

[8] Give a reduction from Sudoku to the vertex coloring problem in graphs.
Specifically, describe how to take any partially filled Sudoku board and construct
a graph that can be colored with nine colors iff the Sudoku board is solvable.

Algorithms for Special Cases

11-31.

11-32.

11-33.

[5] A Hamiltonian path P is a path that visits each vertex exactly once. The
problem of testing whether a graph G contains a Hamiltonian path is NP-
complete. There does not have to be an edge in G from the ending vertex
to the starting vertex of P, unlike in the Hamiltonian cycle problem.

Give an O(n + m)-time algorithm to test whether a directed acyclic graph G (a
DAG) contains a Hamiltonian path. (Hint: think about topological sorting and
DFS.)

[8] Consider the k-clique problem, which is the general clique problem restricted
to graphs in which every vertex has degree at most k. Prove that k-clique has
an efficient algorithm for any given k, meaning that k is a constant.

[8] The 2-SAT problem is, given a Boolean formula in 2-conjunctive normal form
(CNF), to decide whether the formula is satisfiable. 2-SAT is like 3-SAT, except
that each clause can have only two literals. For example, the following formula
is in 2-CNF":

(z1 Vx2) A (T2 Va3) A (z1 V T3)

Give a polynomial-time algorithm to solve 2-SAT.

P = NP?

11-34.

11-35.

[4] Show that the following problems are in NP:

e Does graph G have a simple path (i.e., with no vertex repeated) of length
k?

e Is integer n composite (i.e., not prime)?
e Does graph G have a vertex cover of size k?

[7] Until 2002, it was an open question whether the decision problem “Is integer
n a composite number, in other words, not prime?” could be computed in time
polynomial in the size of its input. Why doesn’t the following algorithm suffice
to prove it is in P, since it runs in O(n) time?

Primality Testing(n)
composite = false
fori:=2ton—1do

if (n mod ¢) = 0 then
composite = true
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LeetCode
11-1. https://leetcode.com/problems/target-sum/
11-2. https://leetcode.com/problems/word-break-ii/

11-3. https://leetcode.com/problems/number-of-squareful-arrays/

HackerRank

11-1. https://www.hackerrank.com/challenges/spies-revised
11-2. https://www.hackerrank.com/challenges/brick-tiling/
11-3. https://www.hackerrank.com/challenges/tbsp/

Programming Challenges

These programming challenge problems with robot judging are available at
https://onlinejudge.org:

11-1. “The Monocycle”—Chapter 12, problem 10047.

11-2. “Dog and Gopher”—Chapter 13, problem 111301.

11-3. “Chocolate Chip Cookies”—Chapter 13, problem 10136.

11-4. “Birthday Cake”—Chapter 13, problem 10167.

These are not particularly relevant to NP-completeness, but are added for
completeness.
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Chapter 12

Dealing with Hard
Problems

For the practical person, demonstrating that a problem is NP-complete is never
the end of the line. Presumably, there was a reason why you wanted to solve
it in the first place. That application won’t go away after you learn there is no
polynomial-time algorithm. You still seek a program that solves the problem
of interest. All you know is that you won’t find one that quickly solves the
problem to optimality in the worst case. There are still three possibilities:

o Algorithms fast in the average case — Examples of such algorithms include
backtracking algorithms with substantial pruning.

e Heuristics — Heuristic methods like simulated annealing or greedy ap-
proaches can be used to quickly find a solution, albeit with no guarantee
that it will be the best one.

o Approzimation algorithms — The theory of NP-completeness stipulates
that it is hard to get the ezact answer. With clever, problem-specific
heuristics, we can get provably close to the optimal answer on all possible
instances.

This chapter will investigate these possibilities deeper. I include a brief
introduction to quantum computing, an exciting technology that is shaking (but
not really breaking) the boundaries of what problems are efficiently computable.

12.1 Approximation Algorithms

Approximation algorithms produce solutions with a guarantee attached, namely
that the quality of the optimal solution is provably bounded by the quality
of your heuristic solution. Thus, no matter what your input instance is and
how lucky you are, such an approximation algorithm is destined to produce a
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Figure 12.1: Failing to pick the center vertex leads to a terrible vertex cover.

correct answer. Furthermore, provably good approximation algorithms are often
conceptually simple, fast, and easy to program.

One thing that is usually not clear, however, is how well the solution from
an approximation algorithm compares to what you might get from a heuristic
that gives you no guarantees. The answer may be worse, or it could be better.
Leaving your money in a bank savings account may guarantee you 3% interest
without risk. Still, you likely will do much better investing your money in stocks
than leaving it in the bank, even though performance is not guaranteed.

One way to get the best of approximation algorithms and unwashed heuris-
tics is to run both of them on the given problem instance, and pick the solution
giving the better result. This way, you will get a solution that comes with a
guarantee and a second chance to do even better. When it comes to heuristics
for hard problems, sometimes you can have it both ways.

12.2 Approximating Vertex Cover

Recall the vertex cover problem, where we seek a small subset S of the vertices
of a given graph G such that for every edge (z,y) in G, at least one of = or
y is in S. As we have seen, finding the minimum vertex cover of a graph is
NP-complete. However, a very simple procedure will always find a cover that is
at most twice as large as the optimal cover. It repeatedly selects an uncovered
edge, and picks both of its vertices for the cover:

VertexCover(G = (V, E))
While (E # 0) do:
Select an arbitrary edge (u,v) € E
Add both u and v to the vertex cover
Delete all edges from E that are incident to either u or v.

It should be apparent that this procedure always produces a vertex cover,
since each edge is deleted only after an incident vertex has been added to the
cover. More interesting is the claim that the best vertex cover must use at least
half as many vertices as this one. Why? Consider only the k edges selected
by the algorithm that constitute a matching in the graph. No two of these
matching edges can share a vertex, so any cover of just these k edges must
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Figure 12.2: A bad example for the greedy heuristic for vertex cover. The
optimal cover of this bipartite graph is the row of vertices on top, yet the
greedy heuristic will select the vertices from the bottom row from left to right.
This example can be enlarged to create an instance where the greedy solution
is O(logn) times larger than the minimum vertex cover.

include at least one vertex per edge, which makes it at least half the size of this
2k-vertex greedy cover.
There are several interesting things to notice about this algorithm:

o Although the procedure is simple, it is not stupid — Many seemingly smarter
heuristics can give a far worse performance in the worst case. For example,
why not modify the above procedure to select only one of the two vertices
for the cover, instead of both? After all, the selected edge will be equally
well covered by only one vertex. But consider the star-shaped graph of
Figure 12.1. The original heuristic will produce a two-vertex cover, while
the single-vertex heuristic might return a cover as large as n — 1 vertices,
should we get unlucky and repeatedly select the leaf instead of the center
as the cover vertex we retain.

o Greedy isn’t always the answer — Perhaps the most natural heuristic for
vertex cover would repeatedly select (and then delete) the vertex with
highest remaining degree for the vertex cover. After all, this vertex will
cover the largest number of possible edges. However, in the case of ties or
near ties, this heuristic can go seriously astray. In the worst case, it can
yield a cover that is ©(Ign) times optimal, as shown by the example of
Figure 12.2.

e Making a heuristic more complicated does not necessarily make it better —
It is easy to complicate heuristics by adding more special cases or details.
For example, the procedure above did not specify which edge should be
selected next for the matching. It might seem reasonable to pick the edge
whose endpoints have the highest total degree. However, this does not
improve the worst-case bound, and just makes it more difficult to analyze.

o A post-processing cleanup step can’t hurt — The flip side of designing sim-
ple heuristics is that they can often be modified to yield better-in-practice
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solutions without weakening the approximation bound. For example, a
post-processing step that deletes any unnecessary vertex from the cover
can only improve things in practice, even though it won’t help the worst-
case bound. And it is fair to repeat the process multiple times with dif-
ferent starting edges and take the best of the resulting runs.

The important property of approximation algorithms is relating the size of
the solution produced to a lower bound on the optimal solution. Instead of
thinking about how well we might do, we must think about the worst case—
that is, how badly the algorithm might perform.

Stop and Think: Leaving Behind a Vertex Cover

Problem: Suppose we do a depth-first search of graph G, naturally building a
depth-first search tree T in the process. A leaf node in a tree is any non-root
vertex of degree 1. Delete every leaf node from T'. Show that (1) the set of all
non-leaf nodes of T form a vertex cover of graph G, and (2) that this vertex
cover is of size at most twice that of the minimum vertex cover.

Solution:  Why must the set of all non-leaf nodes in the DFS tree T' form a
vertex cover? Recall that the magic property of depth-first search is that it
partitions all edges into tree edges and back edges. If a vertex v is a leaf of T,
then there is a single tree edge (z,v) containing it, which will be covered by
taking non-leaf vertex x. If there are other edges containing v, they must be
back edges going to ancestors of v, all of which were selected to be in the cover.
So all edges will be covered by the set of non-leaves.

But why is the set of non-leaves at most twice the size of the optimal cover?
Start from any leaf v and walk up the tree to the root. Suppose this path is
of length k edges, meaning k + 1 vertices leaf-to-root. This heuristic will select
the k& non-leaf vertices for the cover. But the best possible cover for this path
requires [k/2] vertices, so we are always within a factor of at most two times
optimal. J

12.2.1 A Randomized Vertex Cover Heuristic

Although we proved that our original vertex cover heuristic of selecting arbitrary
uncovered edges and adding both vertices to the cover yields a factor two approx-
imation algorithm, it feels wrong to grow the cover by two vertices when either
one would equally cover the given edge. However, the star-shaped example of
Figure 12.1 shows that if we repeatedly pick the wrong (meaning non-center)
vertex for each edge, we could end up with a cover of size n — 1 instead of 1.

Such a horrible performance requires making the wrong decision n — 1 times
in a row, which implies either a special talent or horrendous luck. We can make
it a matter of luck by choosing the vertex at random:
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u

Figure 12.3: The triangle inequality, that d(u,w) < d(u,v) 4 d(v,w), holds for
distances defined between geometric points.

VertexCover(G = (V, E))
While (E # ) do:
Select an arbitrary edge (u,v) € E
Randomly pick either v or v, and add it to the vertex cover
Delete all edges from E that are incident to the selected vertex.

At the end of this procedure, we will end up with a vertex cover, but how well
does its expected size compare to a particular minimum size cover C'7 Observe
that with each edge (u,v) we select, at least one of the two endpoints must
appear in the optimal cover C'. Thus, at least half the time we get lucky and
pick the “right” vertex. At the end of this procedure we will have picked a set
C’ C C of cover vertices plus a set D of vertices from V' — C for our cover. We
know that |C’| always must be less than or equal to |C|. Further, the expected
size of D is equal to that of C’. Thus, in expectation |C’| + |D| < 2|C|, and we
get a solution whose size is expected to be at most twice that of optimal.

Randomization is a very powerful tool for developing approximation algo-
rithms. Its role is to make bad special cases go away by making it very unlikely
that they will occur. The careful analysis of such probabilities often requires
sophisticated efforts, but the heuristics themselves are generally very simple and
easy to implement.

12.3 Euclidean TSP

In most natural applications of the traveling salesman problem (TSP), direct
routes are inherently shorter than indirect routes. For example, when a graph’s
edge weights are the straight-line distances between pairs of cities, the shortest
path from x to y must always be “as the crow flies.”

The edge weights induced by Euclidean geometry satisfy the triangle in-
equality, namely that d(u,w) < d(u,v) + d(v,w) for all triples of vertices u, v,
and w. The general reasonableness of this condition is demonstrated in Figure
12.3. The cost of airfares is an example of a distance function that wviolates the
triangle inequality, because it is often cheaper to fly through an intermediate
city than to fly direct to the destination—which is why finding the cheapest
fare can be such a pain. But the triangle inequality holds naturally for many
problems and applications.

The traveling salesman problem remains hard when the edge weights are
defined by Euclidean distances between points. But we can approximate the
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Figure 12.4: A depth-first traversal of a spanning tree, with the shortcut tour
(left). The same DFS tree with a minimum weight matching between odd degree
vertices, creating an Eulerian graph for the Christofides heuristic (right).

optimal traveling salesman tour on such graphs that obey the triangle inequality
using minimum spanning trees. First, observe that the weight of the minimum
spanning tree of graph G must be a lower bound on the cost of the optimal TSP
tour T" of G. Why? Distances are always non-negative, so deleting any edge
from tour T leaves a path with total weight no greater than that of 7. This
path has no cycles, and hence is a tree, which means its weight must be at least
that of the minimum spanning tree. The weight of the minimum spanning tree
thus gives a lower bound on the cost of the optimal TSP tour.

Consider now what happens when performing a depth-first traversal of a
spanning tree. We visit each edge twice, once going down the tree when discov-
ering the edge and once more going up after exploring the entire subtree. For
example, the depth-first search of Figure 12.4 (left) visits the vertices in order:

1,2,1,3,5,8,5,9,5,3,6,3,1,4,7,10,7,11,7, 4,1

This circuit travels along each edge of the minimum spanning tree twice, and
hence costs at most twice the optimal tour.

However, many vertices will be repeated on this depth-first search circuit.
To remove the extra copies, we can take a direct path to the next unvisited
vertex at each step. The shortcut tour for the circuit above is

1,2,3,5,8,9,6,4,7,10,11, 1

Because we have replaced a chain of edges by a single direct edge, the triangle
inequality ensures that the tour can only get shorter. Thus, this shortcut tour,
which can be constructed in O(n 4+ m) time on an n-vertex and m-edge graph
G, always has weight at most twice that of the optimal TSP tour of G.

12.3.1 The Christofides Heuristic

There is another way of looking at this minimum spanning tree doubling idea,
which will lead to an even better approximation algorithm for TSP. Recall that
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an Eulerian cycle in graph G is a circuit traversing each edge of G exactly once.!

There is a simple characterization to test when a connected graph contains an
Eulerian cycle, namely each vertex must be of even degree. This even-degree
condition is obviously necessary, because you must be able to walk out of each
vertex exactly the number of times you walk in. But it is also sufficient, and
furthermore an Eulerian cycle on any connected, even-degree graph can be easily
found in linear time.

We can reinterpret the minimum spanning tree heuristic for TSP in terms
of Eulerian cycles. Construct a multigraph M, which consists of two copies of
each edge of the minimum spanning tree of G. This n-vertex, 2(n — 1)-edge
multigraph must be Eulerian, because every vertex has degree twice that of the
minimum spanning tree of G. Any Fulerian cycle of M will define a circuit with
exactly the same properties as the DFS circuit described above, and hence can
be shortcut in the same way to construct a TSP tour with cost at most twice
that of the optimal tour.

This suggests that we might find an even better approximation for TSP if we
could find a cheaper way to ensure that all vertices are of even degree. Recall
(from Section 8.5.1 (page 267)) that a matching in a graph G = (V, E) is a
subset of edges E’ C F such that no two edges of FE’ share a vertex. Adding a
set of matching edges to a given graph thus raises the degree of affected vertices
by one, turning odd-degree vertices even and even-degree vertices odd, as shown
in Figure 12.4 (right).

So let’s start by identifying the odd-degree vertices in the minimum span-
ning tree of GG, which are the obstacle preventing us from finding an Eulerian
cycle on the minimum spanning tree itself. There must be an even number of
odd-degree vertices in any graph. By adding a set of matching edges between
these odd-degree vertices, we make the graph Eulerian. The lowest cost perfect
matching (meaning every vertex must appear in exactly one matching edge) can
be computed efficiently, as discussed in Section 18.6 (page 562).

The Christofides heuristic constructs a multigraph M consisting of the mini-
mum spanning tree of G plus the minimum weight set of matching edges between
odd-degree vertices in this tree. Thus, M is an Eulerian graph, and contains an
Eulerian cycle that can be shortcut to build a TSP tour of weight at most M.

Note that the cost of this matching of just the odd-degree vertices must
be a lower bound on the cost of the lowest cost matching of the full graph G,
presuming it satisfies the triangle inequality.

Observe in Figure 12.5 that the alternating edges of any TSP tour must
define a matching, because each vertex appears only once in the given edge set.
These red edges (or blue edges) must cost at least as much as the minimum
weight matching of G, and (for the lighter color) weigh at most half that of the
TSP tour. The matching edges we added to M thus must have cost at most
half that of the optimal TSP tour.

In conclusion, the total weight of M must be at most (1 + (1/2)) = (3/2)
times that of the optimal TSP tour, and thus the Christofides heuristic con-

LOr, if you don’t recall this, tour Section 18.7 (page 565) for a refresher.
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Figure 12.5: Any TSP tour in a graph with an even number of vertices that
observes the triangle inequality can be partitioned into red and blue matchings,
one of which must be at most half the cost of the tour.

structs a tour of weight at most 3/2 times that of the optimal tour. As with the
minimum spanning tree heuristic, the weight lost due to shortcuts might mean
the resulting tour is even better than this guarantee. But it can never do worse.

12.4 When Average is Good Enough

In the mythical land of Lake Wobegon, all the children are above average. For
certain optimization problems, all (or most) of the solutions are seemingly close
to the best possible. Recognizing this yields very simple approximation al-
gorithms with provable guarantees, that can often be refined by the heuristic
search strategies we will discuss in Section 12.6 (page 399) into something even
better.

12.4.1 Maximum k-SAT

Recall the problem of 3-SAT discussed in Section 11.4.1 (page 367), where we
are given a set of three-element logic clauses like

V3 Oor 1717 Oor V24

and asked to find an assignment of either true or false to each variable v; so as
to make all the clauses true.

A more general problem is maximum 3-SAT, where we seek the Boolean
variable assignment that makes the largest number of these clauses true. Asking
whether you can satisfy 100% of the clauses is the original 3-SAT problem, so
maximum 3-SAT must still be hard. But now it is an optimization problem, so
we can think about approximation algorithms for it.

What happens when we flip a coin to decide the value of each variable v;, and
thus construct a completely random truth assignment? What fraction of clauses
would we expect to satisfy? Consider the clause above. It will be satisfied unless
we pick vy = false , v17 = true , and voy = false . The probability we get a good
assignment for the clause is 1 — (1/2)® = 7/8. Thus, we expect that any random
assignment will satisfy (7/8) of the clauses, in other words 87.5% of them.
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That seems pretty good for a mindless approach to an NP-complete problem.
For a maximum k-SAT instance with m input clauses, we expect to satisfy
m(1 — (1/2)%) of them with any random assignment. From an approximation
standpoint, the longer the clauses, the easier it is to get close to the optimum.

12.4.2 Maximum Acyclic Subgraph

Directed acyclic graphs (DAGs) are easier to work with than general directed
graphs. Sometimes it is useful to simplify a given graph by deleting a set of
edges or vertices that suffice to break all cycles. Such feedback set problems are
discussed in Section 19.11 (page 618).

Here we consider an interesting problem in this class, where we seek to retain
as many edges as possible while breaking all directed cycles:

Problem: Maximum Directed Acyclic Subgraph

Input: A directed graph G = (V, E).

Output: Find the largest possible subset £/ C F such that G' = (V, F’) is
acyclic.

In fact, there is a very simple algorithm that guarantees you a solution with
at least half as many edges as optimum. I encourage you to try to find it now
before peeking.

Problem: Construct any permutation of the vertices, and interpret it as a left-
to-right ordering, akin to topological sorting. Now some of the edges will point
from left to right, while the rest point from right to left.

One of these two edge subsets must be at least as large as the other. This
means it contains at least half the edges. Furthermore, each of these two edge
subsets must be acyclic for the same reason only DAGs can be topologically
sorted—you cannot form a cycle by repeatedly moving in one direction. Thus,
the larger edge subset must be acyclic, and contain at least half the edges of the
optimal solution.

This approximation algorithm s simple almost to the point of being stupid.
But note that heuristics can make it perform better in practice without losing
this guarantee. Perhaps we can try many random permutations, and pick the
best. Or we can try to exchange pairs of vertices in the permutations retaining
those swaps that throw more edges onto the bigger side.

12.5 Set Cover

The previous sections may encourage a false belief that every problem can be
approximated to within a constant factor. Indeed, several catalog problems such
as maximum clique cannot be approximated to any interesting factor.

Set cover occupies a middle ground between these extremes, having a factor-
©(lgn) approximation algorithm. Set cover is a more general version of the
vertex cover problem. As defined in Section 21.1 (page 678):
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milestone class ‘ 6 | 5 ‘ 4 ‘ 3 ‘ 2 ‘ 1 ‘ 0
uncovered elements |64 |51 4030 25 22 19 16|13 10 74|21

selected subset size |13 11 105 3 3 3 3|3 3 3(2|1]|1

Figure 12.6: The coverage process for the greedy heuristic on a particular in-
stance of set cover. The width w is defined by the five subsets in milestone class
4, when the number of uncovered elements gets halved from at least 2° — 1 to
at most 2.

Problem: Set Cover
Input: A collection of subsets S = {S1,...,Sn} of the universal set U =
{1,...,n}.
Output: What is the smallest subset T of S whose union equals the universal
set—i.e., Ul T, = U2

e, U T, =U1

The natural heuristic is greedy. Repeatedly select the subset that covers the
largest collection of thus-far uncovered elements, until everything is covered. In
pseudocode,

SetCover(.S)
While (U # () do:
Identify the subset S; with the largest intersection with U
Select S; for the set cover
U=U-35;

One consequence of this selection process is that the number of freshly
covered elements defines a non-increasing sequence as the algorithm proceeds.
Why? If not, greedy would have picked the more powerful subset earlier if it,
in fact, existed.

Thus we can view this heuristic as reducing the number of uncovered ele-
ments from n down to zero by progressively smaller amounts. A trace of such
an execution is shown in Figure 12.6. An important milestone in such a trace
occurs each time the number of remaining uncovered elements reduces past a
power of two. Clearly there can be at most [lgn] such events.

Let w; denote the number of subsets that were selected by the heuristic to
cover elements between milestones 2! —1 and 2¢. Define the width w to be the
maximum w;, where 0 < i < lgn. In the example of Figure 12.6, the maximum
width is given by the five subsets needed to go from 2° — 1 down to 2.

Since there are at most lgn such milestones, the solution produced by the
greedy heuristic must contain at most w - lgn subsets. But I claim that the
optimal solution must contain at least w subsets, so the heuristic solution is no
worse than lgn times optimal.

Why? Consider the average number of new elements covered as we move
between milestones 2¢71 — 1 and 2. These 2¢ elements require w; subsets, so
the average coverage is y; = 2 /w;. More to the point, the last/smallest of these
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subsets can cover at most u; subsets. Thus, no subset exists in S that can cover
more than p; of the remaining 2° elements. So, to finish the job, we need at
least 2°/p1; = w; subsets.

The surprising thing here is that there are set cover instances where the
greedy heuristic finds solutions that are Q(lgn) times optimal: recall the bad
vertex cover instance of Figure 12.2. This logarithmic approximation ratio is an
inherent property of the problem/heuristic, not an artifact of weak analysis.

Take-Home Lesson: Approximation algorithms guarantee answers that are
always close to the optimal solution. They can provide a practical approach to
dealing with NP-complete problems.

12.6 Heuristic Search Methods

Backtracking gave us a method to find the best of all possible solutions, as scored
by a given objective function. However, any algorithm searching all configura-
tions is doomed to be impossibly expensive on large instances. Heuristic search
methods provide an alternate approach to difficult combinatorial optimization
problems.

In this section, I will discuss approaches to heuristic search. The bulk of our
attention will be devoted to simulated annealing, which I find to be the most
reliable method to apply in practice. Heuristic search algorithms have an air of
voodoo about them, but how they work and why one method can work better
than another follows logically enough if you think them through.

In particular, we will look at three different heuristic search methods: ran-
dom sampling, gradient descent search, and simulated annealing. The traveling
salesman problem will be our ongoing example for comparing heuristics. All
three heuristics share two common components:

e Solution candidate representation — This is a complete yet concise de-
scription of possible solutions for the problem, just like we used for back-
tracking. For traveling salesman, the solution space consists of (n — 1)!
elements—namely all possible circular permutations of the vertices. We
need a data structure that can represent each element of the solution space.
For TSP, the candidate solutions can naturally be represented using an
array S of n — 1 vertices, where S; defines the (i + 1)st vertex on the tour
starting from v;.

e (ost function — Search methods need a cost or evaluation function to
assess the quality of each possible solution. Our search heuristic identifies
the element with the best score—either the highest or lowest depending
upon the nature of the problem. For TSP, the cost function for evaluating
candidate solutions S just sums up the weights of all edges (S;,Si11),
where Sy and S,, both denote v.
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12.6.1 Random Sampling

The simplest approach to search in a solution space uses random sampling, also
known as the Monte Carlo method. We repeatedly construct random solutions
and evaluate them, stopping as soon as we get a good enough solution, or (more
likely) when we get tired of waiting. We report the best solution found over the
course of our sampling.

True random sampling requires that we select elements from the solution
space uniformly at random. This means that each of the elements of the solu-
tion space must have an equal probability of being the next candidate selected.
Such sampling can be a subtle problem. Algorithms for generating random per-
mutations, subsets, partitions, and graphs are discussed in Sections 17.4 through
17.7.

void random_sampling(tsp_instance *t, int nsamples, tsp_solution *s) {

tsp_solution s_now; /* current tsp solution */
double best_cost; /* best cost so far */
double cost_now; /* current cost */

int i; /* counter */

initialize_solution(t->n, &s_now);
best_cost = solution_cost(&s_now, t);
copy_solution(&s_now, s);

for (i = 1; i <= nsamples; i++) {
random_solution(&s_now) ;
cost_now = solution_cost(&s_now, t);

if (cost_now < best_cost) {
best_cost = cost_now;
copy_solution(&s_now, s);

}

solution_count_update(&s_now, t);

When might random sampling do well?

o When there is a large proportion of acceptable solutions — Finding a piece of
hay in a haystack is easy, since almost anything you grab is a straw. When
good solutions are plentiful, a random search should find one quickly.

Finding prime numbers is a domain where a random search proves suc-
cessful. Generating large random prime numbers for keys is an important
aspect of cryptographic systems such as RSA. Roughly one out of every
Inn integers is prime, so only a modest number of random samples need
to be taken to discover primes that are several hundred digits long.



12.6. HEURISTIC SEARCH METHODS 401

Random Sampling
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Figure 12.7: Search time/quality tradeoffs for TSP using random sampling.
Progress is made infrequently, whenever a new best (here smallest) solution is
stumbled upon.

o When there is no coherence in the solution space — Random sampling is
the right thing to do when there is no sense of when we are getting closer
to a solution. Suppose you wanted to find one of your friends who has a
social security number that ends in 00. There is not much else you can do
but tap an arbitrary fellow on the shoulder and ask. No cleverer method
will be better than random sampling.

Consider again the problem of hunting for a large prime number. Primes
are scattered quite arbitrarily among the integers. Random sampling is
as systematic as anything else would be.

How does random sampling do on TSP? Pretty lousy. The best solution I
found after testing 100 million random permutations of a TSP instance with 150
sites was 43,251, which is more than eight times the cost of the optimal tour!
The solution space consists almost entirely of mediocre to bad solutions, so
quality grows very slowly with the amount of sampling/running time we invest.
Figure 12.7 shows the arbitrary up-and-down movements of the generally poor
quality solutions encountered using random sampling, so you can get a sense of
how the score varied over each iteration.

Most problems we encounter, like TSP, have relatively few good solutions
and a highly coherent solution space. More powerful heuristic search algorithms
are required to hunt where the needle in the haystack is likely to be.

Stop and Think: Picking the Pair

Problem: We need an efficient and unbiased way to generate random pairs
of vertices to perform random vertex swaps. Propose an efficient algorithm
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to generate elements from the (g) unordered pairs on {1,...,n} uniformly at
random.

Solution: Uniformly generating random structures is a surprisingly subtle prob-
lem. Consider the following procedure to generate random unordered pairs:

i = random_int(1,n-1);
j = random_int(i+1,n);

It is clear that this indeed generates unordered pairs, since ¢ < j. Further,
it is clear that all (g) unordered pairs can indeed be generated, presuming that
random_int generates integers uniformly between its two arguments.

But are they uniform? The answer is no. What is the probability that pair
(1,2) is generated? There is a 1/(n — 1) chance of getting the 1, and then a
1/(n — 1) chance of getting the 2, which yields p(1,2) = 1/(n — 1)>. But what
is the probability of getting (n — 1,n)? Again, there is a 1/(n — 1) chance of
getting the first number, but now there is only one possible choice for the second
candidate! This pair will occur n — 1 times more often than (1,2)!

The problem is that fewer pairs start with big numbers than little numbers.
We could solve this problem by calculating exactly how many unordered pairs
start with 4 (exactly (n—i)) and appropriately bias the probability. The second
value could then be selected uniformly at random from i + 1 to n.

But instead of working through the math, let’s exploit the fact that ran-
domly generating the n? ordered pairs uniformly is easy. Just pick two integers
independently of each other. Ignoring the ordering, by permuting the ordered
pair to unordered pair (x,%y) where z < y, gives us a 2/n? probability of gener-
ating each unordered pair of distinct elements. If we happen to generate a pair
(z,z), we discard it and try again. We will get unordered pairs uniformly at
random in constant expected time by using the following algorithm:

do {

i = random_int(1,n);

J random_int(1,n);

if (1 > j) swap(&i,&j);
} while (i==j);

12.6.2 Local Search

Now suppose you want to hire an algorithms expert as a consultant to solve
your problem. You could dial a phone number at random, ask if they are an
algorithms expert, and hang up if they say no. After many repetitions you will
eventually find one, but it would probably be more efficient to ask the person
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Figure 12.8: Improving a candidate TSP tour by swapping vertices 3 and 7
replaces four old tour edges with four new ones.

on the phone for someone more likely to be an algorithms expert, and call them
up instead.

A local search scans the neighborhood around elements in the solution space.
Think of each such candidate solution x as a vertex, with a directed edge (z,y)
to every other candidate solution y that is a neighbor of z. Our search proceeds
from x to the most promising candidate in x’s neighborhood.

We certainly do not want to explicitly construct this neighborhood graph for
any sizable solution space. Think about TSP, which will have (n — 1)! vertices
in this graph. We are conducting a heuristic search precisely because we cannot
hope to do this many operations in a reasonable amount of time.

Instead, we want a general transition mechanism that takes us to a nearby
solution by slightly modifying the current one. Typical transition mechanisms
include swapping a random pair of items or changing (inserting or deleting) a
single item in the solution.

A reasonable transition mechanism for TSP would be to swap the current
tour positions of a random pair of vertices S; and S}, as shown in Figure 12.8.
This changes up to eight edges on the tour, deleting the four edges currently
adjacent to both S; and S;, and adding their replacements. The effect of such
an incremental change on the quality of the solution can be computed incre-
mentally, so the cost function evaluation takes time proportional to the size of
the change (typically constant), which is a big win over being linear in the size
of the solution. Even better might be to swap two edges on the tour with two
others that replace it, since it may be easier to find moves that improve the cost
of the tour.

Local search heuristics start from an arbitrary element of the solution space,
and then scan the neighborhood looking for a favorable transition to take. In a
favorable vertex swap, the four edges we insert are cheaper than the four edges
we delete, a computation performed by the transition function. In a greedy
hill-climbing procedure, we try to find the top of a mountain (or alternately, the
lowest point in a ditch) by starting at some arbitrary point and taking any step
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that leads in the direction we want to travel. We repeat until we have reached a
point where all our neighbors lead us in the wrong direction. We are now King
of the Hill, or for a minimization problem Dean of the Ditch.

But unfortunately, we are probably not King of the Mountain. Suppose you
wake up in a ski lodge, eager to reach the top of the neighboring peak. Your first
transition to gain altitude might be to go upstairs to the top of the building.
And then you are trapped. To reach the top of the mountain, you must go
downstairs and walk outside, but this violates the requirement that each step
must increase your score. Hill climbing and closely related heuristics such as
greedy search or local search are great at finding local optima quickly, but often
fail to find the globally best solution.

void hill_climbing(tsp_instance *t, tsp_solution *s) {

double cost; /* best cost so far */

double delta; /* swap cost */

int i, j; /* counters */

bool stuck; /* did I get a better solution? */

initialize_solution(t->n, s);
random_solution(s);
cost = solution_cost(s, t);

do {
stuck = true;
for (i = 1; 1 < t->n; i++) {
for (j =1+ 1; j <= t->n; j++) {
delta = transition(s, t, i, j);
if (delta < 0) {
stuck = false;
cost = cost + delta;
} else {
transition(s, t, j, i);
}
solution_count_update(s, t);
}
}
} while (stuck);

When does local search do well?

e When there is great coherence in the solution space — Hill climbing is at
its best when the solution space is conver. In other words, it consists of
exactly one hill. No matter where you start on the hill, there is always a
direction to walk up until you are at the absolute global maximum.
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Figure 12.9: Search time/quality tradeoffs for TSP using hill climbing.

Many natural problems have this property. We can think of a binary
search as starting in the middle of a search space, where exactly one of
the two possible directions we can walk will get us closer to the target key.
The simplex algorithm for linear programming (see Section 16.6 (page
482)) is nothing more than hill climbing over the right solution space, yet
it guarantees us the optimal solution to any linear programming problem.

o Whenever the cost of incremental evaluation is much cheaper than global
evaluation — It costs ©(n) to evaluate the cost of an arbitrary n-vertex
candidate TSP solution, because we must sum up the cost of each edge
in the circular permutation describing the tour. Once that is found, how-

ever, the cost of the tour after swapping a given pair of vertices can be
determined in constant time.

If we are given a very large value of n and a very small budget of how much
time we can spend searching, we are better off using it to do a bunch of
incremental evaluations than a few random samples, even if we are looking
for a needle in a haystack.

The primary drawback of a local search is that there isn’t anything more for
us to do after we find the local optimum. Sure, if we have more time we could
restart from different random points, but in landscapes of many low hills we are
unlikely to stumble on the optimum.

How does local search do on TSP? Much better than random sampling for a
similar amount of time. This best local search tour found on our hard 150-site
TSP instance had a length of 15,715—improving the quality of our solution by
almost a factor of three over random sampling.?

This is good, but not great. You would not be happy to learn you are paying
twice the taxes than you should be. Figure 12.9 illustrates the trajectory of a
local search: repeated streaks from random tours down to decent solutions of

2This is still more than double the optimal solution cost of 6,828, so the minimum spanning
tree approximation of Section 12.3 (page 393) would beat it.
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fairly similar quality. We need more powerful methods to get closer to the
optimal solution.

12.6.3 Simulated Annealing

Simulated annealing is a heuristic search procedure that allows occasional tran-
sitions leading to more expensive (and hence inferior) solutions. This may not
sound like progress, but it helps keep our search from getting stuck in local
optima. That poor fellow trapped on the second floor of the ski lodge would do
better to break the glass and jump out the window if they really want to reach
the top of the mountain.

The inspiration for simulated annealing comes from the physical process of
cooling molten materials down to the solid state. In thermodynamic theory,
the