


The DevOps  
Career Handbook

The ultimate guide to pursuing a successful career  
in DevOps

John Knight 

Nate Swenson

BIRMINGHAM—MUMBAI



The DevOps Career Handbook
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, 
or transmitted in any form or by any means, without the prior written permission of the 
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the 
information presented. However, the information contained in this book is sold without 
warranty, either express or implied. Neither the authors, nor Packt Publishing or its 
dealers and distributors, will be held liable for any damages caused or alleged to have  
been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Rahul Nair
Publishing Product Manager: Meeta Rajani
Senior Editor: Athikho Sapuni Rishana
Content Development Editor: Yasir Ali Khan
Technical Editor: Nithik Cheruvakodan
Copy Editor: Safis Editing
Project Coordinator: Shagun Saini
Proofreader: Safis Editing
Indexer: Sejal Dsilva
Production Designer: Jyoti Chauhan
Marketing Coordinator: Nimisha Dua

First published: May 2022

Production reference: 1110522

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80323-094-8

www.packt.com

http://www.packt.com


"In loving memory of Douglas Steven Swenson (1959–2022)

Without you and your unwavering support in my life, this book would have 
never been possible."

– Nate Swenson



Contributors

About the authors
John Knight is an engineering manager and former director with 17 years of DevOps 
experience, encompassing 8 different Fortune 500 companies. Lately, he focuses on digital 
transformations and enterprise migrations and wants to redefine what DevOps means for 
the next 10 years.

John is a lifelong learner, holding eight major cloud and DevOps certifications and two 
master's degrees, and he is currently working on a third, computer science, at Georgia 
Tech, where he hopes to focus on AI and ML and apply the intersection of the two fields 
to the next generation of AI/ML operations.

Outside of work, John spends time with his wife and four kids, enjoys streaming his 
favorite series, playing video games, and doing fun projects involving LEGO, robots,  
and Raspberry PIs.

Nate Swenson is a hands-on DevOps engineer with 12 years of experience within Fortune 
100 companies in the insurance and finance sectors. Nate considers himself a DevOps 
generalist, although the majority of his work revolves around cloud infrastructure and 
Continuous Integration (CI) and Continuous Delivery (CD).

Nate is the lead DevOps engineer for a team responsible for a self-hosted GitLab platform, 
which, in turn, is responsible for the source code management and CI/CD for several 
hundred applications. Nate specializes in cloud infrastructure, coaching, and CI/CD 
process improvements.

Outside of work, Nate can be found hanging out with his wife and two daughters, 
exploring the outdoors, or tinkering with his custom home automation setup when  
he is not working.

"I want to thank my wife for her unwavering support throughout the entire 
journey of writing this book."



About the reviewers
Daniele Fontani is the Chief Technology Officer (CTO) of Sintra Digital Business 
and has worked as a senior developer, team leader, and architect on a host of enterprise 
projects. He has a master's degree in robotic science and another master's degree in 
project management. His experience in technology extends to many technologies (Java, 
PHP, and .NET), platforms (SharePoint, Liferay, and Pimcore), and techniques (Agile, 
DevOps, and Application Lifecyle Management (ALM). He is interested in agile 
techniques, project management, and product development. He implemented Digital 
Experience Platforms (DXP) for banks and the loan industry as a team leader and 
software architect. In the pharma industry, he has designed and developed retail portals 
for the training and social engagement of retailers.  

"A special wish to all the readers of this book – may this book give you the 
tools to start a prosperous career."  

Satish Balakrishnan is an experienced cloud and DevOps architect with experience in 
companies such as Accenture, Hewlett Packard Enterprise, Singapore-MIT Alliance, and 
start-ups. He has an association with Microsoft as a Senior Cloud Solutions Architect for 
the APAC region. He has written numerous articles on the cloud and blockchain that have 
been published in the CDOTrends, Techopedia, Blockchain Council, and IEEE newsletters. 
Satish has also authored a book called Terraforming the Cloud.





Table of Contents

Preface

Section 1: A Career in DevOps

1
Career Paths
Earning potential   4
Constant learning opportunities   5
Impact on the company   5
Flexibility   5

Overview of DevOps history   5
Lean manufacturing   6
Agile   6
Extreme programming   6
DevOps   7

DevOps culture   9
Customer-centric   9

Foster collaboration   10
End-to-end ownership   11
Continuous improvement   12
Automate everything   13
Continuous learning   14

DevOps career paths   15
DevOps generalist   18
DevOps specializing generalist   19
DevOps security specialist   20
DevOps cloud specialists   21

Summary   21

2
Essential Skills for a DevOps Practitioner

Scripting, coding, and 
programming   24
Navigating the command line   24
Scripting   27

Source code management    30
Git   30

SCM   33

Infrastructure management   34
Capacity planning    35
Infrastructure provisioning    36
Deployment   38

CI/CD concepts   39



viii  Table of Contents

Continuous integration   39
Continuous delivery   42

Cloud-native frameworks   42
Containers   43
Microservice architecture   46
Soft skills   47

Beginner DevOps certifications   48
AWS certifications   49
Google Cloud certifications   49
Azure certifications   49
Other resources   49

Summary   50

3
Specialized Skills for Advanced DevOps Practitioners

CI/CD pipeline DevOps engineer   52
Maintaining a shared pipeline library   52

Infrastructure as code    55
Cloud and application 
modernization   57
Advanced cloud skills   58
Application modernization   59
Choosing a modernization approach   60

Containers and container 
management   61
Container management software   61

Security   62

CI/CD process security   63

Environment and data security   65
Advanced DevOps certifications   66
AWS certifications   66
Google Cloud certifications   66
Azure certifications   67
Kubernetes certifications   67

Competency matrix   68
Matrix breakdown   69
Compensation in relation to level and 
competency   71

Summary   72

Section 2: The Application Process

4
Rebranding Yourself

Ways of improving your 
LinkedIn profile   75
Updating your headline   76
Recommendations   77
Additional sections    78

Updating your resume to match 
the career you are after   80

Contact information   80
Objective   80
Experience   81

Updating and or creating your 
personal  
web page   84
GitLab Pages tutorial   84



Table of Contents  ix

Sections to include on your personal 
web page   85

Leveraging Twitter and other 
social profiles   86

Twitter    87
Medium   88

Summary    89

5
Building Your Network

LinkedIn the right way   92
Getting noticed   93

Building lasting connections, 
online and offline   95
Building connections in virtual settings    96
Building connections in a personal 
setting   97
In real life    97

Quality over quantity   99
Networking and conversation 
starters    100
Lean Coffee    100
Lightning talks   103
Conversation starters   103

Summary   105

6
Mentorship

The importance of mentorship   108
Assistance and guidance toward 
setting  
achievable goals   108
The motivation to help you achieve 
your goals   109
Career coaching    110
Useful advice   110

The mentor-mentee 
relationship dynamics   111
Choosing the correct mentor   113

Questions to ask when looking  
for a mentor   114
Asking an individual to be your mentor   116
Additional ways to get connected with 
a mentor   118

Mentors as a reference   119
Have you asked your mentor to be a 
reference?   120
Have you worked with the mentor?   120
Has your mentor seen you use your 
skills? Are they confident about your 
skills required for the role?   121

Summary   121



x  Table of Contents

7
Working with Recruiters

Different types of recruiters   124
First-party recruiters   124
Recruiting agencies   125
Freelance recruiters   125
The recruiter's role at various stages of 
the interview process   126

Where to find them and how 
they can find you   127
How to present yourself   128

How to negotiate   129
Things that do not work   130
Things that do work   132

Following up, but when?   134
The waiting game   135
Etiquette for following up with 
recruiters   136

Summary   138

Section 3: Interview Process

8
Preparing for Your Interview

Phases of the interview process 
  142
First-round interview   143
Technical interview   144
Follow-up rounds   146

Best ways to prepare   147

What to expect   149
Tricks of the trade   151
Common mistakes   152
Things that do work   154

Summary   155

9 
Interviews Step by Step 

Typical interview walk-through  
  158
First-round interview    158
Technical interview    160
Additional rounds    161
Offer stage    163

Non-typical interview  
walk-through    163
Tests    164
Out-of-the-box design    165
Tell me about a time   166

Summary    169



Table of Contents  xi

Section 4: Tips, Tricks, and Interviews

10
DevOps Career: Tips and Tricks

Tips for transitioning to a 
career in DevOps   173
Personal DevOps journey   174
Stay on track, but entertain your 
interests   176
Life is busy; prioritize and focus on 
things important  
to you   177
Opportunity is often disguised in a 
deceptive facade   178
Making an internal career change is 
sometimes easier than changing jobs 
and companies at the same time   178
Apply for roles you find interesting, 
even if you do not meet all the 
requirements   179

Things to avoid during the 
interview process   180
Avoid providing inaccurate or 
misleading information when applying 
for a position   180
Avoid neglecting to respond to 
recruiters after you have applied for a 
position   182
Avoid inconsistent information across 
social profiles and your resume    183

Things to do during the 
interview process   184
Discuss your side projects   184
Come prepared, ready to discuss tool 
alternatives   185

Summary    186

11
Interviews with DevOps Practitioners

Interview with a senior DevOps 
manager   188
Interview with a senior DevOps 
engineer   192

Interview with a DevOps 
architect consultant   195
Interview with a tech 
executive passionate about 
neurodiversity and inclusion   200
Summary   204

Index
Other Books You May Enjoy





Preface
Navigating any career is difficult; navigating one that is the culmination of many different 
careers can feel almost impossible. This book will aid you in navigating the field of 
DevOps and help prepare you for a career in it. The second half of the book focuses on 
techniques to use during each stage of the interview process to increase your odds of 
being a top candidate.

Who this book is for
This book is for anyone who wants to learn more about DevOps, pursue a career in 
DevOps, or advance their career in the field of DevOps.

What this book covers
Chapter 1, Career Paths, explores the history and culture associated with DevOps, 
followed by various career paths available in the field of DevOps.

Chapter 2, Essential Skills for a DevOps Practitioner, covers the skills required by all 
DevOps practitioners, regardless of level.

Chapter 3, Specialized Skills for Advanced DevOps Practitioners, covers the skills required 
for advanced careers within the field of DevOps.

Chapter 4, Rebranding Yourself, provides tips for updating your social presence as well as 
your résumé.

Chapter 5, Building Your Network, covers getting your skills noticed by the right people, 
which is key to landing a job, and offers tips and tricks on building your network to 
include the right people.

Chapter 6, Mentorship, focuses on the value of mentorship and how to connect with  
a mentor.

Chapter 7, Working with Recruiters, examines how most jobs are being filled by  
a combination of internal and external recruiters, giving you advice and tips on  
how to work with both.

Chapter 8, Preparing for Your Interview, provides tips on how to ensure you are prepared 
for your interview.



xiv     Preface

Chapter 9, Interviews Step by Step, walks you through what to expect at each stage of the 
process for both typical and non-typical interviews.

Chapter 10, DevOps Career: Tips and Tricks, provides a brain dump of the authors' 25 years 
of collective knowledge on things they have seen work and not work when interviewing.

Chapter 11, Interviews with DevOps Practitioners, revisits candid, open interviews with 
DevOps practitioners at various stages in their careers.

To get the most out of this book
This book assumes that you have a technical background. However, the only thing that is 
required to be successful in using this book is a desire to learn. 

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used 
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781803230948_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. 
Here is an example: "The –it command runs the container with an interactive terminal."

Bold: Indicates a new term, an important word, or words that you see onscreen. For 
instance, words in menus or dialog boxes appear in bold. Here is an example: "Navigate 
back to GitLab to the project you just pushed, and click on Settings | Pages to view the 
URL where your site is published."

Tips or Important Notes 
Appear like this.

https://static.packt-cdn.com/downloads/9781803230948_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781803230948_ColorImages.pdf


Preface     xv

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us  
at customercare@packtpub.com and mention the book title in the subject of  
your message.

Errata: Although we have taken every care to ensure the accuracy of our content,  
mistakes do happen. If you have found a mistake in this book, we would be grateful if  
you would report this to us. Please visit www.packtpub.com/support/errata  
and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, 
we would be grateful if you would provide us with the location address or website name. 
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in 
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share Your Thoughts
Once you've read The DevOps Career Handbook, we'd love to hear your thoughts! Please 
click here to go straight to the Amazon review page for this book 
and share your feedback.

Your review is important to us and the tech community and will help us make sure we're 
delivering excellent quality content.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-803-23094-0




Section 1:  
A Career in  

DevOps

In this section, you will learn what it takes to be successful in DevOps, as well as various 
career paths and competencies required at various levels.

This section comprises the following chapters:

• Chapter 1, Career Paths

• Chapter 2, Essential Skills for a DevOps Practitioner

• Chapter 3, Specialized Skills for Advanced DevOps Practitioners





1
Career Paths

A DevOps career path is never linear, does not have a single point of entry, and can 
diverge at any moment. DevOps careers are rooted in Lean, Agile, and Extreme 
Programming (XP), making it as much a culture fit between a candidate and employer 
as a technical fit. In this chapter, you will get a history lesson on DevOps that will aid in 
discussions with recruiters and hiring teams in the future. You will also be introduced to 
different skill profiles, which will help in determining the direction you take your career.

The following topics will be covered in this chapter:

• Why you should pursue a career in DevOps

• Overview of DevOps history

• DevOps culture

• DevOps career paths



4     Career Paths

Reading 200+ pages on a career you are not sure you want to pursue seems silly; time  
is a resource that is in short supply. In this section, we will cover why you should  
pursue a career in DevOps; specifically, why you should choose DevOps over other 
IT-related careers. 

Earning potential
DevOps is constantly ranked as one of the highest-paying professions, with a median 
salary of $100,000. Entry-level DevOps engineers can expect to earn anywhere from 
$75,000 up to $145,000. As you progress in your career, you can expect to earn more. 
Look at the following graph:

Figure 1.1 – DevOps salaries

Another reason you should consider a career in DevOps is you will never get bored as it is 
ever-evolving, which allows many opportunities to learn new skills.



Overview of DevOps history     5

Constant learning opportunities
Part of your job as a DevOps engineer is to stay up to date with the latest tools, 
technology, and trends that are occurring in the industry. DevOps engineers get paid to 
learn! It is one of my favorite things about my role as a DevOps engineer. As a DevOps 
engineer, you will ward off boredom while at the same time future-proofing your career. 

Impact on the company
As a DevOps engineer, you will be delivering features used and felt by every part of 
the company. There is no other technical position where your efforts will have such a 
significant impact on the business. 

Flexibility
As a DevOps engineer, you will have the flexibility to work where you want, when you 
want. Remote work has become increasingly accepted across the technology industry; 
DevOps teams were doing this before it was considered cool. Collaboration tools 
including Slack and Jira have made asynchronous work possible. What this means is you 
do not have to work the same hours as the rest of your team – at least not all the time. 

So, Why Should You Pursue a Career in DevOps?
As a DevOps engineer, you will be highly compensated, constantly learn and 
apply cutting-edge technology to solve problems impacting the entire business, 
and have the flexibility to work where and when you want. 

Overview of DevOps history
You are reading a book on DevOps, likely meaning you have a basic understanding 
of what DevOps is; if not, there's no need to worry – that will be covered as well. The 
history of DevOps is less known even within DevOps communities. First, we'll go back to 
understand key elements that came before DevOps that laid the groundwork and created 
the environment needed for DevOps to grow.



6     Career Paths

Lean manufacturing
Lean manufacturing is a production method aimed primarily at reducing cycle times 
within the production system as well as response times from suppliers and to customers.

The term Lean was coined in 1988 by John Krafcik and defined in 1996 by James Womack 
and Daniel Jones. Lean manufacturing is well-established as a set of best practices for 
manufacturing. Often branded as the Toyota Manufacturing Method, Lean manufacturing 
strives for process optimization across the manufacturing floor. Continuous improvement 
is the mantra for Lean manufacturing and practitioners continually evaluate ways to do  
the following:

• Keep inventory at a minimum.

• Minimize the queue of orders.

• Maximize efficiency in the manufacturing process.

Agile
In the early 2000s, traditional waterfall methods were evolving and being replaced by 
Agile, which required a large culture shift that focused on team empowerment. Agile 
is based around 4 core values and 12 principles. Some were adopted into DevOps 
as it evolved (https://kissflow.com/project/agile/values-and-
principles-of-agile-manifesto/).

Extreme programming
XP aims to improve software quality and responsiveness to changing customer 
requirements. If you are thinking that sounds a lot like Agile, you wouldn't be wrong; 
it is a type of Agile software development. The biggest difference between XP and other 
Agile frameworks is the emphasis placed on the code and development (https://
en.wikipedia.org/wiki/Extreme_programming).

The main contribution XP gave DevOps was Continuous Integration (CI). CI was a term 
introduced in 2001 by Grady Brooch and was published as the Brooch method soon after.

https://kissflow.com/project/agile/values-and-principles-of-agile-manifesto/
https://kissflow.com/project/agile/values-and-principles-of-agile-manifesto/
https://en.wikipedia.org/wiki/Extreme_programming
https://en.wikipedia.org/wiki/Extreme_programming


Overview of DevOps history     7

DevOps
The exact inception of DevOps will forever be debated; it is widely accepted that between 
2007 and 2008 is when the movement started. It was a perfect storm of events that allowed 
and triggered the DevOps movement. The dysfunction in the software industry, namely 
between IT operations and software development communities, was the spark that ignited 
the movement, but it was the pioneers of Agile, Lean, and XP who were responsible for the 
initial fuel of the DevOps movement.

In a world absent of DevOps, developers and IT operations belonged to different 
corporate hierarchies and Key Performance Indicators (KPIs) for IT operations and 
development were asynchronous and detrimental to the other. These conditions created 
teams siloed from one another, causing a breakdown in communication, and ultimately 
leading to failed deployments, missed deadlines, and angry customers. 

In 2008 Andrew Shafer, a software engineer, tried to put together a meetup session 
entitled Agile Infrastructure at an Agile conference in Canada. Patrick Debois, an Agile 
practitioner, was the only one there. The two had a long conversation, which today is 
known as the spark that ignited a fire that became a movement known as DevOps. 
Andrew and Patrick formed a discussion group for other people to post their ideas for 
how to solve this divide between development and operations later that year. In 2009, the 
first DevOpsDays was held, in Belgium, which turned DevOps into a buzzword forever 
cemented in history. The DevOps movement continued with local meetups around 
the globe. Around 2010, open source software focused on DevOps began growing in 
popularity; Jenkins CI server software and Chef infrastructure provisioning software were 
a couple of pioneers.

Pro Tip
Understanding the history behind the job title you are applying for will make 
you seem more serious about the role and conversation much more natural. 
Dig deeper and read some books such as The DevOps Handbook and The 
Phoenix Project. They will only increase your chances of success further.



8     Career Paths

The following diagram gives a timeline of key dates in the history of DevOps:

Figure 1.2 – History of DevOps timeline

Now that we have learned about the history of DevOps, let's look at DevOps culture in the 
next section.



DevOps culture     9

DevOps culture
DevOps is a set of practices that combines software development and IT operations. It 
aims to shorten the systems development life cycle and provide continuous delivery with 
high software quality. DevOps is complementary with Agile software development; several 
DevOps aspects came from the Agile methodology (https://en.wikipedia.org/
wiki/DevOps). Diving deeper into that definition, we learn DevOps is a multi-faceted 
practice. DevOps has seven guiding principles that combine to form DevOps culture. 
DevOps culture aims to decrease cycle time, apply incremental changes, and create a more 
streamlined development process.

The following diagram gives a graphical representation of the seven principles of DevOps:

Figure 1.3 – DevOps culture – principles

Now we will take a deeper dive into each of the seven principles of DevOps.

Customer-centric
Test often, get end user feedback frequently, and fail fast. The feedback loop between the 
customer and end users of products needs to be as short as possible. All actions taken by 
a team should be focused on the experience of the end user. This is also where the saying 
shift-left comes from, meaning the sooner a feature is tested for bugs, the quicker it will be 
resolved, and fewer downstream dependencies will be compromised.

https://en.wikipedia.org/wiki/DevOps
https://en.wikipedia.org/wiki/DevOps


10     Career Paths

A Tale of Two Start-Ups Bidding to Develop a Fitness Tracker for a Large 
Insurance Company
Need: A wearable device that will track users' fitness.

Acceptance Criteria: A wearable watch-like device that tracks  
various workouts.

Company X employs test-driven development and has weekly demos where 
they receive feedback. During a demo, they showcase a device and describe 
plans to track running and cycling. They learn that a big portion of their 
customers are swimmers. The team takes the feedback and shifts priority from 
running and cycling to swimming. The customer is impressed.

Company Y does not feel it is necessary to have demos as their past 
applications have done relatively well. The team focuses on the running and 
cycling workout tracking ability. During acceptance, they receive feedback  
that the watch must have the ability to track swimming. The development team 
is unable to meet the requirements in the given time frame. The customer is 
not impressed.

Outcome: Company X is awarded the contract and goes on to be a billion-
dollar company. Company Y is not awarded the contract and receives poor 
press leading to another failed start-up.

Foster collaboration
The collaboration between the development team and IT operations teams is the most 
basic must for DevOps. Removal of silos ensures collaboration and alignment across 
entire organizations, ensuring a singular focus on the customer.

A collaborative culture is most effective when implemented using a top-down approach; 
executive sponsorship should be lined up ahead of any major culture shift. Another, much 
slower, approach is grassroots initiatives within an organization. A group of like-minded 
individuals with a platform to share on is all it takes to start a revolution. The trouble with 
the latter approach is overtime burnout can occur if you work tirelessly to make a change 
and see no results time and time again. Instead start with something you do have control 
over, such as your team.



DevOps culture     11

Robert Weidner is a senior director at Optum and is one of only 26 Certified Enterprise 
Coaches in the world and is also my mentor and former manager. While working under 
Robert, our team was empowered to choose what micro team we worked in. We were also 
encouraged to hop over and help any other micro team who needed our support. When it 
came to stack ranking the team and fitting us to the bell curve for our bonus, we did our 
reviews of each team member during an offsite with the entire team present and in the hot 
seat while receiving feedback. It was frightening, but it worked because the team trusted 
each other.

End-to-end ownership
Feature teams ensure end-to-end responsibility by giving the team a vertical slice of 
a product, a feature. The feature, Feature 1: Button X, has two user stories: one for 
development and one for testing. The definition of done for the feature also requires the 
feature to be deployed successfully. This can be seen in Figure 1.4. The final piece to note is 
the ongoing support of Button X also remains with the team. Our company has started to 
call this You Build It, You Own It (YBYO). The rationale behind this concept is that the 
team who built something is going to have the most knowledge about it when there is a 
production issue.

Figure 1.4 – Feature-centered team (E2E ownership)



12     Career Paths

In traditional development methods such as waterfall, teams are broken down and created 
at the activity level, also known as a horizontal slice of work. Ownership of a feature is 
split among various teams. In the following example, three teams must interact with the 
feature before it makes it to the end user, and another team is responsible for ongoing 
support. This is problematic; the operational support team is oftentimes not aware of  
the most recent changes the development team made, leading to extended downtimes  
and outages:

Figure 1.5 – Waterfall teams

Now, we'll talk about continuous improvement.

Continuous improvement
Continuous improvement was inherited from Lean. The entire team should be encouraged 
and, more importantly, empowered to make changes without fear of failure. Teams instead 
use failure as opportunities to improve on flawed processes. This is also known as failing 
forward. Failing forward allows for better control over risks as well as continuing to 
push the team forward. For your entertainment, the following is a script (continous_
improvement.sh) to ensure your team is empowered to make improvements, 
continuously:



DevOps culture     13

Figure 1.6 – Continuous improvement shell script

The preceding script is a simple script that defines the flow of how the continuous 
improvement flow would operate if it were a shell script. 

Automate everything
While doing research for this book, I noticed two common wordings: automate everything 
and automate (almost) everything. Further research revealed a common theme in types 
of processes that should not be automated, items with no payback, and items including 
a high degree of design or visual inspection, as seen in the following list (https://
dzone.com/articles/what-to-automate-and-what-not-to-automate): 

• Automation with no ROI

• Design 

• Final QC of an application

https://dzone.com/articles/what-to-automate-and-what-not-to-automate
https://dzone.com/articles/what-to-automate-and-what-not-to-automate


14     Career Paths

Processes should have the least amount of manual intervention possible. The reason 
for this is simple: humans are error-prone while machines (computers) are excellent at 
executing high-volume repeatable tasks.

Next, we will cover continuous learning, a DevOps principle that is important for 
individuals looking to enter the field of DevOps, as well as those looking to stay relevant 
in the ever-changing field of technology.

Continuous learning
Technology is evolving at an astonishing rate; the most well-known example of this is 
Moore's law. Moore's law is the observation that the number of transistors in a dense 
Integrated Circuit (IC) doubles about every 2 years (https://en.wikipedia.
org/wiki/Moore%27s_law). The number of transistors that fit into a 
microprocessor reached over 10 billion in 2017. It was under 10,000 in 1971( https://
ourworldindata.org/technological-progress). Being a continuous learner is 
a personal attribute that will get you hired.

Pro Tip: You Must Be a Continuous Learner If You Wish to Succeed  
in DevOps
Creating a public project using a new technology is a great way to showcase 
this to potential hiring managers. Another way is to make sure to leave digital 
breadcrumbs of the most recent articles you have read, whether it be a post on 
LinkedIn or a tweet on Twitter.

An example that sticks out is an interview for a senior DevOps engineer role that was 
down to the final two candidates. Both candidates had tenure with the organization, 
exceeded the qualifications, interviewed well, and had advanced degrees. The candidate 
that received an offer displayed a hunger for knowledge throughout the interview process 
in subtle ways. The candidate chose to focus not on their degree but on a side project that 
had the purpose of teaching the candidate Golang. The theory of data science was being 
demonstrated with the application and it was cool. What stuck out, and continues to, was 
the candidate's desire to learn new things.

In summary, the combination of development and operation along with the seven DevOps 
principles, when applied together, form the DevOps culture. DevOps is a completely 
unique derivative of Lean, Agile, and XP aiming to shorten the feedback loop between 
development and the end user.

https://en.wikipedia.org/wiki/Moore%27s_law
https://en.wikipedia.org/wiki/Moore%27s_law
https://ourworldindata.org/technological-progress
https://ourworldindata.org/technological-progress


DevOps career paths     15

Take a look at the following visual depiction of DevOps culture broken down into the 
practices and principles:

Figure 1.7 – DevOps culture chart

In summary, DevOps culture contains seven guiding principles, as seen in Figure 1.7. In 
the next section, different career paths for a DevOps engineer will be discussed.

DevOps career paths
The field of DevOps is dense and is challenging to navigate, even for experienced 
practitioners. DevOps consists of eight core practices and follows seven basic principles. 
Unsurprisingly, there are numerous career paths in the field of DevOps. The generalist is 
the most common DevOps role.

A DevOps generalist is comparable to a Swiss Army knife, which is designed to handle 
as many tasks as possible. It can cut rope, open a can, cut wire, and if needed, the Swiss 
Army knife could fillet a fish. A DevOps generalist can create a deployment pipeline, write 
infrastructure as code scripts, and manage an Elastic Kubernetes Service (EKS) cluster in 
Amazon Web Services (AWS) if necessary.



16     Career Paths

A DevOps specialist is comparable to a fish fillet knife, which is singularly designed to 
fillet fish most effectively. The knife's profile, blade material, and ergonomics are finely 
tuned for a singular task, slicing fish. For example, a DevOps cloud specialist has spent 
their career focused on becoming an expert in cloud infrastructure, cloud architecture, 
and cloud security, and managing an EKS cluster in AWS is what they do in their sleep. It 
is likely that they would find a more cost-efficient way to do it than a non-cloud specialist.

A DevOps specializing generalist is comparable to an Everyday Carry (EDC) knife with 
a trailing point blade. This knife has ergonomics similar to a Swiss Army knife but a blade 
profile giving it the ability to fillet fish at a comparable level to a fillet knife. A DevOps 
specializing generalist who spent the past 10 years working in an AWS environment 
would be able to complete most DevOps tasks but would excel at those that involved  
AWS services.

Common skill profile shapes for a generalist, specialist, and specializing generalist can be 
seen in the following diagram:

Figure 1.8 – Skill profiles

The profile of your skill set can be very useful when determining how to classify yourself. 
Start with a comb. Each prong (skill) has a similar length (depth). The comb shape is 
typical of a generalist. The second common profile is the T shape. A T has a single line 
(skill) that has a full length (depth). The T shape is typical of a specialist. An E-shaped 
profile, sometimes referred to as an unequal comb, has prongs (skills) of differing lengths 
(depths). Oftentimes, one or several skills have a definitively greater depth than the rest. 
The E shape is common for a specialized generalist.



DevOps career paths     17

A mentor told me the unequal comb (E shape) skill profile is the only true measure of  
an individual's skills. The comb shape is flawed because it assumes all skills have an  
equal depth, which is impossible. The T shape has a lack of detail; it shows a singular  
skill the individual is highly adept at but does not account for the other skills possessed  
by the individual.

Pro Tip
For this chapter, do not focus on what is required for the example skills listed as 
they will be covered in the next chapter. Instead, focus on how the skill profiles 
relate to the different types of DevOps engineers' specific requirements.

Common skill profiles fitted to the E profile can be seen in the following diagram:

Figure 1.9 – Skill profiles (E profile fitted)

In the following sections, we will take a look at skill profiles for a DevOps generalist, 
specializing DevOps generalist, as well as several skill profiles for DevOps specialties. We 
will begin by looking at the skill profile for the DevOps generalist.



18     Career Paths

DevOps generalist
Google's Ben Fried stated, Generalists, not specialists, will scale the web (https://
devops.com/specialists-vs-generalists-enterprise-devops/). This is 
a quote from back in 2011 but still holds true to an extent today. A generalist understands 
the entire Software Development Life Cycle (SDLC). The generalist has broad knowledge 
across domains and skill areas but lacks a deep understanding of any domain. This is 
common in small companies, start-ups, or vertically integrated companies having only a 
handful of products and tools to support. There needs to be almost no handoff of work, 
leading to fewer places to drop the ball or forget something.

The following is a sample skill profile for a DevOps generalist. Take note of the relatively  
flat shape:

Figure 1.10 – DevOps generalist skill profile

The DevOps generalist is one of the first to feel the pains of growing or introducing 
new software, especially in smaller companies or organizations with a small DevOps 
department. When a new tool is introduced, the DevOps engineer needs to understand 
the tool before it is implemented. Next, an environment must be provisioned for the new 
tool, oftentimes unlike the environment the existing tool uses, or at least with quirks 
and subtle differences. Finally, the tool is implemented. At this point, both the new and 
existing tool need to be supported by the DevOps engineer. The comb shape that was used 
graphically to describe the generalist has an inherent flaw: it assumes a generalist does not 
have a deep understanding of any domain.

https://devops.com/specialists-vs-generalists-enterprise-devops/
https://devops.com/specialists-vs-generalists-enterprise-devops/


DevOps career paths     19

DevOps specializing generalist
If you stay working in the same industry or with the same type of projects long enough, 
you will eventually become a specializing generalist. The specialized generalist is also 
referred to as a master general. In the preceding example, the DevOps engineer has all 
the required skills but has a much deeper understanding and knowledge in the domain of 
programming and developing code. This is typical for software engineers who transition 
into a DevOps role. This could also be a skill profile you evolve over time if you enjoy 
certain skills, or if you just happen to always be assigned to tasks that require those skills. 
Regardless of how your skill profile evolved, knowing you have a deeper understanding of 
certain areas can be beneficial both when looking for a job as well as when it comes time 
to ask for a promotion.

In the following figure is the skill profile of a DevOps engineer who has knowledge in 
many domains with a deeper understanding of the Build and Deploy domains: 

Figure 1.11 – DevOps specializing generalist skill profile

Understanding your own skill profile can be very helpful both for a manager of a team 
when planning capacity, as well as an engineer when choosing which roles to apply for, 
which is likely what you are interested in. In the next chapter, we will take a deeper dive 
into how you can create your own skills profile.



20     Career Paths

A specialist has a very deep understanding of a singular domain. This does not mean they 
are not capable of doing other things; however, it is usually not efficient to have a specialist 
work across domains. Specialists are more common in large organizations that define 
specialists by the tools they support. If we apply this to our previous example, DevOps 
engineering team A would specialize in tool A. When a new tool is introduced into the 
company, a new team would be formed and talent would be hired with correct skills or 
existing employees would be up-skilled to join the team. Specialists who possess deep 
knowledge in one of the DevOps domains are the ones that will be focused on in this book 
going forward. 

DevOps security specialist
A DevOps engineer specializing in security is known to be in the niche field of 
DevSecOps. DevOps security specialists have a deep understanding of areas such as 
penetration testing, cloud security, chaos engineering, and continuous verification as seen 
in the following example skill profile:

Figure 1.12 – DevOps security specialist skill profile

Now, we will talk about DevOps cloud specialists.



Summary     21

DevOps cloud specialists
One of the fastest-growing fields is cloud engineering and cloud engineers are some of 
the highest paid. What is the difference between a cloud specialist, a cloud engineer, and a 
DevOps cloud specialist? you might be asking, and the honest answer is nothing. Titles are 
meaningless and, oftentimes, they differ between companies and sometimes even between 
departments in larger organizations. A DevOps cloud specialist has traditional DevOps 
skills but has a very deep knowledge of the cloud tools, architectures, best practices, and 
management of entire cloud environments, sometimes multi-cloud environments.

The wide-scale adoption of the cloud has made a strong understanding of the cloud 
something even entry-level jobs oftentimes require.

Figure 1.13 – DevOps cloud engineer specialist skill profile

In this section, skill profiles for DevOps generalists and DevOps specialists were covered. 

Summary
In this chapter, you gained insight into the history and goals of DevOps. DevOps was 
founded around 2008 when a developer and Agilist met at a conference and decided 
there needed to be a better way of developing software. The goal of DevOps is to remove 
silos between development and IT operation teams as well as shortening the feedback 
loop between developers and customers. DevOps is a mix of Lean, Agile, and XP 
methodologies.



22     Career Paths

You also learned about the numerous career paths to choose from in the field of DevOps. 
Career paths in DevOps are defined by the depth of knowledge required. Three skill 
profiles were discussed: DevOps generalist, DevOps specializing generalist, and DevOps 
specialist. A DevOps specialist has a much greater depth of knowledge than a generalist. 

In the next chapter, we will cover specific skills required for a DevOps generalist.



2
Essential Skills for a 
DevOps Practitioner

The most common question heard from individuals looking to land their first DevOps 
role is, What are the important skills? The list of important skills is rather lengthy for a 
DevOps generalist, the type of role most common for individuals looking for their first 
role in DevOps. This chapter is geared toward individuals looking for their first role in 
DevOps. Individuals who already have careers in DevOps can skip this chapter or use it as 
a refresher.

In this chapter, we will cover the following main topics:

• Scripting, coding, and programming

• Source code management

• Infrastructure management

• CI/CD concepts

• Soft skills

• Cloud-native frameworks

• Beginner DevOps certifications



24     Essential Skills for a DevOps Practitioner

Scripting, coding, and programming
There are DevOps engineers who are highly skilled at programming. However, you 
don't have to be a great programmer. To be a great DevOps engineer, debugging code, 
automation through scripting, and working in text-only terminals are also important 
skills. In this section, we will cover the following:

• Navigating the command line

• Scripting

• Modifying legacy code versus writing new code

Navigating the command line
Command-line navigation is possibly the most essential skill for anyone looking to 
get a job in the field of DevOps. Command line is a generic term that applies to a text-
based interface. The most common command-line shell that comes with most Linux 
distributions is Bash. While having a basic knowledge of the usage of the command line is 
essential to land a job as a DevOps engineer, mastery of it can help you stand apart from 
other applicants. There is no way to master the terminal without making it a part of your 
regular daily routine. There are many well-written, resourceful blogs, articles, and cheat 
sheets that cover the command syntax. The focus of this section will be on techniques to 
quickly improve your comfort level when using the command line.

All navigation can be done through the command line and it is often much quicker. 
Even if you're not sure where you are, path with directory (pwd) has your back. pwd 
will output the current path you are at in the terminal. If you would like to see what files 
and folders are in the current directory, use the ls command. To navigate to a particular 
folder, use the cd command. If you want to find a particular string of text in a text file, you 
can use the grep command. grep is case sensitive by default, but like most commands, 
there are flags that can be applied to change its behavior; for example, grep - i makes 
the search insensitive to case. If there are multiple results, you can pipe your results with 
sort to sort the results alphabetically, or even in reverse order. 

Figure 2.1 shows the Bash terminal window, where some basic commands have been 
executed and output can be seen:



Scripting, coding, and programming     25

Figure 2.1 – Bash terminal with basic commands

As you can see in the preceding Bash terminal, there are some unique colors, the current 
directory is preceded by an arrow, and the branch that is checked out is shown for git 
folders. You can configure the appearance as well as setting aliases and custom functions 
within the .bashrc file.

Pro Tip: Play Around and Have Fun
Learning about the terminal should be fun, and we will expand on it in the 
next section. Till then, google commands, create your own, and be creative! 
The power of the terminal comes from its flexibility; the terminal can be 
customized to fit your needs and most of this customization is done through 
the .bashrc file.

The .bashrc file is the central area to set up aliases, functions, and customize the look 
and feel of your terminal. The .bashrc file is a shell script that loads when the terminal 
is loaded. If you are using Bash, you will have a .bashrc file, and a .zshrc file if you 
are using zsh. Within the .bashrc file, it is possible to do the following:

• Load modules:

module load <module>

• Modify an environment variable:

export PATH=$PATH:<path/to/dir>



26     Essential Skills for a DevOps Practitioner

• Activate a Python environment:

source <path/to/env>/bin/activate

• Set aliases:

Aliases are nicknames for commands, groups of commands, or scripts and can be added 
to the .bashrc file. Aliases are often created to make commonly used commands 
shorter. It is best practice to add aliases to a separate file called .bash_aliases, and 
then load .bash_aliases into .bashrc:

if [ -f ~/.bash_aliases ]; then

    . ~/.bash_aliases

fi

If your list of aliases is short, you can add them directly to the .bashrc file:

alias l="ls -l"

alias la="ls -la

Aliases can also be used to call functions:

alias dd=dockerdown()

dockerdown(){

  sudo docker rm -f $(sudo docker ps -a -q)

  sudo docker ps

  sudo docker rmi -f $(sudo docker images -q)

  sudo docker images

}

Another useful skill all DevOps engineers should have, and master, is the use of text 
editors within the terminal.

Text editors are command-line tools that allow you to directly edit files from the terminal 
window. Common flavors are vim, emacs, and nano. Most Linux distributions have 
vim installed by default. In the following example, we will show you how to edit your 
.bashrc file. To open your file in vi, type vi </path/to/file>. In the following 
example, the command was sudo vi .zshrc, which opens the .zshrc file in vim 
with sudo privileges:



Scripting, coding, and programming     27

Figure 2.2 – Bash terminal with the vi editor open

At this point, the file is opened in read-only mode. To enter edit mode, type I. To make 
your change, enter esc followed by w to save the file and q to close the editor.

Text editors are powerful but require some time to be mastered. If you need information 
on vi commands, you can find great resources on various online forums. A particular 
favorite of mine is https://ryanstutorials.net/linuxtutorial/
cheatsheetvi.php.

Scripting
Scripts are something DevOps engineers must be capable of creating and maintaining. 
The secret to getting a DevOps job is being able to solve scripting problems, which means 
practice. There are several scripting languages currently used by DevOps engineers. No 
one of them is better than another; instead, each of them is best suited for distinct types  
of jobs.

Pro Tip: Google Is Your Best Friend when Learning a New Language
If you are struggling with something, chances are someone else has already 
struggled with it, solved it, and written about it. Don't work harder; instead, 
work smarter and more efficiently.

https://ryanstutorials.net/linuxtutorial/cheatsheetvi.php
https://ryanstutorials.net/linuxtutorial/cheatsheetvi.php


28     Essential Skills for a DevOps Practitioner

Python
Python is heavily used in infrastructure automation and provisioning and has become an 
all-purpose scripting language in DevOps. It is favored by many because it is easy to get 
started with. However, it gets exponentially more difficult as your proficiency progresses. 
The following is the most basic Python script (helloworld.py):

Figure 2.3 – hello_world.py

Bash
Bash is the most used scripting language in the Unix/Linux environment and has a strong 
community that provides support. It is used to automate Linux servers around the world. 
The following is the most basic shell script (helloworld.sh):

Figure 2.4 – hello_world.sh

JavaScript
JavaScript is used as DevOps scripting to create network-centric applications. It is a 
lightweight DevOps scripting Language. JavaScript offers numerous advantages, including 
less server interaction, increased interactivity, immediate feedback to visitors, and richer 
interfaces. The following is the most basic JavaScript script (helloworld.js):

Figure 2.5 – hello_world.sh



Scripting, coding, and programming     29

Go
Go was introduced in 2009 and has drastically changed the DevOps landscape since 
its inception. Built on C, Go was created to be readable by humans and scalable. The 
following is the most basic Go script:

Figure 2.6 – hello_world.go

Pro Tip: Focus on Learning One Language at a Time
You set yourself up for disappointment if you try to learn multiple coding 
languages simultaneously. Unless circumstances require you to learn a new 
language, get proficiency in one language before moving on to the next.

There are tons of books and online resources you can choose from when learning new 
languages. A great way to practice is forking a project from GitHub and making changes 
to it. This is some of the most useful experience you can give yourself. If you would like 
to challenge yourself, you can try online sites designed specifically to prepare users for 
technical interviews, also offering a great way to upskill your coding game. Here are a 
couple of favorites:

LeetCode: https://leetcode.com/

AlgoExpert: https://www.algoexpert.io/

Other sites built around the type of problems you may see in an interview exist. Coding 
challenge sites can also help tremendously to increase your chances of success.

Now that we have covered various scripting languages, we need to cover when to modify 
existing code and when to write new code.

In this section, you learned about navigating text-based shells such as Bash, as well as how 
to modify existing files and create files using text editors within a shell. We also covered 
various scripting languages used by DevOps engineers and the best use cases for each.

https://leetcode.com/
https://www.algoexpert.io/


30     Essential Skills for a DevOps Practitioner

In the next section, we will cover version control and source code management.

Source code management 
Source Code Management (SCM) is the tool used to manage your code. Before we 
discuss SCM, it is crucial to understand Version Control (VC), which is the process used 
to manage your code. For this book, we will assume VC is synonymous with git.

Git
An astounding 87% of developers use git as their version control. Git is a distributed 
version control software initially designed by Linus Torvalds to manage the Linux kernel. 
The difference between git and svn is that the complete code history is stored on each 
individual node when using git versus a single source server when using svn. There are 
several things to consider when learning git:

• First: Git is available on almost every operating system – macOS, Windows, and 
Linux all have git versions available.

Getting Started with Git
Windows: https://gitforwindows.org/

macOS: https://git-scm.com/download/mac

Linux: https://git-scm.com/download/linux

• Second: There are multiple branching strategies. It is recommended that you spend 
time learning and practice managing your own projects using various strategies. 
Some common strategies are defined as follows:

Figure 2.7 – Basic git workflow

The basic git workflow has one branch, the main or Master branch. Developers commit 
directly to this branch and all deployments, regardless of the environment, are made from 
this branch. This is a workflow that is not recommended unless you need to get set up 
quickly or are working on a private side project.

https://gitforwindows.org/
https://git-scm.com/download/mac
https://git-scm.com/download/linux


Source code management      31

The following diagram is a graphical representation of the git feature branch workflow:

Figure 2.8 – Git feature branch workflow

The git feature branch workflow becomes necessary whenever there is more than one 
person working from the same code base. Both feature A and feature B can be created 
without the worry of affecting the other's ability to merge back to the Master branch.

Figure 2.9 – Git feature branch workflow with a Develop branch

The git feature workflow with the Develop branch is one of the most popular branching 
strategies. The Master branch is always in a state that is ready to be deployed to 
production, and developers can work on their own features without worrying about merge 
conflicts from other developers.

• Third: There are a lot of git commands and there is no way to memorize them  
all. We have included two approaches to help you feel more confident when  
starting out.



32     Essential Skills for a DevOps Practitioner

Add commonly used git commands as aliases to your .bash_profile file. The 
following is a snippet of code that can be added to your .bashrc file that combines three 
commands associated with git into a single gp alias:

Figure 2.10 – Git function example for .bashrc

The preceding gp alias takes two parameters: $1=file, or the path of files to the stage, 
and $2=commit message. The following output shows what is seen when you execute 
the gp alias. Let's break this down:

• shell_favorites is a local working directory tracked by git.

• The git stage command moves README.md into the local staging area.

• The git commit –m command commits the README.md file to the local 
repository with a commit message, which is test100721 in our example.

• The git push command pushes the changes that are in your local repository to 
the remote repository that shell_favorites is tracked to.



Source code management      33

In the following figure, you can see the output the gp alias would result in:

Figure 2.11 – git push terminal output

Pretty sweet, no? Adding git aliases won't make you a better developer but it can simplify 
your life.

My next secret to success with git for beginners is having a list of commonly used git 
commands close at hand at all times – a git cheat sheet. A favorite of mine is the one by 
the education group of GitHub: https://education.github.com/git-cheat-
sheet-education.pdf.

SCM
Popular SCM tools include GitHub, GitLab, and Bitbucket. 

GitHub: https://www.github.com

GitLab: https://about.gitlab.com/

Bitbucket: https://bitbucket.org/

Each of these SCM tools has unique features to help improve developers' experiences and 
are designed to be user-friendly and easy to use. The reason these solutions tend to be easy 
to use is the rich UI each has developed for the user. You can use any of these tools for 
free by signing up on their websites! Regardless of the SCM tool you choose, the version 
control is still git.

https://education.github.com/git-cheat-sheet-education.pdf
https://education.github.com/git-cheat-sheet-education.pdf
https://www.github.com
https://www.github.com
https://www.github.com
https://about.gitlab.com/
https://bitbucket.org/


34     Essential Skills for a DevOps Practitioner

In the following table, we will compare the three most popular SCM tools available as  
of 2021:

Table 2.1 – SCM comparison

At the end of the day, there really is no bad choice as long as you are learning.

In this section, you learned about git, common git patterns, and common git 
commands. We also discussed options available for source code management software.

In the next section, you will learn about infrastructure tools and techniques needed to be 
successful as a DevOps engineer.

Infrastructure management
Gartner defines IT infrastructure this way:

IT infrastructure is the system of hardware, software, facilities, and service 
components that support the delivery of business systems and IT-enabled 

processes.
Infrastructure management can be broken down into three key stages: capacity planning, 
infrastructure provisioning, and deployment, as can be seen in the following diagram:



Infrastructure management     35

Figure 2.12 – Infrastructure management stages

The first stage in infrastructure management is capacity planning, which will be  
covered next.

Capacity planning 
Capacity planning is the first step in infrastructure management and is followed by 
provisioning and deployment. Several tools can help with collecting the data needed to 
accurately plan resources as collecting accurate data is crucial to do so. Tools used during 
capacity planning are Splunk, the ELK (Elasticsearch, Logstash, Kibana) Stack, and New 
Relic. Continuous capacity planning is required to scale up and scale down resources 
based on demand in production.

Auto-scaling resources have two benefits, cost savings and better performance. When 
a resource is scaled down, it is removed from usage, which means it no longer incurs 
charges. When resources are scaled up, additional resources are added before performance 
degradation occurs.



36     Essential Skills for a DevOps Practitioner

Infrastructure provisioning 
After capacity numbers are successfully collected and analyzed, we can move on to 
infrastructure provisioning. Provisioning involves the creation, allocation, and deletion of 
infrastructure resources based on the derived capacity numbers from capacity planning. 
Infrastructure resources include servers, containers, storage, networks, IPs, and load 
balancers that can be created and managed on cloud service providers such as AWS, 
Azure, GCP, or on-premises.

A DevOps engineer needs to know how to manage infrastructure resources in the cloud 
and on-premises environments depending on the company's architecture. In the following 
examples, you will be shown boilerplate code for creating AWS EC2 instances using 
CloudFormation, Terraform, and Ansible.

If the organization is managing resources on AWS, then AWS CloudFormation may 
be used to automate the creation/allocation/deletion of infrastructure resources. The 
following is a boiler template for CloudFormation used to provision an EC2 instance:

Figure 2.13 – CloudFormation example



Infrastructure management     37

To learn more about CloudFormation, visit https://docs.aws.amazon.com/
AWSCloudFormation/latest/UserGuide/Welcome.html. If your organization 
is managing resources across multiple cloud services, providers such as AWS, Azure, GCP, 
and Terraform can be used to automate the creation/allocation/deletion of infrastructure 
resources. The following is a Terraform file that could be used to provide an EC2 instance:

Figure 2.14 – Terraform example

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html


38     Essential Skills for a DevOps Practitioner

Ansible can also be used to provide resources spread across various environments  
both on-premises and in the cloud. The following example will create an EC2 instance 
with the following variables passed in: MY_KEY, EC2_TYPE, IMAGE, GROUP, COUNT,  
and VPC_SUBNET:

Figure 2.15 – Ansible example

Now, we will talk about deployment.

Deployment
After infrastructure has been provisioned, proceed to the deployment stage. Deployment 
involves installing, configuring, releasing, and managing software services on the servers 
or containers that serve the production workload. Deployment is a process that occurs 
within the servers or containers that are created or allocated during the automated 
provisioning of infrastructure resources. A DevOps engineer can use automation tools 
such as Chef, Ansible, and Salt to automate the deployment of software services.



CI/CD concepts     39

CI/CD concepts
Continuous Integration (CI) and Continuous Delivery (CD) are synonymous with 
DevOps. This is because every practice discussed in Chapter 1, Career Paths – plan, code, 
build, test, release, deploy, and operate – is included in the infinite CI/CD loop, as shown 
in Figure 2.16:

Figure 2.16 – Infinite CI/CD loop

Let's first examine CI and the related practices and tools associated with it.

Continuous integration
Continuous integration is the process of merging code changes from multiple developers 
into a single branch on a regular and frequent basis. To do this effectively, you need some 
form of automation that builds your code and executes a battery of tests against it. CI 
servers help to effectively integrate your code using CI pipelines. 



40     Essential Skills for a DevOps Practitioner

After a developer makes a change, code changes are committed to a source code 
management system by using git. The CI server has a built-in listener (hook) to trigger  
a build whenever code is committed. The pipeline creates a new build and runs a battery 
of tests against the build. The tests include static code analysis, dynamic code analysis, 
secret detection, and vulnerability scans, as well as functional and integration tests. The 
following figure shows how a CI server interacts with several aspects of the development 
life cycle:

Figure 2.17 – CI pipeline

Continuous integration servers include Jenkins, Travis CI, CircleCI, and GitLab. 

Each of these offers similar functionality with slight differences in the user interface and 
the language required to write the pipeline.

Jenkins
The first CI software we will discuss is the most widely used, Jenkins. Jenkins has a large 
community and many features due to it being open source, which is why it is also free 
to use. Some drawbacks to Jenkins are the overhead to maintain it as well as a complex 
pipeline design. Jenkins pipelines use Groovy, which is an offshoot of Java. The following 
is the controller-agent architecture used with Jenkins CI:



CI/CD concepts     41

Figure 2.18 – Jenkins architecture

GitLab
GitLab is both an SCM and CI tool. GitLab CI is new as of 2014, but its user base has 
grown exponentially since its release. GitLab CI uses the runner concept, which means 
each job runs in its own container-based executor. It offers a wide range of security 
tools. It can be difficult to manage if you run it on-premises. You can see in the following 
diagram that there are many servers that need to be managed and configured. However, 
GitLab also offers a Software as a Service (SaaS) option for smaller companies looking 
to get started more quickly. GitLab is YML-based, making it quite easy to write and 
understand pipelines. The following architecture diagram is one viable option to 
implement GitLab within an organization:

Figure 2.19 – GitLab architecture



42     Essential Skills for a DevOps Practitioner

Continuous delivery
Continuous delivery is an extension of continuous integration. After the build stage, code 
changes are delivered to higher environments such as stage, test, preprod, and prod. With 
continuous delivery, an automated release process must be in place as well. The following 
diagram shows the CI server stages identified as being a CI or CD task:

Figure 2.20 – CI/CD pipeline

Continuous integration and continuous delivery are advanced skills that you will gain 
over time. If you are looking for entry-level DevOps engineering roles, chances are they 
are not going to require you to have practical experience with CI/CD. However, it will be 
expected that you are able to discuss it and show an interest in it as it will likely be a large 
portion of your job. A good way to get started with CI/CD is to incorporate a pipeline into 
one of your code repositories. Have fun learning!

Cloud-native frameworks
Cloud-native is an approach to software development that leverages the capabilities of  
the cloud, both public and private. DevOps engineers will be involved in the use of  
cloud-native technologies in any career they choose, making it a very important and 
sought-after skill.



Cloud-native frameworks     43

The Cloud Native Computing Foundation's (CNCF) Cloud-Native 
Definition:
Cloud-native technologies allow everyone to use immutable technologies 
with modern environments. Containers, service meshes, microservices, 
immutable infrastructure, and declarative APIs personify this approach and 
enable independent applications that are fault-tolerant and easy to manage. 
With automation, they enable engineers to make frequent changes with little 
disruption.

Cloud-native has several advantages, including faster development times and the ability to 
respond to customers more quickly.

Containers
A container is a lightweight purpose-built application that has been packaged with all the 
required dependencies for runtime so it can easily be run on any operating system in any 
environment with few changes needed. Multiple containers can run on the same machine 
while running as segmented processes in the user space. Containers take up less space 
than VMs, can handle more applications, and require fewer VMs and operating systems. 
The following is a diagram that compares the infrastructure needed for multiple VMs 
versus multiple containers:

Figure 2.21 – Container and VM comparison



44     Essential Skills for a DevOps Practitioner

Docker exercise
In the following exercise, we will go through a basic Docker example, which can be done 
on your own computer.

The steps are as follows:

1. Follow this tutorial to install Docker on your machine: https://docs.docker.
com/get-docker/.

2. Create a Dockerfile:

touch Dockerfile

3. Add content to the Dockerfile using the vi editor:

Figure 2.22 – Dockerfile
After you have added the previous four lines to your file, make sure to save the file 
using :w and then exit vi using :q.

The following is the Docker image:

https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/


Cloud-native frameworks     45

Figure 2.23 – Docker images
If you would like to see what exactly is happening during the build, you can omit 
the –- quiet command. After the image is built and tagged, you can see that the 
base alpine image along with the DevOps book image is available. 

4. Run your container with the interactive terminal command:

Figure 2.24 – interactive terminal command
The –it command runs the container with an interactive terminal, meaning a 
terminal session for the container will be opened, allowing you to interact with the 
container.

5. Stop and remove all containers and images from your machine:

Figure 2.25 – Docker image removal



46     Essential Skills for a DevOps Practitioner

In this chapter, you learned about containers and the role they play in DevOps. If you 
followed along with the exercise, you will have created a Dockerfile, created a Docker 
image, and run the Docker image on your computer! Hopefully, this has made you 
interested in continuing to learn more about Docker as the rabbit hole goes deep!

Microservice architecture
Before looking at the desired architecture, we'll cover other dated architectures.

Monolithic
We will first cover the monolithic architecture, which shares a single code base and 
database. Because nothing is separate, everything must be released/deployed at the 
same time, which leads to long lead times between customer requests and them making 
it to production. I have worked at several companies and every one of them has had 
monolithic applications. There is a good chance you will run across this in your career.

Service-oriented
Service-oriented architecture (SOA) was a step in the right direction – it broke 
code down by services, which decreased the effort and time it took to get changes to 
production. Service-oriented architecture is prone to similar problems that a monolithic 
architecture has, such as interdependencies that require the entire application to be rebuilt 
even when a single service is checked in. Most of the companies I have worked with have 
had applications that use SOA.

Microservice
Microservice architecture has exploded in popularity due to large tech giants such as 
Amazon, Netflix, and Google publishing success stories about its use. The key differences 
between SOA and microservices are the communication protocols, storage, and size. 
Firstly, microservices use a language-agnostic protocol to communicate with the UI, 
resulting in a higher number of remote calls but also much higher fault tolerance. 
Secondly, each microservice has its own storage/database, which means each microservice 
can be designed with the right-fit database for its needs versus using the same database 
that is used for the entire application. Lastly, the size and lack of interdependence are what 
really separates a microservice from an SOA. A microservice can be deployed at any time 
and have no effect on other components. SOA shares a database and individual services 
still maintain some dependencies, which does not allow for the deployment of the service 
individually. Most companies are striving for a microservice architecture, which is why it 
is a key skill to have.



Cloud-native frameworks     47

In the following diagram, you can see how monolithic, SOA, and microservice 
architecture compare:

Figure 2.26 – Architecture comparison

Next, we will move on and discuss the importance of soft skills for DevOps engineers.

Soft skills
Soft skills are defined as personal attributes that enable someone to interact effectively and 
harmoniously with other people. The tides are changing, and DevOps engineers can no 
longer expect to succeed solely based on technical abilities. The following are a few of the 
most important soft skills for a DevOps engineer.

Empathy
With regard to DevOps, empathy is the ability to understand coworkers' and clients' 
points of view, or rather, the ability to view a situation from someone else's shoes. 
Approach your colleagues with a calm demeanor. This will lead to a much more pleasant 
work environment where new ideas flourish. If your idea differs from your colleague's or 
client's, start with positive feedback about their idea and work your way on to what you 
disagree with. Developing empathy with your coworkers ensures everyone's ideas are 
heard and issues that may be present can be resolved. Developing empathy with clients 
ensures all feedback is captured and a satisfactory end solution is reached.



48     Essential Skills for a DevOps Practitioner

Teamwork
Working in a team setting allows for multiple sets of eyes to view code at the same time. 
Working together ensures everyone remains on the same page and that a coherent product  
is delivered.

Adaptability
Tech is continuously changing and, as a DevOps engineer, you must prove you are good 
at changing gears, whether it be learning a new language or quickly shifting priorities. 
During an interview, you can discuss how you are learning a new programming language 
or how you have partnered with various departments while solutioning your last project. 
If you are unwilling to change, you will not succeed in DevOps.

Good communication
Good communication includes everything from in-person conversation to Slack 
messages. As a DevOps engineer, you will likely be working with team members who are 
fully remote, in different time zones, and coming from different cultures. So, you must be 
able to communicate effectively in each of these cases. Remember, people are busy, so pick 
the method that is going to be most efficient and effective.

Without strong soft skills, it will be difficult to land a job. DevOps is a team sport that 
requires you to collaborate with many different people in an environment that changes 
quickly. There is no room for drama or ego; everyone's opinion matters, and you need to 
respect that.

Beginner DevOps certifications
Like other industries, DevOps has seen an increase in the number of certifications that 
are available to practitioners. Certificates are a great way to showcase the knowledge you 
have, but they do not replace experience and are not required or mandatory to get a job as 
a DevOps engineer. DevOps certifications can help you stand apart from other candidates 
during the interview process. They also show your desire to continuously learn. When 
it comes to review time, you can use new certifications you have received since your last 
review as leverage for more merit. The following is a list of different certificates you can 
opt for:



Beginner DevOps certifications     49

AWS certifications
AWS offers a few entry-level certifications for DevOps engineers, starting with the AWS 
Cloud Practitioner certification, which requires about 6 months of hands-on experience 
with AWS. After you finish your AWS Cloud Practitioner exam, you can begin preparing 
for the AWS Associate Architect exam. The following are the certifications offered:

• AWS Cloud Practitioner (https://aws.amazon.com/certification/
certified-cloud-practitioner/)

• AWS Associate Architect (https://aws.amazon.com/certification/
certified-solutions-architect-associate/)

Google Cloud certifications
For Google, there is no generic beginner certification, but the Associate Cloud Engineer 
certification is a good introduction to GCP.

Associate Cloud Engineer (https://cloud.google.com/certification/
cloud-engineer)

Azure certifications
For Azure, there is a fundamentals certification that covers a lot of the basics. There are 
several more, but we will cover more cloud certifications in the Specialized competencies 
section in the next chapter.

Fundamentals (https://docs.microsoft.com/en-us/learn/
certifications/exams/az-900)

Other resources
For beginner content, there are a lot of courses from Udemy, EdX, and Coursera as well, 
depending on the specific areas you are interested in. Certifications that cover Docker, 
Terraform, and Kubernetes, as well as the advanced cloud specialties and professional 
certifications, will be covered in the following chapter.

https://aws.amazon.com/certification/certified-cloud-practitioner/
https://aws.amazon.com/certification/certified-cloud-practitioner/
https://aws.amazon.com/certification/certified-solutions-architect-associate/
https://aws.amazon.com/certification/certified-solutions-architect-associate/
https://cloud.google.com/certification/cloud-engineer
https://cloud.google.com/certification/cloud-engineer
https://docs.microsoft.com/en-us/learn/certifications/exams/az-900
https://docs.microsoft.com/en-us/learn/certifications/exams/az-900


50     Essential Skills for a DevOps Practitioner

Summary
In this chapter, you learned the basic skills required to succeed as an entry-level DevOps 
engineer. The skills included navigation of a text-only terminal such as Bash, automation 
using various scripting languages, and understanding Git and source code management. 
You also learned about the basics of infrastructure management tools such as Ansible and 
Terraform, as well as gaining an understanding of CI and CD and pipelines. 

In the next chapter, you will dive deeper into the skills required for various DevOps 
specialty roles.



3
Specialized Skills for 

Advanced DevOps 
Practitioners

As DevOps engineers progress in their career-specific areas, they may stand out either as 
a result of their natural ability or skills or on account of their strong liking for the subject. 
This leads DevOps engineers down a specialized career path. The focus of this chapter will 
be on the skills required for entry into different DevOps specialties.

Mid–Senior Level Content
This chapter is full of useful information for anyone interested in the field of 
DevOps; however, it is geared for DevOps engineers who have been practicing 
for a minimum of 1-3 years. This chapter assumes that individuals already have 
the knowledge listed in the previous chapter.

In this chapter, the following specialized DevOps competencies will be covered:

• CI/CD pipeline DevOps engineer

• Infrastructure as code

• Cloud and application modernization



52     Specialized Skills for Advanced DevOps Practitioners

• Containers and container management

• Security

• Advanced DevOps certifications

• Competency matrix

CI/CD pipeline DevOps engineer
A CI/CD pipeline DevOps engineer is responsible for the end-to-end automation of the 
developer's code through to production. The strategy developed by the CI/CD engineer 
is a central focus for a company's DevOps roadmap. Revisiting the infinite DevOps loop 
from the previous chapter, you are reminded that all stages of DevOps are included in the 
CI/CD cycle, as seen in the following diagram:

 

Figure 3.1 – Infinite DevOps cycle

One of the most in-demand skills for a CI/CD DevOps engineer is the ability to create, 
maintain, and promote the adoption of a shared pipeline library.

Maintaining a shared pipeline library
The CI/CD pipeline engineer will maintain the shared pipeline library and all the 
standards and practices that are associated with the CI tools for every stage of the  
DevOps life cycle.



CI/CD pipeline DevOps engineer     53

CI Tool Management
Depending on the size of the company, responsibility for CI tool management 
may fall on the pipeline engineer; for this book, we will cover tool management 
in the Cloud and application modernization section.

To maintain the shared pipeline, DevOps engineers must have an expert-level 
understanding of the pipeline tools and pipeline architecture. Maintaining the shared 
pipeline library also involves managing and maintaining an inner-sourced project. As 
innovative ideas are proposed to be added to the pipeline, it is the role of the DevOps 
engineer to ensure it is implemented correctly.

Definition: Inner Source
Inner source is the use of open source software development best practices and 
the establishment of an open source-like culture within organizations for the 
development of its non-open source and/or proprietary software.

The following diagram is a graphical representation of how a shared pipeline library  
could work:

Figure 3.2 – Shared pipeline library



54     Specialized Skills for Advanced DevOps Practitioners

A lot is going on in the preceding diagram; first, we have a shared pipeline library that 
has different component modules in it that can be used by various products. We have a 
developer who developed some new functionality that they thought would be useful for 
the rest of the company, so they opened a pull request, which needs to be reviewed by the 
CI/CD DevOps engineer before it officially becomes part of the library. Lastly, you can see 
two distinct products using components of the shared library in their own pipelines. 

Ownership of integrations with the pipeline
A DevOps pipeline engineer needs to have a vast knowledge of tooling at all stages of  
the pipeline. The following diagram shows many of the tools available at various stages  
of the pipeline:

Figure 3.3 – CI/CD tools

The preceding diagram is meant to demonstrate the vast number of tools available at each 
stage of the CI pipeline. A valuable resource that allows you to view and examine each 
tool is digital.ai's periodic table of DevOps tools (https://digital.ai/periodic-
table-of-devops-tools).

https://digital.ai/periodic-table-of-devops-tools
https://digital.ai/periodic-table-of-devops-tools


Infrastructure as code      55

The CI/CD DevOps engineer is responsible for ensuring that the various tools can be 
integrated into the company's pipeline. Modules for connecting to the tool's API must 
be developed and then the solution must be presented to a security review to ensure 
that it meets companies' standards. Once it is part of the pipeline, the CI/CD engineer is 
responsible for ongoing support of the various integrations as the tool's version and API 
changes.

In this section, you learned that a CI/CD DevOps engineer must be knowledgeable in all 
phases of the CI/CD life cycle and have an understanding of the various tools used in each 
of the stages.

In the next section, we will cover the skills required to be successful as a DevOps 
infrastructure engineer.

Infrastructure as code 
A DevOps infrastructure engineer is responsible for provisioning, managing, and 
maintaining the infrastructure used within a company's various applications. Oftentimes, 
referred to as the Infrastructure as Code (IaC) engineer, the IaC engineer works closely 
with the architects and must have good relationships with many diverse groups. In this 
section, we will cover the skills required to be successful as a DevOps IaC engineer as well 
as the tools you will need to have a deep understanding of the role.

Network infrastructure design
DevOps IaC engineers partner closely with architects and, in some cases, play the role of 
the architect for many projects.

Network Infrastructure Design: Definition
Network infrastructure design is a process comprising network synthesis, 
topological design, and network realization, aimed at ensuring that a network 
or service meets the needs of the operator and subscriber.

Storage management
DevOps IaC engineers need to be knowledgeable on the broad topic of storage 
management and optimization. Storage management covers volume migration, process 
automation, disaster and recovery, replication, auto-provisioning, snapshot and mirroring, 
storage virtualization, and compression.



56     Specialized Skills for Advanced DevOps Practitioners

Containerization (Docker and Kubernetes)
DevOps engineers need to be familiar with containers; however, DevOps engineers 
specializing in infrastructure management will need to be comfortable with the 
orchestration and management of large Docker and Kubernetes clusters. Tools such as 
Terraform and Ansible can be used to help with this.

The topic of containerization will be covered in much more detail in the Containers and 
container management section of this chapter.

Site Reliability Engineering
Site Reliability Engineering (SRE) focuses on system availability and reliability and was 
coined by Ben Treynor of Google in 2003. The goal of SRE is the same as DevOps – to 
bridge the gap between development and operations. If you work for a large organization, 
SRE and DevOps will be separate entities on account of their goal and focus; however, 
the skills required for both SRE and a DevOps engineer focused on infrastructure will 
be remarkably similar. SRE has a focus on keeping systems running and available while 
DevOps aims to reduce the time to market and allow for rapid changes. In the following 
diagram, the items that should account for the most time are the foundation of the SRE 
hierarchy:

Figure 3.4 – SRE hierarchy



Cloud and application modernization     57

The preceding diagram illustrates how the foundation of SRE is a proactive, monitoring-
based approach, followed by quick and thorough incident response and detailed no-blame 
postmortems. The idea behind SRE is to find and remediate problems quickly, followed by 
changes to avoid the same issue in the future.

In this section, we scratched the surface of a deep and interesting subject. If you are 
interested in learning more about SRE, you should take a look at the book on SRE 
published by Google: https://sre.google/sre-book/table-of-contents/. 
In the last section of this chapter, we will list several certifications that will apply to a role 
in SRE.

In this section, you learned what is required to be a DevOps engineer specializing 
in infrastructure. You need skills in network design, storage management, SRE, and 
containerization.

In the next section, we will cover the skills required by a DevOps engineer who specializes 
in cloud and application modernization.

Cloud and application modernization
In this section, you will learn about cloud and application modernization, and the special 
role that exists for DevOps engineers in this space. First, we will cover the advanced cloud 
knowledge required, followed by cloud modernization techniques.

DevOps leaders need to adjust to a new demand for updated services while maintaining, 
operating, and improving their existing application portfolios. This new demand comes 
from modern technology, which is being introduced with increasing frequency. There are 
many application modernization approaches (including rehost, replatform, and replace) 
with different purposes, effects, values, costs, risks, and impacts.

https://sre.google/sre-book/table-of-contents/


58     Specialized Skills for Advanced DevOps Practitioners

Advanced cloud skills
To be a DevOps cloud engineer, you must have strong scripting skills in addition to an 
in-depth understanding of cloud platforms. You need to understand how different cloud 
products function and work together. The following diagram contains something that 
comes in handy if you are working in an area that has a multi-cloud environment:

Figure 3.5 – Cloud provider comparison

I am very comfortable with Amazon terminology; when I needed to work in GCP, it was 
handy to have a cheat sheet nearby. The methodology is the same; the terminology is 
vastly different across cloud providers.

Another thing that DevOps cloud engineers need to be capable of is provisioning and 
deploying to cloud resources; this is another thing that varies greatly between different 
cloud providers. Understanding the cloud provider CLI is also very important as a 
DevOps engineer. You will rarely interact with resources via the graphical user interface 
(GUI); instead, you will use the CLI tool or API to make calls to various cloud offerings. 
The following links relate to the documentation pertaining to the various cloud CLI tools:

• GCP: https://cloud.google.com/sdk

• AWS: https://aws.amazon.com/cli/

• Azure: https://docs.microsoft.com/en-us/cli/azure/install-
azure-cli

https://cloud.google.com/sdk
https://aws.amazon.com/cli/
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli


Cloud and application modernization     59

In the next section, we will go through another aspect of cloud specialty – application 
modernization. The topic is dense and there is no effective way to get good at it without 
practicing it; however, Gardner provides some useful resources for individuals looking to 
learn more.

Application modernization
As a DevOps engineer who specializes in cloud and application modernization, evaluating 
the driving force behind the need for modernization is crucial. The driving force can be 
broken down into the demand and supply sides:

• Supply side:

 � Fit: Lacking the ability to implement new requirements

 � Value: Lacking in terms of the value, quality of support, and information it 
provides

 � Agility: Lacking the ability to make changes quickly with an acceptable level  
of risk

• Demand side:

 � Cost: The cost of ownership is high in relation to the value it provides.

 � Complexity: Complexity causes maintainability and increases risk when  
making changes.

 � Risk: Security, compliance, supportability, or scalability risk.

After a DevOps engineer has gone through and evaluated the system and determined the 
issue, the causes must be identified.



60     Specialized Skills for Advanced DevOps Practitioners

Choosing a modernization approach
The cause for modernization can be broken down into three main categories: functionality, 
technology, and architecture. Once the cause is determined, the DevOps engineer must 
decide on the best approach for modernization. The following is a diagram showing the 
different modernization approaches with respect to their effort and complexity:

Figure 3.6 – Gartner's modernization approaches' ability to remediate the cause

As a DevOps engineer who specializes in cloud and application modernization, you will 
be required to have an in-depth understanding of different modernization approaches. 
Gartner published an article, https://www.gartner.com/doc/reprints?id=1-
25RJ3RG2&ct=210408&st=sb, which covers in detail each of the aforementioned 
approaches.

In this section, we covered the skills required for a DevOps engineer specializing in 
application modernization as well as the cloud. A DevOps engineer specializing in the 
cloud must be extremely comfortable provisioning and deploying to cloud applications. 
DevOps engineers will need to have a strong understanding of the cloud API and CLI 
functionality as well as understanding how cloud offerings compare to other cloud 
providers. Additionally, DevOps engineers specializing in the cloud may be required to 
aid in application modernization projects.

In the next section, I will discuss the skills required to be successful as a DevOps engineer 
specializing in containers.

https://www.gartner.com/doc/reprints?id=1-25RJ3RG2&ct=210408&st=sb
https://www.gartner.com/doc/reprints?id=1-25RJ3RG2&ct=210408&st=sb


Containers and container management     61

Containers and container management
Container management, orchestration, and maintenance are skills all DevOps engineers 
must be competent in; however, with cloud-native Kubernetes and other cloud 
orchestration tools, it has quickly become a specialty field. In this chapter, we will cover 
the skills required to succeed as a DevOps engineer specializing in container management. 

What It Takes to Be a Container Specialist
The ability to pioneer, adopt, and own new container methodologies is the one 
skill that separates a generalist from a container management specialist.

Container management software
DevOps engineers who specialize in containerization must be highly skilled in container 
management software. The most widely used software for container management include 
Docker and Kubernetes. The purpose of container management software is fivefold; 
automation, monitoring, security, scaling, and deployment for containers. We will cover 
the automation aspect first:

• Container automation: The automation of container orchestration encompasses 
and covers monitoring, security, scaling, and deployment at an elevated level. 

• Monitoring: Containers require monitoring, such as liveliness probes, which are 
tied to monitoring dashboards and alarms that can be used to spot and remediate 
problems sooner. There are several tools that can be used for monitoring, including 
Prometheus, Dynatrace, and Datadog.

• Security: Container security is the most critical concern for a DevOps engineer as 
the entire application is exposed if the container is compromised. To ensure that 
your container ecosystem is secure, first ensure that the base images being used are 
secure. Make sure the container images are signed from trusted sources, that the 
runtime operating system layer is up to date, and ensure that you have a patching 
strategy in place to update the image. Next, you need to ensure that your images are 
stored in a secure location with policy-based authentication to reduce the chance of 
human errors being introduced into the containers. Integrating security testing and 
scans and automating the deployment process is another way to mitigate risk. Tools 
such as Twistlock can help with this. Scanning the container allows for containers to 
be rebuilt and redeployed instead of trying to patch running containers. 



62     Specialized Skills for Advanced DevOps Practitioners

• Scaling: Containers, by design, are immutable, which means that code cannot 
be changed following deployment. A benefit of containers is that with proper 
configuration and monitoring, scaling the number of instances of a certain 
component up or down is an easy task. The hard part is determining the limits for 
when such scaling should occur.

This section described what is required to be a DevOps engineer who specializes in 
containers. In the conclusion to this section, I leave you with a few hands-on tutorials I 
used while learning Kubernetes:

• Kubernetes the hard way: https://github.com/kelseyhightower/
kubernetes-the-hard-way

• Kubernetes training course: https://www.udemy.com/course/certified-
kubernetes-application-developer/

In the next section, we will cover what is required to succeed in the field of DevSecOps, or, 
in other words, a DevOps engineer specializing in security.

Security
A DevOps engineer who specializes in security is often referred to as a DevSecOps 
engineer. DevSecOps engineers have a deep understanding of the CI/CD process as well.

Security Is Everyone's Responsibility 
Security is everyone's job. Anyone who has any stake in delivering the software 
has a role in ensuring the application's security.

The job of a DevOps security engineer is to ensure that security is built in and included 
from the onset of a project.

DevOps engineers specializing in security have responsibilities that are broken down 
into two areas: CI/CD processes and environment and data. We will first look at CI/CD 
process security and the skills required to implement it.

https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://www.udemy.com/course/certified-kubernetes-application-developer/
https://www.udemy.com/course/certified-kubernetes-application-developer/


Security     63

CI/CD process security
Let's revisit the pipeline discussed earlier; numbers have been added to the following 
diagram to correlate to the following security items:

• Container scanning (1): Container scanning should be added to the process of 
bringing new containers into your registry. Tools such as Twistlock are commonly 
used. The most popular container scanning tool is Twistlock; however, there are 
many others as well and these can be seen here: https://techbeacon.com/
security/17-open-source-container-security-tools.

• Security testing (2): This includes running security static analysis testing (SAST) 
tools as part of builds, as well as scanning any pre-built container images for known 
security vulnerabilities as they are pulled into the build pipeline. In the following 
example, the libraries are part of the compliance module. Many tools exist, both 
open source and paid, when it comes to SAST tools.

• Security acceptance testing (3): This type of testing is known as dynamic 
application security testing (DAST). The purpose is to test for security 
vulnerabilities dynamically while the application is running. A comprehensive 
tools list in this category can be found here: https://owasp.org/
www-community/Vulnerability_Scanning_Tools.

• Patching and security updates (4): Patching and security updates should have a 
pipeline so that they can run automatically and at a scheduled cadence. The tools 
that can be used vary greatly. In my experience, the best patching tool is sometimes 
a simple script executed in a pipeline. Do your own research and form your own 
opinions.

https://techbeacon.com/security/17-open-source-container-security-tools
https://techbeacon.com/security/17-open-source-container-security-tools
https://owasp.org/www-community/Vulnerability_Scanning_Tools
https://owasp.org/www-community/Vulnerability_Scanning_Tools


64     Specialized Skills for Advanced DevOps Practitioners

• Configuration management (5): The purpose of this is to ensure that all 
infrastructure follows company security and compliance policies. Oftentimes, this is 
run when infrastructure is provisioned or after config changes have been applied.

Figure 3.7 – CI/CD security

Integrating security into CI/CD pipelines is tricky as it requires domain knowledge as 
well as tool-specific knowledge and an understanding of industry security best practices. 
One article that helped me better understand compliance pipelines can be found at 
the following link: https://itrevolution.com/book/devops-automated-
governance-reference-architecture/. In the next section, we will cover the 
areas DevSecOps engineers need to focus on to ensure environment and data security.

https://itrevolution.com/book/devops-automated-governance-reference-architecture/
https://itrevolution.com/book/devops-automated-governance-reference-architecture/


Environment and data security     65

Environment and data security
The various environments and associated data are a company's most precious and 
vulnerable assets if not protected correctly. It is the DevOps engineer's job to ensure the 
best practices are implemented in an automated and scalable fashion. The following are a 
few concepts that will help drive further research on the topic:

• Principle of least trust and zero trust: Processes and applications are granted 
the minimum access they require to operate properly. It sounds simple but it is 
quite a large undertaking as each account needs to be audited to ensure it has 
correct access. The principle of least privilege is a core part of the zero-trust model; 
however, the zero-trust model is more comprehensive and is more stringent. Also, 
zero trust is more complicated to implement and maintain as many more access 
policies are needed. The following diagram shows the three principles of zero trust; 
verify explicitly, use least privilege access, and assume breach:

Figure 3.8 – Zero-trust principles

• Principle of isolation: The principle of isolation applies to containers running  
in a microservices architecture. The principle of isolation has several components, 
including isolation of state, isolation of space, isolation of time, and isolation  
of failure.

• Data encryption: A container orchestration platform with integrated security 
features helps minimize the chance of unauthorized access.

• Secure API gateways: Secure APIs increase authorization and routing visibility.  
By reducing exposed APIs, organizations can reduce attack surfaces.



66     Specialized Skills for Advanced DevOps Practitioners

Advanced DevOps certifications
As you progress as a DevOps engineer, the number of certifications available to you 
increases as well. Certifications are rarely required to get a job in a specialized DevOps 
role, but they do offer a quick picture of the skills and expertise you possess as well as 
showing your dedication to your industry.

AWS certifications
AWS offers several advanced certifications based on what career track you are on. Most 
advanced AWS certifications require a minimum requirement of possessing the AWS 
Cloud Practitioner certification. The following is a list of the certifications offered:

• AWS Certified Solutions Architect – Professional (https://aws.
amazon.com/certification/certified-solutions-architect-
professional/)

• AWS Certified DevOps Engineer – Professional (https://aws.amazon.com/
certification/certified-devops-engineer-professional/)

• AWS Certified Security – Specialty (https://aws.amazon.com/
certification/certified-devops-engineer-professional/)

Google Cloud certifications
Google offers several advanced certifications related to DevOps depending on what 
specialty you are interested in. The following is a list of the certifications offered:

• Professional Cloud Architect (https://cloud.google.com/
certification/cloud-architect)

• Professional Cloud DevOps Engineer (https://cloud.google.com/
certification/cloud-devops-engineer)

• Professional Cloud Security Engineer (https://cloud.google.com/
certification/cloud-security-engineer)

• Professional Cloud Network Engineer (https://cloud.google.com/
certification/cloud-network-engineer) 

https://aws.amazon.com/certification/certified-solutions-architect-professional/
https://aws.amazon.com/certification/certified-solutions-architect-professional/
https://aws.amazon.com/certification/certified-solutions-architect-professional/
https://aws.amazon.com/certification/certified-devops-engineer-professional/
https://aws.amazon.com/certification/certified-devops-engineer-professional/
https://aws.amazon.com/certification/certified-devops-engineer-professional/
https://aws.amazon.com/certification/certified-devops-engineer-professional/
https://cloud.google.com/certification/cloud-architect
https://cloud.google.com/certification/cloud-architect
https://cloud.google.com/certification/cloud-devops-engineer
https://cloud.google.com/certification/cloud-devops-engineer
https://cloud.google.com/certification/cloud-security-engineer
https://cloud.google.com/certification/cloud-security-engineer
https://cloud.google.com/certification/cloud-network-engineer
https://cloud.google.com/certification/cloud-network-engineer


Advanced DevOps certifications     67

Azure certifications
Azure offers numerous advanced certifications, including one in DevOps and one in 
security technologies. The path to DevOps certifications is AZ-900, AZ-104, and then 
AZ-400. The path for an architect is AZ-90, AZ-300, and then AZ-304. The path for 
security is AZ-900 followed by AZ-500. The following is a list of the certifications offered:

• Microsoft Azure Administrator (https://docs.microsoft.com/en-us/
learn/certifications/exams/az-104)

• Microsoft Azure Architect Technologies (https://docs.microsoft.com/
en-us/learn/certifications/exams/az-303)

• Designing and Implementing Microsoft DevOps Solutions (https://docs.
microsoft.com/en-us/learn/certifications/exams/az-400)

• Microsoft Azure Architect Design (https://docs.microsoft.com/en-us/
learn/certifications/exams/az-304)

• Microsoft Azure Security Technologies (https://docs.microsoft.com/
en-us/learn/certifications/exams/az-500)

Kubernetes certifications
Kubernetes is one of the largest open source projects and what employers are looking for 
as regards a top skill when hiring DevOps engineers. The following is the certification 
offered:

• Certified Kubernetes Administrator (CKA) (https://www.cncf.io/
certification/cka/)

https://docs.microsoft.com/en-us/learn/certifications/exams/az-104
https://docs.microsoft.com/en-us/learn/certifications/exams/az-104
https://docs.microsoft.com/en-us/learn/certifications/exams/az-303
https://docs.microsoft.com/en-us/learn/certifications/exams/az-303
https://docs.microsoft.com/en-us/learn/certifications/exams/az-400
https://docs.microsoft.com/en-us/learn/certifications/exams/az-400
https://docs.microsoft.com/en-us/learn/certifications/exams/az-304
https://docs.microsoft.com/en-us/learn/certifications/exams/az-304
https://docs.microsoft.com/en-us/learn/certifications/exams/az-500
https://docs.microsoft.com/en-us/learn/certifications/exams/az-500
https://www.cncf.io/certification/cka/
https://www.cncf.io/certification/cka/


68     Specialized Skills for Advanced DevOps Practitioners

In the following diagram, you can see the certification paths for the three major cloud 
providers – AWS, Azure, and GCP:

Figure 3.9 – Cloud certification path

In the next section, we will look at a skills matrix for DevOps engineers.

Competency matrix
A competency matrix is a visual diagram or chart that shows the skills and education 
required for separate roles within a company. Before we dive into competency matrix 
definitions, a few things need to be understood.

First, not all organizations use a competency matrix to hire and promote employees, and 
second, each organization that does use it will have different requirements.

The reason it was decided to have a section on competency is that every company has 
differing competencies tied to distinct levels. What this means is that a senior DevOps 
engineer at company X may map to a DevOps engineer at Google. This caused me anxiety 
and frustration early in my career. I hope this section can give you enough clarity on the 
correlation between level, competency, and pay.

The purpose of this chapter is to introduce you to the concept of a competency matrix as 
well as adding another tool to track your progress as your skills increase. We will start by 
breaking down the competency matrix.



Competency matrix     69

Matrix breakdown
A competency matrix is broken down into three main sections: skills, levels, and 
competency.

Figure 3.10 – Competency matrix

First, we will cover the skills section.

Skills
The skills section is usually on the vertical (y) axis of the chart. The skills can be as 
granular or as broad as a company sees fit. The skills represented on the diagram will 
be specific for the department you are part of, so it is best practice to stay updated and 
current on your department's competency matrix if it exists. Next, we will discuss the 
horizontal axis of the matrix.



70     Specialized Skills for Advanced DevOps Practitioners

Levels
The level is located on the horizontal (x) axis of the chart. Levels differ from one company 
to the next. I currently work for an organization where all individual contributors are 
mapped to different associate levels. If you were to work at Google, your role is mapped 
to L1 through L11 where an engineer is an L3, and a senior Google fellow is an L11. 
Levels without being mapped to competency are nothing more than a meaningless term. 
Unfortunately, levels are not universal, and you will need to investigate how your current 
skills map over if you decide to pursue a career outside your current organization. If you 
are interested in learning more about levels at different companies, a valuable resource is 
levels.fyi: https://www.levels.fyi/. Next, we will discuss competency.

Competency
Competency is defined as the ability to do something successfully. Competency is found at 
the crossroads of levels and skills on the graph. Each level has different criteria for success 
for each skill, meaning success is relative to the level you are at. It is becoming increasingly 
common for companies to adopt competency bands within each level. The purpose 
of this is to provide entry competency, desired competency, and sometimes premium 
competency:

• Entry competency is the minimum competency for a given skill to be considered 
for a role at the given level. If you are in the minimum category across the board, 
your chances of landing a job are not great. However, if there are only a few areas 
where you are in the minimum range, they can be a talking point when you are 
being interviewed of things you are working to improve on.

• Desired competency is the competency of about 50% of individuals in the level or, 
more simply, the competency the hiring team is hoping to find. The ideal situation 
for a hiring manager is that they find a candidate with desired qualifications across 
the board.

• Premium competency is the point where there begins to be a lot of creep between 
the current level and the next level up. If you are in the premium band for several 
skill areas, you are ready to be promoted to the next level.

The following diagram shows that competency overlap exists between levels. This feature 
is built to allow fluid movement between levels:

https://www.levels.fyi/


Competency matrix     71

Figure 3.11 – Competency matrix levels

Your pay range is bound by your level, but within a level, skill competency determines 
where you land within the range. This is discussed in detail in the following section.

Compensation in relation to level and competency
Compensation is bound by pay bands that are tied to the various levels within the 
company. The pay bands for distinct levels overlap; this means that a senior associate 
could potentially earn a higher base salary than a lead associate. The following diagram 
does an excellent job graphically of depicting this:

Figure 3.12 – Compensation – Level graph



72     Specialized Skills for Advanced DevOps Practitioners

In an effort to normalize pay within each level, managers are often told to target a specific 
percentile within each pay band. This is useful information when looking at job postings 
that have pay ranges. 

Summary
In this chapter, you learned the skills required for DevOps specialist roles, including as  
a CI/CD pipeline specialist, infrastructure specialist, cloud and application modernization 
specialist, container specialist, and security specialist. The main takeaway from this 
chapter is that DevOps specialties take practice and dedication to hone your skills. We 
also discussed the competency matrix and how it translates to different pay grades.

In the next chapter, we will cover how to rebrand yourself online.



Section 2:  
The Application 

Process

From updating your résumé and online profiles through to follow-up emails after 
submitting your résumé to a recruiter, this section of the book will aid in every facet of 
applying for DevOps jobs.

This section comprises the following chapters:

• Chapter 4, Rebranding Yourself

• Chapter 5, Building Your Network

• Chapter 6, Mentorship

• Chapter 7, Working with Recruiters





4
Rebranding Yourself

You are continuously learning, growing, and becoming a better version of yourself. Those 
who see you on a frequent basis know exactly who you are and what skills you possess; 
however, to the rest of the world you are defined by your social profiles. In this chapter, we 
will guide you through how to ensure your social profiles, resume, and personal web pages 
match who you have become and what you want to accomplish. We will start by refreshing 
your social profiles, then work on your other online sites, such as GitLab and GitHub, and 
end with ensuring your resume matches your social profiles.

We will cover the following main topics in this chapter:

• Ways of improving your LinkedIn profile

• Updating your resume to match the career you are after

• Updating or creating your personal web page

• Leveraging Twitter and other social profiles

Ways of improving your LinkedIn profile
Your social profiles are seen by everyone, and recruiters are continuously looking at them. 
An updated and maintained LinkedIn profile is the easiest way to get noticed by recruiters 
and hiring managers. In this section, we'll cover all the changes needed to ensure your 
LinkedIn profile represents you best and is seen by more people.



76     Rebranding Yourself

Updating your headline
Your headline is highly visible to others on LinkedIn. By default, it displays your job title 
and where you work. Be creative, use it to show off your top skills, advertise your job 
search, or use a unique tagline to ensure your profile stands out from everyone else. 

If you are an experienced DevOps engineer looking for a career change, you could try the 
following headline: 

DevOps | Cloud | Containers | Open to Remote Opportunities

If you are not looking for a new career but want to stand out, try the following headline:

Experienced Cloud Engineer | AWS | GCP | AZURE

The following are two fictitious individuals who have bland and boring headlines on the 
left with bold and refreshing headlines on the right:

 

Figure 4.1 – LinkedIn headline refresh

 Your headline can be up to 220 characters and should describe what you are skilled at and 
why people should be interested in you. Having keywords, such as DevOps, Cloud, and 
AWS, will increase the number of search results you appear in on LinkedIn. 

In the next section, we will discuss why recommendations are important and how to ask 
for them. 



Ways of improving your LinkedIn profile     77

Recommendations
LinkedIn can request recommendations from colleagues and managers you have worked 
with, and then display them on your profile. This allows individuals who visit your profile 
to see recommendations from individuals who have worked with you before they even 
interview you. Here are a number of tips when asking for recommendations: 

• Recommendations should come from people you have a good relationship with, 
preferably, someone you can ask to recommend you prior to sending the request on 
LinkedIn. 

• Recommendations should come from people you respect and whose work is 
respected in the industry you are in.

• If you are a more senior DevOps professional, recommendations should come from 
individuals you have mentored, other senior DevOp peers, or a director or VP, if 
you have a close working relationship.

• Do not request a recommendation from someone you have not spoken with for an 
extended period or someone you parted with on bad terms.

• Recommendations from professors you are close with are immensely powerful.

• Do not request a recommendation from another junior DevOps engineer or 
individual who is also looking for their first role in the profession. Instead, ask your 
mentor (if you have one) for a recommendation. The importance of mentorship will 
be covered in Chapter 6, Mentorship. 

If you receive a recommendation and are not satisfied with how it looks, it is OK to ask for 
it to be revised. Make sure to provide specific feedback and the reasons for requesting the 
change. A poorly written recommendation can do more harm than good. The following is 
an example of a poorly written recommendation:

Figure 4.2 – An incomplete and vague recommendation



78     Rebranding Yourself

The problem with the preceding recommendation is the poor grammar and lack of 
detail; what tasks is John good at, and why? If I saw this recommendation, I would be 
very curious; it came from a highly credible person but lacks any meaningful details. The 
following is the same recommendation with better grammar and more detail: 

Figure 4.3 – A well-written recommendation

To summarize this section, recommendations are important and can help you land a job 
when they come from a respected individual and are written well. In the next section, we 
will discuss the sections that you should include in your LinkedIn profile but might not. 

Additional sections 
There are profile sections within LinkedIn that you may not have taken the time to update 
or do not even know are available. LinkedIn does not have the same single-page constraint 
that a resume does; if you have information that may increase your chances of landing a 
job, include it. 

Featured content 
The Featured Content section is near the top of the page and allows you to add articles 
you have published, projects you have worked on, as well as your personal website(s). This 
should be a highlight of career accomplishments that can be shared publicly. A wonderful 
thing about the featured content section is it can easily be populated with items in the 
Accomplishments section, which we will cover next.

Accomplishments 
Accomplishments are often forgotten about. The Accomplishments section can be used to 
add publications, patents, courses, projects, honors and awards, test scores, organizations, 
and causes. The Accomplishments section information can be added as featured content 
and displayed at the top of your page.



Ways of improving your LinkedIn profile     79

Experience 
The Experience section is usually updated directly on LinkedIn by the individual who 
owns the profile; however, the details describing each experience are often lacking, 
especially if you have been in a role for an extended period. A good rule is to update 
your Experience section each time you finish working on a project or initiative. If you are 
looking for your first role as a DevOps engineer, try to highlight the experiences from 
your past roles that would apply to a role as a DevOps engineer. 

Profile picture 
Updating your profile photo is not necessary to get a job or be recognized; however, it will 
not hurt. The same person who takes your family photos or pictures of your pet could 
capture a headshot for you to use on your profile. Profiles that have a profile picture are 
ranked higher in the search algorithm, resulting in more recruiters and hiring managers 
seeing your profile.

In the next section, we will discuss the power of skill endorsements, as well as skill exams.

Skill endorsements
Skill endorsements can be added by you and validated by any of your first-degree 
connections. The more individuals who validate you for a job, the higher the likelihood 
you will be found when someone searches for the skill. If you are looking for a job as a 
DevOps engineer, getting endorsed for skills such as AWS, Python, and DevOps can help 
you get noticed. To further increase the likelihood of being found based on a specific skill, 
you can take skill assessments.

LinkedIn skill assessments are professionally written exams that you can take for specific 
skills; when passed, you receive a badge on your profile telling everyone you have passed 
the skills assessment. This endorsement again raises your rank in the search algorithm and 
increases your chances of being noticed by recruiters. The final thing we will discuss is 
interacting with other professionals within your industry. 

Share, like, and comment
Interacting with other DevOps professionals has proven to be the most powerful means 
of connecting and building relationships on LinkedIn for me. In Chapter 5, Building Your 
Network, we will cover strategies to help build relationships on LinkedIn. Every time you 
share, like, or comment on content, the likelihood of you getting noticed or showing up in 
a potential employer's feed increases. 



80     Rebranding Yourself

In this section, we went through strategies to help increase the likelihood of being noticed 
on LinkedIn; in the next portion of this chapter, we will go through strategies for ensuring 
your resume is ready to present to hiring managers.

Updating your resume to match the career 
you are after
Even if you are not actively looking for a job, it is good practice to have an updated copy of 
your resume ready to dispense, as the perfect opportunity can come about at any time. In 
this section, we cover tips to improve your resume, which will lead to more callbacks and, 
hopefully, interviews. 

Regardless of how skilled you are or how much experience you have, your resume 
should fit on a single page. If Elon Musk can fit his experience on one page (https://
novoresume.com/career-blog/elon-musk-one-page-resume), so can you. 
The purpose of a resume is to allow recruiters and hiring managers to gain a quick picture 
of a candidate in under a minute. Some companies implement a computerized layer in the 
process that scans your resume for keywords and verifies requirements prior to it being 
passed along to a human. Let's look at what should be included in the six sections of a 
resume, starting with contact information.

Contact information
Contact information should include at a minimum your name as it appears on your 
online profiles, email address, and phone number. Including your location and personal 
profile information is recommended, especially if you have just updated it. You are not 
encouraged to include a photo in your resume, as recruiters believe this can add bias to 
the selection process. The next piece of vital information is your objective. 

Objective
This is the section that describes what you have to offer, and what type of position you 
are hoping to land. The objective is short and concise, no more than a sentence or two. 
Depending on your preferences, you can write a general objective, such as the following:

DevOps leader with 20 years of experience specializing in cloud-native security, and 
Kubernetes. Looking to join a fast-paced organization with a strong engineering culture.

https://novoresume.com/career-blog/elon-musk-one-page-resume
https://novoresume.com/career-blog/elon-musk-one-page-resume


Updating your resume to match the career you are after     81

One thing to notice about the preceding objective is the overuse of keywords to put 
emphasis on the skills you bring to the role you are searching for. The alternative to this is 
an objective targeting a specific position, such as the following example:

DevOps leader with 20 years of experience specializing in CICD, security, and Kubernetes, 
looking to join company xyz as a Lead DevOps Engineer.

The latter approach is a better option as it allows you to cherry-pick keywords to include, 
as well as to make it more personal by using the exact job title and company name. On the 
other hand, you may want to bulk apply to as many jobs as you can; in those cases, you 
should always have an updated resume with a general objective you can use. A keynote 
about the objective is it should include keywords that you want to be noticed, both by an 
automated checker and a human. In the preceding example, we used several keywords, 
including years of experience. Next, we will discuss the largest portion of your resume: 
your work experience. 

Experience
Experience should be listed in reverse chronological order, with your most recent at the 
top of the section. Each position listed should include five key pieces of information: 
position, employer, start date, end date, and accomplishments. All information should 
be as accurate as possible. Always assume your information will be verified; even an 
honest mistake could cost you a job. Accomplishments should be specific and contain 
quantifiable data. 

Worked with application teams to significantly increase availability for customer-facing 
applications

The preceding example is a friendly conversation starter; however, it will annoy a 
recruiter or hiring manager as it lacks clarity and leaves the reader wondering what was 
accomplished. A single poorly written accomplishment could get your resume put in the 
rejection pile if you are applying for a highly competitive job. A better way to write this 
would be as follows:

Implemented geographic redundancy and automatic failovers in AWS for app x, which 
resulted in application availability increasing from 98.7% to 99.9%.

The preceding example gives clarity and specific details about what was accomplished. This 
type of detail gets your resume moved to the interview pile instead of the rejection pile.

A common challenge for new DevOps engineers is that they lack experience. Not to 
worry, you just need to document the experiences that have prepared you for your first 
role as a DevOps engineer. If your current position is as a software engineer, make sure 
you focus on the accomplishments that are relevant for a role in DevOps by focusing on 
the relevant tools and principles. Something like the following would fit well:



82     Rebranding Yourself

Software Engineer | Company XYZ | May 2020 - Present
Integrated the end-to-end testing framework, Test Café, into Jenkins CI 
pipeline, resulting in a 30% reduction in time team spend testing locally.

Worked on APIs utilizing AWS services, which currently serve over 20,000 
requests per month. 

Contributed my Test Café method to the Jenkins Global Pipeline Library inner 
source project so other teams could leverage it.

My advice for readers is this: experiences included on your resume do not need to be 
paid roles. If you are a main contributor to an open source project, include that in your 
experience section, especially if you are early in your career. This will get you noticed and 
land you an interview. A common misconception is that unpaid experience and volunteer 
work should only be brought up during an interview.

Next, we will cover both the Skills and Certifications sections.

Skills and Certifications
Your skills and certifications should be a copy of what can be found on your LinkedIn 
profile; you have less space, so choose your most relevant skills and certifications to 
include. In Figure 4.4, bar diagrams are used to represent my competency. One thing 
known to raise questions is when your resume shows top skills that do not reflect the 
story your experience tells. Saying AWS is a top skill when none of your accomplishments 
for previous roles reflect that is a red flag for recruiters and hiring managers. If your 
experience with AWS has come from a large side project you have worked on, you need to 
include the project on your resume.

Education
I really started to feel old while researching this topic. A four-year degree used to be a 
requirement to get into a software engineering/IT-related role. As you progressed in your 
career, it became less and less important until it was a non-topic, unless you were looking 
to move into a leadership role that required a master's degree. Now, for a lot of individuals, 
it started out as a non-topic because they were self-taught, or went through a coding boot 
camp and gained real-world experience through internships. This is a step in the right 
direction. As a hiring manager, I am less concerned that you have a four-year degree and 
more concerned that you have a mindset of continual learning. 

Any education you have should be listed on your resume; some roles have minimum 
education requirements that you will be automatically disqualified from if they are not 
found on your resume. In Chapter 5, Building Your Network, we will discuss how it is 
possible to bypass this requirement by networking with the correct people.



Updating your resume to match the career you are after     83

At this point, we have covered the required sections of a resume. The following is an 
example that visually demonstrates the various sections:

Figure 4.4 – A resume example

 The following are two sites that can help you create amazing-looking single-page resumes:

• Novorésumé: https://novoresume.com/

• Resume.io: https://resume.io/

In the next section, we will discuss the importance of a personal web page and how to 
create one. 

https://novoresume.com/
https://resume.io/


84     Rebranding Yourself

Updating and or creating your personal  
web page
Your personal web page should be an extension of your resume and LinkedIn profile, a place 
where you can expand on topics you are passionate about and projects you are interested in. 
The web page should allow you to discuss and divulge your personal interests and hobbies to 
humanize yourself to potential employers. If you already have a personal web page, you can 
skip the next how-to section on creating one using GitLab Pages.

GitLab Pages tutorial
Creating a static web page has become a simple task that costs no money, and not a whole 
lot of time. Both GitHub and GitLab offer free static site hosting. In this section, we will go 
through how to create a site using GitLab Pages.

Prerequisites: You need to be registered with a free account on GitLab.

1. The first thing we are going to do is install hexo, a node-based website framework:

npm install -g hexo

2. Next, log in to GitLab (https://gitlab.com/) and navigate to  
https://gitlab.com/natejswenson/dcr-demo. Fork dcr-demo  
into your workspace. 

Clone the repository you forked onto your local machine, cd (change directly), into 
the project folder directly, and run the following commands:

npm install 

hexo server

3. Open a browser and navigate to localhost:4000 to view the current site.
4. Make changes to personalize the site to make it your own and then push it back to 

GitLab:

git stage . 

git commit -m "my commit"

git push

Navigate back to GitLab to the project you just pushed, and click on Settings | Pages to 
view the URL where your site is published. 

https://gitlab.com/
https://gitlab.com/natejswenson/dcr-demo


Updating and or creating your personal web page     85

If you followed along, you have installed the necessary modules onto your local machine 
to do development using the Hexo framework, forked a repository into your user space, 
cloned the repository to your local machine, made changes, and pushed the changes  
back to GitLab where your site is published. Nice work. In the next portion of this section, 
you will be given the minimum information that should be included on your personal 
web page. 

Sections to include on your personal web page
Development has always been easy; creating content on the other hand is a struggle. The 
following are what I have found to be effective sections on a personal web page. 

Contact
The contact section should include your email, LinkedIn, GitLab, GitHub, and any other 
professional profile you want individuals visiting your site to be aware of.

Introduction
Introduce yourself to potential employers, both professionally and personally. This is your 
chance to describe who you are at work and outside of work, as well as to express your 
passion for the field of DevOps.

Blog
This section is optional; if you enjoy writing it should be included, as your writing will 
be of interest to potential employers. If you are not a writer, do not start blogging just to 
have it on your web page. I did this, and it was not fun for me or my readers; I was not 
passionate about what I was writing about, so it was not my best work. In this case, my 
time was better spent working on some Alexa Skills and adding those to my website.

Projects
This is another opportunity to show potential employers your interests and what you 
spend your time doing outside of work. A few examples include the following:

• GitHub projects

• GitLab projects

• Smart device skills

• Custom home automation 

• School projects (especially Capstone)



86     Rebranding Yourself

• Speaking events

• Presentations you have given

Resume
Your resume should be visually displayed or downloadable from your site as a PDF. This 
reduces the back and forth between you and interested parties. 

In summary, your personal website is an extension of your LinkedIn profile but allows you 
to add your own branding to it. 

Leveraging Twitter and other social profiles
Whether you are a social influencer of technology, or a college student hoping to land 
an internship, it is beneficial to have a social presence that spans several platforms. In 
previous sections, we covered how to set up your LinkedIn page in such a way that you 
will get noticed by recruiters, as well as how to get started with your own web page. In 
this section, we will take this a step further and discuss how you can supplement your 
LinkedIn and personal web page by posting on Twitter or writing articles for Medium.

Figure 4.5 – Social profiles



Leveraging Twitter and other social profiles     87

We will start by discussing Twitter and how you can leverage it to get a job as a DevOps 
engineer.

Twitter 
Twitter use for technology professionals falls into two categories: consuming information 
and sharing information. 

Twitter for consuming information
Twitter is a wonderful place if you are looking to stay current on the bleeding edge of 
technology announcements. On Twitter, you can follow individuals such as Gene Kim or 
Martin Fowler, as seen in the following figure:

 

Figure 4.6 – Gene Kim and Martin Fowler on Twitter

On Twitter, you can also follow news outlets and companies, such as Stack Overflow or 
ZDNet, as seen in the following figure:

Figure 4.7 – Stack Overflow and ZDNet on Twitter

Another use of Twitter is for sharing information with your followers.

Twitter for sharing information
If you become a fan of Twitter and enjoy using it, you may want to try and increase your 
followers. An effective way to do this is by sharing original content or sharing content 
posted by someone else.

If you become a popular and highly followed account on Twitter, you'll be more likely to 
get noticed by recruiters and individuals who are hiring. 



88     Rebranding Yourself

Twitter does have a limitation of posts, or tweets, having a length of no longer than 
280 characters. If you need a forum that allows for more information, you may want to 
consider Medium.

Medium
Medium, according to https://medium.com/, is an open platform where readers 
find dynamic thinking, and where expert and undiscovered voices can share their writing 
on any topic. Medium is a wonderful place to start your career as a writer, as anyone can 
write for it.

The key to finding success on Medium is building views of your article. This can be done 
by cross-posting your Medium article on other social sites, such as LinkedIn and Twitter. 

Figure 4.8 – Using Medium and other social sites

In the preceding diagram, you have just written and posted an article on Medium but have 
struggled to get people to click on and read your article. You decide to post your Medium 
article on your LinkedIn and Twitter profiles. This results in getting additional clicks 
for your Medium article. You also begin to receive messages from recruiters and others 
congratulating you on your article.

There are many other social media sites that can further help you grow your online 
presence, which will increase your chances of connecting with individuals who can help 
you land a job. 

https://medium.com/


Summary      89

Summary 
In this chapter, we covered all the necessary changes you need to make to ensure  
you are presenting your best self to potential employers. We discussed the importance 
of having a complete and professionally written LinkedIn profile, as well as giving 
suggestions on how to improve the likelihood of being noticed by potential employers. 
Next, we covered how to update your resume in such a way that essential information is 
seen quickly, both by automated systems and humans. We then covered the importance 
of having a personal web page, went through a tutorial on how to create a Hexo web page 
on GitLab, and the sections that should be included in your personal web page. Finally, we 
covered other social sites, which are not required but can increase the likelihood of getting 
noticed by recruiters. 

In the next chapter, we will discuss the importance of networking, and how to do it on 
LinkedIn and at conferences. 





5
Building  

Your Network
My current job is great. I enjoy the work I am doing, I am learning every day, and I have  
a great manager; a true triple-threat job. You may be thinking I had to work extremely 
hard to get this job. In a way I did, but not in the way you are probably thinking. I did 
not work hard to prepare for the interviews, as most of the interviews happened without 
me even knowing I was being interviewed. This was because I had built a relationship on 
LinkedIn with the hiring manager. For several months, we had been discussing different 
job opportunities within the organization he worked for, and at the same time, he was 
getting to know more about my skills and career goals. 

In this chapter, we will discuss how to build relationships to help your career move in  
the right direction. The saying It isn't what you know, it's who you know is partially true.  
If I were to reword the saying so it was completely true, I would say Getting noticed for 
your skills by the right people is the key to success. In this chapter, the following topics will 
be covered:

• LinkedIn the right way

• Building lasting connections, online and offline

• Quality over quantity

• Networking – conversation starters



92     Building Your Network

We will start by discussing how to use LinkedIn to get noticed by recruiters and people 
hiring DevOps engineers, followed by how to build lasting relationships with the people 
who end up noticing you, both on LinkedIn and at meetups and other networking events. 
Afterward, I will explain why having a few connections with whom you are able to build 
relationships is better than having many connections. Finally, I will close this section by 
giving a few conversation starters for introverts, like myself, who are reading this book.

LinkedIn the right way
LinkedIn started as a professional network; it has since expanded to be one of the leading 
job search sites. A few key statistics about LinkedIn to get you excited are shown in the 
following figure: 

Figure 5.1 – LinkedIn infographic (2021)

Those are some large numbers. This section will guide you through how to correctly 
leverage them. The first step toward building a respectable reputation on LinkedIn is 
getting noticed. 



LinkedIn the right way     93

Getting noticed
Getting noticed on LinkedIn can seem impossible, with the number of users approaching 
1 billion. One of the easiest ways to get noticed is to change your security settings to be 
an open networker. After you have opened your profile up, it is time to start following 
and interacting with other DevOps professionals. If you lack DevOps connections, an 
effortless way to ensure you start seeing posts about #DevOps, #AWS, #DevOpsJobs, #CI, 
or anything else, is to follow specific hashtags. This will show not only your first-degree 
connections' posts but also second- and third-degree connections' posts. We will use the 
following diagram for the remainder of the section:

Figure 5.2 – LinkedIn connections 

Pretend you have two friends, A and B; these are your first-degree connections or the ones 
you are directly connected with. In our example, each of your first-degree connections has 
two connections, and each of your second-degree connections has two connections.

This translates to 14 connections in your extended network. These numbers increase 
exponentially as connections rise; with 50 first-degree connections, and each of your  
first-degree connections having 50 connections and each of your second-degree 
connections having 50 connections, the total connections in the first through third 
degrees amounts to an astounding 1,277,550.



94     Building Your Network

One way to get recognized by several connections is by posting about something you are 
learning about. Connections begin to comment on it and like it, and it ends up being seen 
by a recruiter who is looking for DevOps engineers with Kubernetes experience, as shown 
in the following diagram: 

Figure 5.3 – A LinkedIn post leading to a third-degree private message

This may sound unlikely, but it happens to me time after time. After the recruiter has 
reached out to you via a private message, you can add them as a connection. This is a 
suitable time to bring up the previous lesson from Chapter 4, Rebranding Yourself, on 
ensuring your LinkedIn profile is presentable; you do not want recruiters viewing your 
incomplete or messy profile. 

Another fantastic way to get recognized on LinkedIn is by commenting on and/or  
liking someone else's post. In the following example, B1, a second-degree connection, 
posts about starting a meetup in the area where you live. One of your connections has 
already liked the post. It shows up in your feed, so you like it, and comment on it as well. 
At this point, follow up with a personalized invite to connect, expressing your interest in 
the meetup: 



Building lasting connections, online and offline     95

 

Figure 5.4 – Adding a second-degree connection to your network

To recap this section, the best way to get noticed on LinkedIn is by interacting with 
connections, even if they are not directly connected to you. In the next section, we will 
discuss how to build lasting connections. 

Building lasting connections, online  
and offline
You may get fortunate and be offered a job after one interaction with someone. This is 
not something that has happened to me; it has always been a long game when it comes 
to payoffs from relationships. There was an instance where a recruiter reached out to 
me about a job. At the time, I was not looking for a job change. We stayed connected 
on LinkedIn and met for lunch a few times a year. Three years later, a friend and former 
colleague lost his job after his department was restructured. I sent his resume over to the 
recruiter; within 2 weeks he was starting a well-paying contract gig that was able to hold 
him over while he searched for a more permanent position. 



96     Building Your Network

In this section, we will discuss ways to build lasting connections, both in a virtual setting 
and in person. We will begin by discussing how to build connections online, or in a virtual 
setting.

Building connections in virtual settings 
In DevOps circles, remote work and virtual relationship building are things that were 
happening long before Covid-19 turned our world upside down. Companies such as 
GitLab, Atlassian, and PagerDuty are remote-friendly, and team members have amazing 
rapports with one another. I have been working remotely for 5 years, and believe the same 
practices used to ensure a strong bond among team members can be applied to any type 
of professional relationship. 

The following is the visual setup for the scenario of building relationships by being 
personal, helpful, and consistent:

 

Figure 5.5 – Setting up a scenario in LinkedIn



Building lasting connections, online and offline     97

Building connections in a personal setting
There is a line that you must not cross, obviously, but people love hearing about your  
pet and your activities outside of work. Take the preceding example. Let's assume Josh 
posted about completing a marathon. Rachelle likes it, and it shows up on your news  
feed. You enjoy running as well, so you decide to PM Josh: "Congratulations on completing 
your marathon, what an accomplishment! I am a huge fan of running as well." Messaging 
Josh has allowed you to connect on a personal, not work, level, which can help build 
stronger relationships.

Help your connections
Helping your connections is the most important tip on my list. After you sent Josh the 
PM, he looked at your profile and noticed you were both in DevOps, so he added you 
to his network. He ends up posting about having trouble with a side home automation 
project he is working on involving Raspberry Pi. You happen to have a similar setup, so 
you decide to share your GitHub link with the code you used in your setup. A few weeks 
later, you end up posting about an issue you are having with AWS, asking your network 
for help. Josh sees your post and comments on it, as well as PMing several solutions he has 
used in the past. His ideas end up being great; you ask if he would like to hop on a video 
call and explain a few more things in detail. 

Consistently engage with your connections
At this point, you and Josh have a decent relationship. To keep it like this, you are going to 
need to stay engaged with him. Set some cadence where you check in with each other and 
see how things are going. 

In closing this section, I will leave you with several virtual meetups that can help you 
discover new professionals with the same interests as you; first, All Day DevOps (ADO) 
https://www.alldaydevops.com/. If you search for online DevOps conferences or 
virtual DevOps meetups, you will be amazed at how many there are. I encourage you to 
attend a few and figure out which ones will be of the most benefit to you.

In real life 
Covid-19 brought a new term into the workplace, in real life (IRL), and it is a clever way 
to describe meetups in person with colleagues and coworkers, or potential colleagues 
and coworkers. Whether you are an introvert or extrovert, navigating IRL professional 
relationships is complicated, which is what we will address in this section. The biggest 
benefit from IRL events is the ability to get one-to-one time with people you want to 
connect with better. 

https://www.alldaydevops.com/


98     Building Your Network

Next, we will discuss some attributes that are important in virtual relationships but are 
much more noticeable when dealing with IRL situations.

Authentically show others your true self
The best advice I was given by my mentor, which I would like to pass on to my readers, is 
to be authentic. My mentor was referring to the way I engage with people. Some people 
prefer a more intimate one-to-one conversation, while others feel more comfortable in a 
large group conversation. Put yourself in a situation where you can present yourself in an 
authentic manner. 

If you try to force yourself into a situation where you must act in a way that is not natural 
or comfortable for you, the conversation will not go smoothly. The individual you are 
trying to build a relationship with will realize you are not being yourself and will be wary 
of continuing to associate with you. 

Engage actively with your network
If you have been focusing on learning a specific topic for an extended period, volunteer 
to be present at an upcoming event. This will have multiple benefits. First, it will ensure 
everyone who attends the meetup knows who you are, which is great if you are in the market 
for a career change. It also allows you to add a presenter to your LinkedIn profile, which is 
another terrific way to get noticed. Finally, if you are early in your career, it is a wonderful 
opportunity to get practice presenting, a skill that will be useful for the rest of your career. 

Another way to be engaged is to participate in back-and-forth discussions with the 
presenter directly after a presentation. Do not be argumentative. That will not build 
relationships; however, ask questions and sound interested. This will get you noticed. 

Hold yourself to high professional standards
This one is common sense, but it is amazing how many people forget this simple rule. 
After events, there is always a happy hour. It is easy to forget you are at an event to help 
build your career, and instead think you are out having fun with your friends. There are 
two simple rules to remember: keep the conversation professional, and do not overindulge 
in beverages. It is hard to come back from a poor first impression.

In summary, to be successful at in-person events, bring your authentic self to the event,  
be engaged at the event, whether you are in the audience or are the presenter, and finally, 
be professional. 

It is important to end this section with a list of the six personal attributes that will  
make you more successful at building relationships, which are visually displayed in the 
following graphic:



Quality over quantity     99

Figure 5.6 – Attributes required for building relationships

Reiterating what is shown in the preceding graphic, you must try to be helpful, consistent, 
engaged, authentic, professional, and personal. 

In the next section, we will cover the importance of quality of connections over quantity 
of connections.

Quality over quantity
Two people make a post on LinkedIn at the same time regarding the same topic. 
Connection A has 10,000 connections, while connection B has 800 connections. After  
a day, connection A's post has two likes and no comments, while B's post has 14 likes  
and 22 comments. 

 

Figure 5.7 – Looking toward quality

When I first came across a situation like this, I was confused; was connection A doing 
something wrong, or was connection B? Let me break it down.

Connection A is focusing on growing their network, paying little attention to who is being 
added to their network. The number of connections is a vanity metric; it looks good at 
first glance but if you look deeper, it is meaningless. 



100     Building Your Network

A more useful measure is how many times, and at what frequency, your connections 
interact with you. By this measure, connection B is definitely doing something right,  
but what?

Well, if you have been reading this chapter, connection B has been doing all those things 
we have talked about. They have made a conscious effort to stay engaged with their 
connections, help others out, and get personal. Most important, connection B is always 
their authentic self, online and IRL. The following are questions you can ask to determine 
whether you should add a connection to your profile. If you answer yes to one or more,  
go ahead and add them; if not, do not add them. This is something that ensures each of 
your connections is someone you know, someone who interests you, or someone who can 
assist you:

• Do I know this person?

• Do I feel drawn to this person's business, career path, or professional outlook?

• Do I have a direct need this person can fill?

The takeaway from this section is a culmination of behaviors that have been described 
throughout this chapter: it is better to have a few connections with who you have robust 
relationships rather than many connections who are nothing more than numbers. 
More simply, put quality over quantity. In the last section of this chapter, we will discuss 
conversation starters you can use when at networking events.

Networking and conversation starters 
There will be a few reading this book who, like me, really got the short straw when it came 
to being good at small talk. There will also be those who would prefer to skip the small 
talk altogether and get to some deeper, more relevant discussions. In this section, you will 
learn a few useful techniques for facilitating a networking event, as well as conversation 
starters and redirects that can be used when you find yourself at a loss for words or feel 
it is time for another topic. Let's start with one that can be used to facilitate agenda-less 
meetings, Lean Coffee.

Lean Coffee 
Lean Coffee is a way to structure a meeting/event in a way that allows participants to 
vote on topics they would like to discuss. I have used this in book club discussions I have 
hosted as well to make a meeting with an over-stacked agenda much more productive. 

The following figure is a visual depiction of the essential items needed to facilitate a Lean 
Coffee meeting. It is also likely the artwork I am most proud of, as I am not an artist:



Networking and conversation starters      101

Figure 5.8 – Lean Coffee essentials

The minimum requirements to run a Lean Coffee event include sticky notes, markers, a 
smartphone or other timing device, a table, chairs, and most importantly, people. Next, we 
will talk about facilitating Lean Coffee. We will start with a visual depiction followed by 
detailed descriptions of each stage:

Figure 5.9 – Lean coffee "how to" visual



102     Building Your Network

Now, let's talk about facilitating Lean Coffee.

Choose a theme 
The theme can be anything, such as DevOps, security, or Agile in DevOps. They are all 
good themes for Lean Coffee. The purpose of them is to drive participants to add topics 
around a common theme.

Add topics 
Participants add topics related to the theme they wish to discuss on sticky notes in as few 
words as possible. Topics, if the theme was DevOps, could include CICD tools, DevOps 
culture, and Docker. 

Dot vote
Participants are given a set number of votes to add to topics they would like to discuss. I 
have found simple Sharpie dots on the sticky notes work well. If you would like to be more 
formal, you can do it on a whiteboard.

Drum roll, please. 

Topics are sorted in order of most votes to least votes. The topic with the most votes is 
discussed first.

Discuss
Start the timer for a given time – usually, 3–7 minutes is sufficient, and begin discussing 
the first topic. 

Thumbs up/thumbs down 
Sticking with the democratic nature of Lean Coffee, after the time runs out for a topic, 
additional time can be given if most people wish to continue the discussion; otherwise, 
move on to the next topic. 

You can be creative and apply the same concept to a virtual meeting using breakout rooms 
and the whiteboard functionality. At the end of the session, it is up to you and your group 
whether you decide to post notes on the Lean Coffee discussion. In the past, I have used 
GitHub pages to track outcomes of Lean Coffee, as well as upcoming dates.

Next, I would like to discuss lightning talks, which work great as both virtual and  
IRL events. 



Networking and conversation starters      103

Lightning talks
Lightning talks are short presentations, usually 3–5 minutes in length, given in a forum 
where multiple presentations are given back to back. I absolutely love listening to lightning 
talks, especially in a venue where there are other individuals. Lightning talks introduce the 
audience to highly technical topics that leave the audience wanting more, which leads to 
some great post-presentation conversations between the audience and speakers.

Every lightning talk session I have attended led to conversations about things I did not 
even know I was interested in, with people I would have otherwise never met. It is possible 
to start an internal, recurring lightning talk series in your DevOps or engineering group. 
When I worked at Optum, we incorporated a lightning talk at the beginning of our 
DevOps community office hours calls. It got attendees engaged from the start of the call, 
and also led to great discussions. 

Conversation starters
You do not have quality connections because you aren't having conversations with people 
at networking events, and you aren't having conversations with people at networking 
events because you do not know what to talk about. We have all been there, or at least 
I have been there more times than I care to admit. In the previous sub-sections, we 
discussed lightning talks and Lean Coffee events that were purposefully designed to 
inspire conversations. Unfortunately, most networking events consist of refreshments 
and people gathered in a space. The following are a few things that have helped me as I 
matured in my ability to network effectively:

Figure 5.10 – Ways to improve your conversations



104     Building Your Network

We will first discuss the importance of being prepared.

Come prepared 
If you are going to a Docker meetup, I would binge-watch a few videos on Docker, as well 
as reading some recent articles, to ensure you are able to have effective conversations with 
individuals who are at the event. 

Get personal
Ask questions that will give you more information to continue the conversation. An 
example of a poor initial question would be, Hi, how are you doing? This gives you no 
information to set up your next question and will lead to a short-lived conversation. A 
better conversation would be, Hi, I see from your name tag you work at Amazon. What is 
it that you do there that has you interested in containers? This is a good question. First, it 
cannot be answered with a single-word response; second, the response you get will help 
set up your next question; and finally, this question makes it seem as though you are 
terribly interested in getting to know them. Let's pretend the individual is the manager 
of a team focused on AWS ECS (Elastic Container Storage)and is interested in Docker 
to ensure they stay at the bleeding edge of what is happening in the container space. The 
individual then turns the question on you, which brings me to the next point.

Be upfront with your intentions 
If you are only at the event to network or connect with individuals who may help you land 
a job, state that. Being candid and forthcoming are traits many people admire, and few 
possess. The main point here is to be honest. 

Know when and how to leave a conversation
If a conversation is going well, for instance, if after you stated your intentions, the 
individual seemed interested in learning more about you, you should spend as much 
time with the individuals as they need. Do not bow out of the conversation to move on 
to the next. You have laid the groundwork; now, it is time to build upon the foundation. 
The opposite of this is when the individual is not interested in networking for the sake of 
hiring someone now; thank the individual for their time, and leave by telling them to stay 
in touch via LinkedIn. Afterward, make sure to follow up and add them on LinkedIn with 
a message thanking them for the conversation; you never know when they may be in the 
market for a candidate.



Summary     105

Summary
In this chapter, we discussed several ways of networking, both virtually and IRL. We 
first discussed the best strategies for building relationships on LinkedIn. This included 
ways to increase the probability of you being noticed by others. In this section, you also 
learned ways to utilize your second- and third-degree connections to build relationships. 
The six traits that will improve the likelihood of successful conversations, virtually and 
IRL, were discussed. These consisted of being helpful, authentic, personal, consistent, 
engaged, and professional. We discovered that having connections that you interact with 
is more valuable than having many connections that you have no personal relationship 
with. Events that can help facilitate better conversation, such as lightning talks and Lean 
Coffee, were discussed next. Finally, we covered four methods that will drastically improve 
your ability to have meaningful conversations and build relationships at networking 
events. These consisted of coming prepared, showing you care, being upfront with your 
intentions, and knowing when to exit a conversation. 

In the next chapter, we will cover mentorship: why it is important, and how to find  
a mentor.





6
Mentorship

In the field of DevOps, having a mentor will allow you to arrive at your career destination 
much quicker; it allows access to knowledge from someone who has been where you are. 
In this chapter, you will be given the motivation to find a mentor, along with the resources 
to find a mentor in a way that works with your personal preferences.

In this chapter, the following topics will be covered:

• The importance of mentorship

• The mentor-mentee relationship dynamic

• Choosing the correct mentor

• Mentors as references



108     Mentorship

The importance of mentorship
In this section, we will cover the benefits that a mentorship relationship can bring.  
This section will be broken down into four parts: the assistance and guidance toward 
setting achievable goals, career coaching, motivation, and career advice, as shown in the 
following diagram:

Figure 6.1 – The benefits of mentorship

We will start by covering how a mentor can help you set, plan, and reach your goals.

Assistance and guidance toward setting  
achievable goals
A mentor is going to provide guidance on how to achieve your goals. A mentor will help 
you ensure your goals are achievable, using milestones. The following is a true story of 
how my mentor helped to lead me down a path unrelated to my goal, which ended up 
being exactly what I needed to succeed. 



The importance of mentorship     109

Real Experiences: From DevOps Engineer to Technical Agile Coach
Leading a DevOps team had been my goal since starting a career in DevOps 
at United Health Group. My mentor helped surface the shortcomings that 
needed to be addressed if my goal was to become a reality. Presenting and 
demonstrating ideas to others had always been a struggle; also, being very 
timid and not great at voicing my opinion were all deficiencies I was unaware 
of until I had a candid goal-setting discussion with my mentor. 

The solution to overcome my shortcomings was transitioning from a behind-
the-scenes technical individual to a coaching role. A technical coach's role 
was to help agile teams learn and adapt CICD (Continuous Integration and 
Continuous Delivery)best practices; in other words, a lot of demonstrating and 
voicing my opinion was going to be required. 

The first portion of my transition included being immersed in the world of 
agile, along with having 1:1 coaching sessions with my mentor. One of my 
first teams I was assisting was not using a CI server, had not migrated their 
code into GitHub, and had no automated tests or regression tests in place. 
These were things I was comfortable doing in my sleep; however, my role was 
not doing the work but instead coaching and guiding the team in the correct 
direction. It was terrible; however, slowly over the course of the first sprint, I 
started becoming more comfortable with myself and the team. It became quite 
fun, and also, my mentor and supervisor told me I was quite good at it. 

My journey as a technical coach lasted for two years before transitioning into 
leading the DevOps Center of Excellence (COE). It wasn't until much later 
that my goal to become a people manager of a DevOps team become a reality. 
Without the direction of my mentor, I likely would not have developed the 
skills that I needed to lead a team, nor would I have discovered the passion I 
had for coaching and training, which was a direction I, ultimately, decided to 
pursue further.

Often, a mentor is going to have an insight that you are unlikely to realize on your own. 
Before making any career-altering goals or changes, I encourage discussions with your 
mentor to get their input. If you have yet to find a mentor, continue reading this chapter 
for insights into finding one. Next, we will discuss the importance of coaching and 
training, which is another set of helpful skills a mentor offers.

The motivation to help you achieve your goals
After setting a goal, it quickly can become less enticing to work toward the goal due to the 
effort that is required. In situations such as this, a mentor will step in and reiterate why 
the destination is worth the effort. This is only possible if you and your mentor have a 
relationship that allows for open communications, that is, a relationship in which you feel 
comfortable discussing your doubts. 



110     Mentorship

Your mentor is your cheerleader who wants to see you achieve your goal. To ensure you 
stay on the correct path, set up regular coaching sessions to discuss your progress and 
work on unlocking and enhancing your skills. 

Career coaching 
Training is the transfer of knowledge from a mentor to a mentee, while coaching is used 
by mentors to enhance a specific skill of a mentee. In the coaching sessions that you have 
with your mentor, it is your responsibility to drive the conversation and discussion in 
the direction you would like to go. This means being open with your mentor; if you are 
struggling with a specific concept or method, make this known to your mentor.

There are things that you need to bear in mind when being coached so that you do not get 
angry or become discouraged:

• A coaching session is not the same as training; a mentor will not explain a specific 
concept or method to you. Instead, they will push you in a direction they feel will 
help you better understand a particular concept. 

• A coaching session is about you the mentee. Asking the mentor what they would 
do in a particular situation will be turned back on you. Remember that this is about 
how you are going to become better, not how or what your mentor knows or thinks. 

• If you walk away from a coaching session with more questions than answers, it was 
a success! Take the questions you have and turn them into answers for yourself.

In the next session, we will discuss how mentors are there when you need a trusted 
individual's opinion. 

Useful advice
A mentor is there when you need advice at any time. Whether it is about a project you 
are working on, or a general question about career progression, a mentor is there to help 
you traverse your career. Advice from a mentor is training in a less formal setting. When 
working on a project and an issue arises, your mentor might be the first person you 
message for their input. 

Pro Tip: Advice from a Mentor Is Continuous Training
Each discussion you have with a mentor imparts a small piece of your mentor's 
knowledge onto you. When you ask for specific advice, it is like opening a mini 
training course from one of your most trusted publishers. Make sure you take 
full advantage of this opportunity if you get it.



The mentor-mentee relationship dynamics     111

In this section, we discussed the importance of having a mentor. Unlocking the potential 
benefits described means you must build a strong relationship that is built on trust and 
respect with your mentor. The sooner you feel comfortable asking your mentor for advice, 
the sooner you can unlock the potential of a mentor-mentee relationship.

 In the next section, we will discuss the relationship dynamics between a mentor and 
mentee along with the various stages of the relationship. 

The mentor-mentee relationship dynamics
You get to choose your mentor; however, your mentor must also choose you as their 
mentee, which is what makes the relationship unique and powerful. There is a core  
set of skills that is shared between both a mentor and mentee, as shown in the  
following diagram: 

Figure 6.2 – The mentoring skill model

Active listening, building trust, and goal setting; all three of these can be tied back 
to respect. A mentor must respect his mentee, and likewise, a mentee must respect his 
mentor. There are three stages to a mentor-mentee relationship. 



112     Mentorship

In the first stage, you begin seeking advice from someone you look up to. At this point, the 
specifics of the relationship have not been defined, and you officially do not have a mentor. 
At this stage, you are really testing the waters of someone you feel has the potential to be 
a good mentor. A good analogy for this is dating; you go on a date with someone you feel 
might be a good match for you before you ask the individual if they would like to become 
more serious.

The second stage is when you define the relationship (DTR). In the second stage, you 
have officially asked someone to be your mentor, and they have agreed to your request.  
At this stage, you will likely have scheduled 1:1s and check-ins with one another.

It is important that you do not become complacent during this stage of your relationship, 
as the relationship is fragile and its infancy, you want your mentor-mentee relationship to 
continue to grow and mature. The following is another example from my personal career 
where I made the mistake of allowing my mentor-mentee relationship to get stagnant in 
stage two.

Real Experiences: What a Mentor Relationship is Not
Early in my career, I had several mentors I had officially asked to be my mentor. 
I got career advice from those individuals, and they provided me with guidance 
when I asked. The relationships were forced and awkward, which lead to very 
few 1:1 sessions and no coaching sessions. I was under the impression that this 
is just how mentor-mentee relationships were supposed to be. 

The problem experienced in the preceding example stemmed from a lack of knowledge 
and understanding of how mentor-mentee relationships work. The destination for  
a mentor-mentee relationship is one that is more like a friendship; this is the third stage.

The third stage of a mentor-mentee relationship is where a strong bond grows between 
the mentor and the mentee. It is at this stage that trust enables the occurrence of effective 
coaching and 1:1 mentoring sessions. Depending on how deep your relationship with 
your mentor becomes, your mentor might begin considering you to be their protégé. 



Choosing the correct mentor     113

The following diagram is a graphical representation of the three stages of mentorship:

Figure 6.3 – The stages of mentorship

In this section, we discussed the three stages of a mentor-mentee relationship and what 
to expect at each stage. You learned that you will not gain the full benefits of mentorship 
until you fully trust and respect one another. 

In the next section, we will discuss how to choose a mentor and the numerous factors that 
you need to consider when making your decision.

Choosing the correct mentor
Finding a mentor is challenging, but choosing the correct mentor is more challenging. 
A successful mentor will understand your goals, be someone you respect and look up to, 
understand your current situation and abilities, and see potential in you. We will separate 
this section into two parts: the criteria for choosing a mentor and asking someone to be 
your mentor.



114     Mentorship

Questions to ask when looking for a mentor
Let's take a visual look at the criteria I have found to be the basis for finding  
a good mentor: 

Figure 6.4 – Questions to help you determine whether you are choosing the correct mentor

Is the individual an enabler of my short- and long-term goals? As we approach finding the 
answer to this question, we uncover another question directing the focus on your goals, 
what are my long- and short-term goals? If you do not have this documented somewhere, 
don't worry, we will cover it now. 

Activity: Writing Your Goals
Grab any sheet of paper and split the page into four quadrants. Then, label each 
quadrant 3 months, 6 months, 1 year, and 5 years. 

Next, grab some sticky notes and start adding your goals. Place the notes in one 
of the four quadrants.

Once you have this done, you can create a final copy in a Google Doc or any 
other type of file.

If you are comfortable, I recommend sharing this with your professional 
network or a subset of your network. We will come back to this point later. 



Choosing the correct mentor     115

Now that you have your goals, look at the goals that are in your one-year and five-year 
quadrants. As you start identifying potential candidates, ask yourself what skills and 
expertise the individual has that will help develop the skills that are necessary to achieve 
your goals. 

Is the individual aware of my current goals and capabilities? This question is meant to 
access an individual's awareness of your current circumstances. It is more effective to have 
a mentor who has worked with you or interacted with you either virtually or in person at 
some point in the past. This is not to say you should disqualify anyone you have not had 
previous interactions with. 

Pro Tip
If you have not had any previous interactions with an individual and still 
decide they are still a good fit as your mentor, you must be upfront with the 
additional time commitment involved in getting to know one another. This is a 
requirement for a fruitful mentor-mentee relationship.

If you post your goals on LinkedIn, individuals should be aware of your goals if they 
follow you. In the following section, we will cover another way to present your goals to 
your mentor.

Is the individual someone I respect and look up to too? This question contains two parts; 
both are critical if you wish to have a strong relationship with your mentor. You should 
eliminate anyone from your list who does not meet these criteria. It is not possible to have 
a mentor-mentee relationship with someone who you do not respect or someone you do 
not look up to.



116     Mentorship

Use the following Venn diagram to determine whether someone should be considered  
as a potential mentor: 

Figure 6.5 – A Venn diagram to decide whether someone is a potential candidate to be a mentor 

In the next section, we will discuss the best way to officially ask an individual, who you 
have determined to be a good fit, to be your mentor.

Asking an individual to be your mentor
If you are fortunate, asking your mentor will be a natural progression in your already 
existing relationship. If you work closely with the individual and you are already having 
regular career-related discussions, asking them to be a mentor should be easy. This is the 
candidate who lands in the center of the preceding Venn diagram, as shown in Figure 7.5.



Choosing the correct mentor     117

Pro Tip
There is a difference between an internal sponsor and a mentor. An internal 
sponsor is someone in your current organization who will help you with 
internal career progression. Interaction with a sponsor will likely end once you 
leave the organization that they are part of. A mentor will not be someone who 
will give you a job or get you a job; however, they will be part of your career 
journey in the long term. 

Often, having both a mentor and a sponsor is beneficial. A sponsor will give 
you advice and career opportunities that are relevant to your current employer. 
A mentor will give you more holistic advice that is unbiased to a specific 
employer. Both are good opinions to have; especially when your mentor's 
advice aligns with a sponsor's job opportunity!

Most will not be so fortunate, and you will need to work a bit harder and move outside 
your comfort zone to land a great mentor. The following are several scenarios that you 
might find yourself in:

Scenario 1: A potential mentor is someone who you have worked with at a previous 
company, and you have stayed connected with on LinkedIn. This individual lands either in 
the center or in Zone A on the Venn diagram.

In this case, you could send them an email. Here is one example:

Subject: Mentorship

Hi [insert person's name],

During our time working together at [company] I was able to learn a lot and grow as an 
engineer. I have attached my career goals and feel with you as my mentor, we could further 
refine my goals and define a plan to help me achieve them. If being my mentor is something 
you would be open to, I would enjoy setting up an initial call to discuss. 

Regards,

[Your name]



118     Mentorship

Scenario 2: A potential mentor is someone you met at a conference and have since been 
interacting with via LinkedIn. This individual lands in Zone A on the Venn diagram.

In this case, you could send them a LinkedIn message. The following is one example:

Subject: Mentorship

Hi [insert person's name],

Since hearing you speak on [topic] at [conference or event], I have been following you on 
LinkedIn and respect your understanding of DevOps. I have come to a point in my career 
where I believe I need a mentor to achieve my goals. I believe with your support and 
mentorship, I could grow professionally and achieve my goals. If you are open to mentoring 
me, I would enjoy finding some time on your calendar to discuss. Initially, I believe we would 
need to discuss time commitments.

Regards,

[your name]

Scenario 3: A potential mentor is someone you have never met but have been following 
on LinkedIn. This individual lands in Zone A on the Venn diagram; the likelihood of 
getting a positive response is not high because you have never met or interacted with this 
individual.

In this scenario, getting to know the individual on a more personal level would be the best 
approach. A person is far more likely to accept an invitation to be a mentor for someone 
they know personally. 

In this section, we covered the questions that you need to ask to find a good, potential, 
mentor. Additionally, you learned about the potential ways in which to request an 
individual to be your mentor. In the next section, we will discuss when it is appropriate to 
request a mentor to be a reference. 

Additional ways to get connected with a mentor
It is not always a straightforward or easy task to find a mentor. You might have a 
tough time finding a mentor within your organization or even within your network 
of connections. This is more common than you think, and there is an entire business 
built around connecting individuals with mentors to help them succeed. Should you be 
interested in additional support in finding a mentor, check out the sites listed here:



Mentors as a reference     119

MentorCruise
MentorCruise (https://mentorcruise.com/) is designed to connect technology 
professionals: both mentors and mentees. Prices range from $150–$250 US per session. 
Services provided include a Q&A, interview prep, and resume review.

GrowthMentor
GrowthMentor (https://www.growthmentor.com/) is priced at 50 US dollars per 
month for a basic subscription. You can use the site to query a database of mentors based 
on your needs.

Pelion
Pelion (https://pelion.app/) is aimed at software engineering professionals, which 
includes those in DevOps. The rates start at $300 US.

Mentors as a reference
You have a mentor, and are beginning to apply for new roles, but is it appropriate to use 
your mentor as a reference? The answer is ambiguous, along with most of the things in 
this section, and should be based on your best judgment. There are a few questions that 
you can ask to make your decision easier.

The following is a decision chart that will help you simplify your decision:

Figure 6.6 – The decision tree for "should I use a mentor as a reference?"

https://mentorcruise.com/
https://www.growthmentor.com/
https://pelion.app/


120     Mentorship

In the following portions of this section, we will cover each of the four questions, starting 
with the most basic one: have you asked your mentor if you can use them as a reference?

Have you asked your mentor to be a reference?
If you have not asked someone whether they are your mentor or otherwise, you can 
only use someone as a reference after you have asked them, and they have agreed. Using 
someone as a reference without their permission is unprofessional and can damage or 
ruin your relationship with your mentor. A mentor is going to be candid and honest with 
you. If they do not feel you are ready for a specific role, they would be placed in a tough 
position if they were asked to refer you for the job. If you ask them, this could lead to  
an amazing discussion and opportunity to grow from your mentor's insight. Although 
there is a chance they will decline, the odds are in your favor that they will gladly be  
your reference.

After a mentor has agreed to be a mentor, you need to ask a second question: have you 
worked with your mentor in the past? 

Have you worked with the mentor?
If you have worked with your mentor, they will be aware of your skills. Also, the fact that 
they agreed to be a reference for the specific role shows they are confident you have in 
what it takes! 

Pro Tip
If you have asked your mentor to be a reference for a broad job search instead 
of a specific job, you could ask the mentor about the specific role. In this 
way, they are aware of the specific role, and it could open up some great 
conversations on ways to better prepare for your upcoming interview.

If you have not worked with your mentor, you must ask another couple of questions to 
determine whether you should or should not use them as a reference. The first question 
you need to ask is whether your mentor has seen you use your skills.



Summary     121

Has your mentor seen you use your skills? Are they 
confident about your skills required for the role?
Seeing your skills and abilities is important for a referee to give an accurate representation 
of your skills, abilities, and character in their reference. They could have participated in a 
pair programming exercise or were present at a presentation that you gave at a conference. 
If the individual has not seen your skills, personally, I would not use them as a reference; 
you should use your best judgment. If you are uncertain, have a conversation with your 
mentor. 

Next, you need to ask this question: is my mentor confident in the skills I require for 
the role? If you asked your mentor to be a reference for a specific role and they have 
agreed, you can assume they are confident in your abilities for the role and use them as a 
reference. On the other hand, if you asked your mentor whether you could use them as 
a reference in general, not for a specific role, you will need to access their confidence in 
your abilities for the role. The best option would be to discuss the specific role with your 
mentor and get their feedback on it.

In this section, we covered the key questions you need to ask when deciding whether 
you should use a mentor as a reference. The most effective and sure way of determining 
whether to use your mentor as a reference is by discussing the specific role you are 
applying for.

Summary
In this chapter, several topics on mentorship were covered, including the importance of 
mentorship, the relationship dynamics between a mentor and a mentee, how to find a 
mentor, and using a mentor as a reference. In The importance of mentorship section, we 
covered assistance and guidance on setting achievable goals, career coaching, motivation, 
and career advice. 

In The mentor-mentee relationship dynamic section, you learned how there are three stages 
of a mentor-mentee relationship. Stage 1 is where you have not officially asked someone 
to be your mentor, stage 2 is where you officially define the relationship and begin having 
official 1:1 sessions, and in stage 3, your relationship grows due to an increase in trust and 
respect for one another. It is at stage 3 where you are able to begin having more productive 
and fruitful discussions.



122     Mentorship

Next, we discussed how to find and choose a mentor. In this section, we discussed three 
questions that you should ask to determine whether someone will make a good mentor. 
The three questions included Is the individual an enabler of my short- and long-term goals?, 
Is the individual aware of my current goals and capabilities?, and Is the individual someone I 
respect and look up to?

Finally, we discussed whether you should use a mentor as a reference; the key takeaway 
from this section is that you can always have a discussion with your mentor. However, if 
time does not allow this, there is a decision chart that can help you.

In the next chapter, we will discuss how working with recruiters can increase your chances 
of landing an amazing DevOps job.



7
Working with 

Recruiters
Navigating the recruitment process is a form of art and will remain a mystery until you 
go through it a few times. It is important to understand this as you go into this chapter, 
especially if you are preparing for your first interviews. Don't get discouraged if all the 
information does not make sense at first; some will not until you have experienced it 
first-hand. This chapter will focus on the importance of relationships with recruiters and 
navigating those relationships with diverse types of recruiters at various stages of the 
interview process. We will dive deeper into the intricacies of the interview process in 
Chapter 8, Preparing for Your Interview.

It is difficult to find a job without the help of recruiters. In this chapter, you will learn how 
to build lasting relationships with recruiters and use those relationships to land a job. 

The following topics will be covered in this chapter:

• Different types of recruiters

• Where to find them and how they can find you

• How to present yourself

• How to negotiate

• Following up, but when?



124     Working with Recruiters

Different types of recruiters
There are several types of recruiters. While we will not provide a comprehensive 
review, we will attempt to cover the most common scenarios that we have encountered 
throughout our careers.

The following diagram provides an overview of the three types of recruiters you may come 
across while looking for a job:

Figure 7.1 – Overview of recruiters

First, let's take a deep dive into first-party recruiters.

First-party recruiters
This is a recruiter that works directly for the company and is trying to fill a role. They may 
reach out to you through a social network, most notably LinkedIn, or another job board. 
If you apply directly to the job on their website, this is the person you might have your 
first call with. Some companies even divide this into separate sub-roles, where one is the 
source of leads, and another does the actual screening. Regardless of whether you meet 
their criteria, you get access to the interview loop and the team.

They are also generally who you would speak to about your salary requirements, and ask 
questions regarding compensation, bonuses, and other areas that may interest you. They, 
in turn, try to see how well you align with the job description.



Different types of recruiters     125

While this is not a technical interview, don't get too relaxed! Sometimes, recruiters or 
HR personnel screen for culture fit and not just skill sets. This means they may be paying 
attention to several things, including how polite you are, how much you know about the 
company, and if the screen is on video, your tidiness, or your persona.

Make sure you treat these calls as part of the interview but don't be afraid to ask questions 
and make sure this is a role worth your time. You don't want to be one of those people that 
finishes a six-round interview process only to realize there is some downside that could 
have been foreseen with the right question.

Recruiting agencies
A recruiting agency falls into one of two categories – an independent company or one 
that's retained by the end client. An independent company may find your profile and 
submit it to several different jobs. A company on a retainer is searching for talent that 
specifically matches a company profile, but if they are large enough, they may have more 
than one viable candidate company. 

Agencies tend to make either a bonus based on your salary or a percentage of your income 
(or a fixed amount) for a set period. 

Generally speaking, the more you make, the better they do, except in situations where 
there is a lot of competition for the role(s) and agencies try to undercut one another. Try to 
develop a sense of whether this is the case so that you know how to negotiate appropriately. 

Freelance recruiters
A freelance recruiter usually approaches you on LinkedIn or through an unsolicited email. 
They will pass you their job requirements and try to get on the phone with you as soon  
as possible. Most of the time, they are not final clients and may refer you to an agency  
or multiple recruiters before finally talking to the company. While they may have insight 
into roles you do not know about, they are typically not on a retainer and the roles are  
freely available. It is debatable whether it is better to apply directly than to apply  
through a recruiter. It depends on whether the recruiter already has a relationship  
with the hiring manager.

In my experience, freelance recruiters are the best for contract jobs, where you specify,  
say, your rate, and then the recruiter can figure out whether they can make it work for  
that amount.

They ask for the right to represent you via an agreement sent in an email, although 
sometimes, this is more formally in a signed PDF, and want to confirm the rate or salary 
that you agree to be submitted under in writing. 



126     Working with Recruiters

The recruiter's role at various stages of the interview 
process
So far, we have discussed three types of recruiters. In this section, we will look at where 
the three types of recruiters may be involved in the various stages of the interview process. 
These stages, as shown in the following table, will be described in more detail in Chapter 8, 
Preparing for Your Interview:

 

Figure 7.2 – The recruiter's role in various stages of the interview process

Talent discovery – that is, actively pursuing social platforms for valid candidates – is 
not usually something first-party recruiters take part in; they usually post open roles 
on social platforms and wait to reach out to candidates until they apply through their 
talent management system. Agencies are contracted for their ability to go and search for 
talent; an exceptionally sizable portion of candidates that agencies find are from social 
platforms or past relationships they have built. A freelance recruiter's only source of 
income is finding talent and presenting that talent to companies. They are considered the 
best headhunters because of their unnatural ability to find talent where others miss it. The 
reason they were able to become a freelance recruiter is because of the reputation they 
have built up with both candidates in a specific job market as well as employers.



Where to find them and how they can find you     127

The initial interview is usually taken care of by the first-party human resources (HR) 
recruiter. The exception to this is when a company has contracted an agency to cover this 
portion of the interview process or for certain direct hire or contract roles.

The first-round interviews are scheduled through the first-party recruiter and are usually 
with the hiring managers. The exception to this rule is certain contract positions in which 
a manager has a good relationship with either an individual freelance recruiter or agency 
and trusts them to take care of this step.

Technical interviews can be conducted both by an internal first-party process or through 
a recruiting agency. It is not common for freelance recruiters to take this step, though 
there are exceptions where this may occur. Follow-up rounds are usually scheduled with 
internal resources, such as team members or individuals from other parts of the company 
you will be working with, and will be coordinated by the first-party recruiter.

Where to find them and how they can find you
In a general sense, if you maintain an active social persona and have an updated resume, 
recruiters will always find you first. There are many job boards, and some recruiters buy 
entire databases of candidates so that once you are on the job board, you may continue to 
receive emails even after you are no longer looking.

With LinkedIn, attracting the best recruiters is a simple affair. Make your profile and 
resume look the same (roughly), with similar summaries and keywords. Make these 
keywords match your experience and the keywords that are used the most in search terms 
and the jobs that interest you. 

You can also add or message recruiters – first- or third -party – directly about the jobs 
they have posted on. While I do not recommend filling your LinkedIn with recruiters 
only, I do think it is normal for 1/3 of your contacts to be related to job hunting or career 
growth. That is the primary purpose of LinkedIn.

Pro Tip
Recruiters search too, and when they search for Terraform, it pays to have that 
on your profile and resume. Do not add skills that you do not have, as you 
may be asked for or even tested on them later. However, do scan different job 
posts for these keywords and use them as a guideline of what skills to learn or 
develop further.



128     Working with Recruiters

Finally, making sure your profile is visible and states that you are open to work or open 
to the conversation will tell the recruiter that it is OK to contact you. A good relationship 
with a recruiter can yield you multiple leads throughout your career. A great profile on 
LinkedIn can keep you rich in contacts and ensure you never miss any career-enhancing 
opportunity!

How to present yourself
I have briefly touched on some aspects of presentation and how to make yourself 
appealing to recruiters. Let me reiterate everything I think is key.

The first part of highlighting how you present yourself is beefing up your LinkedIn profile. 
We covered this in great detail in Chapter 5, Building Your Network, but I will say that 
having a professional page that has a high-quality picture and high-quality content is key. 
What makes content high quality? Part of it is the writing and part of it is the content. In 
general, I recommend having your profile and resume be the same or very closely related. 
I create my resume based on my LinkedIn profile, and whenever there is an update, I do it 
on the profile first, then export the resume later.

Having someone proofread your position summaries and making sure they are descriptive 
enough goes a long way to having a recruiter read them. In a technical field, you must 
describe the technical skills you used for each job. Rather than speaking in generalities, 
be specific. As an added tip, make sure you include numbers and percentages when 
highlighting results. 

Stressing the most important (and marketable) skills in your summaries is key not just for 
the reader but for the search engine that is looking for those skills so that it will return the 
best matches.

Once you feel like your profile is professional, descriptive, and comprehensive when it 
comes to all the areas mentioned, it is time to state your goal of finding a new position. 
LinkedIn has different tools to accomplish this, including having custom badges that 
state you are looking for work. For the more privacy-conscious, you can make it so that 
only recruiters see that you are open to new opportunities. This signal will let recruiters 
know to contact you. With a good enough profile, you should have a steady swarm of 
messages and contact requests. I wouldn't add every recruiter to your network as you 
want to keep it balanced with people in your field and with people that will improve your 
domain knowledge or some other aspect of your career. You can determine your ratios for 
yourself, but just know that it is not necessary to connect with a recruiter to apply for one 
of their roles. If there is someone you enjoyed working with or that has particularly good 
roles, then it pays to network with them.



How to negotiate     129

So, you start getting messages – then what? A lot of the introduction messages will 
provide a brief version of the job description. Some will contain all the information you 
need to determine whether you are interested, while others will contain nothing at all 
except a message expressing a desire to connect or have a quick phone call. My advice 
is to do some casual probing and state your requirements before getting on a phone 
call. Otherwise, you will spend a lot of time sharing information about yourself only to 
discover the role was not for you. 

I would request at least a job description and a salary range (annual or hourly) at  
a minimum. Some may not give it, but in my experience, most will, especially if you state 
that you do not want to waste their time. We will cover this in more detail in the How to 
negotiate section, but you want to convey what you are looking for and what you are not, 
and only make appointments or have calls with those opportunities that more closely 
align with what you are looking for.

Something else you can do to improve how you are perceived is increase your social 
awareness and build your brand. We covered this in great detail in Chapter 5, Building 
Your Network, but gaining and displaying certifications, authoring articles, or reposting 
other articles in your feed and even authoring books (like this!) can increase your name 
recognition and brand, which can make you more appealing to recruiters and prospective 
employers.

Finally, I will say that you can be proactive about connecting and messaging with 
recruiters and hiring managers. LinkedIn has a professional version that allows you 
to send messages to people outside your network and that you can use to query their 
database. It becomes a little bit cold calling in sales at that point. I prefer to build a great 
profile and let the recruiters come to me.

How to negotiate
The way to negotiate depends on which part of the job hunt you are on. When you are 
dealing with recruiters, you are mostly establishing your rates and your desired wages. 
Other things you may want to establish are your expectations for bonuses, stocks 
restricted stock units (RSUs) or options, for example, paid time off (PTO), and whether 
you expect to work from home or work at the office. Increasingly, people (especially in 
tech) desire the flexibility to work remotely at least some of the time because they can do 
their job if they have a computer and an internet connection. Employers have different 
expectations, so it is important to check with your point of contact to see what their 
expectation is.



130     Working with Recruiters

So, what are RSUs? According to investopedia.com, an RSU refers to a form of 
compensation that's issued to an employee in the form of company shares. What makes 
them special is that they have a vesting schedule, so you will typically earn a percentage 
after a certain amount of time – say, 25% per year. However, RSUs can also be tied to 
performance metrics, not just employment longevity.

What if you don't know how much you should be asking for? Well, you can ask some jobs 
what they pay for and use that as a baseline. Not everyone will offer this information, 
but some will, and that will get you started. You can raise your asking price until you get 
resistance, or you can leave things fluid and ask for a range. As a rule of thumb, the lower 
end of your ask is what will be used to make sure that is a number you are comfortable 
with. If you get more, great, but always ask for what you need straight out of the gate. 

Things that do not work
Some mistakes I have made are valuing cash over the job's title, valuing cash or title over 
culture or fit, or going in at a lower wage while thinking I could work my way up. Sure, it 
could happen, but we want to deal with the more realistic scenarios.

Pro Tip
Find out how much someone with your experience makes for a similar role and 
then ask for that.

While your internal voice may want to deter you from asking for much more than you are 
currently making, consider the possibility that you are underpaid, or that you have been 
working in a local market and now have access to a global market thanks to remote work. 
If you don't ask, you won't know. The worst thing they can say is no. 

In my experience, hope is not a strategy. Either you try to get what you want upfront,  
and not get it exactly but approximate as much as you can, or you are better off continuing 
to look.

I remember when I was looking for a leadership role and I saw a Director of DevOps role 
that seemed attractive. It was with a famous firm, so there was some prestige associated 
with the role, and from my initial conversation with the recruiter, the compensation 
seemed to be in line with what I was looking for. I did not ask enough questions and deep 
within the job description, there were more details that I could have used to ask sensible 
questions and make sure that the role was right for me. 



How to negotiate     131

For example, I could have asked how many people would this person have reporting 
to them. I was hoping to lead more than one team as I had several years of experience 
leading 5-10-people teams and thought I was ready for more. I had noticed that for a lot 
of senior roles at big companies, managing managers was a requirement. I had led senior 
folks but never managers, so this was something I was hoping to get in my next role.

I did not ask, and when I had my interview with the hiring manager, they mentioned 
that the role was primarily for a technology leader and that it would only have two direct 
reports. Hardly a big team for a director! Some companies treat directors as something 
functional (you lead a group, so you are a director), while others treat it as a rank (from a 
senior manager, you get promoted to a director!) Some, however, band the roles based on 
compensation, and functionally, it could be quite different from the same job at another 
company with similar pay.

What did me in was something else. The manager was looking for someone with deep 
experience in one piece of technology. I had some experience, but this was not my 
specialty, and the hiring manager made it known that this was his priority. I was frank 
(as I tend to be) and said that my experience was with a competing product, but I was 
confident in my ability to bridge the gap very quickly. He mentioned that he went through 
the same process and that it took him a long time to get caught up, so he assumed it would 
take me a long time as well. That was nonsense, but I was not interested in changing his 
mind. The lack of a team made the role unattractive, and I left the interview feeling like I 
had wasted everyone's time. Read and ask questions first!

Figure 7.3 – Things not to do when negotiating

Next, we will discuss things that do work when you're negotiating.



132     Working with Recruiters

Things that do work
The most important thing when it comes to negotiation is doing your research. Ask  
other recruiters, friends, colleagues, and even those on social media. Establish a far 
baseline and communicate early. You don't want to waste your time on opportunities  
you would not take.

Find out about other rewards beyond compensation. It may affect how satisfied you are 
with your job and some companies do things differently. You cannot put a price on a 
good culture, so try to get a sense throughout the interview process of whether this job is 
a good fit. Ask yourself whether you see yourself there 5 years from now. Do the people 
that interview sound like people you may want to hang out with? You cannot infer all this 
from a quick call with a recruiter, but you can certainly ask them about their culture and 
establish some baselines.

One thing I discovered from personal experience is that salary adjustments are much 
slower when you stay in the same company year over year. You may get a 2-5% raise, but 
changing jobs may get you 15-20%. Doing your research allows you to determine the 
salary based on current market conditions, not just based on your career. 

One thing to remember is that salaries used to be tailored toward your living location. 
Remote work and competition have lessened this a bit, but there are still companies out 
there that penalize you for living in a lower cost of living location. Having a high wage 
while working at a lower cost of living is called arbitrage, and it is something you can take 
advantage of while working in the tech industry.

Working remotely is another huge factor in cost reduction. You can eat at home, save 
on gas, parking, and general car maintenance, and partake in the salary arbitrage. I 
always treat working remotely or remote benefits (working from home 20% of the time, 
for example) as part of the negotiation process. It has made a significant difference to 
my quality of life, and I consider it as important as asking about benefits or culture. 
Conversely, you do not want to stay silent and find out, after spending weeks interviewing, 
that this amazing job requires you to drive 45 minutes each way or relocate!

Now, there is nothing wrong with relocation, especially early on in your career. 
Getting out of your hometown and into a place where tech jobs are aplenty might 
be advantageous, and a company can certainly help you with the moving costs. 
Unfortunately, arbitrage works both ways and you can end up getting a raise but having 
the cost of living be so much higher that you lose whatever benefit you gained. You may 
even end up on the negative if you move to a much more expensive city! This is dangerous 
in the tech community because cities such as San Francisco, Seattle, New York, and LA 
have a lot of jobs, but they are also some of the most expensive cities in the country! Even 
places such as Austin are much more expensive now than they once were, so you want to 
research the cost of housing (more than other metrics) when comparing cities.



How to negotiate     133

The best tip is to try to normalize your salary and adjust it for each city, using a website or 
calculator. That way, you can ask for a raise and any adjustments needed for cost-of-living 
differences and know exactly how much to ask for. As usual, data is king, and you can 
always use hard numbers and research to back up your claims. Recruiters will certainly 
say that they will pay a salary commensurate with experience, but they may be looking at 
the nationwide numbers, not a number that's been adjusted for the specific location being 
considered.

If you look at a list that specifies the highest cost of living, you will find that, for example, 
San Jose is in the top 10 most expensive, so even if they pay high wages, your lifestyle 
might be lower than if you live in Raleigh, NC, for example. Such data is available in the 
US from the Bureau of Labor Statistics.

Besides a base salary, you may want to negotiate in other areas of compensation, such 
as bonuses and equity/stocks, which can be awarded as options. Here, you have the 
option to buy tomorrow at an earlier price, or with RSUs, which are stock awards with a 
multiyear vesting schedule. Usually, you get a yearly amount, and they take 4 years to vest, 
so every year, you are simultaneously earning and vesting more. This is common in big 
tech companies (such as Meta, Apple, Amazon, Netflix, and Google) and when you get 
high enough on the career ladder and become a senior leader. For some roles, the equity 
component can be worth more than the salary! It depends on where you are in your career 
and your company.

Pro Tip 
Sometimes, companies will say a bonus is a certain percentage but will not 
explain that that bonus might be dependent on something else, such as 
your performance, company performance, or other factors. It could also be 
discretionary and not be awarded at all! Some companies tend to band the 
bonus payout to performance bands, so if you get a 4 out of 5, you may receive 
80% of your bonus. Finally, some companies pay a percentage of your bonus 
after 1 year, and the remainder after the next, incentivizing you to stay with  
the company.

History shows that if you work in a successful company, have stock awards, and stay while 
the company grows, you can potentially make a lot of money as the stock of the company 
grows every year! Now, you must be mindful because not every company grows as much 
as Netflix or Amazon do, and some companies tank and go under.



134     Working with Recruiters

When you are dealing with start-ups and taking equity as part of your compensation, 
consider this a bonus and not a core component of your pay. After all, it could be years 
before the company has a successful exit and you may never perceive any value from that 
equity package. From that perspective, established public companies have more leverage 
when offering stock awards.

Figure 7.4 – Things to do when negotiating

In this section, we learned how to negotiate when working with recruiters. Things that 
work, as well as things to try and avoid, were discussed. 

In the next section, we will discuss how and when to follow up after applying for a role.

Following up, but when?
The most stressful stage in a job search is waiting for a call, email, text, or smoke signal 
after submitting your resume for a job. This section will be broken down into two parts:

• The waiting game

• Etiquette for following up with recruiters

Let's start by covering the waiting game.



Following up, but when?     135

The waiting game
After submitting your resume, it is common to want feedback instantly; I have been there 
many times and know the debilitating feeling of not knowing what's next. Be patient – a 
general rule is to wait at least 2 weeks before following up. Many factors affect the time it 
takes for your application to be processed by the hiring team:

Figure 7.5 – Reasons for the time delay in hearing back from recruiters

How long a role has been posted affects the timeframe you should expect to hear back 
within after applying for a role. The longer a role has been posted, the more likely you will 
get a response quickly. The time when a role was posted is not overly telling of an expected 
response but when it's combined with the number of applications that have been received 
for a role, you can get a good estimate.

The number of applicants a role has is a multi-faceted metric; in this section, we will only 
consider how it affects the response time from a recruiter. The more applicants a role has, 
the longer you can expect to wait. In a situation where a role has been posted for a long 
time and has many applicants, your wait will be either exceptionally long or quite short. 
There is a possibility that the reason the role has been open for so long is that no suitable 
candidate has been found.



136     Working with Recruiters

The urgency to fill a role is something you can use to your benefit. You will hear back 
quickly from the recruiter and will also have an expedited interview process. However, 
you must ask why there is such an urgent need to fill the role. In my experience, as both 
an interviewer and a candidate, trying to fill a role overly quickly is in no one's best 
interest. An expedited interview process may be a result of toxic company culture or poor 
planning, and it may result in an inability for both parties to get an informative read on 
whether the relationship will be fruitful. On the other hand, you will never know if you 
don't try. 

At the end of the day, waiting is not a lot of fun but understanding the factors that affect 
the wait time can make it more bearable. 

In the next section, we will discuss the best follow-up practices to follow when working 
with first-party recruiters. 

Etiquette for following up with recruiters
A few weeks have passed since you applied for a role and you have heard nothing; before 
you send an emotion-fueled email – or worse, call them – take a moment and try to follow 
some best practices. These can be seen in the following diagram:

Figure 7.6 – Etiquette for following up with recruiters



Following up, but when?     137

Email is the only acceptable method when you're following up with recruiters. Calling 
is not appropriate unless you have been given permission ahead of time. Email provides 
digital documentation of your correspondence as well. Some companies, especially those 
who receive a large volume of applications, ask applicants not to follow up; you should 
adhere to the company's policies.

Show interest while avoiding desperation as you compose your email. Reiterate your 
sincere interest in the role and include specific examples from the job description; as 
shown in the following screenshot:

Figure 7.7 – Email example

Respecting personal boundaries is as simple as being professional. Recruiters are not 
looking for friends – they are on the hunt for top talent. First, I advise against adding 
recruiters to any non-professional social media such as Facebook. First-party recruiters 
work specifically for a company, not for you, which means they owe you nothing, not a 
response or follow-up, no matter how much you want one. For example, if you followed 
up more than once and they didn't get back to you, then they are just not that interested, 
and it is time to move on. 

Keep in mind that it is better to keep a bridge open and in decent shape versus burning it 
by being unprofessional. Circumstances change and down the road, that bridge may land 
you your best job yet!



138     Working with Recruiters

Summary
In this chapter, you learned the basic rules of dealing with recruiters. You also learned how 
and when to follow up and you read up on some of our experiences looking for jobs and 
negotiating with recruiters, hiring managers, and agencies.

Having a professional profile that shares your experience and carefully highlights all  
your skills is supremely important. Your online profile is your calling card, so having the 
correct set of skills and experience can get you the type of contacts you want both from  
a networking perspective and for specific opportunities.

You can be proactive with your search, and you can make it so that you can receive daily 
job hits based on your online profile. Make it a habit to quickly classify each job and put it 
in the right bucket. Contract gigs and salaried roles can vary wildly in responsibility and 
compensation, and you must make sure you know the answers you need before you start 
the interview process!

Do your research, ask relevant questions, and read the job description to make sure you 
know what you are signing up for. The internet makes it easier than ever to apply for 
jobs, but blindly doing so may cost you more time down the line. Find out about their 
salary ranges, share your expectations, and determine whether they are in line. Ask about 
benefits, culture, remote work, and other forms of compensation, such as bonuses, equity, 
or stock. 

Be mindful of cost-of-living differences and realize that a dollar in San Francisco is 
worth less than a dollar in Boise. Ask companies about their relocation packages, salary 
adjustments, and ability to work remotely. Moving for a new job could prove to be a great 
career move, but you certainly don't want to do it at the expense of a lower quality of life.

As far as recruiters are concerned, be frank, be direct, and try to not waste their time 
or yours. If an opportunity seems like a terrible job, don't interview just for the sake of 
it. Sure, getting interview practice is valuable, but it's better to do it with jobs you are 
genuinely interested in. 

Connect with recruiters who you enjoy working with, and feel free to network with  
people you meet in the interview process, including hiring managers. Some may not 
accept a request at that point because they are still in the interview process, but you may 
reach out after the fact and state you would like to connect regardless.

In the next chapter, we will begin discussing how to prepare for your interview.



Section 3:  
Interview  

Process

You did it! You landed an interview! Up to this point, you have been building an online 
façade of yourself. In this portion of the book, we will detail how to clearly showcase your 
talent to the hiring team.

This section comprises the following chapters:

• Chapter 8, Preparing for Your Interview

• Chapter 9, Interviews Step by Step





8
Preparing for  

Your Interview
You've talked to recruiters, gone over the job description and the level of remuneration, 
and set up an interview. This can be a daunting process, so we are going to spend the next 
several pages breaking it down, talking about all the steps involved, the best preparation 
practices, and other tricks of the trade. In the following chapter, we will go into more 
depth and even talk about non-typical interview cases.

The following topics will be covered in this chapter:

• Phases of the interview process

• Best ways to prepare

• What to expect

• Tricks of the trade



142     Preparing for Your Interview

Phases of the interview process
Usually, after the initial setup call, your first stop is with the hiring manager. Obviously, 
this can vary from place to place, but I find it to be the most common starting point. In 
our field, you can expect a technical screening round, which can be conducted by an 
individual or by a panel. For lead or management jobs, this can be conducted by your 
peers or maybe even by the people that report to you. Depending on the company, this 
can lead to another individual call with someone from your future leadership, which 
could mean your future boss or even their boss! Things they look for here are culture 
fit, the ability to communicate, and general compatibility. We will go into detail later. In 
some places, they may have more rounds. I have seen design-focused interviews, coding 
challenges, situational questions, behavioral, and even out-of-the-box thinking. I will 
cover this in Chapter 9, Interviews Step by Step. 

I also want to mention the fact that some technical jobs have programming tests, which 
could be offline or live, with someone watching you code and asking you questions. Some 
companies may also ask you to undertake behavioral or cognitive tests. I will cover these 
things in the non-typical interview walk-through. Coding tests might be common for 
software engineers, but much less so for DevOps professionals. I think three rounds is 
probably the most common setup. If you are being interviewed at larger companies, such 
as Fortune 100 companies, the process may entail four or five rounds.

Figure 8.1 – Interview stages

For a lot of places though, it's three rounds, short and simple. Preparing for your first 
round is not difficult, but it's one of the places where a lot of candidates leave work on the 
table, so let's start there.



Phases of the interview process     143

First-round interview
While you may speak with a recruiter and a person from human resources first, we 
consider the first-round interview to be with someone from your team. Typically, this 
is the hiring manager. This interview can last from 30 minutes to an hour, and it usually 
involves the hiring manager telling you about the company, the team, what they need, and 
then asking you for your experience. Make sure you have done your homework and you 
know something about the company.

If you have read the job description, you should know roughly what they are looking for 
and how your experience matches their search. When talking about your job experience, 
you should highlight your skills and anything you think is relevant to the position you are 
applying for.

You should start by providing an overview of your career and spend 5 minutes 
highlighting who you are and what you have been doing. If you can address how  
you and your experience fit into this role, all the better.

One question they will certainly have for you, especially if you are not fresh out of college, 
is why you are looking to work at their company, or why you are looking to make a 
change. Usually, you can say you are looking for better pay, but that will not convince 
your future employer that you will not leave them for better remuneration elsewhere in 
the future. It is better to tie your desire for a new role to your career development and to 
the company you are applying for directly. This is a fantastic opportunity for you to show 
enthusiasm and interest in working with them.

Something I have noticed that hiring managers do at this stage is trying to determine how 
you would fit into the team. For example, if you are a manager, they will ask you about 
your leadership style. They may also ask you situational questions, such as you telling them 
about a time when you dealt with a particular issue. They may also ask you how you see 
yourself in terms of strengths, weaknesses, and career prospects, such as where you see 
yourself in 5 years.

Depending on who you are being interviewed by, you can expect to answer a few or 
the majority of these questions. Amazon in particular places great stock on this type of 
interview question.



144     Preparing for Your Interview

Pro Tip: First-Round Prep
As a general best practice, have a few stories pre-prepared about how you have 
dealt with common scenarios. For example, tell me about a time when you 
disagreed with a stakeholder and how you went about resolving this. People 
want to know you can handle disagreement and friction, and are resilient 
enough to survive the modern workplace, so have a few stories to hand that 
showcase how you dealt with, and overcame, adversity and similar situations. 
Keep a spreadsheet or document handy and practice, and this will become  
second nature.

Once they have told you about themselves and the team, and once you have gone over 
your background and answered whatever questions they might have, they will certainly 
ask you whether you have any questions. This is a great time to show that you did your 
homework and ask about the company, its future plans, and how you can contribute to 
making their efforts better. 

Other important questions you can ask include the company's next steps and whether 
there are any reasons why you may have a challenge filling this role, or even better yet, 
what they think is necessary to be successful at this role. 

Technical interview
This round can look quite different depending on where you interview. It could be  
a coding test, where someone gives you a problem and watches you solve it, possibly 
providing you with prompts followed by a period where you are required to work on the 
solution. During this time, they may ask questions regarding your work. It could be a 
panel interview, where three peers or experts ask you technical questions to see how deep 
your understanding extends across multiple domains. This is the most important round 
because you will be hired primarily for what you know, not for what you have done, and 
this is your opportunity to show it. Do not be afraid to ask questions if you need to, or 
to say I don't know when you are not sure. This is better than rambling, where you can 
end up digging a hole for yourself. You can always say this is not my area of expertise and 
prompt the interviewer to ask you a different question. Nobody knows everything, and so 
it is extremely easy to be stumped by someone who is trying to stump you. What you want 
to show are thoughtful answers and that you think about solutions in an intelligent and 
creative way.



Phases of the interview process     145

Pro Tip: Technical Interview
The technical interview is the most stressful part of the interview process, 
and it is designed to be that way. Use this to your benefit, stay calm, and allow 
yourself to process what is being asked of you. Ask for another question if you 
are not familiar with the concept or language of the one given to you. 

Usually, at tech giants (Google, Meta, Amazon, Microsoft, and so on), there will be 
a difficult technical assessment that challenges your knowledge of computer science, 
including data structures, critical thinking, objects, and Big O notation. For cloud-
related jobs, you may be asked specific questions on cloud services akin to those asked in 
certification exams. It pays to ask the recruiter what type of interview you will be facing 
next and whether there is any preparation advice. When there is a coding challenge, 
typically they employ a platform that allows you to use multiple programming languages, 
so you can generally use the one you are most familiar with. I always use Python, on 
account of how simple it is to use, but if you are more comfortable with Java, go for it. 
The key is to be proficient with at least one programming language. For these types of 
interviews, it is best to get plenty of practice, as stated previously. The following URL, 
https://leetcode.com/, and Cracking the Coding Interview (a book by Gayle 
Laakmann McDowell) are great resources. 

You are also expected to be familiar with Linux unless otherwise specified, and this 
implies that you are familiar with Bash and shell commands and scripting. Depending  
on the position and the company, you may also need to talk about architecture or  
specific systems.

https://leetcode.com/


146     Preparing for Your Interview

Finally, there is the possibility of take-home assignments and homework. This can vary 
from architectural diagrams and design documents to coding challenges and actual 
services deployed in the cloud, which they will connect to and verify. If they are take-
home assignments, time is on your side, so do not panic; just set aside a day when you can 
focus on this.

Figure 8.2 – Technical interview types

We will talk more about exceptions to the interview process in a future chapter, but right 
now, let's discuss the follow-up round.

Follow-up rounds
There could be one or more follow-up rounds, depending on the company and position. 
For example, there could be a dedicated architecture or design interview where an expert 
in that area poses a scenario and wants to see how you approach the problem. If you are 
in leadership, it could be meeting a fellow leader from another team, or even your boss' 
boss. Interviewing with other teams is not uncommon, especially when there is clear 
overlap, such as with QA, testing, and DevOps. If you are an individual contributor, you 
can meet a fellow engineer, a more senior engineer, or an engineer from another team 
that collaborates closely with yours. DevOps is very collaborative, so you will meet people 
outside your own team, and it is important to show that you are customer service-oriented 
and a team player.



Best ways to prepare     147

If you are in leadership, you can expect a panel interview for your technical knowledge 
and another panel interview for your leadership and collaborative qualities. These tend to 
be with other leaders in the org, usually peers or individuals at a similar level.

It is also common to meet with the person above the hiring manager, as you are part 
of their org. This will not be a technical interview, but a combination of a culture fit, 
leadership style, and aspirational qualities check. If you are a leader, be prepared to speak 
about your leadership style in depth, with concrete examples. If you are an individual 
contributor, you may be asked a growth-related question, where you are expected to 
share career plans so they can see how your plans align with their needs. It is common 
to be asked where you see yourself in 5 years, so having a rough outline in mind is 
advantageous.

You should hear a decision within a week of your last interview, but this can fluctuate if 
they are interviewing many candidates. Always follow up with the recruiter to find out the 
next steps but give them some time as even consolidating all the feedback from multiple 
interviews can take time.

Best ways to prepare
Before interviewing, the best way to prepare is by researching the company, your hiring 
manager, and the position. The job description document will have a lot of information 
regarding what their ideal candidate looks like. If you lack a skill that is highlighted there, 
you could try beefing up your knowledge in that area. If there is something required in 
which you are an expert, make sure you highlight this.

Pro Tip: Technical Round Prep
For the technical round, it's best to be prepared to have your résumé 
challenged. Everything in it is fair game, so don't misrepresent yourself!

Ask the person responsible for scheduling your interviews or your contact in HR what to 
expect in each round, and doubly so for technical rounds. You can get sample questions or 
useful feedback from prior interviews if you just ask.



148     Preparing for Your Interview

If there are many items on the job description that are unfamiliar, there are many options 
to take quick courses in a few days leading up to the interview. This will help you thrive 
in the technical aspects as well. Sites such as Udemy, Pluralsight, and even YouTube have 
many tutorials on technical subject matter. Another aspect, if it applies to your interview, 
is coding challenges. Coding challenges can be very intimidating, due to being watched 
by the interviewer while trying to write code. A way to practice for this is to use websites 
such as LeetCode. These websites also offer optimal solutions to coding challenges as well. 
A good idea is to do these often, even when you are not interviewing, in order to become 
comfortable in these types of case scenarios.

In general, you should have an understanding of what is expected from the role you are 
applying for, and you should also have an understanding of your strengths and weakness. 
If coding is not your strength and there is a coding challenge in your future, spend some 
time studying algorithms and common programming challenges. The interview has a lot 
of interview and preparation material, and you are just limited by the time you have to 
absorb it. 

Pro Tip: Interviewing for Practice
The best way to improve any skill is by practice and repetition. This is true for 
interviewing as well. Even if you are not actively looking for a job, you should 
apply for positions and go through the interviewing process. Each time you do 
this you will gain additional insight into the interview process; use the feedback 
you get and apply it to your preparation rituals. 

You likely have a shortlist of companies that you would leave your current 
employer for if you were offered a job. And guess what?! You are not going to 
be offered a job if you never apply, and likely you haven't applied because you 
do not feel qualified or have heard stories of how hard the interview process 
is. Let this be the push for you to go and try. There is a high probability you 
will fail the first time, especially if it is for a company such as Netflix, Google, 
Amazon, or Facebook. 

As I mentioned previously, practice makes perfect, and in this case, failure will 
only make you better, and who knows, maybe you will land your dream job at 
your first attempt.



What to expect     149

Beyond doing your research and technical preparation, you should answer some common 
situational questions, such as what would you do if, or have you ever done this or that. If 
you search online for interview questions, you can find some common questions and then 
compile answers for them in writing. Rehearsing these answers will make sure not only 
that your answer is strong and convincing, but that your delivery is crisp and enticing. You 
don't want to clear the technical hurdles and then stumble because you had a hard time 
communicating how you overcame your challenges or how you collaborate across the 
organization. As with everything else, practice makes perfect.

What to expect
If things go well after you finish the entire interview loop, you may get feedback in as little 
as 1 week. This could be longer if they have a lot of candidates to interview. If you did 
not perform well, the loop may end prematurely, and you may get an automated message 
thanking you but they are moving forward with other candidates. Do not be discouraged. 
I estimate it takes at least 50 applications to get an offer for a job you may really want, 
taking 5-10 interviews. Very few people apply for one role and get an interview and an 
offer. There is a lot of competition for high-paying technical jobs, so be patient and try to 
stack the deck in your favor as much as you can.

Figure 8.3 – Submitted applications versus final interviews

Normally, after every round, you have the opportunity to ask questions, so feel free to ask 
about the next stage and gather some early intelligence. If you need more time to prepare, 
don't rush your interview! Let your recruiter know and reschedule if needed.

If you do get a rejection, do not be discouraged. While it would be great to ask the 
company that just turned you down regarding the reasons behind the rejection, more 
often than not, they refuse to go into detail, and it could be a combination of lack of time 
to address every candidate, or even to avoid some kind of liability. Either way, you can 
expect an automated rejection email, stating that they are moving forward with other 
candidates. 



150     Preparing for Your Interview

Even if you don't get direct feedback, now is the time to analyze the situation for yourself 
and figure out what went wrong, what when right, and what you can do better.

Sometimes, you can fail to land a job even after you thought you performed great in all the 
interviews simply because there could be a better candidate. Sometimes a better candidate 
could be for all sorts of reasons, including a candidate who asks for less pay, a candidate 
who has been referred, or a candidate with a preferred geographical location. It could be a 
myriad of reasons, but if you get into the habit of analyzing your performance after every 
failed interview loop, you can rest assured you will gradually get better. In my experience, 
you can always know more, but beyond that, you can always communicate better. 

The continuous interview cycle
Next, I would like to introduce the concept of the continuous interview cycle, which 
consists of three phases: application and preparation, interview, and feedback.

Figure 8.4 – Continuous interview cycle

We will start by discussing the application and preparation phase of the interview cycle.

Application and preparation phase
You are applying for roles as well as preparing for upcoming interviews in this phase of 
the cycle. If you have already received feedback from previous interviews, ensure that you 
incorporate that feedback into your preparation to ensure your interview technique is 
continuously evolving and improving. 

Interview phase
The interview phase consists of all the interviews that are part of the company's interview 
process. This phase lasts until you receive feedback, which could be positive or negative.

Feedback phase
This is the stage where you must process the feedback you get from the employer. In the 
event you are offered a job, you must decide whether to accept the offer, decline the offer, 
or counter the offer. In the event that you are not offered the job, you may be sent feedback 
as to why; if you are not, you should do a retrospective of the interview process. 



Tricks of the trade     151

In the next section, we will discuss the tricks of the trade.

Tricks of the trade
The way to get the best results out of your time invested is to make sure you devote the 
necessary time to preparing for every interview. This can be difficult if you have a lot of 
interviews going on and you are still working, but consider that you can be disqualified 
over a number of things, but you won't know until after the effort has been expended. 
It can be tough to learn that you didn't make the team over a small issue after spending 
several weeks interviewing. Don't interview for roles you are not really interested in, or 
that you don't think are worth the extra preparation. Do yourself a solid and stack the 
deck in your favor.

In the next sections, we will go through things that I have found to be effective in the 
interview process as well as things that I have found to be ineffective and detrimental to 
your success. First, take a look at the visual representation seen in the following diagram:

Figure 8.5 – Do not do that; do this instead

In the next portion of the chapter, we will cover mistakes that candidates often make 
during the interview process.



152     Preparing for Your Interview

Common mistakes
The following is a list of things that have been used by me and proven effective during 
the interview process. It is not a complete list and I encourage readers to go and discover 
insights from others, so as to give yourself the best opportunity for success with your 
interview:

• Not fully understanding the question:

 � This happens very often in all types of interviews, not just technical interviews. 
Often, the interviewee will hear a few words and start coming up with solutions 
in their head and miss the rest of the question and end up getting it completely 
wrong. Always wait to hear and fully understand the question before going to the 
solution phase.

Pro Tip: Take Notes
The best way to ensure you do not miss anything is by taking notes. You can 
use a notepad and pen if the interview is in person or a notepad app on your 
computer if it is virtual. This will demonstrate your interest and, at the same 
time, allow you to fully grasp the question before responding, while allowing 
you to ask any question you may have before answering as well.

• Not writing edge cases:

 � Many times, in coding questions or challenges, the interviewee will not write any 
edge/corner cases in their code. Remember, your solution will be running through 
pre-generated test cases, and it will certainly fail if you have not written code to 
manage edge/corner cases.

Pro Tip: Practice TDD
In the first chapter of the book, Chapter 1, Career Paths, we discussed how 
DevOps incorporates many extreme programming practices, including Test-
Driven Development (TDD), which has the program write test cases that 
will fail until proper code is implemented. If time allows, which would be the 
case with take-home assignments, TDD practices can be used to ensure edge 
cases are not missed while also demonstrating your knowledge of extreme 
programming practices.



Tricks of the trade     153

• Unfamiliarity with the language:

 � Interviewees will want to write code in Python during interviews since it is like 
pseudo code. This is perfectly fine if you choose to do so, but please be sure to be 
sufficiently familiar with the language of your choice so that you know how to 
perform basic string manipulation, arithmetic operations, and are comfortable 
creating data structures. If you are not very familiar with the language of your 
choice, this will leave the interviewer thinking that you are not familiar with 
writing code or that you do not write code very often.

Pro Tip: Sign Up for Daily Coding Problems
Sign up to receive a coding challenge problem in your email each day at 
https://www.dailycodingproblem.com/. The following day, you 
will be sent the solution. I have used this, and it has helped me with coding 
interviews, as well as enabling me to feel more comfortable with pair and mob 
programming.

• Being quiet:

 � Often, when interviewees are thinking, they will do it quietly. This is the 
opposite of what is expected. Usually, the interviewer just wants to see the way 
you think and the method by which you solve problems. Being quiet leads to a 
misrepresentation of assumptions by the interviewer. Instead, work through the 
problem verbally and ensure the interviewer is included in your thought process.

Pro Tip: Don't Pretend to Know Material That You Do Not!
Often, those that are getting interviewed panic when they are asked a question 
and they do not know the answer or are completely unfamiliar with the subject 
matter. In the technical world, new technologies are being implemented daily, 
so you will not know everything. This is NORMAL. It is almost always better 
to just state "I am not familiar with this, but it sounds really interesting to learn 
about," rather than try to make something up. Remember, the interviewer is 
probably an expert with that technology, and they will know immediately if you 
are bluffing.

https://www.dailycodingproblem.com/


154     Preparing for Your Interview

Things that do work
The most important thing when it comes to negotiation is to do your research: 

• On the company, on the role, on the skills required, on the hiring manager, on the 
news. Even research on the interview process itself can give you the edge you need 
to prepare. Research, research, and undertake more research to get the edge that 
other candidates do not have.

Pro Tip: Find an Inside Source
The best way to get information on a company is by chatting with someone 
from that company. LinkedIn makes it easy to find connections who work at 
specific companies who are within your network. 

• Once you are in the thick of your job search, you can expect to have interviews with 
more than one company simultaneously: 

 � Keep a spreadsheet tracking who the recruiter and hiring manager are at  
a minimum, as well as any facts you may need at a moment's notice. It's also  
useful to keep track of where you are in the interview process, as well as what  
level of remuneration was discussed in an earlier conversation.

Pro Tip: Be Consistent
You sound disorganized and unprofessional if you give two interviewers 
two different answers to a question. The most common place this occurs is 
with remuneration. The recruiter will almost certainly ask you at your initial 
interview what you are expecting in terms of remuneration and it is important 
you remember this number and don't inflate it later in the process.

• Applying the principles discussed in the continuous interview cycle section:

 � Always stay fresh and comfortable with interviewing by interviewing regularly, 
taking the feedback you receive from the interview, and applying that as you 
prepare for your next interview.

• Be comfortable with what you do not know:

 � It is completely acceptable and expected that you will not know everything. Be 
upfront with interviewers as regards your strengths and weaknesses.



Summary     155

Pro Tip: Be Comfortable with What You Don't Know, but Be Open and 
Interested in Learning New Things.
At this point in the book, it is obvious the value I place on individuals who 
prioritize continuous learning and self-improvement. Believe me, I am not the 
only person in a position to hire individuals who have the same outlook. In 
some cases, someone with a fresh outlook without prior knowledge is what a 
team needs.

Summary
In this chapter, you gained a lot of insight into the interview process, as well as how to 
prepare for the distinct phases commonly encountered within. 

We also talked about the various stages and what you can expect, separating the details for 
an individual contributor as well as for a leadership role.

We talked about what to expect and how to get the most out of every interview loop, even 
when you do not end up with an offer in hand.

Finally, we covered some tips and tricks on what works, and what does not work, in an 
interview setting.

We also covered diverse types of interviews in some detail, but we will cover that in 
more detail in the coming chapters. In the next chapter, we will cover both typical and 
non-typical interviews and how to navigate and be successful in both types.





9 
Interviews Step  

by Step 
In the previous chapter, we talked about the interview process without going into too 
much detail. In this chapter, we will continue this discussion by diving deeper into the 
topic, including the different steps, the different people you may speak to, and how to 
best prepare for each level. To do this, I will highlight specific examples and extra details 
regarding typical and non-typical interviews. From coding challenges, design, situational, 
and IQ tests to everything in between, I will try to cover everything and give you tips to 
become bulletproof, regardless of the type of interview you may encounter.

In this chapter, we will cover the following topics:

• Typical interview walk-through

• Non-typical interview walk-through



158     Interviews Step by Step 

Typical interview walk-through 
The following diagram breaks down the interview process into three phases – the initial 
round, the technical assessment, and the follow-ups:

Figure 9.1 – Interview stages reviewed 

We will cover these in more detail in the following sections. Simply put, each round is 
equally important to the outcome of the interview, so bring your A-game to each round.

First-round interview 
The first round is when you speak with the hiring manager or someone doing a similar 
function. You will have calls with recruiters or HR beforehand, but for the purposes of this 
walkthrough, these are just prerequisites to the first round interview call. 

What is Considered a First-Round Interview?
The first-round interview is considered the interview you have with the hiring 
manager, or the individual who will assess your qualifications and fit for 
the role. It is the interview that occurs after you have completed the human 
resources screening call successfully.

For the first round, you must focus on doing homework on the company, check the 
LinkedIn profile of the interviewer (they will be your direct supervisor) for clues, and 
make sure you read the job description a few times. 



Typical interview walk-through      159

Besides background information, you should also focus on conveying your soft skills, 
primarily going through your experience cohesively and succinctly, and thinking how 
your previous experience may benefit your potential employer. 

In this round, they will typically go into details of the current challenges, so feel free to 
ask ad hoc questions throughout and save some for the end, where they will expect some 
questions from you. You can use this question section to tie in some of your previous 
experiences and explain how you have solved similar challenges in the past. This helps 
leave them with the impression that you know how to solve the challenges that they are 
facing and it is a wonderful way to end the call. 

If you are interviewing for a leadership role (and even if you are not), you should also ask 
about the team that you will be working with. 

Do not mention compensation, benefits, or anything like that unless the interviewer 
explicitly brings it up. 

The following diagram specifies some dos and don'ts for first-round interviews:

Figure 9.2 – First-round interview dos and don'ts



160     Interviews Step by Step 

Make sure you ask plenty of questions! This is the best time to show that you did your 
research, that you are ready to get started, and that you are passionate about the job. 
For a lot of companies, how interested you seem in the role is important. Your technical 
qualifications might be there, but if you look or sound bored through your interview, you 
may miss your shot! 

Technical interview 
This is the most critical part of the interview as the goal is to determine the depth and 
breadth of your technical knowledge; there is only so much preparation you can do 
between the interview with the hiring manager and this phase. It is best if you do not 
misrepresent your skill set so that you are not asked about things you have no experience 
or proficiency in. If you do encounter something you do not know, explain that you have 
not worked in that area in the past, but that you are interested in doing so. If you pull 
something out of left field, you may cause irreparable harm to the trust relationship you 
are trying to build. 

Different companies will employ diverse ways to gauge your technical skills, from most 
common scenarios, where one or more people ask you technical questions, to the more 
sophisticated instances, where they may give you a design, code, or architecture challenge 
to do ahead of time, only to discuss it in person once submitted. Simple technical screens 
usually consist of a panel or multiple individual interviewers, where you can expect your 
technical knowledge to be explored for depth and breadth. Remember, anything in your 
resume is fair game. 

Once, I had to architect a system in the cloud and send proof of everything I had done, 
effectively granting access to the infrastructure I was hosting. I was later quizzed on it. 

Another time, I was asked to do a take-home problem that required me to use a tool I 
specifically stated I had no experience with. The purpose of this type of problem is to 
highlight your ability to learn something new – you will be judged on your ability to 
creatively produce a solution more than your understanding of the tool, in most cases.

Many times, I have also been faced with coding challenges, which can range from general 
coding proficiency (for example, how would you implement this XYZ?) to more specific 
problems. These can range from honor system solutions, where you just have a day or two 
to return the test and there is no way to know if you googled the answer, to sophisticated 
third-party proctored tests, where a real person will watch you code. Some companies 
may want to watch you code live and ask you questions as you work on your solution. 

The more demanding coding tests are typically for software engineers, but it is common 
for DevOps engineers to be expected to have some programming proficiency. The bottom 
line is that it pays to know at least one language well enough to implement common 
algorithms and data structures. 



Typical interview walk-through      161

Pro Tip
DevOps engineers are required to be excellent software engineers and 
programmers; some of the most proficient coders I have known have been 
fellow DevOps people.

Other types of technical tests might be more domain-specific, such as writing Terraform 
modules or shell scripts to automate a task. Whatever the test is, make sure you gather 
as much intelligence on it before you start and expect to have your solution explored at 
length in a follow-up conversation. 

A design interview or challenge is a little bit different. It focuses on creating a new 
application or service and building the respective infrastructure and services. It 
may require you to make decisions around databases, security, or even areas more 
traditionally focused on application development. Some companies will test to see how 
well you understand the entire application stack. It is important to have some high-
level understanding, especially in the cloud. You should know how to segregate and 
secure networks, as well as how to prevent the internet from accessing your backend 
and databases. You should know how to do authentication and create security groups 
and understand networking well. Distinct roles will have different focuses. Some will 
want to focus more on containerization and may go deeper into Kubernetes. Some may 
cover serverless. Getting a few certifications under your belt ensures you have a broad 
understanding of services that you may not have used professionally. They also help 
differentiate you from the competing interviewers. 

Even in technical rounds, it is important to end the interview by asking questions. I like to 
ask technical folks how well they enjoy their job, or what challenges they see. It might be a 
different answer from the first-round call. 

Additional rounds 
You should work in tandem with your recruiter to know exactly what to expect from each 
round. When in doubt, the most foolproof method is to look up the individual on LinkedIn 
and see what they do. In my experience, if they are in a different area than you, such as 
quality assurance (QA) and testing, it is usually a cultural or team fit type of interview, 
which may have a few situational questions. If it is in your area, they may want to know 
more about your specific experiences and see if you match the challenges they face. 

Even if you aced the technical interview, do not relax! You can still fall short by not 
showing sufficient enthusiasm, or by not finishing your last interviews strongly. 
Remember that even if you did very well, someone else could have done better, so always 
give one hundred percent until the final round is complete. 



162     Interviews Step by Step 

If possible, wait some time and ask for feedback. If you do not get the job, ask for feedback 
too. Sometimes, they will not give you anything more than a generic rejection, but 
sometimes, you get the good stuff, which points out a key flaw in your interview process, 
such as being too hands-on or not hands-on enough, or if your enthusiasm did not match 
their expectation. I had one person tell me I was not showing enough emotion and it was 
off-putting for them. 

Besides formal feedback, try to analyze your performance and give yourself some 
feedback. Were your answers as smooth or succinct as they could be? Did you have any 
knowledge gaps? 

The following diagram shows different types of technical interviews:

Figure 9.3 – Technical interview types

In the next section, we will discuss the offer stage of the interview process.



Non-typical interview walk-through      163

Offer stage 
Congratulations – you cleared the loop and overcame all the hurdles, and their recruiter 
or HR person has reached out to let you know they would like to make you an offer! 
Typically, they make a verbal offer and if you accept verbally, they will extend a written 
one, which usually has an expiration date – around 48 hours to a week. 

Now, if you have been interviewing with multiple companies concurrently, you may be in 
the process of receiving more than one offer and potentially be able to negotiate further. 
Be careful with overplaying your hand, since companies may rescind their offer if they 
think you are just using them to get a better offer elsewhere or to improve your existing 
situation at work. The point is that you should tread carefully as the job is not yours yet, so 
treat this as the final stage of the interview. 

You should focus on being very enthusiastic about the role, even while you negotiate. Also, 
try to be flexible when it comes to improvements in your offer, since they may have more 
flexibility in one area than another. Be wary of telling all your other opportunities that 
you have received an offer too early, as it may prove counterproductive. Do not mention 
companies by name or give away too much in terms of the specifics. If you get two or 
more offers, then negotiate in earnest, but only do so if you are willing to walk away from 
the opportunity you are trying to improve. 

Sometimes, people will take the offer back to the company they work for and get a raise. This 
might be a good short-term way to get a raise out of band but it can also generate negative 
feedback and, depending on the employment market, they may look for some insurance in 
the future so that it does not happen again. Take this case by case. If you have not received 
a raise in several years and you get an offer, negotiate on both ends. Just try to manage your 
options so that you are still on good terms with both companies after deciding. 

Non-typical interview walk-through 
While most interviews tend to fall into a pattern, occasionally, you will encounter 
something out of the norm that is worth highlighting. In this section, we will cover 
pre-screening tests, out-of-the-box designs, and example questions such as the infamous 
Tell me a time when formatted question.



164     Interviews Step by Step 

Tests 
First, let's start with pre-screening tests. Some companies want to know your personality 
type and will want you to take a personality test ahead of time. This can range from one 
page where you evaluate five words you identify with, to long 15+ question exams. 

Sometimes, this is paired with a cognitive test, which is like a traditional IQ test, albeit with 
a lot less time dedicated to this. I have taken the Criteria Cognitive Aptitude Test (CCAT) 
several times, and it is 50 questions in 15 minutes. Only once did I finish all 50, and there 
was a generous amount of guessing to get that done. The questions range from math and 
logic questions to spatial and verbal questions such as analogies or antonyms. It requires all 
your focus, so try not to take these types of tests when you are tired or may be distracted. 

I have even heard that some private equity companies have everyone in the companies 
they invest in take these tests! There is not much you can do to prepare for these types 
of tests, but you can stack the deck in your favor by making sure you have 15 minutes of 
uninterrupted focus, at the time when your brain operates at peak capacity. Since you are 
not penalized for guessing, you should always dedicate the last minute to guessing all the 
remaining questions. 

If you do not have experience with these types of tests, try finding a practice test:

Figure 9.4 – Sample CCAT question – 1

The preceding screenshot shows an example of a verbal question from https://www.
criteriacorp.com/. The following screenshot shows an example of a math question, 
also from https://www.criteriacorp.com/:

https://www.criteriacorp.com/
https://www.criteriacorp.com/
https://www.criteriacorp.com/


Non-typical interview walk-through      165

Figure 9.5 – Sample CCAT question – 2

Besides personality and cognitive tests, you have programming and design tests, which we 
have talked about previously. For traditional programming tests, https://leetcode.
com/ is a suitable place to start, as is https://www.hackerrank.com/. For books, 
check out Cracking the coding interview, by Gayle Laakmann McDowell, which contains  
a lot of tips specific to companies. 

Out-of-the-box design 
For design, this is a little bit more complicated, but there are a few good books that go 
in-depth into system design and can help you not only on offline tests but also in working 
through a design problem live with an interviewer. For cloud-related design, check out 
reference architectures from the cloud provider itself. If you study a few samples, you will 
get a handle on what is common to a lot of scenarios and be able to think of solutions 
more rapidly. I recommend that you become acquainted with at least one tool for 
diagramming and try to design a sample three-tier application in the tool before you are 
forced to do this live. 

You could encounter a non-conventional problem, such as the famous how many 
manholes in New York or something like that. I was asked what I would do if I was shrunk 
down and put in a blender. I was also asked to design the process for a map application 
from the ground up, in an underdeveloped country lacking infrastructure. A company 
may also ask you to design one of their services, improve it, or create something new. A lot 
of big tech companies may screen you this way, regardless of your specific technical role, 
so saying you are in DevOps may not preclude you from this. 

https://leetcode.com/
https://leetcode.com/
https://www.hackerrank.com/


166     Interviews Step by Step 

The following figure contains some non-conventional questions:

Figure 9.6 – Ridiculously hard interview questions

Thankfully, the most insane of the brain teaser types of questions have become extinct for 
the most part and are no longer seriously being used to screen candidates. As always, ask 
your recruiter what to expect and if the company is large enough, the internet is bound to 
have additional intelligence on what types of questions or design problems they can throw 
at you. What matters the most in these types of exercises is that you can convey your 
thinking, that it is clear and logical, and that you consider exceptions and edge cases when 
devising solutions. 

Tell me about a time
One of my favorite cloud providers is famous for asking situational questions that start 
with the tell me about a time mantra. These types of questions will ask you about your 
professional experience, how you overcame adversity, and how you deal with every 
possible professional situation. The catch is that you should do it in the STAR format – 
situation, task, action, and result – as shown in the following diagram:



Non-typical interview walk-through      167

Figure 9.7 – STAR technique 

What happened, what did you do, and what was the result? Here, you should put less 
emphasis on the company or team and focus on your contributions. The ideal candidate 
is a maverick that will go against the current norm and challenge the status quo to get the 
best outcome for yourself, your team, or your customers. 

One of the challenges here is that your own experiences may not be quite as interesting 
or as heroic, or that you may not have an arsenal ready to use at a moment's notice. 
This might be a pain, but the solution is simple. Create a document and start working 
on stories, answering sample questions in the STAR format. You do not want to repeat 
stories in the same interview loop with the same company, so make sure you can pivot to a 
different story if there is a similar question that you have already used your story for.

Tell me about a time when you had to work with someone difficult to work with? 

ST: I had to work with a teammate who was difficult to work with. 

A: I spent extra time getting to know this person and our relationship improved. 

R: This person is now great to work with. 

Now, this story does not have any flavor, but I stripped that out to show you the  
core mechanic. 



168     Interviews Step by Step 

So, how can you make your story better? You can add data and numbers. Adding a 
quantitative feel to your story makes it more memorable and impressive (especially 
compared to the stories of other candidates that do not have concrete data to share). 

Typically, the R portion should be positive, but it does not always have to be completely 
positive. If it shows that you went beyond, even a negative outcome can be seen as a 
positive answer, as shown in the following example:

Tell me about a time when you had to work with someone difficult to work with? 

ST: As a junior developer working at ABC company, a member of my squad did 
everything they could to cause drama with me. They went out of their way to try and drive 
distance between myself and other squad members.

A: I was new to the team and the individual who I was having a tough time with had been 
a member for 4.5 years. I invited the individual to lunch so that we could get to know each 
other better. Additionally, I made it clear I was in no way trying to take over their team 
and only assist as needed.

R: 2.5 years later and drama dude and I are peers, and we tend to have a strong working 
relationship. We respect each other but also are extremely competitive with each other as 
we are constantly trying to push each other just a little bit further. Honestly, without the 
relationship we have, I would not have been promoted to a senior engineer on the same 
team as him. He is one of the individuals who recommended I apply for this position.

Be aware that this type of question can apply to both technical and non-technical 
scenarios. There is a stronger bias toward leadership questions the more senior you are, 
but you should be prepared to frame any answer in the STAR format. 

Mistakes to Avoid 
When answering questions, avoid using we or us. Instead, focus on what you 
did. Even if it was a team effort, focus on what you provided for the solution. 

Another mistake I see candidates make is answering a question with a simple 
yes/no instead of using the opportunity to sneak in some more relevant 
information about themselves. Depending on the position you are interviewing 
for, you may be allowed to redeem yourself if the interviewer asks you directly 
for a more specific example. 

To recap, find a list of situational interview questions and start answering them, keeping 
your questions and answers handy in some cloud document. Then, refine your answers so 
that they are snappy and easier to share. 



Summary      169

Summary 
In this chapter, we covered traditional and non-typical interview walk-throughs in  
more detail. 

We covered the traditional stages of the interview process and focused on the technical 
assessment stage, discussing diverse types of tests and screening, as well as how to prepare. 

We also discussed non-traditional interview scenarios, such as cognitive and personality 
tests, situational exercises, and design questions, including out-of-the-box brain teasers 
and others. We stressed practicing tests and writing out our answers to the most common 
situational questions ahead of time and keeping them handy. Practice makes perfect, and 
interviewing is not an exception!

In the next chapter, we will discuss tips and tricks for applications and the interview process.





Section 4:  
Tips, Tricks, and 

Interviews

The authors' combined experience of 25 years working in the field of DevOps has led 
to the final section of our book. It provides exactly what the title says – tips, tricks, and 
interviews useful for DevOps professionals.

This section comprises the following chapters:

• Chapter 10, DevOps Career: Tips and Tricks

• Chapter 11, Interviews with DevOps Practitioners





10
DevOps Career: Tips 

and Tricks
In the previous three chapters, we defined DevOps, covered the various paths you can 
take, and laid a foundational plan you can follow during the application process, as well 
as each stage of the interview process. In this chapter, we will focus on the application and 
interview process. 

In this chapter, we will cover the following main topics:

•	Tips for transitioning to a career in DevOps

•	Tips and tricks – things to avoid during the interview process

•	Tips and tricks – things to do during the interview process

Tips for transitioning to a career in DevOps
This section revolves around my DevOps journey. I will start laying the groundwork by 
telling the story, followed by tips that can be extracted from it.



174     DevOps Career: Tips and Tricks

Personal DevOps journey
In 2005, the decision to attend college for mechanical engineering at the University of 
Minnesota was made. In college, I needed to take a C++ computer science class. This class 
was the extent of a software-related course that could be taken in college; however, the 
course got me inspired to continue exploring programming and what could be done with 
it. This fascination led to me purchasing a microcontroller board, similar to what is known 
as an Arduino. I ended up creating a hosted web page on a web server, which lead to a 
dorm room that could be monitored from a computer.

I took a lab that focused on automation and robotics in my senior year in college, which 
inspired my interest in automation. The professor for my course also spurred my interest 
in automation. In the lab, we decided on a product we had to manufacture with no human 
interaction – we chose a wooden cribbage board. We were broken into groups of three and 
assigned a Fanuc six-axis robot, as well as a stage of the manufacturing process we were 
responsible for. My team was responsible for the packaging cell. After the cribbage board 
was created, it needed to be placed in a box, labeled, and shipped. I became very interested 
in the entire process and ended up spending far more time in the lab working on my cell, 
as well as helping other cells integrate with ours. The professor became the first academic 
mentor I had and was the reason I ended up taking the job I did out of college.

My first job out of college was working as a manufacturing engineer, a job I did not enjoy 
but took because of the exposure I was able to get with automation in an industrial setting. 
I sucked in as much as I could from my senior colleagues who worked in the automation 
department; one individual told me that it was impossible to master something quickly 
when you spend only a small portion of your time working on it. He recommended that  
I buy a used microcontroller to play around with on my own. I did and ended up 
setting up a home lab that grew into home automation tasks, and eventually into a fully 
automated home. 

My time as a manufacturing engineer ended and I started my career as an automation 
engineer working in the oil and gas industry in western North Dakota. During my tenure 
as an automation engineer, I was exposed to supervisory control and data acquisition 
(SCADA) systems. The engineers working on SCADA systems were developing 
software in Java and using Maven, Subversion, and Eclipse. I began researching software 
development in my free time and began learning new programming languages and 
tools in my spare time. Once I felt comfortable with programming, I began applying for 
jobs as a software engineer for the same company. Eventually, I landed my first software 
engineering role. 



Tips for transitioning to a career in DevOps     175

Software engineering was crazy fun – there was always something new to learn and a 
challenge to solve. I had a knack for picking up programming languages pretty quickly 
and wished to work with a more diverse code base. Another thing that I was struggling 
with was balancing work and life, or a lack thereof. I lived in Minnesota but needed to 
commute to western North Dakota frequently. I knew several individuals who worked 
at United Healthcare that continually encouraged me to apply. I applied to half a dozen 
software engineering roles I thought I was a good fit for.

I also applied for a role as a technical agile coach, a role whose description sounded 
fascinating, but I did not feel I was overly qualified for. I had no experience using 
Agile, being a coach, or experience with DevOps. I ended up landing the role! Being a 
technical coach involves working with teams to help them further their DevOps practices. 
Overwhelmed did not begin to describe how I felt on the days leading up to my first day. 
I spent every hour I was awake studying DevOps and technical practices, only to get 
more discouraged as I learned how deep a rabbit hole the field was. On my first day, my 
manager sat me down and told me this: 

"I know you don't have experience with DevOps or Agile; there were more qualified 
candidates than you, but you were chosen because of your desire and hunger to learn." 

 This individual eventually became what I considered my first mentor. Under this 
individual, I grew both my technical skills as well as my soft skills. This individual helped 
me become more confident and encouraged me to attend Toastmasters to help with my 
public speaking. When I did leave their team, it was to tackle a new challenge – that is, 
building and leading a DevOps team of my own. 

The previous story was a goldmine of information; some of you may have missed some 
things, so let's break it down piece by piece.



176     DevOps Career: Tips and Tricks

Stay on track, but entertain your interests
While in college, my degree did not allow me to take additional software courses, so I 
decided to follow up on this in my own time in a way that would not affect the time it took 
me to get my degree. This is not always an option; sometimes, you need to go all in. Unless 
I am certain of something, I usually hedge my decisions – that is, I continue doing what is 
working in parallel to my new idea/process. A notable example of this is as follows:

Figure 10.1 – Use your day appropriately

In the preceding example, the individual in question has a job as a software analyst, but 
they would like to move into a higher-paying software engineering role. They have heard 
of software boot camps and are considering leaving their job to attend a 6-month boot 
camp. I strongly caution against doing this; first, you are not guaranteed a job after you 
graduate. You could go through the boot camp, only to come out and not be able to land a 
job. The second reason I do not feel it is a great idea to leave a job without a solid job offer 
in hand is that you will go into debt for tens of thousands of dollars. Instead, I recommend 
staying at your current job and taking advantage of the tuition reimbursement your 
company offers. Use these funds to take programming courses, get certifications, and even 
pursue an online degree. On top of this, something you can do even if your company does 
not offer tuition reimbursement is research and study on your own. Think of the amount 
of time you spend watching Netflix and playing video games; use a portion of this time to 
learn new things that will help you land your next job. I respect candidates who are self-
taught and speak with many other leaders who have similar opinions. 



Tips for transitioning to a career in DevOps     177

Life is busy; prioritize and focus on things important  
to you
In college, I was busy – too busy, honestly. I was volunteering as a ski patrol, taking  
16 credits, working part-time, and trying to have a social life. It was not until the robotics 
lab that I realized I was going to need to reprioritize if I wanted to deliver a demo that  
I was proud of. In other labs, I was fine delivering something that was not my best work, 
so long as I would get good marks. I was extremely interested in the robotics lab and 
decided I wanted to get the most out of it so that I could use it in my career down the 
road. I prioritized the lab at the expense of having to give up being part of the ski patrol. 
Another example of this can be seen in the following diagram:

Figure 10.2 – Reprioritizing your time 

As you can see, there are a fixed number of hours in a day; you should also try to get 
adequate sleep, and you need to put in your time at work so that you can continue to 
perform at a good level. This leaves you with your free time; you are in control of how  
you spend this bucket of time. I recommend sitting down and determining areas that 
could be cut out or cut back to free up your time for activities you wish to prioritize.



178     DevOps Career: Tips and Tricks

Opportunity is often disguised in a deceptive facade
In the example at the beginning of this section, I discussed how I took a job as a 
manufacturing engineer because I knew I would have the opportunity to work with the 
automation and control systems department; what was not said was that it took me a lot 
of time getting to know the company as an intern to discover this opportunity. This has 
happened several times in my career; in some instances, I have done upfront research and 
made a good decision; other times, I missed a fantastic opportunity. Take, for example, the 
following diagram:

Figure 10.3 – Looking beyond what is seen on the surface

The preceding example is an extreme case for example's sake, but the logic of doing your 
research ahead of deciding on a major event still holds true.

Making an internal career change is sometimes easier 
than changing jobs and companies at the same time
When you are working for a company, there is a good chance you are building up a strong 
rapport with your management. If you have decided that you wish to pursue another 
career track, it is always advisable that you speak with your current employer first. In this 
example, another career track is referencing a shift away from the type of work you are 
currently doing. The example we will use to demonstrate this is of a software engineer 
moving to a career as a DevOps engineer:



Tips for transitioning to a career in DevOps     179

Figure 10.4 – Internal versus external job change comparison

There is one thing I am not trying to say here – that applying for external jobs is not 
a good option. Applying to external jobs has worked for me many times in the past. 
Sometimes, applying internally shows quicker and more favorable results, as shown in the 
preceding diagram.

Transitioning to a new career path requires new skills – skills you may have but that will 
not be evident unless an individual knows you personally. This is one reason transitioning 
internally can be easier. Another reason is that internal career moves can be made in 
stages or as part of a plan if you discuss them with your leadership. Finally, internal 
references for a job are gold. If you can apply for a job and have several people who can 
recommend you for the job, your chances of getting the job increase exponentially.

Apply for roles you find interesting, even if you do not 
meet all the requirements
Apply for jobs you want, not ones you are completely qualified for. This will prove 
ineffective most of the time, but I have landed a job this way, as have many of my 
connections. Companies that use automated filtering mechanisms will filter you out if you 
do not meet all the requirements; one way to get around this is by including the time you 
have spent using said software on personal projects, not just professionally. As a hiring 
manager, I am not going to overlook you because you are missing 2 years of experience 
with a certain language or tool. 



180     DevOps Career: Tips and Tricks

The problem with setting years of experience requirements for jobs is that it only works 
if everyone learns at the same pace. However, most hiring managers are aware that this is 
not true.

Things to avoid during the interview process
In the previous section, I told a story about my successes and how they helped me get into 
DevOps. Now, I would like to spend a few pages reminiscing on my failures, or more so 
my failed attempts to land a job. To start, we will travel back to 2008.

Avoid providing inaccurate or misleading information 
when applying for a position
The time incorrect information cost me a job.

In my junior year of college, I began looking for internships. I applied to one job that 
required applicants to be pursuing a degree in computer science; I was pursuing a degree 
in industrial engineering. When the question came up on the questionnaire asking if I was 
currently enrolled in a computer science program, I answered yes. A week later, I received 
a call from the recruiter and we began discussing the job; it was a very short discussion 
that ended with me being sent a link to a technical aptitude test. I must have done OK on 
it because I made it to the next round, which was onsite. The company paid for me to fly 
out, as well as put me up in a hotel. I was required to bring my transcripts onsite, which I 
went through in my first meeting. I was then asked, I thought you were a computer science 
major?. Needless to say, the encounter ended with me having a broken ego, which could 
have been avoided if I would have followed the golden rule of applying for jobs: always 
provide accurate information. If I had been upfront, I may still have been offered the 
opportunity, but because I was not honest in my initial application, I was put on the hard 
pass list.

A rule that should always be followed is being honest when applying for jobs, as well 
as on your social profiles. In my case, I knowingly provided false information, but 
unintentionally providing incorrect information can have the same results. Looking back, 
there is one word I would use to describe what I did: selfish. I chose to put my wants above 
what was required by the company. In doing so, the company wasted money interviewing 
me, flying me out to meet in person, and providing me with a hotel. It was a huge betrayal 
of trust when they learned I knowingly provided false information. I would not have 
hired me either – I may have had a chance had I been honest. Avoid going to an interview 
without fully understanding the requirements of the position.



Things to avoid during the interview process     181

Did you even read the job description?

A candidate passed the recruiter screening for a DevOps role on my team and quickly 
moved on to the face-to-face technical interview. For every question I asked the 
individual, they responded with examples where they used Python to solve a similar 
problem. At the end of the interview, I gave the candidate this feedback: 

Though you seem highly skilled in using Python, we are looking for an individual who has 
more hands experience using Golang; would you be willing to go through your experience 
working with Golang? 

The candidate answered truthfully that they did not have experience using Golang outside 
of making slight code modifications. Unfortunately, the candidate did not get the job 
and could have saved their time if they had fully read the job description: Senior DevOps 
Engineer – Golang Experience. 

In the preceding example, the candidate could have avoided an awkward conversation if 
they had spent a little more time researching the role and requirements instead of jumping 
into preparation right away. It was clear that the individual was a strong engineer, but 
on the given team, the ability to mentor others in Golang was a requirement that was 
discussed in the job description. It is always OK to ask the recruiter if the job description 
is vague or if you are uncertain about something.

There are four areas where you must come into an interview prepared:

• Culture: Understanding the culture of a company will help you get through the 
initial screening process by a recruiter. If you can show how you can amplify the 
culture, it may be a deciding factor on why you end up receiving the job.

• Technical Needs: This is necessary. If you can't show that you have a solid 
understanding of the area where the team is looking for support, you will not  
get a job.

• Industry: If you are applying for a job in the financial industry, at a minimum, you 
should read up on the industry. In the best case, you already work in the industry.

• Second-tier responsibilities: These are the teams you will be interacting with that 
require additional knowledge outside of what is required to directly do your job.

In the next section, we will discuss the career-wrecking consequences poor 
communication with recruiters can have.



182     DevOps Career: Tips and Tricks

Avoid neglecting to respond to recruiters after you 
have applied for a position
Failure to respond.

While working in the oil and gas industry, I had an initial interview with a recruiter, after 
which I took off for a week of work-related travel, followed by a week-long vacation. 

During my travel and vacation, I neglected to check my emails and missed two calls from 
the recruiter. When I finally came back to reality, I got back to the recruiter and learned I 
was no longer being considered for the role. Honestly, I had forgotten about it, but it did 
teach me a lesson I hope to pass on to you: 

Always have a communication strategy when applying for jobs.

In my example, I could have set up an auto-reply that stated I would not be able to 
respond to emails until I returned from my travels. This way, the recruiter would have 
been more likely to grant me additional time to respond. Better, inform the recruiter of 
upcoming work and personal plans you have coming up in the short term so that any 
confusion can be avoided. After interviewing, you decide that you are no longer interested 
in a job, do the polite thing, and inform the recruiter you are no longer interested in 
preserving your relationship for opportunities that may arise down the road. When 
applying for jobs, it is important to follow the LinkedIn, Email, and Phone (LEP) 
protocol, as shown in the following diagram:

Figure 10.5 – LinkedIn, email, and phone follow-up protocol



Things to avoid during the interview process     183

The preceding diagram shows the practices that can increase the chances for success 
after initial contact with a recruiter. Next, we will cover the importance of consistent 
information across platforms.

Avoid inconsistent information across social profiles 
and your resume 
When on LinkedIn, you will run across profiles of people who have highly exaggerated job 
titles, appear to be skilled at everything, and have rudimentary fluency in six languages:

Figure 10.6 – LinkedIn versus reality

The preceding example is meant to be an exaggerated version of what you will run across, 
but it also should cheer you on and tell you to keep your head up – most people are not as 
well off as their social profiles state. Exaggerating yourself on LinkedIn and other social 
profiles can adversely affect you, especially if you are currently applying for jobs. 

Exaggerated information will get you noticed but once the full story is discovered, your 
reputation will take a hit.

So far, we have discussed things you should avoid doing to increase your chances of a 
positive outcome from an interview. Next, we will cover things you should do during the 
interview process to increase your chances of landing a job. 



184     DevOps Career: Tips and Tricks

Things to do during the interview process
Throughout the many interviews I have been part of, both as the interviewer and the 
interviewee, I have come across several things that had a surprisingly positive effect on the 
process. In this section, I will cover several of these.

Discuss your side projects
Not all side projects hold weight when you are interviewing for a DevOps position; your 
rock collection holds little importance in an interview, but using a Raspberry Pi to create 
an AI that can distinguish between distinct types of rocks is cool and should be brought 
up. Use the discussion and your judgment to determine if your project holds significance. 

You're interested in home automation? Me too! 

I was in an interview for a lead engineering position and had made it through the 
initial interview with the hiring manager, as well as the technical interview. During a 
final follow-up interview, I was told it was down to me and one other individual. The 
conversation was more laid back than the previous discussions; the hiring manager told 
me he had been working on upgrading his cabin's internet connection so that it could 
handle more sophisticated home automation.

I took this opportunity to start discussing the home automation project I was working on. 
I do not believe this was the deciding factor that landed me the job; however, it did not 
hurt my chances either. 

I was able to discuss topics such as wireless topologies and the C programming language 
because I mentioned my home automation side project, things that would have otherwise 
gone unnoticed as they were not part of my resume or things that I worked on in my 
professional work. It becomes even more important to discuss your side projects if you 
are looking for your first job in the DevOps field and have little real-world experience. 
Discussing your side projects will show the interviewer that you are excited about DevOps 
and excited about learning new things.



Things to do during the interview process     185

Come prepared, ready to discuss tool alternatives
DevOps tools come, DevOps tools go – that is the reality of it. If you have experience 
using GitHub and a company uses GitLab, do not worry about it! Be prepared to discuss 
similarities and differences between the two; show the interviewers you have done your 
homework and read up on the tool. The following table shows tools that can be used 
interchangeably during the interview process:

Figure 10.7 – Tool alternatives

Sometimes, companies have hard tool requirements for candidates, but more times 
than not, if you have used a comparable tool, the knowledge will be seen as transferable. 
Cloud providers have a diverse collection of tools and require vast knowledge as well as 
certifications in some cases, which is why the skill sets may not be seen as transferable. 



186     DevOps Career: Tips and Tricks

If the company is open to interviewing you for a role where you will be working with 
Azure and you have only worked with AWS, make sure that you come prepared to discuss 
how the tools are related between the two providers. A useful resource in an instance like 
this would be the following diagram, which was first discussed in Chapter 3, Specialized 
Skills for Advanced DevOps Practitioners:

Figure 10.8 – Cloud equivalents

This idea can be applied to almost any tool or process; another applicable example is 
having experience using GitLab when the job is asking for experience with GitHub. The 
two both offer similar functionally in terms of repositories; just be prepared to discuss 
how GitLab also has the built-in functionality of CI/CD that GitHub Actions does.

Summary 
In this chapter, we covered all the necessary changes you need to make to ensure you are 
presenting your best self to potential employers. We discussed the importance of having 
a complete and professionally written LinkedIn profile, as well as giving suggestions on 
how to improve the likelihood of being noticed by potential employers. Next, we covered 
how to update your resume in such a way that essential information is seen quickly 
both by automated systems and humans. Then, we covered the importance of having a 
personal web page, went through a tutorial on how to create a Hexo web page on GitLab, 
and sections that should be included in your arsenal web page. Finally, we covered other 
social sites that are not required but can increase the likelihood of you getting noticed by 
recruiters. 

In the next chapter, we will discuss the importance of networking and how to do so on 
LinkedIn and at conferences. 



11
Interviews 

with DevOps 
Practitioners

If you have followed along throughout this book, I am sorry. Honestly, I hope you have 
been able to gather a lot of valuable information from this book. This concluding chapter 
is based on conversations I have had with actual colleagues, as well as people I have 
interviewed. 

In this chapter, we will cover the following topics:

• Interview with a senior DevOps manager 

• Interview with a senior DevOps engineer

• Interview with DevOps architect consultant

• Interview with a tech executive passionate about neurodiversity and inclusion

Reading through the perspectives of individuals with varying degrees of experience will 
allow you to form a more holistic picture of what to expect as you look for your next 
DevOps position or try to land your first role as a DevOps engineer. 



188     Interviews with DevOps Practitioners

Interview with a senior DevOps manager
The first person who I interviewed also happens to be the co-author of this book, John 
Knight. John started with high hopes of becoming a game designer. 20 years later, he is a 
distinguished engineering leader:

Figure 11.1 – John Knight's bio

Reporter: Hi John, thanks for agreeing to meet with me this afternoon to discuss your 
career as a DevOps leader!

John Knight: No problem.

Reporter: To begin with, please tell us a little about yourself.

John Knight: I am John Knight, and I am an engineering manager with 16 years of 
experience in DevOps, 9 years of experience in the cloud, and 5 years of experience in 
team leadership. I have worked for and consulted with eight Fortune 500 companies and 
hold multiple certifications in the three big public cloud providers. In my free time, I 
collect master's degrees.

Reporter: Sounds like a successful career! Before moving on, can you touch on your 
statement about collecting master's degrees?

John Knight: I currently have three master's degrees and am working on a fourth. I 
complain that I do not have a lot of time, but I can never allow myself to not be in school; 
I am a knowledge nerd.

Reporter: Interesting; we will come back to that, but right now, can you tell us about how 
you ended up getting into DevOps? 

John Knight: I was a game developer, or was trying to be. I worked on two independent 
MMOs before being recruited out of game development. Turns out the skills needed 
to deploy and patch games were also the same skills that are used to deploy and patch 
software. That is how I got into this field. The lead architect was too busy to do the 
deployments himself! 16 years later and I still thank him.

Reporter: 16 years, wow. What are some of the biggest changes in the field you have 
encountered and how have you ensured you stayed relevant?



Interview with a senior DevOps manager     189

John Knight: Technologies I used 10 years ago are mostly irrelevant now. You must 
keep up with the tech as it evolves and seek out knowledge from the experts, from the 
innovators, so that you exercise continuous improvement. Being a continual learner helps.

Reporter: You talked about being a collector of master's degrees, and how being a 
continual learner helps; I am starting to see a pattern. Can you expand on the importance 
of being a continual learner in the field of DevOps and how it has impacted your career?

John Knight: The technology I used 15 years ago, and some of what I used 10 years ago, 
is mostly obsolete. Someone coming in fresh would not have to survey the last 15 years 
of the field. The last 5 would be enough to be competent and even less in some areas. 
Being a continuous learner allows you, if nothing else, to be continuously upgrading your 
skills. It also allows you to be more creative in general, especially if you learn about areas 
outside your field of interest. That is the path that leads to true leaps – when you can tie 
formerly unrelated areas together. It is hard now because there is so much information 
that you cannot know or learn everything. So, being a regular learner allows you to 
learn in increments and makes it much easier to do. In terms of impact, I have a broader 
background than other similar candidates, so that gives me a competitive advantage if 
nothing else. Anything you can do to differentiate yourself by gaining more knowledge, 
credentials, and so on helps you in the long term. Knowledge compounds.

Reporter: Were there any times you encountered any setbacks or unplanned changes in 
your career?

John Knight: As far as setbacks or unplanned changes go, it always happens on a dynamic 
playing field. Once upon a time, I mostly worked in Windows systems and suddenly 
I moved to the Linux world. At some point, containers were introduced, as well as 
infrastructure as code. You must adapt or stagnate. Swim or sink.

Reporter: Wow – there is a lot of valuable information packed into that statement. Next, I 
would like to transition to how, when, and why you decided to transition into leadership 
versus continuing down the individual contributor path.

John Knight: It can be hard to transition into leadership because everyone wants 
experience, but there must be that first opportunity where you start with no experience, 
and it takes faith to give you that opportunity. In my case, I wanted to try my hand for 
several reasons. One is that I saw it as a logical career progression, to more opportunities 
in my career. Second, I was inspired by good and bad managers and wanted to employ 
what I learned and do things differently in areas where I thought I could do better. 

The focus on learning, training, and improving your professional standing is also 
something that I encourage in all my team members, and you can see a vast improvement 
between the moment we started working together and a year later. 



190     Interviews with DevOps Practitioners

There are still many areas where I need to improve, but I feel that improvement in these 
areas benefits me in all areas of life and business, so it is a win-win. 

In terms of how to make the transition, I started working in consulting in order to work 
with high-profile companies without needing to join their staff permanently. This gave me 
an outsider's perspective on their business and strengthened my people skills because they 
were the client and thus, I was now client-facing. 

After doing that for a few years, I joined a small company and managed their DevOps 
team and initiatives. I found that the most important skill as a consultant after technical 
knowledge is to influence others. When you do not have authority, you must use 
diplomacy, charisma, and negotiation skills to get what you want. Learning this skill 
before you are a manager allows you to be a better leader.

Reporter: Influencing others – I see that as important in my role as a more senior 
individual contributor as well. What other skills are transferable, and what skills are 
completely different?

John Knight: The ability to mentor others and make people around you better. An 
experienced engineer is a catalyst for junior engineers and can help them get to where 
they are much faster. In terms of management, being able to prioritize work and analyze 
competing priorities is a key strength, but virtually anyone would benefit from strength 
in that area. Leadership is different from management. Leadership is owning things and 
being accountable. Even junior associates should strive to be leaders. 

In management, you must negotiate a lot; you must exercise diplomacy to avoid scenarios 
where you win the battle but lose the war. There's a lot of managing people's expectations 
across multiple teams. As an individual contributor, you tend to focus on your immediate 
team.

Reporter: What is your advice to a junior engineer who is looking for a mentor? 

John Knight: I think we should always try to model our behavior after the positive 
examples we see. That way, we can improve and be influenced by those around us that 
have something we do not or excel in an area. Having strong relationships with senior 
members of the team also opens potential mentorship opportunities. 

You can also ask your immediate supervisor to play an active role in your career. Mentors 
can be found everywhere.

Reporter: A question many of us have for you revolves around the process of hiring; could 
you start by telling us about a few times where a candidate just did not deliver during the 
interview process?



Interview with a senior DevOps manager     191

John Knight: Usually, when I interview in screening, I look for experience, culture, and 
team fit, as well as softer people skills. I want people that work well with others. I have 
had people focus too much on compensation, overstate their skills, or show a lack of 
enthusiasm. 

One time, I had two candidates and I sent both a curveball; a last-minute questionnaire 
for both to fill out. One returned it the next day, with a positive attitude. The other one 
was upset because this last hurdle was unexpected. The first person got the job. 

I have been fortunate with my hires, and I am still updating my interview process.

Reporter: John, can you give us a deeper look into other technical evaluation exercises 
you have used in the past? Also, which ones did you feel gave the best insight into a 
candidate and what are you looking for as you review the technical challenges?

John Knight: So, there are many ways to evaluate technical expertise. Usually, I focus on 
experience. What problems did you solve with technology you claim you know? I usually 
assume that what they are telling me is accurate and then just look for experience. This 
allows me to evaluate multiple dimensions at the same time. Sometimes, you get character 
insights, such as if someone is great with collaboration versus a lone wolf, and so on.

Traditional metrics for technical acumen are useful but I usually leave that to other 
interviewers. Programming proficiency, systems experience, cloud expertise – these 
are all areas where it is easy to test general knowledge. I do not want to know if you can 
define something. You can look up every definition. I want to know what you can create 
by yourself, and what the limits of your knowledge and skills are. I specifically look for 
complements to my existing team, so having more than one skill set is always great.

Reporter: Thanks John, just a few more questions. Looking back at your career, are there 
any specific things you wish you would have done differently or avoided?

John Knight: I moved areas based on compensation needs and not based on what  
I wanted to do, or whether I was particularly interested in what the company was doing. 
I would advise against doing this, although I understand finances have a key role in every 
decision. Sometimes, I wish I had been brave enough to take a lower-paying job with a 
company or product I was passionate about. Regardless, my choices have resulted in a 
good career and outcomes, so I am very fortunate. 

Other things I could have done differently include scanning for cultural fit more before 
taking the job. I have worked in a few places with hostile work environments and while 
no question or interview is full proof, as a candidate, you should also conduct your due 
diligence on the company and make sure their practices align with your beliefs.



192     Interviews with DevOps Practitioners

Reporter: Final question, John – I have read some of your works on AI and future 
technologies; do you feel AI will affect the field of DevOps in the future? What should 
individuals do to prepare for the future of DevOps?

John Knight: Not really AI, but AI-assisted automation and machine learning. There are 
two intersections. One involves using DevOps to deploy AI or ML into production. This is 
known as operationalizing AI/ML or AI/MLOps.

The other involves using AI agents to respond to events automatically, or ML to make 
predictions on things to happen or to make recommendations. This field is ripe for 
innovation. I would think agents that automatically remediate services, such as a Site 
Reliability Engineer (SRE) agent, should be coming soon if they do not exist already 
somewhere; intelligent testing automation, intelligent resource allocation, AI/ML in threat 
prevention, detection, remediation, and so on. 

To prepare, you must broaden your horizons and continuously learn. Cloud providers are 
great at teaching you how to use their services, but you must understand the underlying 
knowledge to maximize your utilization. Thankfully, we live in an age where learning 
resources are abundant, where we can take classes online at the best universities in the 
world, and where we can acquire every kind of information in the blink of an eye at the 
lowest possible costs. Truthfully, if you have access to the internet, there is nothing you 
cannot begin to learn. It is an amazing time to live in.

Reporter: It sure is, John. Thanks for taking the time to share your insights with me today 
and I look forward to doing it again.

Interview with a senior DevOps engineer
The second individual I interviewed is Veeral Patel. Veeral is an individual who I had the 
opportunity to hire into his first role as a DevOps engineer:

Figure 11.2 – Veeral Patel's bio

Reporter: Good afternoon, Veeral, thanks for agreeing to sit down and discuss your 
journey to becoming a DevOps engineer.



Interview with a senior DevOps engineer     193

Veeral Patel: Thanks Nate, no problem!

Reporter: Before we get started, can you share some background information about 
yourself?

Veeral Patel: Sure! So, I have an educational background in software engineering and data 
science. In the real world, I have worked in tech for the past 4 years. In terms of technical 
experience, I have done full stack development with React and C#, scripting with Python, 
and done DevOps automation work in Jenkins, GitLab, and Azure DevOps.

Reporter: When did you discover your passion for technology and what was the defining 
moment where you knew you wanted to write code?

Veeral Patel: I knew I wanted to write code when I took an introduction to a computer 
science course in college, and it was the only class I would attend regularly, even though it 
was an 8 A.M. class in my first year.

Reporter: Haha, so you knew it was your calling when it was worth putting effort into it; 
I love it! While in college, did you end up landing any internships? If so, what were they, 
and would you mind going into detail on what your responsibilities were and what you 
learned? Also, did your internship in any way influence the classes you took or subjects 
you studied post-internship?

Veeral Patel: I did – I interned at Medicon Health! When I was there, I worked on software 
testing, we were doing integration testing and I used this tool called Applitools. That is 
when I learned how to find elements from a web browser and write scripts for clicking on 
elements and doing data validation. The internship did not affect the classes I took since I 
took the required courses that are needed to complete my degree as quickly as possible.

Reporter: Do you feel your internship affected your ability to get a job out of college? 
Also, what was your first job post graduating college? Did you pursue a secondary degree 
directly after getting your undergraduate degree?

Veeral Patel: It was easy getting a job after college. I had several offers before graduation, 
so I went with the company offering a higher salary. I waited a year out of college to 
pursue a secondary degree, which allowed my employer to pay for a small portion of it.

Reporter: Sounds like a financially smart decision! What are three pieces of advice you 
would give to software engineering students who will be looking for a job soon?

Veeral Patel: First, I encourage students to continue to learn modern technologies – the 
world of tech changes so much that you need to take time out of your workday to spend 
time learning. 



194     Interviews with DevOps Practitioners

Second, if you would not pursue a job if it paid half the amount, you are not that 
passionate about it. It's hard to make it far in tech without passion; there is just so much 
competition and everyone is smart. 

Finally, do not be afraid to quit your job if you are not happy – there are too many 
opportunities out there to be stuck.

Reporter: That is solid advice that everyone would benefit from if they were to follow. I 
would like to switch gears and discuss how you transitioned from software engineering 
into cloud DevOps engineering.

Veeral Patel: I transferred from software engineering because I liked to be able to own 
certain pipelines or projects or initiatives. As a software engineer, I was part of a team 
that maintained or created an application; it was a giant cog. In DevOps, I get to work on 
certain projects and own them. Also, I get to work on so much innovative technology. For 
example, in DevOps, I get to touch things such as AWS, Terraform, Ansible, and so on. In 
software engineering, I could be stuck working on Java for years.

Reporter: We should put that on a poster – Get into DevOps so you are not stuck doing 
Java for years. That sounds like the reason I got into DevOps – I wanted to work on cool 
technology. When you first interviewed for a DevOps role on my team, your desire to 
learn and soak up knowledge was the reason you beat out other candidates with similar 
skills; can you tell me other areas in your career where this trait has paid dividends?

Veeral Patel: This ability and desire to learn and soak up knowledge has paid off in school 
as well; I have always thought formal education is very important and I think the fact 
that I have a few degrees can be attributed to my desire to learn. I can kind of talk about 
all sorts of technologies because I have spent some time at least looking into them, so 
interviewing is a lot easier, and I am never worried about volunteering for a task I know 
little about.

Reporter: Veeral, will you describe the perfect member you would want to hire to join 
your team? What qualities should they have?

Veeral Patel: The perfect member is a member that loves sharing ideas and does not mind 
taking on new challenges. I always like to hear other perspectives, and that alone can get 
the ideas flowing. Being technically adept is good but having a willingness to learn is just 
as important.

Reporter: You also have an advanced degree in data science. How does this knowledge 
complement your traditional DevOps skills? Do you have specific examples?



Interview with a DevOps architect consultant     195

Veeral Patel: Having a degree in data science opens ideas and thoughts about what is 
possible with pipelines and moving data. I always think to myself about how some data 
or how some pipeline would be valuable in analytics or what could be done with data that 
currently is not readily available. When I worked in healthcare, I always thought about 
how much untapped data there is that is just going to the database and being displayed 
back to a user interface without any real analysis being done on it.

Reporter: Thanks for your time, Veeral – I look forward to speaking with you again. 

Interview with a DevOps architect consultant
Some people have an impact on you. Chris Timberlake is one of those people for me. From 
the first time I attended a meeting with him, I could tell he was going to be someone that I 
was going to be able to soak knowledge from. This proved true during the time our paths 
crossed while we worked on an implementation for GitLab together: 

Figure 11.3 – Chris Timberlake's bio

Reporter: Thanks, Chris, for agreeing to discuss your DevOps journey with me. Before we 
get started, can you introduce yourself and the experiences that have led you to where you 
are now?

Chris Timberlake: Thanks for having me, Nate! I started working with computers at 
a young age – before I was 10 years old. I started out working on GeoCities websites 
and booting tools for Yahoo Messenger, and then moved into programming video 
games based on the Half-Life Source Engine. These events were my introduction to 
programming. I have been addicted ever since. I took a short break to pursue a career in 
law enforcement. Then, I came back to programming and found myself through a series of 
events working for Red Hat on massive digital transformations. Now, I work at GitLab as a 
professional services architect, and I help lead digital transformations.



196     Interviews with DevOps Practitioners

Reporter: Wait – so you are a technologist and an officer of the law? Impressive! Do you 
consider yourself a DevOps engineer? Can you explain how you differentiate between a 
DevOps engineer and a software engineer or are they the same?

Chris Timberlake: I do consider myself a DevOps engineer, but I also consider myself 
a half-decent software engineer and SysAdmin. I move between the separate roles very 
fluently. Previously, in 2015, I would say that a DevOps engineer was just a software 
engineer with SysAdmins abilities. However, the DevOps field has grown substantially  
and evolved with the cloud market. Today, I consider a DevOps engineer its own role. 
Today, a DevOps engineer is an engineer who handles most of the piping for automation 
and delivery.

Reporter: Chris, you have seen many sides of engineering and DevOps. Can you explain 
the biggest difference between working in DevOps as a consultant versus directly for  
a company?

Chris Timberlake: The biggest takeaway is your role. As a consultant, you must have an 
entirely different mindset and you have different responsibilities. As a consultant, you are 
supposed to be a leader of the field, an educator, someone people look up to for answers 
and to get out of a hairy situation. You also have to coordinate travel, expenses, being on 
call, and working in different environments – sometimes without the tools necessary. As  
a consultant, any role you have is much more difficult. For example, as an employee, you 
do not have to worry so much about ensuring you are on a plane in Atlanta at 6 P.M. to 
meet a connection in Dallas at 10 P.M. so that you can be at a meeting in San Francisco  
at 8 A.M.

As an employee, you have far fewer concerns. I think of being a consultant for DevOps 
as being two distinct roles in one. On the one hand, you are an individual contributing 
to DevOps engineering. On the other hand, you are a traveling leader or teacher who 
educates others on the topic.

Reporter: Thanks, Chris. As a follow-up, question do you think a consulting role is 
suitable for someone looking to start their career in DevOps or is it a role for experts only?



Interview with a DevOps architect consultant     197

Chris Timberlake: It is suitable for either scenario. It is less about knowledge and more 
about the determination and ability to remain calm under pressure. As I started my 
consulting career, I certainly was not an expert on all things. Even today, I am asked about 
things I am not an expert on. But when faced with uncertainty, I make sure I go out and 
find those answers for folks. I make sure I educate myself on the subject at hand while 
keeping a clear mind about the topics. One of the things being a consultant has taught 
me is that I do not understand a solution or topic unless I can reliably, accurately, and 
properly argue both for and against that item. Being a consultant can be a stressful job. 
It is certainly not for everyone. It is less about what you know and more about how you 
work, being able to handle the stress of the role, and even actually enjoying the role.

Reporter: Thanks, Chris, I feel our readers will find this particularly useful as they 
navigate their DevOps career. I would like to switch gears and talk about open source. At 
least two of the companies you have worked for are considered pioneers in open source 
software – GitLab and Red Hat. Many would say they are also dominant players in the 
field of DevOps. Can you share your thoughts on the relationship between open source 
and DevOps?

Chris Timberlake: I mean, it is no secret that the future of software is open source. 
Historically, many of the DevOps tools and patterns came from open source projects. 
People would self-organize and work on a project together, then bam – you have a new 
product that is used by many and even corporations. Some may feel that open source is 
beneficial because it allows folks to be involved in software who may not otherwise be. 

The true power of open source is transparency, collaboration, and, most importantly, open 
conflict that happens. All these things are key to producing something great. Red Hat is 
not just a company built on open source; they bring those values into how they work and 
operate. They allow employees to be themselves and are transparent with those employees 
about things. Red Hat was able to become the biggest acquired tech company to date at 34 
billion dollars. GitLab also takes these values to heart – not just with its software but in the 
way it works. This resulted in a massive IPO (Initial Public Offering) this year. 

Those same values that open source advocates and encourages drove those two companies 
to their heights and I believe will cement DevOps as a requirement for all software and IT 
companies in the future. This is because DevOps also encourages and implements those 
same values.

Reporter: I could not agree more! Now, going on a tangent to what you said about 
DevOps values, what do you feel are the most in-demand and desired soft skills for 
DevOps professionals and those looking to break into the field?



198     Interviews with DevOps Practitioners

Chris Timberlake: I think no matter the role you are in, you should aspire to be a leader. 
Now, that does not mean you have to be a manager or even lead anything. But having 
leadership-like attributes will help you in your career goals anywhere. Having effective 
communication skills is necessary. Clear communication that is informative and receptive 
cannot go overstated. Having confidence is another important attribute. 

Even if you must fake it till you make it. I see many amazing engineers trip themselves up 
with imposter syndrome. We are all here trying to build something great, we will all run 
into issues, and we will all fail. Lastly, I think accepting failure, being willing to risk failure, 
and then overcoming failure is important. Every engineer with strong soft skills has a 
story of when they failed hard. 

Me? I lost 4 million dollars in revenue in an afternoon for a company I was employed by. 
Being able to iterate and learn from those failures, prevent them from happening, and 
build something better after a failure is very important. That's because everyone in any 
career will fail; it is what you do after you fail that is important.

Reporter: I would be interested to hear more on the story of how you lost $4,000,000 
if you can discuss that. What happened and what did you have to do to remediate the 
situation? Also, were there any repercussions from your employer when this happened, 
and what was their response?

Chris Timberlake: Unfortunately, I cannot. There are privacy concerns. What I will say 
is what happened; I oversaw the release of some software to a shopping cart. It caused the 
shopping cart to not entirely break but have a reduction in function. So, we stopped many 
customers from checking out, but not enough to trip automatic alerts and monitoring.

As for repercussions, absolutely. I had to write a detailed document explaining how 
everything transpired., digging deep using the 5 Whys method. Then, I had to write a 
statement to the shareholders of the company as to what happened and assure them it 
would not happen again. All I will say is that JavaScript is very cool until there is a small 
syntax error that causes big problems.

Reporter: I understand. I understand outside of work, your hobbies also include many 
software-related endeavors. Can you talk about these, and do your endeavors outside of 
work play into your success at work?

Chris Timberlake: Absolutely! I will not say my outside work successes have helped 
my career. But my failures have! I have done a significant amount of mobile, game, and 
desktop development, which is a fancy way of saying I have gone down the rabbit hole of 
finding issues with building toolchains and third-party libraries. It also means I have had 
experience with many technologies my normal job does not expose me to either. 



Interview with a DevOps architect consultant     199

A good example is when Apple flipped the switch on mobile apps and blocked any apps 
from being able to compile code on the fly. It broke numerous MongoDB libraries: being 
able to navigate and resolve this issue was a terrible endeavor that I learned a lot from. I 
use those lessons learned in my day-to-day work.

Then, there are the more fun rabbit hole projects, such as converting Quake 2 from C into 
C++ compilers on a weekend. This taught me the inner workings of some of the C and 
C++ compilers. Not all my projects involve software. I am also a huge car fanatic. Being 
able to diagnose and problem solve weird electrical issues with a car or engine helps me 
solve problems at work. These lessons are translated into software.

Reporter: I will not keep you too much longer, but I have a few more questions for you. 
What advice do you have to offer to individuals who want to get into the DevOps field?

Chris Timberlake: I would say that if you want to be in DevOps, you should spend a lot 
of time on side projects and build up a lot of knowledge. Your job will not expose you to 
everything you need to learn; you must be passionate about the field. Build a mobile app, 
make a video game, and then automate it.

Reporter: Last question – technology is changing so fast. Can you paint a mental picture 
of what the DevOps landscape will look like 20 years from now?

Chris Timberlake: In the future, I think we will see two things. First, we are going to see a 
consolidation of companies in DevOps as a fight for sales and market share increases. We 
have seen a tremendous consolidation over COVID. 

With that, we are also going to see a lot of new companies start, where someone has a 
new process or idea, and they give it a shot and build a company from it. This is similar 
to how GitLab and many new tech IPOs started. Both of those are near term; 5-10 years 
out. I could not even guess 20 years out. Everything is moving so quickly that in 20 years 
we could have wearable VR and Star Trek holograms. Or, those things could be like flying 
cars, forever just an arm's length away. 

No matter what, we are going to see increased transparency, collaboration, and conflict in 
software and DevOps. No matter what, we will be better off.

Reporter: Thanks for your time, Chris, I look forward to the next time we discuss all 
things DevOps.



200     Interviews with DevOps Practitioners

Interview with a tech executive passionate 
about neurodiversity and inclusion
The next individual I interviewed was Magnus Hedemark:

Figure 11.4 – Magnus Hedemark's bio

Reporter: Hi Magnus, I am excited you agreed to let me interview you about DevOps. 
Would you mind telling us about yourself, and your career progression in IT and DevOps?

Magnus Hedemark: I took a very unconventional route into IT and that could be a very 
long story by itself. But I think throughout my journey, one thing that always served me 
well was to try to look ahead and see how I could be useful ahead of the known need. I 
like figuring out how things work, so rather than starting on the developer side, I came 
upon the Ops side. And I always had a knack for figuring out how to automate big, hairy, 
audacious things so that I could focus on smarter work. That was not common in my field 
in my early career, not like it is now. But there were a couple of big inflection points in the 
industry where the industry itself changed and my career changed:

• The industry started moving to Agile. I was on an Ops team at IBM where some 
great engineers from Brazil were huddling around their work every day, and sort 
of socially swarming around it in a way you do not tend to see in enterprise-driven 
Agile programs. This was fascinating to me and was a real reveal of what was 
missing in my career development.

• I had a CTO pull me aside and challenge me to consider a career in leadership. I 
was not sold on the idea, but he committed to spending time with me to understand 
what great looks like, and this was missing. I try to be that person now for others 
who I see with leadership potential. But I think when I was younger and earlier in 
my career, information was power, and job security meant not having successors. 
These days, information wants to be free, and great leaders are constantly grooming 
potential successors.



Interview with a tech executive passionate about neurodiversity and inclusion     201

It turned out that I enjoyed leadership even more than engineering (though I am still 
constantly building things for fun). I went from just being a brilliant jerk who preferred to 
hack in isolation, to what I hope more folks would consider an empathetic and supporting 
leader who places a high value on collaboration. The progression was as much personal 
growth as professional.

Today, I lead a little over 300 people with a broad-ranging product portfolio in the 
TechOps space.

Reporter: Wow, thanks, Magnus – that was an amazing response! I guess I should not be 
surprised; I follow you quite closely on LinkedIn and am wondering about the following: 

• What advice do you have for young IT professionals looking to advance their career 
in a DevOps direction?

• Second, what advice do you have for more seasoned IT professionals who are 
considering a career in management?

Magnus Hedemark: For folks just starting, I do not think there is a boot camp that 
adequately prepares you. Consistently, the absolute best people I have worked with in this 
field, the ones who earn well and are in demand, have a couple of defining traits:

• They are very curious people, always learning new skills for personal enrichment, 
and then applying those skills in their work. Even in a senior leadership role, I 
dedicate about 10% of my annual bonus every year to leveling up my skills. That 
might be paying for books or coaching. This year, I am using it to underwrite some 
HomeLab upgrades for learning Kubernetes much more deeply. If you are just 
getting into DevOps, some foundational texts are more of the beginning of the 
journey... if you have not read these things yet, you are missing what a lot of people 
around you are understanding:

 � The Phoenix Project

 � Continuous Delivery

 � The Agile Manifesto (it will take you less time to read than this answer) but even 
more importantly than that, the 12 principles behind it

https://itrevolution.com/the-phoenix-project/
https://martinfowler.com/books/continuousDelivery.html
https://martinfowler.com/books/continuousDelivery.html
https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/principles.html


202     Interviews with DevOps Practitioners

• They are very empathetic people. I mentioned the brilliant jerk paradigm before 
and there is not much room for it now. Learning to be a good listener, to be curious 
instead of furious, goes a long way. Some people are gifted in this area. Others, like 
me, have to work harder at it. But DevOps is as much about the cultural impact as it 
is the cool technical skills. I think learning about the Westrum model is one of the 
first things I would call out to make sure you are cultivating a high-collaboration 
engineering culture. I also think it's important to stay aware of the cultural 
sensitivities of underrepresented communities in tech. Guide to Allyship is a good 
place to start. Just being aware and mindful – those strengths are introduced when 
we make sure to include people with different backgrounds and different ways of 
thinking. But as a matter of respect, too, we need to invest in understanding how to 
include them.

For people in an individual contributor role thinking about moving into management... 
where do I begin? I think if you are not doing well at the curious and empathetic points 
I made in the previous question, I would advise that we have already got too many in 
this field who are missing these key traits and it may not be the right path for you. It 
is important to understand that going from individual contributor to manager is not a 
promotion; it is more of a lateral move to a completely different career track. For example, 
just to level set, where I work now, the highest-ranking individual contributor that can 
report to a senior manager is a senior staff software engineer. Even though there is a 
supervisory relationship between the two, they are at the same pay grade. When someone 
moves from senior staff software engineer to senior manager (a not-uncommon move), 
there is initially some disappointment that they are not getting paid more. Even as you 
move up in management, you may have highly skilled individual contributors earning 
more money than you. I want to tell you now and keep it filed away for when this 
inevitably happens – get over it. The jump in compensation does not tend to happen while 
going from individual contributor to manager (within the same organization), but when 
you jump from manager to director (manager of managers of individual contributors). But 
here is the thing – you could stay in an individual contributor role and still get that sweet 
pay bump by getting a promotion to principal software engineer. And your reporting 
relationship will change, because now, you outrank your senior manager, and you will 
instead be reporting directly to their director.

So, it all comes back to this, I think.

https://cloud.google.com/architecture/devops/devops-culture-westrum-organizational-culture
https://guidetoallyship.com/


Interview with a tech executive passionate about neurodiversity and inclusion     203

If you are thinking about making the move, think long and hard about what your 
motivations are. And think about your level of commitment to this path. Do not try to 
dither with I'm going to still write code half the time. Reality check: you are not going to 
write much code anymore. And if you do, you are now putting other engineers into a very 
uncomfortable position where they must tell the boss their code sucks. Just get over it, get 
over yourself, and commit to being a great leader. If you just want to be an engineer with a 
badge, this is probably not the right career move for you.

For me, my motivation is to liberate latent potential (in myself, in others, in teams of 
people, in lines of business, their products, their customers, and the communities that 
they work in).

Reporter: You have over 300 people who report under your leadership, meaning you have 
seen your fair share of interviews, both good and bad. If you do not mind, I am sure the 
readers would be interested in what made the good and bad candidates stand out.

Magnus Hedemark: I think a lot of other seasoned interviewers will nod knowingly 
when I say that most of the time, you know in the first 5-10 minutes if that person is a 
slam-dunk or a hard-no. But I still like to take more time anyway, because sometimes, a 
slam-dunk can turn into a hard no when you get to know them more (but I do not think 
I have ever seen an interview go in the other direction). Again, I think a lot of empathy 
and understanding must be shown regarding there being many ways to be normal in this 
world versus just those who we identify with (affinity bias). So, the following are some of 
the key things I think about when I am talking to someone:

• Do they objectively have hard skills that will raise the bar for this team?

• Might they be a culture add to the team? (I do not interview for culture fit; that is 
how you get a monoculture.)

• I ask some questions to help a candidate expose if they are a high risk for breaking 
the No Jerks Rule, which I take very seriously as responsibility for cultivating great 
team cultures. You can't let even one toxic person into your team, and if you find 
them, you cannot let them remain.

Reporter: Thanks, Magnus, for your time. I enjoyed our conversation, and I am sure the 
readers will as well. 

https://github.com/magnus919/magnus919/blob/master/compass.md


204     Interviews with DevOps Practitioners

Summary
This chapter was a culmination of interviews with four DevOps professionals with varying 
levels of experience. We had the opportunity to speak with John Knight, who gave an 
insight into hiring practices, as well as what he looks for in terms of skills when hiring 
DevOps engineers. The DevOps leader also gave insight into how someone may transition 
from an individual contributor role to a manager. Lastly, John gave us his prediction for 
the future of DevOps.

Next, we had the opportunity of speaking with senior DevOps engineer Veeral Patel, who 
gave insight into how he landed a job in DevOps and gave helpful tips for students looking 
for a job.

Chris gave insight into the relationship between open source and DevOps. The major 
takeaway from Chris's interview is that DevOps is truly a mindset, and if you want to 
succeed, you cannot be afraid to fail.

Finally, we had the pleasure of speaking with Magnus, a technology executive who has a 
storied career in DevOps and was full of insight and knowledge for individuals looking to 
either get into the field of DevOps or transition into leadership.



Index

A
advanced DevOps certifications

about  66
AWS certifications  66
Azure certifications  67
Google Cloud certifications  66
Kubernetes certifications  67, 68

Agile  6
AI-assisted automation  192
AlgoExpert

reference link  29
All Day DevOps (ADO)

about  97
URL  97

Amazon Web Services (AWS)  15
Associate Cloud Engineer

reference link  49
Atlassian  96
AWS Associate Architect

reference link  49
AWS certifications

about  49
AWS Certified DevOps Engineer-

Professional, reference link  66
AWS Certified Security-Specialty, 

reference link  66

AWS Certified Solutions Architect-
Professional, reference link  66

AWS Cloud Practitioner
reference link  49

Azure certifications  67, 49

B
Bash

about  24, 28
scripting  28

best practices, follow-up
email  137

Bitbucket
URL  33

C
capacity planning  35
career tips, DevOps

about  173-179
personal journey  174, 175

CI/CD pipeline DevOps 
engineer specialist

about  52
ownership of integrations  54, 55



206     Index

required skills, for cloud and application 
modernization specialist  57

shared pipeline library, 
maintaining  52-54

CI/CD process security
configuration management  64
container scanning  63
patching and security updates  63
security acceptance testing  63
security testing  63

cloud and application 
modernization specialist

about  57
advanced cloud skills, requiring  58
approach, selecting  60
driving force, demand and 

supply sides  59
CloudFormation

reference link  37
cloud-native frameworks  42, 43
command line

navigating  24-26
competency

compensation, in relation to level  71, 72
desired level  70
entry level  70
premium  70

competency matrix
about  68
breakdown  69
competency  70
levels  70
skills  69

connections
consistently engage with  97
helping  97

container management
about  61
software  61

container management, purpose
automation  61
monitoring  61
scaling  62
security  61

containers  43
Container Specialist  61
Continuous Delivery (CD)  39, 42
Continuous Integration (CI)  6-39

about  39, 40
GitLab  41
Jenkins  40

continuous interview cycle
about  150
application and preparation phase  150
feedback phase  150
interview phase  150

conversation starters  103, 104
Criteria Cognitive Aptitude 

Test (CCAT)  164

D
data encryption  65
define the relationship (DTR)  112
deployment  38
DevOps

about  7
career tips  173

DevOps career paths
about  15
DevOps cloud specialists  21
DevOps generalist  18
DevOps security specialist  20
DevOps specializing generalist  19



Index   207

DevOps certifications
about  48
AWS certifications  49
Azure certifications  49
Google Cloud certifications  49

DevOps cloud specialists
about  21
skill profile  21

DevOps culture  9, 15
DevOps culture, principles

automate everything  13
continuous learning  14
continuous improvement  12
customer-centric  9
end-to-end ownership  11, 12
foster collaboration  10, 11

DevOps engineers
earning potential  4
flexibility  5
impact on business  5
learning opportunities  5

DevOps generalist  
about  15, 18
skill profile  18

DevOps history  8
DevOps security specialist

about  20
skill profile  20

DevOps Specialist  16
DevOps specializing generalist

about  16, 19
skill profile  19

Docker example  44, 45
dynamic application security 

testing (DAST)  63

E
Elastic Container Storage (ECS)  104
Elastic Kubernetes Service (EKS)  15
Elasticsearch, Logstash, Kibana (ELK)  35
email example, follow-up practices  137
extreme programming (XP)  6

F
failing forward  12
final interviews

versus submitted applications  149, 150
first-round interview

about  158-160
do's  159
don'ts  159

follow-up
best practices  136
waiting game  135, 136

G
Git  30-33
GitHub

URL  33
GitLab

about  41, 96
URL  33

GitLab Pages tutorial
about  84, 85
prerequisites  84

Go
about  29
scripting  29

goals
writing  114



208     Index

Google Cloud certifications
about  49
Professional Cloud Architect, 

reference link  66
Professional Cloud DevOps 

Engineer, reference link  66
Professional Cloud Network 

Engineer, reference link  66
Professional Cloud Security 

Engineer, reference link  66
graphical user interface (GUI)  58
Growth Mentor  119

H
Hedemark, Magnus  200-203

I
Infrastructure as Code (IaC)  55
infrastructure management

about  34
capacity planning  35
deployment  38

infrastructure provisioning  36-38
infrastructure specialist

containerization (Docker 
and Kubernetes)  56

network infrastructure design  55
Site Reliability Engineering (SRE)  56, 57
storage management  55

in real life (IRL)  97
in real life (IRL), attributes

authentic  98
engaged  98
professional standards  98, 99

integrated circuit (IC)  14
internal sponsor  117

interview
preparing, best ways  147-149

interview process
about  158
additional rounds  161
culture of company  181
don'ts  151-153, 180-183
do's  152-155, 184-186
first-round interview  158-160
industry  181
offer stage  163
out-of-the-box design  165
second tier responsibilities  181
technical interview  160
technical needs  181
tests  164, 165

interview process, phases
about  142
first-round interview  143, 144
follow-up rounds  146
technical interview  144-146

IT infrastructure  34

J
JavaScript

about  28
scripting  28

Jenkins  40

K
Key Performance Indicators (KPIs)  7
Knight, John  188-192
Kubernetes certifications

Certified Kubernetes 
Administrator (CKA)  67



Index   209

L
lasting connections

building, in personal setting  97
building, in virtual settings  96
in real life (IRL)  97
quality over quantity  99, 100

Lean Coffee
about  100, 101
dot vote  102
theme, selecting  102
thumbs up / thumbs down  102
topic, discussing  102
topics, adding  102

lean manufacturing  6
LeetCode

URL  29
levels.fyi

reference link  70
lightning talks  103
LinkedIn

about  92
ways, of getting noticed  93-95

LinkedIn, Email, and Phone 
(LEP) protocol  182

LinkedIn profile
about  75
accomplishments  78
additional sections  78
experience  79
featured content  78
headline, updating  76
improving  75
profile picture  79
recommendations  77, 78
share, like, and comment  79
skill endorsements  79

M
machine learning  192
Medium

about  88
URL  88

mentor
as reference  119, 120
criteria  114-116
finding, ways  118
individual, requesting to be  116-118
selecting  113

mentor cruise
about  119
URL  119

mentor-mentee relationship 
dynamics  111-113

mentorship
assistance and guidance toward 

goals, setting  108, 109
career coaching  110
importance  108
motivation, for achieving goal  109, 110
useful advice  110, 111

microservice architecture  46, 47
monolithic architecture  46

N
negotiation, with recruiters

about  129
 don'ts  130, 131
do's  132-134

networking   100
Novorésumé

URL  83



210     Index

O
offline

lasting connections, building  95
online

lasting connections, building  95

P
PagerDuty  96
paid time off (PTO)  129
Patel, Veeral  192-195
path with directory (pwd)  24
Pelion

about  119
reference link  119
URL  119

personal setting
connections, building  97

personal web page
creating  84
updating  84

personal web page, sections
about  85
Blog section  85
contact section  85
introduction section  85
project section  85
resume section  86

presentation aspects  128
principle of isolation  65
principle of least trust and zero trust  65
profile

presenting, to recruiters  128, 129
Python

about  28
scripting  28

Q
quality assurance (QA)  161

R
Raspberry Pi  97
recruiters

appealing to  128, 129
etiquette for following up  136, 137
finding  127
first-party recruiters  124, 125
following up  134
freelance recruiters  125
negotiating with  129
overview  124
presentation aspects  128
profiles, making visible to  128
recruiting agencies  125
stages, of interview process  126
types  124
working with  123

restricted stock units (RSUs)  129
Resume.io

URL  83
resume updation

about  80
contact information  80
experience  81, 82
objective  80, 81

resume updation, experience
education  82, 83
skills and certifications  82



Index   211

S
secure API gateways  65
security specialist

about  62
CI/CD process security  63

security static analysis testing (SAST)  63
service-oriented architecture (SOA)  46
Site Reliability Engineering (SRE)  56, 192
skill profile  16, 17
soft skills  47
soft skills, for DevOps engineer

adaptability  48
empathy  47
good communication  48
teamwork  48

Software as a Service (SaaS)  41
software development life cycle (SDLC)  18
Source Code Management (SCM)  

about  30
tools  33, 34

STAR technique  166-168
submitted applications

versus final interviews  149, 150
supervisory control and data 

acquisition (SCADA)  174

T
Test-Driven Development (TDD)  152
Timberlake, Chris  195-199
Twitter

about  86, 87
for consuming information  87
for sharing information  87

V
Version Control (VC)  30
virtual settings

connections, building  96

W
waiting game, follow-up  135, 136

Y
You Build It, You Own It (YBYO)  11





Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as 
well as industry leading tools to help you plan your personal development and advance 
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos 

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and 
ePub files available? You can upgrade to the eBook version at packt.com and as a print 
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at 
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up  
for a range of free newsletters, and receive exclusive discounts and offers on Packt books 
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com


214     Other Books You May Enjoy

Other Books You 
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

DevOps Adoption Strategies: Principles, Processes, Tools, and Trends

Martyn Coupland

ISBN: 9781801076326

• Understand the importance of culture in DevOps

• Build, foster, and develop a successful DevOps culture

• Discover how to implement a successful DevOps framework

• Measure and define the success of DevOps transformation

• Get to grips with techniques for continuous feedback and iterate process changes

• Discover the tooling used in different stages of the DevOps life cycle

https://www.packtpub.com/product/devops-adoption-strategies-principles-processes-tools-and-trends/9781801076326


Other Books You May Enjoy     215

Learning DevOps - Second Edition

Mikael Krief

ISBN: 9781801818964

• Understand the basics of infrastructure as code patterns and practices

• Get an overview of Git command and Git flow

• Install and write Packer, Terraform, and Ansible code for provisioning and 
configuring cloud infrastructure based on Azure examples

• Use Vagrant to create a local development environment

• Containerize applications with Docker and Kubernetes

• Apply DevSecOps for testing compliance and securing DevOps infrastructure

• Build DevOps CI/CD pipelines with Jenkins, Azure Pipelines, and GitLab CI

• Explore blue-green deployment and DevOps practices for open sources projects

https://www.packtpub.com/product/learning-devops-second-edition/9781801818964


216     

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and 
tech professionals, just like you, to help them share their insight with the global tech 
community. You can make a general application, apply for a specific hot topic that we are 
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished The DevOps Career Handbook, we'd love to hear your thoughts! If 
you purchased the book from Amazon, please click here to go straight to 
the Amazon review page for this book and share your feedback or leave a review on 
the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're 
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-803-23094-0
https://packt.link/r/1-803-23094-0



	Cover
	Title page
	Copyright and Credits
	Dedications
	Contributors
	Table of Contents
	Preface
	Section 1: 
A Career in 
DevOps
	Chapter 1: Career Paths
	Earning potential
	Constant learning opportunities
	Impact on the company
	Flexibility

	Overview of DevOps history
	Lean manufacturing
	Agile
	Extreme programming
	DevOps

	DevOps culture
	Customer-centric
	Foster collaboration
	End-to-end ownership
	Continuous improvement
	Automate everything
	Continuous learning

	DevOps career paths
	DevOps generalist
	DevOps specializing generalist
	DevOps security specialist
	DevOps cloud specialists

	Summary

	Chapter 2: Essential Skills for a DevOps Practitioner
	Scripting, coding, and programming
	Navigating the command line
	Scripting

	Source code management 
	Git
	SCM

	Infrastructure management
	Capacity planning 
	Infrastructure provisioning 
	Deployment

	CI/CD concepts
	Continuous integration
	Continuous delivery

	Cloud-native frameworks
	Containers
	Microservice architecture
	Soft skills

	Beginner DevOps certifications
	AWS certifications
	Google Cloud certifications
	Azure certifications
	Other resources

	Summary

	Chapter 3: Specialized Skills for Advanced DevOps Practitioners
	CI/CD pipeline DevOps engineer
	Maintaining a shared pipeline library

	Infrastructure as code 
	Cloud and application modernization
	Advanced cloud skills
	Application modernization
	Choosing a modernization approach

	Containers and container management
	Container management software

	Security
	CI/CD process security

	Environment and data security
	Advanced DevOps certifications
	AWS certifications
	Google Cloud certifications
	Azure certifications
	Kubernetes certifications

	Competency matrix
	Matrix breakdown
	Compensation in relation to level and competency

	Summary

	Section 2: 
The Application Process
	Chapter 4: Rebranding Yourself
	Ways of improving your LinkedIn profile
	Updating your headline
	Recommendations
	Additional sections 

	Updating your resume to match the career you are after
	Contact information
	Objective
	Experience

	Updating and or creating your personal 
web page
	GitLab Pages tutorial
	Sections to include on your personal web page

	Leveraging Twitter and other social profiles
	Twitter 
	Medium

	Summary 

	Chapter 5: Building 
Your Network
	LinkedIn the right way
	Getting noticed

	Building lasting connections, online and offline
	Building connections in virtual settings 
	Building connections in a personal setting
	In real life 

	Quality over quantity
	Networking and conversation starters 
	Lean Coffee 
	Lightning talks
	Conversation starters

	Summary

	Chapter 6: Mentorship
	The importance of mentorship
	Assistance and guidance toward setting 
achievable goals
	The motivation to help you achieve your goals
	Career coaching 
	Useful advice

	The mentor-mentee relationship dynamics
	Choosing the correct mentor
	Questions to ask when looking for a mentor
	Asking an individual to be your mentor
	Additional ways to get connected with a mentor

	Mentors as a reference
	Have you asked your mentor to be a reference?
	Have you worked with the mentor?
	Has your mentor seen you use your skills? Are they confident about your skills required for the role?

	Summary

	Chapter 7: Working with Recruiters
	Different types of recruiters
	First-party recruiters
	Recruiting agencies
	Freelance recruiters
	The recruiter's role at various stages of the interview process

	Where to find them and how they can find you
	How to present yourself
	How to negotiate
	Things that do not work
	Things that do work

	Following up, but when?
	The waiting game
	Etiquette for following up with recruiters

	Summary

	Section 3: 
Interview 
Process
	Chapter 8: Preparing for 
Your Interview
	Phases of the interview process
	First-round interview
	Technical interview
	Follow-up rounds

	Best ways to prepare
	What to expect
	Tricks of the trade
	Common mistakes
	Things that do work

	Summary

	Chapter 9: Interviews Step 
by Step 
	Typical interview walk-through 
	First-round interview 
	Technical interview 
	Additional rounds 
	Offer stage 

	Non-typical interview walk-through 
	Tests 
	Out-of-the-box design 
	Tell me about a time

	Summary 

	Section 4: 
Tips, Tricks, and Interviews
	Chapter 10: DevOps Career: Tips and Tricks
	Tips for transitioning to a career in DevOps
	Personal DevOps journey
	Stay on track, but entertain your interests
	Life is busy; prioritize and focus on things important 
to you
	Opportunity is often disguised in a deceptive facade
	Making an internal career change is sometimes easier than changing jobs and companies at the same time
	Apply for roles you find interesting, even if you do not meet all the requirements

	Things to avoid during the interview process
	Avoid providing inaccurate or misleading information when applying for a position
	Avoid neglecting to respond to recruiters after you have applied for a position
	Avoid inconsistent information across social profiles and your resume 

	Things to do during the interview process
	Discuss your side projects
	Come prepared, ready to discuss tool alternatives

	Summary 

	Chapter 11: Interviews with DevOps Practitioners
	Interview with a senior DevOps manager
	Interview with a senior DevOps engineer
	Interview with a DevOps architect consultant
	Interview with a tech executive passionate about neurodiversity and inclusion
	Summary

	Index
	Other Books You May Enjoy



