
Typed
PHP

THE E XPER T ’S VOICE® IN WEB DE VELOPMEN T

Stronger Types for Cleaner Code
—
Christopher Pitt

 Typed PHP
 Stronger Types for

Cleaner Code

Christopher Pitt

Typed PHP: Stronger Types for Cleaner Code

Christopher Pitt
Cape Town, Western Cape
South Africa

ISBN-13 (pbk): 978-1-4842-2113-6 ISBN-13 (electronic): 978-1-4842-2114-3
DOI 10.1007/978-1-4842-2114-3

 Library of Congress Control Number: 2016948754

Copyright © 2016 by Christopher Pitt

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Tri Phan
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James
Markham, Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-
ny@springer-sbm.com , or visit www.springeronline.com . Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate,
or promotional use. eBook versions and licenses are also available for most titles.
For more information, reference our Special Bulk Sales–eBook Licensing web page at
 www.apress.com/bulk-sales .

 Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com/9781484221136 . For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/ . Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

 Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/9781484221136
http://www.apress.com/source-code/

 Th ank you, Squirrel.

v

Contents at a Glance

About the Author .. xi

About the Technical Reviewer .. xiii

Acknowledgments ... xv

Introduction ... xvii

 ■Chapter 1: The State of PHP ... 1

 ■Chapter 2: Structure ... 7

 ■Chapter 3: Extensions ... 19

 ■Chapter 4: Design ... 33

 ■Chapter 5: Implementation ... 51

Index .. 75

vii

Contents

About the Author .. xi

About the Technical Reviewer .. xiii

Acknowledgments ... xv

Introduction ... xvii

 ■Chapter 1: The State of PHP ... 1

Procedural versus Object Oriented .. 1

Procedural Programming .. 1

Object Oriented Programming .. 2

Which Is the Best? .. 3

Which Is PHP? ... 3

Native Function Inconsistencies .. 3

Sporadic Underscores .. 4

Sporadic Abbreviation ... 4

Inconsistent Argument Order .. 5

Regular Expression/Strings .. 5

Nouns/Verbs ... 6

Strange Return Values .. 6

Conclusion ... 6

■ CONTENTS

viii

 ■Chapter 2: Structure ... 7

Decorating ... 7

Resolving Types ... 9

Functions .. 10

Regular Expressions ... 11

All Together! .. 13

Namespace Functions ... 13

Composer Autoload... 14

Importing Namespaced Functions .. 14

Optional Types ... 15

The Null Problem .. 15

Optional Values ... 16

In The Wild .. 17

Conclusion ... 18

 ■Chapter 3: Extensions ... 19

Vagrant + Phansible .. 19

Installing ... 19

Provisioning .. 22

Vagrant Commands .. 24

SPL Types .. 25

Installing SPL Types .. 25

Using SPL Types .. 26

Scalar Objects ... 27

Installing Scalar Objects ... 28

Using Scalar Objects... 29

■ CONTENTS

ix

Zephir .. 30

Installing Zephir .. 30

Using Zephir ... 30

Conclusion ... 32

 ■Chapter 4: Design ... 33

Which Method to Use .. 33

Namespace Methods .. 33

Scalar Objects/SPL Types ... 34

Zephir ... 34

Which Functions to Keep ... 34

String Functions ... 35

Number Functions .. 37

Array Functions .. 39

Which Functions to Add ... 43

String Functions ... 43

Array Functions .. 44

How to Structure Functions ... 45

Resolving Types .. 45

Chaining .. 46

Combining Number Types ... 47

How to Test .. 47

PHPUnit ... 47

What Should We Test? .. 48

When Should We Write Tests? .. 48

Recommendations .. 48

■ CONTENTS

x

How to Package .. 48

Make a Readme File ... 48

Installation Instructions .. 49

License ... 49

Contribution Guidelines .. 49

Conclusion ... 49

 ■Chapter 5: Implementation ... 51

Extending Composer ... 51

Example: Path Plugin .. 51

Example: Hook Plugin ... 58

PHP Implementation .. 65

Functions .. 65

Conclusion ... 74

Index .. 75

xi

 About the Author

 Christopher Pitt is a developer and writer, working at
SilverStripe. He usually works on application
architecture, although sometimes you’ll find him
building compilers or robots.

xiii

 About the Technical
Reviewer

 Tri Phan is the founder of the Programming Learning
Channel on YouTube. He has over seven years of
experience in the software industry. Specifically, he has
worked in many outsourcing companies and has
written many applications of many fields in different
programming languages such as PHP, Java, and C#. In
addition, he has over six years of experience in teaching
at international and technological centers such as
Aptech, NIIT, and Kent College.

xv

 Acknowledgments

 I’d like to thank the team at Apress for whipping this up so quickly. It’s been a brief,
pleasurable experience working with them.

 I’d also like to thank the original technical reviewers for their time, effort, and
wisdom. Thanks to everyone who bought the original version. Without all of you, this
book would not have happened.

xvii

 Introduction

 PHP is a powerful, general-purpose programming language, with a dynamic type system
at its core. It has been used by a generation of programmers to create much of the
Internet we see today.

 It has also been the subject of ridicule, thanks to what some consider to be an
inconsistent and incomplete set of core functionality.

 This book seeks to address those issues, by building a stronger type system. It’s a type
system that parallels more modern programming languages and best practices.

 As we step through the core PHP functionality, we’ll identify inconsistencies and
shortcomings, while also exploring viable approaches to overcoming them. We’ll build a
standard library of our own and see how a number of open source extensions can bring
these libraries in harmony with the built-in data types.

 Why Write This Book
 The purpose of this book is to simplify how we work with strings, numbers, arrays, etc.
They’re called Scalar types, because PHP treats them differently to objects. They have no
properties or methods.

 PHP has a rich history and a dominant place on the web. It has achieved much
despite language inconsistencies and difficulties. Bjarne Stroustrup once said, “There are
only two kinds of languages: the ones people complain about and the ones nobody uses”.
PHP is one of those languages that everybody uses, yet that’s often seen as a good reason
to ignore the bad parts and just get stuff done.

 I’m all for getting stuff done, and to that end I have used PHP for many years.
It’s always bugged me how procedural PHP is, in an ecosystem of OOP libraries and
frameworks. So I decided to take a deeper look at building a stronger type system on top
of PHP.

 In this book, we’ll look at how to use standard PHP libraries. We look at user-land
libraries. We look at using extensions and cross-compilers. All this will contribute toward
creating a set of reusable tools that unify and ease the scalar types of PHP.

■ INTRODUCTION

xviii

 Who This Book Is For
 This book assumes you have working knowledge of PHP. That means you understand the
basics of programming and have already used them to write PHP code.

 You don’t need to know how to set up a PHP stack. We will cover how to do this,
using VirtualBox, Vagrant, and Phansible.

 You also need to have an open mind. Many of the concepts covered in this book
are experimental and none of them is commonplace. That’s not to say that you can’t use
these techniques in production applications. You just need to decide if they are a good fit
for your architecture.

 Finally, you should have access to a decent Internet connection. The examples
in this book work best inside a Vagrant virtual machine. Vagrant creates development
environments and it needs to download extra software. This can take a long time on a
slow connection.

1© Christopher Pitt 2016
C. Pitt, Typed PHP, DOI 10.1007/978-1-4842-2114-3_1

 CHAPTER 1

 The State of PHP

 PHP has a long and colorful history. Over the years it has become the foundation for the
Internet. Along the way it has accumulated many syntactic and semantic oddities, which
make it slightly harder to learn and predict.

 This book is an exploration of what PHP’s type system and standard libraries could
become, given the chance to start fresh. But in order to fully appreciate the difference, we
need to take a look at what PHP is like today. Only then will we be able to consider what
changes would improve it.

 In this chapter, we’ll take a look at the dichotomy of classes and global functions, and
the small irregularities that make the core functions difficult to remember and reason about.

 Procedural versus Object Oriented
 Procedural and object oriented are programming styles that approach program execution
in different ways. It’s good to understand how they work and how they define the state of
scalar types.

 Procedural Programming
 Procedural programming describes a top-down approach to program execution. That is,
procedural programs consist of a list of steps for the interpreter to take (from top to bottom).

 In pseudo-code, a procedural image resize program may resemble these steps:

 1. Start execution.

 2. Then store a file reference returned by an open_file function.

 3. Then store a modified image returned by a resize_image
function.

 4. Then close the open file.

Electronic supplementary material The online version of this chapter
(doi: 10.1007/978-1-4842-2114-3_1) contains supplementary material, which is available to
authorized users.

http://dx.doi.org/10.1007/978-1-4842-2114-3_1

CHAPTER 1 ■ THE STATE OF PHP

2

 5. Then store a file reference returned by an open_file function.

 6. Then write the modified image data to the second open file.

 7. Then close the open file.

 8. Then empty the modified image variable.

 9. End execution.

 Procedural programs can call on functions (as described in the example) and
can define functions. We can change the current line with things like loops and go to
statements, but the program is mostly just a set of instructions.

 Object Oriented Programming
 Object oriented programming is a way to describe programs as interactions between
different objects. These objects can have any combination of properties and methods.

 Properties are another name for variables belonging to objects. Likewise, methods are
another name for functions belonging to objects.

 These methods are still executed from top to bottom, but programs still depend
on object interaction. In pseudo-code, an object oriented image resize program may
resemble these steps:

 1. Start execution.

 2. Then create a file object.

 3. Then create an image resize object.

 4. Then pass the file object to the image resize object.

 5. Then create another file object.

 6. Then write the result of the image resize object’s resize
method to the second file object.

 7. Then close the second file object.

 8. Then destroy the second file object.

 9. Then destroy the image resize object.

 10. Then destroy the first file object.

 11. End execution.

CHAPTER 1 ■ THE STATE OF PHP

3

 Which Is the Best?
 This is the wrong question to ask. Both have their strengths and weaknesses. Object
oriented programming can lead to more code than procedural programming. Object
oriented programming lends itself to better separation of concerns.

 Classes (the blueprints on which new objects are based) provide a place to hide
reusable, private behavior. Imagine we have a Transaction class, which has the job of
accumulating the details of items being sold. Now imagine we need to calculate, along
with the base cost of each item, the tax and total cost of the transaction.

 We could reuse such a function many times, but it may not be relevant to any other
part of our application. In that case, it makes sense not to expose it to every other part
of our system. It can just be a private method on the Transaction class. Classes help to
encapsulate the responsibilities of objects.

 When we want to change how transactions work, we can tinker around with the
private functions in the Transaction class, and so long as the expected input and output
formats are the same, no other part of our system is the wiser.

 Without classes and objects, every function is public, and can be used from
anywhere. That has the potential for chaos.

 Stated another way: It’s easier to think of objects and how they interact with each
other than to think of the whole flow of a program as a complex list of instructions. In the
end, procedural code can be as clean as object oriented code, but it takes a lot more work.

 “Sometimes, the elegant implementation is just a function. Not a method.
Not a class. Not a framework. Just a function.”

 —John Carmack

 Which Is PHP?
 PHP is procedural. That’s how Rasmus built it and that’s how it has stayed. The distinction
is clear, when it comes to dealing with scalar type variables. Scalar types are not objects.
They don’t have methods or properties. If you want to do something to a PHP scalar type
variable (string, int, float, or bool), you pass it to a function.

 Before PHP 5.3, there were no namespaces. As a result, these type-specific methods
are in the global namespace. They are available everywhere and, as we’re about to see,
they are inconsistent. This makes scalar type code ugly code.

 Native Function Inconsistencies
 PHP is often decried because of the inconsistencies in the native functions. PHP is
often praised because of the quality of the documentation. These are related! The
documentation has evolved so well because native PHP functions are inconsistent.

CHAPTER 1 ■ THE STATE OF PHP

4

 This section is going to make me sound like a PHP hater. That couldn’t be further from the truth!
I love PHP and I’m committed to using it and helping others use it. To know what we’re building,
we have to know what we’re trying to avoid building. That’s the point of what’s to follow.

 Sporadic Underscores
 Underscores are used sporadically throughout the core function library. It’s difficult to
remember (without the help of an integrated development environment) whether you
need an underscore when you want to strip tags or strip slashes in a string.

• parse_str

• printf

• str_pad

• strcmp

• strip_tags

• stripslashes

 These functions are described at http://php.net/manual/en/ref.strings.php .

 The full list contains 98 functions, 30 of which use one or more underscores.
Sometimes functions clearly composed of many full words (like setlocale) don’t have
underscores. Sometimes functions that do almost exactly the same things (strlen vs.
 str_word_count) are inconsistently named.

 Sporadic Abbreviation
 Most of the string functions use abbreviations of some kind. This is fine when applied
consistently. Yet, the inclusion of a few non-abbreviated functions makes the string API
difficult to memorize.

• addslashes

• chr

• htmlentities

• lcfirst

• number_format

• stroll

 This often means a round-trip to the documentation.

http://php.net/manual/en/ref.strings.php

CHAPTER 1 ■ THE STATE OF PHP

5

 Inconsistent Argument Order
 Argument order is different, depending on the array and string functions.

• array_key_exists($needle, $haystack)

• stripos($haystack , $needle)

 Rasmus explains this as a result of keeping as close to the underlying C libraries as
possible. The problem with this explanation is that it means nothing to developers who
have never worked with C and just want to work with PHP.

 Array methods are needle/haystack and string methods are haystack/needle.

 Regular Expression/Strings
 PHP represents regular expressions as strings with a completely different set of functions.

• preg_filter

• str_replace

• preg_match

• strstr

• preg_split

• explode

 It would be better if they looked different and had their own methods. Either that or
the string methods should work for regular expressions also.

 PHP assumes a string is a regular expression if it starts and ends with recognizable
delimiters. You can learn more about that at http://www.php.net/manual/en/regexp.
reference.delimiters.php .

 Regular expressions could have their own representation, which separates them
from strings. An example of a language that already has this is JavaScript:

 "abc".replace("b" , "123"); // "abc" becomes "a123c"
 "def".replace(/ [e] /, "456"); // "def" becomes "d456f"

 These languages make clear the distinction between strings and regular expressions.

http://www.php.net/manual/en/regexp.reference.delimiters.php
http://www.php.net/manual/en/regexp.reference.delimiters.php

CHAPTER 1 ■ THE STATE OF PHP

6

 Nouns/Verbs
 Some of the native functions are verbs (like echo and parse_str), while others are nouns
(like htmlentities and soundex).

• echo

• htmlentities

• lcfirst

• md5

• parse_str

• soundex

 This makes it tricky to reason about what the method is doing.

 Strange Return Values
 Many of the native functions return multiple types. The strstr function returns a string if
matched and false if not.

 In contrast to this, the preg_match function returns 1 when matching a pattern,
 0 when not matching, and false if an error occurred. This makes for a slew of type
checking before using any return values for their intended purpose.

 Conclusion
 PHP is a great language.

 But if you’ve worked much with PHP, you will either have grown to ignore the sad
state of PHP’s scalar type handling, or been frustrated by the lack of good alternatives.

 And for most small-to-medium sized projects, adding a revised type system is
unnecessary. Yet if you learned how to make (or even just use) a well-built type system,
wouldn’t it make sense to use it in large projects? Or in any projects you cared enough about?

 This area of PHP often chases developers into prettier languages. Don’t be one of
those developers! Learn how to write cleaner code by using a clean abstraction.

7© Christopher Pitt 2016
C. Pitt, Typed PHP, DOI 10.1007/978-1-4842-2114-3_2

 CHAPTER 2

 Structure

 The problems with the core function libraries are mostly about structure. In fact, we
could address them by adding encapsulation (classes specifically designed for each scalar
variable type), a consistent method naming scheme, and consistent parameter ordering.

 In this chapter, we’re going to look at how to package a new API. We’ll create classes
to decorate scalar types, discuss how we can determine the type of scalar variables we’re
dealing with, and even learn how to deal with the problems introduced by null.

 Decorating
 Decorating is a term given to the practice of wrapping data in a class, so that we can add
properties and methods to the underlying data. Let’s look at an example:

 class StringBox
 {
 /**
 * @var string
 */
 protected $data;

 /**
 * @param string $data
 */
 public function __construct($data)
 {
 $this->data = $data;
 }

 /**
 * @return string
 */
 public function toString()
 {
 return (string) $this->data;
 }

CHAPTER 2 ■ STRUCTURE

8

 /**
 * @return string
 */
 public function toUpperCase()
 {
 return strtoupper($this->data);
 }

 /**
 * @return string
 */
 public function toLowerCase()
 {
 return strtolower($this->data);
 }

 /**
 * @param string $needle
 * @param mixed $offset
 *
 * @return int
 */
 public function getIndexOf($needle, $offset = null)
 {
 $index = strpos($this->data, $needle, $offset);

 if ($index === false) {
 return -1;
 }

 return $index;
 }
 }

 $box = new StringBox("Hello World");

 $box->toString(); // "hello world"
 $box->toUpperCase(); // "HELLO WORLD"
 $box->toLowerCase(); // "hello world"
 $box->getIndexOf("foo"); // -1
 $box->getIndexOf("World"); // 6

 PHP supports this approach, without any extra extensions or dependencies. It’s
a simple concept, if you think about it. We’re using protected properties and exposing
public methods for changing and accessing the data.

 The difficulty with it is that it leads to a lot more code than just using the native
functions. You need to define wrappers. You need to define setters and getters. You have
to use them every time you want to put native types in and get native types out. What do I
mean by that last statement?

CHAPTER 2 ■ STRUCTURE

9

 $helloBox = new StringBox("Hello");
 $worldBox = new StringBox("World");

 $helloWorldBox = new StringBox(
 $helloBox->toString() . " " . $worldBox->toString()
);

 This quickly becomes unwieldy. It’s also more memory intensive and slower than
just using the native functions and types. Decoration can be helpful, but it needs to be
built on top of a solid foundation and well supported by extensions we’ll learn about.

 With extensions, we can wrap and unwrap scalar variables transparently, which
means we can use objects to extend the functionality of scalar variables without always
having to call new StringBox() and $box->toString() whenever we want to use
functions that expect normal strings.

 PHP allows the use of a method called __toString . When a class has this method, using it
in a string operation will invoke this method.

 This isn’t enough for us to simulate an extensible type system, or this would be a short book.

 Resolving Types
 PHP is a dynamically typed language. We can declare variables without specifying a type
and change their type at any point. We can cast them into different types on demand.

 If we want stronger type handling, we need to be able to identify the type of a
variable. PHP provides many functions that help with this, but they have a few issues to
overcome.

 function isNumber($variable)
 {
 return is_integer($variable) or is_float($variable);
 }

 function isBoolean($variable)
 {
 return is_bool($variable);
 }

 function isNull($variable)
 {
 return is_null($variable);
 }

CHAPTER 2 ■ STRUCTURE

10

 function isResource($variable)
 {
 return is_resource($variable);
 }

 function isArray($variable)
 {
 return is_array($variable);
 }

 Most of these change the underscore type functions to a camel case style. A notable
exception is the isNumber function. PHP’s is_numeric function will return true even if the
value is a string. What about when the variable contains a callback? In that case, we can
use functions.

 Functions
 The is_callable function checks to see if something is a callable function. It can be a
string or an anonymous function.

 function debug($result) {
 print $result ? "true" : "false" . "\n";
 }

 debug(is_callable("is_callable")); // "true"
 debug(is_callable(function(){})); // "true"
 debug(is_callable(null)); // "false"

 class Foo
 {
 public function bar()
 {

 }

 public function identify()
 {
 return is_callable([$this, "bar"]);
 }
 }

 $foo = new Foo();

 debug($foo->identify()); // "true"

CHAPTER 2 ■ STRUCTURE

11

 is_callable identifies a valid argument to any callback-accepting function in PHP.
The following are all valid for these kinds of functions:

• An actual function, like function(){}

• An array of context and method name, like [$this, "bar"]

• The name of a function as a string, like "is_callable"

 Due to how permissive this method is, we need to be careful when trying to identify
strings and functions in the same resolver function. If we use is_string and is_callable
at the same time, our results may vary depending on the order in which we call them.

 For example:

 $variable = "is_callable";

 if (is_string($variable)) {
 die("variable is a string");
 }

 if (is_callable($variable)) {
 die("variable is callable");
 }

 The script terminates with the string "variable is a string" , because it is a string.
It is also the name of a callable function. Swapping the conditional statements will cause
the script to terminate with "variable is callable" . We can restrict this a bit with:

 function isObject($variable)
 {
 return is_object($variable) and !isFunction($variable);
 }

 function isFunction($variable)
 {
 return is_callable($variable) and is_object($variable);
 }

 debug(isFunction(function(){})); // "true"
 debug(isFunction("is_function")); // "false"
 debug(isFunction(new stdClass)); // "false"
 debug(isObject(new stdClass)); // "true"

 Regular Expressions
 PHP has many string functions (some for normal strings and some for regular
expressions). It would be great if we had a way to differentiate between things that look
like regular expressions and things that don’t.

CHAPTER 2 ■ STRUCTURE

12

 It’s important that we can tell regular expressions apart from strings that look similar. Just
because something looks like a regular expression doesn’t mean that it is. Nor does it mean
that the intention of the author was for it to be a regular expression.

 The PHP documentation (at http://www.php.net/manual/en/intro.pcre.php)
describes expressions as (a string) enclosed in delimiters. These delimiters can be any
non-alphanumeric that isn’t also a backslash or null byte.

 We can cover a large majority of cases, using the following:

 function isString($variable)
 {
 return is_string($variable) and !isExpression($variable);
 }

 function isExpression($variable)
 {
 $isNotFalse = @preg_match($variable, "") !== false;
 $hasNoError = preg_last_error() === PREG_NO_ERROR;

 return $isNotFalse and $hasNoError;
 }

 debug(isExpression("/^.*$/")); // "true"
 debug(isExpression("/hello world/")); // "true"
 debug(isExpression("/hello world/i")); // "true"
 debug(isExpression("hello world")); // "false"
 debug(isExpression("\\hello world\\")); // "false"
 debug(isExpression("\\x00foo\\x00")); // "false"
 debug(isExpression("1foo1")); // "false"
 debug(isExpression("afooa")); // "false"

 The preg_match function returns a 1 for a match, 0 for no match, and false if an
error occurred. Assuming preg_match returns false, the error could be for any number of
reasons. So then we use the preg_last_error function to rule out all other errors.

 Using error suppression (@) is usually a bad idea. Not so here. A reasonable reason for it to
raise a warning is because the string isn’t a valid expression.

http://www.php.net/manual/en/intro.pcre.php

CHAPTER 2 ■ STRUCTURE

13

 All Together!
 Sometimes we just don’t know what type a variable should be, and calling all of these type
methods would be inefficient. In that case, we can use a helper method:

 function getVariableType($variable)
 {
 $functions = [
 "isNumber" => "number",
 "isBoolean" => "boolean",
 "isNull" => "null",
 "isObject" => "object",
 "isFunction" => "function",
 "isExpression" => "expression",
 "isString" => "string",
 "isResource" => "resource",
 "isArray" => "array"
];

 $result = "unknown";

 foreach ($functions as $function => $type) {
 $function = $function;

 if ($function($variable)) {
 $result = $type;
 break;
 }
 }

 return $result;
 }

 So, if we want to know if a variable is a string, we can use the isString function. If
we don’t know what type is should be, then we can use the getType function. It’ll return
 unknown if the type can’t be determined, although the chance of that is slim.

 Namespace Functions
 Namespaces are a simple alternative to global namespace pollution. You’ve probably
used namespaces for classes, but they work just as well to isolate functions:

 namespace Type\String {
 function length($string) {
 return strlen($string);
 }
 }

CHAPTER 2 ■ STRUCTURE

14

 namespace {
 print Type\String\length("Hello World"); // 11
 }

 Composer Autoload
 This kind of function definition doesn’t follow normal autoload patterns. To have
Composer autoload these kinds of files, we need to define them. If we can autoload them,
we won’t have to constantly require them in every script that seeks to use them. To load
them, we just need to add a file path to composer.json :

 {
 "autoload" : {
 "files" : [
 "namespace-functions.php"
]
 }
 }

 Following this, we’ll have to dump the old autoloader, with:

 $ composer dump-autoload

 Generating autoload files

 Composer will now automatically load these namespace functions.

 Importing Namespaced Functions
 PHP 5.6 introduced support for importing functions into another namespace. Before that,
we had to refer to the namespace of the function whenever we called it:

 use Type\String;

 print String\length("Hello World");

 Now we can import the full function path to save ourselves that extra bit of typing:

 use function Type\String\length;

 print length("hello world");

CHAPTER 2 ■ STRUCTURE

15

 Optional Types
 Dynamic languages suffer particularly due the problem of null references. Null references
are errors that happen when a method is called on a null value. This usually happens
because some code expects an object (on which to run the method) but instead gets null .

 The Null Problem
 To illustrate this problem, let’s imagine what happens in the following pseudo-code:

 while(true) {
 if ($deferredProcess->complete()) {
 print $deferredProcess->result;
 break;
 }

 sleep(1);
 }

 This loop will run forever. That is until $deferredProcess->complete() returns
 true . At that point, the result will be printed and the loop will end. We add sleep(1) so
the machine it’s running on doesn’t melt!

 What if $deferredProcess isn’t the object we expect? What if it’s another object,
which doesn’t have a complete() method? What if it’s null ? In these circumstances, the
script will end with a fatal error.

 So, what often tends to happen (with some defensive programming) is that we add
many checks, as the next bit of pseudo-code does. If the object is an object, and if the
object has a completed() method, and if…

 while(true) {
 if (!is_object($deferredProcess)) {
 break;
 }

 if (!method_exists($deferredProcess, "complete")) {
 break;
 }

 if ($deferredProcess->complete()) {
 print $deferredProcess->result;
 break;
 }

 sleep(1);
 }

CHAPTER 2 ■ STRUCTURE

16

 This bloats up the code we write, but it’s one of the few ways a dynamic language can
be safely used. Let’s consider another pseudo-code example:

 $user = $database
 ->table("user")
 ->where("id", "=", $id)
 ->first();

 if (!$user) {
 print "Error: User not found";
 }

 $address = $user->address;

 if (!$address) {
 print "Error: Address not found";
 }

 print "City: " . $address->city;

 The more we chain potentially null variables, the more we need to check (or hope)
that the variables aren’t null .

 Optional Values
 One way around this problem it to decorate variables and intercept method calls on null
before they generate errors.

 ■ Note There are many implementations and variations of the Optional class presented
here in pseudo-code. The important thing to know is what these classes enable, not how to
implement any specific variation. There are links to downloadable code toward the end of
this section and we’ll make our own implementation in later chapters.

 We could do something like this:

 $optional = new Optional($user);

 print $optional->address()->city()->value();

 What looks almost magical is really just a case of implicit null-checking. An Optional
class could implement __get() and __call() methods so that they are completely
avoided on null values. Sure, you’d still get null as the result of that, assuming $user is
 null . You could avoid the fatal errors though.

CHAPTER 2 ■ STRUCTURE

17

 We could even introduce a kind of error handling such that specific error handing
could be possible:

 $optional = new Optional($user);

 $optional
 ->address()
 ->none(function() {
 print "Error: Address not found";
 })
 ->city()
 ->none(function() {
 print "Error: City not found";
 })
 ->value(function($value) {
 print "City: " . $value;
 });

 We call this a fluent interface (http://en.wikipedia.org/wiki/Fluent_
interface#PHP). We can use it to protect methods and properties from null errors. There
are two trade-offs though.

 The first is that the methods and properties need to implement the null object
pattern (http://en.wikipedia.org/wiki/Null_Object_pattern). If they do not, we’re
stuck with the same null-reference errors as before.

 The second trade-off is that these values cannot be automatically unwrapped. Every
interaction with these objects will end in a call to a value() method.

 I have chosen an interface that loosely resembles Promises (http://en.wikipedia.org/
wiki/Promise_(programming)). Promises represent a future value, and are often used
for concurrent or asynchronous programming. These objects do not involve either of those
paradigms. It’s just a neat model for managing type uncertainty.

 In The Wild
 I am not the first person to think/dabble in this way. The term Promise (which inspired
this interface) was proposed in 1976. Nullable types were invented in 1965.

 More recently, Johannes Schmitt devised a library (https://github.com/
schmittjoh/php-option) that implements these ideas. His implementation has different
interface than the one I have described. Igor Wiedler wrote an article (see https://igor.
io/2014/01/10/functional-library-null.html) about his library.

http://en.wikipedia.org/wiki/Fluent_interface#PHP
http://en.wikipedia.org/wiki/Fluent_interface#PHP
http://en.wikipedia.org/wiki/Null_Object_pattern
http://en.wikipedia.org/wiki/Promise_(programming
http://en.wikipedia.org/wiki/Promise_(programming
https://github.com/schmittjoh/php-option
https://github.com/schmittjoh/php-option
https://igor.io/2014/01/10/functional-library-null.html
https://igor.io/2014/01/10/functional-library-null.html

CHAPTER 2 ■ STRUCTURE

18

 Simple as it may look, implementing it will be tricky. We will see it again in the same
implementation. You should also check out Johannes Schmitt’s implementation.

 Conclusion
 Even today, it’s possible to create a cleaner scalar type system/abstraction. We don’t need
special extensions or compilation steps. Just a little bit of work will clean the code right up.

 Extensions can make our lives easier, while still allowing us to create consistent
interfaces. We’ll look at a few of these in the following chapter.

19© Christopher Pitt 2016
C. Pitt, Typed PHP, DOI 10.1007/978-1-4842-2114-3_3

 CHAPTER 3

 Extensions

 So far we’ve looked at a few problems with the current core functions, and potential
solutions to them, using ordinary PHP code. These could go a long way to improving our
quality of life, but we’re not done yet.

 Let’s look at what we can achieve when we combine our ordinary PHP code with
extraordinary C extensions. We’ll learn how to set up the perfect environment for these
extensions to be installed into, and how to tap in to the enhanced functionality they provide.

 Vagrant + Phansible
 Many of the libraries we will be working with need a bit of special installation. Instead
of discussing each operating system, we’ll look at how to use Vagrant. It will provide a
consistent environment for all the libraries and installation instructions.

 Vagrant is a programmatic interface for managing virtual machines. If you’ve ever
set up a virtual machine, you will know how much time it takes to do well. Vagrant can
automate this process.

 Vagrant depends on underlying virtualization providers and provisioners. We’ll look
at using VirtualBox as the virtualization provider and Ansible as the provisioner.

 Installing
 To get VirtualBox installed, go to https://www.virtualbox.org/wiki/Downloads and
download the installer for your operating system (see Figure 3-1).

https://www.virtualbox.org/wiki/Downloads

CHAPTER 3 ■ EXTENSIONS

20

 Once you have downloaded and installed VirtualBox (see Figure 3-2), you should be
able to install Vagrant.

 Figure 3-1. Download VirtualBox for your operating system

 Figure 3-2. Follow all the installation steps

CHAPTER 3 ■ EXTENSIONS

21

 Next, go to http://www.vagrantup.com/downloads.html and download the installer
for your operating system (see Figure 3-3).

 Now follow the installation instructions (see Figure 3-4).

 Figure 3-3. Download Vagrant for your operating system

 Figure 3-4. Follow all the installation steps

http://www.vagrantup.com/downloads.html

CHAPTER 3 ■ EXTENSIONS

22

 We’ll also need to install Ansible so we can use play books to provision the virtual
machine. Go to http://docs.ansible.com/intro_installation.html and download
the installer for your operating system (see Figure 3-5).

 Provisioning
 Provisioning scripts tell Vagrant which dependencies to install. There are different kinds
of Vagrant provisioners, but Ansible is the one we will use.

 We’ll use http://phansible.com to do most of the heavy lifting (see Figure 3-6).

 Figure 3-5. Download Ansible for your operating system

 Figure 3-6. Build a set of provisioning scripts on phansible.com

http://docs.ansible.com/intro_installation.html
http://phansible.com/

CHAPTER 3 ■ EXTENSIONS

23

 Set the following options:

• Operating system: Ubuntu Trusty Tahr 64

• Webserver: Nginx + PHP5-FPM

• PHP: 5.6 (the most recent version tested and supported by
Phansible and the extensions)

• Composer: Enabled

• PHP modules: php-pear php5-cli php5-common

 When you click Generate, you’ll start downloading an archive of files. Extract these
into a working directory and start up Terminal.

 These files are instruction files that describe which dependencies Vagrant must install. You
shouldn’t need to change them to get the PHP stack working, but feel free to familiarize
yourself with what they are doing.

 At the time of writing, Phansible doesn’t yet support provisioning PHP 7 servers. That’s okay
since these extensions have not yet thoroughly been tested to work with PHP 7, but the
concepts explained should work in PHP 5.x and PHP 7.x once they are.

 To start the virtual machine, run the following command:

 $ vagrant up

 Bringing machine 'default' up with 'virtualbox' provider...
 ==> default: Importing base box 'trusty64'...
 ==> default: Matching MAC address for NAT networking...
 ==> default: Setting the name of the VM: Default
 ==> default: Clearing any previously set network interfaces...

 Vagrant might ask you to provide an administrator password as part of setting up the virtual
machine. This will allow the NFS shared folders to be set up.

 Once the virtual machine is set up, you can log in:

 $ vagrant ssh

 Welcome to Ubuntu 14.04.3 LTS (GNU/Linux 3.13.0-77-generic x86_64)

 * Documentation: https://help.ubuntu.com/

 System information disabled due to load higher than 1.0

CHAPTER 3 ■ EXTENSIONS

24

 Get cloud support with Ubuntu Advantage Cloud Guest:
 http://www.ubuntu.com/business/services/cloud

 0 packages can be updated.
 0 updates are security updates.
 vagrant@default:~$

 You can also check the installed version of PHP with:

 $ php -v

 PHP 5.6.22-1+donate.sury.org~trusty+1 (cli)
 Copyright (c) 1997-2016 The PHP Group
 Zend Engine v2.6.0, Copyright (c) 1998-2016 Zend Technologies
 with Zend OPcache v7.0.6-dev, Copyright (c) 1999-2016, by Zend
Technologie

 Vagrant Commands
 There are a few Vagrant commands you’re likely to use often:

 $ vagrant up

 This command will start the Vagrant virtual machine and do any outstanding
provisioning. That means the first time you run this command, it might take longer boot.

 $ vagrant halt

 This command will shut the virtual machine down gracefully.

 $ vagrant destroy

 This command will remove the virtual machine and clean up settings applied during
setup. If you break something inside the virtual machine, you might want to reset it to the
default state. You can do this by running vagrant up .

 $ vagrant ssh

 This command will take you inside the virtual machine, just as if you were
connecting to a remote server. Inside the virtual machine, you can run any of the
commands usually supported by the guest operating system. This includes executing
PHP scripts against the packages installed on the virtual machine.

 http://phansible.com is the brain-child of Erika Heidi. She is also the author of Vagrant
Cookbook (https://leanpub.com/vagrantcookbook). I recommend reading this book if
you have any questions or want to know more about Vagrant!

http://phansible.com/
https://leanpub.com/vagrantcookbook

CHAPTER 3 ■ EXTENSIONS

25

 SPL Types
 SPL (or Standard PHP Library) is a library of extra types to augment those native to core
PHP. There are some popular classes (like LogicException and ArrayObject). Some of the
SPL ships with standard PHP installations. The parts we’re going to look at shortly do not.

 You can find these mysterious libraries at http://www.php.net/manual/en/book.spl-
types.php .

 This section assumes you’re using the Vagrant box explained earlier. If not, please set that
up first. These commands are Linux-specific and depend on the pre-installed modules
explained earlier.

 Installing SPL Types
 To install the libraries, run the following commands:

 $ sudo apt-get install libpcre3-dev php5-dev

 Reading package lists... Done
 Building dependency tree
 Reading state information... Done
 The following extra packages will be installed:
 autoconf automake autotools-dev build-essential...

 $ sudo pecl install SPL_Types

 downloading SPL_Types-0.4.0.tgz ...
 Starting to download SPL_Types-0.4.0.tgz (8,388 bytes)
done: 8,388 bytes
 6 source files, building
 running: phpize...

 These two commands install the prerequisites for compiling PECL extensions. PECL
is an extension repository just like PEAR and Packagist.

 $ sudo bash -c "echo extension=spl_types.so >> /etc/php5/cli/php.ini"

 This command appends extension=spl_types.so to the php.ini file (as per the
installation instructions).

 $ sudo service php5-fpm restart

 php5-fpm stop/waiting
 php5-fpm start/running, process...

http://www.php.net/manual/en/book.spl-types.php
http://www.php.net/manual/en/book.spl-types.php

CHAPTER 3 ■ EXTENSIONS

26

 This command restarts PHP-FPM. It’s the process that interprets PHP command line
instructions and Nginx web requests. These commands should have installed the SPL
types, but just to be sure, run the following command:

 $ php -i | grep SPL_Types
 SPL_Types

 If you see that SPL_Types line, you should be good to go!

 Using SPL Types
 Let’s look at a few examples of how these classes can be used:

 class NumberType extends SplFloat
 {
 /**
 * @return float
 */
 public function toInteger()
 {
 return round($this);
 }

 /**
 * @return string
 */
 public function toString()
 {
 return (string) $this;
 }
 }

 $number = new NumberType(13.86);

 print $number->toInteger(); // 14
 print $number->toString(); // "13.86"

 print (float) $number + 1.00; // 14.86
 print $number * 12; // 156

 The toInteger and toString methods do similar things to the box classes. The magic
happens when we do basic arithmetic with the $number object. SPL types are automatically
unboxed when used in arithmetic expressions, cast, or concatenated. Any operator that
would normally work with a scalar type will work with the corresponding SPL type.

CHAPTER 3 ■ EXTENSIONS

27

 Here’s another example:

 class StringType extends SplString
 {
 /**
 * @param int $start
 * @param mixed $length
 *
 * @return StringType
 */
 public function slice($start = 0, $length = null)
 {
 if ($length === null) {
 return new static(substr($this, $start));
 }

 return new static(substr($this, $start, $length));
 }
 }

 $string = new StringType("Hello World");

 print $string->slice(6); // "World"

 We can design our types so that they return new instances. This gives us a simple
 chaining interface.

 Be careful when assuming the return type of native PHP functions. Be sure to check them
before the call to new static() or you may encounter fatal errors.

 Scalar Objects
 Nikita Popov is a prolific contributor to PHP (both core and user-land). He’s made libraries
such as PHP-Parser (https://github.com/nikic/PHP-Parser), which many popular
frameworks also use. He’s championed many RFCs that have become parts of core PHP.

 He’s also created a custom extension that allows the registration of custom type
handlers. You can find it at https://github.com/nikic/scalar_objects .

 We’re going to install and use this module to get even closer to our ideal type
handling situation.

 This section assumes you’re using the Vagrant box explained earlier. If not, please set that
up first. These commands are Linux-specific and depend on the pre-installed modules
explained earlier.

https://github.com/nikic/PHP-Parser
https://github.com/nikic/scalar_objects

CHAPTER 3 ■ EXTENSIONS

28

 Installing Scalar Objects
 First up, we need to install the Git command-line tool:

 $ sudo apt-get install git

 Reading package lists... Done
 Building dependency tree
 Reading state information... Done
 The following extra packages will be installed:
 git-man liberror-perl...

 Following this, we can clone and build the extension:

 $ git clone https://github.com/nikic/scalar_objects.git

 Cloning into 'scalar_objects'...
 remote: Reusing existing pack: 213, done.
 remote: Total 213 (delta 0), reused 0 (delta 0)
 Receiving objects: 100% (213/213), 75.36 KiB, done.
 Resolving deltas: 100% (112/112), done.
 $ cd scalar_objects && phpize && ./configure && make && sudo make install

 These commands will the Scalar Objects extension, but we still need to add it to the
configuration:

 $ sudo bash -c "echo extension=scalar_objects.so >> /etc/php5/cli/php.ini"

 This command resembles the one we used to install the SPL types. We’re doing the
same thing, so we need to restart PHP5-FPM:

 $ sudo service php5-fpm restart

 php5-fpm stop/waiting
 php5-fpm start/running, process...

 This should complete the process of installing the Scalar Objects extension. We can
make sure it’s working by running the following command:

 $ php -i | grep scalar

 scalar_objects
 scalar-objects support => enabled

CHAPTER 3 ■ EXTENSIONS

29

 Using Scalar Objects
 The new extension adds a method we can use to register these type handlers. This is how
we can use it:

 class StringHandler
 {
 /**
 * @param int $start
 * @param mixed $length
 *
 * @return StringType
 */
 public function slice($start = 0, $length = null)
 {
 if ($length === null) {
 return substr($this, $start);
 }

 return substr($this, $start, $length);
 }
 }

 register_primitive_type_handler("string", "StringHandler");

 $string = "Hello World";

 print $string->slice(6); // "World"

 This is easier than boxing scalar types, as we don’t have to pull native types out of
class instances. This is easier than SPL types, as we don’t have to put native types into
class instances.

 There are seven supported types:

• null

• bool

• int

• float

• string

• array

• resource

CHAPTER 3 ■ EXTENSIONS

30

 You may be wondering whether this extension plays nicely with SPL types. The answer is
 probably not . You shouldn’t mix these extensions. Since the Scalar Objects extension does
everything that SPL types do, you won’t need both.

 Zephir
 Zephir is a framework for writing extensions. It uses a superset of PHP language, sharing
some similarities with C code. Zephir isn’t a PHP extension, nor are Zephir libraries
written in true PHP.

 It’s part of the same collective from which the Phalcon framework comes, and
Phalcon is itself a PHP extension. Zephir allows us to use a language similar to PHP but
which can be compiled down to a C PHP extension. This allows for very fast code without
the need to understand or wrestle with the internals of a PHP interpreter.

 Installing Zephir
 Zephir requires a few libraries to compile. We can install these with:

 $ sudo apt-get install git gcc make re2c php5 php5-json php5-dev libpcre3-dev

 Next, we need to install the JSON-C library (which Zephir uses to compile
extensions):

 $ git clone https://github.com/json-c/json-c.git && cd json-c && sh
autogen.sh && ./configure && make && sudo make install

 These commands will clone the JSON-C repository, and then configure and compile
it. Finally, we need to install Zephir:

 $ git clone https://github.com/phalcon/zephir && cd zephir && ./install -c

 That should have installed a usable version of Zephir. You can check that it’s working
by heading into the clone folder and running:

 $ zephir version

 Using Zephir
 Using Zephir is easy (considering the work that it does). Let’s begin by initializing a new
extension skeleton project:

 $ zephir init type

CHAPTER 3 ■ EXTENSIONS

31

 This will create a skeleton project folder in the current working directory. Navigate
into the new type directory and run the following:

 $ ls -la

 ext/ type/ config.json

 Extension classes go in the type folder (it’s specific to the name of the extension,
which we gave the init command). Make a file in there, called StringType.zep , and
open that file in your editor.

 The Zephir syntax is quite like PHP, but with a twist of C style. You can find a reasonable
amount of documentation at http://www.zephir-lang.com/index.html .

 Create the following class:

 namespace Type;

 class StringType
 {
 protected data;

 public function __construct(var data)
 {
 let this->data = data;
 }

 public function length()
 {
 return strlen(this->data);
 }
 }

 Other than the missing $ symbols and the var / let keywords, this is pretty
understandable. Save the file (from the base extension folder) and then run:

 $ zephir build

 Compiling...
 /bin/bash /vagrant/zephir/type/ext/libtool --mode=compile gcc
-I. -I/vagrant/zephir/type/ext -DPHP_ATOM_INC-
I/vagrant/zephir/type/ext/include -
I/vagrant/zephir/type/ext/main -I/vagrant/zephir/type/ext -
I/usr/include/php5 -I/usr/include/php5/main -
I/usr/include/php5/TSRM -I/usr/include/php5/Zend -
I/usr/include/php5/ext -I/usr/include/php5/ext/date/lib -

http://www.zephir-lang.com/index.html

CHAPTER 3 ■ EXTENSIONS

32

DHAVE_CONFIG_H -O2 -fvisibility=hidden -Wparentheses -flto -
c /vagrant/zephir/type/ext/type/stringtype.zep.c -o
type/stringtype.lo...

 Zephir cross-compiles the extension class files to “Plain Ol’ C,” and adds the class
loading code. The end of the build output should look something like this:

 Installing...
 Extension installed!
 Add extension=type.so to your php.ini
 Don't forget to restart your web server

 We need to add the extension to the php.ini file:

 $ sudo bash -c "echo extension=type.so >> /etc/php5/cli/php.ini"

 This will install the type extension we just created. We can check that it’s installed by
running:

 $ php -i | grep "type => enabled"

 type => enabled

 If you see that line returned, you know the extension is installed and ready to go.
 Using this new extension is as simple as running:

 $string = new Type\StringType("Hello World");

 print $string->length();

 The namespace and class exist completely within the compiled extension file. Zephir
extensions can use preexisting core and extension namespaces/classes. They can be used
by plain PHP code (provided the extension is registered by the time it’s used).

 Zephir extensions can even override core functions, with better-performing versions.

 Conclusion
 Extensions make our lives easier by handling things like boxing and unboxing for us. They
let us create better-performing code (as in the case of Zephir) and stricter types (as in the
case of SPL types).

 We don’t have to use these to make a cleaner system. If we do, we can expect to have
a much strong type system, without the hard work that library-only code expects of us.

33© Christopher Pitt 2016
C. Pitt, Typed PHP, DOI 10.1007/978-1-4842-2114-3_4

 CHAPTER 4

 Design

 Now that we’re familiar with the tools at our disposal, it’s time to put them together into a
library we can proudly reuse.

 In this chapter we’ll organize the “core” functions we want to keep and get rid of the
noise. We’ll also learn how to package the functions we want with the C extensions we
saw in the previous chapter.

 Which Method to Use
 We’ve had a look at some methods and extensions that can help us to abstract away the
inconsistent type handling PHP presents to us. Part of creating this abstraction is deciding
on which methods and/or extensions to use.

 Namespace Methods
 We should avoid any method that would expose a significant amount of functions in the
global scope. We don’t want to create any more clutter than there already is. Being able to
use our abstraction alongside the standard stuff is definitely beneficial.

 We should endeavor to have all our code exist in namespaces.

 We should implement our code so that we can use it in procedural environments
and object-oriented environments. We should contain the business logic within functions
and call those functions from within an object oriented framework.

 We should build our logic in functions and add those functions (as methods) to scalar type
objects.

CHAPTER 4 ■ DESIGN

34

 Scalar Objects/SPL Types
 This means we will want to use the namespace functions we covered earlier, together
with scalar objects or the SPL types.

 I mentioned that we shouldn’t use scalar objects and SPL types together, because they do
the same thing. It’s not possible to delegate to the functional code without repetition for
each extension.

 This is because scalar objects boxes scalar types, while SPL types expect us to do the
boxing. It’s the difference between return new static(substr($this, $offset,
$length)); and return substr($this, $offset, $length); .

 While I love scalar objects, i am inclined to suggest we go with SPL types. The main
reason is that it doesn’t interfere with how PHP handles scalar types. This means we will
need to box scalar types ourselves. We’ll still get to enjoy the benefits of object types and
automatic unboxing.

 Zephir
 As cool as Zephir is, it’s not PHP. That means any developers you want to work on your
code will need to know or learn another language. It also increases the time between
coding, testing, and shipping.

 So, for the rest of the book, I will show code that is built on top of SPL types and not
translated into Zephir extensions.

 Which Functions to Keep
 We’ll start by deciding which core PHP functions should be kept in our abstraction. We’re
only interested in the functions that apply to scalar types, and we’re going to coalesce
some of them into the following list:

• String

• Number (integer + float)

• Boolean

 We’ll also reimplement the array type using a number of interfaces (like Countable
and IteratorAggregate).

CHAPTER 4 ■ DESIGN

35

 String Functions
 Of the many listed string methods, the following is a list of methods I think we should keep:

• addslashes

• chop

• chr

• chunk_split

• explode

• ltrim

• money_format

• number_format

• ord

• rtrim

• sprintf

• str_ireplace

• str_pad

• str_repeat

• str_replace

• str_split

• strchr

• stripos

• stripslashes

• stristr

• strlen

• strpos

• strrev

• strstr

• strtok

• strtolower

• strtoupper

• substr

• trim

CHAPTER 4 ■ DESIGN

36

• ucfirst

• ucwords

• vsprintf

• wordwrap

 These can be grouped a number of ways, as described next.

 addslashes and stripslashes
 These functions add and remove slashes for the purposes of quoting special characters.
These are double quotes, single quotes, and backslashes (and null bytes). A good reason
for this is if you want to run a string through eval and the contained quotes render the
syntax otherwise invalid.

 chop, trim, ltrim, and rtrim
 These functions strip characters from the beginning and end of a string. By default, these
characters are whitespace characters, but other characters can be removed also.

 chr and ord
 These functions convert to and from the numeric values of ASCII characters. Think of the
numeric values used every time you press a keyboard key.

 money_format, number_format, sprintf, and vsprintf
 These functions change the format of a string, according to a series of special characters.
Some of them deal with numeric representations, while the rest are just arbitrary formatters.

 strchr, stripos, stristr, strpos, and strstr
 These functions identify the presence of a substring, or its position in a larger string.

 chunk_split, explode, str_split, and strtok
 These functions not only find a smaller string within a larger one, but they use the
position of these smaller strings to break the larger strings up on each occurrence.

 str_ireplace, str_replace, and substr
 These functions modify a string, either by replacing parts of them or slicing them up by
offset and character count.

CHAPTER 4 ■ DESIGN

37

 str_pad and str_repeat
 The functions increase the length of a string, either by repeating the characters of which it
is composed, or additional characters, always towards a fixed length.

 strtolower, strtoupper, ucfirst, and ucwords
 These functions modify the case of some (or all) of the characters in the string.

 strlen, strrev, and wordwrap
 These are the remaining functions: strlen returns the length of a string, strrev reverses
a string, and wordwrap truncates a string.

 Number Functions
 Of the many listed number methods, the following is a list of methods I think we should keep:

• abs

• acos

• acosh

• asin

• asinh

• atan

• atan2

• atanh

• bindec

• ceil

• cos

• cosh

• decbin

• dechex

• decoct

• deg2rad

• exp

• expm1

CHAPTER 4 ■ DESIGN

38

• floor

• fmod

• getrandmax

• hexdec

• log

• log1p

• max

• min

• mt_getrandmax

• mt_rand

• mt_srand

• octdec

• pi

• pow

• rad2deg

• rand

• round

• sin

• sinh

• sqrt

• srand

• tan

• tanh

 These can be grouped a number of ways, discussed next.

 abs, ceil, floor, and round
 These functions remove the decimal values from floating point numbers, either by
rounding or truncating them. Since we’re trying to coalesce floats and integers into a
single set of functions, we’d better allow for this kind of conversion.

CHAPTER 4 ■ DESIGN

39

 acos, acosh, asin, asinh, atan2, atan, atanh, cos, cosh, sin,
sinh, tan, and tanh
 These functions are used in geometric calculations to determine the size of angles. They
return radian values, which means we also need to implement the following.

 deg2rad and rad2deg
 These functions convert values between radians and degrees. These are especially useful
for geometric calculations.

 bindec, decbin, hexdec, dechex, octdec, and decoct
 These functions perform similar conversions (based on base number system) between
the popular base numbers systems decimal, binary, hexadecimal, and octal.

 mt_getrandmax, mt_rand, mt_srand, getrandmax, rand,
and srand
 These functions deal with the generation of (pseudo) random numbers. We’ll want to
reduce the number of methods, but that will only be possible by constructing a facade
around at least three of them.

 exp, expm1, log, and log1p
 These functions deal with exponents and logarithms, not that the signatures make this
obvious.

 pow, sqrt, fmod, and pi
 These are the remaining functions: pow raises a value to a power, sqrt calculates the
square root of a value, fmod calculates modulo (remainder of division) values, and pi
returns an approximation of the value of pi.

 Array Functions
 Of the many listed array methods, the following is a list of methods I think we should keep:

• array_chunk

• array_column

• array_combine

• array_count_values

CHAPTER 4 ■ DESIGN

40

• array_diff

• array_diff_assoc

• array_diff_uassoc

• array_diff_ukey

• array_fill

• array_fill_keys

• array_filter

• array_flip

• array_intersect

• array_intersect_assoc

• array_intersect_key

• array_intersect_uassoc

• array_intersect_ukey

• array_key_exists

• array_keys

• array_map

• array_merge

• array_merge_recursive

• array_multisort

• array_pad

• array_pop

• array_product

• array_push

• array_rand

• array_reduce

• array_replace

• array_replace_recursive

• array_reverse

• array_search

• array_shift

• array_slice

CHAPTER 4 ■ DESIGN

41

• array_splice

• array_sum

• array_udiff

• array_udiff_assoc

• array_udiff_uassoc

• array_uintersect

• array_uintersect_assoc

• array_uintersect_uassoc

• array_unique

• array_unshift

• array_values

• array_walk

• array_walk_recursive

• arsort

• asort

• count

• in_array

• key_exists

• krsort

• ksort

• natcasesort

• natsort

• rsort

• shuffle

• sizeof

• sort

• uasort

• uksort

• usort

 These can be grouped a number of ways, discussed next.

CHAPTER 4 ■ DESIGN

42

 array_chunk, array_column, array_slice, array_keys, and
array_values
 These functions reduce arrays into smaller arrays, either by returning a subset or by offset
and length.

 array_combine, array_merge, array_merge_recursive,
array_fill_keys, array_fill, and array_pad
 These functions create new arrays by swapping keys/values, combining multiple arrays or
adding fillers to arrays.

 array_diff_assoc, array_diff_uassoc, array_diff_ukey,
array_diff, array_udiff_assoc, array_udiff_uassoc, and
array_udiff
 These functions calculate the differences between multiple arrays. There are so many of
them because there are many ways in which arrays can differ. Ideally, these should be
condensed into fewer functions, while still offering the same flexibility.

 array_intersect_assoc, array_intersect_key, array_
intersect_uassoc, array_intersect_ukey, array_intersect,
array_uintersect_assoc, array_uintersect_uassoc, and
array_uintersect
 These functions are similar to the diff functions, but instead of calculating the difference,
they calculate which values the arrays have in common (the intersection points).

 array_key_exists, array_search, in_array, and key_exists
 These functions check if keys or values are present in an array. Think of them as search
functions for a collection of items.

 sizeof, count, and array_count_values
 These functions all return a count of the values.

CHAPTER 4 ■ DESIGN

43

 array_filter, array_map, array_reduce, array_replace,
array_replace_recursive, array_walk_recursive, array_walk,
and array_splice
 These functions iterate over an array and do something for each item. Some whittle down
an array (like array_filter and array_reduce), while others alter an array (like array_
map and array_replace).

 array_multisort, arsort, asort, krsort, ksort, natcasesort, natsort,
rsort, uasort, uksort, usort, sort, shuffle, array_reverse, and
array_flip
 These functions change the order of an array. They mostly sort, except for the last three.
 array_flip swaps keys and values. shuffle and array_reverse are self-explanatory.

 array_pop, array_push, array_shift, and array_unshift
 These functions add or remove individual items from either end of the array. PHP arrays
are ordered, so you can depend on the position of items you add via these methods.

 array_product, array_rand, array_sum, and array_unique
 These methods perform aggregate functions on all items in an array.

 Which Functions to Add
 In the years since the first set of core functions were introduced, a few different
frameworks and smaller libraries have added their own useful functions to the mix. Here
are some I found while browsing the documentation of my favorite frameworks and
libraries.

 String Functions
 We deal with strings so often in programming, yet we often need to repeat common
functionality or deal with slight variations in the interfaces of common function libraries.
The following are a few functions we could create common interfaces for in our library.

 toCamelCase
 This returns a string, converted from snake case to camel case.

CHAPTER 4 ■ DESIGN

44

 toSnakeCase
 Similar to toCamelCase .

 endsWith
 Returns true if the string ends with the specified substring.

 startsWith
 Similar to endsWith .

 complete
 Ends a string with only one instance of the specified terminator substring.

 Array Functions
 In PHP we only really have the magical array when it comes to collections. Let’s add a few
helpful functions to the list of core functions we’re keeping.

 separate
 This is the opposite of the array_combine function, which builds a new array from one
of keys and another of values. separate breaks an array into one of keys and another of
values.

 add
 This adds a new key/value combination if the key isn’t already in the array.

 getExcept
 This returns a new array, excluding the specified keys.

 getOnly
 This returns a new array only including the specified keys.

 getFirst
 This returns the first item that returns true for a provided callback, or simply the first item
if no callback is given.

CHAPTER 4 ■ DESIGN

45

 getLast
 Similar to first , but applies to the last item in an array.

 flatten
 This flattens a multidimensional array into a single dimensional array.

 get
 This returns the value of a matching key, or the default value in the event that the key is
not matched.

 max
 This returns the highest number in a numerical array.

 min
 Similar to max .

 How to Structure Functions
 We’ve already decided to use namespaced functions as the basis, so we need to decide
how to use these from within classes.

 Resolving Types
 We’ll often need to resolve types within the type methods. Any arguments could
potentially be the wrong type. It makes sense for the type resolution/conversion functions
to be in their own namespace:

• Type\isString

• Type\isStringObject

• Type\isExpression

• Type\toStringObject

• Type\toExpression

• etc.

CHAPTER 4 ■ DESIGN

46

 We should proxy to the creation methods:

 class StringObject extends SPLString
 {
 public function trim($mask = "\t\n\r\0\x0B")
 {
 $isString = Type\isString($mask);
 $isStringObject = Type\isStringObject($mask);

 if ($isString or $isStringObject) {
 if (Type\isExpression($mask)) {
 $raw = Type\String\trimWithExpression(
 $this,
 $mask
);
 } else {
 $raw = Type\String\trimWithString(
 $this,
 $mask
);
 }

 return Type\toStringObject($raw);
 }

 throw new LogicException("mask is not a string");
 }
 }

 This code expects the SPL_Types extension to be installed on the machine running it. Use
the same Vagrant box we set up in the previous chapter.

 Chaining
 One of the benefits of the object oriented approach is that we can chain calls on the types.
You may have noticed how this is implemented (from the previous example), but in case
you didn’t:

 return Type\toStringObject($raw);

 The manipulation methods should return plain scalar types. We want people to be
able to use the types interchangeably. So it falls to the classes (proxies) to wrap plain PHP
types within the SPL types.

CHAPTER 4 ■ DESIGN

47

 Combining Number Types
 I’ve already alluded to my desire of a single number type, and that’s exactly what I want
to achieve here. For that reason, we’ll completely ignore the SPLNumber class in favor of
 SPLFloat .

 The reason is simple: Numbers should be able to handle decimal points, without a
separate set of methods or mental overhead. This will lead to extra casting in numeric
operations, but that’s not the end of the world.

 How to Test
 Testing is an essential part of supplanting the native type handling system. The good news
is that it will be easy to do!

 PHPUnit
 PHPUnit is a unit-testing library that makes the process of testing small units of code
super easy. To install it, run the following command:

 $ composer require phpunit/phpunit

 We can write PHPUnit tests by creating classes resembling the following:

 class StringObjectTest extends PHPUnit_Framework_TestCase
 {
 /**
 * @test
 */
 public function trimWorksWithStrings()
 {
 $subject = Type\toStringObject("Hello World...");

 $this->assertEquals(
 "Hello World",
 $object->trim(".")
);
 }
 }

 We can do this kind of testing with many different testing frameworks. At the end
of the day, as long as you are writing tests, whichever testing framework you use is up
to you.

CHAPTER 4 ■ DESIGN

48

 What Should We Test?
 The short answer is: everything.

 We’re aiming to build something solid, and it’s pretty low-level. That means we need
to be sure things continue to work as expected. It’s not even that hard when you consider
how simple the methods are that we are going to make.

 We should aim to have good coverage of the namespaced functions, and a few tests
to ensure that these are correctly called from the object classes.

 When Should We Write Tests?
 That is up to you. Maybe you want to write your tests first, and then follow the red-
green-refactor cycle. Maybe you want to write your library code first, and then make sure
everything works as you expect.

 The important thing is to write tests.

 Recommendations
 If you want to learn more about writing cleaner, more testable code, I recommend the
following books:

• Clean Code, by Robert C. Martin: http://www.amazon.com/
Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882

• The Grumpy Programmer’s PHPUnit Cookbook, by Chris Hartjes:
 https://leanpub.com/grumpy-phpunit

 How to Package
 If you want people to use your code, you’d be wise to package it in such a way that others
will want to use it.

 Make a Readme File
 It sounds simple, but it may surprise you how few developers do this! When other developers
stumble across your repository, they won’t like to see an undocumented mess of code.

 Make a Readme file and include the following.

 A Few Examples
 Show what your library can do. Example code helps others understand the problem your
library solves. They shouldn’t need to go to tests to see that.

 Tests and documentation are good places to learn, but they must be sought out.
Include examples covering the major aspects of your library, right in the Readme file.

 In our case, this means an example of the procedural code underpinning the library.
It also means an example of the object oriented wrappers.

http://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882
http://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882
https://leanpub.com/grumpy-phpunit

CHAPTER 4 ■ DESIGN

49

 Testing Instructions
 Developers want to know how solid your code is. Sure, you’re using SemVer
(http://semver.org), but how much test coverage do you have? Do your tests pass?
Can I trust you?

 The easiest way to answer these questions is to write the unit tests and provide
instructions for how to run them. You don’t need anything elaborate:

 $ composer install && phpunit

 That’s how you might be running your unit tests, and it’s easy to tell others how to
run them.

 Installation Instructions
 Okay, you’ve convinced someone to use your well-tested library. The examples prove its
value. So how do they install your library?

 This is where you make a composer.json file and include Composer installation
instructions. This will require a trip to Packagist (https://packagist.org), but you’ll be
all the better for it.

 Then just a simple set of instructions is all you need add:

 $ composer require "vendor/library:1.0.0"

 License
 Include an open source license. Something friendly like MIT (http://opensource.
org/licenses/MIT) will do nicely. Specify this in your Readme file, and include a clearly-
named file (like LICENSE or license.md) that contains the full license.

 Contribution Guidelines
 This is optional, but greatly increases the chance that other developers will send
compatible pull-requests. If you are fussy about code style, be sure to tell people how you
want their submissions to look.

 This is usually specified in a file named CONTRIBUTING (or something similar).

 Conclusion
 Building a new type system is only partly about code. There are a lot of design
considerations that go into well-crafted libraries. Take the time to decide on a reasonable
structure, one that gives consumers the most flexibility.

 Test well. Package well. Be clear.

http://semver.org/
https://packagist.org/
http://opensource.org/licenses/MIT
http://opensource.org/licenses/MIT

51© Christopher Pitt 2016
C. Pitt, Typed PHP, DOI 10.1007/978-1-4842-2114-3_5

 CHAPTER 5

 Implementation

 Following on from last chapter, we’re going to continue with the implementation of our
library. In this chapter we’re also going to learn a bit about how to extend Composer
through plugins.

 We’ll finish off with the definitions of the most important library functions.

 Extending Composer
 Composer has become the de facto package manager for PHP. It’s a powerful tool with
a powerful plugin system. Let’s take a look at how to create plugins, so we can automate
some of the installation hassles our type library might create.

 Example: Path Plugin
 I’ve seen many frameworks create their own installers for things like themes and
modules. This is often because they want to use Composer to distribute code, but don’t
want that code living inside the vendor folder.

 Composer’s plugin system easily allows for custom install locations.

 You can find this section’s code at https://github.com/typedphp/composer-path-
plugin .

 Getting Started
 To begin setting up a new plugin, you’ll need to create a new working directory and a
minimal composer.json file:

 {
 "name" : "typedphp/composer-path-plugin",
 "type" : "composer-plugin",
 "license" : "MIT",
 "authors" : [

https://github.com/typedphp/composer-path-plugin
https://github.com/typedphp/composer-path-plugin

CHAPTER 5 ■ IMPLEMENTATION

52

 {
 "name" : "Christopher Pitt",
 "email" : "cgpitt@gmail.com"
 }
],
 "require" : {
 "php" : ">=5.5.0",
 "composer-plugin-api" : "1.*"
 },
 "require-dev" : {
 "phpunit/phpunit" : "4.*",
 "mockery/mockery" : "0.*"
 },
 "autoload" : {
 "psr-4" : {
 "TypedPHP\\Composer\\" : "source"
 }
 },
 "autoload-dev": {
 "files" : [
 "tests/TestCase.php"
],
 "psr-4" : {
 "TypedPHP\\Composer\\Tests\\" : "tests"
 }
 },
 "extra" : {
 "class" : [
 "TypedPHP\\Composer\\PathPlugin"
]
 }
 }

 This is from composer.json .

 This is like many composer.json files. It has a name, a few dependencies, and some
autoload directives. There is also a special type (composer-plugin) and a few bits in the
 extras object.

 With this composer.json file, we’re telling Composer this is a plugin. We’re telling
Composer to load the files in extra.class .

CHAPTER 5 ■ IMPLEMENTATION

53

 What do these files look like? Well that depends on what the plugin needs to do.
For our purposes, there will be a plugin class and an installer class. The plugin class
looks like this:

 namespace TypedPHP\Composer;

 use Composer\Composer;
 use Composer\IO\IOInterface;
 use Composer\Plugin\PluginInterface;

 class PathPlugin implements PluginInterface
 {
 public function activate(Composer $composer, IOInterface $io)
 {
 $installer = new PathPluginInstaller($io, $composer);

 $composer
 ->getInstallationManager()
 ->addInstaller($installer);
 }
 }

 This is from source/PathPlugin.php .

 The PathPlugin class has an activate() method (as must all classes that implement
 PluginInterface). When this is called, the plugin will register a new installer instance
with the installation manager. The installer does the heavy lifting:

 namespace TypedPHP\Composer;

 use Composer\Installer\LibraryInstaller;
 use Composer\Package\PackageInterface;

 class PathPluginInstaller extends LibraryInstaller
 {
 public function getPackageBasePath(PackageInterface $package)
 {
 return "path/to/install";
 }

 public function supports($type)
 {
 return true;
 }
 }

CHAPTER 5 ■ IMPLEMENTATION

54

 This is from source/PathPluginInstaller.php .

 The plugin we’re creating must alter the path in which the package’s files are stored.
This would usually be in vendor , so the value of getPackageBasePath() will replace
 vendor . Composer calls this method when deciding where to install package files to.

 We want to allow all packages (that depend on this plugin) to be able to set their
custom installation directories. Usually supports() would check the provided $type
parameter, but we’ll just return true. That way the plugin will activate for every package.

 Defining Paths
 We want the plugin to be able to match whole package names, or package names with
wildcard placeholders. For that to happen, we’ll need to define a helper method:

 public function matches($string, $pattern)
 {
 if ($pattern == $string) {
 return true;
 }

 $pattern = preg_quote($pattern, "#");
 $pattern = str_replace("*", ".*", $pattern);
 $pattern = "#^" . $pattern . "$#";

 return (boolean) preg_match($pattern, $string);
 }

 This is from source/PathPluginInstaller.php .

 This method accepts a string and compares it to a pattern. The pattern looks like
a string, but it becomes a regular expression. The wildcards (*) get turned into multi-
character matches.

 To illustrate this point; the pattern "acme/*" becomes the regular expression
 "#^acme/.*$#" . This will match the string "acme/foo" as well as "acme/" .

CHAPTER 5 ■ IMPLEMENTATION

55

 We can start identifying corresponding package names and using their custom
install paths:

 public function getPackageBasePath(PackageInterface $package)
 {
 if ($packagePath = $this->getPackagePath($package)) {
 return $packagePath . "/" . $package->getName();
 }

 return parent::getPackageBasePath($package);
 }

 public function getPackagePath(PackageInterface $package)
 {
 $extra = $package->getExtra();

 if (isset($extra["path"])) {
 return $extra["path"];
 }

 return null;
 }

 This is from source/PathPluginInstaller.php .

 We check to see whether the extra.path key has been set and return it. Otherwise,
the parent function is used to generate the default path (something under vendor/*).

 This enables us to design composer.json files that contain code like the following:

 "require" : {
 "typedphp/composer-path-plugin" : "*"
 },
 "extra" : {
 "path" : "tests"
 }

 Assuming the composer-path-plugin requirement is met, this package should
install to the tests directory.

 Overriding Paths
 Building on this, we can add ways of overriding package install paths (from the root
 composer.json file):

 public function getPackageBasePath(PackageInterface $package)
 {
 $root = $this->composer->getPackage();

CHAPTER 5 ■ IMPLEMENTATION

56

 if ($rootPath = $this->getRootPath($root, $package)) {
 return $rootPath . "/" . $package->getName();
 }

 if ($packagePath = $this->getPackagePath($package)) {
 return $packagePath . "/" . $package->getName();
 }

 return parent::getPackageBasePath($package);
 }

 public function getRootPath(
 PackageInterface $root,
 PackageInterface $package)
 {
 $extra = $root->getExtra();
 $name = $package->getName();

 if (isset($extra["paths"]) and is_array($extra["paths"])) {
 foreach ($extra["paths"] as $pattern => $path) {
 if ($this->matches($name, $pattern)) {
 return $path;
 }
 }
 }

 return null;
 }

 This is from source/PathPluginInstaller.php .

 getRootPath() loops through extra.paths and checks each pattern against each
dependency. To illustrate this:

 "extra" : {
 "paths" : {
 "acme/*" : "acme"
 }
 }

 This is from composer.json .

CHAPTER 5 ■ IMPLEMENTATION

57

 This allows the main composer.json file to override custom paths set in
dependencies. If they’re not matched and they define their own custom path, that’s
where they will be installed to. If they do not define a custom path, it’s off to vendor
with them.

 Implications
 I designed this plugin just to handle a small set of modified packages. Path overriding
and accepting every plugin made it possible to affect the paths of packages we don’t
control. Imagine we were making a new Laravel project. We could add the following to
our composer.json file:

 "require" : {
 "typedphp/composer-path-plugin" : "*",
 "laravel/laravel" : "4.2.*"
 },
 "extra" : {
 "paths" : {
 "symfony/*" : ".",
 "illuminate/*" : "."
 }
 }

 This is from composer.json .

 This would place the symfony and illuminate folders at the same level as vendor .
We wouldn’t need to change those dependencies to make it so.

 Since the wildcards can be at the beginning of package names, you could also do
something similar with themes:

 "require" : {
 "typedphp/composer-path-plugin" : "*"
 },
 "extra" : {
 "paths" : {
 "*/*-theme" : "public/themes"
 }
 }

 This is from composer.json .

CHAPTER 5 ■ IMPLEMENTATION

58

 Example: Hook Plugin
 PHP frameworks like to define configuration files in which to add extension classes and
hooks. Laravel (http://laravel.com), for instance, has PHP files that return arrays.
When you install a new extension, you need to add a service provider (http://laravel.
com/docs/packages#service-providers) class to a specific configuration file. It’s easy to
install the plugin, but always requires manual intervention.

 This technique isn’t specific to Laravel. It’s such a common problem there and involves
some tricky file manipulation. A good example, in other words!

 You can find the code for this section at https://github.com/typedphp/composer-
hook-plugin .

 Getting Started
 We begin by creating a new composer.json file:

 {
 "name" : "typedphp/composer-hook-plugin",
 "type" : "composer-plugin",
 "license" : "MIT",
 "authors" : [
 {
 "name" : "Christopher Pitt",
 "email" : "cgpitt@gmail.com"
 }
],
 "require" : {
 "php" : ">=5.5.0",
 "composer-plugin-api" : "1.*"
 },
 "require-dev" : {
 "phpunit/phpunit" : "4.*",
 "mockery/mockery" : "0.*"
 },
 "autoload" : {
 "psr-4" : {
 "TypedPHP\\Composer\\" : "source"
 }
 },

http://laravel.com/
http://laravel.com/docs/packages#service-providers
http://laravel.com/docs/packages#service-providers
https://github.com/typedphp/composer-hook-plugin
https://github.com/typedphp/composer-hook-plugin

CHAPTER 5 ■ IMPLEMENTATION

59

 "autoload-dev": {
 "files" : [
 "tests/TestCase.php"
],
 "psr-4" : {
 "TypedPHP\\Composer\\Tests\\" : "tests"
 }
 },
 "extra" : {
 "class" : [
 "TypedPHP\\Composer\\HookPlugin"
]
 }
 }

 This is from composer.json .

 You’ll notice that we’ve added the type and extra data, just as we did for the path
plugin. This will be a common theme in plugins we develop. Following this, we create the
basic plugin loader class:

 namespace TypedPHP\Composer;

 use Composer\Composer;
 use Composer\IO\IOInterface;
 use Composer\Plugin\PluginInterface;

 class HookPlugin implements PluginInterface
 {
 public function activate(Composer $composer, IOInterface $io)
 {
 $installer = new HookPluginInstaller($io, $composer);

 $composer
 ->getInstallationManager()
 ->addInstaller($installer);
 }
 }

 This is from source/HookPlugin.php .

CHAPTER 5 ■ IMPLEMENTATION

60

 Describing Configuration
 This is like what we did with the path plugin. The important differences are in the
 HookPluginInstaller class. What we want to be able to do is define custom extra data to
be applied to configuration files. Something resembling the following:

 "require": {
 "typedphp/composer-hook-plugin": "dev-master"
 },
 "extra": {
 "hooks": [
 {
 "file": "app/config/app.php",
 "key": "providers",
 "classes": [
 "TypedPHP\\ServiceProvider"
]
 },
 {
 "file": "app/config/app.php",
 "key": "facades",
 "classes": {
 "Arr": "TypedPHP\\Types\\Facades\\ArrayFacade",
 "Num": "TypedPHP\\Types\\Facades\\NumberFacade",
 "Str": "TypedPHP\\Types\\Facades\\StringFacade",
 "Bool": "TypedPHP\\Types\\Facades\\BooleanFacade"
 }
 }
]
 }

 This is from a different composer.json file.

 This data should then be added to the configuration files, without erasing any
comments or formatting from the same configuration file.

 This presents a problem. The only easy way to append data to these configuration
files is to read the data, append the array items, and rewrite the file.

 Altering Configuration Files
 Using var_export() will remove all comments and formatting, so we’re going to have to
try harder. The approach I want to take is to read the file data and identify the exact point
at which we can insert new data. Something like the following:

 namespace TypedPHP\Composer;

CHAPTER 5 ■ IMPLEMENTATION

61

 use Composer\Installer\LibraryInstaller;
 use Composer\Package\PackageInterface;
 use Composer\Repository\InstalledRepositoryInterface;

 class HookPluginInstaller extends LibraryInstaller
 {
 public function install(
 InstalledRepositoryInterface $repository,
 PackageInterface $package
)
 {
 // 1. get the hooks and pass each to $this->addHookToFile()
 }

 protected function addHookToFile($key, array $classes, $file)
 {
 // 1. get the array and string data of the file
 // 2. get the previous classes in the array
 // 3. find the location to add new classes
 // 4. insert the new classes into the old string content
 // 5. write the new string content to the same file
 }
 }

 This is from source/HookPluginInstaller.php .

 Listing the objectives like that has the potential to make it sound less complicated.
There’s still much to do to make this process work. For instance, we need a way to get the
last item in the key we want to update. If we’re going to add new classes to a specific key,
we need to find the last item in the array we want to add the classes to:

 public function getArrayValueByKey(array $array, $key)
 {
 if (isset($array[$key])) {
 return $array[$key];
 }

 foreach (explode(".", $key) as $segment) {
 if (!array_key_exists($segment, $array)) {
 return null;
 }

 $array = $array[$segment];
 }

 return $array;
 }

CHAPTER 5 ■ IMPLEMENTATION

62

 This is from source/HookPluginInstaller.php .

 This function will get all the items from a specific key. To get the last one we’ll only
need to use end($items) on the results of that method. Getting the insertion point can
look something like:

 protected function getInsertionIndex(array $items, $source)
 {
 $last = end($items);
 $single = strpos($source, $last);
 $double = strpos($source, str_replace("\\", "\\\\", $last));

 if (is_numeric($single)) {
 $index = strpos($source, "\n", $single);
 }

 if (is_numeric($double)) {
 $index = strpos($source, "\n", $double);
 }

 if ($index) {
 return $index;
 }

 return -1;
 }

 This is from source/HookPluginInstaller.php .

 Half the job is using strpos() to find the start of the last item and the other is
accounting for both class formats (i.e., Foo\\Bar and Foo\Bar).

 We should also throw in a bit of validation, so malformed hooks don’t cause
exceptions in the installation process:

 protected function addHook(array $hook)
 {
 if (empty($hook["key"])) {
 return;
 }

 if (empty($hook["classes"])) {
 return;
 }

CHAPTER 5 ■ IMPLEMENTATION

63

 if (empty($hook["file"]) or !file_exists($hook["file"])) {
 return;
 }

 $this->addHookToFile(
 $hook["key"],
 $hook["classes"],
 $hook["file"]
);
 }

 This is from source/HookPluginInstaller.php .

 Finally, we can use all these together to create the method that gets the hooks, finds
the insertion point, and builds the new file:

 public function install(
 InstalledRepositoryInterface $repository,
 PackageInterface $package
)
 {
 $hooks = [];
 $extra = $package->getExtra();

 if (isset($extra["hooks"])) {
 $hooks = $extra["hooks"];
 }

 foreach ($hooks as $hook) {
 $this->addHook($hook);
 }

 parent::install($repository, $package);
 }

 protected function addHookToFile($key, array $classes, $file)
 {
 $data = include($file);
 $source = file_get_contents($file);
 $previous = $this->getArrayValueByKey($data, $key);

 if (empty($previous)) {
 return;
 }

CHAPTER 5 ■ IMPLEMENTATION

64

 $index = $this->getInsertionIndex($previous, $source);
 $append = $this->addClasses($classes, $previous);
 $modified = "";

 if (count($append)) {
 $modified .= substr($source, 0, $index);

 if ($modified[strlen($modified) - 1] == ",") {
 $modified .= "\n";
 } else {
 $modified .= ",\n";
 }

 $new = "";

 foreach ($append as $key => $value) {
 if (is_string($key)) {
 $new .= "'{$key}' => {$value},\n";
 } else {
 $new .= "{$value},\n";
 }
 }

 $modified .= trim($new);
 $modified .= substr($source, $index);

 file_put_contents($file, $modified);
 }
 }

 protected function addClasses(array $classes, array $previous)
 {
 $append = [];

 foreach ($classes as $key => $value) {
 if (is_string($key)) {
 if (!isset($previous[$key])) {
 $append[$key] = "'{$value}'";
 }
 } else {
 if (!in_array($value, $previous)) {
 $append[] = "'{$value}'";
 }
 }
 }

 return $append;
 }

CHAPTER 5 ■ IMPLEMENTATION

65

 This is from source/HookPluginInstaller.php .

 Libraries only need the hook plugin and define that extra data to hook their own
classes into configuration files.

 I’ve avoided any code that deals specifically with the indentation/formatting of the
modified classes. The goal is to preserve the existing formatting. Consider adding your own
indentation/customization features!

 Implications
 This plugin makes it easy for developers to install extensions/modules in existing
applications. It would be easy to change this plugin to ask developers if they would like
the hooks applied before applying them.

 PHP Implementation
 Functions
 As mentioned in Chapter 2 , the most usable way to package this functionality is first in a
set of functions.

 Type Functions
 These functions are exactly the same as described in Chapter 2 , so I’ll not go into much
detail here. The complete listing is:

 namespace TypedPHP\Functions\TypeFunctions;

 function isNumber($variable)
 {
 return is_integer($variable) or is_float($variable);
 }

 function isBoolean($variable)
 {
 return is_bool($variable);
 }

 function isNull($variable)
 {
 return is_null($variable);
 }

http://dx.doi.org/10.1007/978-1-4842-2114-3_2
http://dx.doi.org/10.1007/978-1-4842-2114-3_2

CHAPTER 5 ■ IMPLEMENTATION

66

 function isObject($variable)
 {
 return is_object($variable) and !isFunction($variable);
 }

 function isFunction($variable)
 {
 return is_callable($variable) and is_object($variable);
 }

 function isExpression($variable)
 {
 $isNotFalse = @preg_match($variable, "") !== false;
 $hasNoError = preg_last_error() === PREG_NO_ERROR;

 return $isNotFalse and $hasNoError;
 }

 function isString($variable)
 {
 return is_string($variable) and !isExpression($variable);
 }

 function isResource($variable)
 {
 return is_resource($variable);
 }

 function isArray($variable)
 {
 return is_array($variable);
 }

 function getType($variable)
 {
 $functions = [
 "isNumber" => "number",
 "isBoolean" => "boolean",
 "isNull" => "null",
 "isObject" => "object",
 "isFunction" => "function",
 "isExpression" => "expression",
 "isString" => "string",
 "isResource" => "resource",
 "isArray" => "array"
];

 $result = "unknown";

CHAPTER 5 ■ IMPLEMENTATION

67

 foreach ($functions as $function => $type) {
 $namespace = "TypedPHP\\Functions\\TypeFunctions\\";
 $function = $namespace . $function;

 if ($function($variable)) {
 $result = $type;
 break;
 }
 }

 return $result;
 }

 You can find the most recent code, along with the tests, on GitHub (https://github.com/
typedphp/type-functions).

 String Functions
 Since expressions are basically special strings, the string functions we need are a little
more complicated than the other types. They follow this pattern:

 function isExpression($variable)
 {
 return TypeFunctions\isExpression($variable);
 }

 function indexOf($haystack, $needle, $offset = 0)
 {
 if (isExpression($needle)) {
 return indexOfExpression($haystack, $needle, $offset);
 }

 return indexOfString($haystack, $needle, $offset);
 }

 function indexOfString($haystack, $needle, $offset = 0)
 {
 $index = -1;
 $match = strpos($haystack, $needle, $offset);

 if ($match !== false) {
 $index = $match;
 }

 return $index;
 }

https://github.com/typedphp/type-functions
https://github.com/typedphp/type-functions

CHAPTER 5 ■ IMPLEMENTATION

68

 function indexOfExpression($haystack, $needle, $offset = 0)
 {
 $index = -1;

 $match = preg_match(
 $needle, $haystack, $matches,
 PREG_OFFSET_CAPTURE, $offset
);

 if ($match) {
 $index = $matches[0][1];
 }

 return $index;
 }

 In most of the string functions, we’ll need to do something different if the string
is an expression. It’s easy for us to assume a pattern of action[Of|With]String and
 action[Of|With]Expression and call the correct one from a common entry function.
We have the following entry functions:

 function startsWith($haystack, $needle)
 {
 if (isExpression($needle)) {
 return startsWithExpression($haystack, $needle);
 }

 return startsWithString($haystack, $needle);
 }

 function endsWith($haystack, $needle)
 {
 if (isExpression($needle)) {
 return endsWithExpression($haystack, $needle);
 }

 return endsWithString($haystack, $needle);
 }

 function matches($haystack, $needle)
 {
 if (isExpression($needle)) {
 return matchesExpression($haystack, $needle);
 }

 return matchesString($haystack, $needle);
 }

CHAPTER 5 ■ IMPLEMENTATION

69

 function slice($string, $offset = 0, $limit = 0)
 {
 if ($limit == 0) {
 return substr($string, $offset);
 }

 return substr($string, $offset, $limit);
 }

 function trim($haystack, $needle)
 {
 if (isExpression($needle)) {
 return trimWithExpression($haystack, $needle);
 }

 return trimWithString($haystack, $needle);
 }

 function trimLeft($haystack, $needle)
 {
 if (isExpression($needle)) {
 return trimLeftWithExpression($haystack, $needle);
 }

 return trimLeftWithString($haystack, $needle);
 }

 function trimRight($haystack, $needle)
 {
 if (isExpression($needle)) {
 return trimRightWithExpression($haystack, $needle);
 }

 return trimRightWithString($haystack, $needle);
 }

 There’s a special case for splitting strings:

 function split($haystack, $needle = null, $limit = 0)
 {
 if ($needle === null) {
 return splitWithNull($haystack, $limit);
 }

 if (isExpression($needle)) {
 return splitWithExpression($haystack, $needle, $limit);
 }

 return splitWithString($haystack, $needle, $limit);
 }

CHAPTER 5 ■ IMPLEMENTATION

70

 When the $needle parameter is not passed, we default to creating an array out of
characters of a string. There’s also a special case for replacing substrings:

 function isArray($variable)
 {
 return TypeFunctions\isArray($variable);
 }

 function replace($haystack, $needle, $replacement)
 {
 if (isArray($needle) and isArray($replacement)) {
 return replaceWithArray(
 $haystack, $needle, $replacement
);
 }

 if (isExpression($needle)) {
 return replaceWithExpression(
 $haystack, $needle, $replacement
);
 }

 return replaceWithString(
 $haystack, $needle, $replacement
);
 }

 If the $needle and $replacement parameters are both arrays, then we emulate the
current behavior of str_replace / preg_replace .

 You can find the most recent code, along with the tests, on GitHub (https://github.com/
typedphp/string-functions).

 Number Functions
 The number functions combine integer and floating-point behavior and create a
consistent naming convention for many current PHP functions. There are rounding
functions:

 function round($number)
 {
 return (float) \round($number);
 }

https://github.com/typedphp/string-functions
https://github.com/typedphp/string-functions

CHAPTER 5 ■ IMPLEMENTATION

71

 function ceiling($number)
 {
 return (float) \ceil($number);
 }

 function floor($number)
 {
 return (float) \floor($number);
 }

 The built-in rounding functions return integer values. These return floating-point
values. When it comes to wrapping this functionality in an object, we’re going to use
 SplFloat , so we might as well return floats here. The rounding is still happening, so
values like 5.5 become 5.0 or 6.0 .

 Then there are a few conversion functions:

 function degrees($number)
 {
 return (float) \rad2deg($number);
 }

 function radians($number)
 {
 return (float) \deg2rad($number);
 }

 We’re using more consistent names and returning floating-point values. Then there
are wrappers for the trigonometry functions:

 function sine($number)
 {
 return (float) \sin($number);
 }

 function inverseSine($number)
 {
 return (float) \asin($number);
 }

 function hyperbolicSine($number)
 {
 return (float) \sinh($number);
 }

 function inverseHyperbolicSine($number)
 {
 return (float) \asinh($number);
 }

CHAPTER 5 ■ IMPLEMENTATION

72

 Finally, there are a few utility methods, such as:

 function limit($number, $min, $max)
 {
 if ($number < $min) {
 return $min;
 }

 if ($number > $max) {
 return $max;
 }

 return $number;
 }

 You can find the most recent code, along with the tests, on GitHub (https://github.com/
typedphp/number-functions).

 Array Functions
 The array functions are mostly simple wrappers around the already extensive set of built-
in functions. The hard part will be integrating them into an object later. The complete
listing is:

 namespace TypedPHP\Functions\ArrayFunctions;

 use TypedPHP\Functions\NumberFunctions;

 function contains(array $haystack, $needle)
 {
 return in_array($needle, $haystack);
 }

 function each(array $array, callable $callback)
 {
 array_walk($array, $callback);

 return $array;
 }

 function exclude(array $array, array $exclude)
 {
 return array_diff($array, $exclude);
 }

https://github.com/typedphp/number-functions
https://github.com/typedphp/number-functions

CHAPTER 5 ■ IMPLEMENTATION

73

 function filter(array $array, callable $callback)
 {
 return array_filter($array, $callback);
 }

 function length(array $array)
 {
 return count($array);
 }

 function has(array $array, $needle)
 {
 return array_key_exists($needle, $array);
 }

 function join(array $array, $glue)
 {
 return \join($glue, $array);
 }

 function map(array $array, callable $callback)
 {
 return array_map($callback, $array);
 }

 function merge(array $array, array $merge)
 {
 return array_merge($array, $merge);
 }

 function slice(array $array, $offset = 0, $limit = 0)
 {
 if ($limit == 0) {
 return array_slice($array, $offset);
 }

 return array_slice($array, $offset, $limit);
 }

 function random(array $array)
 {
 if (length($array) === 0) {
 return null;
 }

 $index = NumberFunctions\random(0, length($array) - 1);

 return $array[$index];
 }

CHAPTER 5 ■ IMPLEMENTATION

74

 You can find the most recent code, along with the tests, on GitHub (https://github.com/
typedphp/array-functions).

 Conclusion
 In this chapter, we learned about how to create Composer plugins. These are useful for
when we need to perform setup for our library that would otherwise require manual
changes on behalf of the developers wanting to use it.

 We also looked at some of the core functions for our library. If you’ve found these
useful and have a particular preference for the C extension you’d prefer to package them
with, consider it a challenge to extend the basics with your own polish.

 Thank you for reading this far. I hope you’ve found what you’ve read helpful, and that
this knowledge serves you well in years to come.

https://github.com/typedphp/array-functions
https://github.com/typedphp/array-functions

75© Christopher Pitt 2016
C. Pitt, Typed PHP, DOI 10.1007/978-1-4842-2114-3

 A, B, C, D
 Classes

 decoration (boxing) , 7–9
 encapsulation , 7
 setters/getters , 8

 Composer , 23, 49, 51
 autoload , 14

 Confi guration
 distribution , 60
 paths , 60
 registration , 27

 E
 Extensions

 scalar objects , 27
 standard package library (SPL) , 25
 Zephir , 30

 F, G, H, I, J, K, L, M, N
 Functions

 anonymous , 10
 imported , 14

 O
 Optional types

 fl uent (chaining) , 17
 null , 15–16
 null object pattern , 17
 promises , 17

 P, Q
 Packaging

 dependencies , 52
 extensions , 58

 Programming
 classes , 3
 namespaces , 3
 object-oriented , 1–2
 private functions , 3
 procedural , 1–2
 separation of concerns , 3

 R
 Readme

 installation , 49
 license , 49

 S
 Structure

 abstraction , 18
 framework , 27
 type resolution , 45

 T, U
 Tests , 47–48

 PHPUnit , 47, 48
 Types

 abbreviations , 4
 arguments , 45
 delimiters , 12
 inconsistencies , 3
 needle/haystack , 5
 regular expressions , 5, 11–12
 return values , 6
 scalar types , 34
 strings , 67
 underscores , 4

 Index

■ INDEX

76

 V, W, X, Y, Z
 Virtualisation

 ansible , 19, 22
 nginx , 23, 26
 operating system , 19–24

 phansible , 19, 22–23
 PHP-FPM (FastCGI Process

Manager) , 26
 provisioning , 22–24
 Vagrant , 19–24
 virtual machine , 19, 22–24

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: The State of PHP
	Procedural versus Object Oriented
	Procedural Programming
	Object Oriented Programming
	Which Is the Best?
	Which Is PHP?

	Native Function Inconsistencies
	Sporadic Underscores
	Sporadic Abbreviation
	Inconsistent Argument Order
	Regular Expression/Strings
	Nouns/Verbs
	Strange Return Values

	Conclusion

	Chapter 2: Structure
	Decorating
	Resolving Types
	Functions
	Regular Expressions
	All Together!

	Namespace Functions
	Composer Autoload
	Importing Namespaced Functions

	Optional Types
	The Null Problem
	Optional Values
	In The Wild

	Conclusion

	Chapter 3: Extensions
	Vagrant + Phansible
	Installing
	Provisioning
	Vagrant Commands

	SPL Types
	Installing SPL Types
	Using SPL Types

	Scalar Objects
	Installing Scalar Objects
	Using Scalar Objects

	Zephir
	Installing Zephir
	Using Zephir

	Conclusion

	Chapter 4: Design
	Which Method to Use
	Namespace Methods
	Scalar Objects/SPL Types
	Zephir

	Which Functions to Keep
	String Functions
	addslashes and stripslashes
	chop, trim, ltrim, and rtrim
	chr and ord
	money_format, number_format, sprintf, and vsprintf
	strchr, stripos, stristr, strpos, and strstr
	chunk_split, explode, str_split, and strtok
	str_ireplace, str_replace, and substr
	str_pad and str_repeat
	strtolower, strtoupper, ucfirst, and ucwords
	strlen, strrev, and wordwrap

	Number Functions
	abs, ceil, floor, and round
	acos, acosh, asin, asinh, atan2, atan, atanh, cos, cosh, sin, sinh, tan, and tanh
	deg2rad and rad2deg
	bindec, decbin, hexdec, dechex, octdec, and decoct
	mt_getrandmax, mt_rand, mt_srand, getrandmax, rand, and srand
	exp, expm1, log, and log1p
	pow, sqrt, fmod, and pi

	Array Functions
	array_chunk, array_column, array_slice, array_keys, and array_values
	array_combine, array_merge, array_merge_recursive, array_fill_keys, array_fill, and array_pad
	array_diff_assoc, array_diff_uassoc, array_diff_ukey, array_diff, array_udiff_assoc, array_udiff_uassoc, and array_udiff
	array_intersect_assoc, array_intersect_key, array_intersect_uassoc, array_intersect_ukey, array_intersect, array_uintersect_assoc, array_uintersect_uassoc, and array_uintersect
	array_key_exists, array_search, in_array, and key_exists
	sizeof, count, and array_count_values
	array_filter, array_map, array_reduce, array_replace, array_replace_recursive, array_walk_recursive, array_walk, and array_splice
	array_multisort, arsort, asort, krsort, ksort, natcasesort, natsort, rsort, uasort, uksort, usort, sort, shuffle, array_reverse, and array_flip
	array_pop, array_push, array_shift, and array_unshift
	array_product, array_rand, array_sum, and array_unique

	Which Functions to Add
	String Functions
	toCamelCase
	toSnakeCase
	endsWith
	startsWith
	complete

	Array Functions
	separate
	add
	getExcept
	getOnly
	getFirst
	getLast
	flatten
	get
	max
	min

	How to Structure Functions
	Resolving Types
	Chaining
	Combining Number Types

	How to Test
	PHPUnit
	What Should We Test?
	When Should We Write Tests?
	Recommendations

	How to Package
	Make a Readme File
	A Few Examples
	Testing Instructions

	Installation Instructions
	License
	Contribution Guidelines

	Conclusion

	Chapter 5: Implementation
	Extending Composer
	Example: Path Plugin
	Getting Started
	Defining Paths
	Overriding Paths
	Implications

	Example: Hook Plugin
	Getting Started
	Describing Configuration
	Altering Configuration Files
	Implications

	PHP Implementation
	Functions
	Type Functions
	String Functions
	Number Functions
	Array Functions

	Conclusion

	Index

