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About	This	Book

This	book	is	about	Vulkan.	Vulkan	is	an	application	programming	interface
(API)	for	controlling	devices	such	as	graphics	processing	units	(GPUs).
Although	Vulkan	is	a	logical	successor	to	OpenGL,	it	is	quite	different	from
OpenGL	in	form.	One	of	the	things	that	experienced	practitioners	will	notice
about	Vulkan	is	that	it	is	very	verbose.	You	need	to	write	a	lot	of	application
code	to	get	Vulkan	to	do	anything	useful,	let	alone	anything	remarkable.	Many
of	the	things	that	an	OpenGL	driver	would	do	are	now	the	responsibility	of	the
Vulkan	application	writer.	These	things	include	synchronization,	scheduling,
memory	management,	and	so	on.	As	such,	you	will	find	a	good	deal	of	this	book
dedicated	to	such	topics,	even	though	they	are	general	topics	applicable	to	more
than	just	Vulkan.
The	intended	audience	for	this	book	is	experienced	programmers	who	are
already	familiar	with	other	graphics	and	compute	APIs.	As	such,	many	graphics-
related	topics	are	discussed	without	deep	introduction,	there	are	some	forward
references,	and	code	samples	are	incomplete	or	illustrative	in	scope	rather	than
being	complete	programs	that	you	can	type	in.	The	sample	code	available	from
the	book’s	website	is	complete	and	tested,	however,	and	should	serve	as	a	good
reference	to	follow	along	with.
Vulkan	is	intended	to	be	used	as	the	interface	between	large,	complex	graphics
and	compute	applications	and	graphics	hardware.	Many	of	the	features	and
responsibilities	previously	assumed	by	drivers	implementing	APIs	such	as
OpenGL	now	fall	to	the	application.	Complex	game	engines,	large	rendering
packages,	and	commercial	middleware	are	well-suited	to	this	task;	they	have
more	information	about	their	specific	behavior	than	any	driver	could	hope	to
have.	Vulkan	is	not	well-suited	to	simple	test	applications;	neither	is	it	a	suitable
aid	for	teaching	graphics	concepts.
In	the	first	chapters	of	this	book,	we	introduce	Vulkan	and	some	of	the
fundamental	concepts	that	frame	the	API.	As	we	progress	through	the	Vulkan
system,	we	cover	more	advanced	topics,	eventually	producing	a	more	complex
rendering	system	that	shows	off	some	of	the	unique	aspects	of	Vulkan	and
demonstrates	its	capabilities.
In	Chapter	1,	“Overview	of	Vulkan,”	we	provide	a	brief	introduction	to	Vulkan
and	the	concepts	that	form	its	foundation.	We	cover	the	basics	of	creating
Vulkan	objects	and	show	the	basics	of	getting	started	with	the	Vulkan	system.



In	Chapter	2,	“Memory	and	Resources,”	we	introduce	the	memory	system	of
Vulkan,	perhaps	the	most	fundamental	part	of	the	interface.	We	show	how	to
allocate	memory	used	by	the	Vulkan	device	and	by	Vulkan	drivers	and	system
components	running	inside	your	application.
In	Chapter	3,	“Queues	and	Commands,”	we	cover	command	buffers	and
introduce	the	queues	to	which	they	are	submitted.	We	show	how	Vulkan
processes	work	and	how	your	application	can	build	packets	of	commands	to	be
sent	to	the	device	for	execution.
In	Chapter	4,	“Moving	Data,”	we	introduce	our	first	few	Vulkan	commands,	all
of	which	are	focused	on	moving	data.	We	use	the	concepts	first	discussed	in
Chapter	3	to	build	command	buffers	that	can	copy	and	format	data	stored	in	the
resources	and	memory	introduced	in	Chapter	2.
In	Chapter	5,	“Presentation,”	we	show	how	to	get	images	produced	by	your
application	onto	the	screen.	Presentation	is	the	term	used	for	interacting	with	a
window	system,	which	is	platform-specific,	so	this	chapter	delves	into	some
platform-specific	topics.
In	Chapter	6,	“Shaders	and	Pipelines,”	we	introduce	SPIR-V,	the	binary	shading
language	used	by	Vulkan.	We	also	introduce	the	pipeline	object;	show	how	one
is	constructed	using	SPIR-V	shaders;	and	then	introduce	compute	pipelines,
which	can	be	used	to	do	computation	work	with	Vulkan.
In	Chapter	7,	“Graphics	Pipelines,”	we	build	upon	what	we	covered	in	Chapter	6
and	introduce	the	graphics	pipeline,	which	includes	all	of	the	configuration
necessary	to	render	graphical	primitives	with	Vulkan.
In	Chapter	8,	“Drawing,”	we	discuss	the	various	drawing	commands	available	in
Vulkan,	including	indexed	and	nonindexed	draws,	instancing,	and	indirect
commands.	We	show	how	to	get	data	into	the	graphics	pipeline	and	how	to	draw
more	complex	geometries	than	were	introduced	in	Chapter	7.
In	Chapter	9,	“Geometry	Processing,”	we	dig	deeper	into	the	first	half	of	the
Vulkan	graphics	pipeline	and	take	another	look	at	the	tessellation	and	geometry
shader	stages.	We	show	some	of	the	more	advanced	things	that	these	stages	can
do	and	cover	the	pipeline	up	to	the	rasterization	stage.
In	Chapter	10,	“Fragment	Processing,”	we	pick	up	where	Chapter	9	left	off	and
cover	everything	that	happens	during	and	after	rasterization	in	order	to	turn	your
geometry	into	a	stream	of	pixels	that	can	be	displayed	to	the	user.
In	Chapter	11,	“Synchronization,”	we	cover	the	various	synchronization
primitives	available	to	the	Vulkan	application,	including	fences,	events,	and
semaphores.	Together,	these	form	the	foundation	of	any	application	that	makes



efficient	use	of	the	parallel	nature	of	Vulkan.
In	Chapter	12,	“Getting	Data	Back,”	we	reverse	the	direction	of	communication
used	in	previous	chapters	and	discuss	the	issues	involved	in	reading	data	from
Vulkan	into	your	application.	We	show	how	to	time	operations	executed	by	a
Vulkan	device,	how	to	gather	statistics	about	the	operation	of	Vulkan	devices,
and	how	to	get	data	produced	by	Vulkan	back	into	your	application.
Finally,	in	Chapter	13,	“Multipass	Rendering,”	we	revisit	a	number	of	topics
covered	earlier,	tying	things	together	to	produce	a	more	advanced	application—a
deferred	rendering	application	using	complex	multipass	architecture	and
multiple	queues	for	processing.
The	appendix	to	this	book	contains	a	table	of	the	command	buffer	building
functions	available	to	Vulkan	applications,	providing	a	quick	reference	to
determine	their	attributes.
Vulkan	is	a	large,	complex,	and	new	system.	It	is	extremely	difficult	to	cover
every	corner	of	the	API	in	a	book	of	this	scope.	The	reader	is	encouraged	to
thoroughly	read	the	Vulkan	specification	in	addition	to	this	book,	as	well	as	to
read	other	books	on	using	heterogeneous	compute	systems	and	computer
graphics	with	other	APIs.	Such	material	will	provide	a	good	foundation	in	the
mathematics	and	other	concepts	assumed	by	this	book.

About	the	Sample	Code
The	sample	code	that	accompanies	this	book	is	available	from	our	website
(http://www.vulkanprogrammingguide.com).	One	thing	that	seasoned	users	of
other	graphics	APIs	will	notice	is	that	Vulkan	is	very	verbose.	This	is	primarily
because	many	of	the	responsibilities	historically	assumed	by	drivers	have	been
delegated	to	your	application.	In	many	cases,	however,	simple	boilerplate	code
will	do	the	job	just	fine.	Therefore,	we	have	created	a	simple	application
framework	that	deals	with	much	of	the	functionality	that	will	be	common	to	all
samples	and	real-world	applications.	This	does	not	mean	that	this	book	is	a
tutorial	on	how	to	use	our	framework.	This	is	simply	a	practical	matter	of
keeping	code	samples	concise.
Of	course,	as	we	discuss	specific	Vulkan	functionality	throughout	the	book,	we
will	include	snippets	of	code,	many	of	which	may	actually	come	from	the	book’s
sample	framework	rather	than	from	any	particular	example.	Some	features
discussed	in	the	book	may	not	have	examples	in	the	code	package.	This	is
particularly	true	of	some	advanced	features	that	are	relevant	primarily	to	large-
scale	applications.	There	is	no	such	thing	as	a	short,	simple	Vulkan	example.	In
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many	cases,	a	single	example	program	demonstrates	the	use	of	many	features.
The	features	that	each	example	uses	are	listed	in	that	example’s	read-me	file.
Again,	there	is	not	a	1:1	correspondence	between	examples	and	listings	in	this
book	and	specific	examples	in	the	sample	code.	It	shall	be	assumed	that	anyone
that	files	a	bug	asking	for	a	1:1	list	of	which	samples	go	with	which	chapter	has
not	read	this	paragraph.	Such	bugs	will	be	summarily	closed,	quoting	this	very
sentence.
The	sample	code	is	designed	to	link	against	the	latest	official	Vulkan	SDK	from
LunarG,	which	is	available	from	http://lunarg.com/vulkan-sdk/.	At	the	time	of
writing,	the	latest	SDK	version	is	1.0.22.	Newer	versions	of	the	SDK	are
designed	to	be	backward-compatible	with	older	versions,	so	we	recommend	that
users	obtain	the	latest	available	version	of	the	SDK	before	attempting	to	compile
and	run	the	sample	applications.	The	SDK	also	comes	with	some	samples	of	its
own,	and	we	suggest	running	those	to	verify	that	the	SDK	and	drivers	are
installed	correctly.
In	addition	to	the	Vulkan	SDK,	you	will	need	a	working	installation	of	CMake	in
order	to	create	the	build	environment	for	the	samples.	You	will	also	need	an	up-
to-date	compiler.	The	code	samples	make	use	of	several	C++11	features	and	rely
heavily	on	the	C++	standard	libraries	for	things	like	threading	and
synchronization	primitives.	These	features	are	known	to	be	problematic	in	early
versions	of	various	compiler	runtimes,	so	please	make	sure	that	your	compilers
are	up	to	date.	We	have	tested	with	Microsoft	Visual	Studio	2015	on	Windows
and	with	GCC	5.3	on	Linux.	The	samples	have	been	tested	on	64-bit	Windows	7,
Windows	10,	and	Ubuntu	16.10	with	recent	drivers	from	AMD,	Intel,	and
NVIDIA.
It	should	be	noted	that	Vulkan	is	a	cross-platform,	cross-vendor,	and	cross-
device	system.	Many	of	these	samples	should	work	on	Android	and	other	mobile
platforms.	We	hope	to	port	the	samples	to	as	many	of	these	platforms	as	possible
in	the	future	and	would	very	much	appreciate	help	and	contributions	from	you,
the	reader.

Errata
Vulkan	is	a	new	technology.	At	the	time	of	writing,	the	specification	has	been
available	for	only	a	matter	of	weeks.	Although	the	author	and	contributor	had	a
hand	in	creating	the	Vulkan	specification,	it’s	large	and	complex	and	had	many
contributors.	Some	of	the	code	in	the	book	is	not	fully	tested,	and	although	it	is
believed	to	be	correct,	it	may	contain	errors.	As	we	were	putting	the	samples
together,	available	Vulkan	implementations	still	had	bugs,	the	validation	layers

http://lunarg.com/vulkan-sdk/


didn’t	catch	as	many	errors	as	they	could,	and	the	specification	itself	had	gaps
and	unclear	sections.	Like	the	readers,	we	are	still	learning	Vulkan,	so	although
this	text	was	edited	for	technical	accuracy,	we	depend	on	readers	to	view	any
updates	by	visiting	this	book’s	website:
http://www.vulkanprogrammingguide.com

Register	your	copy	of	VulkanTM	Programming	Guide	at	informit.com	for
convenient	access	to	downloads,	updates,	and	corrections	as	they	become
available.	To	start	the	registration	process,	go	to	informit.com/register	and	log	in
or	create	an	account.	Enter	the	product	ISBN	(9780134464541)	and	click
Submit.	Once	the	process	is	complete,	you	will	find	any	available	bonus	content
under	“Registered	Products.”

http://www.vulkanprogrammingguide.com
http://informit.com
http://informit.com/register
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Chapter	1.	Overview	of	Vulkan

What	You’ll	Learn	in	This	Chapter
•	What	Vulkan	is	and	the	fundamentals	behind	it
•	How	to	create	a	minimal	Vulkan	application
•	The	terminology	and	concepts	used	in	the	remainder	of	this	book

In	this	chapter,	we	introduce	Vulkan	and	explain	what	it	is.	We	introduce	some
of	the	fundamental	concepts	behind	the	API,	including	initialization,	object
lifetimes,	the	Vulkan	instance,	and	logical	and	physical	devices.	By	the	end	of
the	chapter,	we	produce	a	simple	Vulkan	application	that	can	initialize	the
Vulkan	system,	discover	available	Vulkan	devices	and	show	their	properties	and
capabilities,	and	finally	shut	down	cleanly.

Introduction
Vulkan	is	a	programming	interface	for	graphics	and	compute	devices.	A	Vulkan
device	typically	consists	of	a	processor	and	a	number	of	fixed-function	hardware
blocks	to	accelerate	operations	used	in	graphics	and	compute.	The	processor	in
the	device	is	usually	a	very	wide	multithreaded	processor	and	so	the
computational	model	in	Vulkan	is	heavily	based	on	parallel	computing.	The
Vulkan	device	also	has	access	to	memory	that	may	or	may	not	be	shared	with	the
main	processor	upon	which	your	application	is	running.	Vulkan	also	exposes	this
memory	to	you.
Vulkan	is	an	explicit	API.	That	is,	almost	everything	is	your	responsibility.	A
driver	is	a	piece	of	software	that	takes	the	commands	and	data	forming	the	API
and	translates	them	into	something	that	hardware	can	understand.	In	older	APIs
such	as	OpenGL,	drivers	would	track	the	state	of	a	lot	of	objects,	manage
memory	and	synchronization	for	you,	and	check	for	errors	in	your	application	as
it	ran.	This	is	great	for	developers	but	burns	valuable	CPU	time	once	your
application	is	debugged	and	running	correctly.	Vulkan	addresses	this	by	placing
almost	all	state	tracking,	synchronization,	and	memory	management	into	the
hands	of	the	application	developer	and	by	delegating	correctness	checks	to
layers	that	must	be	enabled.	They	do	not	participate	in	the	execution	of	your
application	under	normal	circumstances.



For	these	reasons,	Vulkan	is	both	very	verbose	and	somewhat	fragile.	You	need
to	do	an	awful	lot	of	work	to	get	Vulkan	running	well,	and	incorrect	usage	of	the
API	can	often	lead	to	graphical	corruption	or	even	program	crashes	where	in
older	APIs	you	would	have	received	a	helpful	error	message.	In	exchange	for
this,	Vulkan	provides	more	control	over	the	device,	a	clean	threading	model,	and
much	higher	performance	than	the	APIs	that	it	supersedes.
Further,	Vulkan	has	been	designed	to	be	more	than	a	graphics	API.	It	can	be
used	for	heterogeneous	devices	such	as	graphics	processing	units	(GPUs),	digital
signal	processors	(DSPs),	and	fixed-function	hardware.	Functionality	is	divided
into	coarse-grained,	broadly	overlapping	categories.	The	current	edition	of
Vulkan	defines	the	transfer	category,	which	is	used	for	copying	data	around;	the
compute	category,	which	is	used	for	running	shaders	over	compute	workloads;
and	the	graphics	category,	which	includes	rasterization,	primitive	assembly,
blending,	depth	and	stencil	tests,	and	other	functionality	that	will	be	familiar	to
graphics	programmers.
To	the	extent	that	support	for	each	category	is	optional,	it’s	possible	to	have	a
Vulkan	device	that	doesn’t	support	graphics	at	all.	As	a	consequence,	even	the
APIs	to	put	pictures	onto	a	display	device	(which	is	called	presentation)	are	not
only	optional,	but	are	provided	as	extensions	to	Vulkan	rather	than	being	part	of
the	core	API.

Instances,	Devices,	and	Queues
Vulkan	includes	a	hierarchy	of	functionality,	starting	at	the	top	level	with	the
instance,	which	aggregates	all	Vulkan-capable	devices	together.	Each	device
then	exposes	one	or	more	queues.	It	is	the	queues	that	perform	the	work	that
your	application	requests.
The	Vulkan	instance	is	a	software	construct	that	logically	separates	the	state	of
your	application	from	other	applications	or	libraries	running	within	the	context
of	your	application.	The	physical	devices	in	the	sytem	are	presented	as	members
of	the	instance,	each	of	which	has	certain	capabilities,	including	a	selection	of
available	queues.
A	physical	device	usually	represents	a	single	piece	of	hardware	or	a	collection	of
hardware	that	is	interconnected.	There	is	a	fixed,	finite	number	of	physical
devices	in	any	system	unless	that	system	supports	reconfiguration	such	as	hot-
plug.	A	logical	device,	which	is	created	by	the	instance,	is	the	software	construct
around	a	physical	device	and	represents	a	reservation	of	resources	associated
with	a	particular	physical	device.	This	includes	a	possible	subset	of	the	available



queues	on	the	physical	device.	It	is	possible	to	create	multiple	logical	devices
representing	a	single	physical	device,	and	it	is	the	logical	device	that	your
application	will	spend	most	of	its	time	interacting	with.
Figure	1.1	illustrates	this	hierarchy.	In	the	figure,	the	application	has	created	two
Vulkan	instances.	There	are	three	physical	devices	in	the	system	that	are
available	to	both	instances.	After	enumeration,	the	application	creates	one
logical	device	on	the	first	physical	device,	two	logical	devices	for	the	second
device,	and	another	for	the	third.	Each	logical	device	enables	a	different	subset
of	its	corresponding	physical	device’s	queues.	In	practice,	most	Vulkan
applications	won’t	be	nearly	this	complex	and	will	simply	create	a	single	logical
device	for	one	of	the	physical	devices	in	the	system,	using	a	single	instance.
Figure	1.1	only	serves	to	demonstrate	the	flexibility	of	the	Vulkan	system.

Figure	1.1:	Vulkan	Hierarchy	of	Instance,	Device,	and	Queue

The	following	subsections	discuss	how	to	create	the	Vulkan	instance,	query	the
physical	devices	in	the	system,	attach	a	logical	device	corresponding	to	one	of
them,	and	finally	retrieve	handles	to	the	queues	exposed	by	the	device.



The	Vulkan	Instance
Vulkan	can	be	seen	as	a	subsystem	of	your	application.	Once	you	link	your
application	to	the	Vulkan	libraries	and	initialize	it,	it	tracks	some	state.	Because
Vulkan	doesn’t	introduce	any	global	state	into	your	application,	all	tracked	state
must	be	stored	in	an	object	that	you	provide.	This	is	the	instance	object	and	is
represented	by	a	VkInstance	object.	To	construct	one,	we’ll	call	our	first
Vulkan	function,	vkCreateInstance(),	the	prototype	of	which	is

Click	here	to	view	code	image

VkResult	vkCreateInstance	(

				const	VkInstanceCreateInfo*											pCreateInfo,

				const	VkAllocationCallbacks*										pAllocator,

				VkInstance*																											pInstance);

This	declaration	is	typical	of	a	Vulkan	function.	Where	more	than	a	handful	of
parameters	are	to	be	passed	to	Vulkan,	functions	often	take	pointers	to	structures.
Here,	pCreateInfo	is	a	pointer	to	an	instance	of	the
VkInstanceCreateInfo	structure	that	contains	the	parameters	describing
the	new	Vulkan	instance.	The	definition	of	VkInstanceCreateInfo	is

Click	here	to	view	code	image

typedef	struct	VkInstanceCreateInfo	{

				VkStructureType													sType;

				const	void*																	pNext;

				VkInstanceCreateFlags							flags;

				const	VkApplicationInfo*				pApplicationInfo;

				uint32_t																				enabledLayerCount;

				const	char*	const*										ppEnabledLayerNames;

				uint32_t																				enabledExtensionCount;

				const	char*	const*										ppEnabledExtensionNames;

}	VkInstanceCreateInfo;

The	first	member	in	almost	every	Vulkan	structure	that	is	used	to	pass
parameters	to	the	API	is	the	sType	field,	which	tells	Vulkan	what	type	of
structure	this	is.	Each	structure	in	the	core	API	and	in	any	extension	has	an
assigned	structure	tag.	By	inspecting	this	tag,	Vulkan	tools,	layers,	and	drivers
can	determine	the	type	of	the	structure	for	validation	purposes	and	for	use	in
extensions.	Further,	the	pNext	field	allows	a	linked	list	of	structures	to	be
passed	to	the	function.	This	allows	the	set	of	parameters	to	be	extended	without
needing	to	replace	the	core	structure	wholesale	in	an	extension.	Because	we	are
using	the	core	instance	creation	structure	here,	we	pass
VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO	in	the	sType	field	and
simply	set	pNext	to	nullptr.



The	flags	field	of	VkInstanceCreateInfo	is	reserved	for	future	use	and
should	be	set	to	zero.	The	next	field,	pApplicationInfo,	is	an	optional
pointer	to	another	structure	describing	your	application.	You	can	set	this	to
nullptr,	but	a	well-behaved	application	should	fill	this	in	with	something
useful.	pApplicationInfo	points	to	an	instance	of	the
VkApplicationInfo	structure,	the	definition	of	which	is

Click	here	to	view	code	image

typedef	struct	VkApplicationInfo	{

				VkStructureType				sType;

				const	void*								pNext;

				const	char*								pApplicationName;

				uint32_t											applicationVersion;

				const	char*								pEngineName;

				uint32_t											engineVersion;

				uint32_t											apiVersion;

}	VkApplicationInfo;

Again,	we	see	the	sType	and	pNext	fields	in	this	structure.	sType	should	be
set	to	VK_STRUCTURE_TYPE_APPLICATION_INFO,	and	we	can	leave
pNext	as	nullptr.	pApplicationName	is	a	pointer	to	a	nul-terminated1
string	containing	the	name	of	your	application,	and	applicationVersion	is
the	version	of	the	application.	This	allows	tools	and	drivers	to	make	decisions
about	how	to	treat	your	application	without	needing	to	guess2	which	application
is	running.	Likewise,	pEngineName	and	engineVersion	contain	the	name
and	version,	respectively,	of	the	engine	or	middleware	that	your	application	is
based	on.

1.	Yes,	really,	nul.	The	ASCII	character	whose	literal	value	is	zero	is	officially	called	NUL.	Now,	stop
telling	me	to	change	it	to	NULL.	That’s	a	pointer,	not	a	name	of	a	character.

2.	What’s	best	for	one	application	might	be	different	from	what’s	best	for	another.	Also,	applications	are
written	by	humans,	and	humans	write	code	with	bugs.	To	optimize	fully	or	work	around	application
bugs,	drivers	would	sometimes	use	executable	names	or	even	application	behavior	to	guess	at	which
application	was	running	and	alter	behavior	appropriately.	While	not	ideal,	this	new	mechanism	at	least
removes	the	guesswork.

Finally,	apiVersion	contains	the	version	of	the	Vulkan	API	that	your
application	is	expecting	to	run	on.	This	should	be	set	to	the	absolute	minimum
version	of	Vulkan	that	your	application	requires	to	run—not	just	to	the	version
of	the	header	that	you	happen	to	have	installed.	This	allows	the	widest	possible
assortment	of	devices	and	platforms	to	run	your	application,	even	if	updates	to
their	Vulkan	implementations	might	not	be	available.
Returning	to	the	VkInstanceCreateInfo	structure,	we	see	the
enabledLayerCount	and	ppEnabledLayerNames	fields.	These	are	the



count	of	the	number	of	instance	layers	that	you	wish	to	enable	and	their	names,
respectively.	Layers	are	used	to	intercept	the	Vulkan	API	and	provide	logging,
profiling,	debugging,	or	other	additional	features.	If	no	layers	are	needed,	simply
set	enabledLayerCount	to	zero	and	leave	ppEnabledLayerNames	as
nullptr.	Likewise,	enabledExtensionCount	is	the	count	of	the	number
of	extensions	you	wish	to	enable,3	and	ppEnabledExtensionNames	is	a
list	of	their	names.	Again,	if	we’re	not	using	any	extensions,	we	can	set	these
fields	to	zero	and	nullptr,	respectively.

3.	As	with	OpenGL,	Vulkan	supports	extensions	as	a	central	part	of	the	API.	However,	in	OpenGL,	we
would	create	a	context,	query	the	supported	extensions,	and	then	start	using	them.	This	meant	that
drivers	would	need	to	assume	that	your	application	might	suddenly	start	using	an	extension	at	any
time	and	be	ready	for	it.	Further,	it	couldn’t	tell	which	extensions	you	were	looking	for,	which	made
the	process	even	more	difficult.	In	Vulkan,	applications	are	required	to	opt	in	to	extensions	and
explicitly	enable	them.	This	allows	drivers	to	disable	extensions	that	aren’t	in	use	and	makes	it	harder
for	applications	to	accidentally	start	using	functionality	that’s	part	of	an	extension	they	weren’t
intending	to	enable.

Finally,	returning	to	the	vkCreateInstance()	function,	the	pAllocator
parameter	is	a	pointer	to	a	host	memory	allocator	that	your	application	can
supply	in	order	to	manage	the	host	memory	that	the	Vulkan	system	uses.	Setting
this	to	nullptr	causes	the	Vulkan	system	to	use	its	own	internal	allocator,
which	is	what	we	will	do	here.	Application-managed	host	memory	will	be
covered	in	Chapter	2,	“Memory	and	Resources.”
Assuming	the	vkCreateInstance()	function	succeeds,	it	will	return
VK_SUCCESS	and	place	a	handle	to	the	new	instance	in	the	variable	pointed	to
by	the	pInstance	parameter.	A	handle	is	the	value	by	which	objects	are
referenced.	Vulkan	handles	are	always	64	bits	wide,	regardless	of	the	bitness	of
the	host	system.	Once	we	have	a	handle	to	our	Vulkan	instance,	we	can	use	it	to
call	other	instance	functions.

Vulkan	Physical	Devices
Once	we	have	an	instance,	we	can	use	it	to	discover	Vulkan-compatible	devices
installed	in	the	system.	Vulkan	has	two	types	of	devices:	physical	and	logical.
Physical	devices	are	normally	parts	of	the	system—a	graphics	card,	accelerator,
DSP,	or	other	component.	There	are	a	fixed	number	of	physical	devices	in	a
system,	and	each	has	a	fixed	set	of	capabilities.	A	logical	device	is	a	software
abstraction	of	a	physical	device,	configured	in	a	way	that	is	specified	by	the
application.	The	logical	device	is	the	one	that	your	application	will	spend	most
of	its	time	dealing	with,	but	before	we	can	create	a	logical	device,	we	must
discover	the	connected	physical	devices.	To	do	this,	we	call	the



vkEnumeratePhysicalDevices()	function,	the	prototype	of	which	is
Click	here	to	view	code	image

VkResult	vkEnumeratePhysicalDevices	(

				VkInstance																												instance,

				uint32_t*																													pPhysicalDeviceCount,

				VkPhysicalDevice*																					pPhysicalDevices);

The	first	parameter	to	the	vkEnumeratePhysicalDevices()	function,
instance,	is	the	instance	we	created	earlier.	Next,	the
pPhysicalDeviceCount	parameter	is	a	pointer	to	an	unsigned	integer
variable	that	is	both	an	input	and	an	output.	As	an	output,	Vulkan	writes	the
number	of	physical	devices	in	the	system	into	it.	As	an	input,	it	should	be
preinitialized	with	the	maximum	number	of	devices	your	application	can	handle.
The	pPhysicalDevices	parameter	is	a	pointer	to	an	array	of	this	number	of
VkPhysicalDevice	handles.
If	you	just	want	to	know	how	many	devices	there	are	in	the	system,	set
pPhysicalDevices	to	nullptr,	and	Vulkan	will	ignore	the	initial	value	of
pPhysicalDeviceCount,	simply	overwriting	it	with	the	number	of
supported	devices.	You	can	dynamically	adjust	the	size	of	your
VkPhysicalDevice	array	by	calling
vkEnumeratePhysicalDevices()	twice,	the	first	time	with	only
pPhysicalDevices	set	to	nullptr	(although
pPhysicalDeviceCount	must	still	be	a	valid	pointer)	and	the	second	time
with	pPhysicalDevices	set	to	an	array	that	has	been	appropriately	sized	for
the	number	of	physical	devices	reported	by	the	first	call.
Assuming	there	are	no	problems,	vkEnumeratePhysicalDevices()
returns	VK_SUCCESS	and	deposits	the	number	of	recognized	physical	devices
in	pPhysicalDeviceCount	along	with	their	handles	in
pPhysicalDevices.	Listing	1.1	shows	an	example	of	constructing	the
VkApplicationInfo	and	VkInstanceCreateInfo	structures,	creating
the	Vulkan	instance,	querying	it	for	the	number	of	supported	devices,	and	finally
querying	the	physical	device	handles	themselves.	This	is	a	slightly	simplified
version	of	vkapp::init	from	the	example	framework.

Listing	1.1:	Creating	a	Vulkan	Instance

Click	here	to	view	code	image

VkResult	vkapp::init()

{



				VkResult	result	=	VK_SUCCESS;

				VkApplicationInfo	appInfo	=	{	};

				VkInstanceCreateInfo	instanceCreateInfo	=	{	};

				//	A	generic	application	info	structure

				appInfo.sType	=	VK_STRUCTURE_TYPE_APPLICATION_INFO;

				appInfo.pApplicationName	=	"Application";

				appInfo.applicationVersion	=	1;

				appInfo.apiVersion	=	VK_MAKE_VERSION(1,	0,	0);

				//	Create	the	instance.

				instanceCreateInfo.sType	=

VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;

				instanceCreateInfo.pApplicationInfo	=	&appInfo;

				result	=	vkCreateInstance(&instanceCreateInfo,	nullptr,

&m_instance);

				if	(result	==	VK_SUCCESS)

				{

								//	First	figure	out	how	many	devices	are	in	the	system.

								uint32_t	physicalDeviceCount	=	0;

								vkEnumeratePhysicalDevices(m_instance,	&physicalDeviceCount,

nullptr);

								if	(result	==	VK_SUCCESS)

								{

												//	Size	the	device	array	appropriately	and	get	the

physical

												//	device	handles.

												m_physicalDevices.resize(physicalDeviceCount);

												vkEnumeratePhysicalDevices(m_instance,

																																							&physicalDeviceCount,

																																							&m_physicalDevices[0]);

								}

				}

				return	result;

}

The	physical	device	handle	is	used	to	query	the	device	for	its	capabilities	and
ultimately	to	create	the	logical	device.	The	first	query	we’ll	perform	is
vkGetPhysicalDeviceProperties(),	which	fills	in	a	structure
describing	all	the	properties	of	the	physical	device.	Its	prototype	is

Click	here	to	view	code	image

void	vkGetPhysicalDeviceProperties	(

				VkPhysicalDevice																					physicalDevice,

				VkPhysicalDeviceProperties*										pProperties);

When	you	call	vkGetPhysicalDeviceProperties(),	pass	one	of	the



handles	returned	from	vkEnumeratePhysicalDevices()	in	the
physicalDevice	parameter,	and	in	pProperties,	pass	a	pointer	to	an
instance	of	the	VkPhysicalDeviceProperties	structure.	This	is	a	large
structure	that	contains	a	large	number	of	fields	describing	the	properties	of	the
physical	device.	Its	definition	is

Click	here	to	view	code	image

typedef	struct	VkPhysicalDeviceProperties	{

				uint32_t																												apiVersion;

				uint32_t																												driverVersion;

				uint32_t																												vendorID;

				uint32_t																												deviceID;

				VkPhysicalDeviceType																deviceType;

				char																																deviceName

																																												[VK_MAX_PHYSICAL_DEVICE_NAME_SIZE];

				uint8_t																													pipelineCacheUUID[VK_UUID_SIZE];

				VkPhysicalDeviceLimits														limits;

				VkPhysicalDeviceSparseProperties				sparseProperties;

	}	VkPhysicalDeviceProperties;

The	apiVersion	field	contains	the	highest	version	of	Vulkan	supported	by	the
device,	and	the	driverVersion	field	contains	the	version	of	the	driver	used
to	control	the	device.	This	is	vendor-specific,	so	it	doesn’t	make	sense	to
compare	driver	versions	across	vendors.	The	vendorID	and	deviceID	fields
identify	the	vendor	and	the	device,	and	are	usually	PCI	vendor	and	device
identifiers.4

4.	There	is	no	official	central	repository	of	PCI	vendor	or	device	identifiers.	The	PCI	SIG
(http://pcisig.com/)	assigns	vendor	identifiers	to	its	members,	and	those	members	assign
device	identifiers	to	their	products.	A	fairly	comprehensive	list	in	both	human-and	machine-readable
forms	is	available	from	http://pcidatabase.com/.

The	deviceName	field	will	contain	a	human-readable	string	naming	the
device.	The	pipelineCacheUUID	field	is	used	for	pipeline	caching,	which
we	will	cover	in	Chapter	6,	“Shaders	and	Pipelines.”
In	addition	to	the	properties	just	listed,	the
VkPhysicalDeviceProperties	structure	embeds
VkPhysicalDeviceLimits	and
VkPhysicalDeviceSparseProperties,	which	contain	the	minimum
and	maximum	limits	for	the	physical	device	and	properties	related	to	sparse
textures.	There’s	a	lot	of	information	in	these	structures,	and	we’ll	cover	the
fields	separately	as	the	related	features	are	discussed	rather	than	enumerating
them	all	here.
In	addition	to	core	features,	some	of	which	have	optionally	higher	limits	or

http://pcisig.com/
http://pcidatabase.com/


bounds,	Vulkan	has	a	number	of	optional	features	that	may	be	supported	by	a
physical	device.	If	a	device	advertises	support	for	a	feature,	it	must	still	be
enabled	(much	like	an	extension),	but	once	enabled,	that	feature	becomes	a	first-
class	citizen	of	the	API	just	like	any	core	feature.	To	determine	which	features	a
physical	device	supports,	call	vkGetPhysicalDeviceFeatures(),	the
prototype	of	which	is

Click	here	to	view	code	image

void	vkGetPhysicalDeviceFeatures	(

				VkPhysicalDevice																						physicalDevice,

				VkPhysicalDeviceFeatures*													pFeatures);

Again,	the	VkPhysicalDeviceFeatures	structure	is	very	large	and	has	a
Boolean	field	for	each	optional	feature	supported	by	Vulkan.	There	are	too	many
fields	to	list	and	describe	individually	here,	but	the	sample	application	presented
at	the	end	of	this	chapter	reads	the	feature	set	and	prints	its	content.

Physical	Device	Memory
In	many	cases,	a	Vulkan	device	is	either	a	separate	physical	piece	of	hardware	to
the	main	host	processor	or	works	sufficiently	differently	that	it	will	access
memory	in	specialized	ways.	Device	memory	in	Vulkan	refers	to	memory	that	is
accessible	to	the	device	and	usable	as	a	backing	store	for	textures	and	other	data.
Memory	is	classified	into	types,	each	of	which	has	a	set	of	properties,	such	as
caching	flags	and	coherency	behavior	between	host	and	device.	Each	type	of
memory	is	then	backed	by	one	of	the	device’s	heaps,	of	which	there	may	be
several.
To	query	the	configuration	of	heaps	and	the	memory	types	supported	by	the
device,	call

Click	here	to	view	code	image

void	vkGetPhysicalDeviceMemoryProperties	(

				VkPhysicalDevice																							physicalDevice,

				VkPhysicalDeviceMemoryProperties*						pMemoryProperties);

The	resulting	memory	organization	is	written	into	the
VkPhysicalDeviceMemoryProperties	structure,	the	address	of	which
is	passed	in	pMemoryProperties.	The
VkPhysicalDeviceMemoryProperties	structure	contains	the	properties
of	both	the	device’s	heaps	and	its	supported	memory	types.	The	definition	of	this
structure	is

Click	here	to	view	code	image



typedef	struct	VkPhysicalDeviceMemoryProperties	{

				uint32_t								memoryTypeCount;

				VkMemoryType				memoryTypes[VK_MAX_MEMORY_TYPES];

				uint32_t								memoryHeapCount;

				VkMemoryHeap				memoryHeaps[VK_MAX_MEMORY_HEAPS];

}	VkPhysicalDeviceMemoryProperties;

The	number	of	memory	types	is	reported	in	the	memoryTypeCount	field.	The
maximum	number	of	memory	types	that	might	be	reported	is	the	value	of
VK_MAX_MEMORY_TYPES,	which	is	defined	to	be	32.	The	memoryTypes
array	contains	memoryTypeCount	VkMemoryType	structures	describing
each	of	the	memory	types.	The	definition	of	VkMemoryType	is

Click	here	to	view	code	image

typedef	struct	VkMemoryType	{

				VkMemoryPropertyFlags				propertyFlags;

				uint32_t																	heapIndex;

}	VkMemoryType;

This	is	a	simple	structure	containing	only	a	set	of	flags	and	the	memory	type’s
heap	index.	The	flags	field	describes	the	type	of	memory	and	is	made	up	of	a
combination	of	the	VkMemoryPropertyFlagBits	flags.	The	meanings	of
the	flags	are	as	follows:

•	VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT	means	that	the	memory
is	local	to	(that	is,	physically	connected	to)	the	device.	If	this	bit	is	not	set,
then	the	memory	can	be	assumed	to	be	local	to	the	host.
•	VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT	means	that	memory
allocations	made	with	this	type	can	be	mapped	and	read	or	written	by	the
host.	If	this	bit	is	not	set	then	memory	of	this	type	cannot	be	directly
accessed	by	the	host	and	is	rather	for	exclusive	use	by	the	device.
•	VK_MEMORY_PROPERTY_HOST_COHERENT_BIT	means	that	when	this
type	of	memory	is	concurrently	accessed	by	both	the	host	and	device,	those
accesses	will	be	coherent	between	the	two	clients.	If	this	bit	is	not	set,	then
the	device	or	host	may	not	see	the	results	of	writes	performed	by	each	until
caches	are	explicitly	flushed.
•	VK_MEMORY_PROPERTY_HOST_CACHED_BIT	means	that	data	in	this
type	of	memory	is	cached	by	the	host.	Read	accesses	to	this	type	of	memory
are	typically	faster	than	they	would	be	if	this	bit	were	not	set.	However,
access	by	the	device	may	have	slightly	higher	latency,	especially	if	the
memory	is	also	coherent.
•	VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT	means	that



memory	allocated	with	this	type	doesn’t	necessarily	consume	space	from	the
associated	heap	immediately	and	that	a	driver	might	defer	physical	memory
allocation	until	the	memory	object	is	used	to	back	a	resource.

Each	memory	type	reports	the	heap	from	which	it	consumes	space	in	the
heapIndex	field	of	the	VkMemoryType	structure.	This	is	an	index	into	the
memoryHeaps	array	returned	in	the
VkPhysicalDeviceMemoryProperties	structure	from	the	call	to
vkGetPhysicalDeviceMemoryProperties().	Each	element	of	the
memoryHeaps	array	describes	one	of	the	device’s	memory	heaps.	The
definition	of	this	structure	is

Click	here	to	view	code	image

typedef	struct	VkMemoryHeap	{

				VkDeviceSize									size;

				VkMemoryHeapFlags				flags;

}	VkMemoryHeap;

Again,	this	is	a	simple	structure.	It	contains	only	the	size,	in	bytes,	of	the	heap
and	some	flags	describing	the	heap.	In	Vulkan	1.0,	the	only	defined	flag	is
VK_MEMORY_HEAP_DEVICE_LOCAL_BIT.	If	this	bit	is	set,	then	the	heap	is
local	to	the	device.	This	corresponds	to	the	similarly	named	flag	describing
memory	types.

Device	Queues
Vulkan	devices	execute	work	that	is	submitted	to	queues.	Each	device	will	have
one	or	more	queues,	and	each	of	those	queues	will	belong	to	one	of	the	device’s
queue	families.	A	queue	family	is	a	group	of	queues	that	have	identical
capabilities	but	are	able	to	run	in	parallel.	The	number	of	queue	families,	the
capabilities	of	each	family,	and	the	number	of	queues	belonging	to	each	family
are	all	properties	of	the	physical	device.	To	query	the	device	for	its	queue
families,	call	vkGetPhysicalDeviceQueueFamilyProperties(),	the
prototype	of	which	is

Click	here	to	view	code	image

void	vkGetPhysicalDeviceQueueFamilyProperties	(

				VkPhysicalDevice																							physicalDevice,

				uint32_t*																														pQueueFamilyPropertyCount,

				VkQueueFamilyProperties*															pQueueFamilyProperties);

vkGetPhysicalDeviceQueueFamilyProperties()	works	somewhat
like	vkEnumeratePhysicalDevices()	in	that	it	is	expected	that	you	call



it	twice.	The	first	time,	you	pass	nullptr	as	pQueueFamilyProperties,
and	in	pQueueFamilyPropertyCount,	you	pass	a	pointer	to	a	variable	that
will	be	overwritten	with	the	number	of	queue	families	supported	by	the	device.
You	can	use	this	number	to	appropriately	size	an	array	of
VkQueueFamilyProperties.	Then,	on	the	second	call,	pass	this	array	in
pQueueFamilyProperties,	and	Vulkan	will	fill	it	with	the	properties	of
the	queues.	The	definition	of	VkQueueFamilyProperties	is

Click	here	to	view	code	image

typedef	struct	VkQueueFamilyProperties	{

				VkQueueFlags				queueFlags;

				uint32_t								queueCount;

				uint32_t								timestampValidBits;

				VkExtent3D						minImageTransferGranularity;

}	VkQueueFamilyProperties;

The	first	field	in	this	structure,	queueFlags,	describes	the	overall	capabilities
of	the	queue.	This	field	is	made	up	of	a	combination	of	the
VkQueueFlagBits	bits,	the	meanings	of	which	are	as	follows:

•	If	VK_QUEUE_GRAPHICS_BIT	is	set,	then	queues	in	this	family	support
graphics	operations	such	as	drawing	points,	lines,	and	triangles.
•	If	VK_QUEUE_COMPUTE_BIT	is	set,	then	queues	in	this	family	support
compute	operations	such	as	dispatching	compute	shaders.
•	If	VK_QUEUE_TRANSFER_BIT	is	set,	then	queues	in	this	family	support
transfer	operations	such	as	copying	buffer	and	image	contents.
•	If	VK_QUEUE_SPARSE_BINDING_BIT	is	set,	then	queues	in	this	family
support	memory	binding	operations	used	to	update	sparse	resources.

The	queueCount	field	indicates	the	number	of	queues	in	the	family.	This
might	be	set	to	1,	or	it	could	be	substantially	higher	if	the	device	supports
multiple	queues	with	the	same	basic	functionality.
The	timestampValidBits	field	indicates	how	many	bits	are	valid	when
timestamps	are	taken	from	the	queue.	If	this	value	is	zero,	then	the	queue	doesn’t
support	timestamps.	If	it’s	nonzero,	then	it’s	guaranteed	to	be	at	least	36	bits.
Furthermore,	if	the	timestampComputeAndGraphics	field	of	the	device’s
VkPhysicalDeviceLimits	structure	is	VK_TRUE,	then	all	queues
supporting	either	VK_QUEUE_GRAPHICS_BIT	or
VK_QUEUE_COMPUTE_BIT	are	guaranteed	to	support	timestamps	with	at	least
36	bits	of	resolution.	In	this	case,	there’s	no	need	to	check	each	queue
individually.



Finally,	the	minImageTimestampGranularity	field	specifies	the	units
with	which	the	queue	supports	image	transfers	(if	at	all).
Note	that	it	might	be	the	case	that	a	device	reports	more	than	one	queue	family
with	apparently	identical	properties.	Queues	within	a	family	are	essentially
identical.	Queues	in	different	families	may	have	different	internal	capabilities
that	can’t	be	expressed	easily	in	the	Vulkan	API.	For	this	reason,	an
implementation	might	choose	to	report	similar	queues	as	members	of	different
families.	This	places	additional	restrictions	on	how	resources	are	shared	between
those	queues,	which	might	allow	the	implementation	to	accommodate	those
differences.
Listing	1.2	illustrates	how	to	query	the	physical	device’s	memory	properties	and
queue	family	properties.	You	will	need	to	retrieve	the	queue	family	properties
before	creating	the	logical	device,	as	discussed	in	the	next	section.

Listing	1.2:	Querying	Physical	Device	Properties

Click	here	to	view	code	image

uint32_t	queueFamilyPropertyCount;

std::vector<VkQueueFamilyProperties>	queueFamilyProperties;

VkPhysicalDeviceMemoryProperties	physicalDeviceMemoryProperties;

//	Get	the	memory	properties	of	the	physical	device.

vkGetPhysicalDeviceMemoryProperties(m_physicalDevices[deviceIndex],

																																				&physicalDeviceMemoryProperties);

//	First	determine	the	number	of	queue	families	supported	by	the

physical

//	device.

vkGetPhysicalDeviceQueueFamilyProperties(m_physicalDevices[0],

																																									&queueFamilyPropertyCount,

																																									nullptr);

//	Allocate	enough	space	for	the	queue	property	structures.

queueFamilyProperties.resize(queueFamilyPropertyCount);

//	Now	query	the	actual	properties	of	the	queue	families.

vkGetPhysicalDeviceQueueFamilyProperties(m_physicalDevices[0],

																																									&queueFamilyPropertyCount,

																																									queueFamilyProperties.data());

Creating	a	Logical	Device
After	enumerating	all	of	the	physical	devices	in	the	system,	your	application
should	choose	a	device	and	create	a	logical	device	corresponding	to	it.	The
logical	device	represents	the	device	in	an	initialized	state.	During	creation	of	the



logical	device,	you	get	to	opt	in	to	optional	features,	turn	on	extensions	you
need,	and	so	on.	Creating	the	logical	device	is	performed	by	calling
vkCreateDevice(),	the	prototype	of	which	is

Click	here	to	view	code	image

VkResult	vkCreateDevice	(

				VkPhysicalDevice																					physicalDevice,

				const	VkDeviceCreateInfo*												pCreateInfo,

				const	VkAllocationCallbacks*									pAllocator,

				VkDevice*																												pDevice);

The	physical	device	to	which	the	new	logical	device	corresponds	is	passed	in
physicalDevice.	The	information	about	the	new	logical	device	is	passed	in
an	instance	of	the	VkDeviceCreateInfo	structure	through	the
pCreateInfo	structure.	The	definition	of	VkDeviceCreateInfo	is

Click	here	to	view	code	image

typedef	struct	VkDeviceCreateInfo	{

				VkStructureType																				sType;

				const	void*																								pNext;

				VkDeviceCreateFlags																flags;

				uint32_t																											queueCreateInfoCount;

				const	VkDeviceQueueCreateInfo*					pQueueCreateInfos;

				uint32_t																											enabledLayerCount;

				const	char*	const*																	ppEnabledLayerNames;

				uint32_t																											enabledExtensionCount;

				const	char*	const*																	ppEnabledExtensionNames;

				const	VkPhysicalDeviceFeatures*				pEnabledFeatures;

}	VkDeviceCreateInfo;

The	sType	field	of	the	VkDeviceCreateInfo	structure	should	be	set	to
VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO.	As	usual,	unless	you’re
using	extensions,	pNext	should	be	set	to	nullptr.	In	the	current	version	of
Vulkan,	no	bits	are	defined	for	the	flags	field	of	the	structure,	so	set	this	to
zero	too.
Next	comes	the	queue	creation	information.	pQueueCreateInfos	is	a
pointer	to	an	array	of	one	or	more	VkDeviceQueueCreateInfo	structures,
each	of	which	allows	the	specification	of	one	or	more	queues.	The	number	of
structures	in	the	array	is	given	in	queueCreateInfoCount.	The	definition
of	VkDeviceQueueCreateInfo	is

Click	here	to	view	code	image

typedef	struct	VkDeviceQueueCreateInfo	{

				VkStructureType													sType;

				const	void*																	pNext;



				VkDeviceQueueCreateFlags				flags;

				uint32_t																				queueFamilyIndex;

				uint32_t																				queueCount;

				const	float*																pQueuePriorities;

}	VkDeviceQueueCreateInfo;

The	sType	field	for	VkDeviceQueueCreateInfo	is
VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO.	There	are
currently	no	flags	defined	for	use	in	the	flags	field,	so	it	should	be	set	to	zero.
The	queueFamilyIndex	field	specifies	the	family	of	the	queues	you	want	to
create.	This	is	an	index	into	the	array	of	queue	families	returned	from
vkGetPhysicalDeviceQueueFamilyProperties().	To	create	queues
in	this	family,	set	queueCount	to	the	number	of	queues	you	want	to	use.	Of
course,	the	device	must	support	at	least	this	many	queues	in	the	family	you
choose.
The	pQueuePriorities	field	is	an	optional	pointer	to	an	array	of	floating
point	values	representing	the	relative	priority	of	work	submitted	to	each	of	the
queues.	These	numbers	are	normalized	numbers	in	the	range	of	0.0	to	1.0.
Queues	with	higher	priority	may	be	allocated	more	processing	resources	or
scheduled	more	aggressively	than	queues	with	lower	priority.	Setting
pQueuePriorities	to	nullptr	has	the	effect	of	leaving	the	queues	at	the
same,	default	priority.
The	requested	queues	are	sorted	in	order	of	priority	and	then	assigned	device-
dependent	relative	priorities.	The	number	of	discrete	priorities	that	a	queue	may
take	on	is	a	device-specific	parameter.	You	can	determine	this	by	checking	the
discreteQueuePriorities	field	of	the	VkPhysicalDeviceLimits
structure	returned	from	a	call	to	vkGetPhysicalDeviceProperties().
For	example,	if	a	device	supports	only	low-and	high-priority	workloads,	this
field	will	be	2.	All	devices	support	at	least	two	discrete	priority	levels.	However,
if	a	device	supports	arbitrary	priorities,	then	this	field	could	be	much	higher.
Regardless	of	the	value	of	discreteQueuePriorities,	the	relative
priorities	of	the	queue	are	still	expressed	as	floating-point	values.
Returning	to	the	VkDeviceCreateInfo	structure,	the
enabledLayerCount,	ppEnabledLayerNames,
enabledExtensionCount,	and	ppEnabledExtensionNames	fields
are	for	enabling	layers	and	extensions.	We	will	cover	both	of	these	topics	later	in
this	chapter.	For	now,	we’ll	set	both	enabledLayerCount	and
enabledExtensionCount	to	zero	and	both	ppEnabledLayerNames
and	ppEnabedExtensionNames	to	nullptr.



The	final	field	of	VkDeviceCreateInfo,	pEnabledFeatures,	is	a
pointer	to	an	instance	of	the	VkPhysicalDeviceFeatures	structure	that
specifies	which	of	the	optional	features	that	your	application	wishes	to	use.	If
you	don’t	want	to	use	any	optional	features,	you	can	simply	set	this	to
nullptr.	However,	Vulkan	in	this	form	is	relatively	limited,	and	much	of	its
interesting	functionality	will	be	disabled.
To	determine	which	of	the	optional	features	the	device	supports,	call
vkGetPhysicalDeviceFeatures()	as	discussed	earlier.
vkGetPhysicalDeviceFeatures()	writes	the	set	of	features	supported
by	the	device	into	an	instance	of	the	VkPhysicalDeviceFeatures
structure	that	you	pass	in.	By	simply	querying	the	phyiscal	device’s	features	and
then	passing	the	very	same	VkPhysicalDeviceFeatures	structure	back	to
vkCreateDevice(),	you	enable	every	optional	feature	that	the	device
supports	and	do	not	request	features	that	the	device	does	not	support.
Simply	enabling	every	supported	feature,	however,	may	come	with	some
performance	impact.	For	some	features,	a	Vulkan	implementation	may	need	to
allocate	extra	memory,	track	additional	state,	configure	hardware	slightly
differently,	or	perform	some	other	operation	that	otherwise	costs	your
application.	It’s	not	a	good	idea	to	enable	features	that	won’t	be	used.	In	an
optimized	application,	you	should	query	the	supported	features	from	the	device;
then,	from	the	supported	features,	enable	the	specific	features	that	your
application	requires.
Listing	1.3	shows	a	simple	example	of	querying	the	device	for	its	supported
features,	setting	up	a	list	of	features	that	the	application	requires.	Support	for
tessellation	and	geometry	shaders	is	absolutely	required,	and	support	for
multidraw	indirect	is	enabled	if	it	is	supported	by	the	device.	The	code	then
creates	a	device	using	a	single	instance	of	its	first	queue.

Listing	1.3:	Creating	a	Logical	Device

Click	here	to	view	code	image

VkResult	result;

VkPhysicalDeviceFeatures	supportedFeatures;

VkPhysicalDeviceFeatures	requiredFeatures	=	{};

vkGetPhysicalDeviceFeatures(m_physicalDevices[0],

																												&supportedFeatures);

requiredFeatures.multiDrawIndirect						=

supportedFeatures.multiDrawIndirect;



requiredFeatures.tessellationShader					=	VK_TRUE;

requiredFeatures.geometryShader									=	VK_TRUE;

const	VkDeviceQueueCreateInfo	deviceQueueCreateInfo	=

{

				VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO,					//	sType

				nullptr,																																								//	pNext

				0,																																														//	flags

				0,																																														//

queueFamilyIndex

				1,																																														//	queueCount

				nullptr																																									//

pQueuePriorities

};

const	VkDeviceCreateInfo	deviceCreateInfo	=

{

				VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO,											//	sType

				nullptr,																																								//	pNext

				0,																																														//	flags

				1,																																														//

queueCreateInfoCount

				&deviceQueueCreateInfo,																									//

pQueueCreateInfos

				0,																																														//

enabledLayerCount

				nullptr,																																								//

ppEnabledLayerNames

				0,																																														//

enabledExtensionCount

				nullptr,																																								//

ppEnabledExtensionNames

				&requiredFeatures																															//

pEnabledFeatures

};

result	=	vkCreateDevice(m_physicalDevices[0],

																								&deviceCreateInfo,

																								nullptr,

																								&m_logicalDevice);

After	the	code	in	Listing	1.3	has	run	and	successfully	created	the	logical	device,
the	set	of	enabled	features	is	stored	in	the	requiredFeatures	variable.	This
may	be	kept	for	later	so	that	code	that	can	optionally	use	a	feature	can	check
whether	it	was	successfully	enabled	and	fall	back	gracefully.

Object	Types	and	Function	Conventions
Virtually	everything	in	Vulkan	is	represented	as	an	object	that	is	referred	to	by	a



handle.	Handles	are	divided	into	two	broad	categories:	dispatchable	objects	and
nondispatchable	objects.	For	the	most	part,	this	is	not	relevant	to	applications
and	affects	only	how	the	API	is	structured	and	how	system-level	components
such	as	the	Vulkan	loader	and	layers	interoperate	with	those	objects.
Dispatchable	objects	are	objects	that	internally	contain	a	dispatch	table.	This	is
the	table	of	functions	used	by	various	components	to	determine	which	parts	of
code	to	execute	when	your	application	makes	calls	to	Vulkan.	These	types	of
objects	are	generally	heavier-weight	constructs	and	currently	consist	of	the
instance	(VkInstance),	physical	device	(VkPhysicalDevice),	logical
device	(VkDevice),	command	buffer	(VkCommandBuffer),	and	queue
(VkQueue).	All	other	objects	are	considered	nondispatchable.
The	first	argument	to	any	Vulkan	function	is	always	a	dispatchable	object.	The
only	exceptions	to	this	rule	are	the	functions	related	to	creating	and	initializing
the	instance.

Managing	Memory
Vulkan	provides	two	types	of	memory:	host	memory	and	device	memory.
Objects	created	by	the	Vulkan	API	generally	require	some	amount	of	host
memory.	This	is	where	the	Vulkan	implementation	will	store	the	state	of	the
object	and	any	data	it	needs	to	implement	the	Vulkan	API.	Resource	objects	such
as	buffers	and	images	require	some	amount	of	device	memory.	This	is	the
memory	where	the	data	stored	in	the	resource	is	kept.
It	is	possible	for	your	application	to	manage	host	memory	for	the	Vulkan
implementation,	and	it	is	required	that	your	application	manage	device	memory.
To	do	this,	you	will	need	to	create	a	device	memory	management	subsystem.
Each	resource	that	you	create	can	be	queried	for	the	amount	and	type	of	memory
it	requires	for	it	to	be	backed.	It	will	be	up	to	your	application	to	allocate	the
correct	amount	of	memory	and	attach	it	to	the	resource	object	before	it	can	be
used.
In	higher-level	APIs	such	as	OpenGL,	this	“magic”	is	performed	by	drivers	on
behalf	of	your	application.	However,	some	applications	require	a	very	large
number	of	small	resources,	and	other	applications	require	a	smaller	number	of
very	large	resources.	Some	applications	create	and	destroy	resources	over	the
course	of	their	execution,	whereas	other	applications	create	all	of	their	resources
at	startup	and	do	not	free	them	until	they	are	terminated.
The	allocation	strategies	used	in	these	cases	might	be	quite	different.	There	is	no
one-size-fits-all	strategy.	An	OpenGL	driver	has	no	idea	how	your	application



will	behave	and	so	must	adapt	allocation	strategies	to	attempt	to	fit	your	usage
patterns.	On	the	other	hand,	you,	the	application	developer,	know	exactly	how
your	application	will	behave.	You	can	partition	resources	into	long-lived	and
transient	groups.	You	can	bucket	resources	that	will	be	used	together	into	a	small
number	of	pooled	allocations.	You	are	in	the	best	position	to	decide	the
allocation	strategies	used	by	your	application.
It	is	important	to	note	that	each	“live”	memory	allocation	places	some	cost	on
the	system.	Therefore,	it	is	important	to	keep	the	number	of	allocation	objects	to
a	minimum.	It	is	recommended	that	device	memory	allocators	allocate	memory
in	large	chunks.	Many	small	resources	can	be	placed	inside	a	much	smaller
number	of	device	memory	blocks.	An	example	of	a	device	memory	allocator	is
discussed	in	Chapter	2,	“Memory	and	Resources,”	which	discusses	memory
allocation	in	much	more	detail.

Multithreading	in	Vulkan
Support	for	multithreaded	applications	is	an	integral	part	of	the	design	of
Vulkan.	Vulkan	generally	assumes	that	the	application	will	ensure	that	no	two
threads	are	mutating	the	same	object	at	the	same	time.	This	is	known	as	external
synchronization.	The	vast	majority	of	Vulkan	commands	in	the	performance-
critical	portions	of	Vulkan	(such	as	building	command	buffers)	provide	no
synchronization	at	all.
In	order	to	concretely	define	the	threading	requirements	of	various	Vulkan
commands,	each	parameter	that	must	be	protected	from	concurrent	access	by	the
host	is	marked	as	externally	synchronized.	In	some	cases,	handles	to	objects	or
other	data	are	embdedd	in	data	structures,	included	in	arrays,	or	otherwise	passed
to	commands	through	some	indirect	means.	Those	paramters	must	also	be
externally	synchronized.
The	intention	of	this	is	that	a	Vulkan	implementation	never	needs	to	take	a
mutex	or	use	other	synchronization	primitives	internally	to	protect	data
structures.	This	means	that	multithreaded	programs	rarely	stall	or	block	across
threads.
In	addition	to	requiring	the	host	to	synchronize	access	to	shared	objects	when
they	are	used	across	threads,	Vulkan	includes	a	number	of	higher-level	features
that	are	designed	specifically	to	allow	threads	to	perform	work	without	blocking
one	another.	These	include	the	following:

•	Host	memory	allocations	can	be	handled	through	a	host	memory	allocation
structure	passed	to	object	creation	functions.	By	using	an	allocator	per



thread,	the	data	structures	in	that	allocator	don’t	need	to	be	protected.	Host
memory	allocators	are	covered	in	Chapter	2,	“Memory	and	Resources.”
•	Command	buffers	are	allocated	from	pools,	and	access	to	the	pool	is
externally	synchronized.	If	an	application	uses	a	separate	command	pool	per
thread,	command	buffers	can	be	allocated	from	those	pools	without	blocking
against	one	another.	Command	buffers	and	pools	are	covered	in	Chapter	3,
“Queues	and	Commands.”
•	Descriptors	are	allocated	in	sets	from	descriptor	pools.	Descriptors	are	the
representation	of	resources	as	used	by	shaders	running	on	the	device.	They
are	covered	in	detail	in	Chapter	6,	“Shaders	and	Pipelines.”	If	a	separate
pool	is	used	for	each	thread,	then	descriptor	sets	can	be	allocated	from	those
pools	without	the	threads	blocking	one	another.
•	Second-level	command	buffers	allow	the	contents	of	a	large	renderpass
(which	must	be	contained	in	a	single	command	buffer)	to	be	generated	in
parallel	and	then	grouped	as	they’re	called	from	the	primary	command
buffer.	Secondary	command	buffers	are	covered	in	detail	in	Chapter	13,
“Multipass	Rendering.”

When	you	are	building	a	very	simple,	single-threaded	application,	the
requirement	to	create	pools	from	which	to	allocate	objects	may	seem	like	a	lot	of
unnecessary	indirection.	However,	as	applications	scale	in	number	of	threads,
these	objects	are	indispensible	to	achieving	high	performance.
Throughout	the	remainder	of	this	book,	any	special	requirements	with	respect	to
threading	will	be	noted	as	the	commands	are	introduced.

Mathematical	Concepts
Computer	graphics	and	most	heterogeneous	compute	applications	are	fairly
heavily	math-based.	Most	Vulkan	devices	are	based	on	extremely	powerful
computational	processors.	At	the	time	of	writing,	even	modest	mobile	processors
are	capable	of	providing	many	gigaflops	of	processing	power,	while	higher-end
desktop	and	workstation	processors	deliver	many	teraflops	of	number-crunching
ability.	As	a	consequence,	really	interesting	applications	will	build	on	math-
heavy	shaders.	Further,	several	fixed-function	sections	of	Vulkan’s	processing
pipeline	are	built	upon	mathematical	concepts	that	are	hard-wired	into	the	device
and	specification.

Vectors	and	Matrices
One	of	the	fundamental	building	blocks	of	any	graphics	application	is	the	vector.



Whether	they’re	the	representations	of	a	position,	a	direction,	a	color,	or	some
other	quantity,	vectors	are	used	throughout	the	graphics	literature.	One	common
form	of	vector	is	the	homogeneous	vector,	which	is	a	vector	in	a	space	one
dimension	higher	than	the	quantity	it’s	representing.	These	vectors	are	used	to
store	projective	coordinates.	Multiplying	a	homogeneous	vector	by	any	scalar
produces	a	new	vector	representing	the	same	projective	coordinate.	To	project	a
point	vector,	divide	through	by	its	last	component,	producing	a	vector	of	the
form	x,	y,	z,	1.0	(for	a	four-component	vector).
To	transform	a	vector	from	one	coordinate	space	to	another,	multiply	the	vector
by	a	matrix.	Just	as	a	point	in	3D	space	is	represented	as	a	four-component
homogeneous	vector,	a	transformation	matrix	operating	on	a	3D	homogeneous
vector	is	a	4	×	4	matrix.
A	point	in	3D	space	is	typically	represented	as	a	homogeneous	vector	of	four
components	conventionally	called	x,	y,	z,	and	w.	For	a	point,	the	w	component
generally	begins	as	1.0	and	changes	as	the	vector	is	transformed	through
projective	matrices.	After	division	through	by	the	w	component,	the	point	is
projected	through	whichever	transforms	it’s	been	subjected	to.	If	none	of	the
transforms	is	a	projective	transform,	then	w	remains	1.0,	and	division	by	1.0	has
no	effect	on	the	vector.	If	the	vector	was	subjected	to	a	projective	transform,	then
w	will	not	be	equal	to	1.0,	but	dividing	through	by	it	will	project	the	point	and
return	w	to	1.0.
Meanwhile,	a	direction	in	3D	space	is	also	represented	as	a	homogeneous	vector
whose	w	component	is	0.0.	Multiplying	a	direction	vector	by	a	properly
constructed	4	×	4	projective	matrix	will	leave	the	w	component	at	0.0,	and	it	will
have	no	effect	on	any	of	the	other	components.	By	simply	discarding	the
additional	component,	you	can	put	a	3D	direction	vector	through	the	same
transformations	as	a	4D	homogeneous	3D	point	vector	and	make	it	undergo
rotations,	scales,	and	other	transforms	consistently.

Coordinate	Systems
Vulkan	deals	with	graphics	primitives	such	as	lines	and	triangles	by	representing
their	endpoints	or	corners	as	points	in	3D	space.	These	primitives	are	known	as
vertices.	The	inputs	to	the	Vulkan	system	are	vertex	coordinates	in	a	3D
coordinate	space	(represented	as	homogenous	vectors	with	w	components	of	1.0)
relative	to	the	origin	of	the	object	of	which	they	are	part.	This	coordinate	space
is	known	as	object	space	or	sometimes	model	space.
Typically,	the	first	shaders	in	the	pipeline	will	transform	this	vertex	into	view



space,	which	is	a	position	relative	to	the	viewer.	This	transformation	is
performed	by	multiplying	the	vertex’s	position	vector	by	a	transformation
matrix.	This	is	often	called	the	object-to-view	matrix	or	the	model-view	matrix.
Sometimes,	absolute	coordinates	of	a	vertex	are	required,	such	as	when	finding
the	coordinate	of	a	vertex	relative	to	some	other	object.	This	global	space	is
known	as	world	space	and	is	the	position	of	vertices	relative	to	a	global	origin.
From	view	space,	the	positions	of	vertices	are	transformed	into	clip	space.	This
is	the	final	space	used	by	the	geometry-processing	part	of	Vulkan	and	is	the
space	into	which	vertices	are	typically	transformed	when	pushing	them	into	the
projective	space	used	by	typical	3D	applications.	Clip	space	is	so	called	because
it	is	the	coordinate	space	in	which	most	implementations	perform	clipping,
which	removes	sections	of	primitives	that	lie	outside	the	visible	region	being
rendered.
From	clip	space,	vertex	positions	are	normalized	by	dividing	through	by	their	w
components.	This	yields	a	coordinate	space	called	normalized	device
coordinates,	or	NDC,	and	the	process	is	often	called	the	perspective	divide.	In
this	space,	the	visible	part	of	the	coordinate	system	is	from	−1.0	to	1.0	in	the	x
and	y	directions	and	from	0.0	to	1.0	in	the	z	direction.	Anything	outside	this
region	will	be	clipped	away	prior	to	perspective	division.
Finally,	a	vertex’s	normalized	device	coordinate	is	transformed	by	the	viewport,
which	describes	how	NDC	maps	into	a	window	or	image	into	which	the	picture
is	being	rendered.

Enhancing	Vulkan
Although	the	core	API	specification	of	Vulkan	is	quite	extensive,	it’s	by	no
means	all-encompassing.	Some	functionality	is	optional,	while	yet	more	is
available	in	the	form	of	layers	(which	modify	or	enhance	existing	behavior)	and
extensions	(which	add	new	functionality	to	Vulkan).	Both	enhancement
mechanisms	are	described	in	the	following	sections.

Layers
Layers	are	features	of	Vulkan	that	allow	its	behavior	to	be	modified.	Layers
generally	intercept	all	or	part	of	Vulkan	and	add	functionality	such	as	logging,
tracing,	providing	diagnostics,	profiling,	and	so	on.	A	layer	can	be	added	at	the
instance	level,	in	which	case	it	affects	the	whole	Vulkan	instance	and	possibly
every	device	created	by	it.	Alternatively,	the	layer	can	be	added	at	the	device
level,	in	which	case	it	affects	only	the	device	for	which	it	is	enabled.



To	discover	the	layers	available	to	an	instance	on	a	system,	call
vkEnumerateInstanceLayerProperties(),	the	prototype	of	which	is

Click	here	to	view	code	image

VkResult	vkEnumerateInstanceLayerProperties	(

				uint32_t*																														pPropertyCount,

				VkLayerProperties*																					pProperties);

If	pProperties	is	nullptr,	then	pPropertyCount	should	point	to	a
variable	that	will	be	overwritten	with	the	count	of	the	number	of	layers	available
to	Vulkan.	If	pProperties	is	not	nullptr,	then	it	should	point	to	an	array
of	VkLayerProperties	structures	that	will	be	filled	with	information	about
the	layers	registered	with	the	system.	In	this	case,	the	initial	value	of	the	variable
pointed	to	by	pPropertyCount	is	the	length	of	the	array	pointed	to	by
pProperties,	and	this	variable	will	be	overwritten	with	the	number	of	entries
in	the	array	overwritten	by	the	command.
Each	element	of	the	pProperties	array	is	an	instance	of	the
VkLayerProperties	structure,	the	definition	of	which	is

Click	here	to	view	code	image

typedef	struct	VkLayerProperties	{

				char								layerName[VK_MAX_EXTENSION_NAME_SIZE];

				uint32_t				specVersion;

				uint32_t				implementationVersion;

				char								description[VK_MAX_DESCRIPTION_SIZE];

}	VkLayerProperties;

Each	layer	has	a	formal	name	that	is	stored	in	the	layerName	member	of	the
VkLayerProperties	structure.	As	the	specification	for	each	layer	might	be
improved,	clarified,	or	appended	to	over	time,	the	version	of	the	layer
implementation	is	reported	in	specVersion.
As	specifications	are	improved	over	time,	so	too	are	implementations	of	those
specifications.	The	implementation	version	is	stored	in	the
implementationVersion	field	of	the	VkLayerProperties	structure.
This	allows	implementations	to	improve	performance,	fix	bugs,	implement	a
wider	set	of	optional	features,	and	so	on.	An	application	writer	may	recognize	a
particular	implementation	of	a	layer	and	choose	to	use	it	only	if	the	version	of
that	implementation	is	past	a	certain	version	where,	for	example,	a	critical	bug
was	known	to	be	fixed.
Finally,	a	human-readable	string	describing	the	layer	is	stored	in
description.	The	only	purpose	of	this	field	is	for	logging	or	display	in	a	user



interface,	and	it	is	for	informational	purposes	only.
Listing	1.4	illustrates	how	to	query	the	instance	layers	supported	by	the	Vulkan
system.

Listing	1.4:	Querying	Instance	Layers

Click	here	to	view	code	image

uint32_t	numInstanceLayers	=	0;

std::vector<VkLayerProperties>	instanceLayerProperties;

//	Query	the	instance	layers.

vkEnumerateInstanceLayerProperties(&numInstanceExtensions,

																																			nullptr);

//	If	there	are	any	layers,	query	their	properties.

if	(numInstanceLayers	!=	0)

{

				instanceLayerProperties.resize(numInstanceLayers);

				vkEnumerateInstanceLayerProperties(nullptr,

																																							&numInstanceLayers,

																																							instanceLayerProperties.data());

}

As	mentioned,	it	is	not	only	at	the	instance	level	that	layers	can	be	injected.
Layers	can	also	be	applied	at	the	device	level.	To	determine	which	layers	are
available	to	devices,	call	vkEnumerateDeviceLayerProperties(),	the
prototype	of	which	is

Click	here	to	view	code	image

VkResult	vkEnumerateDeviceLayerProperties	(

				VkPhysicalDevice																							physicalDevice,

				uint32_t*																														pPropertyCount,

				VkLayerProperties*																					pProperties);

The	layers	available	to	each	physical	device	in	a	system	may	be	different,	so
each	physical	device	can	report	a	different	set	of	layers.	The	physical	device
whose	layers	to	query	is	passed	in	physicalDevice.	The
pPropertyCount	and	pProperties	parameters	to
vkEnumerateDeviceLayerProperties()	behave	similarly	to	the
identically	named	parameters	to
vkEnumerateInstanceLayerProperties().	Device	layers	are	also
described	by	instances	of	the	VkLayerProperties	structure.
To	enable	a	layer	at	the	instance	level,	include	its	name	in	the
ppEnabledLayerNames	field	of	the	VkInstanceCreateInfo	structure



used	to	create	the	instance.	Likewise,	to	enable	a	layer	when	creating	a	logical
device	corresponding	to	a	physical	device	in	the	system,	include	the	layer	name
in	the	ppEnabledLayerNames	member	of	the	VkDeviceCreateInfo
used	to	create	the	device.
Several	layers	are	included	in	the	offical	SDK,	most	of	which	are	related	to
debugging,	parameter	validation,	and	logging.	These	include	the	following:

•	VK_LAYER_LUNARG_api_dump	prints	Vulkan	calls	and	their	parameters
and	values	to	the	console.
•	VK_LAYER_LUNARG_core_validation	performs	validation	on
parameters	and	state	used	in	descriptor	sets,	pipeline	state,	and	dynamic
state;	validates	the	interfaces	between	SPIR-V	modules	and	the	graphics
pipeline;	and	tracks	and	validates	usage	of	GPU	memory	used	to	back
objects.
•	VK_LAYER_LUNARG_device_limits	ensures	that	values	passed	to
Vulkan	commands	as	arguments	or	data	structure	members	fall	within	the
device’s	supported	feature	set	limits.
•	VK_LAYER_LUNARG_image	validates	that	image	usage	is	consistent	with
supported	formats.
•	VK_LAYER_LUNARG_object_tracker	performs	tracking	on	Vulkan
objects,	attempting	to	catch	leaks,	use-after-free	errors,	and	other	invalid
object	usage.
•	VK_LAYER_LUNARG_parameter_validation	confirms	that	all
parameter	values	passed	to	Vulkan	functions	are	valid.
•	VK_LAYER_LUNARG_swapchain	performs	validation	on	functionality
provided	by	the	WSI	(Window	System	Integration)	extensions	described	in
Chapter	5,	“Presentation.”
•	VK_LAYER_GOOGLE_threading	ensures	valid	usage	of	Vulkan
commands	with	respect	to	threading,	ensuring	that	no	two	threads	access	the
same	object	at	the	same	time	when	they	shouldn’t.
•	VK_LAYER_GOOGLE_unique_objects	ensures	that	every	object	will
have	a	unique	handle	for	easier	tracking	by	the	application,	avoiding	cases
where	an	implementation	might	de-duplicate	handles	that	represent	objects
with	the	same	parameters.

In	addition	to	this,	a	large	number	of	separate	layers	are	grouped	into	a	larger,
single	layer	called	VK_LAYER_LUNARG_standard_validation,	making
it	easy	to	turn	on.	The	book’s	application	framework	enables	this	layer	when



built	in	debug	mode,	leaving	all	layers	disabled	when	built	in	release	mode.

Extensions
Extensions	are	fundamental	to	any	cross-platform,	open	API	such	as	Vulkan.
They	allow	implementers	to	experiment,	innovate,	and	ultimately	push
technology	forward.	Eventually,	useful	features	originally	introduced	as
extensions	make	their	way	into	future	versions	of	the	API	after	having	been
proved	in	the	field.	However,	extensions	are	not	without	cost.	Some	may	require
implementations	to	track	additional	state,	make	additional	checks	during
command	buffer	build,	or	come	with	some	performance	penalty	even	when	the
extension	is	not	in	direct	use.	Therefore,	extensions	must	be	explicitly	enabled
by	an	application	before	they	can	be	used.	This	means	that	applications	that
don’t	use	an	extension	don’t	pay	for	it	in	terms	of	performance	or	complexity
and	that	it’s	almost	impossible	to	accidentally	use	features	from	an	extension,
which	improves	portability.
Extensions	are	divided	into	two	categories:	instance	extensions	and	device
extensions.	An	instance	extension	is	one	that	generally	enhances	the	entire
Vulkan	system	on	a	platform.	This	type	of	extension	is	either	supplied	via	a
device-independent	layer	or	is	simply	an	extension	that	is	exposed	by	every
device	on	the	system	and	promoted	into	an	instance.	Device	extensions	are
extensions	that	extend	the	capabilities	of	one	or	more	devices	in	the	sytem	but
aren’t	necessarily	available	on	every	device.
Each	extension	can	define	new	functions,	new	types,	structures,	enumerations,
and	so	on.	Once	enabled,	an	extension	can	be	considered	part	of	the	API	that	is
available	to	the	application.	Instance	extensions	must	be	enabled	when	the
Vulkan	instance	is	created,	and	device	extensions	must	be	enabled	when	the
device	is	created.	These	leaves	us	with	a	chicken-and-egg	situation:	How	do	we
know	which	extensions	are	supported	before	initializing	a	Vulkan	instance?
Querying	the	supported	instance	extensions	is	one	of	the	few	pieces	of	Vulkan
functionality	that	may	be	used	before	a	Vulkan	instance	is	created.	This	is
performed	using	the	vkEnumerateInstanceExtensionProperties()
function,	the	prototype	of	which	is

Click	here	to	view	code	image

VkResult	vkEnumerateInstanceExtensionProperties	(

				const	char*																												pLayerName,

				uint32_t*																														pPropertyCount,

				VkExtensionProperties*																	pProperties);



pLayerName	is	the	name	of	a	layer	that	might	provide	extensions.	For	now,	set
this	to	nullptr.	pPropertyCount	is	a	pointer	to	a	variable	containing	the
count	of	the	number	of	instance	extensions	to	query	Vulkan	about,	and
pProperties	is	a	pointer	to	an	array	of	VkExtensionProperties
structures	that	will	be	filled	with	information	about	the	supported	extensions.	If
pProperties	is	nullptr,	then	the	initial	value	of	the	variable	pointed	to	by
pPropertyCount	is	ignored	and	is	overwritten	with	the	number	of	instance
extensions	supported.
If	pProperties	is	not	nullptr,	then	the	number	of	entries	in	the	array	is
assumed	to	be	in	the	variable	pointed	to	by	pPropertyCount,	and	up	to	this
many	entries	of	the	array	are	populated	with	information	about	the	supported
extensions.	The	variable	pointed	to	by	pPropertyCount	is	then	overwritten
with	the	number	of	entries	actually	written	to	pProperties.
To	correctly	query	all	of	the	supported	instance	extensions,	call
vkEnumerateInstanceExtensionProperties()	twice.	The	first
time,	call	it	with	pProperties	set	to	nullptr	to	retrieve	the	number	of	supported
instance	extensions.	Then	appropriately	size	an	array	to	receive	the	extension
properties	and	call	vkEnumerateInstanceExtensionProperties()
again,	this	time	passing	the	address	of	the	array	in	pProperties.	Listing	1.5
demonstrates	how	to	do	this.

Listing	1.5:	Querying	Instance	Extensions

Click	here	to	view	code	image

uint32_t	numInstanceExtensions	=	0;

std::vector<VkExtensionProperties>	instanceExtensionProperties;

//	Query	the	instance	extensions.

vkEnumerateInstanceExtensionProperties(nullptr,

																																							&numInstanceExtensions,

																																							nullptr);

//	If	there	are	any	extensions,	query	their	properties.

if	(numInstanceExtensions	!=	0)

{

				instanceExtensionProperties.resize(numInstanceExtensions);

				vkEnumerateInstanceExtensionProperties(nullptr,

																																											&numInstanceExtensions,

																																											instanceExtensionProperties.data());

				}

After	the	code	in	Listing	1.5	has	completed	execution,



instanceExtensionProperties	will	contain	a	list	of	the	extensions
supported	by	the	instance.	Each	element	of	the	array	of
VkExtensionProperties	describes	one	extension.	The	definition	of
VkExtensionProperties	is

Click	here	to	view	code	image

typedef	struct	VkExtensionProperties	{

				char								extensionName[VK_MAX_EXTENSION_NAME_SIZE];

				uint32_t				specVersion;

}	VkExtensionProperties;

The	VkExtensionProperties	structure	simply	contains	the	name	of	the
extension	and	the	version	of	that	extension.	Extensions	may	add	functionality
over	time	as	new	revisions	of	the	extension	are	produced.	The	specVersion
field	allows	updates	to	extensions	without	the	need	to	create	an	entirely	new
extension	in	order	to	add	minor	functionality.	The	name	of	the	extension	is
stored	in	extensionName.
As	you	saw	earlier,	when	creating	the	Vulkan	instance,	the
VkInstanceCreateInfo	structure	has	a	member	called
ppEnabledExtensionNames,	which	is	a	pointer	to	an	array	of	strings
naming	the	extensions	to	enable.	If	the	Vulkan	system	on	a	platform	supports	an
extension,	that	extension	will	be	included	in	the	array	returned	from
vkEnumerateInstanceExtensionProperties(),	and	its	name	can	be
passed	to	vkCreateInstance()	via	the	ppEnabledExtensionNames
field	of	the	VkInstanceCreateInfo	structure.
Querying	the	support	for	device	extensions	is	a	similar	process.	To	do	this,	call
vkEnumerateDeviceExtensionProperties(),	whose	prototype	is

Click	here	to	view	code	image

VkResult	vkEnumerateDeviceExtensionProperties	(

				VkPhysicalDevice																							physicalDevice,

				const	char*																												pLayerName,

				uint32_t*																														pPropertyCount,

				VkExtensionProperties*																	pProperties);

The	prototype	of	vkEnumerateDeviceExtensionProperties()	is
almost	identical	to	that	of
vkEnumerateInstanceExtensionProperties(),	with	the	addition	of
a	physicalDevice	parameter.	The	physicalDevice	parameter	is	the
handle	to	the	device	whose	extensions	to	query.	As	with
vkEnumerateInstanceExtensionProperties(),



vkEnumerateDeviceExtensionProperties()	overwrites
pPropertyCount	with	the	number	of	supported	extensions	if
pProperties	is	nullptr,	and	if	pProprties	is	not	nullptr,	it	fills
that	array	with	information	about	the	supported	extensions.	The	same
VkExtensionProperties	structure	is	used	for	device	extensions	and	for
instance	extensions.
When	you	are	creating	the	physical	device,	the
ppEnabledExtensionNames	field	of	the	VkDeviceCreateInfo
structure	may	contain	a	pointer	to	one	of	the	strings	returned	from
vkEnumerateDeviceExtensionProperties().
Some	extensions	provide	new	functionality	in	the	form	of	additional	entry	points
that	you	can	call.	These	are	exposed	as	function	pointers,	the	values	of	which
you	must	query	either	from	the	instance	or	from	the	device	after	enabling	the
extension.	Instance	functions	are	functions	that	are	valid	for	the	entire	instance.
If	an	extension	extends	instance-level	functionality,	you	should	use	an	instance-
level	function	pointer	to	access	the	new	features.
To	retrieve	an	instance-level	function	pointer,	call
vkGetInstanceProcAddr(),	the	prototype	of	which	is

Click	here	to	view	code	image

PFN_vkVoidFunction	vkGetInstanceProcAddr	(

				VkInstance																													instance,

				const	char*																												pName);

The	instance	parameter	is	the	handle	to	the	instance	for	which	to	retrieve	a
new	function	pointer.	If	your	application	does	use	more	than	one	Vulkan
instance,	then	the	function	pointer	returned	from	this	command	is	valid	only	for
objects	owned	by	the	referenced	instance.	The	name	of	the	function	is	passed	in
pName,	which	is	a	nul-terminated	UTF-8	string.	If	the	function	name	is
recognized	and	the	extension	is	enabled,	the	return	value	from
vkGetInstanceProcAddr()	is	a	function	pointer	that	you	can	call	from
your	application.
The	PFN_vkVoidFunction	is	a	type	definition	for	a	pointer	to	a	function	of
the	following	declaration:

Click	here	to	view	code	image

VKAPI_ATTR	void	VKAPI_CALL	vkVoidFunction(void);

There	are	no	functions	in	Vulkan	that	have	this	particular	signature,	and	it	is
unlikely	that	an	extension	would	introduce	such	a	function.	In	all	likelihood,	you



will	need	to	cast	the	resulting	function	pointer	to	a	pointer	of	the	appropriate
signature	before	you	can	call	it.
Instance-level	function	pointers	are	valid	for	any	object	owned	by	the	instance,
assuming	the	device	that	created	the	object	(or	the	device	itself,	if	the	function
dispatches	on	the	device)	supports	the	extension	and	the	extension	is	enabled	for
that	device.	Because	each	device	might	be	implemented	inside	a	different
Vulkan	driver,	instance	function	pointers	must	dispatch	though	a	layer	of
indirection	to	land	in	the	correct	module.	Managing	this	indirection	may	incur
some	overhead;	to	avoid	this,	you	can	get	a	device-specific	function	pointer	that
goes	directly	to	the	appropriate	driver.
To	get	a	device-level	function	pointer,	call	vkGetDeviceProcAddr(),	the
prototype	of	which	is

Click	here	to	view	code	image

PFN_vkVoidFunction	vkGetDeviceProcAddr	(

				VkDevice																														device,

				const	char*																											pName);

The	device	with	which	the	function	pointer	will	be	used	is	passed	in	device.
Again,	the	name	of	the	function	you	are	querying	is	passed	as	a	nul-terminated
UTF-8	string	in	pName.	The	resulting	function	pointer	is	valid	only	with	the
device	specified	in	device.	device	must	refer	to	a	device	that	supports	the
extension	that	provides	the	new	function	and	for	which	the	extension	has	been
enabled.
The	function	pointer	produced	by	vkGetDeviceProcAddr()	is	specific	to
device.	Even	if	the	same	physical	device	is	used	to	create	two	or	more	logical
devices	with	the	exact	same	parameters,	you	must	use	the	resulting	function
pointers	only	with	the	devices	from	which	they	were	queried.

Shutting	Down	Cleanly
Before	your	program	exits,	you	should	clean	up	after	yourself.	In	many	cases,	an
operating	system	will	clean	up	resources	that	you’ve	allocated	when	your
application	terminates.	However,	it	will	not	always	be	the	case	that	the	end	of
your	code	is	the	end	of	the	application.	If	you	are	writing	a	component	of	a
larger	application,	for	example,	that	application	may	terminate	rendering	or
compute	operations	using	Vulkan	without	actually	exiting.
When	cleaning	up,	it	is	generally	good	practice	to	do	the	following:

•	Complete	or	otherwise	terminate	all	work	that	your	application	is	doing	both



on	the	host	and	the	device,	in	all	threads	related	to	Vulkan.
•	Destroy	objects	in	the	reverse	order	from	the	order	in	which	they	were
created.

The	logical	device	is	likely	to	be	the	last	object	(aside	from	objects	used	at
runtime)	that	you	created	during	initialization	of	your	application.	Before
destroying	the	device,	you	should	ensure	that	it	is	not	executing	any	work	on
behalf	of	your	application.	To	do	this,	call	vkDeviceWaitIdle(),	the
prototype	of	which	is

Click	here	to	view	code	image

VkResult	vkDeviceWaitIdle	(

				VkDevice																													device);

The	handle	to	the	device	is	passed	in	device.	When	vkDeviceWaitIdle()
returns,	all	work	submitted	to	the	device	on	behalf	of	your	application	is
guaranteed	to	have	completed—unless,	of	course,	you	submit	more	work	to	the
device	in	the	meantime.	You	should	ensure	that	any	other	threads	that	might	be
submitting	work	to	the	device	have	been	terminated.
Once	you	have	ensured	that	the	device	is	idle,	you	can	safely	destroy	it.	To	do
this,	call	vkDestroyDevice(),	the	prototype	of	which	is

Click	here	to	view	code	image

void	vkDestroyDevice	(

				VkDevice																												device,

				const	VkAllocationCallbacks*								pAllocator);

The	handle	to	the	device	to	destroy	is	passed	in	the	device	parameter,	access
to	which	must	be	externally	synchronized.	Note	that	access	to	a	device	does	not
need	to	be	externally	synchronized	with	respect	to	any	other	command.	The
application	should	ensure,	however,	that	a	device	is	not	destroyed	while	any
other	command	accessing	it	is	still	executing	in	another	thread.
pAllocator	should	point	to	an	allocation	structure	that	is	compatible	with	the
one	used	to	create	the	device.	Once	the	device	object	has	been	destroyed,	no
more	commands	can	be	submitted	to	it.	Further,	it	is	no	longer	possible	to	use
the	device	handle	as	an	argument	to	any	function,	including	other	object-
destruction	functions	that	take	a	device	handle	as	their	first	argument.	This	is
another	reason	why	you	should	destroy	objects	in	reverse	order	from	the	order	in
which	they	were	created.
Once	all	devices	associated	with	a	Vulkan	instance	have	been	destroyed,	it	is
safe	to	destroy	the	instance.	This	is	accomplished	by	calling	the



vkDestroyInstance()	function,	whose	prototype	is
Click	here	to	view	code	image

void	vkDestroyInstance	(

				VkInstance																												instance,

				const	VkAllocationCallbacks*										pAllocator);

The	handle	to	the	instance	to	destroy	is	passed	in	instance	and,	as	with
vkDestroyDevice(),	a	pointer	to	an	allocation	structure	compatible	with
the	one	with	which	the	instance	was	allocated	should	be	passed	in
pAllocator.	If	the	pAllocator	parameter	to	vkCreateInstance()
was	nullptr,	then	the	pAllocator	parameter	to
vkDestroyInstance()	should	be	too.
Note	that	it’s	not	necessary	to	destroy	the	physical	devices.	Physical	devices	are
not	created	with	a	dedicated	creation	function	as	logical	devices	are.	Rather,
physical	devices	are	returned	from	a	call	to
vkEnumeratePhysicalDevices()	and	are	considered	to	be	owned	by	the
instance.	Therefore,	when	the	instance	is	destroyed,	that	instance’s	resources
associated	with	each	physical	device	are	freed	as	well.

Summary
This	chapter	introduced	you	to	Vulkan.	You	have	seen	how	the	entirety	of
Vulkan	state	is	contained	within	an	instance.	The	instance	provides	access	to
physical	devices,	and	each	physical	device	exposes	a	number	of	queues	that	can
be	used	to	do	work.	You	have	seen	how	to	create	a	logical	device	corresponding
to	the	physical	device.	You	have	seen	how	Vulkan	can	be	extended,	how	to
determine	the	extensions	available	to	the	instance	and	to	a	device,	and	how	to
enable	those	extensions.	You	have	seen	how	to	cleanly	shut	down	the	Vulkan
system	by	waiting	for	a	device	to	complete	work	submitted	by	your	application,
destroying	the	device	handles,	and	finally	destroying	the	instance	handle.



Chapter	2.	Memory	and	Resources

What	You’ll	Learn	in	This	Chapter
•	How	Vulkan	manages	host	and	device	memory
•	How	to	manage	memory	effectively	in	your	application
•	How	Vulkan	uses	images	and	buffers	to	consume	and	produce	data

Memory	is	fundamental	to	the	operation	of	virtually	all	computing	systems,
including	Vulkan.	In	Vulkan,	there	are	two	fundamental	types	of	memory:	host
memory	and	device	memory.	All	resources	upon	which	Vulkan	operates	must	be
backed	by	device	memory,	and	it	is	the	application’s	responsibility	to	manage
this	memory.	Further,	memory	is	used	to	store	data	structures	on	the	host.	Vulkan
provides	the	opportunity	for	your	application	to	manage	this	memory	too.	In	this
chapter,	you’ll	learn	about	the	mechanisms	through	which	you	can	manage
memory	used	by	Vulkan.

Host	Memory	Management
Whenever	Vulkan	creates	new	objects,	it	might	need	memory	to	store	data
related	to	them.	For	this,	it	uses	host	memory,	which	is	regular	memory
accessible	to	the	CPU	that	might	be	returned	from	a	call	to	malloc	or	new,	for
example.	However,	beyond	a	normal	allocator,	Vulkan	has	particular
requirements	for	some	allocations.	Most	notably,	it	expects	allocations	to	be
aligned	correctly.	This	is	because	some	high-performance	CPU	instructions	work
best	(or	only)	on	aligned	memory	addresses.	By	assuming	that	allocations
storing	CPU-side	data	structures	are	aligned,	Vulkan	can	use	these	high-
performance	instructions	unconditionally,	providing	substantial	performance
advantages.
Because	of	these	requirements,	Vulkan	implementations	will	use	advanced
allocators	to	satisfy	them.	However,	it	also	provides	the	opportunity	for	your
application	to	replace	the	allocators	for	certain,	or	even	all,	operations.	This	is
performed	through	the	pAllocator	parameter	available	in	most	device
creation	functions.	For	example,	let’s	revisit	the	vkCreateInstance()
function,	which	is	one	of	the	first	that	your	application	might	call.	Its	prototype
is



Click	here	to	view	code	image

VkResult	vkCreateInstance	(

				const	VkInstanceCreateInfo*								pCreateInfo,

				const	VkAllocationCallbacks*							pAllocator,

				VkInstance*																								pInstance);

The	pAllocator	parameter	is	a	pointer	to	a	VkAllocationCallbacks
structure.	Until	now,	we’ve	been	setting	pAllocator	to	nullptr,	which
tells	Vulkan	to	use	its	own	internal	allocator	rather	than	rely	on	our	application.
The	VkAllocationCallbacks	structure	encapsulates	a	custom	memory
allocator	that	we	can	provide.	The	definition	of	the	structure	is

Click	here	to	view	code	image

typedef	struct	VkAllocationCallbacks	{

				void*																																			pUserData;

				PFN_vkAllocationFunction																pfnAllocation;

				PFN_vkReallocationFunction														pfnReallocation;

				PFN_vkFreeFunction																						pfnFree;

				PFN_vkInternalAllocationNotification				pfnInternalAllocation;

				PFN_vkInternalFreeNotification										pfnInternalFree;

}	VkAllocationCallbacks;

You	can	see	from	the	definition	of	VkAllocationCallbacks	that	the
structure	is	essentially	a	set	of	function	pointers	and	an	additional	void	pointer,
pUserData.	The	pointer	is	for	your	application’s	use.	It	can	point	anywhere;
Vulkan	will	not	dereference	it.	In	fact,	it	doesn’t	even	need	to	be	a	pointer.	You
can	put	anything	in	there,	so	long	as	it	fits	into	a	pointer-size	blob.	The	only
thing	that	Vulkan	will	do	with	pUserData	is	pass	it	back	to	the	callback
functions	to	which	the	remaining	members	of	VkAllocationCallbacks
point.
pfnAllocation,	pfnReallocation,	and	pfnFree	are	used	for	normal,
object-level	memory	management.	They	are	defined	as	pointers	to	functions	that
match	the	following	declarations:

Click	here	to	view	code	image

void*	VKAPI_CALL	Allocation(

				void*																																			pUserData,

				size_t																																		size,

				size_t																																		alignment,

				VkSystemAllocationScope																	allocationScope);

void*	VKAPI_CALL	Reallocation(

				void*																																			pUserData,

				void*																																			pOriginal

				size_t																																		size,



				size_t																																		alignment,

				VkSystemAllocationScope																	allocationScope);

void	VKAPI_CALL	Free(

				void*																																			pUserData,

				void*																																			pMemory);

Notice	that	all	three	functions	take	a	pUserData	parameter	as	their	first
argument.	This	is	the	same	pUserData	pointer	that’s	part	of	the
VkAllocationCallbacks	structure.	If	your	application	uses	data	structures
to	manage	memory,	this	is	a	good	place	to	put	their	addresses.	One	logical	thing
to	do	with	this	is	to	implement	your	memory	allocator	as	a	C++	class	(assuming
you’re	writing	in	C++)	and	then	put	the	class’s	this	pointer	in	pUserData.
The	Allocation	function	is	responsible	for	making	new	allocations.	The
size	parameter	gives	the	size	of	the	allocation,	in	bytes.	The	alignment
parameter	gives	the	required	alignment	of	the	allocation,	also	in	bytes.	This	is	an
often-overlooked	parameter.	It	is	very	tempting	to	simply	hook	this	function	up
to	a	naïve	allocator	such	as	malloc.	If	you	do	this,	you	will	find	that	it	works
for	a	while	but	that	certain	functions	might	mysteriously	crash	later.	If	you
provide	your	own	allocator,	it	must	honor	the	alignment	parameter.
The	final	parameter,	allocationScope,	tells	your	application	what	the
scope,	or	lifetime,	of	the	allocation	is	going	to	be.	It	is	one	of	the
VkSystemAllocationScope	values,	which	have	the	following	meanings:

•	VK_SYSTEM_ALLOCATION_SCOPE_COMMAND	means	that	the	allocation
will	be	live	only	for	the	duration	of	the	command	that	provoked	the
allocation.	Vulkan	will	likely	use	this	for	very	short-lived	temporary
allocations,	as	it	works	on	a	single	command.
•	VK_SYSTEM_ALLOCATION_SCOPE_OBJECT	means	that	the	allocation
is	directly	associated	with	a	particular	Vulkan	object.	This	allocation	will
live	at	least	until	the	object	is	destroyed.	This	type	of	allocation	will	only
ever	be	made	as	part	of	executing	a	creation	command	(one	beginning	with
vkCreate).
•	VK_SYSTEM_ALLOCATION_SCOPE_CACHE	means	that	the	allocation	is
associated	with	some	form	of	internal	cache	or	a	VkPipelineCache
object.
•	VK_SYSTEM_ALLOCATION_SCOPE_DEVICE	means	that	the	allocation
is	scoped	to	the	device.	This	type	of	allocation	is	made	when	the	Vulkan
implementation	needs	memory	associated	with	the	device	that	is	not	tied	to	a
single	object.	For	example,	if	the	implementation	allocates	objects	in	blocks,



this	type	of	allocation	might	be	made	in	response	to	a	request	to	create	a	new
object,	but	because	many	objects	might	live	in	the	same	block,	the	allocation
can’t	be	tied	directly	to	any	specific	object.
•	VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE	means	that	the
allocation	is	scoped	to	the	instance.	This	is	similar	to
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE.	This	type	of	allocation	is
typically	made	by	layers	or	during	early	parts	of	Vulkan	startup,	such	as	by
vkCreateInstance()	and	vkEnumeratePhysicalDevices().

The	pfnInternalAllocation	and	pfnInternalFree	function	pointers
point	to	alternate	allocator	functions	that	are	used	when	Vulkan	makes	memory
allocations	using	its	own	allocators.	These	callbacks	have	the	same	signatures	as
pfnAllocation	and	pfnFree,	except	that	pfnInternalAllocation
doesn’t	return	a	value	and	pfnInternalFree	shouldn’t	actually	free	the
memory.	These	functions	are	used	only	for	notification	so	that	your	application
can	keep	track	of	how	much	memory	Vulkan	is	using.	The	prototypes	of	these
functions	should	be

Click	here	to	view	code	image

void	VKAPI_CALL	InternalAllocationNotification(

				void*																																							pUserData,

				size_t																																						size,

				VkInternalAllocationType																				allocationType,

				VkSystemAllocationScope																					allocationScope);

void	VKAPI_CALL	InternalFreeNotification(

				void*																																							pUserData,

				size_t																																						size,

				VkInternalAllocationType																				allocationType,

				VkSystemAllocationScope																					allocationScope);

There’s	not	much	you	can	do	with	the	information	provided	through
pfnInternalAllocation	and	pfnInternalFree	besides	log	it	and
keep	track	of	the	total	memory	usage	made	by	the	application.	Specifying	these
function	pointers	is	optional,	but	if	you	supply	one,	you	must	supply	both.	If	you
don’t	want	to	use	them,	set	them	both	to	nullptr.
Listing	2.1	shows	an	example	of	how	to	declare	a	C++	class	that	can	be	used	as
an	allocator	that	maps	the	Vulkan	allocation	callback	functions.	Because	the
callback	functions	used	by	Vulkan	are	naked	C	function	pointers,	the	callback
functions	themselves	are	declared	as	static	member	functions	of	the	class,
whereas	the	actual	implementations	of	those	functions	are	declared	as	regular
nonstatic	member	functions.



Listing	2.1:	Declaration	of	a	Memory	Allocator	Class

Click	here	to	view	code	image

class	allocator

{

public:

				//	Operator	that	allows	an	instance	of	this	class	to	be	used	as	a

				//	VkAllocationCallbacks	structure

				inline	operator	VkAllocationCallbacks()	const

				{

								VkAllocationCallbacks	result;

								result.pUserData	=	(void*)this;

								result.pfnAllocation	=	&Allocation;

								result.pfnReallocation	=	&Reallocation;

								result.pfnFree	=	&Free;

								result.pfnInternalAllocation	=	nullptr;

								result.pfnInternalFree	=	nullptr;

								return	result;

				};

private:

				//	Declare	the	allocator	callbacks	as	static	member	functions.

				static	void*	VKAPI_CALL	Allocation(

								void*																																							pUserData,

								size_t																																						size,

								size_t																																						alignment,

								VkSystemAllocationScope																					allocationScope);

				static	void*	VKAPI_CALL	Reallocation(

								void*																																							pUserData,

								void*																																							pOriginal,

								size_t																																						size,

								size_t																																						alignment,

								VkSystemAllocationScope																					allocationScope);

				static	void	VKAPI_CALL	Free(

								void*																																							pUserData,

								void*																																							pMemory);

				//	Now	declare	the	nonstatic	member	functions	that	will	actually

perform

				//	the	allocations.

				void*	Allocation(

								size_t																																						size,

								size_t																																						alignment,

								VkSystemAllocationScope																					allocationScope);

				void*	Reallocation(



									void*																																						pOriginal,

									size_t																																					size,

									size_t																																					alignment,

									VkSystemAllocationScope																				allocationScope);

				void	Free(

								void*																																							pMemory);

};

An	example	implementation	of	this	class	is	shown	in	Listing	2.2.	It	maps	the
Vulkan	allocation	functions	to	the	POSIX	aligned_malloc	functions.	Note
that	this	allocator	is	almost	certainly	not	better	than	what	most	Vulkan
implementations	use	internally	and	serves	only	as	an	example	of	how	to	hook
the	callback	functions	up	to	your	own	code.

Listing	2.2:	Implementation	of	a	Memory	Allocator	Class

Click	here	to	view	code	image

void*	allocator::Allocation(

				size_t																																						size,

				size_t																																						alignment,

				VkSystemAllocationScope																					allocationScope)

{

				return	aligned_malloc(size,	alignment);

}

void*	VKAPI_CALL	allocator::Allocation(

				void*																																							pUserData,

				size_t																																						size,

				size_t																																						alignment,

				VkSystemAllocationScope																					allocationScope)

{

				return	static_cast<allocator*>(pUserData)->Allocation(size,

																																																										alignment,

																																																										allocationScope);

}

void*	allocator::Reallocation(

				void*																																							pOriginal,

				size_t																																						size,

				size_t																																						alignment,

				VkSystemAllocationScope																					allocationScope)

{

				return	aligned_realloc(pOriginal,	size,	alignment);

}

void*	VKAPI_CALL	allocator::Reallocation(

				void*																																							pUserData,

				void*																																							pOriginal,

				size_t																																						size,



				size_t																																						alignment,

				VkSystemAllocationScope																					allocationScope)

{

				return	static_cast<allocator*>(pUserData)-

>Reallocation(pOriginal,

																																																												size,

																																																												alignment,

																																																												allocationScope);

}

void	allocator::Free(

				void*																																							pMemory)

{

				aligned_free(pMemory);

}

void	VKAPI_CALL	allocator::Free(

				void*																																							pUserData,

				void*																																							pMemory)

{

				return	static_cast<allocator*>(pUserData)->Free(pMemory);

}

As	can	be	seen	in	Listing	2.2,	the	static	member	functions	simply	cast	the
pUserData	parameters	back	to	a	class	instance	and	call	the	corresponding
nonstatic	member	function.	Because	the	nonstatic	and	static	member	functions
are	located	in	the	same	compilation	unit,	the	nonstatic	member	function	is	likely
to	be	inlined	into	the	static	one,	making	the	efficiency	of	this	implementation
quite	high.

Resources
Vulkan	operates	on	data.	Everything	else	is	really	secondary	to	this.	Data	is
stored	in	resources,	and	resources	are	backed	by	memory.	There	are	two
fundamental	types	of	resources	in	Vulkan:	buffers	and	images.	A	buffer	is	a
simple,	linear	chunk	of	data	that	can	be	used	for	almost	anything—data
structures,	raw	arrays,	and	even	image	data,	should	you	choose	to	use	them	that
way.	Images,	on	the	other	hand,	are	structured	and	have	type	and	format
information,	can	be	multidimensional,	form	arrays	of	their	own,	and	support
advanced	operations	for	reading	and	writing	data	from	and	to	them.
Both	types	of	resources	are	constructed	in	two	steps:	first	the	resource	itself	is
created,	and	then	the	resource	needs	to	be	backed	by	memory.	The	reason	for
this	is	to	allow	the	application	to	manage	memory	itself.	Memory	management	is
complex,	and	it	is	very	difficult	for	a	driver	to	get	it	right	all	the	time.	What
works	well	for	one	application	might	not	work	well	for	another.	Therefore,	it	is
expected	that	applications	can	do	a	better	job	of	managing	memory	than	drivers



can.	For	example,	an	application	that	uses	a	small	number	of	very	large
resources	and	keeps	them	around	for	a	long	time	might	use	one	strategy	in	its
memory	allocator,	while	another	application	that	continually	creates	and	destroys
small	resources	might	implement	another.
Although	images	are	more	complex	structures,	the	procedure	for	creating	them	is
similar	to	buffers.	This	section	looks	at	buffer	creation	first	and	then	moves	on	to
discuss	images.

Buffers
Buffers	are	the	simplest	type	of	resource	but	have	a	wide	variety	of	uses	in
Vulkan.	They	are	used	to	store	linear	structured	or	unstructured	data,	which	can
have	a	format	or	be	raw	bytes	in	memory.	The	various	uses	for	buffer	objects
will	be	discussed	as	we	introduce	those	topics.	To	create	a	new	buffer	object,	call
vkCreateBuffer(),	the	prototype	of	which	is

Click	here	to	view	code	image

VkResult	vkCreateBuffer	(

				VkDevice																														device,

				const	VkBufferCreateInfo*													pCreateInfo,

				const	VkAllocationCallbacks*										pAllocator,

				VkBuffer*																													pBuffer);

As	with	most	functions	in	Vulkan	that	consume	more	than	a	couple	of
parameters,	those	parameters	are	bundled	up	in	a	structure	and	passed	to	Vulkan
via	a	pointer.	Here,	the	pCreateInfo	parameter	is	a	pointer	to	an	instance	of
the	VkBufferCreateInfo	structure,	the	definition	of	which	is

Click	here	to	view	code	image

typedef	struct	VkBufferCreateInfo	{

				VkStructureType								sType;

				const	void*												pNext;

				VkBufferCreateFlags				flags;

				VkDeviceSize											size;

				VkBufferUsageFlags					usage;

				VkSharingMode										sharingMode;

				uint32_t															queueFamilyIndexCount;

				const	uint32_t*								pQueueFamilyIndices;

}	VkBufferCreateInfo;

The	sType	for	VkBufferCreateInfo	should	be	set	to
VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,	and	the	pNext	member
should	be	set	to	nullptr	unless	you’re	using	an	extension.	The	flags	field	of
the	structure	gives	Vulkan	some	information	about	the	properties	of	the	new



buffer.	In	the	current	version	of	Vulkan,	the	only	bits	defined	for	use	in	the
flags	field	are	related	to	sparse	buffers,	which	we	will	cover	later	in	this
chapter.	For	now,	flags	can	be	set	to	zero.
The	size	field	of	VkBufferCreateInfo	specifies	the	size	of	the	buffer,	in
bytes.	The	usage	field	tells	Vulkan	how	you’re	going	to	use	the	buffer	and	is	a
bitfield	made	up	of	a	combination	of	members	of	the
VkBufferUsageFlagBits	enumeration.	On	some	architectures,	the
intended	usage	of	the	buffer	can	have	an	effect	on	how	it’s	created.	The	currently
defined	bits	along	with	the	sections	where	we’ll	discuss	them	are	as	follows:

•	VK_BUFFER_USAGE_TRANSFER_SRC_BIT	and
VK_BUFFER_USAGE_TRANSFER_DST_BIT	mean	that	the	buffer	can	be
the	source	or	destination,	respectively,	of	transfer	commands.	Transfer
operations	are	operations	that	copy	data	from	a	source	to	a	destination.	They
are	covered	in	Chapter	4,	“Moving	Data.”
•	VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT	and
VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT	mean	that	the
buffer	can	be	used	to	back	a	uniform	or	storage	texel	buffer,	respectively.
Texel	buffers	are	formatted	arrays	of	texels	that	can	be	used	as	the	source	or
destination	(in	the	case	of	storage	buffers)	of	reads	and	writes	by	shaders
running	on	the	device.	Texel	buffers	are	covered	in	Chapter	6,	“Shaders	and
Pipelines.”
•	VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT	and
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT	mean	that	the	buffer	can
be	used	to	back	uniform	or	storage	buffers,	respectively.	As	opposed	to	texel
buffers,	regular	uniform	and	storage	buffers	have	no	format	associated	with
them	and	can	therefore	be	used	to	store	arbitrary	data	and	data	structures.
They	are	covered	in	Chapter	6,	“Shaders	and	Pipelines.”
•	VK_BUFFER_USAGE_INDEX_BUFFER_BIT	and
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT	mean	that	the	buffer	can
be	used	to	store	index	or	vertex	data,	respectively,	used	in	drawing
commands.	You’ll	learn	more	about	drawing	commands,	including	indexed
drawing	commands,	in	Chapter	8,	“Drawing.”
•	VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT	means	that	the	buffer
can	be	used	to	store	parameters	used	in	indirect	dispatch	and	drawing
commands,	which	are	commands	that	take	their	parameters	directly	from
buffers	rather	than	from	your	program.	These	are	covered	in	Chapter	6,
“Shaders	and	Pipelines,”	and	Chapter	8,	“Drawing.”



The	sharingMode	field	of	VkBufferCreateInfo	indicates	how	the
buffer	will	be	used	on	the	multiple	command	queues	supported	by	the	device.
Because	Vulkan	can	execute	many	operations	in	parallel,	some	implementations
need	to	know	whether	the	buffer	will	essentially	be	used	by	a	single	command	at
a	time	or	potentially	by	many.	Setting	sharingMode	to
VK_SHARING_MODE_EXCLUSIVE	says	that	the	buffer	will	only	be	used	on	a
single	queue,	whereas	setting	sharingMode	to
VK_SHARING_MODE_CONCURRENT	indicates	that	you	plan	to	use	the	buffer
on	multiple	queues	at	the	same	time.	Using
VK_SHARING_MODE_CONCURRENT	might	result	in	lower	performance	on
some	systems,	so	unless	you	need	this,	set	sharingMode	to
VK_SHARING_MODE_EXCLUSIVE.
If	you	do	set	sharingMode	to	VK_SHARING_MODE_CONCURRENT,	you
need	to	tell	Vulkan	which	queues	you’re	going	to	use	the	buffer	on.	This	is	done
using	the	pQueueFamilyIndices	member	of	VkBufferCreateInfo,
which	is	a	pointer	to	an	array	of	queue	families	that	the	resource	will	be	used	on.
queueFamilyIndexCount	contains	the	length	of	this	array—the	number	of
queue	families	that	the	buffer	will	be	used	with.	When	sharingMode	is	set	to
VK_SHARING_MODE_EXCLUSIVE,	queueFamilyCount	and
pQueueFamilies	are	both	ignored.
Listing	2.3	demonstrates	how	to	create	a	buffer	object	that	is	1MiB	in	size,
usable	as	the	source	or	destination	of	transfer	operations,	and	used	on	only	one
queue	family	at	a	time.

Listing	2.3:	Creating	a	Buffer	Object

Click	here	to	view	code	image

static	const	VkBufferCreateInfo	bufferCreateInfo	=

{

				VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,	nullptr,

				0,

				1024	*	1024,

				VK_BUFFER_USAGE_TRANSFER_SRC_BIT	|

VK_BUFFER_USAGE_TRANSFER_DST_BIT,

				VK_SHARING_MODE_EXCLUSIVE,

				0,	nullptr

};

VkBuffer	buffer	=	VK_NULL_HANDLE;

vkCreateBuffer(device,	&bufferCreateInfo,	&buffer);



After	the	code	in	Listing	2.3	has	run,	a	new	VkBuffer	handle	is	created	and
placed	in	the	buffer	variable.	The	buffer	is	not	yet	fully	usable	because	it	first
needs	to	be	backed	with	memory.	This	operation	is	covered	in	“Device	Memory
Management”	later	in	this	chapter.

Formats	and	Support
While	buffers	are	relatively	simple	resources	and	do	not	have	any	notion	of	the
format	of	the	data	they	contain,	images	and	buffer	views	(which	we	will
introduce	shortly)	do	include	information	about	their	content.	Part	of	that
information	describes	the	format	of	the	data	in	the	resource.	Some	formats	have
special	requirements	or	restrictions	on	their	use	in	certain	parts	of	the	pipeline.
For	example,	some	formats	might	be	readable	but	not	writable,	which	is
common	with	compressed	formats.
In	order	to	determine	the	properties	and	level	of	support	for	various	formats,	you
can	call	vkGetPhysicalDeviceFormatProperties(),	the	prototype	of
which	is

Click	here	to	view	code	image

void	vkGetPhysicalDeviceFormatProperties	(

				VkPhysicalDevice																							physicalDevice,

				VkFormat																															format,

				VkFormatProperties*																				pFormatProperties);

Because	support	for	particular	formats	is	a	property	of	a	physical	device	rather
than	a	logical	one,	the	physical	device	handle	is	specified	in
physicalDevice.	If	your	application	absolutely	required	support	for	a
particular	format	or	set	of	formats,	you	could	check	for	support	before	even
creating	the	logical	device	and	reject	particular	physical	devices	from
consideration	early	in	application	startup,	for	example.	The	format	for	which	to
check	support	is	specified	in	format.	If	the	device	recognizes	the	format,	it	will
write	its	level	of	support	into	the	instance	of	the	VkFormatProperties
structure	pointed	to	by	pFormatProperties.	The	definition	of	the
VkFormatProperties	structure	is

Click	here	to	view	code	image

typedef	struct	VkFormatProperties	{

				VkFormatFeatureFlags				linearTilingFeatures;

				VkFormatFeatureFlags				optimalTilingFeatures;

				VkFormatFeatureFlags				bufferFeatures;

}	VkFormatProperties;

All	three	fields	in	the	VkFormatProperties	structure	are	bitfields	made	up



from	members	of	the	VkFormatFeatureFlagBits	enumeration.	An	image
can	be	in	one	of	two	primary	tiling	modes:	linear,	in	which	image	data	is	laid	out
linearly	in	memory,	first	by	row,	then	by	column,	and	so	on;	and	optimal,	in
which	image	data	is	laid	out	in	highly	optimized	patterns	that	make	efficient	use
of	the	device’s	memory	subsystem.	The	linearTilingFeatures	field
indicates	the	level	of	support	for	a	format	in	images	in	linear	tiling,	the
optimalTilingFeatures	field	indicates	the	level	of	support	for	a	format
in	images	in	optimal	tiling,	and	the	bufferFeatures	field	indicates	the	level
of	support	for	the	format	when	used	in	a	buffer.
The	various	bits	that	might	be	included	in	these	fields	are	defined	as	follows:

•	VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT:	The	format	may	be
used	in	read-only	images	that	will	be	sampled	by	shaders.
•	VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT:
Filter	modes	that	include	linear	filtering	may	be	used	when	this	format	is
used	for	a	sampled	image.
•	VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT:	The	format	may	be
used	in	read-write	images	that	will	be	read	and	written	by	shaders.
•	VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT:	The	format
may	be	used	in	read-write	images	that	also	support	atomic	operations
performed	by	shaders.
•	VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT:	The	format
may	be	used	in	a	read-only	texel	buffer	that	will	be	read	from	by	shaders.
•	VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT:	The	format
may	be	used	in	read-write	texel	buffers	that	may	be	read	from	and	written	to
by	shaders.
•	VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT:
The	format	may	be	used	in	read-write	texel	buffers	that	also	support	atomic
operations	performed	by	shaders.
•	VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT:	The	format	may	be
used	as	the	source	of	vertex	data	by	the	vertex-assembly	stage	of	the
graphics	pipeline.
•	VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT:	The	format	may
be	used	as	a	color	attachment	in	the	color-blend	stage	of	the	graphics
pipeline.
•	VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT:	Images



with	this	format	may	be	used	as	color	attachments	when	blending	is	enabled.
•	VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT:	The
format	may	be	used	as	a	depth,	stencil,	or	depth-stencil	attachment.
•	VK_FORMAT_FEATURE_BLIT_SRC_BIT:	The	format	may	be	used	as
the	source	of	data	in	an	image	copy	operation.
•	VK_FORMAT_FEATURE_BLIT_DST_BIT:	The	format	may	be	used	as
the	destination	of	an	image	copy	operation.

Many	formats	will	have	a	number	of	format	support	bits	turned	on.	In	fact,	many
formats	are	compulsory	to	support.	A	complete	list	of	the	mandatory	formats	is
contained	in	the	Vulkan	specification.	If	a	format	is	on	the	mandatory	list,	then
it’s	not	strictly	necessary	to	test	for	support.	However,	for	completeness,
implementations	are	expected	to	accurately	report	capabilities	for	all	supported
formats,	even	mandatory	ones.
The	vkGetPhysicalDeviceFormatProperties()	function	really
returns	only	a	coarse	set	of	flags	indicating	whether	a	format	may	be	used	at	all
under	particular	scenarios.	For	images	especially,	there	may	be	more	complex
interactions	between	a	specific	format	and	its	effect	on	the	level	of	support
within	an	image.	Therefore,	to	retrieve	even	more	information	about	the	support
for	a	format	when	used	in	images,	you	can	call
vkGetPhysicalDeviceImageFormatProperties(),	the	prototype	of
which	is

Click	here	to	view	code	image

VkResult	vkGetPhysicalDeviceImageFormatProperties	(

				VkPhysicalDevice																							physicalDevice,

				VkFormat																															format,

				VkImageType																												type,

				VkImageTiling																										tiling,

				VkImageUsageFlags																						usage,

				VkImageCreateFlags																					flags,

				VkImageFormatProperties*															pImageFormatProperties);

Like	vkGetPhysicalDeviceFormatProperties(),
vkGetPhysicalDeviceImageFormatProperties()	takes	a
VkPhysicalDevice	handle	as	its	first	parameter	and	reports	support	for	the
format	for	the	physical	device	rather	than	for	a	logical	one.	The	format	you’re
querying	support	for	is	passed	in	format.
The	type	of	image	that	you	want	to	ask	about	is	specified	in	type.	This	should
be	one	of	the	image	types:	VK_IMAGE_TYPE_1D,	VK_IMAGE_TYPE_2D,	or
VK_IMAGE_TYPE_3D.	Different	image	types	might	have	different	restrictions



or	enhancements.	The	tiling	mode	for	the	image	is	specified	in	tiling	and	can
be	either	VK_IMAGE_TILING_LINEAR	or	VK_IMAGE_TILING_OPTIMAL,
indicating	linear	or	optimal	tiling,	respectively.
The	intended	use	for	the	image	is	specified	in	the	usage	parameter.	This	is	a
bitfield	indicating	how	the	image	is	to	be	used.	The	various	uses	for	an	image	are
discussed	later	in	this	chapter.	The	flags	field	should	be	set	to	the	same	value
that	will	be	used	when	creating	the	image	that	will	use	the	format.
If	the	format	is	recognized	and	supported	by	the	Vulkan	implementation,	then	it
will	write	information	about	the	level	of	support	into	the
VkImageFormatProperties	structure	pointed	to	by
pImageFormatProperties.	The	definition	of
VkImageFormatProperties	is

Click	here	to	view	code	image

typedef	struct	VkImageFormatProperties	{

				VkExtent3D												maxExtent;

				uint32_t														maxMipLevels;

				uint32_t														maxArrayLayers;

				VkSampleCountFlags				sampleCounts;

				VkDeviceSize										maxResourceSize;

}	VkImageFormatProperties;

The	extent	member	of	VkImageFormatProperties	reports	the
maximum	size	of	an	image	that	can	be	created	with	the	specified	format.	For
example,	formats	with	fewer	bits	per	pixel	may	support	creating	larger	images
than	those	with	wider	pixels.	extent	is	an	instance	of	the	VkExtent3D
structure,	the	definition	of	which	is

Click	here	to	view	code	image

typedef	struct	VkExtent3D	{

				uint32_t				width;

				uint32_t				height;

				uint32_t				depth;

}	VkExtent3D;

The	maxMipLevels	field	reports	the	maximum	number	of	mipmap	levels
supported	for	an	image	of	the	requested	format	along	with	the	other	parameters
passed	to	vkGetPhysicalDeviceImageFormatProperties().	In
most	cases,	maxMipLevels	will	either	report	log2	(max	(extent.x,	extent.y,
extent.z))	for	the	image	when	mipmaps	are	supported	or	1	when	mipmaps	are	not
supported.
The	maxArrayLayers	field	reports	the	maximum	number	of	array	layers



supported	for	the	image.	Again,	this	is	likely	to	be	a	fairly	high	number	if	arrays
are	supported	or	1	if	arrays	are	not	supported.
If	the	image	format	supports	multisampling,	then	the	supported	sample	counts
are	reported	through	the	sampleCounts	field.	This	is	a	bitfield	containing	one
bit	for	each	supported	sample	count.	If	bit	n	is	set,	then	images	with	2n	samples
are	supported	in	this	format.	If	the	format	is	supported	at	all,	at	least	one	bit	of
this	field	will	be	set.	It	is	very	unlikely	that	you	will	ever	see	a	format	that
supports	multisampling	but	does	not	support	a	single	sample	per	pixel.
Finally,	the	maxResourceSize	field	specifies	the	maximum	size,	in	bytes,
that	a	resource	of	this	format	might	be.	This	should	not	be	confused	with	the
maximum	extent,	which	reports	the	maximum	size	in	each	of	the	dimensions
that	might	be	supported.	For	example,	if	an	implementation	reports	that	it
supports	images	of	16,384	×	16,384	pixels	×	2,048	layers	with	a	format
containing	128	bits	per	pixel,	then	creating	an	image	of	the	maxium	extent	in
every	dimension	would	produce	8TiB	of	image	data.	It’s	unlikely	that	an
implementation	really	supports	creating	an	8TiB	image.	However,	it	might	well
support	creating	an	8	×	8	×	2,048	array	or	a	16,384	×	16,284	nonarray	image,
either	of	which	would	fit	into	a	more	moderate	memory	footprint.

Images
Images	are	more	complex	than	buffers	in	that	they	are	multidimensional;	have
specific	layouts	and	format	information;	and	can	be	used	as	the	source	and
destination	for	complex	operations	such	as	filtering,	blending,	depth	or	stencil
testing,	and	so	on.	Images	are	created	using	the	vkCreateImage()	function,
the	prototype	of	which	is

Click	here	to	view	code	image

VkResult	vkCreateImage	(

				VkDevice																														device,

				const	VkImageCreateInfo*														pCreateInfo,

				const	VkAllocationCallbacks*										pAllocator,

				VkImage*																														pImage);

The	device	that	is	used	to	create	the	image	is	passed	in	the	device	parameter.
Again,	the	description	of	the	image	is	passed	through	a	data	structure,	the
address	of	which	is	passed	in	the	pCreateInfo	parameter.	This	is	a	pointer	to
an	instance	of	the	VkImageCreateInfo	structure,	the	definition	of	which	is

Click	here	to	view	code	image

typedef	struct	VkImageCreateInfo	{



				VkStructureType										sType;

				const	void*														pNext;

				VkImageCreateFlags							flags;

				VkImageType														imageType;

				VkFormat																	format;

				VkExtent3D															extent;

				uint32_t																	mipLevels;

				uint32_t																	arrayLayers;

				VkSampleCountFlagBits				samples;

				VkImageTiling												tiling;

				VkImageUsageFlags								usage;

				VkSharingMode												sharingMode;

				uint32_t																	queueFamilyIndexCount;

				const	uint32_t*										pQueueFamilyIndices;

				VkImageLayout												initialLayout;

}	VkImageCreateInfo;

As	you	can	see,	this	is	a	significantly	more	complex	structure	than	the
VkBufferCreateInfo	structure.	The	common	fields,	sType	and	pNext,
appear	at	the	top,	as	with	most	other	Vulkan	structures.	The	sType	field	should
be	set	to	VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO.
The	flags	field	of	VkImageCreateInfo	contains	flags	describing	some	of
the	properties	of	the	image.	These	are	a	selection	of	the
VkImageCreateFlagBits	enumeration.	The	first	three
—VK_IMAGE_CREATE_SPARSE_BINDING_BIT,
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT,	and
VK_IMAGE_CREATE_SPARSE_ALIASED_BIT—are	used	for	controlling
sparse	images,	which	are	covered	later	in	this	chapter.
If	VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT	is	set,	then	you	can	create
views	of	the	image	with	a	different	format	from	the	parent.	Image	views	are
essentially	a	special	type	of	image	that	shares	data	and	layout	with	its	parent	but
can	override	parameters	such	as	format.	This	allows	data	in	the	image	to	be
interpreted	in	multiple	ways	at	the	same	time.	Using	image	views	is	a	way	to
create	two	different	aliases	for	the	same	data.	Image	views	are	covered	later	in
this	chapter.	If	VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT	is	set,	then
the	you	will	be	able	to	create	cube	map	views	of	it.	Cube	maps	are	covered	later
in	this	chapter.
The	imageType	field	of	the	VkImageCreateInfo	structure	specifies	the
type	of	image	that	you	want	to	create.	The	image	type	is	essentially	the
dimensionality	of	the	image	and	can	be	one	of	VK_IMAGE_TYPE_1D,
VK_IMAGE_TYPE_2D,	or	VK_IMAGE_TYPE_3D	for	a	1D,	2D,	or	3D	image,
respectively.



Images	also	have	a	format,	which	describes	how	texel	data	is	stored	in	memory
and	how	it	is	interpreted	by	Vulkan.	The	format	of	the	image	is	specified	by	the
format	field	of	the	VkImageCreateInfo	structure	and	must	be	one	of	the
image	formats	represented	by	a	member	of	the	VkFormat	enumeration.	Vulkan
supports	a	large	number	of	formats—too	many	to	list	here.	We	will	use	some	of
the	formats	in	the	book	examples	and	explain	how	they	work	at	that	time.	For
the	rest,	refer	to	the	Vulkan	specification.
The	extent	of	an	image	is	its	size	in	texels.	This	is	specified	in	the	extent	field
of	the	VkImageCreateInfo	structure.	This	is	an	instance	of	the
VkExtent3D	structure,	which	has	three	members:	width,	height,	and
depth.	These	should	be	set	to	the	width,	height,	and	depth	of	the	desired	image,
respectively.	For	1D	images,	height	should	be	set	to	1,	and	for	1D	and	2D
images,	depth	should	be	set	to	1.	Rather	than	alias	the	next-higher	dimension
as	an	array	count,	Vulkan	uses	an	explicit	array	size,	which	is	set	in
arrayLayers.
The	maximum	size	of	an	image	that	can	be	created	is	device-dependent.	To
determine	the	largest	image	size,	call	vkGetPhysicalDeviceFeatures()
and	check	the	maxImageDimension1D,	maxImageDimension2D,	and
maxImageDimension3D	fields	of	the	embedded
VkPhysicalDeviceLimits	structure.	maxImageDimension1D	contains
the	maximum	supported	width	for	1D	images,	maxImageDimension2D	the
maximum	side	length	for	2D	images,	and	maxImageDimension3D	the
maximum	side	length	for	3D	images.	Likewise,	the	maximum	number	of	layers
in	an	array	image	is	contained	in	the	maxImageArrayLayers	field.	If	the
image	is	a	cube	map,	then	the	maximum	side	length	for	the	cube	is	stored	in
maxImageDimensionCube.
maxImageDimension1D,	maxImageDimension2D,	and
maxImageDimensionCube	are	guaranteed	to	be	at	least	4,096	texels,	and
maxImageDimensionCube	and	maxImageArrayLayers	are	guaranteed
to	be	at	least	256.	If	the	image	you	want	to	create	is	smaller	than	these
dimensions,	then	there’s	no	need	to	check	the	device	features.	Further,	it’s	quite
common	to	find	Vulkan	implementations	that	support	significantly	higher	limits.
It	would	be	reasonable	to	make	larger	image	sizes	a	hard	requirement	rather	than
trying	to	create	fallback	paths	for	lower-end	devices.
The	number	of	mipmap	levels	to	create	in	the	image	is	specified	in
mipLevels.	Mipmapping	is	the	process	of	using	a	set	of	prefiltered	images	of
successively	lower	resolution	in	order	to	improve	image	quality	when



undersampling	the	image.	The	images	that	make	up	the	various	mipmap	levels
are	arranged	in	a	pyramid,	as	shown	in	Figure	2.1.

Figure	2.1:	Mipmap	Image	Layout

In	a	mipmapped	texture,	the	base	level	is	the	lowest-numbered	level	(usually
level	zero)	and	has	the	resolution	of	the	texture.	Each	successive	level	is	half	the
size	of	the	level	above	it	until	halving	the	size	of	the	image	again	in	one	of	the
dimensions	would	result	in	a	single	texel	in	that	direction.	Sampling	from
mipmapped	textures	is	covered	in	some	detail	in	Chapter	6,	“Shaders	and
Pipelines.”
Likewise,	the	number	of	samples	in	the	image	is	specified	in	samples.	This
field	is	somewhat	unlike	the	others.	It	must	be	a	member	of	the
VkSampleCountFlagBits	enumeration,	which	is	actually	defined	as	bits	to
be	used	in	a	bitfield.	However,	only	power-of-two	sample	counts	are	currently
defined	in	Vulkan,	which	means	they’re	“1-hot”	values,	so	single-bit	enumerant
values	work	just	fine.
The	next	few	fields	describe	how	the	image	will	be	used.	First	is	the	tiling	mode,
specified	in	the	tiling	field.	This	is	a	member	of	the	VkImageTiling
enumeration,	which	contains	only	VK_IMAGE_TILING_LINEAR	or
VK_IMAGE_TILING_OPTIMAL.	Linear	tiling	means	that	image	data	is	laid
out	left	to	right,	top	to	bottom,1	such	that	if	you	map	the	underlying	memory	and
write	it	with	the	CPU,	it	would	form	a	linear	image.	Meanwhile,	optimal	tiling	is
an	opaque	representation	used	by	Vulkan	to	lay	data	out	in	memory	to	improve
efficiency	of	the	memory	subsystem	on	the	device.	This	is	generally	what	you
should	choose	unless	you	plan	to	map	and	manipulate	the	image	with	the	CPU.
Optimal	tiling	will	likely	perform	significantly	better	than	linear	tiling	in	most
operations,	and	linear	tiling	might	not	be	supported	at	all	for	some	operations	or
formats,	depending	on	the	Vulkan	implementation.

1.	Really,	images	don’t	have	a	“top”	or	a	“bottom.”	They	have	a	positive	direction	in	their	sampling
coordinates.	By	convention,	however,	we	call	positive	u	“down,”	making	the	texels	at	u	=	1.0	the



“bottom”	of	the	image.

The	usage	field	is	a	bitfield	describing	where	the	image	will	be	used.	This	is
similar	to	the	usage	field	in	the	VkBufferCreateInfo	structure.	The
usage	field	here	is	made	up	of	members	of	the	VkImageUsageFlags
enumeration,	the	members	of	which	are	as	follows:

•	VK_IMAGE_USAGE_TRANSFER_SRC_BIT	and
VK_IMAGE_USAGE_TRANSFER_DST_BIT	mean	that	the	image	will	be
the	source	or	destination	of	transfer	commands,	respectively.	Transfer
commands	operating	on	images	are	covered	in	Chapter	4,	“Moving	Data.”
•	VK_IMAGE_USAGE_SAMPLED_BIT	means	that	the	image	can	be	sampled
from	in	a	shader.
•	VK_IMAGE_USAGE_STORAGE_BIT	means	that	the	image	can	be	used	for
general-purpose	storage,	including	writes	from	a	shader.
•	VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT	means	that	the	image
can	be	bound	as	a	color	attachment	and	drawn	into	using	graphics
operations.	Framebuffers	and	their	attachments	are	covered	in	Chapter	7,
“Graphics	Pipelines.”
•	VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT	means	that
the	image	can	be	bound	as	a	depth	or	stencil	attachment	and	used	for	depth
or	stencil	testing	(or	both).	Depth	and	stencil	operations	are	covered	in
Chapter	10,	“Fragment	Processing.”
•	VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT	means	that	the
image	can	be	used	as	a	transient	attachment,	which	is	a	special	kind	of
image	used	to	store	intermediate	results	of	a	graphics	operation.	Transient
attachments	are	covered	in	Chapter	13,	“Multipass	Rendering.”
•	VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT	means	that	the	image
can	be	used	as	a	special	input	during	graphics	rendering.	Input	images	differ
from	regular	sampled	or	storage	images	in	that	only	fragment	shaders	can
read	from	them	and	only	at	their	own	pixel	location.	Input	attachments	are
also	covered	in	detail	in	Chapter	13,	“Multipass	Rendering.”

The	sharingMode	is	identical	in	function	to	the	similarly	named	field	in	the
VkBufferCreateInfo	structure	described	in	“Buffers”	earlier	in	this
chapter.	If	it	is	set	to	VK_SHARING_MODE_EXCLUSIVE,	the	image	will	be
used	with	only	a	single	queue	family	at	a	time.	If	it	is	set	to
VK_SHARING_MODE_CONCURRENT,	then	the	image	may	be	accessed	by
multiple	queues	concurrently.	Likewise,	queueFamilyIndexCount	and



pQueueFamilyIndices	provide	similar	function	and	are	used	when
sharingMode	is	VK_SHARING_MODE_CONCURRENT.
Finally,	images	have	a	layout,	which	specifies	in	part	how	it	will	be	used	at	any
given	moment.	The	initialLayout	field	determines	which	layout	the	image
will	be	created	in.	The	available	layouts	are	the	members	of	the
VkImageLayout	enumeration,	which	are

•	VK_IMAGE_LAYOUT_UNDEFINED:	The	state	of	the	image	is	undefined.
The	image	must	be	moved	into	one	of	the	other	layouts	before	it	can	be	used
almost	for	anything.
•	VK_IMAGE_LAYOUT_GENERAL:	This	is	the	“lowest	common
denominator”	layout	and	is	used	where	no	other	layout	matches	the	intended
use	case.	Images	in	VK_IMAGE_LAYOUT_GENERAL	can	be	used	almost
anywhere	in	the	pipeline.
•	VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:	The	image	is
going	to	be	rendered	into	using	a	graphics	pipeline.
•	VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
The	image	is	going	to	be	used	as	a	depth	or	stencil	buffer	as	part	of	a
graphics	pipeline.
•	VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL:	The
image	is	going	to	be	used	for	depth	testing	but	will	not	be	written	to	by	the
graphics	pipeline.	In	this	special	state,	the	image	can	also	be	read	from	in
shaders.
•	VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:	The	image	will
be	bound	for	reading	by	shaders.	This	layout	is	typically	used	when	an
image	is	going	to	be	used	as	a	texture.
•	VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:	The	image	is	the
source	of	copy	operations.
•	VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:	The	image	is	the
destination	of	copy	operations.
•	VK_IMAGE_LAYOUT_PREINITIALIZED:	The	image	contains	data
placed	there	by	an	external	actor,	such	as	by	mapping	the	underlying
memory	and	writing	into	it	from	the	host.
•	VK_IMAGE_LAYOUT_PRESENT_SRC_KHR:	The	image	is	used	as	the
source	for	presentation,	which	is	the	act	of	showing	it	to	the	user.

Images	can	be	moved	from	layout	to	layout,	and	we	will	cover	the	various



layouts	as	we	introduce	the	topics	related	to	them.	However,	images	must
initially	be	created	in	either	the	VK_IMAGE_LAYOUT_UNDEFINED	or	the
VK_IMAGE_LAYOUT_PREINITIALIZED	layout.
VK_IMAGE_LAYOUT_PREINITIALIZED	should	be	used	only	when	you
have	data	in	memory	that	you	will	bind	to	the	image	resource	immediately.
VK_IMAGE_LAYOUT_UNDEFINED	should	be	used	when	you	plan	to	move	the
resource	to	another	layout	before	use.	Images	can	be	moved	out	of
VK_IMAGE_LAYOUT_UNDEFINED	layout	at	little	or	no	cost	at	any	time.
The	mechanism	for	changing	the	layout	of	an	image	is	known	as	a	pipeline
barrier,	or	simply	a	barrier.	A	barrier	not	only	serves	as	a	means	to	change	the
layout	of	a	resource	but	can	also	synchronize	access	to	that	resource	by	different
stages	in	the	Vulkan	pipeline	and	even	by	different	queues	running	concurrently
on	the	same	device.	As	such,	a	pipeline	barrier	is	fairly	complex	and	quite
difficult	to	get	right.	Pipeline	barriers	are	discussed	in	some	detail	in	Chapter	4,
“Moving	Data,”	and	are	further	explained	in	the	sections	of	the	book	where	they
are	relevant.
Listing	2.4	shows	a	simple	example	of	creating	an	image	resource.

Listing	2.4:	Creating	an	Image	Object

Click	here	to	view	code	image

VkImage	image	=	VK_NULL_HANDLE;

VkResult	result	=	VK_SUCCESS;

static	const

VkImageCreateInfo	imageCreateInfo	=

{

				VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,								//	sType

				nullptr,																																				//	pNext

				0,																																										//	flags

				VK_IMAGE_TYPE_2D,																											//	imageType

				VK_FORMAT_R8G8B8A8_UNORM,																			//	format

				{	1024,	1024,	1	},																										//	extent

				10,																																									//	mipLevels

				1,																																										//	arrayLayers

				VK_SAMPLE_COUNT_1_BIT,																						//	samples

				VK_IMAGE_TILING_OPTIMAL,																				//	tiling

				VK_IMAGE_USAGE_SAMPLED_BIT,																	//	usage

				VK_SHARING_MODE_EXCLUSIVE,																		//	sharingMode

				0,																																										//

queueFamilyIndexCount

				nullptr,																																				//

pQueueFamilyIndices

				VK_IMAGE_LAYOUT_UNDEFINED																			//	initialLayout



};

result	=	vkCreateImage(device,	&imageCreateInfo,	nullptr,	&image);

The	image	created	by	the	code	in	Listing	2.4	is	a	1,024	×	1,024	texel	2D	image
with	a	single	sample,	in	VK_FORMAT_R8G8B8A8_UNORM	format	and	optimal
tiling.	The	code	creates	it	in	the	undefined	layout,	which	means	that	we	can
move	it	to	another	layout	later	to	place	data	into	it.	The	image	is	to	be	used	as	a
texture	in	one	of	our	shaders,	so	we	set	the
VK_IMAGE_USAGE_SAMPLED_BIT	usage	flag.	In	our	simple	applications,
we	use	only	a	single	queue,	so	we	set	the	sharing	mode	to	exclusive.

Linear	Images
As	discussed	earlier,	two	tiling	modes	are	available	for	use	in	image	resources:
VK_IMAGE_TILING_LINEAR	and	VK_IMAGE_TILING_OPTIMAL.	The
VK_IMAGE_TILING_OPTIMAL	mode	represents	an	opaque,	implementation-
defined	layout	that	is	intended	to	improve	the	efficiency	of	the	memory
subsystem	of	the	device	for	read	and	write	operations	on	the	image.	However,
VK_IMAGE_TILING_LINEAR	is	a	transparent	layout	of	the	data	that	is
intended	to	be	intuitive.	Pixels	in	the	image	are	laid	out	left	to	right,	top	to
bottom.	Therefore,	it’s	possible	to	map	the	memory	used	to	back	the	resource	to
allow	the	host	to	read	and	write	to	it	directly.
In	addition	to	the	image’s	width,	height,	depth,	and	pixel	format,	a	few	pieces	of
information	are	needed	to	enable	host	access	to	the	underlying	image	data.	These
are	the	row	pitch	of	the	image,	which	is	the	distance	in	bytes	between	the	start	of
each	row	of	the	image;	the	array	pitch,	which	is	the	distance	between	array
layers;	and	the	depth	pitch,	which	is	the	distance	between	depth	slices.	Of
course,	the	array	pitch	and	depth	pitch	apply	only	to	array	or	3D	images,
respectively,	and	the	row	pitch	applies	only	to	2D	or	3D	images.
An	image	is	normally	made	up	of	several	subresources.	Some	formats	have	more
than	one	aspect,	which	is	a	component	of	the	image	such	as	the	depth	or	stencil
component	in	a	depth-stencil	image.	Mipmap	levels	and	array	layers	are	also
considered	to	be	separate	subresources.	The	layout	of	each	subresource	within	an
image	may	be	different	and	therefore	has	different	layout	information.	This
information	can	be	queried	by	calling
vkGetImageSubresourceLayout(),	the	prototype	of	which	is

Click	here	to	view	code	image

void	vkGetImageSubresourceLayout	(

				VkDevice																												device,

				VkImage																													image,



				const	VkImageSubresource*											pSubresource,

				VkSubresourceLayout*																pLayout);

The	device	that	owns	the	image	that	is	being	queried	is	passed	in	device,	and
the	image	being	queried	is	passed	in	image.	A	description	of	the	subresource	is
passed	through	an	instance	of	the	VkImageSubresource	structure,	a	pointer
to	which	is	passed	in	the	pSubresource	parameter.	The	definition	of
VkImageSubresource	is

Click	here	to	view	code	image

typedef	struct	VkImageSubresource	{

				VkImageAspectFlags				aspectMask;

				uint32_t														mipLevel;

				uint32_t														arrayLayer;

}	VkImageSubresource;

The	aspect	or	aspects	of	the	image	that	you	want	to	query	the	layout	of	is
specified	in	aspectMask.	For	color	images,	this	should	be
VK_IMAGE_ASPECT_COLOR_BIT,	and	for	depth,	stencil,	or	depth-stencil
images,	this	should	be	some	combination	of
VK_IMAGE_ASPECT_DEPTH_BIT,	and
VK_IMAGE_ASPECT_STENCIL_BIT.	The	mipmap	level	for	which	the
parameters	are	to	be	returned	is	specified	in	mipLevel,	and	the	array	layer	is
specified	in	arrayLayer.	You	should	normally	set	arrayLayer	to	zero,	as
the	parameters	of	the	image	aren’t	expected	to	change	across	layers.
When	vkGetImageSubresourceLayout()	returns,	it	will	have	written
the	layout	parameters	of	the	subresource	into	the	VkSubresourceLayout
structure	pointed	to	by	pLayout.	The	definition	of	VkSubresourceLayout
is

Click	here	to	view	code	image

typedef	struct	VkSubresourceLayout	{

				VkDeviceSize				offset;

				VkDeviceSize				size;

				VkDeviceSize				rowPitch;

				VkDeviceSize				arrayPitch;

				VkDeviceSize				depthPitch;

}	VkSubresourceLayout;

The	size	of	the	memory	region	consumed	by	the	requested	subresource	is
returned	in	size,	and	the	offset	within	the	resource	where	the	subresource
begins	is	returned	in	offset.	The	rowPitch,	arrayPitch,	and
depthPitch	fields	contain	the	row,	array	layer,	and	depth	slice	pitches,



respectively.	The	unit	of	these	fields	is	always	bytes,	regardless	of	the	pixel
format	of	the	images.	Pixels	within	a	row	are	always	tightly	packed.	Figure	2.2
illustrates	how	these	parameters	represent	memory	layout	of	an	image.	In	the
figure,	the	valid	image	data	is	represented	by	the	grey	grid,	and	padding	around
the	image	is	shown	as	blank	space.

Figure	2.2:	Memory	Layout	of	LINEAR	Tiled	Images

Given	the	memory	layout	of	an	image	in	LINEAR	tiling	mode,	it	is	possible	to
trivially	compute	the	memory	address	for	a	single	texel	within	the	image.
Loading	image	data	into	a	LINEAR	tiled	image	is	then	simply	a	case	of	loading
scanlines	from	the	image	into	memory	at	the	right	location.	For	many	texel



formats	and	image	dimensions,	it	is	highly	likely	that	the	image’s	rows	are
tightly	packed	in	memory—that	is,	the	rowPitch	field	of	the
VkSubresourceLayout	structure	is	equal	to	the	subresource’s	width.	In	this
case,	many	image-loading	libraries	will	be	able	to	load	the	image	directly	into
the	mapped	memory	of	the	image.

Nonlinear	Encoding
You	may	have	noticed	that	some	of	the	Vulkan	image	formats	include	SRGB	in
their	names.	This	refers	to	sRGB	color	encoding,	which	is	a	nonlinear	encoding
that	uses	a	gamma	curve	approximating	that	of	CRTs.	Although	CRTs	are	all	but
obsolete	now,	sRGB	encoding	is	still	in	widespread	use	for	texture	and	image
data.
Because	the	amount	of	light	energy	produced	by	a	CRT	is	not	linear	with	the
amount	of	electrical	energy	used	to	produce	the	electron	beam	that	excites	the
phosphor,	an	inverse	mapping	must	be	applied	to	color	signals	to	make	a	linear
rise	in	numeric	value	produce	a	linear	increase	in	light	output.	The	amount	of
light	output	by	a	CRT	is	approximately

Lout	=	Vinγ

The	standard	value	of	γ	in	NTSC	television	systems	(common	in	North	America,
parts	of	South	America,	and	parts	of	Asia)	is	2.2.	Meanwhile,	the	standard	value
of	γ	in	SECAM	and	PAL	systems	(common	in	Europe,	Africa,	Australia,	and
other	regions	of	Asia)	is	2.8.
The	sRGB	curve	attempts	to	compensate	for	this	by	applying	gamma	correction
to	linear	data	in	memory.	The	standard	sRGB	transfer	function	is	not	a	pure
gamma	curve	but	is	made	up	of	a	short	linear	section	followed	by	a	curved,
gamma-corrected	section.	The	function	applied	to	data	to	go	from	linear	to
sRGB	space	is

Click	here	to	view	code	image

if	(cl	>=	1.0)

{

				cs	=	1.0;

}

else	if	(cl	<=	0.0)

{

				cs	=	0.0;

}

else	if	(cl	<	0.0031308)

{



				cs	=	12.92	*	cl;

}

else

{

				cs	=	1.055	*	pow(cl,	0.41666)	-	0.055;

}

To	go	from	sRGB	space	to	linear	space,	the	following	transform	is	made:
Click	here	to	view	code	image

if	(cs	>=	1.0)

{

				cl	=	1.0;

}

else	if	(cs	<=	0.0)

{

				cl	=	0.0;

}

else	if	(cs	<=	0.04045)

{

				cl	=	cs	/	12.92;

}

else

{

				cl	=	pow((cs	+	0.0555)	/	1.055),	2.4)

}

In	both	code	snippets,	cs	is	the	sRGB	color	space	value,	and	cl	is	the	linear
value.	Figure	2.3	shows	a	side-by-side	comparison	of	a	simple	γ	=	2.2	curve	and
the	standard	sRGB	transfer	function.	As	you	can	see	in	the	figure,	the	curves	for
sRGB	correction	(shown	on	the	top)	and	a	simple	power	curve	(shown	on	the
bottom)	are	almost	identical.	While	Vulkan	implementations	are	expected	to
implement	sRGB	using	the	official	definition,	if	you	need	to	perform	the
transformation	manually	in	your	shaders,	you	may	be	able	to	get	away	with	a
simple	power	function	without	accumulating	too	much	error.



Figure	2.3:	Gamma	Curves	for	sRGB	(Top)	and	Simple	Powers	(Bottom)

When	rendering	to	an	image	in	sRGB	format,	linear	values	produced	by	your
shaders	are	transformed	to	sRGB	encoding	before	being	written	into	the	image.
When	reading	from	an	image	in	sRGB	format,	texels	are	transformed	from
sRGB	format	back	to	linear	space	before	being	returned	to	your	shader.
Blending	and	interpolation	always	occurs	in	linear	space	such	that	data	read
from	a	framebuffer	is	first	transformed	from	sRGB	to	linear	space	and	then
blended	with	the	source	data	in	linear	space,	and	the	final	result	is	transformed



back	to	sRGB	encoding	before	being	written	into	the	framebuffer.
Rendering	in	sRGB	space	provides	more	precision	in	darker	colors	and	can
result	in	less	banding	artifacts	and	richer	colors.	However,	for	best	image	quality,
including	high-dynamic-range	rendering,	it’s	best	to	choose	a	floating-point
color	format	and	render	in	a	linear	space,	converting	to	sRGB	as	late	as	possible
before	display.

Compressed	Image	Formats
Image	resources	are	likely	to	be	the	largest	consumers	of	device	memory	in	your
application.	For	this	reason,	Vulkan	provides	the	capability	for	images	to	be
compressed.	Image	compression	provides	two	significant	benefits	to	an
application:

•	It	reduces	the	total	amount	of	memory	consumed	by	image	resources	used
by	the	application.
•	It	reduces	the	total	memory	bandwidth	consumed	while	accessing	those
resources.

All	currently	defined	compressed	image	formats	in	Vulkan	are	what	are	known
as	block	compressed	formats.	Texels	within	an	image	are	compressed	in	small
square	or	rectangular	blocks	that	can	be	decompressed	independently	of	all
others.	All	formats	are	lossy,	and	the	compression	ratio	is	not	competitive	with
formats	such	as	JPEG	or	even	PNG.	However,	decompression	is	fast	and	cheap
to	implement	in	hardware,	and	random	access	to	texels	is	relatively
straightforward.
Support	for	various	compressed	image	formats	is	optional,	but	all	Vulkan
implementations	are	required	to	support	at	least	one	family	of	formats.	You	can
determine	which	family	of	compressed	formats	is	supported	by	checking	various
fields	of	the	device’s	VkPhysicalDeviceFeatures	structure	as	returned
from	a	call	to	vkGetPhysicalDeviceProperties().
If	textureCompressionBC	is	VK_TRUE,	then	the	device	supports	the	block
compressed	formats,	also	known	as	BC	formats.	The	BC	family	includes

•	BC1:	Made	up	of	the	VK_FORMAT_BC1_RGB_UNORM_BLOCK,
VK_FORMAT_BC1_RGB_SRGB_BLOCK,
VK_FORMAT_BC1_RGBA_UNORM_BLOCK,	and
VK_FORMAT_BC1_RGBA_SRGB_BLOCK	formats,	BC1	encodes	images	in
blocks	of	4	×	4	texels,	with	each	block	represented	as	a	64-bit	quantity.
•	BC2:	Consisting	of	VK_FORMAT_BC2_UNORM_BLOCK	and



VK_FORMAT_BC2_SRGB_BLOCK,	BC2	encodes	images	in	blocks	of	4	×	4
texels,	with	each	block	represented	as	a	128-bit	quantity.	BC2	images	always
have	an	alpha	channel.	The	encoding	for	the	RGB	channels	is	the	same	as
with	BC1	RGB	formats,	and	the	alpha	is	stored	as	4	bits	per	texel	in	a
second	64-bit	field	before	the	BC1	encoded	RGB	data.
•	BC3:	The	VK_FORMAT_BC3_UNORM_BLOCK	and
VK_FORMAT_BC3_SRGB_BLOCK	formats	make	up	the	BC3	family,	again
encoding	texels	in	4	×	4	blocks,	with	each	block	consuming	128	bits	of
storage.	The	first	64-bit	quantity	stores	compressed	alpha	values,	allowing
coherent	alpha	data	to	be	stored	with	higher	precision	than	BC2.	The	second
64-bit	quantity	stores	compressed	color	data	in	a	similar	form	to	BC1.
•	BC4:	VK_FORMAT_BC4_UNORM_BLOCK	and
VK_FORMAT_BC4_SRGB_BLOCK	represent	single-channel	formats,	again
encoded	as	4	×	4	blocks	of	texels,	with	each	block	consuming	64	bits	of
storage.	The	encoding	of	the	single-channel	data	is	essentially	the	same	as
that	of	the	alpha	channel	of	a	BC3	image.
•	BC5:	Made	up	of	VK_FORMAT_BC5_UNORM_BLOCK	and
VK_FORMAT_BC5_SRGB_BLOCK,	the	BC5	family	is	a	two-channel
format,	with	each	4	×	4	block	essentially	consisting	of	two	BC4	blocks	back-
to-back.
•	BC6:	The	VK_FORMAT_BC6H_SFLOAT_BLOCK	and
VK_FORMAT_BC6H_UFLOAT_BLOCK	formats	are	signed	and	unsigned
floating-point	compressed	formats,	respectively.	Each	4	×	4	block	of	RGB
texels	is	stored	in	128	bits	of	data.
•	BC7:	VK_FORMAT_BC7_UNORM_BLOCK	and
VK_FORMAT_BC7_SRGB_BLOCK	are	four-channel	formats	with	each	4	×
4	block	of	RGBA	texel	data	stored	in	a	128-bit	component.

If	the	textureCompressionETC2	member	of
VkPhysicalDeviceFeatures	is	VK_TRUE,	then	the	device	supports	the
ETC	formats,	including	ETC2	and	EAC.	The	following	formats	are	included	in
this	family:

•	VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK	and
VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK:	Unsigned	formats	where	4
×	4	blocks	of	RGB	texels	are	packed	into	64	bits	of	compressed	data.
•	VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK	and
VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK:	Unsigned	formats	where



4	×	4	blocks	of	RGB	texels	plus	a	one-bit	alpha	value	per	texel	are	packed
into	64	bits	of	compressed	data.
•	VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK	and
VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK:	Each	4	×	4	block	of
texels	is	represented	as	a	128-bit	quantity.	Each	texel	has	4	channels.
•	VK_FORMAT_EAC_R11_UNORM_BLOCK	and
VK_FORMAT_EAC_R11_SNORM_BLOCK:	Unsigned	and	signed	single-
channel	formats	with	each	4	×	4	block	of	texels	represented	as	a	64-bit
quantity.
•	VK_FORMAT_EAC_R11G11_UNORM_BLOCK	and
VK_FORMAT_EAC_R11G11_SNORM_BLOCK:	Unsigned	and	signed	two-
channel	formats	with	each	4	×	4	block	of	texels	represented	as	a	64-bit
quantity.

The	final	family	is	the	ASTC	family.	If	the
textureCompressionASTC_LDR	member	of
VkPhysicalDeviceFeatures	is	VK_TRUE,	then	the	device	supports	the
ASTC	formats.	You	may	have	noticed	that	for	all	of	the	formats	in	the	BC	and
ETC	families,	the	block	size	is	fixed	at	4	×	4	texels,	but	depending	on	format,
the	texel	format	and	number	of	bits	used	to	store	the	compressed	data	vary.
ASTC	is	different	here	in	that	the	number	of	bits	per	block	is	always	128,	and	all
ASTC	formats	have	four	channels.	However,	the	block	size	in	texels	can	vary.
The	following	block	sizes	are	supported:	4	×	4,	5	×	4,	5	×	5,	6	×	5,	6	×	6,	8	×	5,	8
×	6,	8	×	8,	10	×	5,	10	×	6,	10	×	8,	10	×	10,	12	×	10,	and	12	×	12.
The	format	of	the	token	name	for	ASTC	formats	is	formulated	as
VK_FORMAT_ASTC_{N}x{M}_{encoding}_BLOCK,	where	{N}	and	{M}
represent	the	width	and	height	of	the	block,	and	{encoding}	is	either	UNORM
or	SRGB,	depending	on	whether	the	data	is	linear	or	encoded	as	sRGB	nonlinear.
For	example,	VK_FORMAT_ASTC_8x6_SRGB_BLOCK	is	an	RGBA	ASTC
compressed	format	with	8	×	6	blocks	and	sRGB	encoded	data.
For	all	formats	including	SRGB,	only	the	R,	G,	and	B	channels	use	nonlinear
encoding.	The	A	channel	is	always	stored	with	linear	encoding.

Resource	Views
Buffers	and	images	are	the	two	primary	types	of	resources	supported	in	Vulkan.
In	addition	to	creating	these	two	resource	types,	you	can	create	views	of	existing
resources	in	order	to	partition	them,	reinterpret	their	content,	or	use	them	for



multiple	purposes.	Views	of	buffers,	which	represent	a	subrange	of	a	buffer
object,	are	known	as	buffer	views,	and	views	of	images,	which	can	alias	formats
or	represent	a	subresource	of	another	image,	are	known	as	image	views.
Before	a	view	of	a	buffer	or	image	can	be	created,	you	need	to	bind	memory	to
the	parent	object.

Buffer	Views
A	buffer	view	is	used	to	interpret	the	data	in	a	buffer	with	a	specific	format.
Because	the	raw	data	in	the	buffer	is	then	treated	as	a	sequence	of	texels,	this	is
also	known	as	a	texel	buffer	view.	A	texel	buffer	view	can	be	accessed	directly	in
shaders,	and	Vulkan	will	automatically	convert	the	texels	in	the	buffer	into	the
format	expected	by	the	shader.	One	example	use	for	this	functionality	is	to
directly	fetch	the	properties	of	vertices	in	a	vertex	shader	by	reading	from	a	texel
buffer	rather	than	using	a	vertex	buffer.	While	this	is	more	restrictive,	it	does
allow	random	access	to	the	data	in	the	buffer.
To	create	a	buffer	view,	call	vkCreateBufferView(),	the	prototype	of
which	is

Click	here	to	view	code	image

VkResult	vkCreateBufferView	(

				VkDevice																													device,

				const	VkBufferViewCreateInfo*								pCreateInfo,

				const	VkAllocationCallbacks*									pAllocator,

				VkBufferView*																								pView);

The	device	that	is	to	create	the	new	view	is	passed	in	device.	This	should	be
the	same	device	that	created	the	buffer	of	which	you	are	creating	a	view.	The
remaining	parameters	of	the	new	view	are	passed	through	a	pointer	to	an
instance	of	the	VkBufferViewCreateInfo	structure,	the	definition	of
which	is

Click	here	to	view	code	image

typedef	struct	VkBufferViewCreateInfo	{

				VkStructureType												sType;

				const	void*																pNext;

				VkBufferViewCreateFlags				flags;

				VkBuffer																			buffer;

				VkFormat																			format;

				VkDeviceSize															offset;

				VkDeviceSize															range;

}	VkBufferViewCreateInfo;

The	sType	field	of	VkBufferViewCreateInfo	should	be	set	to



VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO,	and	pNext
should	be	set	to	nullptr.	The	flags	field	is	reserved	and	should	be	set	to	0.
The	parent	buffer	is	specified	in	buffer.	The	new	view	will	be	a	“window”
into	the	parent	buffer	starting	at	offset	bytes	and	extending	for	range	bytes.
When	bound	as	a	texel	buffer,	the	data	in	the	buffer	is	interpreted	as	a	sequence
of	texels	with	the	format	as	specified	in	format.
The	maximum	number	of	texels	that	can	be	stored	in	a	texel	buffer	is	determined
by	inspecting	the	maxTexelBufferElements	field	of	the	device’s
VkPhysicalDeviceLimits	structure,	which	can	be	retrieved	by	calling
vkGetPhysicalDeviceProperties().	If	the	buffer	is	to	be	used	as	a
texel	buffer,	then	range	divided	by	the	size	of	a	texel	in	format	must	be	less
than	or	equal	to	this	limit.	maxTexelBufferElements	is	guaranteed	to	be
at	least	65,536,	so	if	the	view	you’re	creating	contains	fewer	texels,	there’s	no
need	to	query	this	limit.
The	parent	buffer	must	have	been	created	with	the
VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT	or
VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT	flags	in	the	usage
field	of	the	VkBufferCreateInfo	used	to	create	the	buffer.	The	specified
format	must	support	the
VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT,
VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT,	or
VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT	as
reported	by	vkGetPhysicalDeviceFormatProperties().
On	success,	vkCreateBufferView()	places	the	handle	to	the	newly	created
buffer	view	in	the	variable	pointed	to	by	pView.	If	pAllocator	is	not
nullptr,	then	the	allocation	callbacks	specified	in	the
VkAllocationCallbacks	structure	it	points	to	are	used	to	allocate	any	host
memory	required	by	the	new	object.

Image	Views
In	many	cases,	the	image	resource	cannot	be	used	directly,	as	more	information
about	it	is	needed	than	is	included	in	the	resource	itself.	For	example,	you	cannot
use	an	image	resource	directly	as	an	attachment	to	a	framebuffer	or	bind	an
image	into	a	descriptor	set	in	order	to	sample	from	it	in	a	shader.	To	satisfy	these
additional	requirements,	you	must	create	an	image	view,	which	is	essentially	a
collection	of	properties	and	a	reference	to	a	parent	image	resource.
An	image	view	also	allows	all	or	part	of	an	existing	image	to	be	seen	as	a



different	format.	The	resulting	view	of	the	parent	image	must	have	the	same
dimensions	as	the	parent,	although	a	subset	of	the	parent’s	array	layers	or	mip
levels	may	be	included	in	the	view.	The	format	of	the	parent	and	child	images
must	also	be	compatible,	which	usually	means	that	they	have	the	same	number
of	bits	per	pixel,	even	if	the	data	formats	are	completely	different	and	even	if
there	are	a	different	number	of	channels	in	the	image.
To	create	a	new	view	of	an	existing	image,	call	vkCreateImageView(),	the
prototype	of	which	is

Click	here	to	view	code	image

VkResult	vkCreateImageView	(

				VkDevice																														device,

				const	VkImageViewCreateInfo*										pCreateInfo,

				const	VkAllocationCallbacks*										pAllocator,

				VkImageView*																										pView);

The	device	that	will	be	used	to	create	the	new	view	and	that	should	own	the
parent	image	is	specified	in	device.	The	remaining	parameters	used	in	the
creation	of	the	new	view	are	passed	through	an	instance	of	the
VkImageViewCreateInfo	structure,	a	pointer	to	which	is	passed	in
pCreateInfo.	The	definition	of	VkImageViewCreateInfo	is

Click	here	to	view	code	image

typedef	struct	VkImageViewCreateInfo	{

				VkStructureType												sType;

				const	void*																pNext;

				VkImageViewCreateFlags					flags;

				VkImage																				image;

				VkImageViewType												viewType;

				VkFormat																			format;

				VkComponentMapping									components;

				VkImageSubresourceRange				subresourceRange;

}	VkImageViewCreateInfo;

The	sType	field	of	VkImageViewCreateInfo	should	be	set	to
VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,	and	pNext	should
be	set	to	nullptr.	The	flags	field	is	reserved	for	future	use	and	should	be
set	to	0.
The	parent	image	of	which	to	create	a	new	view	is	specified	in	image.	The	type
of	view	to	create	is	specified	in	viewType.	The	view	type	must	be	compatible
with	the	parent’s	image	type	and	is	a	member	of	the	VkImageViewType
enumeration,	which	is	larger	than	the	VkImageType	enumeration	used	in
creating	the	parent	image.	The	image	view	types	are	as	follows:



•	VK_IMAGE_VIEW_TYPE_1D,	VK_IMAGE_VIEW_TYPE_2D,	and
VK_IMAGE_VIEW_TYPE_3D	are	the	“normal”	1D,	2D,	and	3D	image
types.
•	VK_IMAGE_VIEW_TYPE_CUBE	and
VK_IMAGE_VIEW_TYPE_CUBE_ARRAY	are	cube	map	and	cube	map
array	images.
•	VK_IMAGE_VIEW_TYPE_1D_ARRAY	and
VK_IMAGE_VIEW_TYPE_2D_ARRAY	are	1D	and	2D	array	images.

Note	that	all	images	are	essentially	considered	array	images,	even	if	they	only
have	one	layer.	It	is,	however,	possible	to	create	nonarray	views	of	parent	images
that	refer	to	one	of	the	layers	of	the	image.
The	format	of	the	new	view	is	specified	in	format.	This	must	be	a	format	that
is	compatible	with	that	of	the	parent	image.	In	general,	if	two	formats	have	the
same	number	of	bits	per	pixel,	then	they	are	considered	compatible.	If	either	or
both	of	the	formats	is	a	block	compressed	image	format,	then	one	of	two	things
must	be	true:

•	If	both	images	have	compressed	formats,	then	the	number	of	bits	per	block
must	match	between	those	formats.
•	If	only	one	image	is	compressed	and	the	other	is	not,	then	bits	per	block	in
the	compressed	image	must	be	the	same	as	the	number	of	bits	per	texel	in
the	uncompressed	image.

By	creating	an	uncompressed	view	of	a	compressed	image,	you	give	access	to
the	raw,	compressed	data,	making	it	possible	to	do	things	like	write	compressed
data	from	a	shader	into	the	image	or	interpret	the	compressed	data	directly	in
your	application.	Note	that	while	all	block-compressed	formats	encode	blocks
either	as	64-bit	or	128-bit	quantities,	there	are	no	uncompressed,	single-channel
64-bit	or	128-bit	image	formats.	To	alias	a	compressed	image	as	an
uncompressed	format,	you	need	to	choose	an	uncompressed	format	with	the
same	number	of	bits	per	texel	and	then	aggregate	the	bits	from	the	different
image	channels	within	your	shader	to	extract	the	individual	fields	from	the
compressed	data.
The	component	ordering	in	the	view	may	be	different	from	that	in	the	parent.
This	allows,	for	example,	an	RGBA	view	of	a	BGRA	format	image	to	be
created.	This	remapping	is	specified	using	an	instance	of
VkComponentMapping,	the	definition	of	which	is	simply

Click	here	to	view	code	image



typedef	struct	VkComponentMapping	{

				VkComponentSwizzle				r;

				VkComponentSwizzle				g;

				VkComponentSwizzle				b;

				VkComponentSwizzle				a;

}	VkComponentMapping;

Each	member	of	VkComponentMapping	specifies	the	source	of	data	in	the
parent	image	that	will	be	used	to	fill	the	resulting	texel	fetched	from	the	child
view.	They	are	members	of	the	VkComponentSwizzle	enumeration,	the
members	of	which	are	as	follows:

•	VK_COMPONENT_SWIZZLE_R,	VK_COMPONENT_SWIZZLE_G,
VK_COMPONENT_SWIZZLE_B,	and	VK_COMPONENT_SWIZZLE_A
indicate	that	the	source	data	should	be	read	from	the	R,	G,	B,	or	A	channels
of	the	parent	image,	respectively.
•	VK_COMPONENT_SWIZZLE_ZERO	and
VK_COMPONENT_SWIZZLE_ONE	indicate	that	the	data	in	the	child	image
should	be	read	as	zero	or	one,	respectively,	regardless	of	the	content	of	the
parent	image.
•	VK_COMPONENT_SWIZZLE_IDENTITY	indicates	that	the	data	in	the
child	image	should	be	read	from	the	corresponding	channel	in	the	parent
image.	Note	that	the	numeric	value	of
VK_COMPONENT_SWIZZLE_IDENTITY	is	zero,	so	simply	setting	the
entire	VkComponentMapping	structure	to	zero	will	result	in	an	identity
mapping	between	child	and	parent	images.

The	child	image	can	be	a	subset	of	the	parent	image.	This	subset	is	specified
using	the	embedded	VkImageSubresourceRange	structure	in
subresourceRange.	The	definition	of	VkImageSubresourceRange	is

Click	here	to	view	code	image

typedef	struct	VkImageSubresourceRange	{

				VkImageAspectFlags				aspectMask;

				uint32_t														baseMipLevel;

				uint32_t														levelCount;

				uint32_t														baseArrayLayer;

				uint32_t														layerCount;

}	VkImageSubresourceRange;

The	aspectMask	field	is	a	bitfield	made	up	from	members	of	the
VkImageAspectFlagBits	enumeration	specifying	which	aspects	of	the
image	are	affected	by	the	barrier.	Some	image	types	have	more	than	one	logical
part,	even	though	the	data	itself	might	be	interleaved	or	otherwise	related.	An



example	of	this	is	depth-stencil	images,	which	have	both	a	depth	component	and
a	stencil	component.	Each	of	these	two	components	may	be	viewable	as	a
separate	image	in	its	own	right,	and	these	subimages	are	known	as	aspects.	The
flags	that	can	be	included	in	aspectMask	are

•	VK_IMAGE_ASPECT_COLOR_BIT:	The	color	part	of	an	image.	There	is
usually	only	a	color	aspect	in	color	images.
•	VK_IMAGE_ASPECT_DEPTH_BIT:	The	depth	aspect	of	a	depth-stencil
image.
•	VK_IMAGE_ASPECT_STENCIL_BIT:	The	stencil	aspect	of	a	depth-
stencil	image.
•	VK_IMAGE_ASPECT_METADATA_BIT:	Any	additional	information
associated	with	the	image	that	might	track	its	state	and	is	used,	for	example,
in	various	compression	techniques.

When	you	create	the	new	view	of	the	parent	image,	that	view	can	refer	to	only
one	aspect	of	the	parent	image.	Perhaps	the	most	common	use	case	of	this	is	to
create	a	depth-or	stencil-only	view	of	a	combined	depth-stencil	format	image.
To	create	a	new	image	view	that	corresponds	only	to	a	subset	of	the	parent’s	mip
chain,	use	the	baseMipLevel	and	levelCount	to	specify	where	in	the	mip
chain	the	view	begins	and	how	many	mip	levels	it	will	contain.	If	the	parent
image	does	not	have	mipmaps,	these	fields	should	be	set	to	zero	and	one,
respectively.
Likewise,	to	create	an	image	view	of	a	subset	of	a	parent’s	array	layers,	use	the
baseArrayLayer	and	layerCount	fields	to	specify	the	starting	layer	and
number	of	layers,	respectively.	Again,	if	the	parent	image	is	not	an	array	image,
then	baseArrayLayer	should	be	set	to	zero	and	layerCount	should	be	set
to	one.

Image	Arrays
The	defined	image	types	(VkImageType)	include	only
VK_IMAGE_TYPE_1D,	VK_IMAGE_TYPE_2D,	or	VK_IMAGE_TYPE_3D,
which	are	used	to	create	1D,	2D,	and	3D	images,	respectively.	However,	in
addition	to	their	sizes	in	each	of	the	x,	y,	and	z	dimensions,	all	images	have	a
layer	count,	contained	in	the	arrayLayers	field	of	their
VkImageCreateInfo	structure.
Images	can	be	aggregated	into	arrays,	and	each	element	of	an	array	image	is
known	as	a	layer.	Array	images	allow	images	to	be	grouped	into	single	objects,



and	sampling	from	multiple	layers	of	the	same	array	image	is	often	more
performant	than	sampling	from	several	loose	array	objects.	Because	all	Vulkan
images	have	a	layerCount	field,	they	are	all	technically	array	images.
However,	in	practice,	we	only	refer	to	images	with	a	layerCount	greater	than
1	as	an	array	image.
When	views	are	created	of	images,	the	view	is	explicitly	marked	as	either	an
array	or	a	nonarray.	A	nonarray	view	implicitly	has	only	one	layer	whereas	an
array	view	has	multiple	layers.	Sampling	from	a	nonarray	view	may	perform
better	than	sampling	from	a	single	layer	of	an	array	image,	simply	because	the
device	needs	to	perform	fewer	indirections	and	parameter	lookups.
A	1D	array	texture	is	conceptually	different	from	a	2D	texture,	and	a	2D	array
texture	is	different	from	a	3D	texture.	The	primary	difference	is	that	linear
filtering	can	be	performed	in	the	y	direction	of	a	2D	texture	and	in	the	z	direction
in	a	3D	texture,	whereas	filtering	cannot	be	performed	across	multiple	layers	in
an	array	image.	Notice	that	there	is	no	3D	array	image	view	type	included	in
VkImageViewType,	and	most	Vulkan	implementations	will	not	allow	you	to
create	a	3D	image	with	an	arrayLayers	field	greater	than	1.
In	addition	to	image	arrays,	a	cube	map	is	a	special	type	of	image	that	allows
groups	of	six	layers	of	an	array	image	to	be	interpreted	as	the	sides	of	a	cube.
Imagine	standing	in	the	center	of	a	cube-shaped	room.	The	room	has	four	walls,
a	floor,	and	a	ceiling.	To	your	left	and	right	are	considered	the	negative	and
positive	X	directions,	behind	and	in	front	of	you	are	the	negative	and	positive	Z
directions,	and	the	floor	and	ceiling	are	the	negative	and	positive	Y	directions.
These	faces	are	often	notated	as	the	-X,	+X,	-Y,	+Y,	-Z,	and	+Z	faces.	These	are
the	six	faces	of	a	cube	map,	and	a	group	of	six	consecutive	array	layers	can	be
interpreted	in	that	order.
A	cube	map	is	sampled	using	a	3D	coordinate.	This	coordinate	is	interpreted	as	a
vector	pointing	from	the	center	of	the	cube	map	outward,	and	the	point	sampled
in	the	cube-map	is	the	point	where	the	vector	meets	the	cube.	Again,	put	yourself
back	into	the	cube-map	room	and	imagine	you	have	a	laser	pointer.	As	you	point
the	laser	in	different	directions,	the	spot	on	the	wall	or	ceiling	is	the	point	from
which	texture	data	is	taken	when	the	cube	map	is	sampled.
Figure	2.4	shows	this	pictorially.	As	you	can	see	in	the	figure,	the	cube	map	is
constructed	from	a	selection	of	six	consecutive	elements	from	the	parent	texture.
To	create	a	cube-map	view,	first	create	a	2D	array	image	with	at	least	six	faces.
The	imageType	field	of	the	VkImageCreateInfo	structure	should	be	set
to	VK_IMAGE_TYPE_2D	and	the	arrayLayers	field	should	be	at	least	6.



Note	that	the	number	of	layers	in	the	parent	array	doesn’t	have	to	be	a	multiple
of	6,	but	it	has	to	be	at	least	6.

Figure	2.4:	Cube	Map	Construction

The	flags	field	of	the	parent	image’s	VkImageCreateInfo	structure	must
have	the	VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT	set,	and	the	image
must	be	square	(because	the	faces	of	a	cube	are	square).
Next,	we	create	a	view	of	the	2D	array	parent,	but	rather	than	creating	a	normal
2D	(array)	view	of	the	image,	we	create	a	cube-map	view.	To	do	this,	set	the
viewType	field	of	the	VkImageViewCreateInfo	structure	used	to	create
the	view	to	VK_IMAGE_VIEW_TYPE_CUBE.	In	the	embedded
subresourceRange	field,	the	baseArrayLayer	and	layerCount	fields
are	used	to	determine	where	in	the	array	the	cube	map	begins.	To	create	a	single
cube,	layerCount	should	be	set	to	6.
The	first	element	of	the	array	(at	the	index	specified	in	the	baseArrayLayer
field)	becomes	the	-X	face,	and	the	next	five	layers	become	the	+X,	-Y,	+Y,	-Z,
and	+Z	faces,	in	that	order.
Cube	maps	can	also	form	arrays	of	their	own.	This	is	simply	a	concatenation	of



an	integer	multiple	of	six	faces,	with	each	group	of	six	forming	a	separate	cube.
To	create	a	cube-map	array	image,	set	the	viewType	field	of
VkImageViewCreateInfo	to	VK_IMAGE_VIEW_TYPE_CUBE_ARRAY,
and	set	the	layerCount	to	a	multiple	of	6.	The	number	of	cubes	in	the	array	is
therefore	the	layerCount	for	the	array	divided	by	6.	The	number	of	layers	in
the	parent	image	must	be	at	least	as	many	layers	as	are	referenced	by	the	cube-
map	view.
When	data	is	placed	in	a	cube	map	or	cube-map	array	image,	it	is	treated
identically	to	an	array	image.	Each	array	layer	is	laid	out	consecutively,	and
commands	such	as	vkCmdCopyBufferToImage()	(which	is	covered	in
Chapter	4,	“Moving	Data”)	can	be	used	to	write	into	the	image.	The	image	can
be	bound	as	a	color	attachment	and	rendered	to.	Using	layered	rendering,	you
can	even	write	to	multiple	faces	of	a	cube	map	in	a	single	drawing	command.

Destroying	Resources
When	you	are	done	with	buffers,	images,	and	other	resources,	it	is	important	to
destroy	them	cleanly.	Before	destroying	a	resource,	you	must	make	sure	that	it	is
not	in	use	and	that	no	work	is	pending	that	might	access	it.	Once	you	are	certain
that	this	is	the	case,	you	can	destroy	the	resource	by	calling	the	appropriate
destruction	function.	To	destroy	a	buffer	resource,	call	vkDestroyBuffer(),
the	prototype	of	which	is

Click	here	to	view	code	image

void	vkDestroyBuffer	(

				VkDevice																																				device,

				VkBuffer																																				buffer,

				const	VkAllocationCallbacks*																pAllocator);

The	device	that	owns	the	buffer	object	should	be	specified	in	device,	and	the
handle	to	the	buffer	object	should	be	specified	in	buffer.	If	a	host	memory
allocator	was	used	to	create	the	buffer	object,	a	compatible	allocator	should	be
specified	in	pAllocator;	otherwise,	pAllocator	should	be	set	to
nullptr.
Note	that	destroying	a	buffer	object	for	which	other	views	exist	will	also
invalidate	those	views.	The	view	objects	themselves	must	still	be	destroyed
explicitly,	but	it	is	not	legal	to	access	a	view	of	a	buffer	that	has	been	destroyed.
To	destroy	a	buffer	view,	call	vkDestroyBufferView(),	the	prototype	of
which	is

Click	here	to	view	code	image



void	vkDestroyBufferView	(

				VkDevice																																				device,

				VkBufferView																																bufferView,

				const	VkAllocationCallbacks*																pAllocator);

Again,	device	is	a	handle	to	the	device	that	owns	the	view,	and	bufferView
is	a	handle	to	the	view	to	be	destroyed.	pAllocator	should	point	to	a	host
memory	allocator	compatible	with	that	used	to	create	the	view	or	should	be	set
to	nullptr	if	no	allocator	was	used	to	create	the	view.
Destruction	of	images	is	almost	identical	to	that	of	buffers.	To	destroy	an	image
object,	call	vkDestroyImage(),	the	prototype	of	which	is

Click	here	to	view	code	image

void	vkDestroyImage	(

				VkDevice																																				device,

				VkImage																																					image,

				const	VkAllocationCallbacks*																pAllocator);

device	is	the	device	that	owns	the	image	to	be	destroyed,	and	image	is	the
handle	to	that	image.	Again,	if	a	host	memory	allocator	was	used	to	create	the
original	image,	then	pAllocator	should	point	to	one	compatible	with	it;
otherwise,	pAllocator	should	be	nullptr.
As	with	buffers,	destroying	an	image	invalidates	all	views	of	that	image.	It	is	not
legal	to	access	a	view	of	an	image	that	has	already	been	destroyed.	The	only
thing	you	can	do	with	such	views	is	to	destroy	them.	Destroying	an	image	view
is	accomplished	by	calling	vkDestroyImageView(),	the	prototype	of	which
is

Click	here	to	view	code	image

void	vkDestroyImageView	(

				VkDevice																																				device,

				VkImageView																																	imageView,

				const	VkAllocationCallbacks*																pAllocator);

As	you	might	expect,	device	is	the	device	that	owns	the	view	being	destroyed,
and	imageView	is	the	handle	to	that	view.	As	with	all	other	destruction
functions	mentioned	so	far,	pAllocator	is	a	pointer	to	an	allocator	compatible
with	the	one	used	to	create	the	view	or	nullptr	if	no	allocator	was	used.

Device	Memory	Management
When	the	Vulkan	device	operates	on	data,	the	data	must	be	stored	in	device
memory.	This	is	memory	that	is	accessible	to	the	device.	In	a	Vulkan	system



there	are	four	classes	of	memory.	Some	systems	may	have	only	a	subset	of	these,
and	some	may	only	have	two.	Given	a	host	(the	processor	upon	which	your
application	is	running)	and	a	device	(the	processor	that	executes	your	Vulkan
commands),	there	could	be	separate	memory	physically	attached	to	each.	In
addition,	some	regions	of	the	physical	memory	attached	to	each	processor	might
be	accessible	to	the	other	processor	or	processors	in	the	system.
In	some	cases,	the	visible	region	of	shared	memory	might	be	relatively	small,
and	in	other	cases,	there	may	actually	be	only	one	physical	piece	of	memory,
which	is	shared	between	the	host	and	the	device.	Figure	2.5	demonstrates	the
memory	map	of	a	host	and	device	with	physically	separate	memories.

Figure	2.5:	Host	and	Device	Memory

Any	memory	that	is	accessible	to	the	device	is	known	as	device	memory,	even	if
that	memory	is	physically	attached	to	the	host.	In	this	case,	it	is	host	local	device
memory.	This	is	distinct	from	host	memory,	which	might	also	be	known	as
system	memory,	which	is	regular	memory	allocated	with	a	function	such	as



malloc	or	new.	Device	memory	may	also	be	accessible	to	the	host	through	a
mapping.
A	typical	discrete	GPU	as	found	on	an	add-in	card	plugged	into	a	PCI-Express
slot	will	have	an	amount	of	dedicated	memory	physically	attached	to	its	circuit
board.	Some	part	of	this	memory	may	be	accessible	only	to	the	device,	and	some
part	of	the	memory	may	be	accessible	to	the	host	through	some	form	of	window.
In	addition,	the	GPU	will	have	access	to	some	or	all	of	the	host’s	system
memory.	All	of	these	pools	of	memory	will	appear	as	a	heap	to	the	host,	and
memory	will	be	mapped	into	those	heaps	via	the	various	types	of	memory.
On	the	other	hand,	a	typical	embedded	GPU—such	as	those	found	in	embedded
systems,	mobile	devices,	or	even	laptop	processors—may	share	memory
controller	and	subsystem	with	the	host	processor.	In	this	case,	it	is	likely	that
access	to	main	system	memory	is	coherent	and	the	device	will	expose	fewer
heaps—perhaps	only	one.	This	is	considered	a	unified	memory	architecture.

Allocating	Device	Memory
A	device	memory	allocation	is	represented	as	a	VkDeviceMemory	object	that
is	created	using	the	vkAllocateMemory()	function,	the	prototype	of	which
is

Click	here	to	view	code	image

VkResult	vkAllocateMemory	(

				VkDevice																																				device,

				const	VkMemoryAllocateInfo*																	pAllocateInfo,

				const	VkAllocationCallbacks*																pAllocator,

				VkDeviceMemory*																													pMemory);

The	device	that	will	use	the	memory	is	passed	in	device.	pAllocateInfo
describes	the	new	device	memory	object	which,	if	the	allocation	is	successful,
will	be	placed	in	the	variable	pointed	to	by	pMemory.	pAllocateInfo
points	to	an	instance	of	the	VkMemoryAllocateInfo	structure,	the
definition	of	which	is

Click	here	to	view	code	image

typedef	struct	VkMemoryAllocateInfo	{

				VkStructureType				sType;

				const	void*								pNext;

				VkDeviceSize							allocationSize;

				uint32_t											memoryTypeIndex;

}	VkMemoryAllocateInfo;

This	is	a	simple	structure	containing	only	the	size	and	the	memory	type	to	be



used	for	the	allocation.	sType	should	be	set	to
VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,	and	pNext	should	be
set	to	nullptr	unless	an	extension	is	in	use	that	requires	more	information
about	the	allocation.	The	size	of	the	allocation	is	passed	in	allocationSize
and	is	measured	in	bytes.	The	memory	type,	passed	in	memoryTypeIndex,	is
an	index	into	the	memory	type	array	returned	from	a	call	to
vkGetPhysicalDeviceMemoryProperties(),	as	described	in
“Physical	Device	Memory”	in	Chapter	1,	“Overview	of	Vulkan.”
Once	you	have	allocated	device	memory,	it	can	be	used	to	back	resources	such
as	buffers	and	images.	Vulkan	may	use	device	memory	for	other	purposes,	such
as	other	types	of	device	objects,	internal	allocations	and	data	structures,	scratch
storage,	and	so	on.	These	allocations	are	managed	by	the	Vulkan	driver,	as	the
requirements	may	vary	quite	widely	between	implementations.
When	you	are	done	with	a	memory	allocation,	you	need	to	free	it.	To	do	this,	call
vkFreeMemory(),	the	prototype	of	which	is

Click	here	to	view	code	image

void	vkFreeMemory	(

				VkDevice																																				device,

				VkDeviceMemory																														memory,

				const	VkAllocationCallbacks*																pAllocator);

vkFreeMemory()	takes	the	memory	object	directly	in	memory.	It	is	your
responsibility	to	ensure	that	there	is	no	work	queued	up	to	a	device	that	might
use	the	memory	object	before	you	free	it.	Vulkan	will	not	track	this	for	you.	If	a
device	attempts	to	access	memory	after	it’s	been	freed,	the	results	can	be
unpredictable	and	can	easily	crash	your	application.
Further,	access	to	memory	must	be	externally	synchronized.	Attempting	to	free
device	memory	with	a	call	to	vkFreeMemory()	while	another	command	is
executing	in	another	thread	will	produce	undefined	behavior	and	possibly	crash
your	application.
On	some	platforms,	there	may	be	an	upper	bound	to	the	total	number	of	memory
allocations	that	can	exist	within	a	single	process.	If	you	try	to	create	more
allocations	than	this	limit,	allocation	could	fail.	This	limit	can	be	determined	by
calling	vkGetPhysicalDeviceProperties()	and	inspecting	the
maxMemoryAllocationCount	field	of	the	returned
VkPhysicalDeviceLimits	structure.	The	limit	is	guaranteed	to	be	at	least
4,096	allocations,	though	some	platforms	may	report	a	much	higher	limit.
Although	this	may	seem	low,	the	intention	is	that	you	create	a	small	number	of



large	allocations	and	then	suballocate	from	them	to	place	many	resources	in	the
same	allocation.	There	is	no	upper	limit	to	the	total	number	of	resources	can	be
created,	memory	allowing.
Normally,	when	you	allocate	memory	from	a	heap,	that	memory	is	permanently
assigned	to	the	returned	VkDeviceMemory	object	until	that	object	is	destroyed
by	calling	vkFreeMemory().	In	some	cases,	you	(or	even	the	Vulkan
implementation)	may	not	know	exactly	how	much	memory	is	required	for
certain	operations,	or	indeed	whether	any	memory	is	required	at	all.
In	particular,	this	is	often	the	case	for	images	that	are	used	for	intermediate
storage	of	data	during	rendering.	When	the	image	is	created,	if	the
VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT	is	included	in	the
VkImageCreateInfo	structure,	then	Vulkan	knows	that	the	data	in	the	image
will	live	for	a	short	time,	and	therefore,	it’s	possible	that	it	may	never	need	to	be
written	out	to	device	memory.
In	this	case,	you	can	ask	Vulkan	to	be	lazy	with	its	allocation	of	the	memory
object	to	defer	true	allocation	until	Vulkan	can	determine	that	the	physical
storage	for	data	is	really	needed.	To	do	this,	choose	a	memory	type	with	the
VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT	set.	Choosing	an
otherwise-appropriate	memory	type	that	does	not	have	this	bit	set	will	still	work
correctly	but	will	always	allocate	the	memory	up	front,	even	if	it	never	ends	up
being	used.
If	you	want	to	know	whether	a	memory	allocation	is	physically	backed	and	how
much	backing	has	actually	been	allocated	for	a	memory	object,	call
vkGetDeviceMemoryCommitment(),	the	prototype	of	which	is

Click	here	to	view	code	image

void	vkGetDeviceMemoryCommitment	(

				VkDevice																														device,

				VkDeviceMemory																								memory,

				VkDeviceSize*																									pCommittedMemoryInBytes);

The	device	that	owns	the	memory	allocation	is	passed	in	device	and	the
memory	allocation	to	query	is	passed	in	memory.
pCommittedMemoryInBytes	is	a	pointer	to	a	variable	that	will	be
overwritten	with	the	number	of	bytes	actually	allocated	for	the	memory	object.
That	commitment	will	always	come	from	the	heap	associated	with	the	memory
type	used	to	allocate	the	memory	object.
For	memory	objects	allocated	with	memory	types	that	don’t	include
VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT,	or	if	the	memory



object	ended	up	fully	committed,	vkGetDeviceMemoryCommitment()
will	always	return	the	full	size	of	the	memory	object.	The	commitment	returned
from	vkGetDeviceMemoryCommitment()	is	informational	at	best.	In
many	cases,	the	information	could	be	out	of	date,	and	there’s	not	much	you	can
do	with	the	information	anyway.

Host	Access	to	Device	Memory
As	discussed	earlier	in	this	chapter,	device	memory	is	divided	into	multiple
regions.	Pure	device	memory	is	accessible	only	to	the	device.	However,	there	are
regions	of	memory	that	are	accessible	to	both	the	host	and	the	device.	The	host	is
the	processor	upon	which	your	application	is	running,	and	it	is	possible	to	ask
Vulkan	to	give	you	a	pointer	to	memory	allocated	from	host-accessible	regions.
This	is	known	as	mapping	memory.
To	map	device	memory	into	the	host’s	address	space,	the	memory	object	to	be
mapped	must	have	been	allocated	from	a	heap	that	has	the
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT	flag	set	in	its	heap
properties.	Assuming	that	this	is	the	case,	mapping	the	memory	to	obtain	a
pointer	usable	by	the	host	is	achieved	by	calling	vkMapMemory(),	the
prototype	of	which	is

Click	here	to	view	code	image

VkResult	vkMapMemory	(

				VkDevice																																				device,

				VkDeviceMemory																														memory,

				VkDeviceSize																																offset,

				VkDeviceSize																																size,

				VkMemoryMapFlags																												flags,

				void**																																						ppData);

The	device	that	owns	the	memory	object	to	be	mapped	is	passed	in	device,
and	the	handle	to	the	memory	object	being	mapped	is	passed	in	memory.
Access	to	the	memory	object	must	be	externally	synchronized.	To	map	a	range
of	a	memory	object,	specify	the	starting	offset	in	offset	and	the	size	of	the
region	in	size.	If	you	want	to	map	the	entire	memory	object,	set	offset	to	0
and	size	to	VK_WHOLE_SIZE.	Setting	offset	to	a	nonzero	value	and	size
to	VK_WHOLE_SIZE	will	map	the	memory	object	starting	from	offset	to	the
end.	offset	and	size	are	both	specified	in	bytes.	You	should	not	attempt	to
map	a	region	of	the	memory	object	that	extends	beyond	its	bounds.
The	flags	parameter	is	reserved	for	future	use	and	should	be	set	to	zero.
If	vkMapMemory()	is	successful,	a	pointer	to	the	mapped	region	is	written



into	the	variable	pointed	to	by	ppData.	This	pointer	can	then	be	cast	to	the
appropriate	type	in	your	application	and	dereferenced	to	directly	read	and	write
the	device	memory.	Vulkan	guarantees	that	pointers	returned	from
vkMapMemory()	are	aligned	to	an	integer	multiple	of	the	device’s	minimum
memory	mapping	alignment	when	offset	is	subtracted	from	them.
This	value	is	reported	in	the	minMemoryMapAlignment	field	of	the
VkPhysicalDeviceLimits	structure	returned	from	a	call	to
vkGetPhysicalDeviceProperties().	It	is	guaranteed	to	be	at	least	64
bytes	but	could	be	any	higher	power	of	two.	On	some	CPU	architectures,	much
higher	performance	can	be	achieved	by	using	memory	load	and	store
instructions	that	assume	aligned	addresses.	minMemoryMapAlignment	will
often	match	a	cache	line	size	or	the	natural	alignment	of	the	machine’s	widest
register,	for	example,	to	facilitate	this.	Some	host	CPU	instructions	will	fault	if
passed	an	unaligned	address.	Therefore,	you	can	check
minMemoryMapAlignment	once	and	decide	whether	to	use	optimized
functions	that	assume	aligned	addressing	or	fallback	functions	that	can	handle
unaligned	addresses	at	the	expense	of	performance.
When	you’re	done	with	the	pointer	to	the	mapped	memory	range,	it	can	be
unmapped	by	calling	vkUnmapMemory(),	the	prototype	of	which	is

Click	here	to	view	code	image

void	vkUnmapMemory	(

				VkDevice																												device,

				VkDeviceMemory																						memory);

The	device	that	owns	the	memory	object	is	passed	in	device,	and	the	memory
object	to	be	unmapped	is	passed	in	memory.	As	with	vkMapMemory(),
access	to	the	memory	object	must	be	externally	synchronized.
It’s	not	possible	to	map	the	same	memory	object	more	than	once	at	the	same
time.	That	is,	you	can’t	call	vkMapMemory()	on	the	same	memory	object	with
different	memory	ranges,	whether	they	overlap	or	not,	without	unmapping	the
memory	object	in	between.	The	range	isn’t	needed	when	unmapping	the	object
because	Vulkan	knows	the	range	that	was	mapped.
As	soon	as	the	memory	object	is	unmapped,	any	pointer	received	from	a	call	to
vkMapMemory()	is	invalid	and	should	not	be	used.	Also,	if	you	map	the	same
range	of	the	same	memory	object	over	and	over,	you	shouldn’t	assume	that	the
pointer	you	get	back	will	be	the	same.
When	device	memory	is	mapped	into	host	address	space,	there	are	effectively



two	clients	of	that	memory,	which	may	both	perform	writes	into	it.	There	is
likely	to	be	a	cache	hierarchy	on	both	the	host	and	the	device	sides	of	the
mapping,	and	those	caches	may	or	may	not	be	coherent.	In	order	to	ensure	that
both	the	host	and	the	device	see	a	coherent	view	of	data	written	by	the	other
client,	it	is	necessary	to	force	Vulkan	to	flush	caches	that	might	contain	data
written	by	the	host	but	not	yet	made	visible	to	the	device	or	to	invalidate	a	host
cache	that	might	hold	stale	data	that	has	been	overwritten	by	the	device.
Each	memory	type	advertised	by	the	device	has	a	number	of	properties,	one	of
which	might	be	VK_MEMORY_PROPERTY_HOST_COHERENT_BIT.	If	this	is
the	case,	and	a	mapping	is	made	from	a	region	with	this	property	set,	then
Vulkan	will	take	care	of	coherency	between	caches.	In	some	cases,	the	caches
are	automatically	coherent	because	they	are	either	shared	between	host	and
device	or	have	some	form	of	coherency	protocol	to	keep	them	in	sync.	In	other
cases,	a	Vulkan	driver	might	be	able	to	infer	when	caches	need	to	be	flushed	or
invalidated	and	then	perform	these	operations	behind	the	scenes.
If	VK_MEMORY_PROPERTY_HOST_COHERENT_BIT	is	not	set	in	the	memory
properties	of	a	mapped	memory	region,	then	it	is	your	responsibility	to	explicitly
flush	or	invalidate	caches	that	might	be	affected	by	the	mapping.	To	flush	host
caches	that	might	contain	pending	writes,	call
vkFlushMappedMemoryRanges(),	the	prototype	of	which	is

Click	here	to	view	code	image

VkResult	vkFlushMappedMemoryRanges	(

				VkDevice																															device,

				uint32_t																															memoryRangeCount,

				const	VkMappedMemoryRange*													pMemoryRanges);

The	device	that	owns	the	mapped	memory	objects	is	specified	in	device.	The
number	of	ranges	to	flush	is	specified	in	memoryRangeCount,	and	the	details
of	each	range	are	passed	in	an	instance	of	the	VkMappedMemoryRange
structure.	A	pointer	to	an	array	of	memoryRangeCount	of	these	structures	is
passed	through	the	pMemoryRanges	parameter.	The	definition	of
VkMappedMemoryRange	is

Click	here	to	view	code	image

typedef	struct	VkMappedMemoryRange	{

				VkStructureType				sType;

				const	void*								pNext;

				VkDeviceMemory					memory;

				VkDeviceSize							offset;

				VkDeviceSize							size;

}	VkMappedMemoryRange;



The	sType	field	of	VkMappedMemoryRange	should	be	set	to
VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,	and	pNext	should	be
set	to	nullptr.	Each	memory	range	refers	to	a	mapped	memory	object
specified	in	the	memory	field	and	a	mapped	range	within	that	object,	specified
by	offset	and	size.	You	don’t	have	to	flush	the	entire	mapped	region	of	the
memory	object,	so	offset	and	size	don’t	need	to	match	the	parameters	used
in	vkMapMemory().	Also,	if	the	memory	object	is	not	mapped,	or	if	offset
and	size	specify	a	region	of	the	object	that	isn’t	mapped,	then	the	flush
command	has	no	effect.	To	just	flush	any	existing	mapping	on	a	memory	object,
set	offset	to	zero	and	size	to	VK_WHOLE_SIZE.
A	flush	is	necessary	if	the	host	has	written	to	a	mapped	memory	region	and
needs	the	device	to	see	the	effect	of	those	writes.	However,	if	the	device	writes
to	a	mapped	memory	region	and	you	need	the	host	to	see	the	effect	of	the
device’s	writes,	you	need	to	invalidate	any	caches	on	the	host	that	might	now
hold	stale	data.	To	do	this,	call	vkInvalidateMappedMemoryRanges(),
the	prototype	of	which	is

Click	here	to	view	code	image

VkResult	vkInvalidateMappedMemoryRanges	(

				VkDevice																															device,

				uint32_t																															memoryRangeCount,

				const	VkMappedMemoryRange*													pMemoryRanges);

As	with	vkFlushMappedMemoryRanges(),	device	is	the	device	that
owns	the	memory	objects	whose	mapped	regions	are	to	be	invalidated.	The
number	of	regions	is	specified	in	memoryRangeCount,	and	a	pointer	to	an
array	of	memoryRangeCount	VkMappedMemoryRange	structures	is
passed	in	pMemoryRanges.	The	fields	of	the	VkMappedMemoryRange
structures	are	interpreted	exactly	as	they	are	in
vkFlushMappedMemoryRanges(),	except	that	the	operation	performed	is
an	invalidation	rather	than	a	flush.
vkFlushMappedMemoryRanges()	and
vkInvalidateMappedMemoryRanges()	affect	only	caches	and
coherency	of	access	by	the	host	and	have	no	effect	on	the	device.	Regardless	of
whether	a	memory	mapping	is	coherent	or	not,	access	by	the	device	to	memory
that	has	been	mapped	must	still	be	synchronized	using	barriers,	which	will	be
discussed	later	in	this	chapter.

Binding	Memory	to	Resources



Before	a	resource	such	as	a	buffer	or	image	can	be	used	by	Vulkan	to	store	data,
memory	must	be	bound	to	it.	Before	memory	is	bound	to	a	resource,	you	should
determine	what	type	of	memory	and	how	much	of	it	the	resource	requires.	There
is	a	different	function	for	buffers	and	for	textures.	They	are
vkGetBufferMemoryRequirements()	and
vkGetImageMemoryRequirements(),	and	their	prototypes	are

Click	here	to	view	code	image

void	vkGetBufferMemoryRequirements	(

				VkDevice																											device,

				VkBuffer																											buffer,

				VkMemoryRequirements*														pMemoryRequirements);

and
Click	here	to	view	code	image

void	vkGetImageMemoryRequirements	(

				VkDevice																											device,

				VkImage																												image,

				VkMemoryRequirements*														pMemoryRequirements);

The	only	difference	between	these	two	functions	is	that
vkGetBufferMemoryRequirements()	takes	a	handle	to	a	buffer	object
and	vkGetImageMemoryRequirements()	takes	a	handle	to	an	image
object.	Both	functions	return	the	memory	requirements	for	the	resource	in	an
instance	of	the	VkMemoryRequirements	structure,	the	address	of	which	is
passed	in	the	pMemoryRequirements	parameter.	The	definition	of
VkMemoryRequirements	is

Click	here	to	view	code	image

typedef	struct	VkMemoryRequirements	{

				VkDeviceSize			size;

				VkDeviceSize			alignment;

				uint32_t							memoryTypeBits;

}	VkMemoryRequirements;

The	amount	of	memory	needed	by	the	resource	is	placed	in	the	size	field,	and
the	alignment	requirements	of	the	object	are	placed	in	the	alignment	field.
When	you	bind	memory	to	the	object	(which	we	will	get	to	in	a	moment),	you
need	to	ensure	that	the	offset	from	the	start	of	the	memory	object	meets	the
alignment	requirements	of	the	resource	and	that	there	is	sufficient	space	in	the
memory	object	to	store	the	object.
The	memoryTypeBits	field	is	populated	with	all	the	memory	types	that	the
resource	can	be	bound	to.	One	bit	is	turned	on,	starting	from	the	least	significant



bit,	for	each	type	that	can	be	used	with	the	resource.	If	you	have	no	particular
requirements	for	the	memory,	simply	find	the	lowest-set	bit	and	use	its	index	to
choose	the	memory	type,	which	is	then	used	as	the	memoryTypeIndex	field
in	the	allocation	info	passed	to	a	call	to	vkAllocateMemory().	If	you	do
have	particular	requirements	or	preferences	for	the	memory—if	you	want	to	be
able	to	map	the	memory	or	prefer	that	it	be	host	local,	for	example—look	for	a
type	that	includes	those	bits	and	is	supported	by	the	resource.
Listing	2.5	shows	an	example	of	an	appropriate	algorithm	for	choosing	the
memory	type	for	an	image	resource.

Listing	2.5:	Choosing	a	Memory	Type	for	an	Image

Click	here	to	view	code	image

uint32_t	application::chooseHeapFromFlags(

				const	VkMemoryRequirements&	memoryRequirements,

				VkMemoryPropertyFlags	requiredFlags,

				VkMemoryPropertyFlags	preferredFlags)

{

				VkPhysicalDeviceMemoryProperties	deviceMemoryProperties;

				vkGetPhysicalDeviceMemoryProperties(m_physicalDevices[0],

																																								&deviceMemoryProperties);

				uint32_t	selectedType	=	~0u;

				uint32_t	memoryType;

				for	(memoryType	=	0;	memoryType	<	32;	++memoryType)

				{

								if	(memoryRequirements.memoryTypeBits	&	(1	<<	memoryType))

								{

											const	VkMemoryType&	type	=

															deviceMemoryProperties.memoryTypes[memoryType];

											//	If	it	exactly	matches	my	preferred	properties,	grab	it.

											if	((type.propertyFlags	&	preferredFlags)	==

preferredFlags)

											{

														selectedType	=	memoryType;

														break;

											}

								}

				}

				if	(selectedType	!=	~0u)

				{

							for	(memoryType	=	0;	memoryType	<	32;	++memoryType)

							{



										if	(memoryRequirements.memoryTypeBits	&	(1	<<	memoryType))

										{

													const	VkMemoryType&	type	=

																	deviceMemoryProperties.memoryTypes[memoryType];

													//	If	it	has	all	my	required	properties,	it'll	do.

													if	((type.propertyFlags	&	requiredFlags)	==

requiredFlags)

													{

																	selectedType	=	memoryType;

																	break;

													}

										}

							}

				}

				return	selectedType;

}

The	algorithm	shown	in	Listing	2.5	chooses	a	memory	type	given	the	memory
requirements	for	an	object,	a	set	of	hard	requirements,	and	a	set	of	preferred
requirements.	First,	it	iterates	through	the	device’s	supported	memory	types	and
checks	each	for	the	set	of	preferred	flags.	If	there	is	a	memory	type	that	contains
all	of	the	flags	that	the	caller	prefers,	then	it	immediately	returns	that	memory
type.	If	none	of	the	device’s	memory	types	exactly	matches	the	preferred	flags,
then	it	iterates	again,	this	time	returning	the	first	memory	type	that	meets	all	of
the	requirements.
Once	you	have	chosen	the	memory	type	for	the	resource,	you	can	bind	a	piece	of
a	memory	object	to	that	resource	by	calling	either	vkBindBufferMemory()
for	buffer	objects	or	vkBindImageMemory()	for	image	objects.	Their
prototypes	are

Click	here	to	view	code	image

VkResult	vkBindBufferMemory	(

				VkDevice																												device,

				VkBuffer																												buffer,

				VkDeviceMemory																						memory,

				VkDeviceSize																								memoryOffset);

and
Click	here	to	view	code	image

VkResult	vkBindImageMemory	(

				VkDevice																												device,

				VkImage																													image,

				VkDeviceMemory																						memory,

				VkDeviceSize																								memoryOffset);



Again,	these	two	functions	are	identical	in	declaration	except	that
vkBindBufferMemory()	takes	a	VkBuffer	handle	and
vkBindImageMemory()	takes	a	VkImage	handle.	In	both	cases,	device
must	own	both	the	resource	and	the	memory	object,	whose	handle	is	passed	in
memory.	This	is	the	handle	of	a	memory	allocation	created	through	a	call	to
vkAllocateMemory().
Access	to	buffer	and	image	from	vkBindBufferMemory()	and
vkBindImageMemory(),	respectively,	must	be	externally	synchronized.
Once	memory	has	been	bound	to	a	resource	object,	the	memory	binding	cannot
be	changed	again.	If	two	threads	attempt	to	execute
vkBindBufferMemory()	or	vkBindImageMemory()	concurrently,	then
which	thread’s	binding	takes	effect	and	which	one	is	invalid	is	subject	to	a	race
condition.	Even	resolving	the	race	condition	would	not	produce	a	legal
command	sequence,	so	this	should	be	avoided.
The	memoryOffset	parameter	specifies	where	in	the	memory	object	the
resource	will	live.	The	amount	of	memory	consumed	by	the	object	is	determined
from	the	size	of	the	object’s	requirements,	as	discovered	with	a	call	to
vkGetBufferMemoryRequirements()	or
vkGetImageMemoryRequirements().
It	is	very	strongly	recommended	that	rather	than	simply	creating	a	new	memory
allocation	for	each	resource,	you	create	a	pool	of	a	small	number	of	relatively
large	memory	allocations	and	place	multiple	resources	in	each	one	at	different
offsets.	It	is	possible	for	two	resources	to	overlap	in	memory.	In	general,	aliasing
data	like	this	is	not	well	defined,	but	if	you	can	be	sure	that	two	resources	are	not
used	at	the	same	time,	this	can	be	a	good	way	to	reduce	the	memory
requirements	of	your	application.
An	example	of	a	device	memory	allocator	is	included	with	the	book’s	source
code.

Sparse	Resources
Sparse	resources	are	a	special	type	of	resource	that	can	be	partially	backed	by
memory	and	can	have	their	memory	backing	changed	after	they	have	been
created	and	even	used	in	the	application.	A	sparse	resource	must	still	be	bound	to
memory	before	it	can	be	used,	although	that	binding	can	be	changed.
Additionally,	an	image	or	buffer	can	support	sparse	residency,	which	allows
parts	of	the	image	to	not	be	backed	by	memory	at	all.
To	create	a	sparse	image,	set	the



VK_IMAGE_CREATE_SPARSE_BINDING_BIT	in	the	flags	field	of	the
VkImageCreateInfo	structure	used	to	create	the	image.	Likewise,	to	create
a	sparse	buffer,	set	the	VK_BUFFER_CREATE_SPARSE_BINDING_BIT	in
the	flags	field	of	the	VkBufferCreateInfo	structure	used	to	create	the
buffer.
If	an	image	was	created	with	the
VK_IMAGE_CREATE_SPARSE_BINDING_BIT	bit	set,	your	application
should	call	vkGetImageSparseMemoryRequirements()	to	determine
the	additional	requirements	that	the	image	needs.	The	prototype	of
vkGetImageSparseMemoryRequirements()	is

Click	here	to	view	code	image

void	vkGetImageSparseMemoryRequirements	(

				VkDevice																															device,

				VkImage																																image,

				uint32_t*																														pSparseMemoryRequirementCount,

				VkSparseImageMemoryRequirements*							pSparseMemoryRequirements);

The	device	that	owns	the	image	should	be	passed	in	device,	and	the	image
whose	requirements	to	query	should	be	passed	in	image.	The
pSparseMemoryRequirements	parameter	points	to	an	array	of
VkSparseImageMemoryRequirements	structures	that	will	be	filled	with
the	requirements	of	the	image.
If	pSparseMemoryRequirements	is	nullptr,	then	the	initial	value	of
the	variable	pointed	to	by	pSparseMemoryRequirementCount	is	ignored
and	is	overwritten	with	the	number	of	requirements	of	the	image.	If
pSparseMemoryRequirements	is	not	nullptr,	then	the	initial	value	of
the	variable	pointed	to	by	pSparseMemoryRequirementCount	is	the
number	of	elements	in	the	pSparseMemoryRequirements	array	and	is
overwritten	with	the	number	of	requirements	actually	written	to	the	array.
The	definition	of	VkSparseImageMemoryRequirements	is

Click	here	to	view	code	image

typedef	struct	VkSparseImageMemoryRequirements	{

				VkSparseImageFormatProperties				formatProperties;

				uint32_t																									imageMipTailFirstLod;

				VkDeviceSize																					imageMipTailSize;

				VkDeviceSize																					imageMipTailOffset;

				VkDeviceSize																					imageMipTailStride;

}	VkSparseImageMemoryRequirements;

The	first	field	of	VkSparseImageMemoryRequirements	is	an	instance	of



the	VkSparseImageFormatProperties	structure	that	provides	general
information	about	how	the	image	is	laid	out	in	memory	with	respect	to	binding.

Click	here	to	view	code	image

typedef	struct	VkSparseImageFormatProperties	{

				VkImageAspectFlags										aspectMask;

				VkExtent3D																		imageGranularity;

				VkSparseImageFormatFlags				flags;

}	VkSparseImageFormatProperties;

The	aspectMask	field	of	VkSparseImageFormatProperties	is	a
bitfield	indicating	the	image	aspects	to	which	the	properties	apply.	This	will
generally	be	all	of	the	aspects	in	the	image.	For	color	images,	it	will	be
VK_IMAGE_ASPECT_COLOR_BIT,	and	for	depth,	stencil,	and	depth-stencil
images,	it	will	be	either	or	both	of	VK_IMAGE_ASPECT_DEPTH_BIT	and
VK_IMAGE_ASPECT_STENCIL_BIT.
When	memory	is	bound	to	a	sparse	image,	it	is	bound	in	blocks	rather	than	to	the
whole	resource	at	once.	Memory	has	to	be	bound	in	implementation-specific
sized	blocks,	and	the	imageGranularity	field	of
VkSparseImageFormatProperties	contains	this	size.
Finally,	the	flags	field	contains	some	addional	flags	describing	further
behavior	of	the	image.	The	flags	that	may	be	included	are

•	VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT:	If	this	bit	is
set	and	the	image	is	an	array,	then	the	mip	tail	shares	a	binding	shared	by	all
array	layers.	If	the	bit	is	not	set,	then	each	array	layer	has	its	own	mip	tail
that	can	be	bound	to	memory	independently	of	others.
•	VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT:	If	this	bit
is	set,	it	is	an	indicator	that	the	mip	tail	begins	with	the	first	level	that	is	not
a	multiple	of	the	image’s	binding	granularity.	If	the	bit	is	not	set,	then	the	tail
begins	at	the	first	level	that	is	smaller	than	the	image’s	binding	granularity.
•	VK_SPARSE_IMAGE_FORMAT_NONSTANDARD_BLOCK_SIZE_BIT:	If
this	bit	is	set,	then	the	image’s	format	does	support	sparse	binding,	but	not
with	the	standard	block	sizes.	The	values	reported	in
imageGranularity	are	still	correct	for	the	image	but	don’t	necessarily
match	the	standard	block	for	the	format.

Unless	VK_SPARSE_IMAGE_FORMAT_NONSTANDARD_BLOCK_SIZE_BIT
is	set	in	flags,	then	the	values	in	imageGranularity	match	a	set	of
standard	block	sizes	for	the	format.	The	size,	in	texels,	of	various	formats	is
shown	in	Table	2.1.



The	remaining	fields	of	VkSparseImageMemoryRequirements	describe
how	the	format	used	by	the	image	behaves	in	the	mip	tail.	The	mip	tail	is	the
region	of	the	mipmap	chain	beginning	from	the	first	level	that	cannot	be	sparsely
bound	to	memory.	This	is	typically	the	first	level	that	is	smaller	than	the	size	of
the	format’s	granularity.	As	memory	must	be	bound	to	sparse	resources	in	units
of	the	granularity,	the	mip	tail	presents	an	all-or-nothing	binding	opportunity.
Once	any	level	of	the	mipmap’s	tail	is	bound	to	memory,	all	levels	within	the	tail
become	bound.

Table	2.1:	Sparse	Texture	Block	Sizes

The	mip	tail	begins	at	the	level	reported	in	the	imageMipTailFirstLod
field	of	VkSparseImageMemoryRequirements.	The	size	of	the	tail,	in
bytes,	is	contained	in	imageMipTailSize,	and	it	begins	at
imageMipTailOffset	bytes	into	the	image’s	memory	binding	region.	If	the
image	does	not	have	a	single	mip	tail	binding	for	all	array	layers	(as	indicated	by
the	presence	of	VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT	in
the	aspectMask	field	of	VkSparseImageFormatProperties),	then
imageMipTailStride	is	the	distance,	in	bytes,	between	the	start	of	the
memory	binding	for	each	mip	tail	level.
The	properties	of	a	specific	format	can	also	be	determined	by	calling
vkGetPhysicalDeviceSparseImageFormatProperties(),	which,
given	a	specific	format,	will	return	a	VkSparseImageFormatProperties
describing	that	format’s	sparse	image	requirements	without	the	need	to	create	an
image	and	query	it.	The	prototype	of
vkGetPhysicalDeviceSparseImageFormatProperties()	is

Click	here	to	view	code	image

void	vkGetPhysicalDeviceSparseImageFormatProperties	(

				VkPhysicalDevice																							physicalDevice,

				VkFormat																															format,

				VkImageType																												type,

				VkSampleCountFlagBits																		samples,



				VkImageUsageFlags																						usage,

				VkImageTiling																										tiling,

				uint32_t*																														pPropertyCount,

				VkSparseImageFormatProperties*									pProperties);

As	you	can	see,
vkGetPhysicalDeviceSparseImageFormatProperties()	takes	as
parameters	many	of	the	properties	that	would	be	used	to	construct	an	image.
Sparse	image	properties	are	a	function	of	a	physical	device,	a	handle	to	which
should	be	passed	in	physicalDevice.	The	format	of	the	image	is	passed	in
format,	and	the	type	of	image	(VK_IMAGE_TYPE_1D,
VK_IMAGE_TYPE_2D,	or	VK_IMAGE_TYPE_3D)	is	passed	in	type.	If
multisampling	is	required,	the	number	of	samples	(represented	as	one	of	the
members	of	the	VkSampleCountFlagBits	enumeration)	is	passed	in
samples.
The	intended	usage	for	the	image	is	passed	in	usage.	This	should	be	a	bitfield
containing	the	flags	specifying	how	an	image	with	this	format	will	be	used.	Be
aware	that	sparse	images	may	not	be	supported	at	all	under	certain	use	cases,	so
it’s	best	to	set	this	field	conservatively	and	accurately	rather	than	just	turning	on
every	bit	and	hoping	for	the	best.	Finally,	the	tiling	mode	to	be	used	for	the
image	is	specified	in	tiling.	Again,	standard	block	sizes	may	be	supported
only	in	certain	tiling	modes.	For	example,	it’s	very	unlikely	that	an
implementation	would	support	standard	(or	even	reasonable)	block	sizes	when
LINEAR	tiling	is	used.
Just	as	with	vkGetPhysicalDeviceImageFormatProperties(),
vkGetPhysicalDeviceSparseImageFormatProperties()	can
return	an	array	of	properties.	The	pPropertyCount	parameter	points	to	a
variable	that	will	be	overwritten	with	the	number	of	properties	reported	for	the
format.	If	pProperties	is	nullptr,	then	the	initial	value	of	the	variable
pointed	to	by	pPropertyCount	is	ignored	and	the	total	number	of	properties
is	written	into	it.	If	pProperties	is	not	nullptr,	then	it	should	be	a	pointer
to	an	array	of	VkSparseImageFormatProperties	structures	that	will
receive	the	properties	of	the	image.	In	this	case,	the	initial	value	of	the	variable
pointed	to	by	pPropertyCount	is	the	number	of	elements	in	the	array,	and	it
is	overwritten	with	the	number	of	items	populated	in	the	array.
Because	the	memory	binding	used	to	back	sparse	images	can	be	changed,	even
after	the	image	is	in	use,	the	update	to	the	binding	properties	of	the	image	is
pipelined	along	with	that	work.	Unlike	vkBindImageMemory()	and
vkBindBufferMemory(),	which	are	operations	likely	carried	out	by	the



host,	memory	is	bound	to	a	sparse	resource	using	an	operation	on	the	queue,
allowing	the	device	to	execute	them.	The	command	to	bind	memory	to	a	sparse
resource	is	vkQueueBindSparse(),	the	prototype	of	which	is

Click	here	to	view	code	image

VkResult	vkQueueBindSparse	(

				VkQueue																										queue,

				uint32_t																									bindInfoCount,

				const	VkBindSparseInfo*										pBindInfo,

				VkFence																										fence);

The	queue	that	will	execute	the	binding	operation	is	specified	in	queue.	Several
binding	operations	can	be	performed	by	a	single	call	to
vkQueueBindSparse().	The	number	of	operations	to	perform	is	passed	in
bindInfoCount,	and	pBindInfo	is	a	pointer	to	an	array	of
bindInfoCount	VkBindSparseInfo	structures,	each	describing	one	of
the	bindings.	The	definition	of	VkBindSparseInfo	is

Click	here	to	view	code	image

typedef	struct	VkBindSparseInfo	{

				VkStructureType																														sType;

				const	void*																																		pNext;

				uint32_t																																					waitSemaphoreCount;

				const	VkSemaphore*																											pWaitSemaphores;

				uint32_t																																					bufferBindCount;

				const	VkSparseBufferMemoryBindInfo*										pBufferBinds;

				uint32_t																																					imageOpaqueBindCount;

				const	VkSparseImageOpaqueMemoryBindInfo*					pImageOpaqueBinds;

				uint32_t																																					imageBindCount;

				const	VkSparseImageMemoryBindInfo*											pImageBinds;

				uint32_t																																					signalSemaphoreCount;

				const	VkSemaphore*																											pSignalSemaphores;

}	VkBindSparseInfo;

The	act	of	binding	memory	to	sparse	resources	is	actually	pipelined	with	other
work	performed	by	the	device.	As	you	read	in	Chapter	1,	“Overview	of	Vulkan,”
work	is	performed	by	submitting	it	to	queues.	The	binding	is	then	performed
along	with	the	execution	of	commands	submitted	to	the	same	queue.	Because
vkQueueBindSparse()	behaves	a	lot	like	a	command	submission,
VkBindSparseInfo	contains	many	fields	related	to	synchronization.
The	sType	field	of	VkBindSparseInfo	should	be	set	to
VK_STRUCTURE_TYPE_BIND_SPARSE_INFO,	and	pNext	should	be	set	to
nullptr.	As	with	VkSubmitInfo,	each	sparse	binding	operation	can
optionally	wait	for	one	or	more	semaphores	to	be	signaled	before	performing	the



operation	and	can	signal	one	or	more	semaphores	when	it	is	done.	This	allows
updates	to	the	sparse	resource’s	bindings	to	be	synchronized	with	other	work
performed	by	the	device.
The	number	of	semaphores	to	wait	on	is	specified	in	waitSemaphoreCount,
and	the	number	of	semaphores	to	signal	is	specified	in
signalSemaphoreCount.	The	pWaitSemaphores	field	is	a	pointer	to	an
array	of	waitSemaphoreCount	semaphore	handles	to	wait	on,	and
pSignalSemaphores	is	a	pointer	to	an	array	of
signalSemaphoreCount	semaphores	to	signal.	Semaphores	are	covered	in
some	detail	in	Chapter	11,	“Synchronization.”
Each	binding	operation	can	include	updates	to	buffers	and	images.	The	number
of	buffer	binding	updates	is	specified	in	bufferBindCount	and
pBufferBinds	is	a	pointer	to	an	array	of	bufferBindCount
VkSparseBufferMemoryBindInfo	structures,	each	describing	one	of	the
buffer	memory	binding	operations.	The	definition	of
VkSparseBufferMemoryBindInfo	is

Click	here	to	view	code	image

typedef	struct	VkSparseBufferMemoryBindInfo	{

				VkBuffer																					buffer;

				uint32_t																					bindCount;

				const	VkSparseMemoryBind*				pBinds;

}	VkSparseBufferMemoryBindInfo;

Each	instance	of	VkSparseBufferMemoryBindInfo	contains	the	handle
of	the	buffer	to	which	memory	will	be	bound.	A	number	of	regions	of	memory
can	be	bound	to	the	buffer	at	different	offsets.	The	number	of	memory	regions	is
specified	in	bindCount,	and	each	binding	is	described	by	an	instance	of	the
VkSparseMemoryBind	structure.	pBinds	is	a	pointer	to	an	array	of
bindCount	VkSparseMemoryBind	structures.	The	definition	of
VkSparseMemoryBind	is

Click	here	to	view	code	image

typedef	struct	VkSparseMemoryBind	{

				VkDeviceSize															resourceOffset;

				VkDeviceSize															size;

				VkDeviceMemory													memory;

				VkDeviceSize															memoryOffset;

				VkSparseMemoryBindFlags				flags;

}	VkSparseMemoryBind;



The	size	of	the	block	of	memory	to	bind	to	the	resource	is	contained	in	size.
The	offsets	of	the	block	in	the	resource	and	in	the	memory	object	are	contained
in	resourceOffset	and	memoryOffset,	respectively,	and	are	both
expressed	in	units	of	bytes.	The	memory	object	that	is	the	source	of	storage	for
the	binding	is	specified	in	memory.	When	the	binding	is	executed,	the	block	of
memory,	size	bytes	long	and	starting	at	memoryOffset	bytes	into	the
memory	object	specified	in	memory,	will	be	bound	into	the	buffer	specified	in
the	buffer	field	of	the	VkSparseBufferMemoryBindInfo	structure.
The	flags	field	contains	additional	flags	that	can	be	used	to	further	control	the
binding.	No	flags	are	used	for	buffer	resources.	However,	image	resources	use
the	same	VkSparseMemoryBind	structure	to	affect	memory	bindings	directly
to	images.	This	is	known	as	an	opaque	image	memory	binding,	and	the	opaque
image	memory	bindings	to	be	performed	are	also	passed	through	the
VkBindSparseInfo	structure.	The	pImageOpaqueBinds	member	of
VkBindSparseInfo	points	to	an	array	of	imageOpaqueBindCount
VkSparseImageOpaqueMemoryBindInfo	structures	defining	the	opaque
memory	bindings.	The	definition	of
VkSparseImageOpaqueMemoryBindInfo	is

Click	here	to	view	code	image

typedef	struct	VkSparseImageOpaqueMemoryBindInfo	{

				VkImage																						image;

				uint32_t																					bindCount;

				const	VkSparseMemoryBind*				pBinds;

}	VkSparseImageOpaqueMemoryBindInfo;

Just	as	with	VkSparseBufferMemoryBindInfo,
VkSparseImageOpaqueMemoryBindInfo	contains	a	handle	to	the	image
to	which	to	bind	memory	in	image	and	a	pointer	to	an	array	of
VkSparseMemoryBind	structures	in	pBinds,	which	is	bindCount
elements	long.	This	is	the	same	structure	used	for	buffer	memory	bindings.
However,	when	this	structure	is	used	for	images,	you	can	set	the	flags	field	of
each	VkSparseMemoryBind	structure	to	include	the
VK_SPARSE_MEMORY_BIND_METADATA_BIT	flag	in	order	to	explicitly
bind	memory	to	the	metadata	associated	with	the	image.
When	memory	is	bound	opaquely	to	a	sparse	image,	the	blocks	of	memory	have
no	defined	correlation	with	texels	in	the	image.	Rather,	the	backing	store	of	the
image	is	treated	as	a	large,	opaque	region	of	memory	with	no	information	about
how	texels	are	laid	out	in	it	provided	to	the	application.	However,	so	long	as



memory	is	bound	to	the	entire	image	when	it	is	used,	results	will	still	be	well-
defined	and	consistent.	This	allows	sparse	images	to	be	backed	by	multiple,
smaller	memory	objects,	potentially	easing	pool	allocation	strategies,	for
example.
To	bind	memory	to	an	explicit	region	of	an	image,	you	can	perform	a	nonopaque
image	memory	binding	by	passing	one	or	more
VkSparseImageMemoryBindInfo	structures	through	the
VkBindSparseInfo	structures	passed	to	vkQueueBindSparse().	The
definition	of	VkSparseImageMemoryBindInfo	is

Click	here	to	view	code	image

typedef	struct	VkSparseImageMemoryBindInfo	{

				VkImage																											image;

				uint32_t																										bindCount;

				const	VkSparseImageMemoryBind*				pBinds;

}	VkSparseImageMemoryBindInfo;

Again,	the	VkSparseImageMemoryBindInfo	structure	contains	a	handle
to	the	image	to	which	to	bind	memory	in	image,	a	count	of	the	number	of
bindings	to	perform	in	bindCount,	and	a	pointer	to	an	array	of	structures
describing	the	bindings	in	pBinds.	This	time,	however,	pBinds	points	to	an
array	of	bindCount	VkSparseImageMemoryBind	structures,	the
definition	of	which	is

Click	here	to	view	code	image

typedef	struct	VkSparseImageMemoryBind	{

				VkImageSubresource									subresource;

				VkOffset3D																	offset;

				VkExtent3D																	extent;

				VkDeviceMemory													memory;

				VkDeviceSize															memoryOffset;

				VkSparseMemoryBindFlags				flags;

}	VkSparseImageMemoryBind;

The	VkSparseImageMemoryBind	structure	contains	much	more
information	about	how	the	memory	is	to	be	bound	to	the	image	resource.	For
each	binding,	the	image	subresource	to	which	the	memory	is	to	be	bound	is
specified	in	subresource,	which	is	an	instance	of	the
VkImageSubresource,	the	definition	of	which	is

Click	here	to	view	code	image

typedef	struct	VkImageSubresource	{

				VkImageAspectFlags				aspectMask;

				uint32_t														mipLevel;



				uint32_t														arrayLayer;

}	VkImageSubresource;

The	VkImageSubresource	allows	you	to	specify	the	aspect	of	the	image
(VK_IMAGE_ASPECT_COLOR_BIT,	VK_IMAGE_ASPECT_DEPTH_BIT,	or
VK_IMAGE_ASPECT_STENCIL_BIT,	for	example)	in	aspectMask,	the
mipmap	level	to	which	you	want	to	bind	memory	in	mipLevel,	and	the	array
layer	where	the	memory	should	be	bound	in	arrayLayer.	For	nonarray
images,	arrayLayer	should	be	set	to	zero.
Within	the	subresource,	the	offset	and	extent	fields	of	the
VkSparseImageMemoryBind	structure	define	the	offset	and	size	of	the
region	of	texels	to	bind	the	image	data	to.	This	must	be	aligned	to	the	tile-size
boundaries,	which	are	either	the	standard	sizes	as	shown	in	Table	2.1	or	the	per-
format	block	size	that	can	be	retrieved	from
vkGetPhysicalDeviceSparseImageFormatProperties().
Again,	the	memory	object	from	which	to	bind	memory	is	specified	in	memory,
and	the	offset	within	the	memory	where	the	backing	store	resides	is	specified	in
memoryOffset.	The	same	flags	are	available	in	the	flags	field	of
VkSparseImageMemoryBind.

Summary
This	chapter	introduced	you	to	the	different	types	of	resources	that	are	used	by
Vulkan.	It	described	how	the	memory	used	to	back	them	is	allocated	and	then
associated	with	them.	It	also	explained	how	you	can	manage	the	application
memory	used	by	Vulkan	through	the	use	of	a	custom	allocator.	You	have	seen
how	to	move	resources	from	state	to	state	and	how	to	synchronize	acess	to	them
through	pipeline	barriers.	This	enables	efficient,	parallel	access	to	resources	both
from	multiple	stages	of	the	Vulkan	pipeline	and	from	the	host.



Chapter	3.	Queues	and	Commands

What	You’ll	Learn	in	This	Chapter
•	What	a	queue	is	and	how	to	use	it
•	How	to	create	commands	and	send	them	to	Vulkan
•	How	to	ensure	that	a	device	has	finished	processing	your	work

Vulkan	devices	expose	multiple	queues	that	perform	work.	In	this	chapter,	we
discuss	the	various	queue	types	and	explain	how	to	submit	work	to	them	in	the
form	of	command	buffers.	We	also	show	how	to	instruct	a	queue	to	complete	all
of	the	work	you’ve	sent	it.

Device	Queues
Each	device	in	Vulkan	has	one	or	more	queues.	The	queue	is	the	part	of	the
device	that	actually	performs	work.	It	can	be	thought	of	as	a	subdevice	that
exposes	a	subset	of	the	device’s	functionality.	In	some	implementations,	each
queue	may	even	be	a	physically	separate	part	of	the	system.
Queues	are	grouped	into	one	or	more	queue	families,	each	containing	one	or
more	queues.	Queues	within	a	single	family	are	essentially	identical.	Their
capabilities	are	the	same,	their	performance	level	and	access	to	system	resources
is	the	same,	and	there	is	no	cost	(beyond	synchronization)	of	transferring	work
between	them.	If	a	device	contains	multiple	cores	that	have	the	same	capabilities
but	differ	in	performance,	access	to	memory,	or	some	other	factor	that	might
mean	they	can’t	operate	identically,	it	may	expose	them	in	separate	families	that
otherwise	appear	identical.
As	discussed	in	Chapter	1,	“Overview	of	Vulkan,”	you	can	query	the	properties
of	each	of	a	physical	device’s	queue	families	by	calling
vkGetPhysicalDeviceQueueFamilyProperties().	This	function
writes	the	properties	of	the	queue	family	into	an	instance	of	the
VkQueueFamilyProperties	structure	that	you	hand	it.
The	number	and	type	of	queues	that	you	wish	to	use	must	be	specified	when	you
create	the	device.	As	you	saw	in	Chapter	1,	“Overview	of	Vulkan,”	the
VkDeviceCreateInfo	structure	that	you	pass	to	vkCreateDevice()
contains	the	queueCreateInfoCount	and	pQueueCreateInfos



members.	Chapter	1,	“Overview	of	Vulkan,”	glossed	over	them,	but	now	it’s
time	to	fill	them	in.	The	queueCreateInfoCount	member	contains	the
number	of	VkDeviceQueueCreateInfo	structures	stored	in	the	array
pointed	to	by	pQueueCreateInfos.	The	definition	of	the
VkDeviceQueueCreateInfo	structure	is

Click	here	to	view	code	image

typedef	struct	VkDeviceQueueCreateInfo	{

				VkStructureType													sType;

				const	void*																	pNext;

				VkDeviceQueueCreateFlags				flags;

				uint32_t																				queueFamilyIndex;

				uint32_t																				queueCount;

				const	float*																pQueuePriorities;

}	VkDeviceQueueCreateInfo;

As	with	most	Vulkan	structures,	the	sType	field	is	the	structure	type,	which	in
this	case	should	be	VK_STRUCTURE_TYPE_QUEUE_CREATE_INFO,	and	the
pNext	field	is	used	for	extensions	and	should	be	set	to	nullptr	when	none
are	used.	The	flags	field	contains	flags	controlling	queue	construction,	but	no
flag	is	defined	for	use	in	the	current	version	of	Vulkan,	so	this	field	should	be	set
to	zero.
The	fields	of	interest	here	are	queueFamilyIndex	and	queueCount.	The
queueFamilyIndex	field	specifies	the	family	from	which	you	want	to
allocate	queues,	and	the	queueCount	field	specifies	the	number	of	queues	to
allocate	from	that	family.	To	allocate	queues	from	multiple	families,	simply	pass
an	array	of	more	than	one	VkDeviceQueueCreateInfo	structure	in	the
pQueueCreateInfos	member	of	the	VkDeviceCreateInfo	structure.
The	queues	are	constructed	when	the	device	is	created.	For	this	reason,	we	don’t
create	queues,	but	obtain	them	from	the	device.	To	do	this,	call
vkGetDeviceQueue():

Click	here	to	view	code	image

void	vkGetDeviceQueue	(

				VkDevice																												device,

				uint32_t																												queueFamilyIndex,

				uint32_t																												queueIndex,

				VkQueue*																												pQueue);

The	vkGetDeviceQueue()	function	takes	as	arguments	the	device	from
which	you	want	to	obtain	the	queue,	the	family	index,	and	the	index	of	the	queue
within	that	family.	These	are	specified	in	device,	queueFamilyIndex,	and



queueIndex,	respectively.	The	pQueue	parameter	points	to	the	VkQueue
handle	that	is	to	be	filled	with	the	handle	to	the	queue.	queueFamilyIndex
and	queueIndex	must	refer	to	a	queue	that	was	initialized	when	the	device
was	created.	If	they	do,	a	queue	handle	is	placed	into	the	variable	pointed	to	by
pQueue;	otherwise,	this	variable	is	set	to	VK_NULL_HANDLE.

Creating	Command	Buffers
The	primary	purpose	of	a	queue	is	to	process	work	on	behalf	of	your	application.
Work	is	represented	as	a	sequence	of	commands	that	are	recorded	into	command
buffers.	Your	application	will	create	command	buffers	containing	the	work	it
needs	to	do	and	submit	them	to	one	of	the	queues	for	execution.	Before	you	can
record	any	commands,	you	need	to	create	a	command	buffer.	Command	buffers
themselves	are	not	created	directly,	but	allocated	from	pools.	To	create	a	pool,
call	vkCreateCommandPool(),	whose	prototype	is

Click	here	to	view	code	image

VkResult	vkCreateCommandPool	(

				VkDevice																												device,

				const	VkCommandPoolCreateInfo*						pCreateInfo,

				const	VkAllocationCallbacks*								pAllocator,

				VkCommandPool*																						pCommandPool);

As	with	most	Vulkan	object	creation	functions,	the	first	parameter,	device,	is
the	handle	to	the	device	that	will	own	the	new	pool	object,	and	a	description	of
the	pool	is	passed	via	a	structure,	a	pointer	to	which	is	placed	in
pCreateInfo.	This	structure	is	an	instance	of
VkCommandPoolCreateInfo,	the	definition	of	which	is
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typedef	struct	VkCommandPoolCreateInfo	{

				VkStructureType													sType;

				const	void*																	pNext;

				VkCommandPoolCreateFlags				flags;

				uint32_t																				queueFamilyIndex;

}	VkCommandPoolCreateInfo;

As	with	most	Vulkan	structures,	the	first	two	fields,	sType	and	pNext,	contain
the	structure	type	and	a	pointer	to	another	structure	containing	more	information
about	the	pool	to	be	created.	Here,	we’ll	set	sType	to
VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO	and,	because
we’re	not	passing	any	extra	information,	set	pNext	to	nullptr.
The	flags	field	contains	flags	that	determine	the	behavior	of	the	pool	and	the



command	buffers	that	are	allocated	from	it.	These	are	members	of	the
VkCommandPoolCreateFlagBits	enumeration,	and	there	are	currently
two	flags	defined	for	use	here.

•	Setting	the	VK_COMMAND_POOL_CREATE_TRANSIENT_BIT	indicates
that	command	buffers	taken	from	the	pool	will	be	short-lived	and	returned	to
the	pool	shortly	after	use.	Not	setting	this	bit	suggests	to	Vulkan	that	you
might	keep	the	command	buffers	around	for	some	time.
•	Setting	the
VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT

allows	individual	command	buffers	to	be	reused	by	resetting	them	or
restarting	them.	(Don’t	worry,	we’ll	cover	that	in	a	moment.)	If	this	bit	is	not
specified,	then	only	the	pool	itself	can	be	reset,	which	implicitly	recycles	all
of	the	command	buffers	allocated	from	it.

Each	of	these	bits	may	add	some	overhead	to	the	work	done	by	a	Vulkan
implementation	to	track	the	resources	or	otherwise	alter	its	allocation	strategy.
For	example,	setting	VK_COMMAND_POOL_CREATE_TRANSIENT_BIT	may
cause	a	Vulkan	implementation	to	employ	a	more	advanced	allocation	strategy
for	the	pool	in	order	to	avoid	fragmentation	as	command	buffers	are	frequently
allocated	and	then	returned	to	it.	Setting
VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT	may
cause	the	implementation	to	track	the	reset	status	of	each	command	buffer	rather
than	simply	track	it	at	the	pool	level.
In	this	case,	we’re	actually	going	to	set	both	bits.	This	gives	us	the	most
flexibility,	possibly	at	the	expense	of	some	performance	in	cases	where	we	could
have	managed	command	buffers	in	bulk.
Finally,	the	queueFamilyIndex	field	of	VkCommandPoolCreateInfo
specifies	the	family	of	queues	to	which	command	buffers	allocated	from	this
pool	will	be	submitted.	This	is	necessary	because	even	where	two	queues	on	a
device	have	the	same	capabilities	and	support	the	same	set	of	commands,	issuing
a	particular	command	to	one	queue	may	work	differently	from	issuing	that	same
command	to	another	queue.
The	pAllocator	parameter	is	used	for	application-managed	host	memory
allocations,	which	is	covered	in	Chapter	2,	“Memory	and	Resources.”	Assuming
successful	creation	of	the	command	pool,	its	handle	will	be	written	into	the
variable	pointed	to	by	pCommandPool,	and	vkCreateCommandPool()
will	return	VK_SUCCESS.
Once	we	have	a	pool	from	which	to	allocate	command	buffers,	we	can	grab	new



command	buffers	by	calling	vkAllocateCommandBuffers(),	which	is
defined	as

Click	here	to	view	code	image

VkResult	vkAllocateCommandBuffers	(

				VkDevice																																			device,

				const	VkCommandBufferAllocateInfo*									pAllocateInfo,

				VkCommandBuffer*																											pCommandBuffers);

The	device	used	to	allocate	the	command	buffers	is	passed	in	device,	and	the
remaining	parameters	describing	the	command	buffers	to	allocate	are	passed	in
an	instance	of	the	VkCommandBufferAllocateInfo	structure,	the	address
of	which	is	passed	in	pCommandBuffers.	The	definition	of
VkCommandBufferAllocateInfo	is

Click	here	to	view	code	image

typedef	struct	VkCommandBufferAllocateInfo	{

				VkStructureType									sType;

				const	void*													pNext;

				VkCommandPool											commandPool;

				VkCommandBufferLevel				level;

				uint32_t																commandBufferCount;

}	VkCommandBufferAllocateInfo;

The	sType	field	should	be	set	to
VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,	and	as
we’re	using	only	the	core	feature	set	here,	we	set	the	pNext	parameter	to
nullptr.	A	handle	to	the	command	pool	that	we	created	earlier	is	placed	into
the	commandPool	parameter.
The	level	parameter	specifies	the	level	of	the	command	buffers	that	we	want
to	allocate.	It	can	be	set	to	either	VK_COMMAND_BUFFER_LEVEL_PRIMARY
or	VK_COMMAND_BUFFER_LEVEL_SECONDARY.	Vulkan	allows	primary
command	buffers	to	call	secondary	command	buffers.	For	our	first	few
examples,	we	will	use	only	primary-level	command	buffers.	We’ll	cover
secondary-level	command	buffers	later	in	the	book.
Finally,	commandBufferCount	specifies	the	number	of	command	buffers
that	we	want	to	allocate	from	the	pool.	Note	that	we	don’t	tell	Vulkan	anything
about	the	length	or	size	of	the	command	buffers	we’re	creating.	The	internal	data
structures	representing	device	commands	will	generally	vary	too	greatly	for	any
unit	of	measurement,	such	as	bytes	or	commands,	to	make	much	sense.	Vulkan
will	manage	the	command	buffer	memory	for	you.
If	vkAllocateCommandBuffers()	is	successful,	it	will	return



VK_SUCCESS	and	place	the	handles	to	the	allocated	command	buffers	in	the
array	pointed	to	by	pCommandBuffers.	This	array	should	be	big	enough	to
hold	all	the	handles.	Of	course,	if	you	want	to	allocate	only	a	single	command
buffer,	you	can	point	this	at	a	regular	VkCommandBuffer	handle.
To	free	command	buffers,	we	use	the	vkFreeCommandBuffers()
command,	which	is	declared	as

Click	here	to	view	code	image

void	vkFreeCommandBuffers	(

				VkDevice																							device,

				VkCommandPool																		commandPool,

				uint32_t																							commandBufferCount,

				const	VkCommandBuffer*									pCommandBuffers);

The	device	parameter	is	the	device	that	owns	the	pool	from	which	the
command	buffers	were	allocated.	commandPool	is	a	handle	to	that	pool,
commandBufferCount	is	the	number	of	command	buffers	to	free,	and
pCommandBuffers	is	a	pointer	to	an	array	of	commandBufferCount
handles	to	the	command	buffers	to	free.	Note	that	freeing	a	command	buffer
doesn’t	necessarily	free	all	of	the	resources	associated	with	it	but	returns	them	to
the	pool	from	which	they	were	allocated.
To	free	all	of	the	resources	used	by	a	command	pool	and	all	of	the	command
buffers	allocated	from	it,	call	vkDestroyCommandPool(),	the	prototype	of
which	is

Click	here	to	view	code	image

void	vkDestroyCommandPool	(

				VkDevice																															device,

				VkCommandPool																										commandPool,

				const	VkAllocationCallbacks*											pAllocator;

The	device	that	owns	the	command	pool	is	passed	in	the	device	parameter,
and	a	handle	to	the	command	pool	to	destroy	is	passed	in	commandPool.	A
pointer	to	a	host	memory	allocation	structure	compatible	with	the	one	used	to
create	the	pool	is	passed	in	pAllocator.	This	parameter	should	be	nullptr
if	the	pAllocator	parameter	to	vkCreateCommandPool()	was	also
nullptr.
There	is	no	need	to	explicitly	free	all	of	the	command	buffers	allocated	from	a
pool	before	destroying	the	pool.	The	command	buffers	allocated	from	the	pool
are	all	freed	as	a	part	of	destroying	the	pool	and	freeing	its	resources.	Care
should	be	taken,	however,	that	no	command	buffers	allocated	from	the	pool	are



still	executing	or	queued	for	execution	on	the	device	when
vkDestroyCommandPool()	is	called.

Recording	Commands
Commands	are	recorded	into	command	buffers	using	Vulkan	command
functions,	all	of	which	take	a	command	buffer	handle	as	their	first	parameter.
Access	to	the	command	buffer	must	be	externally	synchronized,	meaning	that	it
is	the	responsibility	of	your	application	to	ensure	that	no	two	threads
simultaneously	attempt	to	record	commands	into	the	same	command	buffer	at
the	same	time.	However,	the	following	is	perfectly	acceptable:

•	One	thread	can	record	commands	into	multiple	command	buffers	by	simply
calling	command	buffer	functions	on	different	command	buffers	in
succession.
•	Two	or	more	threads	can	participate	in	building	a	single	command	buffer,	so
long	as	the	application	can	guarantee	that	no	two	of	them	are	ever	executing
a	command	buffer	building	function	concurrently.

One	of	the	key	design	principles	of	Vulkan	is	to	enable	efficient	multithreading.
To	achieve	this,	it	is	important	that	your	application’s	threads	do	not	block	each
other’s	execution	by,	for	example,	taking	a	mutex	to	protect	a	shared	resource.
For	this	reason,	it’s	best	to	have	one	or	more	command	buffers	for	each	thread
rather	than	to	try	sharing	one.	Further,	as	command	buffers	are	allocated	from
pools,	you	can	go	further	and	create	a	command	pool	for	each	thread,	allowing
command	buffers	to	be	allocated	by	your	worker	threads	from	their	respective
pools	without	interacting.
Before	you	can	start	recording	commands	into	a	command	buffer,	however,	you
have	to	begin	the	command	buffer,	which	resets	it	to	an	initial	state.	To	do	this,
call	vkBeginCommandBuffer(),	the	prototype	of	which	is

Click	here	to	view	code	image

VkResult	vkBeginCommandBuffer	(

				VkCommandBuffer																								commandBuffer,

				const	VkCommandBufferBeginInfo*								pBeginInfo);

The	command	buffer	to	begin	recording	is	passed	in	commandBuffer,	and	the
parameters	that	are	used	in	recording	this	command	buffer	are	passed	through	a
pointer	to	a	VkCommandBufferBeginInfo	structure	specified	in
pBeginInfo.	The	definition	of	VkCommandBufferBeginInfo	is

Click	here	to	view	code	image



typedef	struct	VkCommandBufferBeginInfo	{

				VkStructureType																								sType;

				const	void*																												pNext;

				VkCommandBufferUsageFlags														flags;

				const	VkCommandBufferInheritanceInfo*		pInheritanceInfo;

}	VkCommandBufferBeginInfo;

The	sType	field	of	VkCommandBufferBeginInfo	should	be	set	to
VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,	and	pNext
should	be	set	to	nullptr.	The	flags	field	is	used	to	tell	Vulkan	how	the
command	buffer	will	be	used.	This	should	be	a	bitwise	combination	of	some	of
the	members	of	the	VkCommandBufferUsageFlagBits	enumeration,
which	include	the	following:

•	VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT	means	that
the	command	buffer	will	be	recorded,	executed	only	once,	and	then
destroyed	or	recycled.
•	VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT
means	that	the	command	buffer	will	be	used	inside	a	renderpass	and	is	valid
only	for	secondary	command	buffers.	The	flag	is	ignored	when	you	create	a
primary	command	buffer,	which	is	what	we	will	cover	in	this	chapter.
Renderpasses	and	secondary	command	buffers	are	covered	in	more	detail	in
Chapter	13,	“Multipass	Rendering.”
•	VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT	means
that	the	command	buffer	might	be	executed	or	pending	execution	more	than
once.

For	our	purposes,	it’s	safe	to	set	flags	to	zero,	which	means	that	we	might
execute	the	command	buffer	more	than	once	but	not	simultaneously	and	that
we’re	not	creating	a	secondary	command	buffer.
The	pInheritanceInfo	member	of	VkCommandBufferBeginInfo	is
used	when	beginning	a	secondary	command	buffer	to	define	which	states	are
inherited	from	the	primary	command	buffer	that	will	call	it.	For	primary
command	buffers,	this	pointer	is	ignored.	We’ll	cover	the	content	of	the
VkCommandBufferInheritanceInfo	structure	when	we	introduce
secondary	command	buffers	in	Chapter	13,	“Multipass	Rendering.”
Now	it’s	time	to	create	our	first	command.	Back	in	Chapter	2,	“Memory	and
Resources,”	you	learned	about	buffers,	images,	and	memory.	The
vkCmdCopyBuffer()	command	is	used	to	copy	data	between	two	buffer
objects.	Its	prototype	is

Click	here	to	view	code	image



void	vkCmdCopyBuffer	(

				VkCommandBuffer																		commandBuffer,

				VkBuffer																									srcBuffer,

				VkBuffer																									dstBuffer,

				uint32_t																									regionCount,

				const	VkBufferCopy*														pRegions);

This	is	the	general	form	of	all	Vulkan	commands.	The	first	parameter,
commandBuffer,	is	the	command	buffer	to	which	the	command	is	appended.
The	srcBuffer	and	dstBuffer	parameters	specify	the	buffer	objects	to	be
used	as	the	source	and	destination	of	the	copy,	respectively.	Finally,	an	array	of
regions	is	passed	to	the	function.	The	number	of	regions	is	specified	in
regionCount,	and	the	address	of	the	array	of	regions	is	specified	in
pRegions.	Each	region	is	represented	as	an	instance	of	the	VkBufferCopy
structure,	the	definition	of	which	is

Click	here	to	view	code	image

typedef	struct	VkBufferCopy	{

				VkDeviceSize				srcOffset;

				VkDeviceSize				dstOffset;

				VkDeviceSize				size;

}	VkBufferCopy;

Each	element	of	the	array	simply	contains	the	source	and	destination	offsets	and
the	size	of	each	region	to	be	copied	in	srcOffset,	dstOffset,	and	size,
respectively.	When	the	command	is	executed,	for	each	region	in	pRegions,
size	bytes	of	data	will	be	copied	from	srcOffset	in	srcBuffer	to
dstOffset	in	dstBuffer.	The	offsets	are	also	measured	in	bytes.
One	thing	that	is	fundamental	to	the	operation	of	Vulkan	is	that	the	commands
are	not	executed	as	soon	as	they	are	called.	Rather,	they	are	simply	added	to	the
end	of	the	specified	command	buffer.	If	you	are	copying	data	to	or	from	a	region
of	memory	that	is	visible	to	the	host	(i.e.,	it’s	mapped),	then	you	need	to	be	sure
of	several	things:

•	Ensure	that	the	data	is	in	the	source	region	before	the	command	is	executed
by	the	device.
•	Ensure	that	the	data	in	the	source	region	is	valid	until	after	the	command	has
been	executed	on	the	device.
•	Ensure	that	you	don’t	read	the	destination	data	until	after	the	command	has
been	executed	on	the	device.

The	first	of	these	is	perhaps	the	most	interesting.	In	particular,	it	means	that	you
can	build	the	command	buffer	containing	the	copy	command	before	putting	the



source	data	in	memory.	So	long	as	the	source	data	is	in	the	right	place	before	the
command	buffer	is	executed,	things	will	work	out.
Listing	3.1	demonstrates	how	to	use	vkCmdCopyBuffer()	to	copy	a	section
of	data	from	one	buffer	to	another.	The	command	buffer	to	perform	the	copy
with	is	passed	in	the	cmdBuffer	parameter;	the	source	and	destination	buffers
are	passed	in	srcBuffer	and	dstBuffer	parameters,	respectively;	and	the
offsets	of	the	data	within	them	is	passed	in	the	srcOffset	and	dstOffset
parameters.	The	function	packs	these	parameters,	along	with	the	size	of	the	copy,
into	a	VkBufferCopy	structure	and	calls	vkCmdCopyBuffer()	to	perform
the	copy	operation.

Listing	3.1:	Example	of	Using	vkCmdCopyBuffer()

Click	here	to	view	code	image

void	CopyDataBetweenBuffers(VkCmdBuffer	cmdBuffer,

																												VkBuffer	srcBuffer,	VkDeviceSize

srcOffset,

																												VkBuffer	dstBuffer,	VkDeviceSize

dstOffset,

																												VkDeviceSize	size)

{

			const	VkBufferCopy	copyRegion	=

			{

							srcOffset,	dstOffset,	size

			};

			vkCmdCopyBuffer(cmdBuffer,	srcBuffer,	dstBuffer,	1,	&copyRegion);

}

Remember	that	srcOffset	and	dstOffset	are	relative	to	the	start	of	the
source	and	destination	buffers,	respectively,	but	that	each	of	those	buffers	could
be	bound	to	memory	at	different	offsets	and	could	potentially	be	bound	to	the
same	memory	object.	Therefore,	if	one	of	the	memory	objects	is	mapped,	the
offset	within	the	memory	object	is	the	offset	at	which	the	buffer	object	is	bound
to	it	plus	the	offset	you	pass	to	vkCmdCopyBuffer().
Before	the	command	buffer	is	ready	to	be	sent	to	the	device	for	execution,	we
must	tell	Vulkan	that	we’re	done	recording	commands	into	it.	To	do	this,	we	call
vkEndCommandBuffer(),	the	prototype	of	which	is

Click	here	to	view	code	image

VkResult	vkEndCommandBuffer	(

				VkCommandBuffer																							commandBuffer);



The	vkEndCommandBuffer()	function	takes	only	a	single	parameter,
commandBuffer,	which	is	the	command	buffer	to	end	recording.	After
vkEndCommandBuffer()	is	executed	on	a	command	buffer,	Vulkan	finishes
any	final	work	it	needs	to	do	to	get	the	command	buffer	ready	for	execution.

Recycling	Command	Buffers
In	many	applications,	a	similar	sequence	of	commands	is	used	to	render	all	or
part	of	each	frame.	Therefore,	it	is	likely	that	you	will	record	similar	command
buffers	over	and	over.	Using	the	commands	introduced	so	far,	you	would	call
vkAllocateCommandBuffers()	to	grab	one	or	more	command	buffer
handles,	record	commands	into	the	command	buffers,	and	then	call
vkFreeCommandBuffers()	to	return	the	command	buffers	to	their
respective	pools.	This	is	a	relatively	heavyweight	operation,	and	if	you	know
that	you	will	reuse	a	command	buffer	for	similar	work	many	times	in	a	row,	it
may	be	more	efficient	to	reset	the	command	buffer.	This	effectively	puts	the
command	buffer	back	into	its	original	state	but	does	not	necessarily	interact	with
the	pool	at	all.	Therefore,	if	the	command	buffer	dynamically	allocates	resources
from	the	pool	as	it	grows,	it	can	hang	on	to	those	resources	and	avoid	the	cost	of
reallocation	the	second	and	subsequent	times	it’s	rebuilt.	To	reset	a	command
buffer,	call	vkResetCommandBuffer(),	the	prototype	of	which	is

Click	here	to	view	code	image

VkResult	vkResetCommandBuffer	(

				VkCommandBuffer																				commandBuffer,

				VkCommandBufferResetFlags										flags);

The	command	buffer	to	reset	is	passed	in	commandBuffer.	flags	specifies
additional	operations	to	perform	while	resetting	the	command	buffer.	The	only
flag	defined	for	use	here	is
VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT.	If	this	bit	is
set,	then	resources	allocated	from	the	pool	by	the	command	buffer	are	returned
to	the	pool.	Even	with	this	bit	set,	it’s	probably	still	more	efficient	to	call
vkResetCommandBuffer()	than	it	is	to	free	and	reallocate	a	new	command
buffer.
It’s	also	possible	to	reset	all	the	command	buffers	allocated	from	a	pool	in	one
shot.	To	do	this,	call	vkResetCommandPool(),	the	prototype	of	which	is

Click	here	to	view	code	image

VkResult	vkResetCommandPool	(

				VkDevice																											device,



				VkCommandPool																						commandPool,

				VkCommandPoolResetFlags												flags);

The	device	that	owns	the	command	pool	is	specified	in	device,	and	the	pool	to
reset	is	specified	in	commandPool.	Just	as	with
vkResetCommandBuffer(),	the	flags	parameter	specifies	additional
action	to	be	taken	as	part	of	resetting	the	pool.	Again,	the	only	flag	defined	for
use	here	is	VK_COMMAND_POOL_RESET_RELEASE_RESOURCES_BIT.
When	this	bit	is	set,	any	resources	dynamically	allocated	by	the	pool	are	freed	as
part	of	the	reset	operation.
Command	buffers	allocated	from	the	pool	are	not	freed	by
vkResetCommandPool(),	but	all	reenter	their	initial	state	as	if	they	had
been	freshly	allocated.	vkResetCommandPool()	is	typically	used	at	the	end
of	a	frame	to	return	a	batch	of	reusable	command	buffers	to	their	pool	rather	than
individually	reset	individual	command	buffers.
Care	should	be	taken	to	try	to	keep	the	complexity	of	command	buffers
consistent	over	their	multiple	uses	if	they	are	reset	without	returning	resources	to
the	pool.	As	a	command	buffer	grows,	it	may	allocate	resources	dynamically
from	the	pool,	and	the	command	pool	may	allocate	resources	from	a	systemwide
pool.	The	amount	of	resources	that	a	command	buffer	may	consume	is
essentially	unbounded,	because	there	is	no	hard-wired	limit	to	the	number	of
commands	you	can	place	in	a	single	command	buffer.	If	your	application	uses	a
mix	of	very	small	and	very	large	command	buffers,	it’s	possible	that	eventually
all	command	buffers	will	grow	as	large	as	the	most	complex	command	buffers.
To	avoid	this	scenario,	either	periodically	specify	the
VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT	or
VK_COMMAND_POOL_RESET_RELEASE_RESOURCES_BIT	when	resetting
command	buffers	or	their	pools,	respectively,	or	try	to	ensure	that	the	same
command	buffers	are	always	used	in	the	same	way—either	short,	simple
command	buffers	or	long,	complex	command	buffers.	Avoid	mixing	use	cases.

Submission	of	Commands
To	execute	the	command	buffer	on	the	device,	we	need	to	submit	it	to	one	of	the
device’s	queues.	To	do	this,	call	vkQueueSubmit(),	the	prototype	of	which	is

Click	here	to	view	code	image

VkResult	vkQueueSubmit	(

				VkQueue																								queue,

				uint32_t																							submitCount,

				const	VkSubmitInfo*												pSubmits,



				VkFence																								fence);

This	command	can	submit	one	or	more	command	buffers	to	the	device	for
execution.	The	queue	parameter	specifies	the	device	queue	to	which	to	send	the
command	buffer.	Access	to	the	queue	must	be	externally	synchronized.	All	of
the	command	buffers	to	submit	were	allocated	from	a	pool,	and	that	pool	must
have	been	created	with	respect	to	one	of	the	device’s	queue	families.	This	is	the
queueFamilyIndex	member	of	the	VkCommandPoolCreateInfo
structure	passed	to	vkCreateCommandPool().	queue	must	be	a	member	of
that	family.
The	number	of	submissions	is	specified	in	submitCount,	and	an	array	of
structures	describing	each	of	the	submissions	is	specified	in	pSubmits.	Each
submission	is	represented	by	an	instance	of	the	VkSubmitInfo	structures,	the
definition	of	which	is

Click	here	to	view	code	image

typedef	struct	VkSubmitInfo	{

				VkStructureType																sType;

				const	void*																				pNext;

				uint32_t																							waitSemaphoreCount;

				const	VkSemaphore*													pWaitSemaphores;

				const	VkPipelineStageFlags*				pWaitDstStageMask;

				uint32_t																							commandBufferCount;

				const	VkCommandBuffer*									pCommandBuffers;

				uint32_t																							signalSemaphoreCount;

				const	VkSemaphore*													pSignalSemaphores;

}	VkSubmitInfo;

The	sType	field	of	VkSubmitInfo	should	be	set	to
VK_STRUCTURE_TYPE_SUBMIT_INFO,	and	pNext	should	be	set	to
nullptr.	Each	VkSubmitInfo	structure	can	represent	multiple	command
buffers	that	are	to	be	executed	by	the	device.
Each	set	of	command	buffers	can	be	wrapped	in	a	set	of	semaphores	upon	which
to	wait	before	beginning	execution	and	can	signal	one	or	more	semaphores	when
they	complete	execution.	A	semaphore	is	a	type	of	synchronization	primitive	that
allows	work	executed	by	different	queues	to	be	scheduled	and	coordinated
correctly.	We	will	cover	semaphores	along	with	other	synchronization	primitives
in	Chapter	11,	“Synchronization.”	For	now,	we’re	not	going	to	use	these	fields,
so	waitSemaphoreCount	and	signalSemaphoreCount	can	be	set	to
zero,	and	pWaitSemaphores,	pWaitDstStageMask,	and
pSignalSemaphores	can	all	be	set	to	nullptr.
The	command	buffers	we	want	to	execute	are	placed	in	an	array,	and	its	address



is	passed	in	pCommandBuffers.	The	number	of	command	buffers	to	execute
(the	length	of	the	pCommandBuffers	array)	is	specified	in
commandBufferCount.	At	some	time	after	the	vkQueueSubmit()
command	is	called,	the	commands	in	the	command	buffers	begin	executing	on
the	device.	Commands	submitted	to	different	queues	on	the	same	device	(or	to
queues	belonging	to	different	devices)	may	execute	in	parallel.
vkQueueSubmit()	returns	as	soon	as	the	specified	command	buffers	have
been	scheduled,	possibly	long	before	they’ve	even	begun	executing.
The	fence	parameter	to	vkQueueSubmit()	is	a	handle	to	a	fence	object,
which	can	be	used	to	wait	for	completion	of	the	commands	executed	by	this
submission.	A	fence	is	another	type	of	synchronization	primitive	that	we	will
cover	in	Chapter	11,	“Synchronization.”	For	now,	we’ll	set	fence	to
VK_NULL_HANDLE.	Until	we	cover	fences,	we	can	wait	for	all	work	submitted
to	a	queue	to	complete	by	calling	vkQueueWaitIdle().	Its	prototype	is

Click	here	to	view	code	image

VkResult	vkQueueWaitIdle	(

				VkQueue																										queue);

The	only	parameter	to	vkQueueWaitIdle(),	queue,	is	the	queue	upon	which
to	wait.	When	vkQueueWaitIdle()	returns,	all	command	buffers	submitted
to	queue	are	guaranteed	to	have	completed	execution.	A	shortcut	to	wait	for	all
commands	submitted	to	all	queues	on	a	single	device	to	have	completed	is	to	call
vkDeviceWaitIdle().	Its	prototype	is

Click	here	to	view	code	image

VkResult	vkDeviceWaitIdle	(

				VkDevice																									device);

Calling	vkQueueWaitIdle()	or	vkDeviceWaitIdle()	is	really	not
recommended,	as	they	fully	flush	any	work	on	the	queue	or	device	and	are	very
heavyweight	operations.	Neither	should	be	called	in	any	performance-critical
part	of	your	application.	Suitable	use	cases	include	just	before	shutting	down	the
application	or	when	reinitializing	application	subsystems	such	as	thread
management,	memory	management,	and	so	on,	where	there	is	likely	to	be	a
substantial	pause	anyway.

Summary
This	chapter	introduced	you	to	command	buffers,	which	are	the	mechanisms	by
which	commands	are	communicated	by	your	application	to	the	Vulkan	device.



We	introduced	our	first	Vulkan	command	and	showed	you	how	to	ask	the	device
to	execute	work	for	you.
We	discussed	how	to	send	the	command	buffers	to	the	Vulkan	device	for
execution	by	submitting	them	to	the	queue.	You	saw	how	to	ensure	that	all	work
submitted	to	a	queue	or	to	a	device	has	finished	executing.	Although	we	glossed
over	a	number	of	important	topics,	such	as	how	to	call	one	command	buffer	from
another	and	how	to	implement	fine-grained	synchronization	between	the	host
and	the	device	and	between	queues	on	the	device,	these	topics	will	be	discussed
in	upcoming	chapters.



Chapter	4.	Moving	Data

What	You’ll	Learn	in	This	Chapter
•	How	to	manage	the	state	of	resources	as	they	are	used	by	Vulkan
•	How	to	copy	data	between	resources	and	fill	buffers	and	images	with
a	known	value
•	How	to	perform	blit	operations	to	stretch	and	scale	image	data

Graphics	and	compute	operations	are	generally	data-intensive.	Vulkan	includes
several	objects	that	provide	a	means	to	store	and	manipulate	data.	It	is	often
necessary	to	move	data	into	and	out	of	those	objects,	and	several	commands	are
provided	to	do	exactly	that:	copy	data	and	fill	buffer	and	image	objects.	Further,
at	any	given	time	a	resource	may	be	in	one	of	any	number	of	states,	and	many
parts	of	the	Vulkan	pipeline	may	need	access	to	them.	This	chapter	covers	data
movement	commands	that	can	be	used	to	copy	data	and	fill	memory—the
commands	needed	to	manage	the	state	of	resources	as	they	are	accessed	by	your
applications.
Chapter	3,	“Queues	and	Commands,”	showed	that	commands	executed	by	the
device	are	placed	in	command	buffers	and	submitted	to	one	of	its	queues	for
execution.	This	is	important	because	it	means	that	commands	are	not	executed	as
you	call	them	in	your	application,	but	as	they	are	encoutered	by	the	device	while
it	makes	its	way	through	the	command	buffers	you’ve	submitted.	The	first
command	you	were	introduced	to,	vkCmdCopyBuffer(),	copies	data
between	two	buffers	or	between	different	regions	in	the	same	buffer.	This	is	one
of	may	commands	that	affect	buffers,	images,	and	other	objects	in	Vulkan.	This
chapter	covers	similar	commands	for	filling,	copying,	and	clearing	buffers	and
images.

Managing	Resource	State
At	any	given	time	in	the	execution	of	a	program,	each	resource	can	be	in	one	of
many	different	states.	For	example,	if	the	graphics	pipeline	is	drawing	to	an
image	or	using	it	as	the	source	of	texture	data,	or	if	Vulkan	is	copying	data	from
the	host	into	an	image,	each	of	those	usage	scenarios	is	different.	For	some
Vulkan	implementations,	there	may	be	no	real	difference	between	some	of	these



states,	and	for	others,	accurately	knowing	the	state	of	a	resource	at	a	given	point
in	time	can	make	the	difference	between	your	application	working	or	rendering
junk.
Because	commands	in	command	buffers	are	responsible	for	most	access	to
resources,	and	because	command	buffers	might	be	built	in	a	different	order	from
the	order	in	which	they	are	submitted	for	execution,	it’s	not	really	practical	for
Vulkan	implementations	to	attempt	to	track	the	state	of	a	resource	and	make	sure
it’s	in	the	right	one	for	each	usage	scenario.	In	particular,	a	resource	may	begin
in	one	state	and	move	to	another	due	to	the	execution	of	a	command	buffer.
While	drivers	could	track	the	state	of	resources	as	they	are	used	in	a	command
buffer,	tracking	state	across	command	buffers	would	require	significant	effort1
when	the	command	buffers	were	submitted	for	execution.	Therefore,	this
responsibility	falls	to	your	application.	Resource	state	is	perhaps	most	important
for	images	because	they	are	complex,	structured	resources.

1.	The	validation	layers	do,	in	fact,	attempt	to	track	this	state.	While	this	comes	with	a	substantial
performance	impact,	the	layer	is	capable	of	catching	and	reporting	many	resource-state-related	issues.

The	state	of	an	image	is	roughly	divided	into	two	essentially	orthogonal	pieces
of	state:	its	layout,	which	determines	how	the	data	is	laid	out	in	memory	and	was
discussed	briefly	earlier	in	the	book,	and	a	record	of	who	last	wrote	to	the	image,
which	affects	caching	and	coherency	of	data	on	the	device.	The	initial	layout	of
an	image	is	specified	when	it	is	created,	and	then	can	be	changed	throughout	the
image’s	lifetime,	either	explicitly	using	barriers	or	implicitly	using	renderpass.
Barriers	also	marshal	access	to	resources	from	different	parts	of	the	Vulkan
pipeline,	and	in	some	cases,	transitioning	a	resource	from	one	layout	to	another
can	be	accomplished	at	other	midpipeline	synchronization	work	performed	by
barriers.
The	specific	use	cases	for	each	layout	are	discussed	in	some	depth	later	in	the
book.	However,	the	fundamental	act	of	moving	a	resource	from	state	to	state	is
known	as	a	barrier,	and	it	is	extremely	important	to	get	barriers	right	and	to	use
them	effectively	in	your	application.

Pipeline	Barriers
A	barrier	is	a	synchronization	mechanism	for	memory	access	mamangement	and
resource	state	movement	within	the	stages	of	the	Vulkan	pipeline.	The	primary
command	for	synchronizing	access	to	resources	and	moving	them	from	state	to
state	is	vkCmdPipelineBarrier(),	the	prototype	of	which	is

Click	here	to	view	code	image



void	vkCmdPipelineBarrier	(

				VkCommandBuffer																										commandBuffer,

				VkPipelineStageFlags																					srcStageMask,

				VkPipelineStageFlags																					dstStageMask,

				VkDependencyFlags																								dependencyFlags,

				uint32_t																																	memoryBarrierCount,

				const	VkMemoryBarrier*																			pMemoryBarriers,

				uint32_t																																	bufferMemoryBarrierCount,

				const	VkBufferMemoryBarrier*													pBufferMemoryBarriers,

				uint32_t																																	imageMemoryBarrierCount,

				const		VkImageMemoryBarrier*													pImageMemoryBarriers);

The	command	buffer	that	will	execute	the	barrier	is	passed	in
commandBuffer.	The	next	two	parameters,	srcStageMask	and
dstStageMask,	specify	which	pipeline	stages	wrote	to	the	resource	last	and
which	stages	will	read	from	the	resource	next,	respectively.	That	is,	they	specify
the	source	and	destination	for	the	data	flow	represented	by	the	barrier.	Each	is
constructed	from	a	number	of	the	members	of	the
VkPipelineStageFlagBits	enumeration.

•	VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT:	The	top	of	pipe	is
considered	to	be	hit	as	soon	as	the	device	starts	processing	the	command.
•	VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT:	When	the	pipeline
executes	an	indirect	command,	it	fetches	some	of	the	parameters	for	the
command	from	memory.	This	is	the	stage	that	fetches	those	parameters.
•	VK_PIPELINE_STAGE_VERTEX_INPUT_BIT:	This	is	the	stage	where
vertex	attributes	are	fetched	from	their	respective	buffers.	After	this,	content
of	vertex	buffers	can	be	overwritten,	even	if	the	resulting	vertex	shaders
have	not	yet	completed	execution.
•	VK_PIPELINE_STAGE_VERTEX_SHADER_BIT:	This	stage	is	passed
when	all	vertex	shader	work	resulting	from	a	drawing	command	is
completed.
•	VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT:
This	stage	is	passed	when	all	tessellation	control	shader	invocations
produced	as	the	result	of	a	drawing	command	have	completed	execution.
•
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

This	stage	is	passed	when	all	tessellation	evaluation	shader	invocations
produced	as	the	result	of	a	drawing	command	have	completed	execution.
•	VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT:	This	stage	is	passed
when	all	geometry	shader	invocations	produced	as	the	result	of	a	drawing



command	have	completed	execution.
•	VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT:	This	stage	is	passed
when	all	fragment	shader	invocations	produced	as	the	result	of	a	drawing
command	have	completed	execution.	Note	that	there	is	no	way	to	know	that
a	primitive	has	been	completely	rasterized	while	the	resulting	fragment
shaders	have	not	yet	completed.	However,	rasterization	does	not	access
memory,	so	no	information	is	lost	here.
•	VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT:	All	per-
fragment	tests	that	might	occur	before	the	fragment	shader	is	launched	have
completed.
•	VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT:	All	per-
fragment	tests	that	might	occur	after	the	fragment	shader	is	executed	have
completed.	Note	that	outputs	to	the	depth	and	stencil	attachments	happen	as
part	of	the	test,	so	this	stage	and	the	early	fragment	test	stage	include	the
depth	and	stencil	outputs.
•	VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT:
Fragments	produced	by	the	pipeline	have	been	written	to	the	color
attachments.
•	VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT:	Compute	shader
invocations	produced	as	the	result	of	a	dispatch	have	completed.
•	VK_PIPELINE_STAGE_TRANSFER_BIT:	Any	pending	transfers
triggered	as	a	result	of	calls	to	vkCmdCopyImage()	or
vkCmdCopyBuffer(),	for	example,	have	completed.
•	VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT:	All	operations
considered	to	be	part	of	the	graphics	pipeline	have	completed.
•	VK_PIPELINE_STAGE_HOST_BIT:	This	pipeline	stage	corresponds	to
access	from	the	host.
•	VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT:	When	used	as	a
destination,	this	special	flag	means	that	any	pipeline	stage	may	access
memory.	As	a	source,	it’s	effectively	equivalent	to
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT.
•	VK_PIPELINE_STAGE_ALL_COMMANDS_BIT:	This	stage	is	the	big
hammer.	Whenever	you	just	don’t	know	what’s	going	on,	use	this;	it	will
synchronize	everything	with	everything.	Just	use	it	wisely.

Because	the	flags	specified	in	srcStageMask	and	dstStageMask	are	used



to	indicate	when	things	happen,	it’s	acceptable	for	Vulkan	implementations	to
move	them	around	or	interpret	them	in	various	ways.	The	srcStageMask
specifies	when	the	source	stage	has	finished	reading	or	writing	a	resource.	As	a
result,	moving	the	effective	position	of	that	stage	later	in	the	pipeline	doesn’t
change	the	fact	that	those	accesses	have	completed;	it	may	mean	only	that	the
implementation	waits	longer	than	it	really	needs	to	for	them	to	complete.
Likewise,	the	dstStageMask	specifies	the	point	at	which	the	pipeline	will
wait	before	proceeding.	If	an	implementation	moves	that	wait	point	earlier,	that
will	still	work.	The	event	that	it	waits	on	will	still	have	completed	when	the
logically	later	parts	of	the	pipeline	begin	execution.	That	implementation	just
misses	the	opportunity	to	perform	work	when	it	was	instead	waiting.
The	dependencyFlags	parameter	specifies	a	set	of	flags	that	describes	how
the	dependency	represented	by	the	barrier	affects	the	resources	referenced	by	the
barrier.	The	only	defined	flag	is	VK_DEPENDENCY_BY_REGION_BIT,	which
indicates	that	the	barrier	affects	only	the	region	modified	by	the	source	stages	(if
it	can	be	determined),	which	is	consumed	by	the	destination	stages.
A	single	call	to	vkCmdPipelineBarrier()	can	be	used	to	trigger	many
barrier	operations.	There	are	three	types	of	barrier	operations:	global	memory
barriers,	buffer	barriers,	and	image	barriers.	Global	memory	barriers	affect
things	such	as	synchronized	access	to	mapped	memory	between	the	host	and	the
device.	Buffer	and	image	barriers	primarily	affect	device	access	to	buffer	and
image	resources,	respectively.

Global	Memory	Barriers
The	number	of	global	memory	barriers	to	be	triggered	by
vkCmdPipelineBarrier()	is	specified	in	memoryBarrierCount.	If
this	is	nonzero,	then	pMemoryBarriers	points	to	an	array	of
memoryBarrierCount	VkMemoryBarrier	structures,	each	defining	a
single	memory	barrier.	The	definition	of	VkMemoryBarrier	is

Click	here	to	view	code	image

typedef	struct	VkMemoryBarrier	{

				VkStructureType				sType;

				const	void*								pNext;

				VkAccessFlags						srcAccessMask;

				VkAccessFlags						dstAccessMask;

}	VkMemoryBarrier;

The	sType	field	of	VkMemoryBarrier	should	be	set	to
VK_STRUCTURE_TYPE_MEMORY_BARRIER,	and	pNext	should	be	set	to



nullptr.	The	only	other	fields	in	the	structure	are	the	source	and	destination
access	masks	specified	in	srcAccessMask	and	dstAccessMask,
respectively.	The	access	masks	are	bitfields	containing	members	of	the
VkAccessFlagBits.	The	source	access	mask	specifies	how	the	memory	was
last	written,	and	the	destination	access	mask	specifies	how	the	memory	will	next
be	read.	The	available	access	flags	are

•	VK_ACCESS_INDIRECT_COMMAND_READ_BIT:	The	memory
referenced	will	be	the	source	of	commands	in	an	indirect	drawing	or
dispatch	command	such	as	vkCmdDrawIndirect()	or
vkCmdDispatchIndirect().
•	VK_ACCESS_INDEX_READ_BIT:	The	memory	referenced	will	be	the
source	of	index	data	in	an	indexed	drawing	command	such	as
vkCmdDrawIndexed()	or	vkCmdDrawIndexedIndirect().
•	VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:	The	memory
referenced	will	be	the	source	of	vertex	data	fetched	by	Vulkan’s	fixed-
function	vertex	assembly	stage.
•	VK_ACCESS_UNIFORM_READ_BIT:	The	memory	referenced	is	the
source	of	data	for	a	uniform	block	accessed	by	a	shader.
•	VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:	The	memory
referenced	is	used	to	back	an	image	used	as	an	input	attachment.
•	VK_ACCESS_SHADER_READ_BIT:	The	memory	referenced	is	used	to
back	an	image	object	that	is	read	from	using	image	loads	or	texture	reads	in
a	shader.
•	VK_ACCESS_SHADER_WRITE_BIT:	The	memory	referenced	is	used	to
back	an	image	object	that	is	written	to	using	image	stores	in	a	shader.
•	VK_ACCESS_COLOR_ATTACHMENT_READ_BIT:	The	memory
referenced	is	used	to	back	an	image	used	as	a	color	attachment	where	reads
are	performed,	perhaps	because	blending	is	enabled.	Note	that	this	is	not	the
same	as	an	input	attachment,	where	data	is	read	explicitly	by	the	fragment
shader.
•	VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:	The	memory
referenced	is	used	to	back	an	image	used	as	a	color	attachment	that	will	be
written	to.
•	VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT:	The
memory	referenced	is	used	to	back	an	image	used	as	a	depth	or	stencil
attachment	that	will	be	read	from	because	the	relevant	test	is	enabled.



•	VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:	The
memory	referenced	is	used	to	back	an	image	used	as	a	depth	or	stencil
attachment	that	will	be	written	to	because	the	relevant	write	mask	is	enabled.
•	VK_ACCESS_TRANSFER_READ_BIT:	The	memory	referenced	is	used	as
the	source	of	data	in	a	transfer	operation	such	as	vkCmdCopyImage(),
vkCmdCopyBuffer(),	or	vkCmdCopyBufferToImage().
•	VK_ACCESS_TRANSFER_WRITE_BIT:	The	memory	referenced	is	used
as	the	destination	of	a	transfer	operation.
•	VK_ACCESS_HOST_READ_BIT:	The	memory	referenced	is	mapped	and
will	be	read	from	by	the	host.
•	VK_ACCESS_HOST_WRITE_BIT:	The	memory	referenced	is	mapped	and
will	be	written	to	by	the	host.
•	VK_ACCESS_MEMORY_READ_BIT:	All	other	memory	reads	not	explicitly
covered	by	the	preceding	cases	should	specify	this	bit.
•	VK_ACCESS_MEMORY_WRITE_BIT:	All	other	memory	writes	not
explicitly	covered	by	the	preceding	cases	should	specify	this	bit.

Memory	barriers	provide	two	important	pieces	of	functionality.	First,	they	help
avoid	hazards,	and	second,	they	help	ensure	data	consistency.
A	hazard	occurs	when	read	and	write	operations	are	reordered	relative	to	the
order	in	which	the	programmer	expects	them	to	execute.	They	can	be	very	hard
to	diagnose	because	they	are	often	platform-or	timing-dependent.	There	are	three
types	of	hazards:

•	A	read-after-write,	or	RaW,	hazard	occurs	when	the	programmer	expects	to
read	from	a	piece	of	memory	that	has	recently	been	written	to	and	that	those
reads	will	see	the	results	of	the	writes.	If	the	read	is	rescheduled	and	ends	up
executing	before	the	write	is	complete,	the	read	will	see	old	data.
•	A	write-after-read,	or	WaR,	hazard	occurs	when	a	programmer	expects	to
overwrite	a	piece	of	memory	that	had	previously	been	read	by	another	part
of	the	program.	If	the	write	operation	ends	up	being	scheduled	before	the
read	operation,	then	the	read	operation	will	see	the	new	data,	not	the	older
data	it	was	expecting.
•	A	write-after-write,	or	WaW,	hazard	occurs	when	a	programmer	expects	to
overwrite	the	same	location	in	memory	multiple	times	and	that	only	the
results	of	the	last	write	will	be	visible	to	subsequent	readers.	If	the	writes	are
rescheduled	with	respect	to	one	another,	then	only	the	result	of	the	write	that
happened	to	execute	last	will	be	visible	to	readers.



There	is	no	such	thing	as	a	read-after-read	hazard	because	no	data	is	modified.
In	the	memory	barrier,	the	source	isn’t	necessarily	a	producer	of	data	but	the	first
operation	that	is	protected	by	that	barrier.	For	avoiding	RaW	hazards,	the	source
is	actually	a	read	operation.
For	example,	to	ensure	that	all	texture	fetches	are	complete	before	overwriting
an	image	with	a	copy	operation,	we	need	to	specify
VK_ACCESS_SHADER_READ_BIT	in	the	srcAccessMask	field	and
VK_ACCESS_TRANSFER_WRITE_BIT	in	the	dstAccessMask	field.	This
tells	Vulkan	that	the	first	stage	is	reading	from	an	image	in	a	shader	and	that	the
second	stage	may	overwrite	that	image,	so	we	should	not	reorder	the	copy	into
the	image	before	any	shaders	that	may	have	read	from	it.
Note	that	there	is	some	overlap	between	the	bits	in	VkAccessFlagBits	and
those	in	VkPipelineStageFlagBits.	The	VkAccessFlagBits	flags
specify	what	operation	is	being	performed,	and	the
VkPipelineStageFlagBits	describe	where	in	the	pipeline	the	action	is
performed.
The	second	piece	of	functionality	provided	by	the	memory	barrier	is	to	ensure
consistency	of	the	views	of	data	from	different	parts	of	the	pipeline.	For
example,	if	an	application	contains	a	shader	that	writes	to	a	buffer	from	a	shader
and	then	needs	to	read	that	data	back	from	the	buffer	by	mapping	the	underlying
memory	object,	it	should	specify	VK_ACCESS_SHADER_WRITE_BIT	in
srcAccessMask	and	VK_ACCESS_HOST_READ_BIT	in
dstAccessMask.	If	there	are	caches	in	the	device	that	may	buffer	writes
performed	by	shaders,	those	caches	may	need	to	be	flushed	in	order	for	the	host
to	see	the	results	of	the	write	operations.

Buffer	Memory	Barriers
Buffer	memory	barriers	provide	finer-grained	control	of	the	memory	used	to
back	buffer	objects.	The	number	of	buffer	memory	barriers	executed	by	a	call	to
vkCmdPipelineBarrier()	is	specified	in	the
bufferMemoryBarrierCount	parameter,	and	the
pBufferMemoryBarriers	field	is	a	pointer	to	an	array	of	this	many
VkBufferMemoryBarrier	structures,	each	defining	a	buffer	memory
barrier.	The	definition	of	VkBufferMemoryBarrier	is

Click	here	to	view	code	image

typedef	struct	VkBufferMemoryBarrier	{

				VkStructureType				sType;



				const	void*								pNext;

				VkAccessFlags						srcAccessMask;

				VkAccessFlags						dstAccessMask;

				uint32_t											srcQueueFamilyIndex;

				uint32_t											dstQueueFamilyIndex;

				VkBuffer											buffer;

				VkDeviceSize							offset;

				VkDeviceSize							size;

}	VkBufferMemoryBarrier;

The	sType	field	of	each	VkBufferMemoryBarrier	structure	should	be	set
to	VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,	and	pNext
should	be	set	to	nullptr.	The	srcAccessMask	and	dstAccessMask
fields	have	the	same	meanings	as	they	do	in	the	VkMemoryBarrier	structure.
Obviously,	some	of	the	flags	that	refer	specifically	to	images,	such	as	color	or
depth	attachments,	have	little	meaning	when	dealing	with	buffer	memory.
When	ownership	of	the	buffer	is	being	transferred	from	one	queue	to	another	and
those	queues	are	in	different	families,	the	family	indices	of	the	source	and
destination	queues	must	be	supplied	in	srcQueueFamilyIndex	and
dstQueueFamilyIndex,	respectively.	If	there	is	no	transfer	of	ownership,
then	srcQueueFamilyIndex	and	dstQueueFamilyIndex	can	both	be
set	to	VK_QUEUE_FAMILY_IGNORED.	In	this	case,	the	sole	ownership	is
assumed	to	be	the	queue	family	for	which	the	command	buffer	is	being	built.
The	buffer	the	access	to	which	is	being	controlled	by	the	barrier	is	specified	in
buffer.	To	synchronize	access	to	a	range	of	a	buffer,	use	the	offset	and
size	fields	of	the	structure	to	specify	that	range,	in	bytes.	To	control	access	to
the	whole	buffer,	simply	set	offset	to	zero	and	size	to	VK_WHOLE_SIZE.
If	the	buffer	will	be	accessed	by	work	executing	on	more	than	one	queue,	and
those	queues	are	of	different	families,	additional	action	must	be	taken	by	your
application.	Because	a	single	device	exposing	multiple	queue	families	may
actually	be	made	up	of	multiple	physical	components,	and	because	those
components	may	have	their	own	caches,	scheduling	architecture,	memory
controllers,	and	so	on,	Vulkan	needs	to	know	when	a	resource	is	moved	from
queue	to	queue.	If	this	is	the	case,	specify	the	queue	family	index	of	the	source
queue	in	srcQueueFamilyIndex	and	the	family	of	the	destination	queue	in
dstQueueFamilyIndex.
Similarly	to	image	memory	barriers,	if	the	resource	is	not	being	transferred
between	queues	belonging	to	different	families,	srcQueueFamilyIndex	and
dstQueueFamilyIndex	should	be	set	to	VK_QUEUE_FAMILY_IGNORED.



Image	Memory	Barriers
Just	as	with	buffers,	special	attention	should	be	paid	to	images,	and	image
memory	barriers	are	used	to	control	access	to	images.	The	number	of	image
memory	barriers	to	be	performed	by	the	call	to	vkCmdPipelineBarrier()
is	specified	in	the	imageMemoryBarrierCount	parameter,	and
pImageMemoryBarriers	is	a	pointer	to	an	array	of	this	many
VkImageMemoryBarrier	structures,	each	describing	a	single	barrier.	The
definition	of	VkImageMemoryBarrier	is

Click	here	to	view	code	image

typedef	struct	VkImageMemoryBarrier	{

				VkStructureType												sType;

				const	void*																pNext;

				VkAccessFlags														srcAccessMask;

				VkAccessFlags														dstAccessMask;

				VkImageLayout														oldLayout;

				VkImageLayout														newLayout;

				uint32_t																			srcQueueFamilyIndex;

				uint32_t																			dstQueueFamilyIndex;

				VkImage																				image;

				VkImageSubresourceRange				subresourceRange;

}	VkImageMemoryBarrier;

The	sType	field	of	each	VkImageMemoryBarrier	structure	should	be	set
to	VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,	and	pNext	should
be	set	to	nullptr.	Just	as	with	the	other	memory	barriers,	the
srcAccessMask	and	dstAccessMask	fields	specify	the	source	and
destination	access	type.	Again,	only	some	of	the	access	types	will	apply	to
images.	Also,	when	you	are	controlling	access	across	queues,	the
srcQueueFamilyIndex	and	dstQueueFamilyIndex	fields	should	be
set	to	the	family	indices	of	the	queues	where	the	source	and	destination	work
will	take	place.
The	oldLayout	and	newLayout	fields	specify	the	layouts	to	be	used	for	the
image	before	and	after	the	barrier.	These	are	the	same	fields	that	can	be	used
when	creating	the	image.	The	image	that	the	barrier	is	to	affect	is	specified	in
image,	and	the	parts	of	the	image	to	be	affected	by	the	barrier	are	specified	in
subresourceRange,	which	is	an	instance	of	the
VkImageSubresourceRange	structure,	the	definition	of	which	is
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typedef	struct	VkImageSubresourceRange	{

				VkImageAspectFlags				aspectMask;



				uint32_t														baseMipLevel;

				uint32_t														levelCount;

				uint32_t														baseArrayLayer;

				uint32_t														layerCount;

}	VkImageSubresourceRange;

The	image	aspect	is	the	part	of	the	image	that	is	to	be	included	in	the	barrier.
Most	image	formats	and	types	have	only	a	single	aspect.	A	common	exception	is
a	depth-stencil	image,	which	may	have	a	separate	aspect	for	each	of	the	depth
and	stencil	components	of	the	image.	It	is	possible,	using	the	aspect	flags,	to
discard	stencil	data	while	keeping	depth	data	for	later	sampling,	for	example.
For	images	with	mipmaps,	a	subset	of	the	mipmaps	can	be	included	in	the
barrier	by	specifying	the	lowest-numbered	(highest-resolution)	mipmap	level	in
the	baseMipLevel	field	and	the	number	of	levels	in	the	levelCount	field.
If	the	image	doesn’t	have	a	full	mipmap	chain,	baseMipLevel	should	be	set
to	0,	and	levelCount	should	be	set	to	1.
Likewise,	for	array	images,	a	subset	of	the	image	layers	can	be	included	in	the
barrier	by	setting	baseArrayLayer	to	the	index	of	the	first	layer	and
layerCount	to	the	number	of	layers	to	include.	Again,	even	if	the	image	is
not	an	array	image,	you	should	set	baseArrayLayer	to	0	and	layerCount
to	1.	In	short,	treat	all	images	as	though	they	have	mipmaps	(even	if	it’s	only	one
level)	and	all	images	as	though	they	are	arrays	(even	if	they	have	only	one
layer).
Listing	4.1	shows	an	example	of	how	to	perform	an	image	memory	barrier.

Listing	4.1:	Image	Memory	Barrier
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const	VkImageMemoryBarrier	imageMemoryBarriers	=

{

				VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,					//	sType

				nullptr,																																				//	pNext

				VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,							//	srcAccessMask

				VK_ACCESS_SHADER_READ_BIT,																		//	dstAccessMask

				VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,			//	oldLayout

				VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,			//	newLayout

				VK_QUEUE_FAMILY_IGNORED,																			//	srcQueueFamilyIndex

				VK_QUEUE_FAMILY_IGNORED,																			//	dstQueueFamilyIndex

				image,																																						//	image

				{																																											//	subresourceRange

								VK_IMAGE_ASPECT_COLOR_BIT,														//	aspectMask

								0,																																						//	baseMipLevel

								VK_REMAINING_MIP_LEVELS,																//	levelCount

								0,																																						//	baseArrayLayer



								VK_REMAINING_ARRAY_LAYERS															//	layerCount

				}

};

vkCmdPipelineBarrier(m_currentCommandBuffer,

																					VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,

																					VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,

																					0,

																					0,	nullptr,

																					0,	nullptr,

																					1,	&imageMemoryBarrier);

The	image	memory	barrier	shown	in	Listing	4.1	takes	an	image	that	was
previously	in	the	VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL
layout	and	moves	it	to	the
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL	layout.	The	source
of	data	is	the	color	output	from	the	pipeline,	as	specified	by
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,	and	the	destination	of	the
data	is	sampling	by	a	shader,	as	specified	by
VK_ACCESS_SHADER_READ_BIT.
There	is	no	transfer	of	ownership	across	queues,	so	both
srcQueueFamilyIndex	and	dstQueueFamilyIndex	are	set	to
VK_QUEUE_FAMILY_IGNORED.	Also,	we’re	performing	the	barrier	across	all
mipmap	levels	and	array	layers	in	the	image,	so	the	levelCount	and
layerCount	members	of	the	subresourceRange	structure	are	set	to
VK_REMAINING_MIP_LEVELS	and	VK_REMAINING_ARRAY_LAYERS,
respectively.
This	barrier	takes	an	image	that	previously	was	written	to	as	a	color	attachment
by	a	graphics	pipeline	and	moves	it	into	a	state	in	which	it	can	be	read	from	by	a
shader.

Clearing	and	Filling	Buffers
You	were	introduced	to	buffer	objects	in	Chapter	2,	“Memory	and	Resources.”	A
buffer	is	a	linear	region	of	data	backed	by	memory.	In	order	for	a	buffer	to	be
useful,	you	need	to	be	able	to	fill	it	with	data.	In	some	cases,	simply	clearing	the
whole	buffer	to	a	known	value	is	all	you	need	to	do.	This	allows	you	to,	for
example,	initialize	a	buffer	that	you	will	eventually	write	into	using	a	shader	or
some	other	operation.
To	fill	a	buffer	with	a	fixed	value,	call	vkCmdFillBuffer(),	the	prototype
of	which	is



Click	here	to	view	code	image

void	vkCmdFillBuffer	(

				VkCommandBuffer																							commandBuffer,

				VkBuffer																														dstBuffer,

				VkDeviceSize																										dstOffset,

				VkDeviceSize																										size,

				uint32_t																														data);

The	command	buffer	into	which	to	place	the	command	is	specified	in
commandBuffer.	The	buffer	that	will	be	filled	with	data	is	specified	in
dstBuffer.	To	fill	a	section	of	the	buffer	with	data,	specify	the	starting	offset
of	the	fill	operation,	in	bytes,	in	dstOffset	and	the	size	of	the	region,	again	in
bytes,	in	size.	Both	dstOffset	and	size	must	be	multiples	of	4.	To	fill
from	dstOffset	to	the	end	of	the	buffer,	pass	the	special	value,
VK_WHOLE_SIZE,	in	the	size	parameter.	It	follows	that	to	fill	an	entire
buffer,	simply	set	dstOffset	to	0	and	size	to	VK_WHOLE_SIZE.
The	value	that	you	want	to	fill	the	buffer	with	is	passed	in	data.	This	is	a
uint32_t	variable	that	is	simply	replicated	for	the	region	of	the	fill	operation.
It	is	as	though	the	buffer	is	interpreted	as	an	array	of	uint32_t,	and	each
element	from	dstOffset	to	the	end	of	the	region	is	filled	with	this	value.	To
clear	a	buffer	with	a	floating-point	value,	you	can	reinterpret	the	floating-point
value	as	a	uint32_t	value	and	pass	that	to	vkCmdFillBuffer().	Listing
4.2	demonstrates	this.

Listing	4.2:	Filling	a	Buffer	with	Floating-Point	Data
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void	FillBufferWithFloats(VkCommandBuffercmdBuffer,

																										VkBuffer	dstBuffer,

																										VkDeviceSize	offset,

																										VkDeviceSize	length,

																										const	float	value)

{

					vkCmdFillBuffer(cmdBuffer,

																					dstBuffer,

																					0,

																					1024,

																					*(const	uint32_t*)&value);

}

Sometimes,	filling	a	buffer	with	a	fixed	value	is	not	enough,	and	there	is	a	need
to	place	data	more	explicitly	in	a	buffer	object.	When	a	large	amount	of	data	is



needed	to	be	transfered	into	or	between	buffers,	either	mapping	the	buffer	and
writing	to	it	with	the	host	or	copying	data	from	another	(possibly	mapped)	buffer
with	vkCmdCopyBuffer()	is	most	appropriate.	However,	for	small	updates,
such	as	updating	the	values	of	a	vector	or	small	data	structures,
vkCmdUpdateBuffer()	can	be	used	to	place	data	directly	into	a	buffer
object.
The	prototype	for	vkCmdUpdateBuffer()	is
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void	vkCmdUpdateBuffer	(

				VkCommandBuffer																							commandBuffer,

				VkBuffer																														dstBuffer,

				VkDeviceSize																										dstOffset,

				VkDeviceSize																										dataSize,

				const	uint32_t*																							pData);

vkCmdUpdateBuffer()	copies	data	directly	from	host	memory	into	a	buffer
object.	The	data	is	consumed	from	host	memory	as	soon	as
vkCmdUpdateBuffer()	is	called,	and	as	such,	it’s	fine	to	free	the	host
memory	data	structure	or	overwrite	its	content	once	vkCmdUpdateBuffer()
returns.	Be	aware,	though,	that	the	data	is	not	written	into	the	buffer	until
vkCmdUpdateBuffer()	is	executed	by	the	device	after	the	command	buffer
has	been	submitted.	For	this	reason,	Vulkan	must	make	a	copy	of	the	data	you’ve
supplied	and	hold	it	either	in	some	auxiliary	data	structure	associated	with	the
command	buffer	or	directly	inside	the	command	buffer	itself.
Again,	the	command	buffer	that	will	contain	the	command	is	passed	in
commandBuffer,	and	the	destination	buffer	object	is	passed	in	dstBuffer.
The	offset	at	which	the	data	is	to	be	placed	is	passed	in	dstOffset,	and	the
size	of	the	data	to	place	into	the	buffer	is	passed	in	dataSize.	Both
dstOffset	and	dataSize	are	in	units	of	bytes,	but	as	with
vkCmdFillBuffer(),	both	must	be	a	multiple	of	4.	The	special	value
VK_WHOLE_SIZE	is	not	accepted	for	the	size	parameter	to
vkCmdUpdateBuffer()	because	it	is	also	used	as	the	size	of	the	host
memory	region	that	is	the	source	of	the	data.	The	maximum	size	of	data	that	can
be	placed	in	a	buffer	with	vkCmdUpdateBuffer()	is	65,536	bytes.
pData	points	to	the	host	memory	containing	the	data	that	will	eventually	be
placed	into	the	buffer	object.	Although	the	type	of	the	variable	expected	here	is	a
pointer	to	uint32_t,	any	data	can	be	in	the	buffer.	Simply	typecast	a	pointer	to
any	memory	region	readable	by	the	host	to	const	uint32_t*,	and	pass	it	to



pData.	Ensure	that	the	data	region	is	at	least	size	bytes	long.	For	example,	it’s
reasonable	to	construct	a	C++	data	structure	matching	the	layout	of	a	uniform	or
shader	storage	block	and	simply	copy	its	entire	content	into	a	buffer	that	will	be
used	appropriately	in	a	shader.
Again,	be	cautious	when	using	vkCmdFillBuffer().	It	is	intended	for	short,
immediate	updates	to	buffers.	For	example,	writing	a	single	value	into	a	uniform
buffer	is	probably	much	more	efficiently	achieved	with
vkCmdFillBuffer()	than	it	is	with	a	buffer	mapping	and	a	call	to
vkCmdCopyBuffer().

Clearing	and	Filling	Images
Just	as	with	buffers,	it	it	possible	to	copy	data	directly	between	images	and	to	fill
images	with	fixed	values.	Images	are	larger,	more	complex,	opaque	data
structures,	so	the	raw	offsets	and	data	are	not	generally	visible	to	an	application.2

2.	Of	course,	it’s	possible	to	map	the	memory	that	is	used	for	backing	an	image.	In	particular,	when
linear	tiling	is	used	for	an	image,	this	is	standard	practice.	However,	in	general,	this	is	not
recommended.

To	clear	an	image	to	a	fixed	value,	call	vkCmdClearColorImage(),	the
prototype	of	which	is

Click	here	to	view	code	image

void	vkCmdClearColorImage	(

				VkCommandBuffer																				commandBuffer,

				VkImage																												image,

				VkImageLayout																						imageLayout,

				const	VkClearColorValue*											pColor,

				uint32_t																											rangeCount,

				const	VkImageSubresourceRange*					pRanges);

The	command	buffer	that	will	contain	the	clear	command	is	passed	in
commandBuffer.	The	image	that	is	to	be	cleared	is	passed	in	image,	and	the
layout	that	the	image	is	expected	to	be	in	when	the	clear	command	is	executed	is
passed	in	imageLayout.
The	accepted	layouts	for	imageLayout	are	VK_IMAGE_LAYOUT_GENERAL
and	VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL.	To	clear	images	that
are	in	different	layouts,	it	is	necessary	to	move	them	to	one	of	these	two	layouts
using	a	pipeline	barrier	before	executing	the	clear	command.
The	values	to	clear	the	image	to	are	specified	in	an	instance	of	the
VkClearColorValue	union,	the	definition	of	which	is

Click	here	to	view	code	image



typedef	union	VkClearColorValue	{

				float							float32[4];

				int32_t					int32[4];

				uint32_t				uint32[4];

}	VkClearColorValue;

The	VkClearColorValue	is	simply	a	union	of	three	arrays	of	four	values
each.	One	is	for	floating-point	data,	one	is	for	signed	integer	data,	and	one	is	for
unsigned	integer	data.	Vulkan	will	read	the	appropriate	member	for	the	format	of
the	image	being	cleared.	Your	application	can	write	into	the	member	that
matches	the	source	of	data.	No	data	conversion	is	performed	by
vkCmdClearColorImage();	it	is	up	to	your	application	to	fill	the
VkClearColorValue	union	correctly.
Any	number	of	regions	of	the	destination	image	can	be	cleared	with	a	single	call
to	vkCmdClearColorImage(),	although	each	will	be	cleared	with	the	same
values.	If	you	need	to	clear	multiple	regions	of	the	same	image	with	different
colors,	you	will	need	to	call	vkCmdClearColorImage()	multiple	times.
However,	you	want	to	clear	all	regions	with	the	same	color,	specify	the	number
of	regions	in	rangeCount,	and	pass	a	pointer	to	an	array	of	rangeCount
VkImageSubresourceRange	structures	in	pRanges.	The	definition	of
VkImageSubresourceRange	is
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typedef	struct	VkImageSubresourceRange	{

				VkImageAspectFlags				aspectMask;

				uint32_t														baseMipLevel;

				uint32_t														levelCount;

				uint32_t														baseArrayLayer;

				uint32_t														layerCount;

}	VkImageSubresourceRange;

This	structure	was	first	introduced	in	Chapter	2,	“Memory	and	Resources,”	when
we	discussed	creation	of	image	view.	Here,	it	is	used	to	define	the	regions	of	the
image	that	you	want	to	clear.	Because	we	are	clearing	a	color	image,	the
aspectMask	must	be	set	to	VK_IMAGE_ASPECT_COLOR_BIT.	The
baseMipLevel	and	levelCount	fields	are	used	to	specify	the	starting
mipmap	level	and	number	of	levels	to	clear,	respectively,	and	if	the	image	is	an
array	image,	the	baseArrayLayer	and	layerCount	fields	are	used	to
specify	the	starting	layer	and	number	of	layers	to	clear.	If	the	image	is	not	an
array	image,	these	fields	should	be	set	to	0	and	1,	respectively.
Clearing	a	depth-stencil	image	is	similar	to	clearing	a	color	image,	except	that	a
special	VkClearDepthStencilValue	structure	is	used	to	specify	the	clear



values.	The	prototype	of	vkCmdClearDepthStencilImage()	is	similar	to
that	of	vkCmdClearColorImage()	and	is
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void	vkCmdClearDepthStencilImage	(

				VkCommandBuffer																					commandBuffer,

				VkImage																													image,

				VkImageLayout																							imageLayout,

				const	VkClearDepthStencilValue*					pDepthStencil,

				uint32_t																												rangeCount,

				const	VkImageSubresourceRange	*					pRanges);

Again,	the	command	buffer	that	will	perform	the	clear	operation	is	specified	in
commandBuffer,	the	image	to	clear	is	specified	in	image,	and	the	layout	that
the	image	is	expected	to	be	in	at	the	time	of	the	clear	operation	is	specified	in
imageLayout.	As	with	vkCmdClearColorImage(),	imageLayout
should	be	either	VK_IMAGE_LAYOUT_GENERAL	or
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL.	No	other	layouts	are	valid
for	a	clear	operation.
The	values	to	which	to	clear	the	depth-stencil	image	are	passed	through	an
instance	of	the	VkClearDepthStencilValue	structure,	which	contains
both	the	depth	and	stencil	clear	values.	Its	definition	is
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typedef	struct	VkClearDepthStencilValue	{

				float							depth;

				uint32_t				stencil;

}	VkClearDepthStencilValue;

As	with	vkCmdClearColorImage(),	a	number	of	ranges	of	the	image	can
be	cleared	in	a	single	call	to	vkCmdClearDepthStencilImage().	The
number	of	ranges	to	clear	is	specified	in	rangeCount,	and	the	pRanges
parameter	should	point	to	an	array	of	rangeCount
VkImageSubresourceRange	structures	defining	the	ranges	to	be	cleared.
Because	depth-stencil	images	may	contain	both	a	depth	and	a	stencil	aspect,	the
aspectMask	field	of	each	member	of	pRanges	can	contain
VK_IMAGE_ASPECT_DEPTH_BIT,	VK_IMAGE_ASPECT_STENCIL_BIT,
or	both.	If	aspectMask	contains	VK_IMAGE_ASPECT_DEPTH_BIT,	then
the	value	stored	in	the	depth	field	of	the	VkClearDepthStencilValue
structure	is	used	to	clear	the	depth	aspect	of	the	specified	range.	Likewise,	if
aspectMask	contains	VK_IMAGE_ASPECT_STENCIL_BIT,	then	the
stencil	aspect	of	the	specified	range	will	be	cleared	using	the	stencil	member



of	the	VkClearDepthStencilValue	structure.
Note	that	it’s	generally	much	more	efficient	to	specify	a	single	region	with	both
VK_IMAGE_ASPECT_DEPTH_BIT	and
VK_IMAGE_ASPECT_STENCIL_BIT	set	than	it	is	to	specify	two	regions	each
with	only	one	bit	set.

Copying	Image	Data
In	the	previous	section,	we	discussed	clearing	images	to	a	fixed	value	passed
through	a	simple	structure.	In	many	cases,	though,	you	need	to	upload	texture
data	into	images	or	copy	image	data	between	images.	Vulkan	supports	copying
image	data	from	a	buffer	to	an	image,	between	images,	and	from	an	image	to	a
buffer.
To	copy	data	from	a	buffer	to	one	or	more	regions	of	an	image,	call
vkCmdCopyBufferToImage(),	the	prototype	of	which	is
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void	vkCmdCopyBufferToImage	(

				VkCommandBuffer																				commandBuffer,

				VkBuffer																											srcBuffer,

				VkImage																												dstImage,

				VkImageLayout																						dstImageLayout,

				uint32_t																											regionCount,

				const	VkBufferImageCopy*											pRegions);

The	command	buffer	that	will	execute	the	command	is	specified	in
commandBuffer,	the	source	buffer	object	is	specified	in	srcBuffer,	and
the	image	into	which	the	data	will	be	copied	is	specified	in	dstImage.	As	with
the	destination	image	in	clears,	the	layout	of	the	destination	image	for	copies	is
expected	to	be	either	VK_IMAGE_LAYOUT_GENERAL	or
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL	and	is	specified	in	the
dstImageLayout	parameter.
The	number	of	regions	to	update	is	given	in	regionCount,	and	pRegions	is
a	pointer	to	an	array	of	regionCount	VkBufferImageCopy	structures,
each	definining	an	area	of	the	image	to	copy	data	into.	The	definition	of
VkBufferImageCopy	is
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typedef	struct	VkBufferImageCopy	{

				VkDeviceSize																bufferOffset;

				uint32_t																				bufferRowLength;

				uint32_t																				bufferImageHeight;



				VkImageSubresourceLayers				imageSubresource;

				VkOffset3D																		imageOffset;

				VkExtent3D																		imageExtent;

}	VkBufferImageCopy;

The	bufferOffset	field	contains	the	offset	of	the	data	in	the	buffer,	in	bytes.
The	data	in	the	buffer	is	laid	out	left	to	right,	top	to	bottom,	as	shown	in	Figure
4.1.	The	bufferRowLength	field	specifies	the	number	of	texels	in	the	source
image,	and	bufferImageHeight	specifies	the	number	of	rows	of	data	in	the
image.	If	bufferRowLength	is	zero,	the	image	is	assumed	to	be	tightly
packed	in	the	buffer	and	therefore	equal	to	imageExtent.width.	Likewise,
if	bufferImageHeight	is	zero,	then	the	number	of	rows	in	the	source	image
is	assumed	to	be	equal	to	the	height	of	the	image	extent,	which	is	in
imageExtent.height.

Figure	4.1:	Data	Layout	of	Images	Stored	in	Buffers

The	subresource	into	which	to	copy	the	image	data	is	specified	in	an	instance	of
the	VkImageSubresourceLayers	structure,	the	definition	of	which	is

Click	here	to	view	code	image

typedef	struct	VkImageSubresourceLayers	{

				VkImageAspectFlags				aspectMask;

				uint32_t														mipLevel;

				uint32_t														baseArrayLayer;

				uint32_t														layerCount;

}	VkImageSubresourceLayers;

The	aspectMask	field	of	VkImageSubresourceLayers	contains	the
aspect	or	aspects	that	are	the	destination	of	the	image	copy.	Usually,	this	will	be



a	single	bit	from	the	VkImageAspectFlagBits	enumeration.	If	the	target
image	is	a	color	image,	then	this	should	simply	be	set	to
VK_IMAGE_ASPECT_COLOR_BIT.	If	the	image	is	a	depth-only	image,	it
should	be	VK_IMAGE_ASPECT_DEPTH_BIT,	and	if	the	image	is	a	stencil-
only	image,	it	should	be	VK_IMAGE_ASPECT_STENCIL_BIT.	If	the	image	is
a	combined	depth-stencil	image,	then	you	can	copy	data	into	both	the	depth	and
stencil	aspects	simultaneously	by	specifying	both
VK_IMAGE_ASPECT_DEPTH_BIT	and
VK_IMAGE_ASPECT_STENCIL_BIT.
The	target	mipmap	level	is	specified	in	mipLevel.	You	can	copy	data	into	only
a	single	mipmap	level	with	each	element	in	the	pRegions	array,	although	you
can	of	course	specify	multiple	elements,	each	targeting	a	different	level.
If	the	target	image	is	an	array	image,	then	you	can	specify	the	starting	layer	and
number	of	layers	for	the	image	copy	in	baseArrayLayer	and	layerCount,
respectively.	If	the	image	is	not	an	array	image,	then	these	fields	should	be	set	to
0	and	1.
Each	region	can	target	either	an	entire	mipmap	level	or	a	smaller	window	within
each	mipmap	level.	The	offset	of	the	window	is	specified	in	imageOffset,
and	the	size	of	the	window	is	specified	in	imageExtent.	To	overwrite	an
entire	mipmap	level,	set	imageOffset.x	and	imageOffset.y	to	0,	and	set
imageExtent.width	and	imageExtent.height	to	the	size	of	the
mipmap	level.	It	is	up	to	you	to	calculate	this.	Vulkan	will	not	do	it	for	you.
It’s	also	possible	to	perform	the	copy	in	the	opposite	direction—to	copy	data
from	an	image	into	a	buffer.	To	do	this,	call	vkCmdCopyImageToBuffer(),
the	prototype	of	which	is

Click	here	to	view	code	image

void	vkCmdCopyImageToBuffer	(

				VkCommandBuffer																			commandBuffer,

				VkImage																											srcImage,

				VkImageLayout																					srcImageLayout,

				VkBuffer																										dstBuffer,

				uint32_t																										regionCount,

				const	VkBufferImageCopy*											pRegions);

The	command	buffer	to	execute	the	copy	is	specified	in	commandBufer,	the
source	image	in	srcImage,	and	the	destination	buffer	in	dstBuffer.	As	with
the	other	copy	commands,	the	srcImageLayout	parameter	specifies	the
layout	that	the	source	image	is	expected	to	be	in.	Because	the	image	is	now	the
source	of	data,	the	layout	should	either	be	VK_IMAGE_LAYOUT_GENERAL



or	VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL.
Again,	a	number	of	regions	can	be	copied	in	a	single	call	to
vkCmdCopyImageToBuffer(),	each	represented	by	an	instance	of	the
VkBufferImageCopy	structure.	The	number	of	regions	to	copy	is	specified
in	regionCount,	and	the	pRegions	parameter	contains	a	pointer	to	an	array
of	regionCount	VkBufferImageCopy	structures	defining	each	of	these
regions.	This	is	the	same	structure	accepted	by
vkCmdCopyBufferToImage().	However,	in	this	use	case,
bufferOffset,	bufferRowLength,	and	bufferImageHeight	contain
parameters	for	the	destination	of	the	copy,	and	imageSubresource,
imageOffset,	and	imageExtent	contain	parameters	for	the	source	of	the
copy.
Finally,	it’s	also	possible	to	copy	data	between	two	images.	To	do	this,	use	the
vkCmdCopyImage()	command,	the	prototype	of	which	is

Click	here	to	view	code	image

void	vkCmdCopyImage	(

				VkCommandBuffer																								commandBuffer,

				VkImage																																srcImage,

				VkImageLayout																										srcImageLayout,

				VkImage																																dstImage,

				VkImageLayout																										dstImageLayout,

				uint32_t																															regionCount,

				const	VkImageCopy*																					pRegions);

The	command	buffer	that	will	execute	the	command	is	passed	in
commandBuffer,	the	image	containing	the	source	data	is	passed	in
srcImage,	and	the	image	that	is	the	destination	for	the	copy	is	passed	in
dstImage.	Again,	the	layout	for	both	images	must	be	passed	to	the	copy
command.	srcImageLayout	is	the	expected	layout	of	the	source	image	at	the
time	of	the	copy	and	should	be	either	VK_IMAGE_LAYOUT_GENERAL	or
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL	(as	this	is	the	source	of	a
transfer	operation).	Similarly,	dstImageLayout	is	the	expected	layout	of	the
destination	image	and	should	be	either	VK_IMAGE_LAYOUT_GENERAL	or
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL.
As	with	the	buffer-to-image	and	image-to-buffer	copy	commands,
vkCmdCopyImage()	can	copy	several	regions	at	a	time.	The	number	of
regions	to	copy	is	specified	in	regionCount,	and	each	is	represented	by	an
instance	of	the	VkImageCopy	structure	contained	in	an	array,	the	address	of
which	is	passed	in	pRegions.	The	definition	of	VkImageCopy	is



Click	here	to	view	code	image

typedef	struct	VkImageCopy	{

				VkImageSubresourceLayers					srcSubresource;

				VkOffset3D																			srcOffset;

				VkImageSubresourceLayers					dstSubresource;

				VkOffset3D																			dstOffset;

				VkExtent3D																			extent;

}	VkImageCopy;

Each	instance	of	VkImageCopy	contains	the	subresource	information	and
offsets	for	the	source	and	destination	windows.	vkCmdCopyImage()	cannot
resize	image	data,	so	the	extent	of	the	source	and	destination	regions	is	the	same
and	is	contained	in	the	extent	field.
srcSubresource	contains	the	subresource	definition	for	the	source	data	and
has	the	same	meaning	as	the	imageSubresource	field	in	the
VkBufferImageCopy	structure	passed	to
vkCmdCopyImageToBuffer().	Likewise,	the	dstSubresource	field
contains	the	subresource	definition	for	the	destination	region	and	has	the	same
meaning	as	the	imageSubresource	field	in	the	VkBufferImageCopy
structure	passed	to	vkCmdCopyBufferToImage().
The	srcOffset	and	dstOffset	fields	contain	the	coordinates	of	the	source
and	destination	windows,	respectively.

Copying	Compressed	Image	Data
As	discussed	in	Chapter	2,	“Memory	and	Resources,”	Vulkan	supports	a	number
of	compressed	image	formats.	All	compression	formats	currently	defined	are
block-based	formats	with	fixed	block	sizes.	For	many	of	these	formats,	the	block
size	is	4	×	4	texels.	For	the	ASTC	formats,	the	block	size	varies	by	image.
When	copying	data	between	buffers	and	images,	only	an	integral	number	of
blocks	may	be	copied.	Therefore,	the	width	and	height	of	each	image	region,	in
texels,	must	be	integer	multiples	of	the	block	size	used	by	the	image.	Further,	the
origins	of	copy	regions	must	also	be	integer	multiples	of	the	block	size.
It	is	also	possible	to	copy	data	between	two	compressed	images	or	between	a
compressed	and	an	uncompressed	image	using	vkCmdCopyImage().	When
you	do	so,	the	source	and	destination	image	formats	must	have	the	same
compressed	block	size.	That	is,	if	the	size	of	the	compressed	block	is	64	bits,	for
example,	then	both	the	source	and	destination	formats	must	be	compressed
images	with	64-bit	block	sizes,	or	the	uncompressed	image	format	must	be	a	64-
bit	per-texel	format.



When	copying	from	an	uncompressed	image	to	a	compressed	one,	each	source
texel	is	treated	as	a	single	raw	value	containing	the	same	number	of	bits	as	a
block	in	the	compressed	image.	This	value	is	written	directly	into	the
compressed	image	as	though	it	were	the	compressed	data.	The	texel	values	are
not	compressed	by	Vulkan.	This	allows	you	to	create	compressed	image	data	in
your	application	or	shaders	and	then	copy	it	into	compressed	images	for	later
processing.	Vulkan	does	not	compress	raw	image	data	for	you.	Further,	for
uncompressed	to	compressed	copies,	the	extent	field	of	the	VkImageCopy
structure	is	in	units	of	texels	in	the	source	image	but	must	conform	to	the	block
size	requirements	of	the	destination	image.
When	copying	from	a	compressed	format	to	an	uncompressed	format,	the
opposite	is	true.	Vulkan	does	not	decompress	the	image	data.	Rather,	it	pulls	raw
64-bit	or	128-bit	compressed	block	values	from	the	source	image	and	deposits
them	in	the	destination	image.	In	this	case,	the	destination	image	should	have	the
same	number	of	bits	per	texel	as	bits	per	block	in	the	source	image.	For	a
compressed	to	uncompressed	copy,	the	extent	field	of	the	VkImageCopy
structure	is	measured	in	units	of	texels	in	the	destination	image	but	must
conform	to	the	requiremnts	imposed	by	the	block	size	in	the	source	image.
Copying	between	two	block	compressed	image	formats	is	allowed,	so	long	as
both	formats	have	an	equal	number	of	bits	per	block.	However,	the	value	of	this
is	debatable,	as	image	data	compressed	in	one	format	generally	does	not	decode
meaningfully	when	interpreted	as	another	format.	Regardless	of	its	worth,	when
performing	this	operation,	the	regions	to	be	copied	are	still	measured	in	texels,
but	all	offsets	and	extents	must	be	integer	multiples	of	the	common	block	size.
The	only	exception	to	the	rule	that	image	copies	into,	out	of,	and	between
compressed	images	are	aligned	to	multiples	of	the	block	size	occurs	when	the
source	or	destination	image	is	not	an	integer	multiple	of	the	block	size	wide	or
high,	and	the	region	to	be	copied	extends	to	the	edge	of	the	image.

Stretching	Images
Of	all	the	image-related	commands	covered	so	far,	none	supports	format
conversion	or	resizing	of	the	copied	area.	To	do	this,	you	need	to	use	the
vkCmdBlitImage()	command,	which	can	take	images	of	different	formats
and	stretch	or	shrink	the	region	to	be	copied	as	it	is	written	into	the	target	image.
The	term	blit	is	short	for	block	image	transfer	and	refers	to	the	operation	of	not
only	copying	image	data,	but	potentially	also	processing	it	along	the	way.
The	prototype	of	vkCmdBlitImage()	is



Click	here	to	view	code	image

void	vkCmdBlitImage	(

				VkCommandBuffer																								commandBuffer,

				VkImage																																srcImage,

				VkImageLayout																										srcImageLayout,

				VkImage																																dstImage,

				VkImageLayout																										dstImageLayout,

				uint32_t																															regionCount,

				const	VkImageBlit*																					pRegions,

				VkFilter																															filter);

The	command	buffer	that	will	execute	the	command	is	passed	in
commandBuffer.	The	source	and	destination	images	are	passed	in
srcImage	and	dstImage,	respectively.	Again,	as	with
vkCmdCopyImage(),	the	expected	layouts	of	the	source	and	destination
images	are	passed	in	srcImageLayout	and	dstImageLayout.	The	layout
of	the	source	image	must	be	either	VK_IMAGE_LAYOUT_GENERAL	or
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,	and	the	layout	of	the
destination	image	must	be	either	VK_IMAGE_LAYOUT_GENERAL	or
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL.
As	with	the	other	copy	commands,	vkCmdBlitImage()	can	copy	any
number	of	regions	of	the	source	image	into	the	destination	image,	and	each	is
represented	by	a	data	structure.	The	number	of	regions	to	copy	is	passed	in
regionCount,	and	pRegion	points	to	an	array	of	regionCount
VkImageBlit	structures,	each	defining	one	of	the	regions	to	copy.	The
definition	of	VkImageBlit	is

Click	here	to	view	code	image

typedef	struct	VkImageBlit	{

				VkImageSubresourceLayers					srcSubresource;

				VkOffset3D																			srcOffsets[2];

				VkImageSubresourceLayers					dstSubresource;

				VkOffset3D																			dstOffsets[2];

}	VkImageBlit;

The	srcSubresource	and	dstSubresource	fields	of	VkImageBlit
define	the	subresource	for	the	source	and	destination	images.	Whereas	in
VkImageCopy	each	region	was	defined	by	a	VkOffset3D	structure	and
shared	a	VkExtent3D	structure,	in	VkImageBlit	each	region	is	defined	by	a
pair	of	VkOffset3D	structures	arranged	as	arrays	of	two	elements.
The	first	element	of	the	srcOffsets	and	dstOffsets	arrays	defines	one
corner	of	the	region	to	be	copied,	and	the	second	element	of	these	arrays	defines



the	opposite	corner	of	the	region.	The	region	defined	by	srcOffsets	in	the
source	image	is	then	copied	into	the	region	defined	by	dstOffsets	in	the
destination	image.	If	either	region	is	“upside	down”	with	respect	to	the	other,
then	the	copied	region	will	be	flipped	vertically.	Likewise,	if	one	region	is	“back
to	front”	with	respect	to	the	other,	then	the	image	will	be	flipped	horizontally.	If
both	of	these	conditions	are	met,	then	the	copied	region	will	be	rotated	180°	with
respect	to	the	original.
If	the	regions	are	different	sizes	in	the	source	and	destination	rectangles,	then	the
image	data	will	be	magnified	or	minified,	accordingly.	In	this	case,	the	filter
mode	specified	in	the	filter	parameter	to	vkCmdBlitImage()	will	be
used	to	filter	the	data.	filter	must	be	one	of	VK_FILTER_NEAREST	or
VK_FILTER_LINEAR	to	apply	point	sampling	or	linear	filtering,	respectively.
The	format	of	the	source	image	must	be	one	that	supports	the
VK_FORMAT_FEATURE_BLIT_SRC_BIT	feature.	In	most	implementations,
this	will	include	almost	all	image	formats.	Further,	the	destination	format	must
be	one	that	supports	VK_FORMAT_FEATURE_BLIT_DST_BIT.	In	general,
this	is	any	format	that	can	be	rendered	to	or	written	to	by	the	device	using	image
stores	in	shaders.	It	is	unlikely	that	any	Vulkan	device	supports	blitting	to	a
compressed	image	format.

Summary
This	chapter	discussed	how	to	clear	images	with	fixed	values	and	full	buffer
objects	with	data.	We	placed	small	amounts	of	data	directly	into	buffer	objects
using	commands	embedded	inside	command	buffers	and	explained	how	Vulkan
is	able	to	copy	image	data	between	buffers	and	images,	between	images	and
buffers,	and	between	pairs	of	images.	Finally,	we	introduced	you	to	the	concept
of	a	blit,	which	is	an	operation	that	allows	image	data	to	be	scaled	and	to
undergo	format	conversion	as	it	is	copied.	These	operations	provide	a	foundation
for	getting	large	amounts	of	data	into	and	out	of	the	Vulkan	device	for	further
processing.



Chapter	5.	Presentation

What	You’ll	Learn	in	This	Chapter
•	How	to	display	the	results	of	your	program	onscreen
•	How	to	determine	the	display	devices	attached	to	the	system
•	How	to	change	display	modes	and	interface	with	a	native	window
system

Vulkan	is	primarily	a	graphics	API	in	the	sense	that	the	majority	of	its
functionality	is	dedicated	to	generating	and	processing	images.	Most	Vulkan
applications	will	be	designed	to	show	their	results	to	the	user.	This	is	a	process
known	as	presentation.	However,	because	the	variety	of	platforms	upon	which
Vulkan	runs	is	large,	and	because	not	all	applications	need	to	present	their
outputs	to	the	user	visually,	presentation	is	not	a	core	part	of	the	API	but	is
handled	by	a	set	of	extensions.	This	chapter	discusses	how	to	enable	and	use
those	extensions	to	get	pictures	on	the	screen.

Presentation	Extension
Presentation	in	Vulkan	is	not	part	of	the	core	API.	In	fact,	a	given
implementation	of	Vulkan	may	not	support	presentation	at	all.	The	reasons	for
this	are

•	Not	all	Vulkan	applications	need	to	present	images	to	the	user.
Computecentric	applications,	for	example,	might	produce	nonvisual	data	or
produce	images	that	only	need	to	be	saved	to	disk	rather	than	displayed	in
real	time.
•	Presentation	is	generally	handled	by	the	operating	system,	window	system,
or	other	platform-specific	library,	which	can	vary	quite	a	bit	from	platform
to	platform.

Due	to	this,	presentation	is	handled	by	a	set	of	extensions	collectively	known	as
the	WSI	extensions,	or	Window	System	Integration	systems.	Extensions	in
Vulkan	must	be	enabled	explicitly	before	they	can	be	used,	and	the	extension
needed	for	each	platform	is	slightly	different,	as	some	of	the	functions	take
platform-specific	parameters.	Before	you	can	perform	any	presentation-related
operations,	therefore,	you	need	to	enable	the	appropriate	presentation-related



extensions	using	the	mechanisms	described	in	Chapter	1,	“Overview	of	Vulkan.”
Presentation	in	Vulkan	is	handled	by	a	small	suite	of	extensions.	Functionality
that	is	common	to	almost	all	platforms	that	support	presenting	graphical	output
to	the	user	is	supported	by	one	extension,	and	functionality	that	is	specific	to
each	platform	is	supported	by	a	number	of	smaller,	platform-specific	extensions.

Presentation	Surfaces
The	object	to	which	graphics	data	is	rendered	in	order	to	be	presented	is	known
as	a	surface	and	is	represented	by	a	VkSurfaceKHR	handle.	This	special	object
is	introduced	by	the	VK_KHR_surface	extension.	This	extension	adds	general
functionality	for	handling	surface	objects	but	is	customized	on	a	per-platform
basis	to	provide	the	platform-specific	interfaces	to	associate	a	surface	with	a
window.	Interfaces	are	defined	for	Microsoft	Windows,	Mir	and	Wayland,	X
Windows	via	either	the	XCB	or	Xlib	interface,	and	Android.	Further	platforms
may	be	added	in	the	future.
The	prototypes	and	data	types	for	the	platform-specific	parts	of	the	extension	are
included	in	the	main	vulkan.h	header	file	but	are	protected	behind	platform-
specific	preprocessor	guards.	The	code	for	this	book	supports	the	Windows
platform	and	the	Linux	platform	via	the	Xlib	and	Xcb	interfaces.	To	enable	the
code	for	these	platforms,	before	including	vulkan.h,	we	must	define	one	of
the	VK_USE_PLATFORM_WIN32_KHR,	VK_USE_PLATFORM_XLIB_KHR,
or	VK_USE_PLATFORM_LIB_XCB_KHR	defines.	The	build	system	for	the
book’s	source	code	does	this	for	you	using	a	compiler	command-line	option.
Vulkan	is	also	supported	on	a	wide	range	of	other	operating	systems	and	device
types.	In	particular,	many	of	Vulkan’s	features	are	geared	to	mobile	and
embedded	devices.	For	example,	Vulkan	is	the	API	of	choice	on	the	Android
platform,	and	in	addition	to	the	interfaces	covered	here,	the	Android	platform
has	full	support	through	its	own	platform	interfaces.	Outside	of	initialization,
though,	using	Vulkan	on	Android	should	be	a	fairly	similar	experience	to	using
Vulkan	on	other	platforms.

Presentation	on	Microsoft	Windows
Before	we	can	present,	we	need	to	determine	whether	any	queues	on	a	device
support	presentation	operations.	Presentation	capability	is	a	per-queue-family
feature.	On	Windows	platforms,	call	the
vkGetPhysicalDeviceWin32PresentationSupportKHR()	function
to	determine	whether	a	particular	queue	family	supports	presentation.	Its



prototype	is
Click	here	to	view	code	image

VkBool32	vkGetPhysicalDeviceWin32PresentationSupportKHR(

				VkPhysicalDevice																												physicalDevice,

				uint32_t																																				queueFamilyIndex);

The	physical	device	being	queried	is	passed	in	physicalDevice,	and	the
queue	family	index	is	passed	in	queueFamilyIndex.	If	at	least	one	queue
family	supports	presentation,	then	we	can	proceed	to	create	presentable	surfaces
using	the	device.	To	create	a	surface,	use	the
vkCreateWin32SurfaceKHR()	function,	whose	prototype	is

Click	here	to	view	code	image

VkResult	vkCreateWin32SurfaceKHR(

				VkInstance																														instance,

				const	VkWin32SurfaceCreateInfoKHR*						pCreateInfo,

				const	VkAllocationCallbacks*												pAllocator,

				VkSurfaceKHR*																											pSurface);

This	function	associates	a	Windows	native	window	handle	with	a	new	surface
object	and	returns	the	object	in	the	variable	pointed	to	by	pSurface.	Only	a
Vulkan	instance	is	required,	and	its	handle	is	passed	into	instance.	The
information	describing	the	new	surface	is	passed	through	pCreateInfo,
which	is	a	pointer	to	an	instance	of	the	VkWin32SurfaceCreateInfoKHR
structure,	the	definition	of	which	is

Click	here	to	view	code	image

typedef	struct	VkWin32SurfaceCreateInfoKHR	{

				VkStructure	Type																sType;

				const	void*																					pNext;

				VkWin32SurfaceCreateFlagsKHR				flags;

				HINSTANCE																							hinstance;

				HWND																												hwnd;

}	VkWin32SurfaceCreateInfoKHR;

The	sType	field	of	VkWin32SurfaceCreateInfoKHR	should	be	set	to
VK_STRUCTURE_TYPE_DISPLAY_SURFACE_CREATE_INFO_KHR,	and
pNext	should	be	set	to	nullptr	unless	another	extension	in	use	extends	the
structure.	The	flags	field	is	reserved	for	future	use	and	should	be	set	to	zero.
The	hinstance	parameter	should	be	set	to	the	HINSTANCE	of	the	application
or	module	that	was	used	to	create	the	the	native	window.	This	is	typically	passed
to	the	application	in	the	first	parameter	of	WinMain	or	can	be	obtained	by
calling	the	Win32	function	GetModuleHandle	with	a	null	pointer.	The	hwnd



member	is	the	handle	to	the	native	window	with	which	to	associate	the	Vulkan
surface.	This	is	the	window	in	which	the	results	of	presentation	to	swap	chains
created	for	the	surface	will	be	displayed.

Presentation	on	Xlib-Based	Platforms
The	process	for	creating	a	surface	on	an	Xlib-based	system	is	similar.	First,	we
need	to	determine	whether	the	platform	supports	presentation	to	an	Xlib	surface
on	an	X	server.	To	do	this,	call
vkGetPhysicalDeviceXlibPresentationSupportKHR(),	whose
prototype	is

Click	here	to	view	code	image

VkBool32	vkGetPhysicalDeviceXlibPresentationSupportKHR(

				VkPhysicalDevice																												physicalDevice,

				uint32_t																																				queueFamilyIndex,

				Display*																																				dpy,

				VisualID																																				visualID);

For	the	physical	device	whose	handle	is	specified	in	physicalDevice,	and
the	queue	family	index	specified	in	queueFamilyIndex,
vkGetPhysicalDeviceXlibPresentationSupportKHR()	reports
whether	queues	in	that	family	support	presentation	to	Xlib	surfaces	for	a	given	X
server.	The	connection	to	the	X	server	is	represented	by	the	dpy	parameter.
Presentation	is	supported	on	a	per-format	basis.	In	Xlib,	formats	are	represented
by	visual	IDs,	and	the	visual	ID	for	the	intended	format	of	the	surface	is	passed
in	visualID.
Asssuming	that	at	least	one	queue	family	on	a	device	supports	presentation	to	a
format	we’d	like	to	use,	we	can	then	create	a	surface	for	an	Xlib	window	by
calling	the	vkCreateXlibSurfaceKHR()	function,	the	prototype	of	which
is

Click	here	to	view	code	image

VkResult	vkCreateXlibSurfaceKHR(

				VkInstance																																		instance,

				const	VkXlibSurfaceCreateInfoKHR*											pCreateInfo,

				const	VkAllocationCallbacks*																pAllocator,

				VkSurfaceKHR*																															pSurface);

vkCreateXlibSurfaceKHR()	creates	a	new	surface	associated	with	an
Xlib	window.	The	Vulkan	instance	should	be	passed	in	instance,	and	the
remaining	parameters	controlling	the	creation	of	the	surface	are	passed	in
pCreateInfo,	which	is	a	pointer	to	an	instance	of	the



VkXlibSurfaceCreateInfoKHR	structure,	the	definition	of	which	is
Click	here	to	view	code	image

typedef	struct	VkXlibSurfaceCreateInfoKHR	{

				VkStructureType																sType;

				const	void*																				pNext;

				VkXlibSurfaceCreateFlagsKHR				flags;

				Display*																							dpy;

				Window																									window;

}	VkXlibSurfaceCreateInfoKHR;

The	sType	field	of	VkXlibSurfaceCreateInfoKHR	should	be	set	to
VK_STRUCTURE_TYPE_XLIB_SURFACE_CREATE_INFO_KHR,	and
pNext	should	be	set	to	nullptr.	The	flags	field	is	reserved	and	should	be
set	to	zero.
The	dpy	field	is	the	Xlib	Display	representing	the	connection	to	the	X	server,
and	window	is	the	Xlib	Window	handle	to	the	window	with	which	the	new
surface	will	be	associated.
If	vkCreateXlibSurfaceKHR()	requires	any	host	memory,	it	will	use	the
host	memory	allocator	passed	in	pAllocator.	If	pAllocator	is	nullptr,
then	an	internal	allocator	will	be	used.
If	surface	creation	is	successful,	the	resulting	VkSurface	handle	is	written	into
the	variable	pointed	to	by	pSurface.

Presentation	with	Xcb
Xcb	is	a	slightly	lower-level	interface	to	the	X	protocol	than	is	provided	by	Xlib
and	may	be	a	better	choice	for	applications	that	wish	to	achieve	lower	latency.
As	with	Xlib	and	the	other	platforms,	before	creating	objects	for	presentation	on
an	Xcb	system,	we	need	to	determine	whether	any	of	the	queues	on	a	physical
device	support	presentation.	To	do	this,	call
vkGetPhysicalDeviceXcbPresentationSupportKHR(),	the
prototype	of	which	is

Click	here	to	view	code	image

VkBool32	vkGetPhysicalDeviceXcbPresentationSupportKHR(

				VkPhysicalDevice																												physicalDevice,

				uint32_t																																				queueFamilyIndex,

				xcb_connection_t*																											connection,

				xcb_visualid_t																														visual_id);

The	physical	device	being	queried	is	passed	in	physicalDevice,	and	the
index	of	the	queue	family	is	passed	in	queueFamilyIndex.	The	connection



to	the	X	server	is	passed	in	connection.	Again,	presentation	capability	is
reported	on	a	per-visual	ID	basis,	and	the	visual	ID	being	queried	is	passed	in
visual_id.
Once	you	have	determined	that	at	least	one	queue	family	on	the	device	supports
presentation	in	the	visual	ID	of	your	choice,	you	can	create	a	surface	into	which
to	render	using	vkCreateXcbSurfaceKHR(),	the	prototype	of	which	is

Click	here	to	view	code	image

VkResult	vkCreateXcbSurfaceKHR(

				VkInstance																																	instance,

				const	VkXcbSurfaceCreateInfoKHR*											pCreateInfo,

				const	VkAllocationCallbacks*															pAllocator,

				VkSurfaceKHR*																														pSurface);

The	Vulkan	instance	is	passed	in	instance,	and	the	remaining	parameters
controlling	creation	of	the	surface	are	passed	through	an	instance	of	the
VkXcbSurfaceCreateInfoKHR	structure	pointed	to	by	pCreateInfo.
The	definition	of	VkXcbSurfaceCreateInfoKHR	is

Click	here	to	view	code	image

typedef	struct	VkXcbSurfaceCreateInfoKHR	{

				VkStructureType															sType;

				const		void*																		pNext;

				VkXcbSurfaceCreateFlagsKHR				flags;

				xcb_connection_t*													connection;

				xcb_window_t																		window;

}	VkXcbSurfaceCreateInfoKHR;

The	sType	field	for	VkXcbSurfaceCreateInfoKHR	should	be	set	to
VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR,	and	pNext
should	be	set	to	nullptr.	The	flags	field	is	reserved	and	should	be	set	to
zero.	The	connection	to	the	X	server	is	passed	in	the	connection	field,	and
the	handle	to	the	window	is	passed	in	window.
If	vkCreateXcbSurfaceKHR()	is	successful,	it	will	write	the	handle	to	the
new	surface	into	the	variable	pointed	to	by	pSurface.	If	it	needs	any	host
memory	to	construct	the	handle	and	pAllocator	is	not	nullptr,	then	it	will
use	your	allocator	to	request	that	memory.

Swap	Chains
Regardless	of	which	platform	you’re	running	on,	the	resulting	VkSurfaceKHR
handle	refers	to	Vulkan’s	view	of	a	window.	In	order	to	actually	present	anything
to	that	surface,	it’s	necessary	to	create	a	special	image	that	can	be	used	to	store



the	data	in	the	window.	On	most	platforms,	this	type	of	image	is	either	owned	by
or	tightly	integrated	with	the	window	system,	so	rather	than	creating	a	normal
Vulkan	image	object,	we	use	a	second	object	called	a	swap	chain	to	manage	one
or	more	image	objects.
Swapchain	objects	are	used	to	ask	the	native	window	system	to	create	one	or
more	images	that	can	be	used	to	present	into	a	Vulkan	surface.	This	is	exposed
using	the	VK_KHR_swapchain	extension.	Each	swapchain	object	manages	a
set	of	images,	usually	in	some	form	of	ring	buffer.	The	application	can	ask	the
swap	chain	for	the	next	available	image,	render	into	it,	and	then	hand	the	image
back	to	the	swap	chain	ready	for	display.	By	managing	presentable	images	in	a
ring	or	queue,	one	image	can	be	presented	to	the	display	while	another	is	being
drawn	to	by	the	application,	overlapping	the	operation	of	the	window	system	and
application.
To	create	a	swapchain	object,	call	vkCreateSwapchainKHR(),	the
prototype	of	which	is

Click	here	to	view	code	image

VkResult	vkCreateSwapchainKHR(

				VkDevice																																device,

				const	VkSwapchainCreateInfoKHR*									pCreateInfo,

				const	VkAllocationCallbacks*												pAllocator,

				VkSwapchainKHR*																									pSwapchain);

The	device	with	which	the	swap	chain	is	to	be	associated	is	passed	in	device.
The	resulting	swap	chain	can	be	used	with	any	of	the	queues	on	device	that
support	presentation.	The	information	about	the	swap	chain	is	passed	in	an
instance	of	the	VkSwapchainCreateInfoKHR	structure,	the	address	of
which	is	passed	in	pCreateInfo.	The	definition	of
VkSwapchainCreateInfoKHR	is

Click	here	to	view	code	image

typedef	struct	VkSwapchainCreateInfoKHR	{

				VkStructureType																		sType;

				const	void*																						pNext;

				VkSwapchainCreateFlagsKHR								flags;

				VkSurfaceKHR																					surface;

				uint32_t																									minImageCount;

				VkFormat																									imageFormat;

				VkColorSpaceKHR																		imageColorSpace;

				VkExtent2D																							imageExtent;

				uint32_t																									imageArrayLayers;

				VkImageUsageFlags																imageUsage;

				VkSharingMode																				imageSharingMode;

				uint32_t																									queueFamilyIndexCount;



				const	uint32_t*																		pQueueFamilyIndices;

				VkSurfaceTransformFlagBitsKHR				preTransform;

				VkCompositeAlphaFlagBitsKHR						compositeAlpha;

				VkPresentModeKHR																	presentMode;

				VkBool32																									clipped;

				VkSwapchainKHR																			oldSwapchain;

}	VkSwapchainCreateInfoKHR;

The	sType	field	for	VkSwapchainCreateInfoKHR	should	be	set	to
VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR,	and	pNext
should	be	set	to	nullptr.	The	flags	field	is	reserved	for	use	in	future
versions	of	the	VK_KHR_swapchain	extension	and	should	be	set	to	zero.
The	surface	to	which	the	new	swap	chain	will	present	is	passed	in	surface.
This	should	be	a	surface	created	with	one	of	the	the	platform-specific	surface
creation	functions	such	as	vkCreateWin32SurfaceKHR()	or
vkCreateXlibSurfaceKHR().	The	number	of	images	in	the	swap	chain	is
passed	in	minImageCount.	For	example,	to	enable	double	or	triple	buffering,
set	minImageCount	to	2	or	3,	respectively.	Setting	minImageCount	to	1
represents	a	request	to	render	to	the	front	buffer	or	directly	to	the	display.	Some
platforms	don’t	support	this	(and	may	not	even	support	double	buffering).	To
determine	the	minimum	and	maximum	number	of	images	supported	in	a	swap
chain,	call	vkGetPhysicalDeviceSurfaceCapabilitiesKHR(),
which	is	discussed	later	in	this	section.
Note	that	setting	minImageCount	to	2	means	that	you’ll	have	a	single	front
buffer	and	a	single	back	buffer.	After	triggering	presentation	of	a	finished	back
buffer,	you	won’t	be	able	to	begin	rendering	to	the	other	buffer	until	the
presentation	has	completed.	For	best	performance,	possibly	at	the	price	of	some
latency,	you	should	set	minImageCount	to	at	least	3	if	the	device	supports	it.
The	format	and	color	space	of	the	presentable	images	is	specified	in
imageFormat	and	imageColorSpace.	The	format	must	be	a	Vulkan
format	for	which	the	device	reports	the	presentation	capability.
imageColorSpace	is	a	member	of	the	VkColorSpaceKHR	enumeration,
the	only	member	of	which	is	VK_COLORSPACE_SRGB_NONLINEAR_KHR,
which	means	that	the	presentation	engine	can	expect	sRGB	nonlinear	data,	if	the
imageFormat	member	indicates	an	sRGB	format	image.
The	imageExtent	field	specifies	the	dimensions	of	the	images	in	the	swap
chain,	in	pixels,	and	imageArrayLayers	field	specifies	the	number	of	layers
in	each	image.	This	can	be	used	to	render	to	a	layered	image	and	then	present
specific	layers	of	it	to	the	user.	The	imageUsage	field	is	a	collection	of	the



standard	VkImageUsageFlags	enumeration	specifying	how	the	images	will
be	used	(in	addition	to	as	present	sources).	For	example,	if	you	want	to	render	to
the	image	as	a	normal	color	attachment,	you	would	include
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,	and	if	you	want	to	write
directly	to	it	with	a	shader,	you	would	include
VK_IMAGE_USAGE_STORAGE_BIT.
The	set	of	usages	that	are	included	in	imageUsage	must	be	selected	from	the
usages	supported	for	swapchain	images.	This	is	determined	by	calling
vkGetPhysicalDeviceSurfaceCapabilitiesKHR().
The	sharingMode	field	specifies	how	the	images	are	to	be	shared	across
queues.	If	the	image	is	going	to	be	used	by	only	one	queue	at	a	time	(which	is
likely,	as	presentable	images	are	generally	write-only),	then	set	this	to
VK_SHARING_MODE_EXCLUSIVE.	If	the	image	is	likely	to	be	used	across
multiple	queues,	then	this	can	be	set	to	VK_SHARING_MODE_CONCURRENT.
In	this	case,	pQueueFamilyIndices	should	be	a	pointer	to	an	array	of
indices	of	the	queues	with	which	the	images	will	be	used,	and
queueFamilyIndexCount	is	the	length	of	this	array,	in	elements.	When
sharingMode	is	VK_SHARING_MODE_EXCLUSIVE,	these	two	fields	are
ignored.
The	preTransform	field	specifies	how	the	images	should	be	transformed
prior	to	presentation	to	the	user.	This	allows	images	to	be	rotated	or	flipped	(or
both)	to	accommodate	things	like	portrait	displays	and	rear-projection	systems.	It
is	a	bitwise	combination	of	a	selection	of	members	of	the
VkSurfaceTransformFlagBitsKHR	enumeration.
The	compositeAlpha	field	controls	how	alpha	composition	is	handled	by	the
window	system.	This	is	a	member	of	the
VkCompositeAlphaFlagBitsKHR	enumeration.	If	this	is	set	to
VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR,	then	the	alpha	channel	of	the
presentable	image	(if	it	exists)	is	ignored	and	treated	as	though	it	contains
constant	1.0	values.	Other	values	of	compositeAlpha	allow	partially
transparent	images	to	be	composited	by	the	native	window	system.
The	presentMode	field	controls	synchronization	with	the	window	system	and
the	rate	at	which	the	images	are	presented	to	the	surface.	The	available	modes
are

•	VK_PRESENT_MODE_IMMEDIATE_KHR:	When	presentation	is
scheduled,	the	image	is	presented	to	the	user	as	soon	as	possible,	without



waiting	for	any	external	events	such	as	vertical	blanking.	This	provides	the
highest	possible	frame	rate	but	can	introduce	tearing	or	other	artifacts.
•	VK_PRESENT_MODE_MAILBOX_KHR:	When	a	new	image	is	presented,	it
is	marked	as	the	pending	image,	and	at	the	next	opportunity	(probably	after
the	next	vertical	refresh),	the	system	will	display	it	to	the	user.	If	a	new
image	is	presented	before	this	happens,	that	image	will	be	shown,	and	the
previously	presented	image	will	be	discarded.
•	VK_PRESENT_MODE_FIFO_KHR:	Images	to	be	presented	are	stored	in	an
internal	queue	and	shown	to	the	user	in	order.	A	new	image	is	taken	from	the
queue	at	regular	intervals	(usually	after	each	vertical	refresh).
•	VK_PRESENT_MODE_FIFO_RELAXED_KHR:	This	mode	behaves
similarly	to	VK_PRESENT_MODE_FIFO_KHR,	except	that	if	the	queue	is
empty	and	vertical	refresh	occurs,	the	next	image	posted	to	the	queue	will	be
displayed	immediately,	similarly	to
VK_PRESENT_MODE_IMMEDIATE_KHR.	This	allows	an	application
running	faster	than	the	vertical	refresh	rate	to	avoid	tearing	while	still	going
as	fast	as	possible	if	it	can’t	keep	up	in	places.

As	a	general	rule,	if	you	want	to	run	with	vertical	sync	(vsync)	on,	select
VK_PRESENT_MODE_FIFO_KHR,	and	if	you	want	to	run	as	fast	as	possible,
select	VK_PRESENT_MODE_IMMEDIATE_KHR	or
VK_PRESENT_MODE_MAILBOX_KHR.
VK_PRESENT_MODE_IMMEDIATE_KHR	will	show	visible	tearing	in	most
cases	but	provides	the	lowest	possible	latency.
VK_PRESENT_MODE_MAILBOX_KHR	continues	to	flip	at	regular	intervals,
producing	a	maximum	latency	of	one	vertical	refresh,	but	will	not	exhibit
tearing.
The	clipped	member	of	VkSwapchainCreateInfoKHR	is	used	to
optimize	cases	where	not	all	of	the	surface	might	be	visible.	For	example,	if	the
surface	to	which	the	images	will	be	presented	represents	a	window	that	might	be
covered	or	partially	off	the	screen,	it	may	be	possible	to	avoid	rendering	the	parts
of	it	that	the	user	will	never	see.	When	clipped	is	VK_TRUE,	Vulkan	can
eliminate	those	parts	of	the	image	from	rendering	operations.	When	clipped	is
VK_FALSE,	Vulkan	will	render	the	entire	image,	regardless	of	whether	it’s
visible	or	not.
Finally,	the	oldSwapchain	field	of	VkSwapchainCreateInfoKHR	may
be	used	to	pass	an	existing	swap	chain	associated	with	the	surface	back	to
Vulkan	for	recycling.	This	is	used	when	one	swap	chain	is	being	replaced	by



another,	such	as	when	a	window	is	resized	and	the	swap	chain	needs	to	be
reallocated	with	larger	images.
The	parameters	contained	in	the	VkSwapchainCreateInfoKHR	structure
must	all	conform	to	the	capabilities	of	the	suface,	which	you	can	determine	by
calling	vkGetPhysicalDeviceSurfaceCapabilitiesKHR(),	the
prototype	of	which	is

Click	here	to	view	code	image

VkResult	vkGetPhysicalDeviceSurfaceCapabilitiesKHR(

				VkPhysicalDevice																												physicalDevice,

				VkSurfaceKHR																																surface,

				VkSurfaceCapabilitiesKHR*																			pSurfaceCapabilities);

The	physical	device	that	owns	the	surface	is	passed	in	physicalDevice,	and
the	surface	whose	capabilies	are	being	queried	is	passed	in	surface.
vkGetPhysicalDeviceSurfaceCapabilitiesKHR()	then	returns
information	about	the	surface	in	an	instance	of	the
VkSurfaceCapabilitiesKHR	structure,	a	pointer	to	which	is	provided
through	the	pSurfaceCapabilities	parameter.	The	definition	of
VkSurfaceCapabilitiesKHR	is

Click	here	to	view	code	image

typedef	struct	VkSurfaceCapabilitiesKHR	{

				uint32_t																									minImageCount;

				uint32_t																									maxImageCount;

				VkExtent2D																							currentExtent;

				VkExtent2D																							minImageExtent;

				VkExtent2D																							maxImageExtent;

				uint32_t																									maxImageArrayLayers;

				VkSurfaceTransformFlagsKHR							supportedTransforms;

				VkSurfaceTransformFlagBitsKHR				currentTransform;

				VkCompositeAlphaFlagsKHR									supportedCompositeAlpha;

				VkImageUsageFlags																supportedUsageFlags;

}	VkSurfaceCapabilitiesKHR;

The	number	of	images	in	the	swap	chain	must	fall	between	the
minImageCount	and	maxImageCount	parameters	of	the	surface’s
capabilities.	The	current	size	of	the	surface	at	the	time	of	the	query	is	returned	in
currentExtent.	If	the	surface	is	resizable	(such	as	a	sizeable	window	on	a
desktop),	then	the	smallest	and	largest	sizes	that	the	surface	can	become	are
returned	in	minImageExtent	and	maxImageExtent.	If	the	surface
supports	presentation	from	array	images,	the	maximum	number	of	layers	in
those	images	is	returned	in	minArrayLayers.



Some	surfaces	support	performing	transformations	on	images	as	they	are
presented.	For	example,	an	image	might	be	flipped	or	rotated	to	accommodate
presentation	to	displays	or	other	devices	that	are	at	nonstandard	angles.	The	set
of	supported	transforms	is	returned	in	the	supportedTransforms	field	of
VkSurfaceCapabilitiesKHR	and	is	a	bitfield	made	up	of	a	selection	of
members	of	the	VkSurfaceTransformFlagBitsKHR	enumeration.	One	of
those	bits	is	set	in	currentTransform,	which	contains	the	current	transform
applied	when	the	query	is	made.
If	the	surface	supports	composition,	then	the	supported	composition	modes	are
contained	as	a	combination	of	flags	from	the
VkCompositeAlphaFlagBitsKHR	enumeration	in	the
supportedCompositeAlpha	field.
Finally,	the	allowed	usage	for	the	images	created	through	a	swap	chain	on	this
surface	is	returned	in	supportedUsageFlags.
Once	you	have	a	swap	chain	associated	with	a	surface	to	which	you	want	to
present,	you	need	to	get	handles	to	the	images	representing	the	items	in	the
chain.	To	do	this,	call	vkGetSwapchainImagesKHR(),	the	prototype	of
which	is

Click	here	to	view	code	image

VkResult	vkGetSwapchainImagesKHR(

				VkDevice																															device,

				VkSwapchainKHR																									swapchain,

				uint32_t*																														pSwapchainImageCount,

				VkImage*																															pSwapchainImages);

The	device	that	owns	the	swap	chain	should	be	passed	in	device,	and	the	swap
chain	from	which	you	are	requesting	images	should	be	passed	in	swapchain.
pSwapchainImageCount	points	to	a	variable	that	will	contain	the	number	of
images	received.	If	pSwapchainImages	is	nullptr,	then	the	initial	value
of	pSwapchainImageCount	will	be	ignored,	and	the	variable	will	instead	be
overwritten	with	the	number	of	swapchain	images	in	the	swapchain	object.	If
pSwapchainImages	is	not	nullptr,	then	it	should	be	a	pointer	to	an	array
of	VkImage	handles	that	will	be	filled	with	the	images	from	the	swap	chain.
The	intial	value	of	the	variable	pointed	to	by	pSwapchainImageCount	is	the
length	of	the	array,	and	it	will	be	overwritten	with	the	number	of	images	actually
placed	in	the	array.
Because	when	you	create	the	swap	chain,	you	get	to	specify	only	the	minimum
number	of	images	in	the	swap	chain,	not	the	exact	number	of	images,	you	need



to	use	vkGetSwapchainImagesKHR()	to	determine	how	many	images
there	really	are	in	a	swap	chain,	even	if	you	just	created	it.	Listing	5.1
demonstrates	how	to	create	a	swap	chain	for	an	existing	surface,	query	the
number	of	images	in	it,	and	then	query	the	actual	image	handles.

Listing	5.1:	Creating	a	Swap	Chain

Click	here	to	view	code	image

VkResult	result;

//	First,	we	create	the	swap	chain.

VkSwapchainCreateInfoKHR	swapChainCreateInfo	=

{

				VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR,	//	sType

				nullptr,																																					//	pNext

				0,																																											//	flags

				m_mainSurface,																															//	surface

				2,																																											//	minImageCount

				VK_FORMAT_R8G8B8A8_UNORM,																				//	imageFormat

				VK_COLORSPACE_SRGB_NONLINEAR_KHR,												//	imageColorSpace

				{	1024,	768	},																															//	imageExtent

				1,																																											//	imageArrayLayers

				VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,									//	imageUsage

				VK_SHARING_MODE_EXCLUSIVE,																			//	imageSharingMode

				0,																																											//

queueFamilyIndexCount

				nullptr,																																					//

pQueueFamilyIndices

				VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR,								//	preTransform

				VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR,											//	compositeAlpha

				VK_PRESENT_MODE_FIFO_KHR,																				//	presentMode

				VK_TRUE,																																					//	clipped

				m_swapChain																																		//	oldSwapchain

};

result	=	vkCreateSwapchainKHR(m_logicalDevice,

																														&swapChainCreateInfo,

																														nullptr,

																														&m_swapChain);

//	Next,	we	query	the	swap	chain	for	the	number	of	images	it	actually

contains.

uint32_t	swapChainImageCount	=	0;

if	(result	==	VK_SUCCESS)

{

				result	=	vkGetSwapchainImagesKHR(m_logicalDevice,

																																					m_swapChain,

																																					&swapChainImageCount,



																																					nullptr);

}

if	(result	==	VK_SUCCESS)

{

				//	Now	we	resize	our	image	array	and	retrieve	the	image	handles

from	the

				//	swap	chain.

				m_swapChainImages.resize(swapChainImageCount);

				result	=	vkGetSwapchainImagesKHR(m_logicalDevice,

																																					m_swapChain,

																																					&swapChainImageCount,

																																					m_swapChainImages.data());

}

return	result	==	VK_SUCCESS?	m_swapChain	:	VK_NULL_HANDLE;

Note	that	the	code	in	Listing	5.1	contains	many	hard-coded	values.	In	a	more
robust	application,	you	should	call
vkGetPhysicalDeviceSurfaceCapabilitiesKHR()	to	determine
the	capabilities	of	the	device	with	respect	to	presenting	the	surface	and	the
capabilities	of	the	surface	to	support	parameters	such	as	the	transform	mode,
number	of	images	in	the	swap	chain,	and	so	on.
In	particular,	the	surface	format	chosen	in	the	imageFormat	field	of
VkSwapchainCreateInfoKHR	must	be	a	format	that	is	supported	by	the
surface.	To	determine	which	formats	can	be	used	for	swap	chains	associated	with
a	surface,	call	vkGetPhysicalDeviceSurfaceFormatsKHR(),	the
prototype	of	which	is

Click	here	to	view	code	image

VKAPI_ATTR	VkResult	VKAPI_CALL	vkGetPhysicalDeviceSurfaceFormatsKHR(

				VkPhysicalDevice																												physicalDevice,

				VkSurfaceKHR																																surface,

				uint32_t*																																			pSurfaceFormatCount,

				VkSurfaceFormatKHR*																									pSurfaceFormats);

The	physical	device	that	you	are	querying	is	passed	in	physicalDevice,	and
the	surface	to	which	you	want	to	present	is	passed	in	surface.	If
pSurfaceFormats	is	nullptr,	then	the	variable	pointed	to	by
pSurfaceFormatCount	is	overwritten	with	the	number	of	formats
supported	by	the	surface.	If	pSurfaceFormats	is	not	nullptr,	then	it	is	a
pointer	to	an	array	of	VkSurfaceFormatKHR	structures	large	enough	to
receive	the	number	of	formats	supported	by	the	surface.	In	this	case,	the	number
of	elements	in	the	array	is	passed	as	the	initial	value	of	the	variable	pointed	to	by



pSurfaceFormats,	and	this	is	overwritten	with	the	number	of	formats
actually	written	to	the	array.
The	definition	of	VkSurfaceFormatKHR	is

Click	here	to	view	code	image

typedef	struct	VkSurfaceFormatKHR	{

				VkFormat											format;

				VkColorSpaceKHR				colorSpace;

}	VkSurfaceFormatKHR;

The	format	field	of	VkSurfaceFormatKHR	is	the	format	of	pixels	in
memory	for	the	surface,	and	colorSpace	is	the	supported	color	space.	At
present,	the	only	defined	color	space	is
VK_COLORSPACE_SRGB_NONLINEAR_KHR.
In	some	cases,	devices	will	support	presentation	from	almost	any	format.	This	is
generally	true	of	compositing	systems	that	use	the	image	you’ve	rendered	to	as
an	input	to	some	further	processing.	However,	other	devices	may	support
presenting	from	a	very	limited	set	of	surface	formats—perhaps	only	a	single
format	for	a	particular	surface.	This	is	likely	to	be	the	case	when	you	are
presenting	directly	to	a	display	device.
The	images	you	get	back	from	a	call	to	vkGetSwapchainImagesKHR()
aren’t	immediately	usable.	Before	you	can	write	any	data	into	them,	you	need	to
acquire	the	next	available	image	by	using	a	call	to
vkAcquireNextImageKHR().	This	function	retrieves	the	index	of	the	next
image	in	the	swap	chain	that	your	application	should	render	to.	Its	prototype	is

Click	here	to	view	code	image

VkResult	vkAcquireNextImageKHR(

				VkDevice																															device,

				VkSwapchainKHR																									swapchain,

				uint64_t																															timeout,

				VkSemaphore																												semaphore,

				VkFence																																fence,

				uint32_t*																														pImageIndex);

The	device	parameter	is	the	device	that	owns	the	swap	chain,	and
swapchain	is	the	handle	to	the	swap	chain	to	retrieve	the	next	swapchain
image	index	from.
vkAcquireNextImageKHR()	waits	for	a	new	image	to	become	available
before	returning	to	the	application.	timeout	specifies	the	time,	in	nanoseconds,
that	it	will	wait	before	returning.	If	the	timeout	is	exceeded,	then



vkAcquireNextImageKHR()	will	return	VK_NOT_READY.	By	setting
timeout	to	0,	you	can	implement	nonblocking	behavior	whereby
vkAcquireNextImageKHR()	will	either	return	a	new	image	immediately	or
return	VK_NOT_READY	to	indicate	that	it	would	block	if	called	with	a	nonzero
timeout.
The	index	of	the	next	image	into	which	the	application	should	render	will	be
written	into	the	variable	pointed	to	by	pImageIndex.	The	presentation	engine
might	still	be	reading	data	from	the	image,	so	in	order	to	synchronize	access	to
the	image,	the	semaphore	parameter	can	be	used	to	pass	the	handle	of	a
semaphore	that	will	become	signaled	when	the	image	can	be	rendered	to,	or	the
fence	parameter	can	be	used	to	pass	the	handle	to	a	fence	that	will	become
signaled	when	it	is	safe	to	render	to	the	image.
Semaphores	and	fences	are	two	of	the	synchronization	primitives	supported	by
Vulkan.	We	will	cover	synchronization	primitives	in	more	detail	in	Chapter	11,
“Synchronization.”

Full-Screen	Surfaces
The	platform-specific	extensions	mentioned	in	the	previous	section	allow	a
VkSurface	object	to	be	created	that	represents	a	native	window	owned	by	the
operating	system	or	window	system.	These	extensions	are	typically	used	to
render	into	a	window	that	is	visible	on	a	desktop.	Although	it	is	often	possible	to
create	a	window	with	no	border	that	covers	an	entire	display,	it	is	often	more
efficient	to	render	directly	to	a	display	instead.
This	functionality	is	provided	by	the	VK_KHR_display	and
VK_KHR_display_swapchain	extensions.	These	extensions	provide	a
platform-independent	mechanism	for	discovering	displays	attached	to	a	system,
determining	their	properties	and	supported	modes,	and	so	on.
If	the	Vulkan	implementation	supports	VK_KHR_display,	you	can	discover
the	number	of	display	devices	attached	to	a	physical	device	by	calling
vkGetPhysicalDeviceDisplayPropertiesKHR(),	the	prototype	of
which	is

Click	here	to	view	code	image

VkResult	vkGetPhysicalDeviceDisplayPropertiesKHR(

				VkPhysicalDevice																												physicalDevice,

				uint32_t*																																			pPropertyCount,

				VkDisplayPropertiesKHR*																					pProperties);

Displays	are	attached	to	physical	devices,	and	the	physical	device	whose



displays	you	want	information	about	is	passed	in	the	physicalDevice
parameter.	pPropertyCount	is	a	pointer	to	a	variable	that	will	be	overwritten
with	the	number	of	physical	devices	attached	to	the	display.	If	pProperties
is	nullptr,	then	the	initial	value	of	the	variable	pointed	to	by
pPropertyCount	is	ignored,	and	it	is	simply	overwritten	with	the	total
number	of	displays	attached	to	the	device.	However,	if	pPropertyCount	is
not	nullptr,	then	it	is	a	pointer	to	an	array	of
VkDisplayPropertiesKHR	structures.	The	length	of	this	array	is	passed	as
the	initial	value	of	the	variable	pointed	to	by	pPropertyCount.	The
definition	of	VkDisplayPropertiesKHR	is

Click	here	to	view	code	image

typedef	struct	VkDisplayPropertiesKHR	{

				VkDisplayKHR																		display;

				const	char*																			displayName;

				VkExtent2D																				physicalDimensions;

				VkExtent2D																				physicalResolution;

				VkSurfaceTransformFlagsKHR				supportedTransforms;

				VkBool32																						planeReorderPossible;

				VkBool32																						persistentContent;

}	VkDisplayPropertiesKHR;

The	display	member	of	each	of	the	VkDisplayPropertiesKHR
structures	is	a	handle	to	the	display	that	can	be	used	to	reference	it	later.	The
displayName	is	a	human-readable	string	describing	the	display.	The
physicalDimensions	field	gives	the	dimensions	of	the	display,	in
millimeters,	and	the	physicalResolution	field	gives	the	native	resolution
of	the	display,	in	pixels.
Some	displays	(or	display	controllers)	support	flipping	or	rotating	images	as
they’re	displayed.	If	this	is	the	case,	those	capabilities	are	reported	in	the
supportedTransforms	field.	This	bitfield	is	made	up	of	the	members	of	the
VkSurfaceTransformsFlagsKHR	enumeration	described	earlier.
If	the	display	supports	more	than	one	plane,	then	planeReorderPossible
will	be	set	to	VK_TRUE	if	those	planes	can	be	reordered	with	respect	to	one
another.	If	the	planes	can	be	shown	only	in	a	fixed	order,	then
planeReorderPossible	will	be	set	to	VK_FALSE.
Finally,	some	displays	can	accept	partial	or	infrequent	updates,	which	in	many
cases	can	improve	power	efficiency.	If	the	display	does	support	being	updated	in
this	manner,	persistentContent	will	be	set	to	VK_TRUE;	otherwise,	it	will
be	set	to	VK_FALSE.



All	devices	will	support	at	least	one	plane	on	each	connected	display.	A	plane
can	display	images	to	the	user.	In	some	cases,	a	device	will	support	more	than
one	plane	that	it	can	mix	in	various	other	planes	to	produce	a	final	image.	These
planes	are	sometimes	known	as	overlay	planes	because	each	plane	can	be
overlaid	on	those	logically	beneath	it.	When	a	Vulkan	application	presents,	it
presents	to	one	of	the	planes	of	the	display.	It’s	possible	to	present	to	multiple
planes	from	the	same	application.
The	supported	plane	count	is	considered	to	be	part	of	the	device,	as	it	is
generally	the	device—not	the	physical	display—that	performs	composition
operations	to	merge	information	from	the	planes	into	a	single	image.	The
physical	device	can	then	display	a	subset	of	its	supported	planes	on	each
connected	display.	To	determine	the	number	and	type	of	planes	supported	by	a
device,	call
vkGetPhysicalDeviceDisplayPlanePropertiesKHR(),	the
prototype	of	which	is

Click	here	to	view	code	image

VkResult	vkGetPhysicalDeviceDisplayPlanePropertiesKHR(

				VkPhysicalDevice																												physicalDevice,

				uint32_t*																																			pPropertyCount,

				VkDisplayPlanePropertiesKHR*																pProperties);

The	physical	device	whose	overlay	capabilities	to	query	is	passed	in
physicalDevice.	If	pProperties	is	nullptr,	then
pPropertyCount	is	a	pointer	to	a	variable	that	will	be	overwritten	with	the
number	of	display	planes	supported	by	the	device.	If	pProperties	is	not
nullptr,	then	it	must	be	a	pointer	to	an	array	of
VkDisplayPlanePropertiesKHR	structures	large	enough	to	hold
information	about	the	supported	display	planes.	The	number	of	elements	in	the
array	is	determined	from	the	initial	value	of	the	variable	pointed	to	by
pPropertyCount.	The	definition	of	VkDisplayPlanePropertiesKHR
is

Click	here	to	view	code	image

typedef	struct	VkDisplayPlanePropertiesKHR	{

				VkDisplayKHR				currentDisplay;

				uint32_t								currentStackIndex;

}	VkDisplayPlanePropertiesKHR;

For	each	display	plane	supported	by	the	device,	one	entry	is	placed	in	the
pProperties	array.	Each	plane	appears	on	a	single	physical	display,	which	is
represented	by	the	currentDisplay	member,	and	if	the	device	supports



more	than	one	plane	on	each	display,	the	currentStackIndex	indicates	the
order	in	which	the	planes	are	overlaid	on	one	another.
Some	of	the	device’s	display	planes	may	span	multiple	physical	displays.	To
determine	which	display	devices	a	display	plane	is	visible	on,	you	can	call
vkGetDisplayPlaneSupportedDisplaysKHR(),	which	is	declared	as

Click	here	to	view	code	image

VkResult	vkGetDisplayPlaneSupportedDisplaysKHR(

				VkPhysicalDevice																												physicalDevice,

				uint32_t																																				planeIndex,

				uint32_t*																																			pDisplayCount,

				VkDisplayKHR*																															pDisplays);

For	a	given	physical	display,	specified	in	physicalDevice,	and	display
plane,	specified	in	planeIndex,
vkGetDisplayPlaneSupportedDisplaysKHR()	writes	the	number	of
displays	across	which	that	plane	is	visible	into	the	variable	pointed	to	by
pDisplayCount.	If	pDisplays	is	not	nullptr,	then	the	handles	to	those
displays	are	written	into	the	array	to	which	it	points.
Each	display	plane	has	a	set	of	capabilities	such	as	maximum	resolution	and
whether	or	not	it	supports	various	composition	modes,	and	these	capabilities	will
vary	by	display	mode.	To	determine	these	capabilities,	call
vkGetDisplayPlaneCapabilitiesKHR(),	the	prototype	of	which	is

Click	here	to	view	code	image

VkResult	vkGetDisplayPlaneCapabilitiesKHR(

				VkPhysicalDevice																											physicalDevice,

				VkDisplayModeKHR																											mode,

				uint32_t																																			planeIndex,

				VkDisplayPlaneCapabilitiesKHR*													pCapabilities);

For	a	given	device	(passed	in	physicalDevice)	and	display	mode	(a	handle
to	which	is	passed	in	mode),	the	support	for	this	mode	supported	by	the	plane
specified	in	planeIndex	is	written	into	an	instance	of	the
VkDisplayPlaneCapabilitiesKHR	structure,	the	address	of	which	is
passed	in	pCapabilities.	The	definition	of
VkDisplayPlaneCapabilitiesKHR	is

Click	here	to	view	code	image

typedef	struct	VkDisplayPlaneCapabilitiesKHR	{

				VkDisplayPlaneAlphaFlagsKHR				supportedAlpha;

				VkOffset2D																					minSrcPosition;

				VkOffset2D																					maxSrcPosition;



				VkExtent2D																					minSrcExtent;

				VkExtent2D																					maxSrcExtent;

				VkOffset2D																					minDstPosition;

				VkOffset2D																					maxDstPosition;

				VkExtent2D																					minDstExtent;

				VkExtent2D																					maxDstExtent;

}	VkDisplayPlaneCapabilitiesKHR;

The	supported	composition	modes	for	the	display	plane	are	reported	in
supportedAlpha.	This	is	a	combination	of	the	bits	defined	in
VkDisplayPlaneAlphaFlagBitsKHR,	which	include

•	VK_DISPLAY_PLANE_ALPHA_OPAQUE_BIT_KHR:	The	plane	does	not
support	blended	composition	at	all,	and	all	surfaces	presented	on	that	plane
are	considered	to	be	fully	opaque.
•	VK_DISPLAY_PLANE_ALPHA_GLOBAL_BIT_KHR:	The	plane	supports
a	single,	global	alpha	value	that	is	passed	through	the	globalAlpha
member	of	the	VkDisplaySurfaceCreateInfoKHR	structure	used	to
create	the	surface.
•	VK_DISPLAY_PLANE_ALPHA_PER_PIXEL_BIT_KHR:	The	plane
supports	per-pixel	transparency	that	is	sourced	from	the	alpha	channel	of	the
images	presented	to	the	surfaces.

The	minSrcPosition	and	maxSrcPosition	fields	specify	the	minimum
and	maximum	offset	of	the	displayable	region	within	a	presentable	surface	that
can	be	displayed	on	the	plane,	and	the	minSrcExtent	and	maxSrcExtent
fields	specify	its	minimum	and	maximum	size.
The	minDstPosition	and	maxDstPosition	fields	specify	the	minimum
and	maximum	offset	at	which	the	plane	may	be	placed	on	the	corresponding
physical	display,	and	minDstExtent	and	maxDstExtent	indicate	its
physical	size,	in	pixels,	on	that	display.
Together,	these	fields	allow	a	subset	of	a	surface	to	be	displayed	in	a	window
that	may	span	one	or	more	physical	displays.	This	is	considered	to	be	a	relatively
advanced	display	capability,	and	in	practice,	most	devices	will	report
minSrcPosition,	minDstPosition,	maxSrcPosition,	and
maxDstPosition	as	the	display	origin	and	the	maximum	extents	as	the
supported	resolution	of	the	display.
Each	physical	display	may	support	multiple	display	modes.	Each	mode	is
represented	by	a	VkDisplayModeKHR	handle	and	has	a	number	of	properties.
Each	display	can	report	a	list	of	predefined	display	modes,	which	can	be
retrieved	by	calling	vkGetDisplayModePropertiesKHR(),	the	prototype



of	which	is
Click	here	to	view	code	image

VkResult	vkGetDisplayModePropertiesKHR(

				VkPhysicalDevice																										physicalDevice,

				VkDisplayKHR																														display,

				uint32_t*																																	pPropertyCount,

				VkDisplayModePropertiesKHR*															pProperties);

The	physical	device	to	which	the	display	is	attached	is	passed	in
physicalDevice,	and	the	display	whose	modes	you	want	to	query	is	passed
in	display.	Remember	that	multiple	displays	may	be	connected	to	a	single
physical	device	and	each	may	support	a	different	selection	of	display	modes.	The
pPropertyCount	parameter	points	to	a	variable	that	will	be	overwritten	with
the	number	of	supported	display	modes.	The	initial	value	of	this	variable	is
ignored	if	pProperties	is	nullptr.	If	pProperties	is	not	nullptr,
then	it	should	point	to	an	array	of	VkDisplayModePropertiesKHR
structures	that	will	be	filled	with	information	about	the	display	modes.	The
definition	of	VkDisplayModePropertiesKHR	is

Click	here	to	view	code	image

typedef	struct	VkDisplayModePropertiesKHR	{

				VkDisplayModeKHR														displayMode;

				VkDisplayModeParametersKHR				parameters;

}	VkDisplayModePropertiesKHR;

The	first	member	of	VkDisplayModePropertiesKHR,	displayMode,	is
a	VkDisplayModeKHR	handle	to	the	display	mode	that	can	be	used	to	refer	to
it	unambiguously.	The	second	member	is	an	instance	of	the
VkDisplayModeParametersKHR	structure	containing	the	parameters	of	the
display	mode.	The	definition	of	this	structure	is

Click	here	to	view	code	image

typedef	struct	VkDisplayModeParametersKHR	{

				VkExtent2D				visibleRegion;

				uint32_t						refreshRate;

}	VkDisplayModeParametersKHR;

The	parameters	of	the	display	mode	are	quite	simple,	containing	only	the	extent
of	the	display,	in	pixels,	represented	by	the	visibleRegion	member	of
VkDisplayModeParametersKHR	and	the	refresh	rate,	measured	in
thousandths	of	a	Hertz.	Generally,	an	application	will	enumerate	the	display
modes	supported	by	the	device	to	which	it	wishes	to	render	and	select	the	most
appropriate	one.	If	none	of	the	preexisting	display	modes	are	suitable,	it’s	also



possible	to	create	new	ones	by	calling	vkCreateDisplayModeKHR(),	the
prototype	of	which	is

Click	here	to	view	code	image

VkResult	vkCreateDisplayModeKHR(

				VkPhysicalDevice																											physicalDevice,

				VkDisplayKHR																															display,

				const	VkDisplayModeCreateInfoKHR*										pCreateInfo,

				const	VkAllocationCallbacks*															pAllocator,

				VkDisplayModeKHR*																										pMode);

The	physical	device	that	will	own	the	mode	is	passed	in	physicalDevice,
and	the	display	upon	which	the	mode	will	be	used	is	passed	in	display.	If
creation	of	the	new	mode	is	successful,	a	handle	to	it	will	be	written	into	the
variable	pointed	to	by	pMode.	The	parameters	of	the	new	mode	are	passed
through	a	pointer	to	an	instance	of	the	VkDisplayModeCreateInfoKHR
structure,	the	definition	of	which	is

Click	here	to	view	code	image

typedef	struct	VkDisplayModeCreateInfoKHR	{

				VkStructureType																sType;

				const	void*																				pNext;

				VkDisplayModeCreateFlagsKHR				flags;

				VkDisplayModeParametersKHR					parameters;

}	VkDisplayModeCreateInfoKHR;

The	sType	field	of	the	VkDisplayModeCreateInfoKHR	structure	should
be	set	to	VK_STRUCTURE_TYPE_DISPLAY_MODE_CREATE_INFO_KHR,
and	pNext	should	be	set	to	nullptr.	The	flags	field	is	reserved	for	future
use	and	should	be	set	to	zero.	The	remaining	parameters	of	the	new	display
mode	are	contained	in	an	instance	of	the	VkDisplayModeParametersKHR.
Once	you	have	determined	the	topology	of	the	displays	connected	to	the	physical
devices	in	the	system,	their	supported	planes,	and	their	display	modes,	you	can
create	a	VkSurfaceKHR	object	referencing	one	of	them,	which	you	can	use
just	like	a	surface	referencing	a	window.	To	do	this,	call
vkCreateDisplayPlaneSurfaceKHR(),	the	prototype	of	which	is

Click	here	to	view	code	image

VkResult	vkCreateDisplayPlaneSurfaceKHR(

				VkInstance																																	instance,

				const	VkDisplaySurfaceCreateInfoKHR*							pCreateInfo,

				const	VkAllocationCallbacks*															pAllocator,

				VkSurfaceKHR*																														pSurface);

vkCreateDisplayPlaneSurfaceKHR()	is	a	function	that	operates	at	the



instance	level	because	a	single	display	mode	might	span	multiple	planes	across
multiple	displays,	even	being	connected	to	to	multiple	physical	devices.	The
parameters	describing	the	surface	are	passed	through	an	instance	of	the
VkDisplaySurfaceCreateInfoKHR	structure,	the	address	of	which	is
passed	in	pCreateInfo.	The	definition	of
VkDisplaySurfaceCreateInfoKHR	is

Click	here	to	view	code	image

typedef	struct	VkDisplaySurfaceCreateInfoKHR	{

				VkStructureType																			sType;

				const	void*																							pNext;

				VkDisplaySurfaceCreateFlagsKHR				flags;

				VkDisplayModeKHR																		displayMode;

				uint32_t																										planeIndex;

				uint32_t																										planeStackIndex;

				VkSurfaceTransformFlagBitsKHR					transform;

				float																													globalAlpha;

				VkDisplayPlaneAlphaFlagBitsKHR				alphaMode;

				VkExtent2D																								imageExtent;

}	VkDisplaySurfaceCreateInfoKHR;

The	sType	field	of	VkDisplaySurfaceCreateInfoKHR	should	be	set	to
VK_STRUCTURE_TYPE_DISPLAY_SURFACE_CREATE_INFO_KHR,	and
pNext	should	be	set	to	nullptr.	The	flags	field	is	reserved	for	future	use
and	should	be	set	to	zero.	The	handle	to	the	display	mode	that	is	to	be	used	for
the	new	surface	is	passed	through	the	displayMode	field.	This	can	be	one	of
the	predefined	display	modes	returned	from	a	call	to
vkGetDisplayModePropertiesKHR()	or	a	user-created	display	mode
produced	from	a	call	to	vkCreateDisplayModeKHR().
The	plane	to	which	the	surface	will	be	presented	is	passed	in	planeIndex,	and
the	relative	order	in	which	the	plane	should	appear	when	composited	with	other
planes	on	the	device	should	be	passed	in	planeStackIndex.	At	time	of
presentation,	the	image	can	be	flipped	or	rotated,	assuming	that	the	operation	is
supported	by	the	display.	The	operation	to	be	performed	is	specified	in
transform,	which	is	a	single	bit	selected	from	the
VkSurfaceTransformFlagBitsKHR	enumeration.	This	must	be	a
supported	transform	for	the	video	mode.
The	transforms	that	can	be	applied	to	a	surface	during	presentation	depend	on
the	device	and	surface	capabilities,	which	can	be	retrieved	by	using	a	call	to
vkGetPhysicalDeviceSurfaceCapabilitiesKHR().
If	the	image	is	to	be	composited	on	top	of	other	planes,	it	is	possible	to	set	the



transparency	for	the	surface	by	using	the	globalAlpha	and	alphaMode
fields.	If	alphaMode	is
VK_DISPLAY_PLANE_ALPHA_GLOBAL_BIT_KHR,	then	globalAlpha
sets	the	global	alpha	value	for	composition.	If	alphaMode	is
VK_DISPLAY_PLANE_ALPHA_PER_PIXEL_BIT_KHR,	then	the	alpha
value	for	each	pixel	is	taken	from	the	presented	image,	and	the	value	of
globalAlpha	is	ignored.	If	alphaMode	is
VK_DISPLAY_PLANE_ALPHA_OPAQUE_BIT_KHR,	then	blended
composition	is	disabled.
The	imageExtent	field	specifies	the	size	of	the	presentable	surface.	In
general,	for	full-screen	rendering,	this	should	be	the	same	as	the	extent	of	the
display	mode	selected	in	displayMode.

Performing	Presentation
Presentation	is	an	operation	that	occurs	in	the	context	of	a	queue.	Generally,
commands	executed	inside	command	buffers	submitted	to	a	queue	produce	the
images	that	are	to	be	presented,	so	those	images	should	be	shown	to	the	user
only	when	the	rendering	operations	that	created	them	have	completed.	While	a
device	in	a	system	may	support	many	queues,	it	is	not	required	that	all	of	them
support	presentation.	Before	you	can	use	a	queue	for	presentation	to	a	surface,
you	must	determine	whether	that	queue	supports	presentation	to	that	surface.
To	determine	whether	a	queue	supports	presentation,	pass	the	physical	device,
surface	and	queue	family	to	a	call	to
vkGetPhysicalDeviceSurfaceSupportKHR(),	the	prototype	of	which
is

Click	here	to	view	code	image

VkResult	vkGetPhysicalDeviceSurfaceSupportKHR(

				VkPhysicalDevice																												physicalDevice,

				uint32_t																																				queueFamilyIndex,

				VkSurfaceKHR																																surface,

				VkBool32*																																			pSupported);

The	physical	device	to	query	is	passed	in	physicalDevice.	All	queues	are
members	of	a	queue	family,	and	all	members	of	a	queue	family	are	considered	to
have	identical	properties.	Therefore,	only	the	family	of	a	queue	is	needed	to
determine	whether	that	queue	supports	presentation.	The	queue-family	index	is
passed	in	queueFamilyIndex.
The	capability	of	a	queue	to	present	is	dependent	on	the	surface.	For	example,



some	queues	may	be	able	to	present	into	windows	owned	by	the	operating
system	but	have	no	direct	access	to	physical	hardware	that	controls	full-screen
surfaces.	Therefore,	the	surface	to	which	you	want	to	present	is	passed	in
surface.
If	vkGetPhysicalDeviceSurfaceSupportKHR()	is	successful,	the
ability	of	queues	in	the	specified	family	to	present	to	the	surface	specified	in
surface	is	written	into	the	variable	pointed	to	by	pSupported—VK_TRUE

indicating	support	and	VK_FALSE	indicating	lack	of	support.	If	something	goes
wrong,	vkGetPhysicalDeviceSurfaceSupportKHR()	will	return	a
failure	code,	and	the	value	of	pSupported	will	not	be	overwritten.
Before	an	image	can	be	presented,	it	must	be	in	the	correct	layout.	This	state	is
the	VK_IMAGE_LAYOUT_PRESENT_SRC_KHR	layout.	Images	are
transitioned	from	layout	to	layout	using	image	memory	barriers,	as	discussed
briefly	in	Chapter	2,	“Memory	and	Resources.”	Listing	5.2	shows	how	to
transition	an	image	from
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL	to
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR	layout	using	an	image	memory
barrier.

Listing	5.2:	Transitioning	an	Image	to	Present	Source

Click	here	to	view	code	image

const	VkImageMemoryBarrier	barrier	=

{

				VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,					//	sType

				nullptr,																																				//	pNext

				VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,							//	srcAccessMask

				VK_ACCESS_MEMORY_READ_BIT,																		//	dstAccessMask

				VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,			//	oldLayout

				VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,												//	newLayout

				0,																																										//

srcQueueFamilyIndex

				0,																																										//

dstQueueFamilyIndex

				sourceImage,																																//	image

				{																																											//	subresourceRange

								VK_IMAGE_ASPECT_COLOR_BIT,														//	aspectMask

								0,																																						//	baseMipLevel

								1,																																						//	levelCount

								0,																																						//	baseArrayLayer

								1,																																						//	layerCount

				}

};



vkCmdPipelineBarrier(cmdBuffer,

																					VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,

																					VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,

																					0,

																					0,	nullptr,

																					0,	nullptr,

																					1,	&barrier);

Note	that	the	image	memory	barrier	is	executed	inside	a	command	buffer	and
this	command	buffer	should	be	submitted	to	a	device	queue	for	execution.	Once
the	image	is	in	VK_IMAGE_LAYOUT_PRESENT_SRC_KHR	layout,	it	can	be
presented	to	the	user	by	calling	vkQueuePresentKHR(),	the	prototype	of
which	is

Click	here	to	view	code	image

VkResult	vkQueuePresentKHR(

				VkQueue																																	queue,

				const	VkPresentInfoKHR*																	pPresentInfo);

The	queue	to	which	the	image	should	be	submitted	for	presentation	is	specified
in	queue.	The	rest	of	the	parameters	to	the	command	are	passed	through	an
instance	of	the	VkPresentInfoKHR	structure,	the	definition	of	which	is

Click	here	to	view	code	image

typedef	struct	VkPresentInfoKHR	{

				VkStructureType										sType;

				const	void*														pNext;

				uint32_t																	waitSemaphoreCount;

				const	VkSemaphore*							pWaitSemaphores;

				uint32_t																	swapchainCount;

				const	VkSwapchainKHR*				pSwapchains;

				const	uint32_t*										pImageIndices;

				VkResult*																pResults;

}	VkPresentInfoKHR;

The	sType	field	of	VkPresentInfoKHR	should	be	set	to
VK_STRUCTURE_TYPE_PRESENT_INFO_KHR,	and	pNext	should	be	set	to
nullptr.	Before	the	images	are	presented,	Vulkan	will	optionally	wait	on	one
or	more	semaphores	to	enable	rendering	to	the	images	to	be	synchronized	with
the	presentation	operation.	The	number	of	semaphores	to	wait	on	is	passed	in	the
waitSemaphoreCount	member,	and	the	pWaitSemaphores	member
points	to	an	array	of	this	many	semaphore	handles	to	wait	on.
A	single	call	to	vkQueuePresentKHR()	can	actually	present	multiple
images	to	multiple	swap	chains	at	the	same	time.	This	is	useful,	for	example,	in



an	application	that	is	rendering	to	multiple	windows	at	the	same	time.	The
number	of	images	to	preset	is	specified	in	swapchainCount.	pSwapchains
is	an	array	of	the	swapchain	objects	to	present	with.
The	images	presented	to	each	of	the	swap	chains	are	not	referenced	by	their
VkImage	handles	but	by	the	indices	into	their	arrays	of	swapchain	images	as
retrieved	from	the	swapchain	object.	For	each	swap	chain	that	will	be	presented
to,	one	image	index	is	passed	through	the	corresponding	element	in	the	array
pointed	to	by	pImageIndices.
Each	of	the	separate	present	operations	triggered	by	the	call	to
vkQueuePresentKHR()	can	produce	its	own	result	code.	Remember	that
some	values	of	VkResult	indicate	success.	pResults	is	a	pointer	to	an	array
of	swapchainCount	VkResult	variables	that	will	be	filled	with	the	results
of	the	present	operations.

Cleaning	Up
Regardless	of	the	method	of	presentation	you’ve	used	in	your	application,	it	is
important	to	clean	up	correctly.	First,	you	should	destroy	the	swap	chain	to
which	you	are	presenting.	To	do	this,	call	vkDestroySwapchainKHR(),	the
prototype	of	which	is

Click	here	to	view	code	image

void	vkDestroySwapchainKHR(

				VkDevice																															device,

				VkSwapchainKHR																									swapchain,

				const	VkAllocationCallbacks*											pAllocator);

The	device	that	owns	the	swap	chain	is	passed	in	device,	and	the	swap	chain
to	destroy	is	passed	in	swapchain.	If	a	host	memory	allocator	was	used	to
create	the	swap	chain,	then	a	pointer	to	a	compatible	allocator	is	passed	in
pAllocator.
When	the	swap	chain	is	destroyed,	all	of	the	presentable	images	associated	with
the	swap	chain	are	also	destroyed.	Therefore,	before	you	destroy	a	swap	chain,
you	should	ensure	that	there	is	no	pending	work	that	might	write	to	any	of	its
surfaces	and	that	there	are	no	pending	present	operations	that	might	read	from
them.	The	easiest	way	to	do	this	is	to	call	vkDeviceWaitIdle()	on	the
device.	While	not	normally	recommended,	destruction	of	a	swap	chain	usually
does	not	occur	in	a	performance-critical	part	of	an	application,	so	in	this	case,
simple	is	best.
When	images	are	acquired	from	a	swap	chain	using



vkAcquireNextImageKHR()	or	presented	using
vkQueuePresentKHR(),	semaphores	are	passed	to	these	functions	to	signal
and	wait	on,	resepectively.	Care	should	be	taken	that	the	semaphores	live	long
enough	that	the	swap	chain	can	complete	any	signaling	operations	on	them
before	they	are	destroyed.	To	ensure	this,	it	is	best	to	destroy	the	swap	chain
before	destroying	any	semaphores	that	might	have	been	used	with	it.

Summary
In	this	chapter,	you	learned	about	the	operations	supported	by	Vulkan	for	getting
images	onto	displays.	We	covered	presenting	to	various	window	systems,	the
mechanism	by	which	you	determine	which	images	to	render	into,	and	how	to
enumerate	and	control	the	physical	display	devices	attached	to	a	system.	We
briefly	covered	synchronization	involved	in	presenting	and	will	dig	further	into
synchronization	primitives	later	in	the	book.	We	also	discussed	methods	for
configuring	display	synchronization.	With	the	information	in	this	chapter,	you
should	have	a	decent	understanding	of	how	Vulkan	presents	images	to	the	user.



Chapter	6.	Shaders	and	Pipelines

What	You’ll	Learn	in	This	Chapter
•	What	a	shader	is	and	how	it’s	used
•	The	basics	of	SPIR-V,	the	Vulkan	shading	language
•	How	to	construct	a	shader	pipeline	and	use	it	to	do	work

Shaders	are	small	programs	that	are	executed	directly	on	the	device.	These	are
the	fundamental	building	blocks	of	any	complex	Vulkan	program.	Shaders	are
perhaps	more	important	to	the	operation	of	your	program	than	the	Vulkan	API
itself.	This	chapter	introduces	shaders	and	shader	modules,	shows	how	they	are
constructed	from	SPIR-V	binaries,	and	illustrates	how	those	binaries	are
generated	from	GLSL	using	standard	tools.	It	discusses	the	construction	of
pipelines	containing	those	shaders	and	other	information	required	to	run	them,
and	then	shows	how	to	execute	the	shaders	to	do	work	on	the	device.
Shaders	are	the	fundamental	building	blocks	of	work	to	be	executed	on	the
device.	Vulkan	shaders	are	represented	by	SPIR-V,	which	is	a	binary
intermediate	representation	of	program	code.	SPIR-V	can	be	generated	offline
using	a	compiler,	online	directly	inside	your	application,	or	by	passing	a	high-
level	language	to	a	library	at	runtime.	The	sample	applications	accompanying
this	book	take	the	first	approach:	compiling	the	shaders	offline	and	then	loading
the	resulting	SPIR-V	binaries	from	disk.
The	original	shaders	are	written	in	GLSL	using	the	Vulkan	profile.	This	is	a
modified	and	enhanced	version	of	the	same	shading	language	used	with
OpenGL.	Most	of	the	examples,	therefore,	discuss	Vulkan	features	in	terms	of
their	representation	in	GLSL.	However,	it	should	be	clear	that	Vulkan	itself
knows	nothing	of	GLSL	and	doesn’t	care	where	SPIR-V	shaders	come	from.

An	Overview	of	GLSL
Although	not	officially	part	of	the	Vulkan	specification,	Vulkan	shares	much	of
its	heritage	with	OpenGL.	In	OpenGL,	the	officially	supported	high-level
language	is	GLSL—the	OpenGL	Shading	Language.	Therefore,	during	the
design	of	SPIR-V,	much	attention	was	paid	to	ensuring	that	at	least	one	high-
level	language	would	be	suitable	for	use	in	the	generation	of	SPIR-V	shaders.



Minor	modifications	were	made	to	the	GLSL	specification	for	use	with	Vulkan.
Some	features	were	added	to	enable	GLSL	shaders	to	interact	cleanly	with	the
Vulkan	system,	and	legacy	features	in	OpenGL	that	were	not	carried	forward
into	Vulkan	were	removed	from	the	Vulkan	profile	of	GLSL.
The	result	is	a	slimline	version	of	GLSL	that	supports	most	of	the	features	of
Vulkan	while	enabling	a	high	level	of	portability	between	OpenGL	and	Vulkan.
In	short,	if	you	stick	to	the	modern	features	of	OpenGL	in	an	OpenGL
application,	much	of	what	you	write	in	your	shaders	will	compile	directly	into
SPIR-V	using	the	official	reference	compiler.	Of	course,	you	are	free	to	write
your	own	compilers	and	tools	or	to	use	a	third-party	compiler	to	produce	SPIR-V
modules	from	any	language	you	choose.
The	modifications	to	GLSL	to	allow	it	to	be	used	to	produce	a	SPIR-V	shader
suitable	for	use	with	Vulkan	are	documented	in	the	GL_KHR_vulkan_glsl
extension.
In	this	section,	we	provide	a	brief	overview	of	GLSL.	It	is	assumed	that	the
reader	is	somewhat	familiar	with	high-level	shading	languages	in	general	and	is
capable	of	researching	GLSL	in	more	depth	if	needed.
Listing	6.1	shows	the	simplest	possible	GLSL	shader.	It	is	simply	an	empty
function,	returning	void,	that	does	absolutely	nothing.	It’s	actually	a	valid
shader	for	any	stage	in	the	Vulkan	pipeline,	although	executing	it	in	some	stages
would	result	in	some	undefined	behavior.

Listing	6.1:	Simplest	Possible	GLSL	Shader

#version	450	core

void	main	(void)

{

				//	Do	nothing!

}

All	GLSL	shaders	should	begin	with	a	#version	directive	to	inform	the	GLSL
compiler	which	version	of	GLSL	we’re	using.	This	allows	the	compiler	to
perform	appropriate	error	checks	and	to	allow	certain	language	constructs	that
have	been	introduced	over	time.
When	compiled	to	SPIR-V	for	use	in	Vulkan,	a	compiler	should	automatically
define	VULKAN	to	the	version	of	the	GL_KHR_vulkan_glsl	extension	in	use
such	that	you	can	wrap	Vulkan-specific	constructs	or	functionality	in	your	GLSL
shader	in	#ifdef	VULKAN	or	#if	VULKAN	>	{version}	blocks	in	order
to	allow	the	same	shaders	to	be	used	with	OpenGL	or	Vulkan.	Throughout	this



book,	when	Vulkan-specific	features	are	discussed	in	the	context	of	GLSL,	it	is
assumed	that	the	code	beging	written	is	either	exclusively	for	Vulkan	or	is
wrapped	in	the	appropriate	#ifdef	preprocessor	conditionals	to	allow	it	to	be
compiled	for	Vulkan.
GLSL	is	a	C-like	language,	with	its	syntax	and	many	of	its	semantics	taken	from
C	or	C++.	If	you	are	a	C	programmer,	you	should	be	comfortable	with	constructs
such	as	for	and	while	loops;	flow-control	keywords	such	as	break	and
continue;	switch	statements;	relational	operators	such	as	==,	<,	and	>;	the
ternary	operator	a	?	b	:	c;	and	so	on.	All	of	these	are	available	in	GLSL
shaders.
The	fundamental	data	types	in	GLSL	are	signed	and	unsigned	integer	and
floating-point	values,	denoted	as	int,	uint,	and	float,	respectively.	Double-
precision	floating-point	values	are	also	supported	using	the	double	data	type.
Inside	GLSL,	they	have	no	defined	bit	width,	much	as	in	C.	GLSL	has	no
stdint	analog,	so	defining	a	specific	bit	width	for	variables	is	not	supported,
although	the	GLSL	and	SPIR-V	specifications	do	provide	some	minimum
guarantees	for	the	range	and	precision	of	numeric	representations	used	by
Vulkan.	However,	bit	width	and	layouts	are	defined	for	variables	sourced	from
and	written	to	memory.	Integers	are	stored	in	memory	in	twos-component	form,
and	floating-point	variables	follow	IEEE	conventions	wherever	possible,	aside
from	minor	differences	in	precision	requirements,	handling	of	denormals	and
not-a-number	(NaN)	values,	and	so	on.
In	addition	to	the	basic	scalar	integer	and	floating-point	data	types,	GLSL
represents	short	vectors	of	up	to	four	components	and	small	matrices	of	up	to	4	×
4	elements	as	first-class	citizens	in	the	language.	Vectors	and	matrices	of	the
fundamental	data	types	(signed	and	unsigned	integers	and	floating-point	scalars)
can	be	declared.	The	vec2,	vec3,	and	vec4	types,	for	example,	are	vectors	of
two,	three,	and	four	floating-point	values,	respectively.	Integer	vectors	are
notated	using	the	i	or	u	prefixes	for	signed	and	unsigned	integers,	respectively.
Thus,	ivec4	is	a	vector	of	four	signed	integers,	and	uvec4	is	a	vector	of	four
unsigned	integers.	The	d	prefix	is	used	to	denote	double-precision	floating-point.
Thus,	dvec4	is	a	vector	of	four	double-precision	floating-point	values.
Matrices	are	written	using	the	form	matN	or	matNxM,	representing	N	×	N
square	matrices	and	N	×	M	rectangular	matrices,	respectively.	The	d	prefix	may
also	be	used	with	matrix	data	types	to	form	double-precision	matrices.
Therefore,	dmat4	is	a	4	×	4	matrix	of	double-precision	floating-point	values.
Matrices	of	integers,	however,	are	not	supported.	Matrices	are	considered	to	be



column-primary	and	may	be	treated	as	arrays	of	vectors.	Thus,	writing	m[3]
where	m	is	of	type	mat4	yields	a	four-element	vector	of	floating-point	values	(a
vec4)	representing	the	last	column	of	m.
The	Boolean	type	is	also	a	first-class	citizen	in	GLSL	and	can	be	formed	into
vectors	(but	not	matrices),	just	like	floating-point	and	integer	variables.	Boolean
variables	are	written	using	the	bool	type.	Relational	operators	comparing
vectors	produce	vectors	of	Booleans,	with	each	element	representing	one	of	the
comparison	results.	The	special	built-in	functions	any()	and	all()	are	used
to	produce	a	single	Boolean	expressing	whether	any	element	of	the	source	vector
is	true	and	whether	all	of	the	elements	of	the	source	vector	are	true,	respectively.
Data	produced	by	the	system	is	passed	into	GLSL	shaders	through	built-in
variables.	Examples	are	variables	such	as	gl_FragCoord,
gl_VertexIndex,	and	so	on,	which	will	each	be	introduced	as	we	reach	the
relevant	parts	of	Vulkan	throughout	this	book.	Built-in	variables	often	have
specific	semantics,	and	reading	and	writing	them	can	change	how	a	shader
behaves.
User-specified	data	is	normally	passed	into	shaders	through	memory.	Variables
can	be	bound	together	into	blocks,	which	can	then	be	bound	to	device-accessible
resources	backed	by	memory	that	your	application	can	write	into.	This	allows
you	to	pass	large	amounts	of	data	to	shaders.	For	smaller	but	more	frequently
updated	data,	special	variables	called	push	constants	are	available	and	will	be
covered	later	in	the	book.
GLSL	provides	a	very	large	number	of	built-in	functions.	In	contrast	to	C,
however,	GLSL	has	no	header	files,	and	it	is	not	necessary	to	#include
anything.	Rather,	the	GLSL	equivalent	to	a	standard	library	is	automatically
provided	by	the	compiler.	It	includes	a	large	suite	of	math	functions,	functions
for	accessing	textures,	and	special	functions	such	as	flow-control	functions	that
control	the	execution	of	the	shader	on	the	device.

An	Overview	of	SPIR-V
SPIR-V	shaders	are	embedded	in	modules.	Each	module	can	contain	one	or
many	shaders.	Each	shader	has	an	entry	point	that	has	a	name	and	a	shader	type,
which	is	used	to	define	which	shading	stage	the	shader	runs	in.	The	entry	point
is	where	the	shader	begins	execution	when	it	is	run.	A	SPIR-V	module	is	passed
to	Vulkan	along	with	creation	information,	and	Vulkan	returns	an	object
representing	that	module.	The	module	can	then	be	used	to	construct	a	pipeline,
which	is	a	fully	compiled	version	of	a	single	shader	along	with	information



required	to	run	it	on	the	device.

Representation	of	SPIR-V
SPIR-V	is	the	only	officially	supported	shading	language	for	Vulkan.	It	is
accepted	at	the	API-level	and	is	ultimately	used	to	construct	pipelines,	which	are
objects	that	configure	a	Vulkan	device	to	do	work	for	your	application.
SPIR-V	was	designed	to	be	easy	for	tools	and	drivers	to	consume.	This	improves
portability	by	reducing	the	variability	between	implementations.	The	native
representation	of	a	SPIR-V	module	is	a	stream	of	32-bit	words	stored	in
memory.	Unless	you	are	a	tool	writer	or	plan	to	generate	SPIR-V	yourself,	it	is
unlikely	that	you	will	deal	with	the	binary	encoding	of	SPIR-V	directly.	Rather,
you	will	either	look	at	a	textual	representation	of	SPIR-V	or	generate	SPIR-V
using	a	tool	such	as	glslangvalidator,	the	official	Khronos	GLSL
compiler.
Saving	the	shader	in	Listing	6.1	as	a	text	file	with	the	.comp	extension	tells
glslangvalidator	that	the	shader	is	to	be	compiled	as	a	compute	shader.
We	can	then	compile	this	shader	using	glslangvalidator	with	the
command	line

Click	here	to	view	code	image

glslangvalidator	simple.comp	-o	simple.spv

This	produces	a	SPIR-V	binary	named	simple.spv.	We	can	disassemble	the
binary	using	the	SPIR-V	disassembler,	spirv-dis,	which	outputs	a	human-
readable	disassembly	of	the	generated	SPIR-V	binary.	This	is	shown	in	Listing
6.2.

Listing	6.2:	Simplest	SPIR-V

Click	here	to	view	code	image

;	SPIR-V

;	Version:	1.0

;	Generator:	Khronos	Glslang	Reference	Front	End;	1

;	Bound:	6

;	Schema:	0

															OpCapability	Shader

										%1	=	OpExtInstImport	"GLSL.std.450"

															OpMemoryModel	Logical	GLSL450

															OpEntryPoint	GLCompute	%4	"main"

															OpExecutionMode	%4	LocalSize	1	1	1

															OpSource	GLSL	450

															OpName	%4	"main"



										%2	=	OpTypeVoid

										%3	=	OpTypeFunction	%2

										%4	=	OpFunction	%2	None	%3

										%5	=	OpLabel

															OpReturn

															OpFunctionEnd

You	can	see	that	the	text	form	of	SPIR-V	looks	like	a	strange	dialect	of	assembly
language.	We	can	step	through	this	disassembly	and	see	how	it	relates	to	the
original	input.	Each	line	of	the	output	assembly	represents	a	single	SPIR-V
instruction,	possibly	made	up	of	multiple	tokens.
The	first	instruction	in	the	stream,	OpCapability	Shader,	requests	that	the
Shader	capability	be	turned	on.	SPIR-V	functionality	is	roughly	divided	into
related	groups	of	instructions	and	features.	Before	your	shader	can	use	any	of
these	features,	it	must	declare	that	it	will	be	using	the	capability	of	which	the
feature	is	part.	The	shader	in	Listing	6.2	is	a	graphics	shader	and	therefore	uses
the	Shader	capability.	This	is	the	most	fundamental	capability.	Without	this,
we	cannot	compile	graphics	shaders.	As	we	introduce	more	SPIR-V	and	Vulkan
functionality,	we	will	introduce	the	various	capabilities	that	each	feature	depends
on.
Next,	we	see	%1	=	OpExtInstImport	"GLSL.std.450".	This	is
essentially	importing	an	additional	set	of	instructions	corresponding	to	the
functionality	included	in	GLSL	version	450,	which	is	what	the	original	shader
was	written	in.	Notice	that	this	instruction	is	preceeded	by	%1	=.	This	names	the
result	of	the	instruction	by	assigning	it	an	ID.	The	result	of
OpExtInstImport	is	effectively	a	library.	When	we	want	to	call	functions	in
this	library,	we	do	so	using	the	OpExtInst	instruction,	which	takes	both	a
library	(the	result	of	the	OpExtInstImport	instruction)	and	an	instruction
index.	This	allows	the	SPIR-V	instruction	set	to	be	arbitrarily	extended.
Next,	we	see	some	additional	declarations.	OpMemoryModel	specifies	the
working	memory	model	for	this	module,	which	in	this	case	is	the	logical
memory	model	corresponding	to	GLSL	version	450.	This	means	that	all	memory
access	is	performed	through	resources	rather	than	a	physical	memory	model,
which	accesses	memory	through	pointers.
Next	is	the	declaration	of	an	entry	point	in	the	module.	The	OpEntryPoint
GLCompute	%4	"main"	instruction	means	that	there	is	an	available	entry
point	corresponding	to	an	OpenGL	compute	shader,	with	ID	4	exported	with	the
function	name	main.	This	name	is	used	to	reference	the	entry	point	when	we
hand	the	resulting	shader	module	back	to	Vulkan.



We	use	this	ID	in	the	subsequent	instruction,	OpExecutionMode	%4
LocalSize	1	1	1,	which	defines	the	execution	group	size	of	this	shader	to
be	1	×	1	×	1	work	item.	This	is	implicit	in	GLSL	if	the	local	size	layout
qualifier	is	not	present.
The	next	two	instructions	are	simply	informational.	OpSource	GLSL	450
indicates	that	the	module	was	compiled	from	GLSL	version	450,	and	OpName
4	"main"	provides	a	name	for	the	token	with	ID	4.
Now	we	see	the	real	meat	of	the	function.	First,	%2	=	OpTypeVoid	declares
that	we	want	to	use	ID	2	as	the	type	void.	Everything	in	SPIR-V	has	an	ID,
even	type	definitions.	Large,	aggregate	types	can	be	built	up	by	referencing
sequentially	smaller,	simpler	types.	However,	we	need	to	start	from	somewhere,
and	assigning	a	type	to	void	is	where	we’re	starting.
%3	=	OpTypeFunction	%2	means	that	we’re	defining	ID	3	as	a	function
type	taking	void	(previously	declared	as	ID	2)	and	taking	no	parameters.	We
use	this	in	the	following	line,	%4	=	OpFunction	%2	None	%3.	This
means	that	we’re	declaring	ID	4	(which	we	previously	named	"main")	to	be	an
instance	of	the	function	3	(declared	in	the	line	above),	returning	void	(as	ID	2),
and	having	no	particular	decarations.	This	is	indicated	by	None	in	the
instructions	and	can	be	used	for	things	like	inlining,	whether	the	variable	is
constant	(its	constness),	and	so	on.
Finally,	we	see	the	declaration	of	a	label	(which	is	unused	and	only	a	side	effect
of	the	way	the	compiler	operates),	the	implicit	return	statement,	and	eventually
the	end	of	the	function.	This	is	the	end	of	our	SPIR-V	module.
The	complete	binary	dump	of	the	shader	is	192	bytes	long.	SPIR-V	is	quite
verbose,	as	192	bytes	is	quite	a	bit	longer	than	the	original	shader.	However,
SPIR-V	makes	explicit	some	of	the	things	that	are	implicit	in	the	original
shading	language.	For	example,	declaring	a	memory	model	is	not	necessary	in
GLSL	because	it	supports	only	a	logical	memory	model.	Further,	there	is	some
redundancy	in	the	SPIR-V	module	as	compiled	here;	we	don’t	care	about	the
name	of	the	main	function,	the	label	with	ID	5	is	never	actually	used,	and	the
shader	imports	the	GLSL.std.450	library	but	never	actually	uses	it.	It	is
possible	to	strip	such	unneeded	instructions	from	a	module.	Even	after	this,
because	SPIR-V	is	relatively	sparsely	encoded,	the	resulting	binaries	are	fairly
easy	to	compress	with	even	a	generic	compressor	and	probably	significantly
more	compressible	with	a	specialized	compression	library.
All	SPIR-V	code	is	written	in	SSA	(single	static	assignment)	form,	which	means
that	every	virtual	register	(the	tokens	written	as	%n	in	the	listing	above)	are



written	exactly	once.	Almost	every	instruction	that	does	work	produces	a	result
identifier.	As	we	progress	to	more	complex	shaders,	you	will	see	that	machine-
generated	SPIR-V	is	somewhat	unwieldy,	and	because	of	its	verbosity	and
enforced	SSA	form,	it	is	quite	difficult	to	write	by	hand.	It	is	strongly
recommended	that	you	use	a	compiler	to	generate	SPIR-V	offline	or	online	by
using	the	compiler	as	a	library	that	your	application	can	link	to.
If	you	do	plan	to	generate	or	interpret	SPIR-V	modules	yourself,	you	can	use	the
defined	binary	encoder	to	build	tools	to	parse	or	create	them.	However,	they
have	a	well-defined	binary	storage	format	that	is	explained	later	in	this	chapter.
All	SPIR-V	modules	begin	with	a	magic	number	that	can	be	used	to	weakly
validate	that	the	binary	blob	is,	in	fact,	a	SPIR-V	module.	This	magic	number	is
0x07230203	when	viewed	as	a	native	unsigned	integer.	This	number	can	also
be	used	to	deduce	the	endianness	of	the	module.	Because	each	SPIR-V	token	is	a
32-bit	word,	if	a	SPIR-V	module	is	passed	by	disk	or	network	to	a	host	of	a
different	endianness,	the	bytes	within	the	word	are	swapped,	and	its	value	is
changed.	For	example,	if	a	SPIR-V	module	stored	in	little-endian	format	is
loaded	by	a	big-endian	host,	the	magic	number	will	be	read	as	0x03022307,	so
the	host	knows	to	swap	the	byte	order	of	the	words	in	the	module.
Following	the	magic	number	are	several	more	words	that	describe	properties	of
the	module.	First	is	the	version	number	of	SPIR-V	used	in	the	module.	This	is
encoded	using	the	bytes	of	the	32-bit	word	where	bits	16	through	23	contain	the
major	version	and	bits	8	through	15	contain	the	minor	version.	SPIR-V	1.0
therefore	uses	the	encoding	0x00010000.	The	remaining	bits	in	the	version
number	are	reserved.	Next	is	a	token	containing	the	version	of	the	tool	that
generated	the	SPIR-V	module.	This	value	is	tool-dependent.
Next	is	the	maximum	number	of	IDs	used	in	the	module.	All	variables,
functions,	and	other	components	of	the	SPIR-V	module	are	assigned	an	ID	less
than	this	number,	so	including	it	up	front	allows	tools	consuming	SPIR-V	to
allocate	arrays	of	data	structures	to	hold	them	in	rather	than	allocating	those
structures	on	the	fly.	The	last	word	in	the	header	is	reserved	and	should	be	set	to
zero.	Following	this	is	the	stream	of	instructions.

Handing	SPIR-V	to	Vulkan
Vulkan	doesn’t	care	too	much	where	the	SPIR-V	shaders	and	modules	come
from.	Typically,	they	will	be	compiled	offline	as	part	of	building	your
application,	compiled	using	an	online	compiler,	or	generated	directly	in	your
application.	Once	you	have	a	SPIR-V	module,	you	need	to	hand	it	to	Vulkan	so



that	a	shader	module	object	can	be	created	from	it.	To	do	this,	call
vkCreateShaderModule(),	the	prototype	of	which	is

Click	here	to	view	code	image

VkResult	vkCreateShaderModule	(

				VkDevice																												device,

				const	VkShaderModuleCreateInfo*					pCreateInfo,

				const	VkAllocationCallbacks*								pAllocator,

				VkShaderModule*																					pShaderModule);

As	with	all	Vulkan	object	creation	functions,	vkCreateShaderModule()
takes	a	device	handle	as	input	along	with	a	pointer	to	a	structure	containing	a
descrtiption	of	the	object	being	created.	In	this	case,	this	is	a
VkShaderModuleCreateInfo	structure,	the	definition	of	which	is

Click	here	to	view	code	image

typedef	struct	VkShaderModuleCreateInfo	{

				VkStructureType														sType;

				const	void*																		pNext;

				VkShaderModuleCreateFlags				flags;

				size_t																							codeSize;

				const	uint32_t*														pCode;

}	VkShaderModuleCreateInfo;

The	sType	field	of	VkShaderModuleCreateInfo	should	be	set	to
VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO,	and	pNext
should	be	set	to	nullptr.	The	flags	field	is	reserved	for	future	use	and
should	be	set	to	zero.	The	codeSize	field	contains	the	size	of	the	SPIR-V
module	in	bytes,	the	code	for	which	is	passed	in	pCode.
If	the	SPIR-V	code	is	valid	and	understood	by	Vulkan,	then
vkCreateShaderModule()	will	return	VK_SUCCESS	and	place	a	handle
to	a	new	shader	module	in	the	variable	pointed	to	by	pShaderModule.	You
can	then	use	the	shader	module	to	create	pipelines,	which	are	the	final	form	of
the	shader	used	to	do	work	on	the	device.
Once	you	are	done	with	a	shader	module,	you	should	destroy	it	to	free	its
resources.	This	is	performed	by	calling	vkDestroyShaderModule(),	the
prototype	of	which	is

Click	here	to	view	code	image

void	vkDestroyShaderModule	(

				VkDevice																											device,

				VkShaderModule																					shaderModule,

				const	VkAllocationCallbacks*							pAllocator);



A	handle	to	the	device	that	owns	the	shader	module	should	be	passed	in
device,	and	the	shader	module	to	be	destroyed	should	be	passed	in
shaderModule.	Access	to	the	shader	module	must	be	externally
synchronized.	No	other	access	to	the	shader	module	needs	to	be	externally
synchronized.	In	particular,	it	is	possible	to	use	the	same	shader	module	to	create
multiple	pipelines	in	parallel,	as	discussed	in	the	next	section.	Your	application
only	needs	to	ensure	that	the	shader	module	is	not	destroyed	while	there	are
Vulkan	commands	executing	on	other	threads	that	might	access	the	same
module.
After	the	module	has	been	destroyed,	its	handle	is	immediately	invalidated.
However,	pipelines	created	using	the	module	remain	valid	until	they	are
destroyed.	If	a	host	memory	allocator	was	used	when	the	shader	module	was
created,	then	a	pointer	to	a	compatible	allocator	should	be	passed	in
pAllocator;	otherwise,	pAllocator	should	be	set	to	nullptr.

Pipelines
As	you	read	in	the	previous	sections,	Vulkan	uses	shader	modules	to	represent
collections	of	shaders.	Shader	modules	are	created	by	handing	the	module	code
to	vkCreateShaderModule(),	but	before	they	can	be	used	to	do	useful
work	on	the	device,	you	need	to	create	a	pipeline.	There	are	two	types	of
pipeline	in	Vulkan:	compute	and	graphics.	The	graphics	pipeline	is	rather
complex	and	contains	a	lot	of	state	unrelated	to	shaders.	However,	a	compute
pipeline	is	conceptually	much	simpler	and	contains	essentially	nothing	but	the
shader	code	itself.

Compute	Pipelines
Before	we	discuss	creating	a	compute	pipeline,	we	should	cover	the	basics	of
compute	shaders	in	general.	The	shader	and	its	execution	are	the	core	of	Vulkan.
Vulkan	also	provides	access	to	various	fixed	blocks	of	functionality	for
performing	things	such	as	copying	data	around	and	processing	pixel	data.
However,	the	shader	will	form	the	core	of	any	nontrivial	application.
The	compute	shader	provides	raw	access	to	the	compute	capabilities	of	the
Vulkan	device.	The	device	can	be	seen	as	a	collection	of	wide	vector	processing
units	that	operate	on	related	pieces	of	data.	A	compute	shader	is	written	as
though	it	were	a	serial,	single	track	of	execution.	However,	there	are	hints	that
many	such	tracks	of	execution	may	run	together.	This	is,	in	fact,	how	most
Vulkan	devices	are	constructed.	Each	track	of	execution	is	known	as	an



invocation.
When	a	compute	shader	is	executed,	many	invocations	are	started	at	once.	The
invocations	are	grouped	into	local	work	groups	of	fixed	size,	and	then	one	or
more	such	groups	are	launched	together	in	what	is	sometimes	known	as	a	global
work	group.	Logically,	both	the	local	and	global	work	groups	are	three-
dimensional.	However,	setting	the	size	of	any	one	of	the	three	dimensions	to	one
reduces	the	dimensionality	of	the	group.
The	size	of	the	local	work	group	is	set	in	the	compute	shader.	In	GLSL,	this	is
done	using	a	layout	qualifier,	which	is	translated	to	the	LocalSize	decoration
on	the	OpExecutionMode	declaration	in	the	SPIR-V	shader	passed	to	Vulkan.
Listing	6.3	shows	the	size	declaration	applied	to	a	GLSL	shader,	and	Listing	6.4
shows	the	resulting	SPIR-V	disassembly,	truncated	for	clarity.

Listing	6.3:	Local	Size	Declaration	in	a	Compute	Shader	(GLSL)

Click	here	to	view	code	image

#version	450	core

layout	(local_size_x	=	4,	local_size_y	=	5,	local_size_z	6)	in;

void	main(void)

{

				//	Do	nothing.

}

Listing	6.4:	Local	Size	Declaration	in	a	Compute	Shader	(SPIR-V)

Click	here	to	view	code	image

...

															OpCapability	Shader

										%1	=	OpExtInstImport	"GLSL.std.450"

															OpMemoryModel	Logical	GLSL450

															OpEntryPoint	GLCompute	%4	"main"

															OpExecutionMode	%4	LocalSize	4	5	6

															OpSource	GLSL	450

...

As	you	can	see,	the	OpExecutionMode	instruction	in	Listing	6.4	sets	the
local	size	of	the	shader	to	{4,	5,	6}	as	specified	in	Listing	6.3.
The	maximum	local	work	group	size	for	a	compute	shader	is	generally	fairly
small	and	is	required	only	to	be	at	least	128	invocations	in	the	x	and	y
dimensions	and	64	invocations	in	the	z	dimension.	Further,	the	total	“volume”	of



the	work	group	(the	product	of	the	limit	in	x,	y,	and	z	directions)	is	subject	to	a
further	limit,	which	is	required	only	to	be	at	least	128	invocations.	Although
many	implementations	support	higher	limits,	you	should	always	query	those
limits	if	you	want	to	exceed	the	required	minimums.
The	maximum	size	of	a	work	group	can	be	determined	from	the
maxComputeWorkGroupSize	field	of	the	VkPhysicalDeviceLimits
structure	returned	from	a	call	to	vkGetPhysicalDeviceProperties(),
as	explained	in	Chapter	1,	“Overview	of	Vulkan.”	Further,	the	maximum	total
number	of	invocations	in	the	local	work	group	is	contained	in	the
maxComputeWorkGroupInvocations	field	of	the	same	structure.	An
implementation	will	likely	reject	a	SPIR-V	shader	that	exceeds	any	of	those
limits,	although	behavior	can	technically	be	undefined	in	this	case.

Creating	Pipelines
To	create	one	or	more	compute	pipelines,	call
vkCreateComputePipelines(),	the	prototype	of	which	is

Click	here	to	view	code	image

VkResult	vkCreateComputePipelines	(

				VkDevice																																device,

				VkPipelineCache																									pipelineCache,

				uint32_t																																createInfoCount,

				const	VkComputePipelineCreateInfo*						pCreateInfos,

				const	VkAllocationCallbacks*												pAllocator,

				VkPipeline*																													pPipelines);

The	device	parameter	to	vkCreateComputePipelines()	is	the	device
with	which	the	pipelines	will	be	used	and	is	responsible	for	allocating	the
pipeline	objects.	pipelineCache	is	a	handle	to	an	object	that	can	be	used	to
accelerate	the	creation	of	pipeline	objects	and	is	covered	later	in	this	chapter.
The	parameters	for	the	creation	of	each	new	pipeline	is	represented	by	an
instance	of	the	VkComputePipelineCreateInfo	structure.	The	number	of
structures	(and	therefore	the	number	of	pipelines	to	create)	is	passed	in
createInfoCount,	and	the	address	of	an	array	of	these	structures	is	passed
in	pCreateInfos.	The	definition	of	VkComputePipelineCreateInfo
is

Click	here	to	view	code	image

typedef	struct	VkComputePipelineCreateInfo	{

				VkStructureType																				sType;

				const	void*																								pNext;

				VkPipelineCreateFlags														flags;



				VkPipelineShaderStageCreateInfo				stage;

				VkPipelineLayout																			layout;

				VkPipeline																									basePipelineHandle;

				int32_t																												basePipelineIndex;

}	VkComputePipelineCreateInfo;

The	sType	field	of	VkComputePipelineCreateInfo	should	be	set	to
VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,	and
pNext	should	be	set	to	nullptr.	The	flags	field	is	reserved	for	future	use,
and	in	the	current	version	of	Vulkan,	it	should	be	set	to	zero.	The	stage	field	is
an	embedded	structure	containing	information	about	the	shader	itself	and	is	an
instance	of	the	VkPipelineShaderStageCreateInfo	structure,	the
definition	of	which	is

Click	here	to	view	code	image

typedef	struct	VkPipelineShaderStageCreateInfo	{

				VkStructureType																					sType;

				const	void*																									pNext;

				VkPipelineShaderStageCreateFlags				flags;

				VkShaderStageFlagBits															stage;

				VkShaderModule																						module;

				const	char*																									pName;

				const	VkSpecializationInfo*									pSpecializationInfo;

}	VkPipelineShaderStageCreateInfo;

The	sType	for	VkPipelineShaderStageCreateInfo	is
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
and	pNext	should	be	set	to	nullptr.	The	flags	field	is	reserved	in	the
current	version	of	Vulkan	and	should	be	set	to	zero.
The	VkPipelineShaderStageCreateInfo	structure	is	used	for	all
stages	of	pipeline	creation.	Although	graphics	pipelines	have	multiple	stages
(which	you’ll	learn	about	in	Chapter	7,	“Graphics	Pipelines”),	compute	pipelines
have	only	a	single	stage,	and	therefore	stage	should	be	set	to
VK_SHADER_STAGE_COMPUTE_BIT.
module	is	the	handle	to	the	shader	module	you	created	earlier;	it	contains	the
shader	code	for	the	compute	pipeline	you	want	to	create.	Because	a	single	shader
module	can	contain	multiple	entry	points	and	ultimately	many	shaders,	the	entry
point	that	represents	this	particular	pipeline	is	specified	in	the	pName	field	of
VkPipelineShaderStageCreateInfo.	This	is	one	of	the	few	instances
where	human-readable	strings	are	used	in	Vulkan.

Specialization	Constants



The	final	field	in	VkPipelineShaderStageCreateInfo	is	a	pointer	to
an	instance	of	the	VkSpecializationInfo	structure.	This	structure
contains	the	information	required	to	specialize	a	shader,	which	is	the	process	of
building	a	shader	with	some	of	its	constants	compiled	in.
A	typical	Vulkan	implementation	will	delay	final	code	generation	for	pipelines
until	vkCreateComputePipelines()	is	called.	This	allows	the	values	of
specialization	constants	to	be	considered	during	the	final	passes	of	optimization
over	the	shader.	Typical	uses	and	applications	of	specialization	constants	include

•	Producing	special	cases	through	branching:	Including	a	condition	on	a
Boolean	specialization	constant	will	result	in	the	final	shader	taking	only
one	branch	of	the	if	statement.	The	nontaken	branch	will	probably	be
optimized	away.	If	you	have	two	similar	versions	of	a	shader	that	differ	in
only	a	couple	of	places,	this	is	a	good	way	to	merge	them	into	one.
•	Special	cases	through	switch	statements:	Likewise,	using	an	integer
specialization	constant	as	the	tested	variable	in	a	switch	statement	will	result
in	only	one	of	the	cases	ever	being	taken	in	that	particular	pipeline.	Again,
most	Vulkan	implementations	will	optimize	out	all	the	never-taken	cases.
•	Unrolling	loops:	Using	an	integer	specialization	constant	as	the	iteration
count	in	a	for	loop	may	result	in	the	Vulkan	implementation	making	better
decisions	about	how	to	unroll	the	loop	or	whether	to	unroll	it	at	all.	For
example,	if	the	loop	counter	ends	up	with	a	value	of	1,	then	the	loop	goes
away	and	its	body	becomes	straight-line	code.	A	small	loop	iteration	count
might	result	in	the	compiler	unrolling	the	loop	exactly	that	number	of	times.
A	larger	iteration	count	may	result	in	the	compiler	unrolling	the	loop	by	a
factor	of	the	count	and	then	looping	over	that	unrolled	section	a	smaller
number	of	times.
•	Constant	folding:	Subexpressions	involving	specialization	constants	can	be
folded	just	as	with	any	other	constant.	In	particular,	expressions	involving
multiple	specialization	constants	may	fold	into	a	single	constant.
•	Operator	simplification:	Trivial	operations	such	as	adding	zero	or
multiplying	by	one	disappear,	multiplying	by	negative	one	can	be	absorbed
into	additions	turning	them	to	subtractions,	multiplying	by	small	integers
such	as	two	can	be	turned	into	additions	or	even	absorbed	into	other
operations,	and	so	on.

In	GLSL,	a	specialization	constant	is	declared	as	a	regular	constant	that	is	given
an	ID	in	a	layout	qualifier.	Specialization	constants	in	GLSL	can	be	Booleans,
integers,	floating-point	values,	or	composites	such	as	arrays,	structures,	vectors,



or	matrices.	When	translated	to	SPIR-V,	these	become	OpSpecConstant
tokens.	Listing	6.5	shows	an	example	GLSL	declaration	of	some	specialization
constants,	and	Listing	6.6	shows	the	resulting	SPIR-V	produced	by	the	GLSL
compiler.

Listing	6.5:	Specialization	Constants	in	GLSL

Click	here	to	view	code	image

layout	(constant_id	=	0)	const	int	numThings	=	42;

layout	(constant_id	=	1)	const	float	thingScale	=	4.2f;

layout	(constant_id	=	2)	const	bool	doThat	=	false;

Listing	6.6:	Specialization	Constants	in	SPIR-V

Click	here	to	view	code	image

...

																OpDecorate	%7	SpecId	0

																OpDecorate	%9	SpecId	1

																OpDecorate	%11	SpecId	2

											%6	=	OpTypeInt	32	1

											%7	=	OpSpecConstant	%6	42

											%8	=	OpTypeFloat	32

											%9	=	OpSpecConstant	%8	4.2

										%10	=	OpTypeBool

										%11	=	OpSpecConstantFalse	%10

...

Listing	6.6	has	been	edited	to	remove	portions	unrelated	to	the	specialization
constants.	As	you	can	see,	however,	%7	is	declared	as	a	specialization	constant
using	OpSpecConstant	of	type	%6	(a	32-bit	integer)	with	a	default	value	of
42.	Next,	%9	is	declared	as	a	specialization	constant	of	type	%8	(a	32-bit
floating-point	value)	with	a	default	value	of	4.2.	Finally,	%11	is	decalared	as	a
Boolean	value	(type	%10	in	this	SPIR-V)	with	a	default	value	of	false.	Note
that	Booleans	are	declared	with	either	OpSpecConstantTrue	or
OpSpecConstantFalse,	depending	on	whether	their	default	value	is	true	or
false,	respectively.
Note	that	in	both	the	GLSL	shader	and	the	resulting	SPIR-V	shader,	the
specialization	constants	are	assigned	default	values.	In	fact,	they	must	be
assigned	default	values.	These	constants	may	be	used	like	any	other	constant	in
the	shader.	In	particular,	they	can	be	used	for	things	like	sizing	arrays	where	only
compile-time	constants	are	otherwise	allowed.	If	new	values	are	not	included	in
the	VkSpecializationInfo	structure	passed	to



vkCreateComputePipelines(),	then	those	default	values	are	used.
However,	the	constants	can	be	overridden	by	passing	new	values	when	the
pipeline	is	created.	The	definition	of	VkSpecializationInfo	is

Click	here	to	view	code	image

typedef	struct	VkSpecializationInfo	{

				uint32_t																											mapEntryCount;

				const	VkSpecializationMapEntry*				pMapEntries;

				size_t																													dataSize;

				const	void*																								pData;

}	VkSpecializationInfo;

Inside	the	VkSpecializationInfo	structure,	mapEntryCount	contains
the	number	of	specialization	constants	that	are	to	be	set,	and	this	is	the	number
of	entries	in	the	array	of	VkSpecializationMapEntry	structures	in	the
array	pointed	to	by	pMapEntries.	Each	of	these	represents	a	single
specialization	constant.	The	definition	of	VkSpecializationMapEntry	is

Click	here	to	view	code	image

typedef	struct	VkSpecializationMapEntry	{

				uint32_t				constantID;

				uint32_t				offset;

				size_t						size;

}	VkSpecializationMapEntry;

The	constantID	field	is	the	ID	of	the	specialization	constant	and	is	used	to
match	the	constant	ID	used	in	the	shader	module.	This	is	set	using	the
constant_id	layout	qualifier	in	GLSL	and	the	SpecId	decoration	in	SPIR-
V.	The	offset	and	size	fields	are	the	offset	and	size	of	the	raw	data
containing	the	values	of	the	specicialization	constants.	The	raw	data	is	pointed	to
by	pData	field	of	the	VkSpecializationInfo	structure,	and	its	size	is
given	in	dataSize.	Vulkan	uses	the	data	in	this	blob	to	initialize	the
specialization	constants.	If	one	or	more	of	the	specialization	constants	in	the
shader	is	not	specified	in	the	specialization	info	when	the	pipeline	is	constructed,
its	default	value	is	used.
When	you	are	done	with	a	pipeline	and	no	longer	need	it,	you	should	destroy	it
in	order	to	free	any	resources	associated	with	it.	To	destroy	a	pipeline	object,	call
vkDestroyPipeline(),	the	prototype	of	which	is

Click	here	to	view	code	image

void	vkDestroyPipeline	(

				VkDevice																													device,

				VkPipeline																											pipeline,

				const	VkAllocationCallbacks*									pAllocator);



The	device	that	owns	the	pipeline	is	specified	in	device,	and	the	pipeline	to	be
destroyed	is	passed	in	pipeline.	If	a	host	memory	allocator	was	used	to	create
the	pipeline,	a	pointer	to	a	compatible	allocator	should	be	passed	in
pAllocator;	otherwise,	pAllocator	should	be	set	to	nullptr.
After	a	pipeline	has	been	destroyed,	it	should	not	be	used	again.	This	includes
any	references	to	it	from	command	buffers	that	may	not	yet	have	completed
execution.	It	is	the	application’s	responsibility	to	ensure	that	any	submitted
command	buffers	referencing	the	pipeline	have	completed	execution	and	that
any	command	buffers	into	which	the	pipeline	is	bound	are	not	submitted	after
the	pipeline	is	destroyed.

Accelerating	Pipeline	Creation
Creation	of	pipelines	is	possibly	one	of	the	most	expensive	operations	that	your
application	might	perform.	Although	SPIR-V	code	is	consumed	by
vkCreateShaderModule(),	it	is	not	until	you	call
vkCreateGraphicsPipelines()	or
vkCreateComputePipelines()	that	Vulkan	sees	all	of	the	shader	stages
and	other	state	associated	with	the	pipeline	that	might	affect	the	final	code	that
will	execute	on	the	device.	For	this	reason,	a	Vulkan	implementation	may	delay
the	majority	of	work	involved	in	creating	a	ready-to-run	pipeline	object	until	the
last	possible	moment.	This	includes	shader	compilation	and	code	generation,
which	are	typically	fairly	intensive	operations.
Because	an	application	that	runs	many	times	will	use	the	same	pipelines	over
and	over,	Vulkan	provides	a	mechanism	to	cache	the	results	of	pipeline	creation
across	runs	of	an	application.	This	allows	applications	that	build	all	of	their
pipelines	at	startup	to	start	more	quickly.	The	pipeline	cache	is	represented	as	an
object	that	is	created	by	calling

Click	here	to	view	code	image

VkResult	vkCreatePipelineCache	(

				VkDevice																														device,

				const	VkPipelineCacheCreateInfo*						pCreateInfo,

				const	VkAllocationCallbacks	*									pAllocator,

				VkPipelineCache*																						pPipelineCache);

The	device	that	will	be	used	to	create	the	pipeline	cache	is	specified	in	device.
The	remaining	parameters	for	the	creation	of	the	pipeline	cache	are	passed
through	a	pointer	to	an	instance	of	the	VkPipelineCacheCreateInfo
structure,	the	definition	of	which	is

Click	here	to	view	code	image



typedef	struct	VkPipelineCacheCreateInfo	{

				VkStructureType															sType;

				const	void	*																		pNext;

				VkPipelineCacheCreateFlags				flags;

				size_t																								initialDataSize;

				const	void	*																		pInitialData;

}	VkPipelineCacheCreateInfo;

The	sType	field	of	the	VkPipelineCacheCreateInfo	structure	should
be	set	to	VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO,	and
pNext	should	be	set	to	nullptr.	The	flags	field	is	reserved	for	future	use
and	should	be	set	to	zero.	If	existing	data	is	available	from	a	previous	run	of	the
application,	its	address	can	be	passed	through	pInitialData.	The	size	of	the
data	is	passed	in	initialDataSize.	If	no	initial	data	is	available,
initialDataSize	should	be	set	to	zero,	and	pInitialData	should	be	set
to	nullptr.
When	the	cache	is	created,	the	initial	data	(if	any)	is	used	to	prime	the	cache.	If
necessary,	Vulkan	makes	a	copy	of	the	data.	The	data	pointed	to	by
pInitialData	is	not	modified.	As	more	pipelines	are	created,	data	describing
them	may	be	added	to	the	cache,	growing	it	over	time.	To	retrieve	the	data	from
the	cache,	call	vkGetPipelineCacheData().	The	prototype	of
vkGetPipelineCacheData()	is

Click	here	to	view	code	image

VkResult	vkGetPipelineCacheData	(

				VkDevice																												device,

				VkPipelineCache																					pipelineCache,

				size_t*																													pDataSize,

				void*																															pData);

The	device	that	owns	the	pipeline	cache	should	be	specified	in	device,	and	the
handle	to	the	pipeline	cache	whose	data	is	being	queried	should	be	passed	in
pipelineCache.	If	pData	is	not	nullptr,	then	it	points	to	a	region	of
memory	that	will	receive	the	cache	data.	In	this	case,	the	initial	value	of	the
variable	pointed	to	by	pDataSize	is	the	size,	in	bytes,	of	this	region	of
memory.	That	variable	will	be	overwritten	with	the	amount	of	data	actually
written	into	memory.
If	pData	is	nullptr,	then	the	initial	value	of	the	variable	pointed	to	by
pDataSize	is	ignored,	and	the	variable	is	overwritten	with	the	size	of	the	data
required	to	store	the	cache.	In	order	to	store	the	entire	cache	data,	call
vkGetPipelineCacheData()	twice;	the	first	time,	call	it	with	pData	set
to	nullptr	and	pDataSize	pointing	to	a	variable	that	will	receive	the



required	size	of	the	cache	data.	Then	size	a	buffer	appropriately	to	store	the
resulting	cache	data	and	call	vkGetPipelineCacheData()	again,	this	time
passing	a	pointer	to	this	memory	region	in	pData.	Listing	6.7	illustrates	how	to
save	the	pipeline	data	to	a	file.

Listing	6.7:	Saving	Pipeline	Cache	Data	to	a	File

Click	here	to	view	code	image

VkResult	SaveCacheToFile(VkDevice	device,	VkPipelineCache	cache,

									const	char*	fileName)

{

				size_t	cacheDataSize;

				VkResult	result	=	VK_SUCCESS;

				//	Determine	the	size	of	the	cache	data.

				result	=	vkGetPipelineCacheData(device,

																																				cache,

																																				&cacheDataSize,

																																				nullptr);

				if	(result	==	VK_SUCCESS	&&	cacheDataSize	!=	0)

				{

								FILE*	pOutputFile;

								void*	pData;

								//	Allocate	a	temporary	store	for	the	cache	data.

								result	=	VK_ERROR_OUT_OF_HOST_MEMORY;

								pData	=	malloc(cacheDataSize);

								if	(pData	!=	nullptr)

								{

											//	Retrieve	the	actual	data	from	the	cache.

											result	=	vkGetPipelineCacheData(device,

																																											cache,

																																											&cacheDataSize,

																																											pData);

								if	(result	==	VK_SUCCESS)

								{

												//	Open	the	file	and	write	the	data	to	it.

												pOutputFile	=	fopen(fileName,	"wb");

												if	(pOutputFile	!=	nullptr)

												{

																fwrite(pData,	1,	cacheDataSize,	pOutputFile);

																fclose(pOutputFile);

												}

																free(pData);



												}

								}

				}

				return	result;

}

Once	you	have	received	the	pipeline	data,	you	can	store	it	to	disk	or	otherwise
archive	it	ready	for	a	future	run	of	your	application.	There	is	no	defined	structure
to	the	content	of	the	cache;	it	is	implementation-dependent.	However,	the	first
few	words	of	the	cache	data	always	form	a	header	that	can	be	used	to	verify	that
a	blob	of	data	is	a	valid	cache	and	which	device	created	it.
The	layout	of	the	cache	header	can	be	represented	as	the	following	C	structure:

Click	here	to	view	code	image

//	This	structure	does	not	exist	in	official	headers	but	is	included

here

//	for	illustration.

typedef	struct	VkPipelineCacheHeader	{

				uint32_t							length;

				uint32_t							version;

				uint32_t							vendorID;

				uint32_t							deviceID;

				uint8_t									uuid[16];

}	VkPipelineCacheHeader;

Although	the	members	of	the	structure	are	listed	as	uint32_t	typed	variables,
the	data	in	the	cache	is	not	formally	of	type	uint32_t.	Caches	are	always
stored	in	little-endian	byte	order,	regardless	of	the	byte	ordering	of	the	host.	This
means	that	if	you	want	to	interpret	this	structure	on	a	big-endian	host,	you	need
to	reverse	the	byte	order	of	the	uint32_t	fields.
The	length	field	is	the	size	of	the	header	structure,	in	bytes.	In	the	current
revision	of	the	specification,	this	length	should	be	32.	The	version	field	is	the
version	of	the	structure.	The	only	defined	version	is	1.	The	vendorID	and
deviceID	fields	should	match	the	vendorID	and	deviceID	fields	of	the
VkPhysicalDeviceProperties	structure	returned	from	a	call	to
vkGetPhysicalDeviceProperties().	The	uuid	field	is	an	opaque
string	of	bytes	that	uniquely	identifies	the	device.	If	there	is	a	mismatch	between
the	vendorID,	deviceID,	or	uuid	field	and	what	the	Vulkan	driver	expects,
it	may	reject	the	cache	data	and	reset	the	cache	to	empty.	A	driver	may	also
embed	checksum,	encryption,	or	other	data	inside	the	cache	to	ensure	that
invalid	cache	data	is	not	loaded	into	the	device.
If	you	have	two	cache	objects	and	wish	to	merge	them,	you	can	do	that	by



calling	vkMergePipelineCaches(),	the	prototype	of	which	is
Click	here	to	view	code	image

VkResult	vkMergePipelineCaches	(

				VkDevice																														device,

				VkPipelineCache																							dstCache,

				uint32_t																														srcCacheCount,

				const	VkPipelineCache*																pSrcCaches);

The	device	parameter	is	a	handle	to	the	device	that	owns	the	caches	that	are	to
be	merged.	dstCache	is	a	handle	to	the	destination	cache,	which	will	end	up	as
an	amalgamation	of	all	of	the	entries	from	all	source	caches.	The	number	of
caches	that	are	to	be	merged	is	specified	in	srcCacheCount,	and
pSrcCaches	is	a	pointer	to	an	array	of	VkPipelineCache	handles	to	the
caches	to	be	merged.
After	vkMergePipelineCaches()	has	executed,	dstCache	will	contain
all	of	the	cache	entries	from	all	of	the	source	caches	specified	in	pSrcCaches.
It	is	then	possible	to	call	vkGetPipelineCacheData()	on	the	destination
cache	to	retrieve	a	single,	large	cache	data	structure	representing	all	entries	from
all	of	the	caches.
This	is	particularly	useful,	for	example,	when	creating	pipelines	in	many	threads.
Although	access	to	the	pipeline	cache	is	thread-safe,	implementations	may
internally	take	locks	to	prevent	concurrent	write	access	to	multiple	caches.	If	you
instead	create	multiple	pipeline	caches—one	for	each	thread—and	use	them
during	initial	creation	of	your	pipelines,	any	per-cache	locks	taken	by	the
implementation	will	be	uncontested,	speeding	access	to	them.	Later,	when	all
pipelines	are	created,	you	can	merge	the	pipelines	in	order	to	save	their	data	in
one	large	resource.
When	you	are	done	creating	pipelines	and	no	longer	need	the	cache,	it’s
important	to	destroy	it,	because	it	could	be	quite	large.	To	destroy	a	pipeline
cache	object,	call	vkDestroyPipelineCache(),	the	prototype	of	which	is

Click	here	to	view	code	image

void	vkDestroyPipelineCache	(

				VkDevice																														device,

				VkPipelineCache																							pipelineCache,

				const	VkAllocationCallbacks*										pAllocator);

device	is	a	handle	to	the	device	that	owns	the	pipeline	cache,	and
pipelineCache	is	a	handle	to	the	pipeline	cache	object	that	is	to	be
destroyed.	After	the	pipeline	cache	has	been	destroyed,	it	should	not	be	used



again,	although	pipelines	created	using	the	cache	are	still	valid.	Also,	any	data
retrieved	from	the	cache	using	a	call	to	vkGetPipelineCacheData()	is
valid	and	can	be	used	to	construct	a	new	cache	that	should	result	in	matches	on
subsequent	pipeline	creation	requests.

Binding	Pipelines
Before	you	can	use	a	pipeline,	it	must	be	bound	into	the	a	command	buffer	that
will	execute	drawing	or	dispatching	commands.	When	such	a	command	is
executed,	the	current	pipeline	(and	all	the	shaders	in	it)	are	used	to	process	the
commands.	To	bind	a	pipeline	to	a	command	buffer,	call
vkCmdBindPipeline(),	the	prototype	of	which	is

Click	here	to	view	code	image

void	vkCmdBindPipeline	(

				VkCommandBuffer																						commandBuffer,

				VkPipelineBindPoint																		pipelineBindPoint,

				VkPipeline																											pipeline);

The	command	buffer	to	which	you	are	binding	the	pipeline	is	specified	in
commandBuffer,	and	the	pipeline	you	are	binding	is	specified	in	pipeline.
There	are	two	binding	points	for	pipelines	on	each	command	buffer:	the	graphics
and	compute	binding	points.	The	compute	bind	point	is	where	compute	pipelines
should	be	bound.	Graphics	pipelines	are	covered	in	the	next	chapter	and	should
be	bound	to	the	graphics	pipeline	bind	point.
To	bind	a	pipeline	to	the	compute	binding	point,	set	pipelineBindPoint	to
VK_PIPELINE_BIND_POINT_COMPUTE,	and	to	bind	the	pipeline	to	the
graphics	binding	point,	set	pipelineBindPoint	to
VK_PIPELINE_BIND_POINT_GRAPHICS.
The	current	pipeline	binding	for	each	of	compute	and	graphics	is	part	of	the	state
of	a	command	buffer.	When	a	new	command	buffer	is	begun,	this	state	is
undefined.	Therefore,	you	must	bind	a	pipeline	to	the	relevant	binding	point
before	invoking	any	work	that	would	use	a	pipeline.

Executing	Work
In	the	previous	section,	you	saw	how	to	construct	a	compute	pipeline	using
vkCreateComputePipelines()	and	bind	it	into	a	command	buffer.	Once
a	pipeline	is	bound,	you	can	use	it	to	execute	work.
Compute	shaders	running	as	part	of	a	compute	pipeline	execute	in	groups	called
local	work	groups.	These	groups	logically	execute	in	lockstep	and	are	of	a	fixed



size	specified	in	the	shader.	The	maximum	size	of	a	local	work	group	is	typically
small	but	must	be	at	least	128	invocations	×	128	invocations	×	64	invocations.
Further,	the	maximum	number	of	total	invocations	in	a	single	local	work	group
may	also	be	smaller	than	this	total	volume	and	is	required	only	to	be	128
invocations.
For	this	reason,	local	work	groups	are	started	in	larger	groups,	sometimes	called
the	global	work	group	or	dispatch	size.	Kicking	off	work	in	a	compute	shader	is
therefore	called	dispatching	work,	or	a	dispatch.	The	local	work	group	is
logically	a	3D	construct,	or	volume	of	invocations,	although	one	or	two	of	the
dimensions	can	be	a	single	invocation	in	size,	making	the	work	group	flat	in	that
direction.	Likewise,	these	local	work	groups	are	dispatched	together	in	three
dimensions,	even	if	one	or	more	of	those	dimensions	is	a	single	work	group
deep.
The	command	to	dispatch	a	global	work	group	using	a	compute	pipeline	is
vkCmdDispatch(),	the	prototype	of	which	is

Click	here	to	view	code	image

void	vkCmdDispatch	(

				VkCommandBuffer																					commandBuffer,

				uint32_t																											x,

				uint32_t																											y,

				uint32_t																											z);

The	command	buffer	that	will	execute	the	command	is	passed	in
commandBuffer.	The	number	of	local	work	groups	in	each	of	the	x,	y,	and	z
dimensions	is	passed	in	the	x,	y,	and	z	parameters,	respectively.	A	valid
compute	pipeline	must	be	bound	to	the	command	buffer	at	the
VK_PIPELINE_BIND_POINT_COMPUTE	binding	point.	When	the	command
is	executed	by	the	device,	a	global	work	group	of	x	×	y	×	z	local	work	groups
begins	executing	the	shader	contained	in	the	bound	pipeline.
It	is	perfectly	possible	to	have	a	local	work	group	that	has	a	different	effective
dimensionality	from	that	of	the	global	work	group.	For	example,	it’s	fine	to	have
a	32	×	32	×	1	dispatch	of	64	×	1	×	1	local	work	groups.
In	addition	to	being	able	to	specify	the	number	of	work	groups	in	the	dispatch
using	parameters	to	vkCmdDispatch(),	it’s	possible	to	perform	an	indirect
dispatch,	where	the	size	of	the	dispatch	in	work	groups	is	sourced	from	a	buffer
object.	This	allows	dispatch	sizes	to	be	computed	after	a	command	buffer	is	built
by	performing	an	indirect	dispatch	using	a	buffer	and	then	overwriting	the
contents	of	the	buffer	using	the	host.	The	content	of	the	buffer	can	even	be
updated	using	the	device	itself	to	provide	a	limited	means	for	the	device	to	feed



itself	work.
The	prototype	of	vkCmdDispatchIndirect()	is

Click	here	to	view	code	image

void	vkCmdDispatchIndirect	(

				VkCommandBuffer																							commandBuffer,

				VkBuffer																														buffer,

				VkDeviceSize																										offset);

Again,	the	command	buffer	that	will	contain	the	command	is	passed	in
commandBuffer.	Rather	than	passing	the	dispatch	size	as	in
vkCmdDispatch(),	the	number	of	workgroups	in	each	dimension	are
expected	to	be	stored	as	three	consecutive	uint32_t	variables	at	the	offset
specified	in	offset	(in	bytes)	in	the	buffer	object	specified	in	buffer.	The
parameters	in	the	buffer	essentially	represent	an	instance	of	the
VkDispatchIndirectCommand	structure,	the	definition	of	which	is

Click	here	to	view	code	image

typedef	struct	VkDispatchIndirectCommand	{

				uint32_t			x;

				uint32_t			y;

				uint32_t			z;

}	VkDispatchIndirectCommand;

Again,	the	contents	of	the	buffer	are	not	read	until	the
vkCmdDispatchIndirect()	command	is	reached	during	processing	of	the
command	buffer	by	the	device.
The	maximum	number	of	work	groups	in	each	dimension	supported	by	a	device
can	be	determined	by	inspecting	the	maxComputeWorkGroupCount	field	of
the	device’s	VkPhysicalDeviceLimits	structure	returned	from	a	call	to
vkGetPhysicalDeviceProperties(),	as	explained	in	Chapter	1,
“Overview	of	Vulkan.”	Exceeding	those	limits	in	a	call	to	vkCmdDispatch()
or	placing	values	outside	those	limits	in	the	buffer	referenced	by
vkCmdDispatchIndirect()	will	result	in	undefined	(probably	bad)
behavior.

Resource	Access	in	Shaders
The	shaders	in	your	program	consume	and	produce	data	in	one	of	two	ways.	The
first	is	through	interaction	with	fixed	function	hardware,	and	the	second	is	by
directly	reading	and	writing	resources.	You	saw	in	Chapter	2,	“Memory	and
Resources,”	how	to	create	buffers	and	images.	In	this	section,	we	introduce



descriptor	sets,	which	are	representations	of	the	set	of	resources	that	shaders	can
interact	with.

Descriptor	Sets
A	descriptor	set	is	a	set	of	resources	that	are	bound	into	the	pipeline	as	a	group.
Multiple	sets	can	be	bound	to	a	pipeline	at	a	time.	Each	set	has	a	layout,	which
describes	the	order	and	types	of	resources	in	the	set.	Two	sets	with	the	same
layout	are	considered	to	be	compatible	and	interchangeable.	The	descriptor	set
layout	is	represented	by	an	object,	and	sets	are	created	with	respect	to	this	object.
Further,	the	set	of	sets	that	are	accessible	to	a	pipeline	are	grouped	into	another
object:	the	pipeline	layout.	Pipelines	are	created	with	respect	to	this	pipeline
layout	object.
The	relationship	between	the	descriptor	set	layout	and	the	pipeline	layout	is
illustrated	in	Figure	6.1.	As	you	can	see	in	the	figure,	two	descriptor	sets	are
defined,	the	first	having	a	texture,	a	sampler,	and	two	buffers.	The	second	set
contains	four	textures,	two	samplers,	and	three	buffers.	These	descriptor	sets’
layouts	are	aggregated	into	a	single	pipeline	layout.	A	pipeline	can	then	be
created	with	respect	to	the	pipeline	layout,	while	descriptor	sets	are	created	with
respect	to	descriptor	set	layouts.	Those	descriptor	sets	can	be	bound	into
command	buffers	along	with	compatible	pipelines	to	allow	those	pipelines	to
access	the	resources	in	them.



Figure	6.1:	Descriptor	Sets	and	Pipeline	Sets

At	any	time,	the	application	can	bind	a	new	descriptor	set	to	the	command	buffer
in	any	point	that	has	an	identical	layout.	The	same	descriptor	set	layouts	can	be
used	to	create	multiple	pipelines.	Therefore,	if	you	have	a	set	of	objects	that
share	a	common	set	of	resources,	but	additionally	each	require	some	unique
resources,	you	can	leave	the	common	set	bound	and	replace	the	unique	resources
as	your	application	moves	through	the	objects	that	need	to	be	rendered.
To	create	a	descriptor	set	layout	object,	call
vkCreateDescriptorSetLayout(),	the	prototype	of	which	is

Click	here	to	view	code	image

VkResult	vkCreateDescriptorSetLayout	(

				VkDevice																															device,

				const	VkDescriptorSetLayoutCreateInfo*	pCreateInfo,

				const	VkAllocationCallbacks*											pAllocator,

VkDescriptorSetLayout*																					pSetLayout);

As	usual,	the	information	required	to	construct	the	descriptor	set	layout	object	is
passed	through	a	pointer	to	a	structure.	This	is	an	instance	of	the
VkDescriptorSetLayoutCreateInfo	structure,	the	definition	of	which



is
Click	here	to	view	code	image

typedef	struct	VkDescriptorSetLayoutCreateInfo	{

				VkStructureType																								sType;

				const	void*																												pNext;

				VkDescriptorSetLayoutCreateFlags							flags;

				uint32_t																															bindingCount;

				const	VkDescriptorSetLayoutBinding*				pBindings;

}	VkDescriptorSetLayoutCreateInfo;

The	sType	field	of	VkDescriptorSetLayoutCreateInfo	should	be	set
to	VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
and	pNext	should	be	set	to	nullptr.	flags	is	reserved	for	future	use	and
should	be	set	to	zero.
Resources	are	bound	to	binding	points	in	the	descriptor	set.	The
bindingCount	and	pBindings	members	of
VkDescriptorSetLayoutCreateInfo	contain	the	number	of	binding
points	that	the	set	will	contain	and	a	pointer	to	an	array	containing	their
descriptions,	respectively.	Each	binding	is	described	by	an	instance	of	the
VkDescriptorSetLayoutBinding	structure,	the	definition	of	which	is

Click	here	to	view	code	image

typedef	struct	VkDescriptorSetLayoutBinding	{

				uint32_t														binding;

				VkDescriptorType						descriptorType;

				uint32_t														descriptorCount;

				VkShaderStageFlags				stageFlags;

				const	VkSampler*						pImmutableSamplers;

}	VkDescriptorSetLayoutBinding;

Each	resource	accessible	to	a	shader	is	given	a	binding	number.	This	binding
number	is	stored	in	the	binding	field	of
VkDescriptorSetLayoutBinding.	The	bindings	used	in	a	descriptor	set
do	not	need	to	be	contiguous,	and	there	can	be	gaps	(unused	binding	numbers)	in
a	set.	However,	it’s	recommended	that	you	don’t	create	sparsely	populated	sets
because	this	can	waste	resources	in	the	device.
The	type	of	descriptor	at	this	binding	point	is	stored	in	descriptorType.
This	a	member	of	the	VkDescriptorType	enumeration.	We’ll	discuss	the
various	resource	types	a	little	later,	but	they	include

•	VK_DESCRIPTOR_TYPE_SAMPLER:	A	sampler	is	an	object	that	can	be
used	to	perform	operations	such	as	filtering	and	sample	coordinate
transformations	when	reading	data	from	an	image.



•	VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:	A	sampled	image	is	an
image	that	can	be	used	in	conjunction	with	a	sampler	to	provide	filtered	data
to	a	shader.
•	VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:	A	combined
image-sampler	object	is	a	sampler	and	an	image	paired	together.	The	same
sampler	is	always	used	to	sample	from	the	image,	which	can	be	more
efficient	on	some	architectures.
•	VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:	A	storage	image	is	an
image	that	cannot	be	used	with	a	sampler	but	can	be	written	to.	This	is	in
contrast	to	a	sampled	image,	which	cannot	be	written	to.
•	VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:	A	uniform	texel
buffer	is	a	buffer	that	is	filled	with	homogeneous	formatted	data	that	cannot
be	written	by	shaders.	Knowing	that	buffer	content	is	constant	may	allow
some	Vulkan	implementations	to	optimize	access	to	the	buffer	better.
•	VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:	A	storage	texel
buffer	is	a	buffer	that	contains	formatted	data	much	like	a	uniform	texel
buffer,	but	a	storage	buffer	can	be	written	to.
•	VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER	and
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:	These	are	similar	to
VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER	and
VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER,	except	that	the
data	is	unformatted	and	described	by	structures	declared	in	the	shader.
•	VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC	and
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:	These	are
similar	to	VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER	and
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,	but	include	an	offset	and
size	that	are	passed	when	the	descriptor	set	is	bound	to	the	pipeline	rather
than	when	the	descriptor	is	bound	into	the	set.	This	allows	a	single	buffer	in
a	single	set	to	be	updated	at	high	frequency.
•	VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:	An	input	attachment	is
a	special	type	of	image	whose	content	is	generated	by	earlier	operations	on
the	same	image	in	a	graphics	pipeline.

Listing	6.8	illustrates	how	a	selection	of	resources	is	declared	inside	a	GLSL
shader.

Listing	6.8	:	Declaring	Resources	in	GLSL



Click	here	to	view	code	image

#version	450	core

layout	(set	=	0,	binding	=	0)	uniform	sampler2DmyTexture;

layout	(set	=	0,	binding	=	2)	uniform	sampler3DmyLut;

layout	(set	=	1,	binding	=	0)	uniform	myTransforms

{

				mat4	transform1;

				mat3	transform2;

};

void	main(void)

{

				//	Do	nothing!

}

Listing	6.9	shows	a	condensed	form	of	what	the	shader	in	Listing	6.8	translates
to	when	compiled	with	the	GLSL	compiler.

Listing	6.9:	Declaring	Resources	in	SPIR-V

Click	here	to	view	code	image

;	SPIR-V

;	Version:	1.0

;	Generator:	Khronos	Glslang	Reference	Front	End;	1

;	Bound:	22

;	Schema:	0

															OpCapability	Shader

										%1	=	OpExtInstImport	"GLSL.std.450"

															OpMemoryModel	Logical	GLSL450

															OpEntryPoint	GLCompute	%4	"main"

															OpExecutionMode	%4	LocalSize	1	1	1

															OpSource	GLSL	450

															OpName	%4	"main"

															OpName	%10	"myTexture"

															OpName	%14	"myLut"

															OpName	%19	"myTransforms"

															OpMemberName	%19	0	"transform1"

															OpMemberName	%19	1	"transform2"

															OpName	%21	""

															OpDecorate	%10	DescriptorSet	0

															OpDecorate	%10	Binding	0

															OpDecorate	%14	DescriptorSet	0

															OpDecorate	%14	Binding	2

															OpMemberDecorate	%19	0	ColMajor

															OpMemberDecorate	%19	0	Offset	0

															OpMemberDecorate	%19	0	MatrixStride	16

															OpMemberDecorate	%19	1	ColMajor

															OpMemberDecorate	%19	1	Offset	64

															OpMemberDecorate	%19	1	MatrixStride	16



															OpDecorate	%19	Block

															OpDecorate	%21	DescriptorSet	1

															OpDecorate	%21	Binding	0

										%2	=	OpTypeVoid

										%3	=	OpTypeFunction	%2

										%6	=	OpTypeFloat	32

										%7	=	OpTypeImage	%6	2D	0	0	0	1	Unknown

										%8	=	OpTypeSampledImage	%7

										%9	=	OpTypePointer	UniformConstant	%8

									%10	=	OpVariable	%9	UniformConstant

									%11	=	OpTypeImage	%6	3D	0	0	0	1	Unknown

									%12	=	OpTypeSampledImage	%11

									%13	=	OpTypePointer	UniformConstant	%12

									%14	=	OpVariable	%13	UniformConstant

									%15	=	OpTypeVector	%6	4

									%16	=	OpTypeMatrix	%15	4

									%17	=	OpTypeVector	%6	3

									%18	=	OpTypeMatrix	%17	3

									%19	=	OpTypeStruct	%16	%18

									%20	=	OpTypePointer	Uniform	%19

									%21	=	OpVariable	%20	Uniform

										%4	=	OpFunction	%2	None	%3

										%5	=	OpLabel

															OpReturn

															OpFunctionEnd

Multiple	descriptor	set	layouts	can	be	used	in	a	single	pipeline.	As	you	can	see	in
Listings	6.8	and	6.9,	the	resources	are	placed	in	two	sets,	the	first	containing
"myTexture"	and	"myLut"	(both	samplers)	and	the	second	containing
"myTransforms"	(a	uniform	buffer).	To	group	two	or	more	descriptor	sets
into	something	the	pipeline	can	use,	we	need	to	aggregate	them	into	a
VkPipelineLayout	object.	To	do	this,	call
vkCreatePipelineLayout(),	the	prototype	of	which	is

Click	here	to	view	code	image

VkResult	vkCreatePipelineLayout	(

				VkDevice																													device,

				const	VkPipelineLayoutCreateInfo*				pCreateInfo,

				const	VkAllocationCallbacks*									pAllocator,

				VkPipelineLayout*																				pPipelineLayout);

This	function	uses	the	device	specified	in	device	to	create	a	new
VkPipelineLayout	object	using	the	information	in	a
VkPipelineLayoutCreateInfo	structure	passed	by	address	in
pCreateInfo.	The	definition	of	VkPipelineLayoutCreateInfo	is

Click	here	to	view	code	image

typedef	struct	VkPipelineLayoutCreateInfo	{



				VkStructureType																	sType;

				const	void*																					pNext;

				VkPipelineLayoutCreateFlags					flags;

				uint32_t																								setLayoutCount;

				const	VkDescriptorSetLayout*				pSetLayouts;

				uint32_t																								pushConstantRangeCount;

				const	VkPushConstantRange*						pPushConstantRanges;

}	VkPipelineLayoutCreateInfo;

The	sType	field	for	VkPipelineLayoutCreateInfo	should	be	set	to
VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,	and	pNext
should	be	set	to	nullptr.	The	flags	field	is	reserved	in	the	current	version	of
Vulkan	and	should	be	set	to	zero.
The	number	of	descriptor	set	layouts	(which	is	the	same	as	the	number	of	sets	in
the	pipeline	layout)	is	given	in	setLayoutCount,	and	pSetLayouts	is	a
pointer	to	an	array	of	VkDescriptorSetLayout	handles	created	previously
with	calls	to	vkCreateDescriptorSetLayout().	The	maximum	number
of	descriptor	sets	that	can	be	bound	at	once	(and	therefore	the	maximum	number
of	set	layouts	in	a	pipeline	layout)	is	at	least	4.	Some	implementations	may
support	a	higher	limit	than	this.	You	can	determine	the	absolute	maximum
number	of	layouts	supported	by	inspecting	the	maxBoundDescriptorSets
member	of	the	device’s	VkPhysicalDeviceLimits	structure,	which	you
can	retrieve	by	calling	vkGetPhysicalDeviceProperties().
The	final	two	parameters,	pushConstantRangeCount	and
pPushConstantRanges,	are	used	to	describe	the	push	constants	used	in	the
pipeline.	Push	constants	are	a	special	class	of	resource	that	can	be	used	directly
as	constants	in	a	shader.	It	is	extremely	fast	to	update	the	values	of	push
constants,	requiring	no	synchronization.	We	discuss	push	constants	later	in	this
chapter.
When	the	VkDescriptorSetLayout	object	is	created,	the	resources	used
by	all	of	the	sets	within	the	pipeline	layout	are	aggregated	and	must	fall	within	a
device-dependent	limit.	Effectively,	there	is	an	upper	bound	on	the	number	and
type	of	resources	that	can	be	accessed	by	a	single	pipeline.
Further,	some	devices	may	not	support	accessing	all	of	the	pipeline’s	resources
from	every	shader	stage	simultaneously	and	therefore	have	a	per-stage	upper
limit	on	the	number	of	resources	accessible	from	each	stage.
Each	of	the	limits	can	be	checked	by	retrieving	the	device’s
VkPhysicalDeviceLimits	structure	through	a	call	to
vkGetPhysicalDeviceProperties()	and	checking	the	relevant



members.	The	members	of	VkPhysicalDeviceLimits	associated	with
pipeline	layout	maximums	are	shown	in	Table	6.1.





Table	6.1:	Pipeline	Resource	Limits

If	your	shaders	or	the	resulting	pipeline	need	to	use	more	resources	than	are
guaranteed	to	be	supported	as	shown	in	Table	6.1,	then	you	need	to	check	the
resource	limits	and	be	prepared	to	fail	gracefully	if	you	exceed	them.	However,
if	your	resource	requirements	fit	comfortably	inside	this	range,	there’s	no	reason
to	query	any	of	it	directly	as	Vulkan	guarantees	at	least	this	level	of	support.
Two	pipelines	can	be	used	with	the	same	set	of	descriptor	sets	if	their	pipeline
layouts	are	considered	to	be	compatible.	For	two	pipeline	layouts	to	be
compatible	for	descriptor	sets,	they	must

•	Use	the	same	number	of	push	constant	ranges
•	Use	the	same	descriptor	set	layouts	(or	identical	layouts)	in	the	same	order

Two	pipeline	layouts	are	also	considered	to	be	partially	compatible	if	they	use
the	same	(or	identically	defined)	set	layouts	for	the	first	few	sets	and	then	differ
after	that.	In	that	case,	the	pipelines	are	compatible	up	to	the	point	where	the
descriptor	set	layouts	change.
When	a	pipeline	is	bound	to	a	command	buffer,	it	can	continue	to	use	any	bound
descriptor	sets	that	are	compatible	with	the	set	bindings	in	the	pipeline	layout.
Thus,	switching	between	two	(partially)	compatible	pipelines	doesn’t	require	re-
binding	any	sets	up	to	the	point	where	the	pipelines	share	layouts.	If	you	have	a
set	of	resources	that	you	want	to	be	globally	available,	such	as	a	uniform	block
containing	some	per-frame	constants,	or	a	set	of	textures	that	you	want	to	be
available	to	every	shader,	put	those	in	the	first	set(s).	Resources	that	might
change	at	higher	frequency	can	be	placed	in	higher-numbered	sets.
Listing	6.10	shows	the	application-side	code	to	create	the	descriptor	set	layouts
and	pipeline	layout	describing	the	sets	referenced	in	Listings	6.8	and	6.9.

Listing	6.10:	Creating	a	Pipeline	Layout

Click	here	to	view	code	image

//	This	describes	our	combined	image-samplers.	One	set,	two	disjoint

bindings.

static	const	VkDescriptorSetLayoutBinding	Samplers[]	=

{

				{

								0,																																										//	Start	from

binding	0

								VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,		//	Combined

image-sampler

								1,																																										//	Create	one



binding

								VK_SHADER_STAGE_ALL,																								//	Usable	in	all

stages

								nullptr																																					//	No	static

samplers

				},

				{

								2,																																										//	Start	from

binding	2

								VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,		//	Combined

image-sampler

								1,																																										//	Create	one

binding

								VK_SHADER_STAGE_ALL,																								//	Usable	in	all

stages

								nullptr																																					//	No	static

samplers

				}

};

//	This	is	our	uniform	block.	One	set,	one	binding.

static	const	VkDescriptorSetLayoutBinding	UniformBlock	=

{

				0,																																														//	Start	from

binding	0

				VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,														//	Uniform	block

				1,																																														//	One	binding

				VK_SHADER_STAGE_ALL,																												//	All	stages

				nullptr																																									//	No	static

samplers

};

//	Now	create	the	two	descriptor	set	layouts.

static	const	VkDescriptorSetLayoutCreateInfo	createInfoSamplers	=

{

				VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,

				nullptr,

				0,

				2,

				&Samplers[0]

};

static	const	VkDescriptorSetLayoutCreateInfo	createInfoUniforms	=

{

				VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,

				nullptr,

				0,

				1,

				&UniformBlock

};

//	This	array	holds	the	two	set	layouts.

VkDescriptorSetLayout	setLayouts[2];

vkCreateDescriptorSetLayout(device,	&createInfoSamplers,



																												nullptr,	&setLaouts[0]);

vkCreateDescriptorSetLayout(device,	&createInfoUniforms,

																												nullptr,	&setLayouts[1]);

//	Now	create	the	pipeline	layout.

const	VkPipelineLayoutCreateInfo	pipelineLayoutCreateInfo	=

{

				VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,	nullptr,

				0,

				2,	setLayouts,

				0,	nullptr

};

VkPipelineLayout	pipelineLayout;

vkCreatePipelineLayout(device,	&pipelineLayoutCreateInfo,

																							nullptr,	pipelineLayout);

The	pipeline	layout	we	create	in	Listing	6.10	matches	the	layout	expected	by	the
shader	code	in	Listings	6.9	and	6.10.	When	we	create	a	compute	pipeline	using
that	shader,	we	pass	the	pipeline	layout	object	created	in	Listing	6.10	as	the
layout	field	of	the	VkComputePipelineCreateInfo	structure	passed	to
vkCreateComputePipelines().
When	the	pipeline	layout	is	no	longer	needed,	it	should	be	destroyed	by	calling
vkDestroyPipelineLayout().	This	frees	any	resources	associated	with
the	pipeline	layout	object.	The	prototype	of
vkDestroyPipelineLayout()	is

Click	here	to	view	code	image

void	vkDestroyPipelineLayout	(

				VkDevice																										device,

				VkPipelineLayout																		pipelineLayout,

				const	VkAllocationCallbacks*						pAllocator);

After	the	pipeline	layout	object	is	destroyed,	it	should	not	be	used	again.
However,	any	pipelines	created	using	the	pipeline	layout	object	remain	valid
until	they	are	destroyed.	It	is	therefore	not	necessary	to	keep	pipeline	layout
objects	around	in	order	to	use	the	pipelines	created	using	them.
To	destroy	a	descriptor	set	layout	object	and	free	its	resources,	call

Click	here	to	view	code	image

void	vkDestroyDescriptorSetLayout	(

				VkDevice																														device,

				VkDescriptorSetLayout																	descriptorSetLayout,

				const	VkAllocationCallbacks*										pAllocator);



The	device	that	owns	the	descriptor	set	layout	should	be	passed	in	device,	and
the	handle	to	the	descriptor	set	layout	is	passed	in	descriptorSetLayout.
pAllocator	should	point	to	a	host	memory	allocation	structure	that	is
compatible	with	the	one	used	to	create	the	descriptor	set	layout	or	should	be
nullptr	if	the	pAllocator	parameter	to
vkCreateDescriptorSetLayout()	was	also	nullptr.
After	a	descriptor	set	layout	is	destroyed,	its	handle	is	no	longer	valid,	and	it
should	not	be	used	again.	However,	descriptor	sets,	pipeline	layouts,	and	other
objects	created	by	referencing	the	set	remain	valid.

Binding	Resources	to	Descriptor	Sets
Resources	are	represented	by	descriptors	and	are	bound	to	the	pipeline	by	first
binding	their	descriptors	into	sets	and	then	binding	those	descriptor	sets	to	the
pipeline.	This	allows	a	large	number	of	resources	to	be	bound	with	very	little
processing	time	because	the	exact	set	of	resources	used	by	a	particular	drawing
command	can	be	determined	in	advance	and	the	descriptor	set	holding	them
created	up	front.
The	descriptors	are	allocated	from	pools	called	descriptor	pools.	Because
descriptors	for	different	types	of	resources	are	likely	to	have	similar	data
structures	on	any	given	implementation,	pooling	the	allocations	used	to	store
descriptors	allows	drivers	to	make	efficient	use	of	memory.	To	create	a
descriptor	pool,	call	vkCreateDescriptorPool(),	the	prototype	of	which
is

Click	here	to	view	code	image

VkResult	vkCreateDescriptorPool	(

				VkDevice																																device,

				const	VkDescriptorPoolCreateInfo*							pCreateInfo,

				const	VkAllocationCallbacks*												pAllocator,

				VkDescriptorPool*																							pDescriptorPool);

The	device	that	is	to	be	used	to	create	the	descriptor	pool	is	specified	in
device,	and	the	remaining	parameters	describing	the	new	pool	are	passed
through	a	pointer	to	an	instance	of	the	VkDescriptorPoolCreateInfo
structure	in	pCreateInfo.	The	definition	of
VkDescriptorPoolCreateInfo	is

Click	here	to	view	code	image

typedef	struct	VkDescriptorPoolCreateInfo	{

				VkStructureType																sType;

				const	void*																				pNext;



				VkDescriptorPoolCreateFlags				flags;

				uint32_t																							maxSets;

				uint32_t																							poolSizeCount;

				const	VkDescriptorPoolSize*				pPoolSizes;

}	VkDescriptorPoolCreateInfo;

The	sType	field	of	VkDescriptorPoolCreateInfo	should	be	set	to
VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO,	and	the
pNext	field	should	be	set	to	nullptr.	The	flags	field	is	used	to	pass
additional	information	about	the	allocation	strategy	that	should	be	used	to
manage	the	resources	consumed	by	the	pool.	The	only	defined	flag	is
VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT,
which,	if	set,	indicates	that	the	application	may	free	individual	descriptors
allocated	from	the	pool,	so	the	allocator	should	be	prepared	for	that.	If	you	don’t
intend	to	return	individual	descriptors	to	the	pool,	simply	set	flags	to	zero.
The	maxSets	field	specifies	the	maximum	total	number	of	sets	that	may	be
allocated	from	the	pool.	Note	that	this	is	the	total	number	of	sets,	regardless	of
the	size	of	each	set	or	the	overall	size	of	the	pool.	The	next	two	fields,
poolSizeCount	and	pPoolSize,	specify	the	number	of	resource
descriptors	for	each	type	of	resoruce	that	might	be	stored	in	the	set.
pPoolSize	is	a	pointer	to	an	array	of	poolSizeCount	instances	of	the
VkDescriptorPoolSize	structure,	each	one	specifying	the	number	of
descriptors	of	a	particular	type	that	may	be	allocated	from	the	pool.	The
definition	of	VkDescriptorPoolSize	is

Click	here	to	view	code	image

typedef	struct	VkDescriptorPoolSize	{

				VkDescriptorType				type;

				uint32_t												descriptorCount;

}	VkDescriptorPoolSize;

The	first	field	of	VkDescriptorPoolSize,	type,	specifies	the	type	of
resource,	and	the	second	field,	descriptorCount,	specifies	the	number	of
descriptors	of	that	type	to	be	stored	in	the	pool.	type	is	a	member	of	the
VkDescriptorType	enumeration.	If	no	element	of	the	pPoolSize	array
specifies	a	particular	type	of	resource,	then	no	descriptors	of	that	type	can	be
allocated	from	the	resulting	pool.	If	a	particular	type	of	resource	appears	twice	in
the	array,	then	the	sum	of	all	of	their	descriptorCount	fields	is	used	to	size
the	pool	for	that	type	of	resource.	The	total	number	of	resources	in	the	pool	is
divided	among	the	sets	allocated	from	the	pool.
If	creation	of	the	pool	is	successful,	then	a	handle	to	the	new



VkDescriptorPool	object	is	written	into	the	variable	pointed	to	by
pDescriptorPool.	To	allocate	blocks	of	descriptors	from	the	pool,	we	create
new	descriptor	set	objects	by	calling	vkAllocateDescriptorSets(),	the
declaration	of	which	is

Click	here	to	view	code	image

VkResult	vkAllocateDescriptorSets	(

				VkDevice																														device,

				const	VkDescriptorSetAllocateInfo*				pAllocateInfo,

				VkDescriptorSet*																						pDescriptorSets);

The	device	that	owns	the	descriptor	pool	from	which	the	sets	are	to	be	allocated
is	passed	in	device.	The	remaining	information	describing	the	sets	to	be
allocated	is	passed	via	a	pointer	to	an	instance	of	the
VkDescriptorSetAllocateInfo	structure	in	pDescriptorSets.	The
definition	of	VkDescriptorSetAllocateInfo	is

Click	here	to	view	code	image

typedef	struct	VkDescriptorSetAllocateInfo	{

				VkStructureType																	sType;

				const	void*																					pNext;

				VkDescriptorPool																descriptorPool;

				uint32_t																								descriptorSetCount;

				const	VkDescriptorSetLayout*				pSetLayouts;

}	VkDescriptorSetAllocateInfo;

The	sType	field	of	the	VkDescriptorSetAllocateInfo	structure
should	be	set	to
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,	and	the
pNext	field	should	be	set	to	nullptr.	A	handle	to	the	descriptor	pool	from
which	to	allocate	the	sets	is	specified	in	descriptorPool,	which	should	be	a
handle	of	a	descriptor	set	created	by	a	call	to
vkCreateDescriptorPool().	Access	to	descriptorPool	should	be
externally	synchronized.	The	number	of	sets	to	create	is	specified	in
descriptorSetCount.	The	layout	of	each	set	is	then	passed	through	an
array	of	VkDescriptorSetLayout	object	handles	in	pSetLayouts.
When	successful,	vkAllocateDescriptorSets()	consumes	sets	and
descriptors	from	the	specified	pool	and	deposits	the	new	descriptor	set	handles	in
the	array	pointed	to	by	pDescriptorSets.	The	number	of	descriptors
consumed	from	the	pool	for	each	descriptor	set	is	determined	from	the	descriptor
set	layouts	passed	through	pSetLayouts,	the	creation	of	which	we	described
earlier.



If	the	descriptor	pool	was	created	with	the	flags	member	of	the
VkDescriptorSetCreateInfo	structure	containing
VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT,	then
descriptor	sets	may	be	returned	to	the	pool	by	freeing	them.	To	free	one	or	more
descriptor	sets,	call	vkFreeDescriptorSets(),	the	prototype	of	which	is

Click	here	to	view	code	image

VkResult	vkFreeDescriptorSets	(

				VkDevice																														device,

				VkDescriptorPool																						descriptorPool,

				uint32_t																														descriptorSetCount,

				const	VkDescriptorSet*																pDescriptorSets);

The	device	that	owns	the	descriptor	pool	is	specified	in	device,	and	the	pool	to
which	the	descriptor	sets	should	be	returned	is	specified	in	descriptorPool.
Access	to	descriptorPool	must	be	externally	synchronized.	The	number	of
descriptor	sets	to	free	is	passed	in	descriptorSetCount,	and
pDescriptorSets	points	to	an	array	of	VkDescriptorSet	handles	to	the
objects	to	free.	When	the	descriptor	sets	are	freed,	their	resources	are	returned	to
the	pool	from	which	they	came	and	may	be	allocated	to	a	new	set	in	the	future.
Even	if
VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT	was
not	specified	when	a	descriptor	pool	was	created,	it’s	still	possible	to	recycle	all
the	resources	from	all	sets	allocated	from	the	pool.	This	is	accomplished	by
resetting	the	pool	itself	by	calling	vkResetDescriptorPool().	With	this
command,	it’s	not	necessary	to	explicitly	specify	every	set	allocated	from	the
pool.	The	prototype	of	vkResetDescriptorPool()	is

Click	here	to	view	code	image

VkResult	vkResetDescriptorPool	(

				VkDevice																														device,

				VkDescriptorPool																						descriptorPool,

				VkDescriptorPoolResetFlags												flags);

device	is	a	handle	to	the	device	that	owns	the	descriptor	pool,	and
descriptorPool	is	a	handle	to	the	descriptor	pool	being	reset.	Access	to	the
descriptor	pool	must	be	externally	synchronized.	flags	is	reserved	for	future
use	and	should	be	set	to	zero.
Regardless	of	whether	sets	are	individually	freed	by	calling
vkFreeDescriptorSets()	or	freed	in	bulk	by	calling
vkResetDescriptorPool(),	care	must	be	taken	to	ensure	that	sets	are	not



referenced	after	they	have	been	freed.	In	particular,	any	command	buffer
containing	commands	that	might	reference	descriptor	sets	that	are	to	be	freed
should	either	have	completed	execution	or	should	be	discarded	without
submission.
To	completely	free	the	resources	associated	with	a	descriptor	pool,	you	should
destroy	the	pool	object	by	calling	vkDestroyDescriptorPool(),	the
prototype	of	which	is

Click	here	to	view	code	image

void	vkDestroyDescriptorPool(

				VkDevice																														device,

				VkDescriptorPool																						descriptorPool,

				const	VkAllocationCallbacks*										pAllocator);

A	handle	to	the	device	that	owns	the	pool	should	be	passed	in	device,	and	the
handle	to	the	pool	to	destroy	is	passed	in	descriptorPool.	pAllocator
should	point	to	a	host	memory	allocation	structure	that	is	compatible	with	the
one	used	to	create	the	pool	or	should	be	nullptr	if	the	pAllocator
parameter	to	vkCreateDescriptorPool()	was	also	nullptr.
When	the	descriptor	pool	is	destroyed,	all	of	its	resources	are	freed,	including
any	sets	allocated	from	it.	There	is	no	need	to	explicitly	free	the	descriptor	sets
allocated	from	the	pool	before	destroying	it	or	to	reset	the	pool	with	a	call	to
vkResetDescriptorPool().	However,	just	as	when	descriptor	sets	are
freed	explicitly,	you	must	make	sure	that	your	application	does	not	access	sets
allocated	from	a	pool	after	that	pool	has	been	destroyed.	This	includes	any	work
performed	by	the	device	during	execution	of	command	buffers	submitted	but	not
yet	completed.
To	bind	resources	into	descriptor	sets,	we	can	either	write	to	the	descriptor	set
directly	or	copy	bindings	from	another	descriptor	set.	In	either	case,	we	use	the
vkUpdateDescriptorSets()	command,	the	prototype	of	which	is

Click	here	to	view	code	image

void	vkUpdateDescriptorSets	(

				VkDevice																														device,

				uint32_t																														descriptorWriteCount,

				const	VkWriteDescriptorSet*											pDescriptorWrites,

				uint32_t																														descriptorCopyCount,

				const	VkCopyDescriptorSet*												pDescriptorCopies);

The	device	that	owns	the	descriptor	set	to	be	updated	is	passed	in	device.	The
number	of	direct	writes	is	passed	in	descriptorWriteCount,	and	the
number	of	descriptor	copies	is	passed	in	descriptorCopyCount.	The



parameters	for	each	write	are	contained	in	a	VkWriteDescriptorSet
structure,	and	the	parameters	for	each	copy	are	contained	in	a
VkCopyDescriptorSet	structure.	The	pDescriptorWrites	and
pDescriptorCopies	parameters	contain	pointers	to
descriptorWriteCount	and	descriptorCopyCount
VkWriteDescriptorSet	and	VkCopyDescriptorSet	structures,
respectively.	The	definition	of	VkWriteDescriptorSet	is

Click	here	to	view	code	image

typedef	struct	VkWriteDescriptorSet	{

				VkStructureType																		sType;

				const	void*																						pNext;

				VkDescriptorSet																		dstSet;

				uint32_t																									dstBinding;

				uint32_t																									dstArrayElement;

				uint32_t																									descriptorCount;

				VkDescriptorType																	descriptorType;

				const	VkDescriptorImageInfo*					pImageInfo;

				const	VkDescriptorBufferInfo*				pBufferInfo;

				const	VkBufferView*														pTexelBufferView;

}	VkWriteDescriptorSet;

The	sType	field	of	VkWriteDescriptorSet	should	be	set	to
VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,	and	pNext	should	be
set	to	nullptr.	For	each	write	operation,	the	destination	descriptor	set	is
specified	in	dstSet,	and	the	binding	index	is	specified	in	dstBinding.	If	the
binding	in	the	set	refers	to	an	array	of	resources,	then	dstArrayElement	is
used	to	specify	the	starting	index	of	the	update,	and	descriptorCount	is
used	to	specify	the	number	of	consecutive	descriptors	to	update.	If	the	target
binding	is	not	an	array,	then	dstArrayElement	should	be	set	to	0,	and
descriptorCount	should	be	set	to	1.
The	type	of	resource	being	updated	is	specified	in	descriptorType,	which	is
a	member	of	the	VkDescriptorType	enumeration.	The	value	of	this
parameter	determines	which	of	the	next	parameters	is	considered	by	the
function.	If	the	descriptor	being	updated	is	an	image	resource,	then
pImageInfo	is	a	pointer	to	an	instance	of	the	VkDescriptorImageInfo
structure	containing	information	about	the	image.	The	definition	of
VkDescriptorImageInfo	is

Click	here	to	view	code	image

typedef	struct	VkDescriptorImageInfo	{

				VkSampler								sampler;

				VkImageView						imageView;



				VkImageLayout				imageLayout;

}	VkDescriptorImageInfo;

A	handle	to	the	image	view	that	is	to	be	bound	into	the	descriptor	set	is	passed	in
imageView.	If	the	resource	in	the	descriptor	set	is	a
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,	then	a	handle	to
the	accompanying	sampler	is	specified	in	sampler.	The	layout	that	the	image
is	expected	to	be	in	when	it	is	used	in	the	descriptor	set	is	passed	in
imageLayout.
If	the	resource	to	be	bound	into	the	descriptor	set	is	a	buffer,	then	the	parameters
describing	the	binding	are	stored	in	an	instance	of	the
VkDescriptorBufferInfo	structure,	and	a	pointer	to	this	structure	is
stored	in	the	pBufferInfo	of	VkWriteDescriptorSet.	The	definition	of
VkDescriptorBufferInfo	is

Click	here	to	view	code	image

typedef	struct	VkDescriptorBufferInfo	{

				VkBuffer								buffer;

				VkDeviceSize				offset;

				VkDeviceSize				range;

}	VkDescriptorBufferInfo;

The	buffer	object	to	bind	is	specified	in	buffer,	and	the	offset	and	size	of
binding,	expressed	in	bytes,	are	specified	in	offset	and	range,	respectively.
The	bound	range	must	lie	entirely	inside	the	buffer	object.	To	bind	the	whole
buffer	(inferring	the	size	of	the	range	from	the	buffer	object),	then	range	can	be
set	to	VK_WHOLE_SIZE.
If	the	referenced	buffer	binding	is	a	uniform	buffer	binding,	then	range	must
be	less	than	or	equal	to	the	device’s	maxUniformBufferRange	limit,	as
determined	by	calling	vkGetPhysicalDeviceProperties()	and
inspecting	the	VkPhysicalDeviceLimits	structure.	Also,	the	offset
parameter	must	be	an	integer	multiple	of	the	device’s	uniform	buffer	offset
alignment	requirement,	which	is	contained	in	the
minUniformBufferOffsetAlignment	field	of	the
VkPhysicalDeviceLimits	structure.	Likewise,	if	the	buffer	binding	is	a
storage	buffer,	then	range	must	be	less	than	or	equal	to	the
maxStorageBufferRange	field	of	VkPhysicalDeviceLimits.	For
storage	buffers,	the	offset	parameter	must	be	an	integer	multiple	of	the
minStorageBufferOffsetAlignment	field	of	the
VkPhysicalDeviceLimits	structure.



The	maxUniformBufferRange	and	maxStorageBufferRange	limits
are	guaranteed	to	be	at	least	16,384	and	227,	respectively.	If	the	buffers	you’re
using	fit	within	these	limits,	there’s	no	reason	to	query	them.	Note	that	the
guaranteed	maximum	size	of	a	storage	buffer	is	much	larger	than	that	of	a
uniform	buffer.	If	you	have	a	very	large	amount	of	data,	it	may	be	worth
considering	using	storage	buffers	over	uniform	buffers,	even	if	access	to	the
buffer’s	content	is	uniform	in	nature.
The	minUniformBufferOffsetAlignment	and
minStorageBufferOffsetAlignment	are	guaranteed	to	be	at	most	256
bytes.	Note	that	these	are	maximum	minimums,	and	the	values	reported	for	a
device	may	be	smaller	than	this.
In	addition	to	writing	directly	into	descriptor	sets,
vkUpdateDescriptorSets()	can	copy	descriptors	from	one	set	to	another
or	between	bindings	in	the	same	set.	These	copies	are	described	in	the	array	of
VkCopyDescriptorSet	structures	passed	through	the
pDescriptorCopies	parameter.	The	definition	of
VkCopyDescriptorSet	is

Click	here	to	view	code	image

typedef	struct	VkCopyDescriptorSet	{

				VkStructureType				sType;

				const	void*								pNext;

				VkDescriptorSet				srcSet;

				uint32_t											srcBinding;

				uint32_t											srcArrayElement;

				VkDescriptorSet				dstSet;

				uint32_t											dstBinding;

				uint32_t											dstArrayElement;

				uint32_t											descriptorCount;

}	VkCopyDescriptorSet;

The	sType	field	of	VkCopyDescriptorSet	should	be	set	to
VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET,	and	pNext	should	be
set	to	nullptr.	The	handles	of	the	source	and	destination	descriptor	sets	are
specified	in	the	srcSet	and	dstSet,	respectively.	These	can	be	the	same	set
so	long	as	the	range	of	descriptors	to	copy	does	not	overlap.
The	srcBinding	and	dstBinding	fields	specify	the	binding	indices	of	the
source	and	destination	descriptors,	respectively.	If	the	descriptors	to	be	copied
form	an	array	of	bindings,	the	indices	of	the	start	of	the	range	of	descriptors	in
the	source	and	destination	sets	are	specified	in	srcArrayElement	and
dstArrayElement,	respectively.	If	the	descriptors	do	not	form	arrays,	both



of	these	fields	should	be	set	to	0.	The	length	of	the	array	of	descriptors	to	copy	is
specified	in	descriptorCount.	If	the	copy	is	not	of	an	array	of	descriptors,
then	descriptorCount	should	be	set	to	1.
When	vkUpdateDescriptorSets()	executes,	the	updates	are	performed
by	the	host.	Any	access	by	the	device	to	the	descriptor	sets	referenced	by	the
pDescriptorWrites	or	pDescriptorCopies	arrays	must	be	complete
before	vkUpdateDescriptorSets()	is	called.	This	includes	work
described	in	command	buffers	that	have	already	been	submitted	but	may	not	yet
have	completed	execution.
All	of	the	descriptor	writes	described	by	pWriteDescriptors	are	executed
first,	in	the	order	in	which	they	appear	in	the	array,	followed	by	all	of	the	copies
described	by	pCopyDescriptors.	This	means	that	if	a	particular	binding	is
the	destination	of	a	write	or	copy	operation	more	than	once,	only	the	last	action
on	that	binding	as	a	destination	will	be	visible	after	all	the	operations	complete.

Binding	Descriptor	Sets
Just	as	with	pipelines,	to	access	the	resources	attached	to	a	descriptor	set,	the
descriptor	set	must	be	bound	to	the	command	buffer	which	will	execute	the
commands	that	access	those	descriptors.	There	are	also	two	binding	points	for
descriptor	sets—one	for	compute	and	one	for	graphics—which	are	the	sets	that
will	be	accessed	by	the	pipelines	of	the	appropriate	type.
To	bind	descriptor	sets	to	a	command	buffer,	call
vkCmdBindDescriptorSets(),	the	prototype	of	which	is

Click	here	to	view	code	image

void	vkCmdBindDescriptorSets	(

				VkCommandBuffer																						commandBuffer,

				VkPipelineBindPoint																		pipelineBindPoint,

				VkPipelineLayout																					layout,

				uint32_t																													firstSet,

				uint32_t																													descriptorSetCount,

				const	VkDescriptorSet*															pDescriptorSets,

				uint32_t																													dynamicOffsetCount,

				const	uint32_t*																						pDynamicOffsets);

The	command	buffer	to	which	the	descriptor	sets	will	be	bound	is	specified	in
commandBuffer.	The	pipelineBindPoint	argument	specifies	whether
to	bind	the	descriptor	sets	into	the	compute	or	graphics	binding	point	by	setting
it	to	VK_PIPELINE_BIND_POINT_COMPUTE	or
VK_PIPELINE_BIND_POINT_GRAPHICS,	respectively.



The	pipeline	layout	that	will	be	used	by	pipelines	that	will	access	the	descriptors
in	the	set	specified	in	layout.	This	layout	needs	to	be	compatible	with	any
pipeline	that	will	use	the	sets	and	allows	Vulkan	to	correctly	configure	the	set
bindings	before	a	pipeline	is	bound	to	the	command	buffer.	This	means	that	the
order	in	which	you	bind	resources	and	pipelines	into	a	command	buffer	doesn’t
matter	so	long	as	by	the	time	you	issue	any	drawing	or	dispatch	commands,	the
layouts	match.
To	bind	a	subset	of	the	sets	accessible	to	the	pipeline	layout,	use	the	firstSet
and	descriptorSetCount	arguments	to	specify	the	index	of	the	first	set	to
bind	and	the	number	of	sets,	respectively.	pDescriptorSets	is	a	pointer	to
an	array	of	VkDescriptorSet	handles	to	the	sets	to	be	bound.	These	are
obtained	from	calls	to	vkAllocateDescriptorSets()	discussed	earlier.
vkCmdBindDescriptorSets()	is	also	responsible	for	setting	the	offsets
used	in	any	dynamic	uniform	or	shader	storage	bindings.	These	are	passed	in	the
dynamicOffsetCount	and	pDynamicOffsets	parameters.
dynamicOffsetCount	is	the	number	of	dynamic	offsets	to	set,	and
pDynamicOffsets	is	a	pointer	to	an	array	of	dynamicOffsetCount	32-
bit	offsets.	For	each	dynamic	uniform	or	shader	storage	buffer	in	the	descriptor
set(s)	being	bound,	there	should	be	one	offset	specified	in	the
pDynamicOffsets	array.	This	offset	is	added	to	the	base	of	the	buffer	view
bound	to	the	block	in	the	descriptor	set.	This	allows	uniform	and	shader	storage
blocks	to	be	re-bound	to	sections	of	a	larger	buffer	without	needing	to	create	a
new	buffer	view	each	time	the	offset	is	updated.	Some	implementations	may
need	to	pass	additional	information	to	the	shader	to	account	for	this	offset,	but	it
is	still	generally	faster	than	creating	buffer	views	on	the	fly.

Uniform,	Texel,	and	Storage	Buffers
Shaders	can	access	the	content	of	buffer	memory	directly	through	three	types	of
resources:

•	Uniform	blocks	provide	fast	access	to	constant	(read-only)	data	stored	in
buffer	objects.	They	are	declared	as	though	they	were	structures	in	a	shader
and	are	attached	to	memory	using	a	buffer	resource	bound	into	the	descriptor
set.
•	Shader	storage	blocks	provide	read-write	access	to	buffer	objects.	Declared
similarly	to	uniform	blocks,	data	is	arranged	as	though	it	were	a	structure	but
can	be	written	to.	Shader	storage	blocks	also	support	atomic	operations.
•	Texel	buffers	provide	access	to	long,	linear	arrays	of	formatted	texel	data.



They	are	read-only,	and	a	texel	buffer	binding	performs	format	conversion
from	the	underlying	data	format	into	the	floating-point	representation	that
the	shader	expects	when	the	buffer	is	read.

Which	type	of	resource	you	use	depends	on	how	you	want	to	access	it.	The
maximum	size	of	a	uniform	block	is	often	limited,	while	access	to	it	is	generally
very	fast.	On	the	other	hand,	the	maximum	size	of	a	shader	storage	block	is	very
large,	but	in	some	implementations,	access	to	it	could	be	slower—especially	if
write	operations	are	enabled.	For	access	to	large	arrays	of	formatted	data,	a	texel
buffer	is	probably	the	best	choice.

Unform	and	Shader	Storage	Blocks
To	declare	a	uniform	block	in	GLSL,	use	the	uniform	keyword,	as	shown	in
Listing	6.11.	A	shader	storage	block	is	declared	similarly,	except	that	the
uniform	keyword	is	omitted	and	the	buffer	keyword	is	used	instead.	The
listing	shows	an	example	of	each.	The	uniform	block	uses	a	descriptor	set	and
binding	index	that	is	specified	using	a	GLSL	layout	qualifier.

Listing	6.11:	Declaring	Uniform	and	Shader	Blocks	in	GLSL

Click	here	to	view	code	image

layout	(set	=	0,	binding	=	1)	uniform	my_uniform_buffer_t

{

				float	foo;

				vec4	bar;

				int	baz[42];

}	my_uniform_buffer;

layout	(set	=	0,	binding	=	2)	buffer	my_storage_buffer_t

{

				int	peas;

				float	carrots;

				vec3	potatoes[99];

}	my_storage_buffer;

The	layout	of	variables	inside	the	block	is	determined	by	a	set	of	rules,	which	by
default	follow	the	std140	rules	for	uniform	blocks	and	std430	rules	for
shader	storage	blocks.	These	rule	sets	are	named	for	the	version	of	GLSL	in
which	they	were	introduced.	The	set	of	rules	for	packing	data	into	memory	may
be	changed	by	specifying	a	different	layout	in	GLSL.	Vulkan	itself,	however,
does	not	automatically	assign	offsets	to	members	of	the	block.	This	is	the	job	of
the	front-end	compiler	that	produces	the	SPIR-V	shader	that	Vulkan	consumes.
The	resulting	SPIR-V	shader	must	conform	to	either	the	std140	or	std430



layout	rules	(the	latter	being	more	flexible	than	the	former),	although	those	rules
are	not	explicitly	part	of	the	SPIR-V	specification.	When	the	declarations	are
translated	to	SPIR-V	by	the	front-end	compiler,	the	members	of	the	block	are
explictly	assigned	locations.	If	the	shader	is	generated	from	something	other	than
GLSL,	such	as	from	another	high-level	language,	or	programmatically	by	a
component	of	an	application,	then	so	long	as	the	offsets	assigned	by	the	SPIR-V
generator	conform	to	the	appropriate	rule	set,	then	the	shader	will	work.
Listing	6.12	shows	the	shader	from	Listing	6.11	after	it	has	been	translated	to
SPIR-V	by	the	reference	compiler.

Listing	6.12:	Declaring	Uniform	and	Shader	Blocks	in	SPIR-V

Click	here	to	view	code	image

					OpCapability	Shader

%1	=	OpExtInstImport	"GLSL.std.450"

					OpMemoryModel	Logical	GLSL450

					OpEntryPoint	Vertex	%4	"main"

					OpSource	GLSL	450

					OpName	%4	"main"

					;;	Name	the	my_uniform_buffer_t	block	and	its	members.

					OpName	%12	"my_uniform_buffer_t"

					OpMemberName	%12	0	"foo"

					OpMemberName	%12	1	"bar"

					OpMemberName	%12	2	"baz"

					OpName	%14	"my_uniform_buffer"

					;;	Name	the	my_storage_buffer_t	block	and	its	members.

					OpName	%18	"my_storage_buffer_t"

					OpMemberName	%18	0	"peas"

					OpMemberName	%18	1	"carrots"

					OpMemberName	%18	2	"potatoes"

					OpName	%20	"my_storage_buffer"

					OpDecorate	%11	ArrayStride	16

					;;	Assign	offsets	to	the	members	of	my_uniform_buffer_t.

					OpMemberDecorate	%12	0	Offset	0

					OpMemberDecorate	%12	1	Offset	16

					OpMemberDecorate	%12	2	Offset	32

					OpDecorate	%12	Block

					OpDecorate	%14	DescriptorSet	0

					OpDecorate	%14	Binding	1

					OpDecorate	%17	ArrayStride	16

					;;	Assign	offsets	to	the	members	of	my_storage_buffer_t.

					OpMemberDecorate	%18	0	Offset	0

					OpMemberDecorate	%18	1	Offset	4

					OpMemberDecorate	%18	2	Offset	16

					OpDecorate	%18	BufferBlock

					OpDecorate	%20	DescriptorSet	0

					OpDecorate	%20	Binding	2



					...

As	you	can	see	from	Listing	6.12,	the	compiler	has	explicitly	assigned	offsets	to
each	member	of	the	blocks	declared	in	Listing	6.11.	Any	mention	of	std140
and	std430	is	absent	from	the	SPIR-V	version	of	the	shader.1

1.	std140	and	std430	are	also	absent	from	the	GLSL	version	of	the	shader,	but	they	are	implied	and
assumed	by	the	front-end	compiler.

Texel	Buffers
A	texel	buffer	is	a	special	type	of	buffer	binding	used	in	a	shader	that	can
perform	format	conversion	when	the	data	is	read.	Texel	buffers	are	read-only	and
are	declared	in	GLSL	using	a	samplerBuffer	typed	variable,	as	shown	in
Listing	6.13.	Sampler	buffers	can	return	floating-point	or	signed	or	unsigned
integer	data	to	the	shader.	An	example	of	each	is	shown	in	Listing	6.13.

Listing	6.13:	Declaring	Texel	Buffers	in	GLSL

Click	here	to	view	code	image

layout	(set	=	0,	binding	=	3)	uniform	samplerBuffer

my_float_texel_buffer;

layout	(set	=	0,	binding	=	4)	uniform	isamplerBuffer

my_signed_texel_buffer;

layout	(set	=	0,	binding	=	5)	uniform	usamplerBuffer

my_unsigned_texel_buffer;

When	translated	to	SPIR-V	using	the	reference	compiler,	the	declarations	from
Listing	6.13	produce	the	SPIR-V	shader	shown	in	Listing	6.14.

Listing	6.14:	Declaring	Texel	Buffers	in	SPIR-V

Click	here	to	view	code	image

						OpCapability	Shader

						OpCapability	SampledBuffer

	%1	=	OpExtInstImport	"GLSL.std.450"

						OpMemoryModel	Logical	GLSL450

						OpEntryPoint	Vertex	%4	"main"

						OpSource	GLSL	450

						OpName	%4	"main"

						;;	Name	our	texel	buffers.

						OpName	%10	"my_float_texel_buffer"

						OpName	%15	"my_signed_texel_buffer"

						OpName	%20	"my_unsigned_texel_buffer"

						;;	Assign	set	and	binding	decorations.

						OpDecorate	%10	DescriptorSet	0

						OpDecorate	%10	Binding	3



						OpDecorate	%15	DescriptorSet	0

						OpDecorate	%15	Binding	4

						OpDecorate	%20	DescriptorSet	0

						OpDecorate	%20	Binding	5

	%2	=	OpTypeVoid

	%3	=	OpTypeFunction	%2

						;;	Declare	the	three	texel	buffer	variables.

	%6	=	OpTypeFloat	32

	%7	=	OpTypeImage	%6	Buffer	0	0	0	1	Unknown

	%8	=	OpTypeSampledImage	%7

	%9	=	OpTypePointer	UniformConstant	%8

%10	=	OpVariable	%9	UniformConstant

%11	=	OpTypeInt	32	1

%12	=	OpTypeImage	%11	Buffer	0	0	0	1	Unknown

%13	=	OpTypeSampledImage	%12

%14	=	OpTypePointer	UniformConstant	%13

%15	=	OpVariable	%14	UniformConstant

%16	=	OpTypeInt	32	0

%17	=	OpTypeImage	%16	Buffer	0	0	0	1	Unknown

%18	=	OpTypeSampledImage	%17

%19	=	OpTypePointer	UniformConstant	%18

%20	=	OpVariable	%19	UniformConstant

						...

To	fetch	from	a	texel	buffer	in	GLSL,	the	texelFetch	function	is	used	with
the	sampler	variable	to	read	individual	texels.	A	samplerBuffer	(or	the
corresponding	signed	or	unsigned	integer	variants,	isamplerBuffer	and
usamplerBuffer)	can	be	thought	of	as	a	1D	texture	that	supports	only	point
sampling.	However,	the	maximum	size	of	a	texel	buffer	attached	to	one	of	these
variables	is	generally	much,	much	larger	than	the	maximum	size	of	a	1D	texture.
For	example,	the	minimum	required	upper	bound	for	a	texel	buffer	in	Vulkan	is
65,535	elements,	whereas	the	minimum	required	size	for	a	1D	texture	is	only
4,096	texels.	In	some	cases,	implementations	will	support	texel	buffers	that	are
gigabytes	in	size.

Push	Constants
One	special	type	of	resource	briefly	introduced	earlier	is	the	push	constant.	A
push	constant	is	a	uniform	variable	in	a	shader	that	can	be	used	just	like	a
member	of	a	uniform	block,	but	rather	than	being	backed	by	memory,	it	is
owned	and	updated	by	Vulkan	itself.2	As	a	consequence,	new	values	for	these
constants	can	be	pushed	into	the	pipeline	directly	from	the	command	buffer,
hence	the	term.

2.	In	reality,	some	implementations	may	still	back	push	constants	with	device	memory	internally.
However,	it	is	likely	that	such	implementations	will	have	more	optimal	paths	for	updating	that
memory;	some	implementations	will	have	fast,	dedicated	memory	or	registers	for	these	constants;	and



a	single	call	to	vkCmdPushConstants()	is	likely	to	perform	better	than	memory	barriers
associated	with	updating	a	uniform	block	in	any	case.

Push	constants	are	logically	considered	to	be	part	of	the	pipeline’s	resources	and
are	therefore	declared	along	with	the	other	resources	in	the	pipeline	layout	used
to	create	pipeline	objects.	In	the	VkPipelineLayoutCreateInfo
structure,	two	fields	are	used	to	define	how	many	push	constants	will	be	used	by
the	pipeline.	Push	constants	belong	to	ranges,	each	defined	by	a
VkPushConstantRange	structure.	The	pushConstantRanges	member
of	VkPipelineLayoutCreateInfo	specifies	the	count	of	the	number	of
ranges	of	push	constants	that	are	included	in	the	pipeline’s	resource	layout,	and
the	pPushConstantRanges	of	VkPipelineLayoutCreateInfo	is	a
pointer	to	an	array	of	VkPushConstantRange	structures,	each	defining	a
range	of	push	constants	used	by	the	pipeline.	The	definition	of
VkPushConstantRange	is

Click	here	to	view	code	image

typedef	struct	VkPushConstantRange	{

				VkShaderStageFlags				stageFlags;

				uint32_t														offset;

				uint32_t														size;

}	VkPushConstantRange;

The	space	used	for	push	constants	is	abstracted	as	though	it	were	a	contiguous
region	of	memory,	even	if	that	may	not	be	the	case	in	practice	in	some
implementations.	In	some	implementations,	each	shader	stage	has	its	own	space
for	constant	storage,	and	in	such	implementations,	passing	a	single	constant	to
multiple	shading	stages	may	require	broadcasting	it	and	consuming	more
resources.	The	stages	that	will	“see”	each	range	of	constants	are	included	in	the
stageFlags	field	of	VkPushConstantRange.	This	is	a	bitwise
combination	of	a	selection	of	flags	from	VkShaderStageFlagBits.	The
starting	offset	and	size	of	the	region	are	specified	in	offset	and	size,
respectively.
To	consume	push	constants	inside	the	pipeline,	variables	representing	them	are
declared	in	the	pipeline’s	shaders.	A	push	constant	is	declared	in	a	SPIR-V
shader	using	the	PushConstant	storage	class	on	a	variable	declaration.	In
GLSL,	such	a	declaration	can	be	produced	by	declaring	a	uniform	block	with	the
push_constant	layout	qualifier.	There	is	one	such	block	declaration
available	per	pipeline.	Logically,	it	has	the	same	“in-memory”	layout	as	a
std430	block.	However,	this	layout	is	used	only	to	compute	offsets	to	members
and	may	not	be	how	a	Vulkan	implementation	internally	represents	the	data	in



the	block.
Listing	6.15	shows	a	GLSL	declaration	of	a	push	constant	block,	and	Listing
6.16	shows	the	resulting	SPIR-V.

Listing	6.15:	Declaring	Push	Constants	in	GLSL

Click	here	to	view	code	image

layout	(push_constant)	uniform	my_push_constants_t

{

				int	bourbon;

				int	scotch;

				int	beer;

}	my_push_constants;

Listing	6.16:	Declaring	Push	Constants	in	SPIR-V

Click	here	to	view	code	image

					OpCapability	Shader

%1	=	OpExtInstImport	"GLSL.std.450"

					OpMemoryModel	Logical	GLSL450

					OpEntryPoint	GLCompute	%4	"main"

					OpExecutionMode	%4	LocalSize	1	1	1

					OpSource	GLSL	450

					OpName	%4	"main"

					;;	Name	the	push	constant	block	and	its	members.

					OpName	%7	"my_push_constants_t"

					OpMemberName	%7	0	"bourbon"

					OpMemberName	%7	1	"scotch"

					OpMemberName	%7	2	"beer"

					OpName	%9	"my_push_constants"

					;;	Assign	offsets	to	the	members	of	the	push	constant	block.

					OpMemberDecorate	%7	0	Offset	0

					OpMemberDecorate	%7	1	Offset	4

					OpMemberDecorate	%7	2	Offset	8

					OpDecorate	%7	Block

%2	=	OpTypeVoid

%3	=	OpTypeFunction	%2

%6	=	OpTypeInt	32	1

%7	=	OpTypeStruct	%6	%6	%6

					;;	Declare	the	push	constant	block	itself.

%8	=	OpTypePointer	PushConstant	%7

%9	=	OpVariable	%8	PushConstant

					...

Push	constants	become	part	of	the	layout	of	the	pipeline	that	will	use	them.
When	push	constants	are	included	in	a	pipeline,	they	may	consume	some	of	the
resources	that	Vulkan	would	otherwise	use	to	track	pipeline	or	descriptor



bindings.	Therefore,	you	should	treat	push	constants	as	relatively	precious
resources.
To	update	the	content	of	one	or	more	push	constants,	call
vkCmdPushConstants(),	the	prototype	of	which	is

Click	here	to	view	code	image

void	vkCmdPushConstants	(

				VkCommandBuffer																				commandBuffer,

				VkPipelineLayout																			layout,

				VkShaderStageFlags																	stageFlags,

				uint32_t																											offset,

				uint32_t																											size,

				const	void*																								pValues);

The	command	buffer	that	will	perform	the	update	is	specified	in
commandBuffer,	and	the	layout	that	defines	the	locations	of	the	push
constants	is	specified	in	layout.	This	layout	must	be	compatible	with	any
pipeline	that	is	subsequently	bound	and	used	in	dispatch	or	drawing	commands.
The	stages	that	will	need	to	see	the	updated	constants	should	be	specified	in
stageFlags.	This	is	a	bitwise	combination	of	some	of	the	flags	from	the
VkShaderStageFlagBits	enumeration.	Although	there	is	only	one	push
constant	block	available	to	each	pipeline,	it	may	be	that	in	some
implementations,	push	constants	are	implemented	by	using	per-stage	resources.
When	stageFlags	is	set	accurately,	performance	may	increase	by	allowing
Vulkan	to	not	update	the	stages	that	aren’t	included.	Be	careful,	though:	In
implementations	that	do	support	broadcasting	constants	across	stages	at	no	cost,
these	flags	might	be	ignored,	and	your	shaders	may	see	the	updates	anyway.
As	push	constants	are	logically	represented	as	backed	by	memory	with	a
std430	layout,	the	content	of	each	push	constant	“lives”	at	an	offset	from	the
beginning	of	the	block	that	can	be	computed	using	the	std430	rules.	The	offset
of	the	first	constant	to	update	within	this	virtual	block	is	specified	in	offset,
and	the	size	of	the	update,	in	bytes,	is	specified	in	size.
A	pointer	to	the	data	to	place	in	the	push	constants	is	passed	in	pValues.
Typically,	this	will	be	a	pointer	to	an	array	of	uint32_t	or	float	variables.
Both	offset	and	size	must	be	a	multiple	of	4	to	align	them	correctly	with
respect	to	the	size	of	these	data	types.	When	vkCmdPushConstants()	is
executed,	it	is	as	though	the	contents	of	the	array	were	copied	directly	into	a
std430	block.
You	are	free	to	replace	the	content	of	the	array	or	free	the	memory	immediately



after	calling	vkCmdPushConstants().	The	data	in	the	array	is	consumed
immediately	by	the	command,	and	the	value	of	the	pointer	is	not	retained.
Therefore,	it’s	perfectly	fine	to	set	pValues	to	something	that	lives	on	the	stack
or	to	the	address	of	a	local	variable.
The	total	amount	of	space	available	for	push	constants	in	a	single	pipeline	(or
pipeline	layout)	can	be	determined	by	inspecting	the
maxPushConstantsSize	field	of	the	device’s
VkPhysicalDeviceLimits	structure.	This	is	guaranteed	to	be	at	least	128
bytes	(enough	for	a	couple	of	4	×	4	matrices).	It’s	not	particularly	large,	but	if
this	is	sufficient,	there’s	no	reason	to	query	the	limit.	Again,	treat	push	constants
as	scarce	resources.	Prefer	to	use	a	normal	uniform	block	for	larger	data
structures,	and	use	push	constants	for	single	integers	or	very	frequently	updated
data.

Sampled	Images
When	shaders	read	from	images,	they	can	do	so	in	one	of	two	ways.	The	first	is
to	perform	a	raw	load,	which	directly	reads	formatted	or	unformatted	data	from	a
specific	location	in	the	image,	and	the	second	is	to	sample	the	image	using	a
sampler.	Sampling	can	include	operations	such	as	performing	basic
transformations	on	the	image	coordinates	or	filtering	texels	to	smooth	the	image
data	returned	to	the	shader.
The	state	of	a	sampler	is	represented	by	a	sampler	object,	which	is	bound	into
descriptor	sets	just	as	images	and	buffers	are.	To	create	a	sampler	object,	call
vkCreateSampler(),	the	prototype	of	which	is

Click	here	to	view	code	image

VkResult	vkCreateSampler	(

				VkDevice																														device,

				const	VkSamplerCreateInfo*												pCreateInfo,

				const	VkAllocationCallbacks*										pAllocator,

				VkSampler*																												pSampler);

The	device	that	will	create	the	sampler	is	passed	in	device,	and	the	remaining
parameters	of	the	sampler	are	passed	through	a	pointer	to	an	instance	of	the
VkSamplerCreateInfo	structure	in	pCreateInfo.	The	upper	bound	on
the	total	number	of	samplers	that	can	be	created	by	a	device	is	implementation-
dependent.	It’s	guaranteed	to	be	at	least	4,000.	If	there’s	a	possibility	that	your
application	may	create	more	than	this	limit,	then	you	need	to	check	the	device’s
level	of	support	for	creating	large	numbers	of	samplers.	The	total	number	of
samplers	that	a	device	can	manage	is	contained	in	the



maxSamplerAllocationCount	field	of	its
VkPhysicalDeviceLimits	structure,	which	you	can	obtain	from	a	call	to
vkGetPhysicalDeviceProperties().
The	definition	of	VkSamplerCreateInfo	is

Click	here	to	view	code	image

typedef	struct	VkSamplerCreateInfo	{

				VkStructureType									sType;

				const	void*													pNext;

				VkSamplerCreateFlags				flags;

				VkFilter																magFilter;

				VkFilter																minFilter;

				VkSamplerMipmapMode					mipmapMode;

				VkSamplerAddressMode				addressModeU;

				VkSamplerAddressMode				addressModeV;

				VkSamplerAddressMode				addressModeW;

				float																			mipLodBias;

				VkBool32																anisotropyEnable;

				float																			maxAnisotropy;

				VkBool32																compareEnable;

				VkCompareOp													compareOp;

				float																			minLod;

				float																			maxLod;

				VkBorderColor											borderColor;

				VkBool32																unnormalizedCoordinates;

}	VkSamplerCreateInfo;

The	sType	field	of	VkSamplerCreateInfo	should	be	set	to
VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,	and	pNext	should	be
set	to	nullptr.	The	flags	field	is	reserved	for	future	use	and	should	be	set	to
zero.

Image	Filtering
The	magFilter	and	minFilter	fields	specify	the	filtering	mode	to	be	used
when	the	image	is	magnified	or	minified,	respectively.	Whether	an	image	is
magnified	or	minified	is	determined	by	comparing	sampling	coordinates	across
adjacent	pixels	being	shaded.	If	the	gradient	of	the	sampling	coordinates	is
greater	than	one,	then	the	image	is	minified;	otherwise,	it	is	magnified.
magFilter	and	minFilter	are	both	members	of	the	VkFilter
enumeration.	The	members	of	VkFilter	are

•	VK_FILTER_NEAREST:	When	sampling,	the	nearest	texel	in	the	image	is
chosen	and	returned	directly	to	the	shader.
•	VK_FILTER_LINEAR:	A	2	×	2	footprint	containing	the	texel	coordinates



is	used	to	produce	a	weighted	average	of	four	texels,	and	this	average	is
returned	to	the	shader.

The	VK_FILTER_NEAREST	mode	causes	Vulkan	to	simply	select	the	nearest
texel	to	the	requested	coordinates	when	sampling	from	an	image.	In	many	cases,
this	can	lead	to	a	blocky	or	aliased	image,	causing	shimmering	artifacts	in	the
rendered	picture.	The	VK_FILTER_LINEAR	mode	tells	Vulkan	to	apply	linear
filtering	to	the	image	when	it	is	sampled.
When	you	are	filtering	an	image	with	linear	filtering,	the	requested	sample	may
lie	somewhere	between	two	texel	centers	in	1D,	four	centers	in	2D,	and	so	on.
Vulkan	will	read	from	the	surrounding	texels	and	then	combine	the	results	using
a	weighted	sum	of	the	values	based	on	the	distance	to	each	center.	This	is
illustrated	in	Figure	6.2.	In	the	figure,	a	sample	is	taken	at	the	×,	which	lies
between	the	four	texel	centers	marked	A,	B,	C,	and	D.	Regardless	of	the	integer
part	of	the	texture	coordinate	{u,	v},	the	fractional	part	of	the	texture	coordinate
is	given	by	{α,	β}.

Figure	6.2:	Linear	Sampling

To	form	a	linear	weighted	sum	of	the	texels	at	A	and	B,	their	values	are	simply
combined	according	to	the	relationship



Tu0	=	αA	+	(1	−α)	B
This	can	be	writen	as
Tu0	=	B	+	α	(B−A)
Likewise,	a	weighted	sum	of	C	and	D	is	formed	as
Tu1	=	αC	+	(1	−α)	D	or

Tu1	=	D−α	(D−C)
The	two	temporary	values	Tu0	and	Tu1	can	then	be	combined	into	a	single,
weighted	sum	using	a	similar	mechanism,	but	with	β:
T	=	βTu0	+	(1	−β)	Tu1	or

T	=	Tu1	+	β(Tu1	−Tu0)
This	can	be	extended	in	any	number	of	dimensions,	although	only	texture
dimensionalities	up	to	three	are	defined	by	Vulkan.

Mipmapping
The	mipmapMode	field	specifies	how	mipmaps	are	used	in	the	image	when	it	is
sampled.	This	is	a	member	of	the	VkSamplerMipmapMode	enumeration,
whose	members	have	the	following	meanings:

•	VK_SAMPLER_MIPMAP_MODE_NEAREST:	The	computed	level-of-detail
is	rounded	to	the	nearest	integer,	and	that	level	is	used	to	select	the	mipmap
level.	If	sampling	from	the	base	level,	then	the	filtering	mode	specified	in
magFilter	is	used	to	sample	from	that	level;	otherwise,	the	minFilter
filter	is	used.
•	VK_SAMPLER_MIPMAP_MODE_LINEAR:	The	computed	level	of	detail	is
rounded	both	up	and	down,	and	the	two	resulting	mipmap	levels	are
sampled.	The	two	resulting	texel	values	are	then	blended	and	returned	to	the
shader.

To	select	a	mipmap	from	the	image,	Vulkan	will	compute	the	derivative	of	the
coordinates	used	to	sample	from	the	texture.	The	exact	math	is	covered	in	some
detail	in	the	Vulkan	specification.	In	short,	the	level	selected	is	the	log2	of	the
maximum	of	the	derivatives	of	each	of	the	texture	coordinate	dimensions.	This
level	can	also	be	biased	using	parameters	taken	from	the	sampler	or	supplied	by
the	shader,	or	it	can	be	entirely	specified	in	the	shader.	Regardless	of	its	source,
the	result	may	not	be	an	exact	integer.
When	the	mipmap	mode	is	VK_SAMPLER_MIPMAP_MODE_NEAREST,	then



the	selected	mipmap	level	is	simply	rounded	down	to	the	next-lowest	integer,
and	then	that	level	is	sampled	as	though	it	were	a	single-level	image.	When	the
mipmap	mode	is	VK_SAMPLER_MIPMAP_MODE_LINEAR,	a	sample	is	taken
from	each	of	the	next-lower	and	next-higher	levels	using	the	filtering	mode
selected	by	the	minFilter	field,	and	then	those	two	samples	are	further
combined	using	a	weighted	average,	similarly	to	how	the	samples	are	combined
during	linear	sampling,	as	described	earlier.
Note	that	this	filtering	mode	applies	only	to	minification,	which	is	the	process	of
sampling	from	a	mipmap	level	other	than	the	base	level.	When	the	log2	of	the
texture	coordinate	derivatives	is	less	than	1,	then	the	0th	level	is	selected,	so	only
a	single	level	is	available	for	sampling.	This	is	known	as	magnification	and	uses
the	filtering	mode	specified	in	magFilter	to	sample	from	the	base	level	only.
The	next	three	fields	in	VkSamplerCreateInfo—addressModeU,
addressModeV,	and	addressModeW—are	used	to	select	the	transform	that
is	applied	to	texture	coordinates	that	would	otherwise	sample	outside	the	image.
The	following	modes	are	available:

•	VK_SAMPLER_ADDRESS_MODE_REPEAT:	As	the	texture	coordinate
progresses	from	0.0	to	1.0	and	beyond,	it	is	wrapped	back	to	0.0,	effectively
using	only	the	fractional	part	of	the	coordinate	to	sample	from	the	image.
The	effect	is	to	tile	the	image	indefinitely.
•	VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT:	The	texture
coordinate	progresses	from	0.0	to	1.0	as	normal,	and	then	in	the	range	1.0	to
2.0,	the	fractional	part	is	subtracted	from	1.0	to	form	a	new	coordinate
moving	back	toward	0.0.	The	effect	is	to	alternately	tile	the	normal	and
mirror-image	version	of	a	texture.
•	VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE:	Texture	coordinates
beyond	1.0	are	clamped	to	1.0,	and	negative	coordinates	are	clamped	to	0.0.
This	clamped	coordinate	is	used	to	sample	from	the	image.	The	effect	is	that
the	texels	along	the	edge	of	the	image	are	used	to	fill	any	area	that	would	be
sampled	outside	the	image.
•	VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER:	Sampling	from
the	texture	outside	its	bounds	will	result	in	texels	of	the	border	color,	as
specified	in	the	borderColor	field,	being	returned	rather	than	data	from
the	image.
•	VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE:	This	is	a
hybrid	mode	that	first	applies	a	single	mirroring	of	the	texture	coordinate



and	then	behaves	like
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE.

The	effect	of	each	of	the	sampler	addressing	modes	applied	to	an	image	is	shown
in	Figure	6.3.	In	the	figure,	the	top-left	image	shows	the	result	of	the
VK_SAMPLER_ADDRESS_MODE_REPEAT	addressing	mode.	As	you	can	see,
the	texture	is	simply	repeated	across	the	frame.	The	top-right	image	shows	the
result	of	VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT.	Each
alternate	repetition	of	the	texture	is	mirrored	in	the	X	or	Y	direction.

Figure	6.3:	Effect	of	Sampling	Modes

The	bottom-left	image	applies	the
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE	addressing	mode	to	the
texture.	Here,	the	last	column	or	row	of	pixels	is	repeated	indefinitely	after	the
sampling	coordinates	leave	the	texture.	Finally,	the	bottom-right	image	shows
the	result	of	the	VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER
mode.	This	texture	was	created	with	a	black	border	color,	so	the	area	outside	the



texture	appears	to	be	blank,	but	Vulkan	is	actually	sampling	black	texels	from
this	region.	This	allows	you	to	see	the	original	texture.
When	the	filter	mode	is	VK_FILTER_LINEAR,	wrapping	or	clamping	the
texture	coordinate	is	applied	to	each	of	the	generated	coordinates	in	the	2	×	2
footprint	used	to	create	the	resulting	texel.	The	result	is	that	filtering	is	applied
as	though	the	image	really	wrapped.
For	the	VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER	filter	mode,
when	texels	are	sampled	from	the	border	(i.e.,	what	would	be	outside	the	image),
the	border	color	is	substituted	rather	than	fetching	data	from	the	image.	The
color	that	is	used	depends	on	the	value	of	the	borderColor	field.	This	is	not	a
full	color	specification,	but	a	member	of	the	VkBorderColor	enumeration,
which	allows	one	of	a	small,	predefined	set	of	colors	to	be	selected.	These	are

•	VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK:	Returns	floating-
point	zeros	to	the	shader	in	all	channels
•	VK_BORDER_COLOR_INT_TRANSPARENT_BLACK:	Returns	integer
zeros	to	the	shader	in	all	channels
•	VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK:	Returns	floating-point
zeros	in	the	R,	G,	and	B	channels,	and	floating-point	one	in	A
•	VK_BORDER_COLOR_INT_OPAQUE_BLACK:	Returns	integer	zeros	in	R,
G,	and	B,	and	integer	one	in	A
•	VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE:	Returns	floating-point
ones	to	the	shader	in	all	channels
•	VK_BORDER_COLOR_INT_OPAQUE_WHITE:	Returns	integer	ones	to	the
shader	in	all	channels

The	mipLodBias	field	of	VkSamplerCreateInfo	specifies	a	floating-
point	bias	that	is	added	to	the	computed	level	of	detail	before	mipmap	selection
is	made.	This	allows	you	to	nudge	the	level	of	detail	up	or	down	the	mipmap
chain	to	make	the	resulting	filtered	texture	look	sharper	or	blurrier	than	it	might
otherwise.
If	you	want	to	use	anisotropic	filtering,	set	anisotropyEnable	to
VK_TRUE.	The	exact	details	of	anisotropic	filtering	are	implementation-
dependent.	Anisotropic	filtering	generally	works	by	considering	a	projected
footprint	of	the	area	to	be	sampled	rather	than	using	a	fixed	2	×	2	footprint.	An
approximation	to	an	area	sample	is	formed	by	taking	many	samples	within	the
footprint.
Because	the	number	of	samples	taken	can	be	quite	large,	anisotropic	filtering	can



have	a	negative	effect	on	performance.	Also,	under	extreme	cases,	the	projected
footprint	can	be	quite	large,	and	this	can	result	in	a	large	area	and
correspondingly	blurry	filter	result.	To	limit	these	effects,	you	can	clamp	the
maximum	amount	of	anisotropy	by	setting	maxAnisotropy	to	a	value
between	1.0	and	the	maximum	value	supported	by	the	device.	You	can	determine
this	by	calling	vkGetPhysicalDeviceProperties()	and	inspecting	the
maxSamplerAnisotropy	member	of	the	embedded
VkPhysicalDeviceLimits	structure.
When	a	sampler	is	used	with	a	depth	image,	it	can	be	configured	to	perform	a
comparison	operation	and	return	the	result	of	the	comparison	rather	than	the	raw
values	stored	in	the	image.	When	this	mode	is	enabled,	the	comparison	is
performed	on	each	sample	taken	from	the	image,	and	the	resulting	value	is	the
fraction	of	the	total	samples	taken	that	passed	the	test.	This	can	be	used	to
implement	a	technique	known	as	percentage	closer	filtering,	or	PCF.	To	enable
this	mode,	set	compareEnable	to	VK_TRUE,	and	set	the	comparison
operation	in	compareOp.
compareOp	is	a	member	of	the	VkCompareOp	enumeration,	which	is	used	in
many	places	in	Vulkan.	As	you	will	see	in	Chapter	7,	“Graphics	Pipelines,”	this
is	the	same	enumeration	that	is	used	to	specify	the	depth	test	operation.	The
available	operations	and	how	they	are	interpreted	in	the	context	of	shader
accesses	to	depth	resources	are	shown	in	Table	6.2.
The	sampler	can	be	configured	to	restrict	sampling	to	a	subset	of	the	mip	levels
in	an	image	with	mipmaps.	The	range	of	mipmaps	to	sample	from	is	specified	in
minLod	and	maxLod,	which	contain	the	lowest	(highest-resolution)	and
highest	(lowest-resolution)	mipmaps	that	should	be	sampled	from,	respectively.
To	sample	from	the	entire	mipmap	chain,	set	minLod	to	0.0,	and	set	maxLod	to
a	level	of	detail	high	enough	that	the	computed	level	of	detail	will	never	be
clamped.
Finally,	unnormalizedCoordinates	is	a	flag	that,	when	set	to	VK_TRUE,
indicates	that	the	coordinates	used	to	sample	from	the	image	are	in	units	of	raw
texels,	rather	than	a	value	that	is	normalized	between	0.0	and	1.0	across	each
dimension	of	the	texture.	This	allows	texels	to	be	explicitly	fetched	from	the
image.	However,	several	restrictions	exist	in	this	mode.	When
unnormalizedCoordinates	is	VK_TRUE,	minFilter	and	magFilter
must	be	the	same,	mipmapMode	must	be
VK_SAMPLER_MIPMAP_MODE_NEAREST,	and	anisotropyEnable	and
compareEnable	must	be	VK_FALSE.



When	you	are	done	with	a	sampler,	you	should	destroy	it	by	calling
vkDestroySampler(),	the	prototype	of	which	is

Click	here	to	view	code	image

void	vkDestroySampler	(

				VkDevice																												device,

				VkSampler																											sampler,

				const	VkAllocationCallbacks*								pAllocator);

device	is	the	device	that	owns	the	sampler	object,	and	sampler	is	the
sampler	object	to	destroy.	If	a	host	memory	allocator	was	used	when	the	sampler
was	created,	a	compatible	allocator	should	be	passed	through	the	pAllocator
parameter;	otherwise,	pAllocator	should	be	nullptr.

Table	6.2:	Texture	Comparison	Functions



Summary
This	chapter	covered	the	basics	of	the	shading	language	supported	by	Vulkan,
SPIR-V,	including	how	SPIR-V	shader	modules	are	consumed	by	Vulkan	and
how	pipelines	containing	those	shaders	are	constructed.	You	saw	how	to
construct	a	compute	shader	and	use	it	to	create	a	compute	pipeline,	how	to
dispatch	work	into	that	pipeline,	and	how	a	pipeline	can	access	resources	in
order	to	consume	and	produce	data.	In	upcoming	chapters,	we	will	build	on	the
concept	of	pipelines	to	produce	pipeline	objects	with	multiple	stages	and	make
use	of	more	advanced	features.



Chapter	7.	Graphics	Pipelines

What	You’ll	Learn	in	This	Chapter	•	What	the	Vulkan	graphics
pipeline	looks	like	•	How	to	create	a	graphics	pipeline	object	•	How
to	draw	graphical	primitives	with	Vulkan

Perhaps	the	most	common	use	of	Vulkan	is	as	a	graphics	API.	Graphics	are	a
fundamental	part	of	Vulkan	and	drive	the	core	of	almost	any	visual	application.
Graphics	processing	in	Vulkan	can	be	seen	as	a	pipeline	that	takes	graphics
commands	through	the	many	stages	required	to	produce	a	picture	on	a	display.
This	chapter	covers	the	basics	of	graphics	pipelines	in	Vulkan	and	introduces	our
first	graphics	example.

The	Logical	Graphics	Pipeline
The	graphics	pipeline	in	Vulkan	can	be	seen	as	a	production	line,	where
commands	enter	the	front	of	the	pipeline	and	are	processed	in	stages.	Each	stage
performs	some	kind	of	transform,	taking	the	commands	and	their	associated	data
and	turning	them	into	something	else.	By	the	end	of	the	pipeline,	the	commands
have	been	transformed	into	colorful	pixels	making	up	your	output	picture.
Many	parts	of	the	graphics	pipeline	are	optional	and	can	be	disabled	or	might	not
even	be	supported	by	a	Vulkan	implementation.	The	only	part	of	the	pipeline
that	an	application	must	enable	is	the	vertex	shader.	The	full	Vulkan	graphics
pipeline	is	shown	in	Figure	7.1.	However,	don’t	be	alarmed;	we’ll	introduce	each
stage	gently	in	this	chapter	and	dig	into	more	details	in	subsequent	parts	of	the
book.



Figure	7.1:	The	Full	Vulkan	Graphics	Pipeline

The	following	is	a	brief	description	of	each	stage	of	the	pipeline	and	what	it
does.

•	Draw:	This	is	where	your	commands	enter	the	Vulkan	graphics	pipeline.
Typically,	a	small	processor	or	dedicated	piece	of	hardware	inside	the
Vulkan	device	interprets	the	commands	in	the	command	buffer	and	directly
interacts	with	the	hardware	to	induce	work.
•	Input	assembly:	This	stage	reads	the	index	and	vertex	buffers	that	contain



information	about	the	vertices	making	up	the	draw	you’ve	sent.
•	Vertex	shader:	This	is	where	the	vertex	shader	executes.	It	takes	as	input	the
properties	of	the	vertex	and	prepares	transformed	and	processed	vertex	data
for	the	next	stage.
•	Tessellation	control	shader:	This	programmable	shading	stage	is	responsible
for	producing	tessellation	factors	and	other	per-patch	data	that	is	used	by	the
fixed-function	tessellation	engine.
•	Tessellation	primitive	generation:	Not	shown	in	Figure	7.1,	this	fixed
function	stage	uses	the	tessellation	factors	produced	in	the	tessellation
control	shader	to	break	patch	primitives	into	many	smaller,	simpler
primitives	ready	to	be	shaded	by	the	tessellation	evaluation	shader.
•	Tessellation	evaluation	shader:	This	shading	stage	runs	on	each	new	vertex
produced	by	the	tessellation	primitive	generator.	It	operates	similarly	to	a
vertex	shader	except	that	the	incoming	vertices	are	generated	rather	than
read	from	memory.
•	Geometry	shader:	This	shading	stage	operates	on	full	primiitves.	The
primitives	might	be	points,	lines	or	triangles,	or	special	variations	of	them
that	include	additional	vertices	surrounding	them.	This	stage	also	has	the
ability	to	change	the	primitive	type	midpipeline.
•	Primitive	assembly:	This	stage	groups	vertices	produced	by	the	vertex,
tessellation,	or	geometry	stage	and	groups	them	into	primitives	suitable	for
rasterization.	It	also	culls	and	clips	primitives	and	transforms	them	into	the
appropriate	viewport.
•	Clip	and	cull:	This	fixed-function	stage	determines	which	parts	of	which
primitives	might	contribute	to	the	output	image	and	discards	parts	of
primitives	that	do	not,	forwarding	potentially	visible	primitives	to	the
rasterizer.
•	Rasterizer:	Rasterization	is	the	fundamental	core	of	all	graphics	in	Vulkan.
The	rasterizer	takes	assembled	primitives	that	are	still	represented	by	a
sequence	of	vertices	and	turns	them	into	individual	fragments,	which	may
become	the	pixels	that	make	up	your	image.
•	Prefragment	operations:	Several	operations	can	be	performed	on	fragments
once	their	positions	are	known	but	before	they	are	shaded.	These
prefragment	operations	include	depth	and	stencil	tests	when	they	are
enabled.
•	Fragment	assembly:	Not	shown	in	the	figure,	the	fragment	assembly	stage



takes	the	output	of	the	rasterizer	along	with	any	per-fragment	data	and	sends
it,	as	a	group,	into	the	fragment	shading	stage.
•	Fragment	shader:	This	stage	runs	the	final	shader	in	the	pipeline,	which	is
responsible	for	computing	the	data	that	will	be	sent	on	to	the	final	fixed-
function	processing	stages	that	follow.
•	Postfragment	operations:	In	some	circumstances,	the	fragment	shader
modifies	data	that	would	normally	be	used	in	prefragment	operations.	In
these	cases,	those	prefragment	operations	move	to	the	postfragment	stage
and	are	executed	here.
•	Color	blending:	The	color	operations	take	the	final	results	of	the	fragment
shader	and	postfragment	operations	and	use	them	to	update	the	framebuffer.
The	color	operations	include	blending	and	logic	operations.

As	you	can	tell,	there	are	a	lot	of	interrelated	stages	in	the	graphics	pipeline.
Unlike	the	compute	pipeline	introduced	in	Chapter	6,	“Shaders	and	Pipelines,”
the	graphics	pipeline	contains	not	only	the	configuration	of	a	wide	selection	of
fixed	functionality,	but	also	up	to	five	shader	stages.	Further,	depending	on	the
implementation,	some	of	the	logically	fixed-function	stages	are	actually	at	least
partially	implemented	in	shader	code	generated	by	drivers.
The	purpose	of	representing	the	graphics	pipeline	as	an	object	in	Vulkan	is	to
provide	the	implementation	as	much	information	as	needed	to	move	parts	of	the
pipeline	between	fixed-function	hardware	and	programmable	shader	cores.	If	the
information	were	not	all	available	at	the	same	time	in	the	same	object,	it	would
mean	that	some	implementations	of	Vulkan	may	need	to	recompile	a	shader
based	on	configurable	state.	The	set	of	states	contained	in	the	graphics	pipeline
has	been	carefully	chosen	to	prevent	this,	making	switching	states	as	fast	as
possible.
The	fundamental	unit	of	drawing	in	Vulkan	is	a	vertex.	Vertices	are	grouped	into
primitives	and	processed	by	the	Vulkan	pipeline.	The	simplest	drawing
command	in	Vulkan	is	vkCmdDraw(),	whose	prototype	is	Click	here	to	view
code	image

void	vkCmdDraw	(

				VkCommandBuffer																	commandBuffer,

				uint32_t																								vertexCount,

				uint32_t																								instanceCount,

				uint32_t																								firstVertex,

				uint32_t																								firstInstance);	Like	other	Vulkan

commands,	vkCmdDraw()	appends	a	command	to	a	command	buffer	that	will

later	be	executed	by	the	device.	The	command	buffer	to	append	to	is

specified	in	commandBuffer.	The	number	of	vertices	to	push	into	the



pipeline	is	specified	in	vertexCount.	If	you	want	to	draw	the	same

set	of	vertices	over	and	over	with	slightly	different	parameters,	you

can	specify	the	number	of	instances	in	instanceCount.	This	is	known

as	instancing,	and	we’ll	cover	that	later	in	this	chapter.	For	now,

we	can	just	set	instanceCount	to	1.	It’s	also	possible	to	start

drawing	from	a	vertex	or	instance	other	than	0.	To	do	this,	we	can

use	firstVertex	and	firstInstance,	respectively.	Again,	we’ll	cover

that	later.	For	the	time	being,	we’ll	set	both	of	these	parameters	to

0.

Before	you	can	draw	anything,	you	must	bind	a	graphics	pipeline	to	the
command	buffer,	and	before	that,	you	must	create	a	graphics	pipeline.	Undefined
behavior	(generally	bad	behavior)	will	occur	if	you	try	drawing	without	binding
a	pipeline	first.
When	you	call	vkCmdDraw(),	vertexCount	vertices	are	generated	and
pushed	into	the	current	Vulkan	graphics	pipeline.	For	each	vertex,	input
assembly	is	executed,	followed	by	your	vertex	shader.	Declaring	inputs	beyond
what	is	provided	for	you	by	Vulkan	is	optional,	but	having	a	vertex	shader	is	not.
Thus,	the	simplest	possible	graphics	pipeline	consists	only	of	a	vertex	shader.

Renderpasses
One	of	the	things	that	distinguishes	a	Vulkan	graphics	pipeline	from	a	compute
pipeline	is	that,	usually,	you’ll	be	using	the	graphics	pipeline	to	render	pixels
into	images	that	you	will	either	further	process	or	display	to	the	user.	In	complex
graphics	applications,	the	picture	is	built	up	over	many	passes	where	each	pass	is
responsible	for	producing	a	different	part	of	the	scene,	applying	full-frame
effects	such	as	postprocessing	or	composition,	rendering	user	interface	elements,
and	so	on.
Such	passes	can	be	represented	in	Vulkan	using	a	renderpass	object.	A	single
renderpass	object	encapsulates	multiple	passes	or	rendering	phases	over	a	single
set	of	output	images.	Each	pass	within	the	renderpass	is	known	as	a	subpass.
Renderpass	objects	can	contain	many	subpasses,	but	even	in	simple	applications
with	only	a	single	pass	over	a	single	output	image,	the	renderpass	object	contains
information	about	that	output	image.
All	drawing	must	be	contained	inside	a	renderpass.	Further,	graphics	pipelines
need	to	know	where	they’re	rendering	to;	therefore,	it’s	necessary	to	create	a
renderpass	object	before	creating	a	graphics	pipeline	so	that	we	can	tell	the
pipeline	about	the	images	it’ll	be	producing.	Renderpasses	are	covered	in	great
depth	in	Chapter	13,	“Multipass	Rendering.”	In	this	chapter,	we’ll	create	the
simplest	possible	renderpass	object	that	will	allow	us	to	render	into	an	image.



To	create	a	renderpass	object,	call	vkCreateRenderPass(),	the	prototype
of	which	is	Click	here	to	view	code	image

VkResult	vkCreateRenderPass	(

				VkDevice																											device,

				const	VkRenderPassCreateInfo*						pCreateInfo,

				const	VkAllocationCallbacks*							pAllocator,

				VkRenderPass*																						pRenderPass);	The	device

parameter	to	vkCreateRenderPass()	is	the	device	that	will	create	the

renderpass	object,	and	pCreateInfo	points	to	a	structure	defining	the

renderpass.	This	is	an	instance	of	the	VkRenderPassCreateInfo

structure,	whose	definition	is	Click	here	to	view	code	image

typedef	struct	VkRenderPassCreateInfo	{

				VkStructureType																		sType;

				const	void*																						pNext;

				VkRenderPassCreateFlags										flags;

				uint32_t																									attachmentCount;

				const	VkAttachmentDescription*			pAttachments;

				uint32_t																									subpassCount;

				const	VkSubpassDescription*						pSubpasses;

				uint32_t																									dependencyCount;

				const	VkSubpassDependency*							pDependencies;

}	VkRenderPassCreateInfo;

The	sType	field	of	VkRenderPassCreateInfo	should	be	set	to
VK_STRUCTURE_TYPE_RENDERPASS_CREATE_INFO,	and	pNext	should
be	set	to	nullptr.	The	flags	field	is	reserved	for	future	use	and	should	be
set	to	zero.
pAttachments	is	a	pointer	to	an	array	of	attachmentCount
VkAttachmentDescription	structures	that	define	the	attachments
associated	with	the	renderpass.	Each	of	these	structures	defines	a	single	image
that	is	to	be	used	as	an	input,	output,	or	both	within	one	or	more	of	the	subpasses
in	the	renderpass.	If	there	really	are	no	attachments	associated	with	the
renderpass,	you	can	set	attachmentCount	to	zero	and	pAttachments	to
nullptr.	However,	outside	of	some	advanced	use	cases,	almost	all	graphics
rendering	will	use	at	least	one	attachment.	The	definition	of
VkAttachmentDescription	is	Click	here	to	view	code	image

typedef	struct	VkAttachmentDescription	{

				VkAttachmentDescriptionFlags			flags;

				VkFormat																							format;

				VkSampleCountFlagBits										samples;

				VkAttachmentLoadOp													loadOp;

				VkAttachmentStoreOp												storeOp;

				VkAttachmentLoadOp													stencilLoadOp;

				VkAttachmentStoreOp												stencilStoreOp;



				VkImageLayout																		initialLayout;

				VkImageLayout																		finalLayout;

}	VkAttachmentDescription;

The	flags	field	is	used	to	give	Vulkan	additional	information	about	the
attachment.	The	only	defined	bit	is
VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT,	which,	if	set,
indicates	that	the	attachment	might	be	using	the	same	memory	as	another
attachment	referenced	by	the	same	renderpass.	This	tells	Vulkan	not	to	do
anything	that	might	make	data	in	that	attachment	inconsistent.	This	bit	can	be
used	in	some	advanced	cases	where	memory	is	at	a	premium	and	you	are	trying
to	optimize	its	usage.	In	most	cases,	flags	can	be	set	to	zero.
The	format	field	specifies	the	format	of	the	attachment.	This	is	one	of	the
VkFormat	enumerations	and	should	match	the	format	of	the	image	used	as	the
attachment.	Likewise,	samples	indicates	the	number	of	samples	in	the	image
and	is	used	for	multisampling.	When	multisampling	is	not	in	use,	set	samples
to	VK_SAMPLE_COUNT_1_BIT.
The	next	four	fields	specify	what	to	do	with	the	attachment	at	the	beginning	and
end	of	the	renderpass.	The	load	operations	tell	Vulkan	what	to	do	with	the
attachment	when	the	renderpass	begins.	This	can	be	set	to	one	of	the	following
values:	•	VK_ATTACHMENT_LOAD_OP_LOAD	indicates	that	the	attachment
has	data	in	it	already	and	that	you	want	to	keep	rendering	to	it.	This	causes
Vulkan	to	treat	the	contents	of	the	attachment	as	valid	when	the	renderpass
begins.

•	VK_ATTACHMENT_LOAD_OP_CLEAR	indicates	that	you	want	Vulkan	to
clear	the	attachment	for	you	when	the	renderpass	begins.	The	color	to	which
you	want	to	clear	the	attachments	is	specified	when	the	renderpass	has
begun.
•	VK_ATTACHMENT_LOAD_OP_DONT_CARE	indicates	that	you	don’t	care
about	the	content	of	the	attachment	at	the	beginning	of	the	renderpass	and
that	Vulkan	is	free	to	do	whatever	it	wishes	with	it.	You	can	use	this	if	you
plan	to	explicitly	clear	the	attachment	or	if	you	know	that	you’ll	replace	the
content	of	the	attachment	inside	the	renderpass.

Likewise,	the	store	operations	tell	Vulkan	what	you	want	it	to	do	with	the
contents	of	the	attachments	when	the	renderpass	ends.	These	can	be	set	to	one	of
the	following	values:	•	VK_ATTACHMENT_STORE_OP_STORE	indicates	that
you	want	Vulkan	to	keep	the	contents	of	the	attachment	for	later	use,	which
usually	means	that	it	should	write	them	out	into	memory.	This	is	usually	the	case



for	images	you	want	to	display	to	the	user,	read	from	later,	or	use	as	an
attachment	in	another	renderpass	(with	the
VK_ATTACHMENT_LOAD_OP_LOAD	load	operation).

•	VK_ATTACHMENT_STORE_OP_DONT_CARE	indicates	that	you	don’t
need	the	content	after	the	renderpass	has	ended.	This	is	normally	used	for
intermediate	storage	or	for	the	depth	or	stencil	buffers.

If	the	attachment	is	a	combined	depth-stencil	attachment,	then	the
stencilLoadOp	and	stencilStoreOp	fields	tell	Vulkan	what	to	do	with
the	stencil	part	of	the	attachment	(the	regular	loadOp	and	storeOp	fields
specify	what	should	happen	to	the	depth	part	of	the	attachment),	which	can	be
different	from	the	depth	part.
The	initialLayout	and	finalLayout	fields	tell	Vulkan	what	layout	to
expect	the	image	to	be	in	when	the	renderpass	begins	and	what	layout	to	leave	it
in	when	the	renderpass	ends.	Note	that	renderpass	objects	do	not	automatically
move	images	into	the	initial	layout.	This	is	the	layout	that	the	image	is	expected
to	be	in	when	the	renderpass	is	used.	The	renderpass	does,	however,	move	the
image	to	the	final	layout	when	it’s	done.
You	can	use	barriers	to	explicitly	move	images	from	layout	to	layout,	but	where
possible,	it’s	best	to	try	to	move	images	from	layout	to	layout	inside
renderpasses.	This	gives	Vulkan	the	best	opportunity	to	choose	the	right	layout
for	each	part	of	the	renderpass	and	even	perform	any	operations	required	to
move	images	between	layouts	in	parallel	with	other	rendering.	Advanced	usage
of	these	fields	and	renderpasses	in	general	is	covered	in	Chapter	13,	“Multipass
Rendering.”
After	you	define	all	of	the	attachments	that	are	going	to	be	used	in	the
renderpass,	you	need	to	define	all	of	the	subpasses.	Each	subpass	references	a
number	of	attachments	(from	the	array	you	passed	in	pAttachments)	as
inputs	or	outputs.	Those	descriptions	are	specified	in	an	array	of
VkSubpassDescription	structures,	one	for	each	subpass	in	the	renderpass.
The	definition	of	VkSubpassDescription	is	Click	here	to	view	code	image

typedef	struct	VkSubpassDescription	{

				VkSubpassDescriptionFlags							flags;

				VkPipelineBindPoint													pipelineBindPoint;

				uint32_t																								inputAttachmentCount;

				const	VkAttachmentReference*				pInputAttachments;

				uint32_t																								colorAttachmentCount;

				const	VkAttachmentReference*				pColorAttachments;

				const	VkAttachmentReference*				pResolveAttachments;

				const	VkAttachmentReference*				pDepthStencilAttachment;



				uint32_t																								preserveAttachmentCount;

				const	uint32_t*																	pPreserveAttachments;

}	VkSubpassDescription;

The	flags	field	of	VkSubpassDescription	is	reserved	for	future	use	and
should	be	set	to	zero.	Also,	the	current	version	of	Vulkan	supports	renderpasses
only	for	graphics,	so	pipelineBindPoint	should	be	set	to
VK_PIPELINE_BIND_POINT_GRAPHICS.	The	remaining	fields	describe	the
attachments	used	by	the	subpass.	Each	subpass	can	have	a	number	of	input
attachments,	which	are	attachments	from	which	it	can	read	data;	color
attachments,	which	are	attachments	to	which	its	outputs	are	written;	and	a	depth-
stencil	attachment,	which	is	used	as	a	depth	and	stencil	buffer.	These
attachments	are	specified	in	the	pInputAttachments,
pColorAttachments,	and	pDepthStencilAttachment	fields,
respectively.	The	numbers	of	input	and	color	attachments	are	specified	in
inputAttachmentCount	and	colorAttachmentCount,	respectively.
There	is	only	one	depth-stencil	attachment,	so	this	parameter	is	not	an	array	and
has	no	associated	count.
The	maximum	number	of	color	attachments	that	a	single	subpass	can	render	to
can	be	determined	by	inspecting	the	maxColorAttachments	member	of	the
device’s	VkPhysicalDeviceLimits	structure,	which	you	can	retrieve	by
calling	vkGetPhysicalDeviceProperties().
maxColorAttachments	is	guaranteed	to	be	at	least	4,	so	if	you	never	use
more	than	this	many	color	attachments,	you	don’t	need	to	query	the	limit.
However,	many	implementations	support	a	higher	limit	than	this,	so	you	may	be
able	to	implement	more	advanced	algorithms	in	fewer	passes	by	writing	to	more
outputs	at	once.
Each	of	these	arguments	is	a	pointer	to	either	a	single
VkAttachmentReference	structure	or	an	array	of	them	and	forms	a
reference	to	one	of	the	attachments	described	in	pAttachments.	The
definition	of	VkAttachmentReference	is	Click	here	to	view	code	image

typedef	struct	VkAttachmentReference	{

				uint32_t									attachment;

				VkImageLayout				layout;

}	VkAttachmentReference;

Each	attachment	reference	is	a	simple	structure	containing	an	index	into	the
array	of	attachments	in	attachment	and	the	image	layout	that	the	attachment
is	expected	to	be	in	at	this	subpass.	In	addition	to	the	input	and	output
attachment	references,	two	further	sets	of	references	are	provided	to	each



subpass.
First,	the	resolve	attachments,	which	are	specified	through
pResolveAttachments,	are	the	attachments	to	which	multisample	image
data	is	resolved.	These	attachments	correspond	to	the	color	attachments
specified	in	pColorAttachments,	and	the	number	of	resolve	attachments	is
assumed	to	be	the	same,	as	specified	in	colorAttachmentCount.
If	one	of	the	elements	of	pColorAttachments	is	a	multisample	image,	but
only	the	final,	resolved	image	is	needed	after	the	renderpass	is	complete,	you	can
ask	Vulkan	to	resolve	the	image	for	you	as	part	of	the	renderpass,	and	possibly
disacard	the	original	multisample	data.	To	do	this,	set	the	store	operation	for	the
multisample	color	attachment	to
VK_ATTACHMENT_STORE_OP_DONT_CARE,	and	set	a	corresponding	single-
sample	attachment	in	the	matching	element	of	pResolveAttachments.	The
store	operation	for	the	resolve	attachment	should	be	set	to
VK_ATTACHMENT_STORE_OP_STORE,	which	will	cause	Vulkan	to	keep	the
single-sample	data	but	throw	out	the	original	multisample	data.
Second,	if	there	are	attachments	that	you	want	to	live	across	a	subpass	but	that
are	not	directly	referenced	by	the	subpass,	you	should	reference	them	in	the
pPreserveAttachments	array.	This	reference	will	prevent	Vulkan	from
making	any	optimizations	that	might	disturb	the	contents	of	those	attachments.
When	there	is	more	than	one	subpass	in	a	renderpass,	Vulkan	can	figure	out
which	subpasses	are	dependent	on	one	another	by	following	the	attachment
references	and	looking	for	inputs	and	outputs	that	make	subpasses	dependent	on
one	another.	However,	there	are	cases	in	which	dependencies	cannot	easily	be
represented	by	a	simple	input-to-output	relationship.	This	generally	happens
when	a	subpass	writes	directly	to	a	resource	such	as	an	image	or	buffer	and	a
subsequent	subpass	reads	that	data	back.	Vulkan	cannot	figure	this	out
automatically,	so	you	must	provide	such	dependency	information	explicitly.	This
is	done	using	the	pDependencies	member	of
VkRenderPassCreateInfo,	which	is	a	pointer	to	an	array	of
dependencyCount	VkSubpassDependency	structures.	The	definition	of
VkSubpassDependency	is	Click	here	to	view	code	image

typedef	struct	VkSubpassDependency	{

				uint32_t																srcSubpass;

				uint32_t																dstSubpass;

				VkPipelineStageFlags				srcStageMask;

				VkPipelineStageFlags				dstStageMask;

				VkAccessFlags											srcAccessMask;



				VkAccessFlags											dstAccessMask;

				VkDependencyFlags							dependencyFlags;

}	VkSubpassDependency;

Each	dependency	is	a	reference	from	a	source	subpass	(the	producer	of	data)	and
a	destination	subpass	(the	consumer	of	that	data),	specified	in	srcSubpass
and	dstSubpass,	respectively.	Both	are	indices	into	the	array	of	subpasses
that	make	up	the	renderpass.	The	srcStageMask	is	a	bitfield	specifying
which	pipeline	stage(s)	of	the	source	subpass	produced	the	data.	Likewise,
dstStageMask	is	a	bitfield	specifying	which	stages	of	the	destination	subpass
will	consume	the	data.
The	srcAccessMask	and	dstAccessMask	fields	are	also	bitfields.	They
specify	how	each	of	the	source	and	destination	subpasses	access	the	data.	For
example,	the	source	stage	may	perform	image	stores	from	its	vertex	shader	or
write	to	a	color	attachment	through	regular	fragment	shader	outputs.	Meanwhile,
the	destination	subpass	may	read	through	an	input	attachment	or	an	image	load.
For	the	purpose	of	creating	a	simple	renderpass	with	a	single	subpass,	with	a
single	output	attachment	and	no	external	dependencies,	the	data	structures	are
mostly	empty.	Listing	7.1	demonstrates	how	to	set	up	a	simple	renderpass	in	this
configuration.

Listing	7.1:	Creating	a	Simple	Renderpass	Click	here	to	view	code	image

//	This	is	our	color	attachment.	It's	an	R8G8B8A8_UNORM	single	sample

image.

//	We	want	to	clear	it	at	the	start	of	the	renderpass	and	save	the

contents

//	when	we're	done.	It	starts	in	UNDEFINED	layout,	which	is	a	key	to

//	Vulkan	that	it's	allowed	to	throw	the	old	content	away,	and	we

want	to

//	leave	it	in	COLOR_ATTACHMENT_OPTIMAL	state	when	we're	done.

static	const	VkAttachmentDescription	attachments[]	=

{

				{

								0,																																									//	flags

								VK_FORMAT_R8G8B8A8_UNORM,																		//	format

								VK_SAMPLE_COUNT_1_BIT,																					//	samples

								VK_ATTACHMENT_LOAD_OP_CLEAR,															//	loadOp

								VK_ATTACHMENT_STORE_OP_STORE,														//	storeOp

								VK_ATTACHMENT_LOAD_OP_DONT_CARE,											//	stencilLoadOp

								VK_ATTACHMENT_STORE_OP_DONT_CARE,										//	stencilStoreOp

								VK_IMAGE_LAYOUT_UNDEFINED,																	//	initialLayout

								VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL			//	finalLayout

				}

};



//	This	is	the	single	reference	to	our	single	attachment.

static	const	VkAttachmentReference	attachmentReferences[]	=

{

				{

								0,																																									//	attachment

								VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL			//	layout

				}

};

//	There	is	one	subpass	in	this	renderpass,	with	only	a	reference	to

the

//	single	output	attachment.

static	const	VkSubpassDescription	subpasses[]	=

{

				{

								0,																																									//	flags

								VK_PIPELINE_BIND_POINT_GRAPHICS,											//

pipelineBindPoint

								0,																																									//

inputAttachmentCount

								nullptr,																																			//

pInputAttachments

								1,																																									//

colorAttachmentCount

								&attachmentReferences[0],																		//

pColorAttachments

								nullptr,																																			//

pResolveAttachments

								nullptr,																																			//

pDepthStencilAttachment

								0,																																									//

preserveAttachmentCount

								nullptr																																				//

pPreserveAttachments

				}

};

//	Finally,	this	is	the	information	that	Vulkan	needs	to	create	the

renderpass

//	object.

static	VkRenderPassCreateInfo	renderpassCreateInfo	=

{

				VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,						//	sType

				nullptr,																																								//	pNext

				0,																																														//	flags

				1,																																														//

attachmentCount

				attachments[0],																																	//	pAttachments

				1,																																														//	subpassCount

				&subpasses[0],																																		//	pSubpasses

				0,																																														//



dependencyCount

				nullptr																																									//	pDependencies

};

VkRenderPass	renderpass	=	VK_NULL_HANDLE;

//	The	only	code	that	actually	executes	is	this	single	call,	which

creates

//	the	renderpass	object.

vkCreateRenderPass(device,

																			&renderpassCreateInfo,

																			nullptr,

																			&renderpass);

In	Listing	7.1,	we	set	up	a	simple	renderpass	with	a	single	color	attachment	of
format	VK_FORMAT_R8G8B8A8_UNORM,	no	depth-stencil	attachment,	and	no
dependencies.	It	looks	like	a	lot	of	code,	but	that’s	because	we	need	to	specify
full	data	structures	even	though	we’re	not	using	most	of	the	fields.	As	your
applications	grow	more	complex,	the	amount	of	code	you	need	to	write	doesn’t
actually	grow	correspondingly.	Further,	because	the	structures	are	constant,	the
amount	of	code	executed	by	Listing	7.1	is	minimal.
We’ll	use	the	renderpass	created	in	Listing	7.1	to	create	a	graphics	pipeline	in	the
next	section.
Of	course,	when	we	are	done	using	the	renderpass	object,	we	should	destroy	it.
To	do	this,	call	vkDestroyRenderPass(),	the	prototype	of	which	is	Click
here	to	view	code	image

void	vkDestroyRenderPass	(

				VkDevice																										device,

				VkRenderPass																						renderPass,

				const	VkAllocationCallbacks*						pAllocator);	device	is	the

device	that	created	the	renderpass,	and	renderPass	is	the	handle	to

the	renderpass	object	to	destroy.	If	a	host	memory	allocator	was	used

to	create	the	renderpass,	pAllocator	should	point	to	a	compatible

allocator;	otherwise,	pAllocator	should	be	nullptr.

The	Framebuffer
The	framebuffer	is	an	object	that	represents	the	set	of	images	that	graphics
pipelines	will	render	into.	These	affect	the	last	few	stages	in	the	pipeline:	depth
and	stencil	tests,	blending,	logic	operations,	multisampling,	and	so	on.	A
framebuffer	object	is	created	by	using	a	reference	to	a	renderpass	and	can	be
used	with	any	renderpass	that	has	a	similar	arrangement	of	attachments.
To	create	a	framebuffer	object,	call	vkCreateFramebuffer(),	the
prototype	of	which	is	Click	here	to	view	code	image



VkResult	vkCreateFramebuffer	(

				VkDevice																												device,

				const	VkFramebufferCreateInfo*						pCreateInfo,

				const	VkAllocationCallbacks*								pAllocator,

				VkFramebuffer*																						pFramebuffer);	The	device

that	will	be	used	to	create	the	framebuffer	object	is	passed	in

device,	and	the	remaining	parameters	describing	the	new	framebuffer

object	are	passed	through	a	pointer	to	an	instance	of	the

VkFramebufferCreateInfo	structure	in	pCreateInfo.	The	definition	of

VkFramebufferCreateInfo	is	Click	here	to	view	code	image

typedef	struct	VkFramebufferCreateInfo	{

				VkStructureType													sType;

				const	void*																	pNext;

				VkFramebufferCreateFlags				flags;

				VkRenderPass																renderPass;

				uint32_t																				attachmentCount;

				const	VkImageView*										pAttachments;

				uint32_t																				width;

				uint32_t																				height;

				uint32_t																				layers;

}	VkFramebufferCreateInfo;

The	sType	field	of	VkFramebufferCreateInfo	should	be	set	to
VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,	and	pNext
should	be	set	to	nullptr.	The	flags	field	is	reserved	and	should	be	set	to
zero.
A	handle	to	a	renderpass	object	that	is	compatible	with	the	framebuffer	being
created	should	be	passed	in	renderPass.	For	the	purposes	of	compatibility
with	framebuffer	objects,	two	renderpasses	are	compatible	if	their	attachment
references	are	the	same.
The	set	of	images	that	is	to	be	bound	into	the	framebuffer	object	is	passed
through	an	array	of	VkImageView	handles,	a	pointer	to	which	is	passed	in
pAttachments.	The	number	of	images	in	pAttachments	is	specified	in
attachmentCount.	The	passes	comprising	the	renderpass	make	references	to
the	image	attachments,	and	those	references	are	specified	as	indices	into	the
array	specified	in	pAttachments.	If	you	know	that	a	particular	renderpass
doesn’t	use	some	of	the	attachments,	but	you	want	the	framebuffer	to	be
compatible	with	several	renderpass	objects	or	to	keep	a	consistent	layout	of
images	in	your	application,	some	of	the	image	handles	in	pAttachments	can
be	VkNullHandle.
Although	each	of	the	images	in	the	framebuffer	has	a	native	width,	height,	and
(in	the	case	of	array	images)	layer	count,	you	must	still	specify	the	dimensions
of	the	framebuffer.	These	dimensions	are	passed	in	the	width,	height,	and



layers	fields	of	the	VkFramebufferCreateInfo	structure.	Rendering	to
regions	of	the	framebuffer	that	are	outside	some	of	the	images	results	in	no
rendering	to	those	parts	of	the	attachment	images	that	are	outside	the	image
while	continuing	to	render	to	those	parts	of	the	images	that	are.
The	maximum	supported	size	of	a	framebuffer	is	device-dependent.	To
determine	the	supported	dimensions	of	the	framebuffer,	check	the
maxFramebufferWidth,	maxFramebufferHeight,	and
maxFramebufferLayers	fields	of	the	device’s
VkPhysicalDeviceLimits	structure.	These	provide	the	maximum
supported	width,	height,	and	layer	count	for	framebuffers,	respectively.	The
supported	width	and	height	are	guaranteed	to	be	at	least	4,096	pixels,	and	the
number	of	supported	layers	is	guaranteed	to	be	at	least	256.	However,	most
desktop-class	hardware	will	support	limits	of	16,384	pixels	in	width	and	height
and	2,048	layers.
It’s	also	possible	to	create	a	framebuffer	with	no	attachments	at	all.	This	is
known	as	an	attachmentless	framebuffer.	In	this	case,	the	framebuffer’s
dimensions	are	solely	defined	by	the	width,	height,	and	layers	fields.
This	type	of	framebuffer	is	typically	used	with	fragment	shaders	that	have	other
side	effects,	such	as	performing	image	stores,	or	with	occlusion	queries,	which
can	measure	other	aspects	of	rendering	but	don’t	necessarily	require	that	the
result	of	rendering	be	stored	anywhere.
If	vkCreateFramebuffer()	is	successful,	it	will	write	the	new
VkFramebuffer	handle	into	the	variable	pointed	to	by	pFramebuffer.	If	it
requires	any	host	memory,	it	will	use	the	allocator	pointed	to	by	pAllocator
to	allocate	it.	If	pAllocator	is	not	nullptr,	then	a	compatible	allocator
should	be	used	when	the	framebuffer	is	destroyed.
As	you	will	see	in	Chapter	8,	“Drawing,”	we	will	use	the	framebuffer	object	in
conjunction	with	a	renderpass	in	order	to	draw	into	the	images	attached	to	the
framebuffer.	When	you	are	done	using	a	framebuffer,	you	should	destroy	it	by
calling	vkDestroyFramebuffer(),	the	prototype	of	which	is	Click	here	to
view	code	image

void	vkDestroyFramebuffer	(

				VkDevice																												device,

				VkFramebuffer																							framebuffer,

				const	VkAllocationCallbacks*								pAllocator);	device	is	a

handle	to	the	device	that	created	the	framebuffer	object,	and

framebuffer	is	a	handle	to	the	framebuffer	object	being	destroyed.	If

a	host	memory	allocator	was	used	to	allocate	the	framebuffer,	a

compatible	allocator	should	be	passed	through	the	pAllocator	object.



Destroying	a	framebuffer	object	does	not	affect	any	of	the	images	attached	to	the
framebuffer.	Images	can	be	attached	to	multiple	framebuffers	at	the	same	time
and	can	be	used	in	multiple	ways	at	the	same	time	as	being	attached	to	a
framebuffer.	However,	even	if	the	images	are	not	destroyed,	the	framebuffer
should	not	be	used—including	any	access	in	command	buffers	by	the	device.
You	should	ensure	that	any	command	buffers	referencing	the	framebuffer	have
completed	execution	if	they	have	been	submitted	or	have	not	been	submitted
after	the	framebuffer	object	is	destroyed.

Creating	a	Simple	Graphics	Pipeline
Creating	a	graphics	pipeline	is	achieved	using	a	method	similar	to	the	one	for
creating	a	compute	pipeline,	as	described	in	Chapter	6,	“Shaders	and	Pipelines.”
However,	as	you	have	seen,	the	graphics	pipeline	includes	many	shading	stages
and	fixed-function	processing	blocks,	so	the	description	of	a	graphics	pipeline	is
correspondingly	that	much	more	complex.	Graphics	pipelines	are	created	by
calling	vkCreateGraphicsPipelines(),	the	prototype	of	which	is

Click	here	to	view	code	image

VkResult	vkCreateGraphicsPipelines	(

				VkDevice																															device,

				VkPipelineCache																								pipelineCache,

				uint32_t																															createInfoCount,

				const	VkGraphicsPipelineCreateInfo*				pCreateInfos,

				const	VkAllocationCallbacks*											pAllocator,

				VkPipeline*																												pPipelines);	As	you	can

see,	the	prototype	for	vkCreateGraphicsPipelines()	is	similar	to

vkCreateComputePipelines().	It	takes	a	device	(device),	a	handle	to	a

pipeline	cache	(pipelineCache),	and	an	array	of	createInfo	structures

along	with	the	count	of	the	number	of	structures	in	the	array

(pCreateInfos	and	createInfoCount,	respectively).	This	is	where	the

real	guts	of	the	function	are.	VkGraphicsPipelineCreateInfo	is	a

large,	complex	structure,	and	it	contains	pointers	to	several	other

structures	along	with	handles	to	other	objects	that	you	need	to	have

created.	Take	a	deep	breath:	The	definition	of

VkGraphicsPipelineCreateInfo	is	Click	here	to	view	code	image

typedef	struct	VkGraphicsPipelineCreateInfo	{

				VkStructureType																																				sType;

				const	void*																																								pNext;

				VkPipelineCreateFlags																														flags;

				uint32_t																																											stageCount;

				const	VkPipelineShaderStageCreateInfo*													pStages;

				const

VkPipelineVertexInputStateCreateInfo*								pVertexInputState;

				const

VkPipelineInputAssemblyStateCreateInfo*						pInputAssemblyState;



				const

VkPipelineTessellationStateCreateInfo*							pTessellationState;

				const

VkPipelineViewportStateCreateInfo*											pViewportState;

				const

VkPipelineRasterizationStateCreateInfo*						pRasterizationState;

				const

VkPipelineMultisampleStateCreateInfo*								pMultisampleState;

				const

VkPipelineDepthStencilStateCreateInfo*							pDepthStencilState;

				const

VkPipelineColorBlendStateCreateInfo*									pColorBlendState;

				const	VkPipelineDynamicStateCreateInfo*												pDynamicState;

				VkPipelineLayout																																			layout;

				VkRenderPass																																							renderPass;

				uint32_t																																											subpass;

				VkPipeline																																									basePipelineHandle;

				int32_t																																												basePipelineIndex;

}	VkGraphicsPipelineCreateInfo;

As	you	were	warned,	VkGraphicsPipelineCreateInfo	is	a	large
structure	with	many	substructures	referenced	by	pointers.	However,	it’s	easy
enough	to	break	down	into	blocks,	and	many	of	the	additional	creation	info	is
optional	and	can	be	left	as	nullptr.	As	with	all	other	Vulkan	creation	info
structures,	VkGraphicsPipelineCreateInfo	starts	with	an	sType	field
and	a	pNext	field.	The	sType	for	VkGraphicsPipelineCreateInfo	is
VK_GRAPHICS_PIPELINE_CREATE_INFO,	and	pNext	can	be	left	as
nullptr	unless	extensions	are	in	use.
The	flags	field	contains	information	about	how	the	pipeline	will	be	used.
Three	flags	are	defined	in	the	current	version	of	Vulkan,	and	their	meanings	are
as	follows:	•	VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT
tells	Vulkan	that	this	pipeline	is	not	going	to	be	used	in	performance-critical
applications	and	that	you	would	prefer	to	receive	a	ready-to-go	pipeline	object
quickly	rather	than	have	Vulkan	spend	a	lot	of	time	optimizing	the	pipeline.	You
might	use	this	for	things	like	simple	shaders	for	displaying	splash	screens	or	user
interface	elements	that	you	want	to	display	quickly.

•	VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT	and
VK_PIPELINE_CREATE_DERIVATIVE_BIT	are	used	with	derivative
pipelines.	This	is	a	feature	whereby	you	can	group	similar	pipelines	and	tell
Vulkan	that	you’ll	switch	rapidly	among	them.	The
VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT	flag	tells
Vulkan	that	you	will	want	to	create	derivatives	of	the	new	pipeline,	and
VK_PIPELINE_CREATE_DERIVATIVE_BIT	tells	Vulkan	that	this



pipeline	is	a	pipeline.

Graphics	Shader	Stages
The	next	two	fields	in	the	VkGraphicsPipelineCreateInfo	structure,
stageCount	and	pStages,	are	where	you	pass	your	shaders	into	the
pipeline.	pStages	is	a	pointer	to	an	array	of	stageCount
VkPipelineShaderStageCreateInfo	structures,	each	describing	one	of
the	shading	stages.	These	are	the	same	structures	that	you	saw	in	the	definition
of	VkComputePipelineCreateInfo,	except	now	you	have	an	array	of
them.	The	definition	of	VkPipelineShaderStageCreateInfo	is

Click	here	to	view	code	image

typedef	struct	VkPipelineShaderStageCreateInfo	{

				VkStructureType																					sType;

				const	void*																									pNext;

				VkPipelineShaderStageCreateFlags				flags;

				VkShaderStageFlagBits															stage;

				VkShaderModule																						module;

				const	char*																									pName;

				const	VkSpecializationInfo*									pSpecializationInfo;

}	VkPipelineShaderStageCreateInfo;

All	graphics	pipelines	must	have	at	least	a	vertex	shader,	and	the	vertex	shader	is
always	the	first	shading	stage	in	the	pipeline.	Therefore,	the	pStages	of
VkGraphicsPipelineCreateInfo	should	point	to	a
VkPipelineShaderStageCreateInfo	describing	a	vertex	shader.	The
parameters	in	the	VkPipelineShaderStageCreateInfo	structure	have
the	same	meaning	as	they	did	when	we	created	a	compute	pipeline	in	Chapter	6,
“Shaders	and	Pipelines.”	module	should	be	a	shader	module	that	contains	at
least	one	vertex	shader,	and	pName	should	be	the	name	of	a	vertex	shader	entry
point	in	that	module.
Because	in	our	simple	pipeline	we’re	not	using	most	of	the	stages	of	the	Vulkan
graphics	pipeline,	we	can	leave	most	of	the	other	fields	of	the
VkGraphicsPipelineCreateInfo	structure	as	their	defaults	or	as
nullptr	for	the	pointers.	The	layout	field	is	the	same	as	the	layout	field
in	the	VkComputePipelineCreateInfo	structure	and	specifies	the
pipeline	layout	used	for	resources	by	this	pipeline.
We	can	set	the	renderPass	member	of	our	structure	to	the	handle	of	the
renderpass	object	we	created	earlier	in	Listing	7.1.	There’s	only	one	subpass	in
this	renderpass,	so	we	can	set	subpass	to	zero.



Listing	7.2	shows	a	minimal	example	of	creating	a	graphics	pipeline	containing
only	a	vertex	shader.	It	looks	long,	but	most	of	it	is	setting	up	default	values	in
structures	that	are	not	actually	used	by	the	pipeline.	These	structures	will	be
explained	in	the	following	few	paragraphs.

Listing	7.2:	Creating	a	Simple	Graphics	Pipeline	Click	here	to	view	code
image

VkPipelineShaderStageCreateInfo	shaderStageCreateInfo	=

{

				VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,								//

sType

				nullptr,																															//	pNext

				0,																																					//	flags

				VK_SHADER_STAGE_VERTEX_BIT,												//	stage

				module,																																//	module

				"main",																																//	pName

				nullptr																																//	pSpecializationInfo

};

static	const

VkPipelineVertexInputStateCreateInfo	vertexInputStateCreateInfo	=

{

				VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,	//

sType

				nullptr,																															//	pNext

				0,																																					//	flags

				0,																																					//

vertexBindingDescriptionCount

				nullptr,																															//

pVertexBindingDescriptions

				0,																																					//

vertexAttributeDescriptionCount

				nullptr																																//

pVertexAttributeDescriptions

};

static	const

VkPipelineInputAssemblyStateCreateInfo	inputAssemblyStateCreateInfo	=

{

				VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,//

sType

				nullptr,																															//	pNext

				0,																																					//	flags

				VK_PRIMITIVE_TOPOLOGY_POINT_LIST,						//	topology

				VK_FALSE																															//	primitiveRestartEnable

};

static	const

VkViewport	dummyViewport	=



{

				0.0f,	0.0f,																												//	x,	y

				1.0f,	1.0f,																												//	width,	height

				0.1f,	1000.0f																										//	minDepth,	maxDepth

};

static	const

VkRect2D	dummyScissor	=

{

				{	0,	0	},																														//	offset

				{	1,	1	}																															//	extent

};

static	const

VkPipelineViewportStateCreateInfo	viewportStateCreateInfo	=

{

				VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,						//

sType

				nullptr,																															//	pNext

				0,																																					//	flags

				1,																																					//	viewportCount

				&dummyViewport,																								//	pViewports

				1,																																					//	scissorCount

				&dummyScissor																										//	pScissors

};

static	const

VkPipelineRasterizationStateCreateInfo	rasterizationStateCreateInfo	=

{

				VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,		//

sType

				nullptr,																															//	pNext

				0,																																					//	flags

				VK_FALSE,																														//	depthClampEnable

				VK_TRUE,																															//	rasterizerDiscardEnable

				VK_POLYGON_MODE_FILL,																		//	polygonMode

				VK_CULL_MODE_NONE,																					//	cullMode

				VK_FRONT_FACE_COUNTER_CLOCKWISE,							//	frontFace

				VK_FALSE,																														//	depthBiasEnable

				0.0f,																																		//	depthBiasConstantFactor

				0.0f,																																		//	depthBiasClamp

				0.0f,																																		//	depthBiasSlopeFactor

				0.0f																																			//	lineWidth

};

static	const

VkGraphicsPipelineCreateInfo	graphicsPipelineCreateInfo	=

{

				VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,			//	sType

				nullptr,																															//	pNext

				0,																																					//	flags

				1,																																					//	stageCount



				&shaderStageCreateInfo,																//	pStages

				&vertexInputStateCreateInfo,											//	pVertexInputState

				&inputAssemblyStateCreateInfo,									//	pInputAssemblyState

				nullptr,																															//	pTessellationState

				&viewportStateCreateInfo,														//	pViewportState

				&rasterizationStateCreateInfo,									//	pRasterizationState

				nullptr,																															//	pMultisampleState

				nullptr,																															//	pDepthStencilState

				nullptr,																															//	pColorBlendState

				nullptr,																															//	pDynamicState

				VK_NULL_HANDLE,																								//	layout

				renderpass,																												//	renderPass

				0,																																					//	subpass

				VK_NULL_HANDLE,																								//	basePipelineHandle

				0,																																					//	basePipelineIndex

};

result	=	vkCreateGraphicsPipelines(device,

																																				VK_NULL_HANDLE,

																																				1,

																																				&graphicsPipelineCreateInfo,

																																				nullptr,

																																				&pipeline);	Of	course,	most	of

the	time,	you	won’t	be	using	a	graphics	pipeline	containing	only	a

vertex	shader.	Up	to	five	shader	stages	make	up	the	graphics

pipeline,	as	introduced	earlier	in	this	chapter.	These	stages	include

the	following:	•	The	vertex	shader,	specified	as

VK_SHADER_STAGE_VERTEX_BIT,	processes	one	vertex	at	a	time	and	passes

it	to	the	next	logical	stage	in	the	pipeline.

•	The	tessellation	control	shader,	specified	as
VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,	processes	one
control	point	at	a	time	but	has	access	to	all	of	the	data	that	makes	up	the
patch.	It	can	be	considered	to	be	a	patch	shader,	and	it	produces	the
tessellation	factors	and	per-patch	data	associated	with	the	patch.
•	The	tessellation	evaluation	shader,	specified	using
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,	processes
one	tessellated	vertex	at	a	time.	In	many	applications,	it	evaluates	the	patch
function	at	each	point—hence,	the	name.	It	also	has	access	to	the	full	patch
data	produced	by	the	tessellation	control	shader.
•	The	geometry	shader,	specified	using
VK_SHADER_STAGE_GEOMETRY_BIT,	executes	once	for	each	primitive
that	passes	through	the	pipeline:	points,	lines,	or	triangles.	It	can	produce
new	primitives	or	throw	them	away	rather	than	passing	them	on.	It	can	also
change	the	type	of	a	primitive	as	it	passes	by.
•	The	fragment	shader,	specified	using



VK_SHADER_STAGE_FRAGMENT_BIT,	executes	once	per	fragment,	after
rasterization.	It	is	primarily	responsible	for	computing	the	final	color	of	each
pixel.

Most	straightforward	rendering	will	include	at	least	a	vertex	and	a	fragment
shader.	Each	shader	stage	can	consume	data	from	the	previous	stage	or	pass	data
on	to	the	next,	forming	a	pipeline.	In	some	cases,	the	inputs	to	a	shader	are
supplied	by	fixed-function	blocks,	and	sometimes	the	outputs	from	a	shader	are
consumed	by	fixed-function	blocks.	Regardless	of	the	source	or	destination	of
data,	the	means	of	declaring	the	inputs	and	outputs	to	shaders	are	the	same.
To	declare	an	input	to	a	shader	in	SPIR-V,	a	variable	must	be	decorated	as
Input	when	it	is	declared.	Likewise,	to	create	an	output	from	the	shader,
decorate	a	variable	as	Output	when	it	is	declared.	Unlike	in	GLSL,	special-
purpose	inputs	and	outputs	do	not	have	predefined	names	in	SPIR-V.	Rather,
they	are	decorated	with	their	purpose.	Then	you	write	shaders	in	GLSL	and
compile	them	to	SPIR-V	using	a	GLSL	compiler.	The	compiler	will	recognize
access	to	built-in	variables	and	translate	them	into	appropriately	declared	and
decorated	input	and	output	variables	in	the	resulting	SPIR-V	shader.

Vertex	Input	State
To	render	real	geometry,	you	need	to	feed	data	into	the	front	of	the	Vulkan
pipeline.	You	can	use	the	vertex	and	instance	indices	that	are	provided	by	SPIR-
V	to	programmatically	generate	geometry	or	explicitly	fetch	geometry	data	from
a	buffer.	Alternatively,	you	can	describe	the	layout	of	geometric	data	in	memory
and	Vulkan	can	fetch	it	for	you,	supplying	it	directly	to	your	shader.
To	do	this,	we	use	the	pVertexInputState	member	of
VkGraphicsPipelineCreateInfo,	which	is	a	pointer	to	an	instance	of
the	VkPipelineVertexInputStateCreateInfo	structure,	the
definition	of	which	is	Click	here	to	view	code	image

typedef	struct	VkPipelineVertexInputStateCreateInfo	{

				VkStructureType																											sType;

				const	void*																															pNext;

				VkPipelineVertexInputStateCreateFlags					flags;

				uint32_t																																		vertexBindingDescriptionCount;

				const

VkVertexInputBindingDescription*				pVertexBindingDescriptions;

				uint32_t																																		vertexAttributeDescriptionCount;

				const

VkVertexInputAttributeDescription*		pVertexAttributeDescriptions;

}	VkPipelineVertexInputStateCreateInfo;



The	VkPipelineVertexInputStateCreateInfo	structure	begins	with
the	familiar	sType	and	pNext	fields,	which	should	be	set	to
VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO

and	nullptr,	respectively.	The	flags	field	of
VkPipelineVertexInputStateCreateInfo	is	reserved	for	future	use
and	should	be	set	to	zero.
Vertex	input	state	is	divided	into	a	set	of	vertex	bindings	to	which	you	can	bind
buffers	containing	data	and	a	set	of	vertex	attributes	that	describe	how	vertex
data	is	laid	out	in	those	buffers.	Buffers	bound	to	the	vertex	buffer	binding	points
are	sometimes	referred	to	as	vertex	buffers.	It	should	be	noted,	though,	that
there’s	not	really	any	such	thing	as	a	“vertex	buffer”	in	the	sense	that	any	buffer
can	store	vertex	data,	and	a	single	buffer	can	store	vertex	data	and	other	kinds	of
data	as	well.	The	only	requirement	for	a	buffer	to	be	used	as	storage	for	vertex
data	is	that	it	must	have	been	created	with	the
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT	set.
vertexBindingDescriptionCount	is	the	number	of	vertex	bindings
used	by	the	pipeline,	and	pVertexBindingDescriptions	is	a	pointer	to
an	array	of	that	many	VkVertexInputBindingDescription	structures,
each	describing	one	of	the	bindings.	The	definition	of
VkVertexInputBindingDescription	is	Click	here	to	view	code	image

typedef	struct	VkVertexInputBindingDescription	{

				uint32_t													binding;

				uint32_t													stride;

				VkVertexInputRate				inputRate;

}	VkVertexInputBindingDescription;

The	binding	field	is	the	index	of	the	binding	described	by	this	structure.	Each
pipeline	can	address	a	number	of	vertex	buffer	bindings,	and	their	indices	do	not
need	to	be	contiguous.	It	is	not	necessary	to	describe	every	binding	in	a	given
pipeline	so	long	as	every	binding	that	is	used	by	that	pipeline	is	described.
The	last	binding	index	addressed	by	the	array	of
VkVertexInputBindingDescription	structures	must	be	less	than	the
maximum	number	of	bindings	supported	by	the	device.	This	limit	is	guaranteed
to	be	at	least	16,	but	for	some	devices,	it	could	be	higher.	If	you	don’t	need	more
than	16	bindings,	then	there’s	no	reason	to	check	the	limit.	However,	you	can
determine	the	highest	binding	index	by	checking	the
maxVertexInputBindings	member	of	the	device’s
VkPhysicalDeviceLimits	structure,	which	is	returned	from	a	call	to



vkGetPhysicalDeviceProperties().
Each	binding	can	be	seen	as	an	array	of	structures	located	in	a	buffer	object.	The
stride	of	the	array—that	is,	the	distance	between	the	start	of	each	structure,
measured	in	bytes—is	specified	in	stride.	If	the	vertex	data	is	specified	as	an
array	of	structures,	the	stride	parameter	essentially	contains	the	size	of	the
structure,	even	if	the	shader	doesn’t	use	every	member	of	it.	The	maximum	value
of	stride	for	any	particular	binding	is	implementation-dependent	but	is
guaranteed	to	be	at	least	2,048	bytes.	If	you	want	to	use	vertex	data	with	a
greater	stride	than	this,	you	need	to	query	the	supported	stride	to	make	sure	that
the	device	can	handle	it.
To	determine	the	maximum	supported	stride,	check	the
maxVertexInputBindingStride	field	of	the	device’s
VkPhysicalDeviceLimits	structure.
Further,	Vulkan	can	iterate	through	the	array	either	as	a	function	of	the	vertex
index	or	as	a	function	of	the	instance	index	when	instancing	is	in	use.	This	is
specified	in	the	inputRate	field,	which	should	be	either
VK_VERTEX_INPUT_RATE_VERTEX	or
VK_VERTEX_INPUT_RATE_INSTANCE.
Each	vertex	attribute	is	essentially	a	member	of	one	of	the	structures	stored	in
the	vertex	buffer.	Each	vertex	attribute	sourced	from	the	vertex	buffer	shares	the
step	rate	and	stride	of	the	array	but	has	its	own	data	type	and	offset	within	that
structure.	This	is	described	using	the
VkVertexInputAttributeDescription	structure.	The	address	of	an
array	of	these	structures	is	passed	in	the
pVertexAttributeDescriptions	field	of
VkPipelineVertexInputStateCreateInfo,	and	the	number	of
elements	in	the	array	(which	is	the	number	of	vertex	attributes)	is	passed	in
vertexAttributeDescriptionCount.	The	definition	of
VkVertexInputAttributeDescription	is	Click	here	to	view	code
image

typedef	struct	VkVertexInputAttributeDescription	{

				uint32_t				location;

				uint32_t				binding;

				VkFormat				format;

				uint32_t				offset;

}	VkVertexInputAttributeDescription;

Each	attribute	has	a	location	that	is	used	to	refer	to	it	in	the	vertex	shader.	Again,
the	vertex	attribute	locations	don’t	need	to	be	contiguous,	and	it’s	not	necessary



to	describe	every	single	vertex	attribute	location	so	long	as	all	the	attributes	used
by	the	pipeline	are	described.	The	attribute’s	location	is	specified	though	the
location	member	of	VkVertexInputAttributeDescription.
The	binding	to	which	the	buffer	is	bound,	and	from	which	this	attribute	sources
its	data,	is	specified	in	binding	and	should	match	one	of	the	bindings	specified
in	the	array	of	VkVertexInputBindingDescription	structures
described	earlier.	The	format	of	the	vertex	data	is	specified	in	format,	and	the
offset	within	each	structure	is	specified	in	offset.
Just	as	the	total	size	of	the	structure	has	an	upper	limit,	there	is	an	upper	limit	to
the	offset	from	the	start	of	the	structure	for	each	attribute:	the	upper	bound	on
offset.	This	is	guaranteed	to	be	at	least	2,047	bytes,	which	is	high	enough	to
place	a	single	byte	right	at	the	end	of	a	structure	of	the	maximum	guaranteed
size	(2,048	bytes).	If	you	need	to	use	bigger	structures	than	this,	you	need	to
check	the	capability	of	the	device	to	handle	it.	The
maxVertexInputAttributeOffset	field	of	the	device’s
VkPhysicalDeviceLimits	structure	contains	the	maximum	value	that	can
be	used	in	offset.	You	can	retrieve	this	structure	by	calling
vkGetPhysicalDeviceProperties().
Listing	7.3	shows	how	to	create	a	structure	in	C++	and	describe	it	using	the
VkVertexInputBindingDescription	and
VkVertexInputAttributeDescription	such	that	you	can	use	it	to
hand	vertex	data	to	Vulkan.

Listing	7.3:	Describing	Vertex	Input	Data	Click	here	to	view	code	image

typedef	struct	vertex_t

{

				vmath::vec4	position;

				vmath::vec3	normal;

				vmath::vec2	texcoord;

}	vertex;

static	const

VkVertexInputBindingDescription	vertexInputBindings[]	=

{

				{	0,	sizeof(vertex),	VK_VERTEX_INPUT_RATE_VERTEX	}				//	Buffer

};

static	const

VkVertexInputAttributeDescription	vertexAttributes[]	=

{

				{	0,	0,	VK_FORMAT_R32G32B32A32_SFLOAT,	0



},																					//	Position

				{	1,	0,	VK_FORMAT_R32G32B32_SFLOAT,	offsetof(vertex,	normal)	},

//	Normal

				{	2,	0,	VK_FORMAT_R32G32_SFLOAT,	offsetof(vertex,	texcoord)

}			//	Tex	Coord

};

static	const

VkPipelineVertexInputStateCreateInfo	vertexInputStateCreateInfo	=

{

				VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,		//

sType

				nullptr,																																							//	pNext

				0,																																													//	flags

				vkcore::utils::arraysize(vertexInputBindings),	//

vertexBindingDescriptionCount

				vertexInputBindings,																											//

pVertexBindingDescriptions

				vkcore::utils::arraysize(vertexAttributes),				//

vertexAttributeDescriptionCount

				vertexAttributes																															//

pVertexAttributeDescriptions

};

The	maximum	number	of	input	attributes	that	can	be	used	in	a	single	vertex
shader	is	implementation-dependent	but	is	guaranteed	to	be	at	least	16.	This	is
the	upper	limit	on	the	number	of
VkVertexInputAttributeDescription	structures	in	the
pVertexInputAttributeDescriptions	array.	Some	implementations
may	support	more	inputs	than	this.	To	determine	the	maximum	number	of	vertex
shader	inputs	that	you	can	use,	check	the	maxVertexInputAttributes
field	of	the	device’s	VkPhysicalDeviceLimits	structure.
Vertex	data	is	read	from	the	vertex	buffers	that	you	bind	to	the	command	buffer
and	then	passed	to	the	vertex	shader.	For	the	vertex	shader	to	be	able	to	interpret
that	vertex	data,	it	must	declare	inputs	corresponding	to	the	vertex	attributes	you
have	defined.	To	do	this,	create	a	variable	in	your	SPIR-V	vertex	shader	with	the
Input	storage	class.	In	a	GLSL	shader,	this	can	be	expressed	using	an	in
variable.
Each	input	must	have	an	assigned	location.	This	is	specified	in	GLSL	using	the
location	layout	qualifier,	which	is	then	translated	into	a	SPIR-V	Location
decoration	applied	to	the	input.	Listing	7.4	shows	a	fragment	of	a	GLSL	vertex
shader	that	declares	a	number	of	inputs.	The	resulting	SPIR-V	produced	by
glslangvalidator	is	shown	in	Listing	7.5.
The	shader	shown	in	Listing	7.5	is	incomplete,	as	it	has	been	edited	to	make	the



declared	inputs	clearer.

Listing	7.4:	Declaring	Inputs	to	a	Vertex	Shader	(GLSL)	Click	here	to	view
code	image

#version	450	core

layout	(location	=	0)	in	vec3	i_position;

layout	(location	=	1)	in	vec2	i_uv;

void	main(void)

{

			gl_Position	=	vec4(i_position,	1.0f);

}

Listing	7.5:	Declaring	Inputs	to	a	Vertex	Shader	(SPIR-V)	Click	here	to	view
code	image

;	SPIR-V

;	Version:	1.0

;	Generator:	Khronos	Glslang	Reference	Front	End;	1

;	Bound:	30

;	Schema:	0

							OpCapability	Shader

		%1	=	OpExtInstImport	"GLSL.std.450"

							OpMemoryModel	Logical	GLSL450

							OpEntryPoint	Vertex	%4	"main"	%13	%18	%29

							OpSource	GLSL	450

							OpName	%18	"i_position"						;;	Name	of	i_position

							OpName	%29	"i_uv"												;;	Name	of	i_uv

							OpDecorate	%18	Location	0				;;	Location	of	i_position

							OpDecorate	%29	Location	1				;;	Location	of	i_uv

...

		%6	=	OpTypeFloat	32											;;	%6	is	32-bit	floating-point	type

	%16	=	OpTypeVector	%6	3								;;	%16	is	a	vector	of	3	32-bit	floats

(vec3)

	%17	=	OpTypePointer	Input	%16

	%18	=	OpVariable	%17	Input					;;	%18	is	i	_position	-	input	pointer

to	vec3

	%27	=	OpTypeVector	%6	2								;;	%27	is	a	vector	of	2	32-bit	floats

	%28	=	OpTypePointer	Input	%27

	%29	=	OpVariable	%28	Input					;;	%29	is	i	_uv	-	input	pointer	to

vec2

...

It	is	also	possible	to	declare	a	vertex	shader	input	that	corresponds	only	to
certain	components	of	the	vertex	attribute.	Again,	the	attribute	is	the	data
supplied	by	your	application	through	vertex	buffers,	and	the	vertex	shader	input
is	the	variable	in	the	vertex	shader	corresponding	to	the	data	read	by	Vulkan	on



your	behalf.
To	create	a	vertex	shader	input	that	corresponds	to	a	subset	of	the	components	of
an	input	vector,	use	the	GLSL	component	layout	qualifier,	which	is	translated
into	a	SPIR-V	Component	decoration	applied	to	the	vertex	shader	input.	Each
vertex	shader	input	can	begin	at	a	component	numbered	0	through	3,
corresponding	to	the	x,	y,	z,	and	w	channels	of	the	source	data.	Each	input
consumes	as	many	consecutive	components	as	it	requires.	That	is,	a	scalar
consumes	a	single	component,	a	vec2	consumes	2,	a	vec3	consumes	3,	and	so
on.
Vertex	shaders	can	also	declare	matrices	as	inputs.	In	GLSL,	this	is	as	simple	as
using	the	in	storage	qualifier	on	a	variable	in	the	vertex	shader.	In	SPIR-V,	a
matrix	is	effectively	declared	as	a	special	type	of	vector	consisting	of	vector
types.	The	matrix	is	considered	to	be	column	primary	by	default.	Therefore,	each
set	of	contiguous	data	fills	a	single	column	of	the	matrix.

Input	Assembly
The	input	assembly	phase	of	the	graphics	pipeline	takes	the	vertex	data	and
groups	it	into	primitives	ready	for	processing	by	the	rest	of	the	pipeline.	It	is
described	by	an	instance	of	the
VkPipelineInputAssemblyStateCreateInfo	structure	that	is	passed
through	the	pInputAssemblyState	member	of	the
VkGraphicsPipelineCreateInfo	structure.	The	definition	of
VkPipelineInputAssemblyStateCreateInfo	is

Click	here	to	view	code	image

typedef	struct	VkPipelineInputAssemblyStateCreateInfo	{

				VkStructureType																												sType;

				const	void*																																pNext;

				VkPipelineInputAssemblyStateCreateFlags				flags;

				VkPrimitiveTopology																								topology;

				VkBool32																																			primitiveRestartEnable;

}	VkPipelineInputAssemblyStateCreateInfo;

The	sType	field	should	be	set	to
VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO

and	pNext	should	be	set	to	nullptr.	The	flags	field	is	reserved	for	future
use	and	should	be	set	to	zero.
The	primitive	topology	is	specified	in	topology,	which	should	be	one	of	the
primitive	topologies	supported	by	Vulkan.	These	are	members	of	the



VkPrimitiveTopology	enumeration.	The	simplest	members	of	this
enumeration	are	the	list	topologies,	which	are	•
VK_PRIMITIVE_TOPOLOGY_POINT_LIST:	Each	vertex	is	used	to	construct
an	independent	point.

•	VK_PRIMITIVE_TOPOLOGY_LINE_LIST:	Vertices	are	grouped	into
pairs,	each	pair	forming	a	line	segment	from	the	first	to	the	second	vertex.
•	VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:	Vertices	are	grouped
into	triplets	forming	triangles.

Next	are	the	strip	and	fan	primitives.	These	are	groupings	of	vertices	into
primitives	(lines	or	triangles)	in	which	each	line	or	triangle	shares	one	or	two
vertices	with	the	previous	one.	The	strip	and	fan	primitives	are	as	follows:	•
VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:	The	first	two	vertices	in	a	draw
form	a	single	line	segment.	Each	new	vertex	after	them	forms	a	new	line
segment	from	the	last	processed	vertex.	The	result	is	a	connected	sequence	of
lines.

•	VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:	The	first	three
vertices	in	a	draw	form	a	single	triangle.	Each	subsequent	vertex	forms	a
new	triangle	along	with	the	last	two	vertices.	The	result	is	a	connected	row
of	triangles,	each	sharing	an	edge	with	the	last.
•	VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:	The	first	three	vertices
in	a	draw	form	a	single	triangle.	Each	subsequent	vertex	forms	a	new
triangle	along	with	the	last	vertex	and	the	first	vertex	in	the	draw.

Strip	and	fan	topologies	are	not	complex	but	can	be	difficult	to	visualize	if	you
are	not	familiar	with	them.	Figure	7.2	shows	these	topologies	laid	out
graphically.

Figure	7.2:	Strip	(Left)	and	Fan	(Right)	Topologies



Next	are	the	adjacency	primitives,	which	are	typically	used	only	when	a
geometry	shader	is	enabled	and	are	able	to	convey	additional	information	about
primitives	next	to	them	in	an	original	mesh.	The	adjacency	primitive	topologies
are	•	VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
Every	four	vertices	in	the	draw	form	a	single	primitive,	with	the	center	two
vertices	forming	a	line	and	the	first	and	last	vertex	in	each	group	of	four	being
presented	to	the	geometry	shader,	when	present.

•	VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:	The
first	four	vertices	in	the	draw	form	a	single	primitive,	with	the	center	two
vertices	forming	a	line	segment	and	the	first	and	last	being	presented	to	the
geometry	shader	as	adjacency	information.	Each	subsequent	vertex
essentially	slides	this	window	of	four	vertices	along	by	one,	forming	a	new
line	segment	and	presenting	the	new	vertex	as	adjacency	information.
•	VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
Similar	to	lines	with	adjacency,	each	group	of	six	vertices	is	formed	into	a
single	primitive,	with	the	first,	third,	and	fifth	in	each	group	constructing	a
triangle	and	the	second,	fourth,	and	sixth	being	presented	to	the	geometry
shader	as	adjacency	information.
•
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
This	is	perhaps	the	most	confusing	primitive	topology	and	certainly	needs	a
diagram	to	visualize.	Essentially,	the	strip	begins	with	the	first	six	vertices
forming	a	triangle	with	adjacency	information	as	in	the	list	case.	For	every
two	new	vertices,	a	new	triangle	is	formed,	with	the	odd-numbered	vertices
forming	the	triangle	and	the	even-numbered	vertices	providing	adjacency
information.

Again,	adjacency	topologies	can	be	quite	difficult	to	visualize—especially	the
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY

topology.	Figure	7.3	illustrates	the	layout	of	vertices	within	the
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY

topology.	In	the	figure	you	can	see	that	there	are	two	triangles	formed	from	a
total	of	12	vertices.	The	vertices	wrap	around	the	outside	of	each	triangle,	with
the	odd-numbered	vertices	forming	the	center	triangles	(A	and	B)	and	the	even-
numbered	vertices	forming	virtual	triangles	that	are	not	rendered,	but	carry
adjacency	information.	This	concept	carries	on	to	the	triangle	strip



Figure	7.3:	Triangles	with	Adjacency	Topology

primitive.	Figure	7.4	shows	how	it	is	applied	to	the
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY.

Figure	7.4:	Triangle	Strip	with	Adjacency	Topology

Adjacency	topologies	are	typically	used	only	when	a	geometry	shader	is	present,



as	the	geometry	shader	is	the	only	stage	that	really	sees	the	adjacency	vertices.
However,	it’s	possible	to	use	adjacency	primitives	without	a	geometry	shader;
the	adjacency	vertices	will	simply	be	discarded.
The	last	primitive	topology	is	VK_PRIMITIVE_TOPOLOGY_PATCH_LIST.
This	topology	is	used	when	tessellation	is	enabled,	which	requires	additional
information	to	be	passed	to	pipeline	construction.
The	last	field	in	VkPipelineInputAssemblyStateCreateInfo	is
primitiveRestartEnable.	This	is	a	flag	that	is	used	to	allow	strip	and	fan
primitive	topologies	to	be	cut	and	restarted.	Without	this,	each	strip	or	fan	would
need	to	be	a	separate	draw.	When	you	use	restarts,	many	strips	or	fans	can	be
combined	into	a	single	draw.	Restarts	take	effect	only	when	indexed	draws	are
used	because	the	point	at	which	to	restart	the	strip	is	marked	using	a	special,
reserved	value	in	the	index	buffer.	This	is	covered	in	more	detail	in	Chapter	8,
“Drawing.”

Tessellation	State
Tessellation	is	the	process	of	breaking	a	large,	complex	primitive	into	a	large
number	of	smaller	primitives	approximating	the	original.	Vulkan	can	tessellate	a
patch	primitive	into	many	smaller	point,	line,	or	triangle	primitives	prior	to
geometry	shading	and	rasterization.	Most	of	the	state	related	to	tessellation	is
configured	using	the	tessellation	control	shader	and	tessellation	evaluation
shader.	However,	because	these	shading	stages	don’t	run	until	vertex	data	has
already	been	fetched	and	processed	by	the	vertex	shader,	some	information	is
needed	up	front	to	configure	this	stage	of	the	pipeline.
This	information	is	provided	through	an	instance	of	the
VkPipelineTessellationStateCreateInfo	structure,	pointed	to	by
the	pTessellationState	member	of
VkGraphicsPipelineCreateInfo.	The	definition	of
VkPipelineTessellationStateCreateInfo	is	Click	here	to	view
code	image

typedef	struct	VkPipelineTessellationStateCreateInfo	{

				VkStructureType																											sType;

				const	void*																															pNext;

				VkPipelineTessellationStateCreateFlags				flags;

				uint32_t																																		patchControlPoints;

}	VkPipelineTessellationStateCreateInfo;

When	the	topology	field	of	the
VkPipelineInputAssemblyStateCreateInfo	structure	is	set	to



VK_PRIMITIVE_TOPOLOGY_PATCH_LIST,	pTessellationState
must	be	a	pointer	to	a	VkPipelineTessellationStateCreateInfo
structure;	otherwise,	pTessellationState	can	be	nullptr.
sType	for	VkPipelineTessellationStateCreateInfo	is
VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO

pNext	should	be	set	to	nullptr,	and	flags	is	reserved	for	use	in	future
versions	of	Vulkan	and	should	be	set	to	zero.	The	only	field	of	significance	in
VkPipelineTessellationStateCreateInfo	is
patchControlPoints,	which	sets	the	number	of	control	points	that	will	be
grouped	into	a	single	primitive	(patch).	Tessellation	is	a	somewhat	advanced
topic	and	will	be	covered	in	more	detail	in	Chapter	9,	“Geometry	Processing.”

Viewport	State
Viewport	transformation	is	the	final	coordinate	transform	in	the	Vulkan	pipeline
before	rasterization	occurs.	It	transforms	vertices	from	normalized	device
coordinates	into	window	coordinates.	Multiple	viewports	can	be	in	use
simultaneously.	The	state	of	these	viewports,	including	the	number	of	active
viewports	and	their	parameters,	is	set	through	an	instance	of	the
VkPipelineViewportStateCreateInfo	structure,	the	address	of	which
is	passed	through	the	pViewportState	member	of
VkGraphicsPipelineCreateInfo.	The	definition	of
VkPipelineViewportStateCreateInfo	is

Click	here	to	view	code	image

typedef	struct	VkPipelineViewportStateCreateInfo	{

				VkStructureType																							sType;

				const	void*																											pNext;

				VkPipelineViewportStateCreateFlags				flags;

				uint32_t																														viewportCount;

				const	VkViewport*																					pViewports;

				uint32_t																														scissorCount;

				const	VkRect2D*																							pScissors;

}	VkPipelineViewportStateCreateInfo;

The	sType	field	of	VkPipelineViewportStateCreateInfo	should	be
set	to
VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
and	pNext	should	be	set	to	nullptr.	The	flags	field	is	reserved	for	use	in	a
future	version	of	Vulkan	and	should	be	set	to	zero.
The	number	of	viewports	that	will	be	available	to	the	pipeline	is	set	in



viewportCount,	and	the	dimensions	of	each	viewport	are	passed	in	an	array
of	VkViewport	structures,	the	address	of	which	is	specified	in	pViewports.
The	definition	of	VkViewport	is	typedef	struct	VkViewport	{
				float				x;
				float				y;
				float				width;
				float				height;
				float				minDepth;
				float				maxDepth;
}	VkViewport;
The	VkPipelineViewportStateCreateInfo	structure	is	also	used	to
set	the	scissor	rectangles	for	the	pipeline.	As	with	viewports,	a	single	pipeline
can	define	multiple	scissor	rectangles,	and	they	are	passed	through	an	array	of
VkRect2D	structures.	The	number	of	scissor	rectangles	is	specified	in
scissorCount.	Note	that	the	index	used	for	the	viewport	and	scissor
rectangles	when	drawing	is	the	same,	so	you	must	set	scissorCount	to	the
same	value	as	viewportCount.	VkRect2D	is	a	simple	structure	defining	a
rectangle	in	2D	and	is	used	for	many	things	in	Vulkan.	Its	definition	is
typedef	struct	VkRect2D	{
				VkOffset2D				offset;
				VkExtent2D				extent;
}	VkRect2D;
Support	for	multiple	viewports	is	optional.	When	multiple	viewports	are
supported,	then	at	least	16	are	available.	The	maximum	number	of	viewports	that
can	be	enabled	in	a	single	graphics	pipeline	can	be	determined	by	inspecting	the
maxViewports	member	of	the	VkPhysicalDeviceLimits	structure
returned	from	a	call	to	vkGetPhysicalDeviceProperties().	If
multiple	viewports	are	supported,	then	this	limit	will	be	at	least	16.	Otherwise,
this	field	will	contain	the	value	1.
More	information	about	how	the	viewport	transformation	works	and	how	to
utilize	multiple	viewports	in	your	application	is	given	in	Chapter	9,	“Geometry
Processing.”	Further	information	about	scissor	testing	is	contained	in	Chapter
10,	“Fragment	Processing.”	In	order	to	simply	render	to	the	full	framebuffer,
disable	the	scissor	test	and	create	a	single	viewport	with	the	same	dimensions	as
the	framebuffer’s	color	attachments.

Rasterization	State



Rasterization	is	the	fundamental	process	whereby	primitives	represented	by
vertices	are	turned	into	streams	of	fragments	ready	to	be	shaded	by	your
fragment	shader.	The	state	of	the	rasterizer	controls	how	this	process	occurs	and
is	set	using	an	instance	of	the
VkPipelineRasterizationStateCreateInfo	passed	through	the
pRasterizationState	member	of
VkGraphicsPipelineCreateInfo.	The	definition	of
VkPipelineRasterizationStateCreateInfo	is

Click	here	to	view	code	image

typedef	struct	VkPipelineRasterizationStateCreateInfo	{

				VkStructureType																												sType;

				const	void*																																pNext;

				VkPipelineRasterizationStateCreateFlags				flags;

				VkBool32																																			depthClampEnable;

				VkBool32																																			rasterizerDiscardEnable;

				VkPolygonMode																														polygonMode;

				VkCullModeFlags																												cullMode;

				VkFrontFace																																frontFace;

				VkBool32																																			depthBiasEnable;

				float																																						depthBiasConstantFactor;

				float																																						depthBiasClamp;

				float																																						depthBiasSlopeFactor;

				float																																						lineWidth;

}	VkPipelineRasterizationStateCreateInfo;

The	sType	field	of	VkPipelineRasterizationStateCreateInfo
should	be	set	to
VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO

and	pNext	should	be	set	to	nullptr.	The	flags	field	is	reserved	and	should
be	set	to	zero.
The	depthClampEnable	field	is	used	to	turn	depth	clamping	on	or	off.	Depth
clamping	causes	fragments	that	would	have	been	clipped	away	by	the	near	or	far
planes	to	instead	be	projected	onto	those	planes	and	can	be	used	to	fill	holes	in
geometry	that	would	be	caused	by	clipping.
rasterizerDiscardEnable	is	used	to	turn	off	rasterization	altogether.
When	this	flag	is	set,	the	rasterizer	will	not	run,	and	no	fragments	will	be
produced.
The	polygonMode	field	can	be	used	to	get	Vulkan	to	turn	triangles	into	points
or	lines	automatically.	The	possible	values	for	polygonMode	are	•
VK_POLYGON_MODE_FILL:	This	is	the	normal	mode	that	is	used	to	fill	in
triangles.	Triangles	will	be	drawn	solid,	and	every	point	inside	the	triangle	will



create	a	fragment.
•	VK_POLYGON_MODE_LINE:	This	mode	turns	the	triangles	into	lines,	with
each	edge	of	each	triangle	becoming	a	line.	This	is	useful	for	drawing
geometry	in	wireframe	mode.
•	VK_POLYGON_MODE_POINT:	This	mode	simply	draws	each	vertex	as	a
point.

The	advantage	of	using	the	polygon	mode	to	turn	geometry	into	wireframe	or
point	clouds	over	simply	drawing	lines	or	points	is	that	operations	that	operate
only	on	complete	triangles,	such	as	back-face	culling,	are	still	performed.	Thus,
lines	that	would	have	encompassed	a	culled	triangle	are	not	drawn,	whereas	they
would	be	if	the	geometry	were	simply	drawn	as	lines.
Culling	is	controlled	with	cullMode,	which	can	be	zero	or	a	bitwise
combination	of	either	of	the	following:	•	VK_CULL_MODE_FRONT_BIT:
Polygons	(triangles)	that	are	considered	to	face	the	viewer	are	discarded.

•	VK_CULL_MODE_BACK_BIT:	Polygons	that	are	considered	to	face	away
from	the	viewer	are	discarded.

For	convenience,	Vulkan	defines	VK_CULL_MODE_FRONT_AND_BACK	as	the
bitwise	OR	of	both	VK_CULL_MODE_FRONT_BIT	and
VK_CULL_MODE_BACK_BIT.	Setting	cullMode	to	this	value	will	result	in
all	triangles	being	dicarded.	Note	that	culling	doesn’t	affect	lines	or	points
because	they	don’t	have	a	facing	direction.
Which	direction	a	triangle	is	facing	is	determined	from	the	winding	order	of	its
vertices—whether	they	proceed	clockwise	or	counterclockwise	in	window
space.	Which	of	clockwise	or	counterclockwise	is	considered	front-facing	is
determined	by	the	frontFace	field.	This	is	a	member	of	the	VkFrontFace
enumeration	and	can	be	either	VK_FRONT_FACE_COUNTER_CLOCKWISE	or
VK_FRONT_FACE_CLOCKWISE.
The	next	four	parameters—depthBiasEnable,
depthBiasConstantFactor,	depthBiasClamp,	and
depthBiasSlopeFactor—control	the	depth	bias	feature.	This	feature
allows	fragments	to	be	offset	in	depth	before	the	depth	test	and	can	be	used	to
prevent	depth	fighting.	This	feature	is	discussed	in	some	detail	in	Chapter	10,
“Fragment	Processing.”
Finally,	lineWidth	sets	the	width	of	line	primitives,	in	pixels.	This	applies	to
all	lines	rasterized	with	the	pipeline.	This	includes	pipelines	in	which	the
primitive	topology	is	one	of	the	line	primitives,	the	geometry	or	tessellation



shaders	turn	the	input	primitives	into	lines,	and	the	polygon	mode	(set	by
polygonMode)	is	VK_POLYGON_MODE_LINE.	Note	that	some	Vulkan
implementations	don’t	support	wide	lines	and	will	ignore	this	field.	Others	may
run	very	slowly	when	this	field	is	not	1.0;	still	others	may	honor	this	field
completely	and	throw	away	all	your	lines	if	you	set	lineWidth	to	0.0.
Therefore,	you	should	always	set	this	field	to	1.0	unless	you’re	sure	you	want
something	else.
Even	when	wide	lines	are	supported,	the	maximum	width	of	a	line	is	device-
dependent.	It	is	guaranteed	to	be	at	least	8	pixels	but	could	be	much	higher.	To
determine	the	maximum	line	width	supported	by	a	device,	check	the
lineWidthRange	field	of	its	VkPhysicalDeviceLimits	structure.	This
is	an	array	of	two	floating-point	values,	the	first	being	the	minimum	width	of	a
line	(which	will	be	at	most	1	pixel;	its	purpose	is	for	drawing	lines	that	are	less
than	a	pixel	wide)	and	the	second	being	the	maximum	width	of	a	line.	If	variable
line	width	is	not	supported,	then	both	elements	of	the	array	will	be	1.0.
Further,	as	line	width	is	changed,	a	device	may	snap	the	width	you	specify	into
fixed-size	increments.	For	example,	it	may	support	only	whole-pixel	size
changes.	This	is	the	line	width	granularity,	which	can	be	determined	by
inspecting	the	lineWidthGranularity	field	of	the
VkPhysicalDeviceLimits	structure.

Multisample	State
Multisampling	is	the	process	of	generating	multiple	samples	for	each	pixel	in	an
image.	It	is	used	to	combat	aliasing	and	can	greatly	improve	image	quality	when
used	effectively.	When	you	use	multisampling,	the	color	and	depth-stencil
attachments	must	be	multisample	images,	and	the	multisample	state	of	the
pipeline	should	be	set	appropriately	through	the	pMultisampleState
member	of	VkGraphicsPipelineCreateInfo.	This	is	a	pointer	to	an
instance	of	the	VkPipelineMultisampleStateCreateInfo	structure,
the	definition	of	which	is

Click	here	to	view	code	image

typedef	struct	VkPipelineMultisampleStateCreateInfo	{

				VkStructureType																										sType;

				const	void*																														pNext;

				VkPipelineMultisampleStateCreateFlags				flags;

				VkSampleCountFlagBits																				rasterizationSamples;

				VkBool32																																	sampleShadingEnable;

				float																																				minSampleShading;

				const	VkSampleMask*																						pSampleMask;



				VkBool32																																	alphaToCoverageEnable;

				VkBool32																																	alphaToOneEnable;

}	VkPipelineMultisampleStateCreateInfo;

The	sType	field	of	VkPipelineMultisampleStateCreateInfo
should	be	set	to
VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO

and	pNext	should	be	set	to	nullptr.	The	flags	field	is	reserved	and	should
be	set	to	zero.

Depth	and	Stencil	State
The	depth-stencil	state	controls	how	the	depth	and	stencil	tests	are	conducted
and	what	happens	to	a	fragment	should	it	pass	or	fail	either	of	those	tests.	The
depth	and	stencil	tests	can	be	performed	either	before	or	after	the	fragment
shader	runs.	By	default,	the	tests	occur	after	the	fragment	shader.1

1.	Most	implementations	will	only	keep	up	the	appearance	that	the	depth	and	stencil	tests	are	running
after	the	fragment	shader	and,	if	possible,	run	the	tests	before	running	the	shader	to	avoid	running
shader	code	when	the	test	would	fail.

To	run	the	fragment	shader	before	the	depth	test,	we	can	apply	the	SPIR-V
EarlyFragmentTests	execution	mode	to	the	entry	point	of	our	fragment
shader.
The	depth-stencil	state	is	configured	through	the	pDepthStencilState
member	of	VkGraphicsPipelineCreateInfo,	which	is	a	pointer	to	an
instance	of	the	VkPipelineDepthStencilStateCreateInfo	structure.
The	definition	of	VkPipelineDepthStencilStateCreateInfo	is
Click	here	to	view	code	image

typedef	struct	VkPipelineDepthStencilStateCreateInfo	{

				VkStructureType																											sType;

				const	void*																															pNext;

				VkPipelineDepthStencilStateCreateFlags				flags;

				VkBool32																																		depthTestEnable;

				VkBool32																																		depthWriteEnable;

				VkCompareOp																															depthCompareOp;

				VkBool32																																		depthBoundsTestEnable;

				VkBool32																																		stencilTestEnable;

				VkStencilOpState																										front;

				VkStencilOpState																										back;

				float																																					minDepthBounds;

				float																																					maxDepthBounds;

}	VkPipelineDepthStencilStateCreateInfo;

The	sType	field	for	VkPipelineDepthStencilStateCreateInfo
should	be	set	to



VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_CREATE_INFO

and	pNext	should	be	set	to	nullptr.	The	flags	field	is	reserved	and	should
be	set	to	zero.
The	depth	test	is	enabled	if	depthTestEnable	is	set	to	VK_TRUE.	If	the
depth	test	is	enabled,	then	the	test	to	use	is	selected	using	depthCompareOp,
which	is	one	of	the	VkCompareOp	enumerant	values.	The	available	depth
testing	operations	are	discussed	in	more	detail	in	Chapter	10,	“Fragment
Processing.”	If	depthTestEnable	is	set	to	VK_FALSE,	then	the	depth	test	is
enabled.	The	value	of	depthCompareOp	is	enabled,	and	all	fragments	are
considered	to	have	passed	the	depth	test.	It	should	be	noted,	however,	that	when
the	depth	test	is	disabled,	no	writes	to	the	depth	buffer	occur.
If	the	depth	test	passes	(or	if	the	depth	test	is	disabled),	then	the	fragment	passes
on	to	the	stencil	test.	The	stencil	test	is	enabled	if	the	stencilTestEnable
field	of	VkPipelineDepthStencilCreateInfo	is	set	to	VK_TRUE	and
disabled	otherwise.	When	stencil	testing	is	enabled,	a	separate	state	is	provided
for	front-and	back-facing	primitives	in	the	front	and	back	members,
respectively.	If	stencil	test	is	disabled,	all	fragments	are	considered	to	have
passed	the	stencil	test.
The	details	of	depth	and	stencil	testing	are	covered	in	more	depth	in	Chapter	10,
“Fragment	Processing.”

Color	Blend	State
The	final	stage	in	the	Vulkan	graphics	pipeline	is	the	color	blend	stage.	This
stage	is	responsible	for	writing	fragments	into	the	color	attachments.	In	many
cases,	this	is	a	simple	operation	that	simply	overwrites	the	existing	content	of	the
attachment	with	value(s)	output	from	the	fragment	shader.	However,	the	color
blender	is	capable	of	mixing	(blending)	those	values	with	the	values	already	in
the	framebuffer	and	performing	simple	logical	operations	between	the	output	of
the	fragment	shader	and	the	current	content	of	the	framebuffer.
The	state	of	the	color	blender	is	specified	using	the	pColorBlendState
member	of	the	VkGraphicsPipelineCreateInfo	structure.	This	is	a
pointer	to	an	instance	of	the	VkPipelineColorBlendStateCreateInfo
structure,	the	definition	of	which	is	Click	here	to	view	code	image

typedef	struct	VkPipelineColorBlendStateCreateInfo	{

				VkStructureType																															sType;

				const	void*																																			pNext;

				VkPipelineColorBlendStateCreateFlags										flags;

				VkBool32																																						logicOpEnable;



				VkLogicOp																																					logicOp;

				uint32_t																																						attachmentCount;

				const	VkPipelineColorBlendAttachmentState*				pAttachments;

				float																																									blendConstants[4];

}	VkPipelineColorBlendStateCreateInfo;

The	sType	field	of	VkPipelineColorBlendStateCreateInfo	should
be	set	to
VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO

and	pNext	should	be	set	to	nullptr.	The	flags	field	is	reserved	for	future
use	and	should	be	set	to	zero.
The	logicOpEnable	field	specifies	whether	to	perform	logical	operations
between	the	output	of	the	fragment	shader	and	the	content	of	the	color
attachments.	When	logicOpEnable	is	VK_FALSE,	then	logical	operations
are	disabled	and	values	produced	by	the	fragment	shader	are	written	into	the
color	attachment	unmodified.	When	logicOpEnable	is	VK_TRUE,	logic
operations	are	enabled	for	the	attachments	that	support	them.	The	logic	operation
to	apply	is	the	same	for	every	attachment	and	is	a	member	of	the	VkLogicOp
numeration.	The	meaning	of	each	of	the	enumerants	and	more	information	about
logical	operations	is	given	in	Chapter	10,	“Fragment	Processing.”
Each	attachment	can	have	a	different	format,	and	can	support	different	blending
operations.	These	are	specified	with	an	array	of
VkPipelineColorBlendAttachmentState	structures,	the	address	of
which	is	passed	through	the	pAttachments	member	of
VkPipelineColorBlendStateCreateInfo.	The	number	of	attachments
is	set	in	attachmentCount.	The	definition	of
VkPipelineColorBlendAttachmentState	is	Click	here	to	view	code
image

typedef	struct	VkPipelineColorBlendAttachmentState	{

				VkBool32																	blendEnable;

				VkBlendFactor												srcColorBlendFactor;

				VkBlendFactor												dstColorBlendFactor;

				VkBlendOp																colorBlendOp;

				VkBlendFactor												srcAlphaBlendFactor;

				VkBlendFactor												dstAlphaBlendFactor;

				VkBlendOp																alphaBlendOp;

				VkColorComponentFlags				colorWriteMask;

}	VkPipelineColorBlendAttachmentState;

For	each	color	attachment,	the	members	of
VkPipelineColorBlendAttachmentState	control	whether	blending	is
enabled,	what	the	source	and	destination	factors	are,	what	the	blending	operation



is	(for	both	the	color	and	alpha	channels	separately),	and	which	channels	in	the
output	image	are	to	be	updated.
If	the	colorBlendEnable	field	of
VkPipelineColorBlendAttachmentState	is	VK_TRUE,	then	the
remaining	parameters	control	the	state	of	blending.	Blending	will	be	covered	in
more	detail	in	Chapter	10,	“Fragment	Processing.”	When
colorBlendEnable	is	VK_FALSE,	the	blending	parameters	in
VkPipelineColorBlendAttachmentState	are	ignored,	and	blending	is
disabled	for	that	attachment.
Regardless	of	the	state	of	colorBlendEnable,	the	final	field,
colorWriteMask,	controls	which	channels	of	the	output	image	are	written	in
this	attachment.	It	is	a	bitfield	made	up	of	bits	from	the
VkColorComponentFlagBits	enumeration.	The	four	channels,	represented
by	VK_COLOR_COMPONENT_R_BIT,	VK_COLOR_COMPONENT_G_BIT,
VK_COLOR_COMPONENT_B_BIT,	and	VK_COLOR_COMPONENT_A_BIT,
can	be	individually	masked	out	for	writing.	If	the	flag	corresponding	to	a
particular	channel	is	not	included	in	colorWriteMask,	then	that	channel	will
not	be	modified.	Only	the	channels	included	in	colorWriteMask	will	be
updated	through	rendering	to	the	attachment.

Dynamic	State
As	you	have	seen,	the	graphics	pipeline	object	is	large	and	complex,	and
contains	a	lot	of	state.	In	many	graphics	applications,	it	is	often	desirable	to	be
able	to	change	some	states	at	a	relatively	high	frequency.	If	every	change	in
every	state	required	that	you	created	a	new	graphics	pipeline	object,	then	the
number	of	objects	your	application	would	have	to	manage	would	quickly
become	very	large.
To	make	fine-grained	state	changes	more	manageable,	Vulkan	provides	the
ability	to	mark	particular	parts	of	the	graphics	pipeline	as	dynamic,	which	means
that	they	can	be	updated	on	the	fly	using	commands	directly	inside	the	command
buffer	rather	than	using	an	object.	Because	this	reduces	the	opportunity	for
Vulkan	to	optimize	or	absorb	parts	of	state,	it’s	necessary	to	specify	exactly	what
state	you	want	to	make	dynamic.	This	is	done	through	the	pDynamicState
member	of	the	VkGraphicsPipelineCreateInfo	structure,	which	is	a
pointer	to	an	instance	of	the	VkPipelineDynamicStateCreateInfo
structure,	the	definition	of	which	is	Click	here	to	view	code	image

typedef	struct	VkPipelineDynamicStateCreateInfo	{



				VkStructureType																					sType;

				const	void*																									pNext;

				VkPipelineDynamicStateCreateFlags			flags;

				uint32_t																												dynamicStateCount;

				const	VkDynamicState*															pDynamicStates;

}	VkPipelineDynamicStateCreateInfo;

The	sType	for	VkPipelineDynamicStateCreateInfo	should	be	set	to
VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
and	pNext	should	be	set	to	nullptr.	The	flags	field	is	reserved	and	should
be	set	to	zero.
The	number	of	states	that	you	wish	to	be	dynamic	is	specified	in
dynamicStateCount.	This	is	the	length	of	the	array	pointed	to	by
pDynamicStates,	which	is	an	array	of	elements	from	the
VkDynamicState	enumeration.	Including	a	member	of	this	enumeration	in
the	pDynamicStates	array	tells	Vulkan	that	you	want	to	be	able	to	change
that	state	using	the	corresponding	dynamic	state	setting	commands.	The
members	of	VkDynamicState	and	their	meanings	are	as	follows:	•
VK_DYNAMIC_STATE_VIEWPORT:	The	viewport	rectangle	is	dynamic	and
will	be	updated	using	vkCmdSetViewport().

•	VK_DYNAMIC_STATE_SCISSOR:	The	scissor	rectangle	is	dynamic	and
will	be	updated	using	vkCmdSetScissor().
•	VK_DYNAMIC_STATE_LINE_WIDTH:	The	line	width	is	dynamic	and	will
be	updated	using	vkCmdSetLineWidth().
•	VK_DYNAMIC_STATE_DEPTH_BIAS:	The	depth	bias	parameters	are
dynamic	and	will	be	updated	using	vkCmdSetDepthBias().
•	VK_DYNAMIC_STATE_BLEND_CONSTANTS:	The	color	blend	constants
are	dynamic	and	will	be	updated	using	vkCmdSetBlendConstants().
•	VK_DYNAMIC_STATE_DEPTH_BOUNDS:	The	depth	bounds	parameters
are	dynamic	and	will	be	updated	using	vkCmdSetDepthBounds().
•	VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK,
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK,	and
VK_DYNAMIC_STATE_STENCIL_REFERENCE:	The	corresponding
stencil	parameters	are	dynamic	and	will	be	updated	using
vkCmdSetStencilCompareMask(),
vkCmdSetStencilWriteMask(),	and
vkCmdSetStencilReference(),	respectively.

If	a	state	is	specified	as	being	dynamic,	then	it	becomes	your	responsibility	to	set



that	state	when	binding	the	pipeline.	If	the	state	is	not	marked	as	dynamic,	then	it
is	considered	static	and	is	set	when	the	pipeline	is	bound.	Binding	a	pipeline
with	static	state	makes	the	dynamic	state	undefined.	The	reason	for	this	is	that
Vulkan	implementations	might	optimize	static	states	into	the	pipeline	object	and
not	actually	program	them	into	hardware	if	they’re	not	used	or	if	it	can	otherwise
be	determined	that	this	is	valid.	When	a	pipeline	with	that	state	marked	dynamic
is	subsequently	bound,	it’s	not	defined	whether	the	dynamic	state	is	consistent	in
hardware.
When	you	are	switching	between	pipelines	that	mark	the	same	state	as	dynamic,
however,	then	the	state	remains	persistent	across	binds.	Table	7.1	illustrates	this.

Table	7.1:	Dynamic	and	Static	State	Validity

As	you	can	see	in	Table	7.1,	the	only	case	in	which	state	becomes	undefined
occurs	when	switching	from	a	pipeline	with	that	state	marked	as	static	to	one	in
which	the	same	state	is	marked	as	dynamic.	In	all	other	cases,	the	state	is	well
defined	and	comes	from	either	the	pipeline’s	state	or	the	dynamic	state	set	with
the	appropriate	command.
If	you	set	a	dynamic	state	when	a	pipeline	with	that	state	set	as	static	is	currently
bound,	the	results	are	undefined	if	you	then	draw	with	that	pipeline.	The	effect
could	be	to	ignore	the	state-setting	command	and	continue	to	use	the	static
version	of	the	state	from	the	pipeline,	honor	the	state-setting	command	and	use
the	new	dynamic	state,	or	corrupt	state	altogether	and	break	your	application
entirely.	The	effect	will	be	different	across	implementations	and	will	likely
depend	on	which	state	is	erroneously	overridden.
Setting	dynamic	state	and	then	binding	a	pipeline	with	that	state	marked	as
dynamic	should	cause	the	dynamic	state	to	be	used.	However,	it’s	good	practice
to	bind	the	pipeline	first	and	then	bind	any	related	state	simply	to	avert	the
possibility	of	undefined	behavior.

Summary
This	chapter	provided	a	whirlwind	tour	of	the	Vulkan	graphics	pipeline.	The



pipeline	consists	of	multiple	stages,	some	of	which	are	configurable	but	fixed-
function,	and	some	of	which	are	made	up	of	extremely	powerful	shaders.
Building	on	the	concept	of	the	pipeline	object	introduced	in	Chapter	6,	“Shaders
and	Pipelines,”	the	graphics	pipeline	object	was	introduced.	This	object	includes
a	large	amount	of	fixed	function	state.	Although	the	pipelines	built	in	this
chapter	were	simple,	a	solid	foundation	was	laid	upon	which	to	build	more
complex	and	expressive	pipelines	in	later	chapters.



Chapter	8.	Drawing

What	You’ll	Learn	in	This	Chapter	•	The	details	of	the	different
drawing	commands	in	Vulkan	•	How	to	draw	many	copies	of	data
through	instancing	•	How	to	pass	drawing	parameters	through
buffers

Drawing	is	the	fundamental	operation	in	Vulkan	that	triggers	work	to	be
performed	by	a	graphics	pipeline.	Vulkan	includes	several	drawing	commands,
each	generating	graphics	work	in	slightly	different	ways.	This	chapter	delves
deep	into	the	drawing	commands	supported	by	Vulkan.	First,	we	reintroduce	the
basic	drawing	command	first	discussed	in	Chapter	7,	“Graphics	Pipelines”;	then
we	explore	indexed	and	instanced	drawing	commands.	Finally,	we	discuss	a
method	to	retrieve	the	parameters	for	a	drawing	command	from	device	memory
and	even	generate	them	on	the	device	itself.
Back	in	Chapter	7,	“Graphics	Pipelines,”	you	were	introduced	to	your	first
drawing	command,	vkCmdDraw().	This	command	simply	pushes	vertices	into
the	Vulkan	graphics	pipeline.	When	we	introduced	the	command,	we	glossed
over	some	of	its	parameters.	We	also	hinted	at	the	existence	of	other	drawing
commands.	For	reference,	here	is	the	prototype	for	vkCmdDraw()	again:	Click
here	to	view	code	image

void	vkCmdDraw	(

				VkCommandBuffer																				commandBuffer,

				uint32_t																											vertexCount,

				uint32_t																											instanceCount,

				uint32_t																											firstVertex,

				uint32_t																											firstInstance);

As	with	all	commands	that	execute	on	the	device,	the	first	parameter	is	a
VkCommandBuffer	handle.	The	number	of	vertices	in	each	draw	is	specified
in	vertexCount,	and	the	vertex	index	from	which	the	vertices	start	is
specified	in	firstVertex.	The	vertices	that	are	sent	down	the	pipeline	have
indices	starting	from	firstVertex	and	proceed	through	vertexCount
contiguous	vertices.	If	you’re	using	vertex	buffers	and	attributes	to	automatically
feed	data	into	your	vertex	shader,	then	the	shader	will	see	data	fetched	from	that
contiguous	section	of	the	arrays.	If	you’re	using	the	vertex	index	directly	in	your



shader,	you	will	see	it	count	monotonically	from	firstVertex	upward.

Getting	Ready	to	Draw
As	we	mentioned	back	in	Chapter	7,	“Graphics	Pipelines,”	all	drawing	is
contained	inside	a	renderpass.	Although	renderpass	objects	can	encapsulate
many	subpasses,	even	simple	rendering	that	draws	into	a	single	output	image
must	be	part	of	a	renderpass.	The	renderpass	is	created	by	calling
vkCreateRenderPass()	as	described	in	Chapter	7.	To	prepare	for
rendering,	we	need	to	call	vkCmdBeginRenderPass(),	which	sets	the
current	renderpass	object	and,	perhaps	more	important,	configures	the	set	of
output	images	that	will	be	drawn	into.	The	prototype	of
vkCmdBeginRenderPass()	is

Click	here	to	view	code	image

void	vkCmdBeginRenderPass	(

				VkCommandBuffer																										commandBuffer,

				const	VkRenderPassBeginInfo*													pRenderPassBegin,

				VkSubpassContents																								contents);

The	command	buffer	that	will	contain	the	commands	issued	inside	the
renderpass	is	passed	in	commandBuffer.	The	bulk	of	the	parameters
describing	the	renderpass	are	passed	through	a	pointer	to	an	instance	of	the
VkRenderPassBeginInfo	structure	in	pRenderPassBegin.	The
definition	of	VkRenderPassBeginInfo	is	Click	here	to	view	code	image

typedef	struct	VkRenderPassBeginInfo	{

				VkStructureType								sType;

				const	void*												pNext;

				VkRenderPass											renderPass;

				VkFramebuffer										framebuffer;

				VkRect2D															renderArea;

				uint32_t															clearValueCount;

				const	VkClearValue*				pClearValues;

}	VkRenderPassBeginInfo;

The	sType	field	of	the	VkRenderPassBeginInfo	structure	should	be	set
to	VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,	and	pNext
should	be	set	to	nullptr.	The	renderpass	that	is	begun	is	specified	in
renderPass,	and	the	framebuffer	that	we’re	going	to	render	into	is	specified
in	framebuffer.	As	discussed	in	Chapter	7,	“Graphics	Pipelines,”	the
framebuffer	is	the	collection	of	images	that	will	be	rendered	to	by	graphics
commands.
Within	any	particular	use	of	a	renderpass,	we	can	choose	to	render	only	into	a



small	area	of	the	attached	images.	To	do	this,	use	the	renderArea	member	of
the	VkRenderPassBeginInfo	structure	to	specify	the	rectangle	in	which	all
rendering	will	be	contained.	Simply	setting	renderArea.offset.x	and
renderArea.offset.y	to	0	and	renderArea.extent.width	and
renderArea.extent.height	to	the	width	and	height	of	the	images	in	the
framebuffer	tells	Vulkan	that	you’re	going	to	render	into	the	whole	rendering
area	of	the	framebuffer.
If	any	of	the	attachments	in	the	renderpass	have	a	load	operation	of
VK_ATTACHMENT_LOAD_OP_CLEAR,	then	the	colors	or	values	that	you	want
to	clear	them	to	are	specified	in	an	array	of	VkClearValue	unions,	a	pointer
to	which	is	passed	in	pClearValues.	The	number	of	elements	in
pClearValues	is	passed	in	clearValueCount.	The	definition	of
VkClearValue	is	Click	here	to	view	code	image

typedef	union	VkClearValue	{

				VkClearColorValue													color;

				VkClearDepthStencilValue						depthStencil;

}	VkClearValue;

If	the	attachment	is	a	color	attachment,	then	the	values	stored	in	the	color
member	of	the	VkClearValue	union	are	used,	and	if	the	attachment	is	a
depth,	stencil,	or	depth-stencil	attachment,	then	the	values	stored	in	the
depthStencil	member	are	used.	color	and	depthStencil	are	instances
of	the	VkClearColorValue	and	VkClearDepthStencilValue
structures,	respectively,	the	definitions	of	which	are	Click	here	to	view	code
image

typedef	union	VkClearColorValue	{

				float							float32[4];

				int32_t					int32[4];

				uint32_t				uint32[4];

}	VkClearColorValue;

and
Click	here	to	view	code	image

typedef	struct	VkClearDepthStencilValue	{

				float							depth;

				uint32_t				stencil;

}	VkClearDepthStencilValue;

The	index	of	each	attachment	is	used	to	index	into	the	array	of	VkClearValue
unions.	This	means	that	if	only	some	of	the	attachments	have	a	load	operation	of
VK_ATTACHMENT_LOAD_OP_CLEAR,	then	there	could	be	unused	entries	in



the	array.	There	must	be	at	least	as	many	entries	in	the	pClearValues	array
as	the	highest-indexed	attachment	with	a	load	operation	of
VK_ATTACHMENT_LOAD_OP_CLEAR.
For	each	attachment	with	a	load	operation	of
VK_ATTACHMENT_LOAD_OP_CLEAR,	if	it	is	a	color	attachment,	then	the
values	of	the	float32,	int32,	or	uint32	arrays	are	used	to	clear	the
attachment,	depending	on	whether	it	is	a	floating-point	or	normalized	format,	a
signed	integer	format,	or	an	unsigned	integer	format,	respectively.	If	the
attachment	is	a	depth,	stencil,	or	depth-stencil	attachment,	then	the	values	of	the
depth	and	stencil	members	of	the	depthStencil	member	of	the
VkClearValue	union	are	used	to	clear	the	appropriate	aspect	of	the
attachment.
Once	the	renderpass	has	begun,	you	can	place	drawing	commands	(which	are
discussed	in	the	next	section)	in	the	command	buffer.	All	rendering	will	be
directed	into	the	framebuffer	specified	in	the	VkRenderPassBeginInfo
structure	passed	to	vkCmdBeginRenderPass().	To	finalize	rendering
contained	in	the	renderpass,	you	need	to	end	it	by	calling
vkCmdEndRenderPass(),	the	prototype	of	which	is	Click	here	to	view	code
image

void	vkCmdEndRenderPass	(

				VkCommandBuffer																				commandBuffer);

After	vkCmdEndRenderPass()	has	executed,	any	rendering	directed
through	the	renderpass	is	completed,	and	the	content	of	the	framebuffer	is
updated.	Until	then,	the	framebuffer’s	content	is	undefined.	Only	attachments
with	a	store	operation	of	VK_ATTACHMENT_STORE_OP_STORE	will	reflect
the	new	content	produced	by	the	rendering	inside	the	renderpass.	If	an
attachment	has	a	store	operation	of
VK_ATTACHMENT_STORE_OP_DONT_CARE,	then	its	content	is	undefined
after	the	renderpass	has	completed.

Vertex	Data
If	the	graphics	pipeline	you’re	going	to	use	requires	vertex	data,	before
performing	any	drawing	commands,	you	need	to	bind	buffers	to	source	the	data
from.	When	buffers	are	in	use	as	the	sources	of	vertex	data,	they	are	sometimes
known	as	vertex	buffers.	The	command	to	buffers	for	use	as	vertex	data	is
vkCmdBindVertexBuffers(),	and	its	prototype	is

Click	here	to	view	code	image



void	vkCmdBindVertexBuffers	(

				VkCommandBuffer																						commandBuffer,

				uint32_t																													firstBinding,

				uint32_t																													bindingCount,

				const	VkBuffer*																						pBuffers,

				const	VkDeviceSize*																		pOffsets);

The	command	buffer	to	which	to	bind	the	buffers	is	specified	in
commandBuffer.	A	given	pipeline	may	reference	many	vertex	buffers,	and
vkCmdBindVertexBuffers()	is	capable	of	updating	a	subset	of	the
bindings	on	a	particular	command	buffer.	The	index	of	the	first	binding	to	update
is	passed	in	firstBinding,	and	the	number	of	contiguous	bindings	to	update
is	passed	in	bindingCount.	To	update	noncontiguous	ranges	of	vertex	buffer
bindings,	you	need	to	call	vkCmdBindVertexBuffers()	multiple	times.
The	pBuffers	parameter	is	a	pointer	to	an	array	of	bindingCount
VkBuffer	handles	to	the	buffer	objects	to	be	bound,	and	pOffsets	is	a
pointer	to	an	array	of	bindingCount	offsets	into	the	buffer	objects	at	which
the	data	for	each	binding	starts.	The	values	in	pOffsets	are	specified	in	bytes.
It	is	perfectly	reasonable	to	bind	the	same	buffer	object	with	different	offsets	(or
even	the	same	offset,	if	that’s	what’s	required)	to	a	command	buffer;	simply
include	the	same	VkBuffer	handle	multiple	times	in	the	pBuffers	array.
The	layout	and	format	of	the	data	in	the	buffers	are	defined	by	the	graphics
pipeline	that	will	consume	the	vertex	data.	Therefore,	the	format	of	the	data	is
not	specified	here,	but	in	the
VkPipelineVertexInputStateCreateInfo	structure	passed	via	the
VkGraphicsPipelineCreateInfo	used	to	create	the	graphics	pipeline.
Back	in	Chapter	7,	“Graphics	Pipelines,”	we	showed	an	example	of	setting	up
interleaved	vertex	data	as	a	C++	structure	in	Listing	7.3.	Listing	8.1	shows	a
slightly	more	advanced	example	that	uses	one	buffer	to	store	position	data	alone
and	a	second	buffer	that	stores	a	per-vertex	normal	and	texture	coordinate.

Listing	8.1:	Separate	Vertex	Attribute	Setup	Click	here	to	view	code	image

typedef	struct	vertex_t

{

				vmath::vec3	normal;

				vmath::vec2	texcoord;

}	vertex;

static	const

VkVertexInputBindingDescription	vertexInputBindings[]	=

{

				{	0,	sizeof(vmath::vec4),	VK_VERTEX_INPUT_RATE_VERTEX	},	//



Buffer	1

				{	1,	sizeof(vertex),	VK_VERTEX_INPUT_RATE_VERTEX	}							//

Buffer	2

};

static	const

VkVertexInputAttributeDescription	vertexAttributes[]	=

{

				{	0,	0,	VK_FORMAT_R32G32B32A32_SFLOAT,	0	},														//

Position

				{	1,	1,	VK_FORMAT_R32G32B32_SFLOAT,	0	},																	//

Normal

				{	2,	1,	VK_FORMAT_R32G32_SFLOAT,	sizeof(vmath::vec3)	}				//	Tex

Coord

};

static	const

VkPipelineVertexInputStateCreateInfo	vertexInputStateCreateInfo	=

{

				VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,		//

sType

				nullptr,																																							//	pNext

				0,																																													//	flags

				vkcore::utils::arraysize(vertexInputBindings),	//

vertexBindingDescription-

																																																			//	Count

				vertexInputBindings,																											//	pVertexBinding-

																																																			//	Descriptions

				vkcore::utils::arraysize(vertexAttributes),				//

vertexAttribute-

																																																			//

DescriptionCount

				vertexAttributes																															//

pVertexAttribute-

																																																			//	Descriptions

};

In	Listing	8.1,	we	have	defined	three	vertex	attributes	spread	across	two	buffers.
In	the	first	buffer,	only	a	single	vec4	variable	is	stored,	and	this	is	used	for
position.	The	stride	for	this	buffer	is	therefore	the	size	of	a	vec4,	which	is	16
bytes.	In	the	second	buffer,	we	store	the	interleaved	normal	and	texture
coordinates	for	the	vertex.	We	represent	this	as	the	vertex	structure,	allowing
the	compiler	to	compute	the	stride	for	us.

Indexed	Draws
Simply	pushing	contiguous	runs	of	vertices	into	the	pipeline	isn’t	always	what
you	want.	In	most	geometric	meshes,	many	vertices	are	used	more	than	once.	A
fully	connected	mesh	may	share	a	single	vertex	among	many	triangles.	Even	a



simple	cube	shares	each	vertex	among	three	adjacent	triangles.	It	is	extremely
wasteful	to	have	to	specify	each	vertex	three	times	in	your	vertex	buffers.
Besides	this,	some	Vulkan	implementations	are	smart	enough	that	if	they	see	a
vertex	with	the	same	input	parameters	more	than	once,	they	can	skip	processing
it	a	second	time	and	subsequent	times,	and	instead	reuse	the	results	of	the	first
vertex	shader	invocation.
To	enable	this,	Vulkan	allows	indexed	draws.	The	indexed	equivalent	of
vkCmdDraw()	is	vkCmdDrawIndexed(),	the	prototype	of	which	is	Click
here	to	view	code	image

void	vkCmdDrawIndexed	(

				VkCommandBuffer																			commandBuffer,

				uint32_t																										indexCount,

				uint32_t																										instanceCount,

				uint32_t																										firstIndex,

				int32_t																											vertexOffset,

				uint32_t																										firstInstance);

Again,	the	first	parameter	to	vkCmdDrawIndexed()	is	the	handle	to	the
command	buffer	in	which	the	draw	will	be	executed.	Rather	than	simply	starting
from	zero	and	counting	upward,	however,	vkCmdDrawIndexed()	fetches
indices	from	an	index	buffer.	The	index	buffer	is	a	regular	buffer	object	that	you
bind	to	the	command	buffer	by	calling	vkCmdBindIndexBuffer(),	the
prototype	of	which	is	Click	here	to	view	code	image

void	vkCmdBindIndexBuffer	(

				VkCommandBuffer																			commandBuffer,

				VkBuffer																										buffer,

				VkDeviceSize																						offset,

				VkIndexType																							indexType);

The	command	buffer	to	which	to	bind	the	index	buffer	is	specified	in
commandBuffer,	and	the	handle	to	the	buffer	object	containing	indexed	data
is	specified	in	buffer.	A	section	of	a	buffer	object	can	be	bound	to	the
command	buffer	starting	from	offset.	The	bound	section	always	extends	to
the	end	of	the	buffer	object.	There	is	no	bounds	checking	on	the	index	buffer;
Vulkan	will	read	as	many	indices	from	the	buffer	as	you	tell	it	to.	However,	it
will	never	read	past	the	end	of	the	buffer	object.
The	data	type	of	the	indices	in	the	buffer	is	specified	in	indexType.	This	is	a
member	of	the	VkIndexType	enumeration,	the	members	of	which	are	•
VK_INDEX_TYPE_UINT16:	Unsigned	16-bit	integers	•
VK_INDEX_TYPE_UINT32:	Unsigned	32-bit	integers	When	you	call



vkCmdDrawIndexed(),	Vulkan	will	start	fetching	data	from	the	currently
bound	index	buffer	at	an	offset	of	Click	here	to	view	code	image

												offset	+	firstIndex	*	sizeof(index)	where	sizeof(index)

is	2	for	VK_INDEX_TYPE_UINT16	and	4	for	VK_INDEX_TYPE_UINT32.	The

code	will	fetch	indexCount	contiguous	integers	from	the	index	buffer

and	then	add	vertexOffset	to	them.	This	addition	is	always	performed

in	32	bits,	regardless	of	the	index	type	for	the	currently	bound

index	buffer.	It	is	not	defined	what	would	happen	if	this	addition

overflowed	the	32-bit	unsigned	integer	range,	so	you	should	avoid

that.

A	schematic	illustrating	the	data	flow	is	shown	in	Figure	8.1.

Figure	8.1:	Index	Data	Flow

Note	that	when	the	index	type	is	VK_INDEX_TYPE_UINT32,	the	maximum
range	of	index	values	may	not	be	supported.	To	check	this,	look	at	the
maxDrawIndexedIndexValue	field	of	the	device’s
VkPhysicalDeviceLimits	structure,	which	you	can	retrieve	by	calling
vkGetPhysicalDeviceProperties().	This	value	will	always	be	at	least
224-1	and	may	be	as	high	as	232-1.
To	demonstrate	the	effectiveness	of	the	use	of	index	data,	Listing	8.2	shows	the
difference	between	the	data	required	for	drawing	a	simple	cube	using	indexed
and	nonindexed	data.

Listing	8.2:	Indexed	Cube	Data	Click	here	to	view	code	image

//	Raw,	nonindexed	data

static	const	float	vertex_positions[]	=

{

				-0.25f,	0.25f,	-0.25f,

				-0.25f,	-0.25f,	-0.25f,



					0.25f,	-0.25f,	-0.25f,

					0.25f,	-0.25f,	-0.25f,

					0.25f,	0.25f,	-0.25f,

				-0.25f,	0.25f,	-0.25f,

					0.25f,	-0.25f,	-0.25f,

					0.25f,	-0.25f,	0.25f,

					0.25f,	0.25f,	-0.25f,

					0.25f,	-0.25f,	0.25f,

					0.25f,	0.25f,	0.25f,

					0.25f,	0.25f,	-0.25f,

					0.25f,	-0.25f,	0.25f,

				-0.25f,	-0.25f,	0.25f,

					0.25f,	0.25f,	0.25f,

				-0.25f,	-0.25f,	0.25f,

				-0.25f,	0.25f,	0.25f,

					0.25f,	0.25f,	0.25f,

				-0.25f,	-0.25f,	0.25f,

				-0.25f,	-0.25f,	-0.25f,

				-0.25f,	0.25f,	0.25f,

				-0.25f,	-0.25f,	-0.25f,

				-0.25f,	0.25f,	-0.25f,

				-0.25f,	0.25f,	0.25f,

				-0.25f,	-0.25f,	0.25f,

					0.25f,	-0.25f,	0.25f,

					0.25f,	-0.25f,	-0.25f,

					0.25f,	-0.25f,	-0.25f,

				-0.25f,	-0.25f,	-0.25f,

				-0.25f,	-0.25f,	0.25f,

				-0.25f,	0.25f,	-0.25f,

					0.25f,	0.25f,	-0.25f,

					0.25f,	0.25f,	0.25f,

					0.25f,	0.25f,	0.25f,

				-0.25f,	0.25f,	0.25f,

				-0.25f,	0.25f,	-0.25f

};

static	const	uint32_t	vertex_count	=	sizeof(vertex_positions)	/

																																					(3	*	sizeof(float));

//	Indexed	vertex	data



static	const	float	indexed_vertex_positions[]	=

{

				-0.25f,	-0.25f,	-0.25f,

				-0.25f,	0.25f,	-0.25f,

					0.25f,	-0.25f,	-0.25f,

					0.25f,	0.25f,	-0.25f,

					0.25f,	-0.25f,	0.25f,

					0.25f,	0.25f,	0.25f,

				-0.25f,	-0.25f,	0.25f,

				-0.25f,	0.25f,	0.25f,

};

//	Index	buffer

static	const	uint16_t	vertex_indices[]	=

{

				0,	1,	2,

				2,	1,	3,

				2,	3,	4,

				4,	3,	5,

				4,	5,	6,

				6,	5,	7,

				6,	7,	0,

				0,	7,	1,

				6,	0,	2,

				2,	4,	6,

				7,	5,	3,

				7,	3,	1

};

static	const	uint32_t	index_count	=

vkcore::utils::arraysize(vertex_indices);

As	you	can	see	in	Listing	8.2,	the	amount	of	data	used	to	draw	the	cube	is	quite
small.	Only	the	vertex	data	for	the	8	unique	vertices	is	stored,	along	with	36
indices	used	to	reference	them.	As	geometry	sizes	go	up	with	scene	complexity,
the	savings	can	be	quite	large.	In	this	simple	example,	the	nonindexed	vertex
data	is	36	vertices,	each	consisting	of	3	elements	of	4	bytes,	which	is	a	total	of
432	bytes	of	data.	Meanwhile,	the	indexed	data	is	12	vertices,	again	each	of	3
elements	of	4	bytes,	plus	36	indices,	each	consuming	2	bytes	of	storage.	This
produces	a	total	168	bytes	of	data	for	the	indexed	cube.
In	addition	to	the	space	savings	provided	by	using	indexed	data,	many	Vulkan
implementations	include	a	vertex	cache	that	can	reuse	the	results	of
computations	performed	on	vertex	data.	If	the	vertices	are	nonindexed,	then	the
pipeline	must	assume	that	they	are	all	unique.	However,	when	the	vertices	are
indexed,	two	vertices	with	the	same	index	are	the	same.	In	any	closed	mesh,	the
same	vertex	will	appear	more	than	once,	as	it	is	shared	among	multiple
primitives.	This	reuse	can	save	quite	a	bit	of	work.



Index-Only	Rendering
The	raw	index	of	the	current	vertex	is	available	to	your	vertex	shaders.	This
index	appears	in	the	variable	decorated	with	VertexIndex	in	a	SPIR-V
shader,	which	is	generated	using	the	gl_VertexIndex	built-in	variable	in
GLSL.	This	contains	the	content	of	the	index	buffer	(or	the	automatically
generated	vertex	index)	plus	the	value	of	vertexOffset	passed	to
vkCmdDrawIndexed().
You	can	use	this	index	to	fetch	data	from	a	buffer,	for	example.	This	allows	you
to	pump	geometry	into	the	pipeline	without	worrying	about	vertex	attributes.
However,	in	some	scenarios,	a	single	32-bit	value	might	be	all	you	need.	In	these
cases,	you	can	use	the	vertex	index	directly	as	data.	Vulkan	doesn’t	actually	care
what	the	values	in	the	index	buffer	are	so	long	as	you	don’t	use	them	to	address
into	vertex	buffers.
The	object	local	vertex	position	for	many	pieces	of	geometry	can	be	represented
by	16-,	10-,	or	even	8-bit	data	with	sufficient	precision.	Three	10-bit	values	can
be	packed	inside	a	single	32-bit	word.	In	fact,	this	is	exactly	what	the
VK_FORMAT_A2R10G10B10_SNORM_PACK32	format	(and	its	unsigned
counterpart)	represent.	Although	the	vertex	data	is	not	usable	directly	as	an
index	buffer,	it’s	possible	to	manually	unpack	the	vertex	data	in	the	shader	as
though	it	had	that	format.	As	such,	by	simply	unpacking	the	index	in	our	shader,
we	can	draw	simple	geometry	without	anything	more	than	an	index	buffer.
Listing	8.3	shows	the	GLSL	shader	you	use	to	do	this	unpacking	operation.

Listing	8.3:	Using	the	Vertex	Index	in	a	Shader	Click	here	to	view	code
image

#version	450	core

vec3	unpackA2R10G10B10_snorm(uint	value)

{

				int	val_signed	=	int(value);

				vec3	result;

				const	float	scale	=	(1.0f	/	512.0f);

				result.x	=	float(bitfieldExtract(val_signed,	20,	10));

				result.y	=	float(bitfieldExtract(val_signed,	10,	10));

				result.z	=	float(bitfieldExtract(val_signed,	0,	10));

				return	result	*	scale;

}

void	main(void)



{

				gl_Position	=	vec4(unpackA2R10G10B10_snorm(gl_VertexIndex),

1.0f);

}

The	vertex	shader	shown	in	Listing	8.3	simply	unpacks	the	incoming	vertex
index	by	using	the	unpackA2R10G10B10_snorm	function.	The	resulting
value	is	written	to	gl_Position.	The	10	bits	of	precision	in	each	of	the	x,	y,
and	z	coordinates	effectively	snap	our	vertices	to	a	1,024	×	1,024	×	1,024	grid
of	positions.	This	is	sufficient	in	many	cases.	If	an	additional	scale	is	applied,
this	can	be	passed	to	the	shader	via	a	push	constant,	and	if	the	vertex	is	to
undergo	other	transforms	via	matrix	multiplications,	for	example,	those
transforms	still	proceed	at	full	precision.

Reset	Indices
Another	subfeature	of	indexed	draws	allows	you	to	use	the	primitive	restart
index.	This	special	index	value	can	be	stored	in	the	index	buffer	that	can	be	used
to	signal	the	start	of	a	new	primitive.	It	is	most	useful	when	the	primitive
topology	is	one	of	the	long,	continuous	primitives,	including
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN,	and
VK_PRIMITIVE_TOPOLOGY_LINE_STRIP,	along	with	the	adjacency
versions	of	those	topologies,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY,
and	VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY.
The	primitive	restart	feature	is	enabled	using	the
VkPipelineInputAssemblyStateCreateInfo	structure	passed
through	the	pInputAssemblyState	member	of	the
VkGraphicsPipelineCreateInfo	structure	used	to	create	a	graphics
pipeline.	Again,	the	definition	of	this	structure	is	Click	here	to	view	code	image

typedef	struct	VkPipelineInputAssemblyStateCreateInfo	{

				VkStructureType																												sType;

				const	void*																																pNext;

				VkPipelineInputAssemblyStateCreateFlags				flags;

				VkPrimitiveTopology																								topology;

				VkBool32																																			primitiveRestartEnable;

}	VkPipelineInputAssemblyStateCreateInfo;

The	topology	field	has	to	be	set	to	one	of	the	primitive	topologies	that
supports	primitive	restarts	(the	list	and	fan	topologies	mentioned	earlier),	and	the
primitiveRestartEnable	field	is	set	to	VK_TRUE.	When	primitive



restart	is	enabled,	the	special	value	of	the	maximum	possible	value	for	the	index
type	(0xFFFF	for	VK_INDEX_TYPE_UINT16	and	0xFFFFFFFF	for
VK_INDEX_TYPE_UINT32)	is	used	as	the	special	restart	marker.
If	primitive	restart	is	not	enabled,	the	special	reset	marker	is	treated	as	a	normal
vertex	index.	While	using	32-bit	indices,	it’s	unlikely	that	you’ll	ever	need	to	use
this	value,	because	that	would	mean	you	had	more	than	4	billion	vertices.
However,	the	index	value	can	still	be	passed	to	the	vertex	shader.	It’s	not	valid	to
enable	the	reset	for	primitive	topologies	other	than	the	strip	and	fan	topologies
mentioned	earlier.
When	Vulkan	encounters	the	reset	value	in	the	index	buffer,	it	ends	the	current
strip	or	fan	and	starts	a	new	one	beginning	with	the	vertex	addressed	by	the	next
index	in	the	index	buffer.	If	the	reset	value	appears	multiple	times	in	a	row,
Vulkan	simply	skips	them,	looking	for	the	next	nonreset	index	value.	If	there
aren’t	enough	vertices	to	form	a	complete	primitive	(for	example,	if	the	reset
index	appears	before	three	nonreset	vertices	are	seen	when	the	primitive
topology	is	VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP	or
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN),	then	Vulkan	will	throw	out
all	the	vertices	used	so	far	and	start	a	new	primitive.
Figure	8.2	shows	how	reset	indices	affect	the
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP	topology.	In	the	top	strip,
contiguous	indices	between	0	and	12	are	used	to	create	a	single	long	strip.	When
you	enable	primitive	resets	and	replace	index	6	with	reset	index	value
0xFFFFFFFF,	the	strip	stops	after	the	first	four	triangles	and	restarts	with	a
triangle	between	vertices	7,	8,	and	9.



Figure	8.2:	The	Effect	of	Primitive	Restart	on	Triangle	Strips

The	reset	index	is	useful	for	cutting	a	very	large	draw	using	strips	or	fans	into
many	smaller	pieces.	There	comes	a	cut-off	point	in	usefulness	when	the	number
of	subdraws	(individual	strips	or	fans)	decreases	and	their	size	increases,	at
which	point	it’s	probably	best	to	simply	produce	two	separate	draws.	This	is
especially	true	if	it	means	switching	pipelines	between	one	with	primitive	restart
enabled	and	one	with	it	disabled.
If	your	model	consists	of	hundreds	or	thousands	of	short	strips,	it	might	be	a
good	idea	to	use	primitive	restart.	If	your	model	consists	of	a	handful	of	very
long	strips,	just	make	multiple	drawing	commands.	Also,	in	some	architectures,
using	the	reset	index	can	affect	performance,	and	it	may	be	better	to	simply	use
list	topologies	and	unroll	the	index	buffer	rather	than	try	to	use	strips.

Instancing
There	are	two	parameters	to	vkCmdDraw()	and	vkCmdDrawIndexed()
that	we	have	thus	far	glossed	over.	These	are	the	firstInstance	and
instanceCount	parameters,	and	they	are	used	to	control	instancing.	This	is	a
technique	whereby	many	copies	of	the	same	geometry	can	be	sent	into	the
graphics	pipeline.	Each	copy	is	known	as	an	instance.	At	first,	this	seems	like	it
wouldn’t	be	much	use,	but	there	are	two	ways	that	your	application	can	apply



variation	to	each	of	the	instances	of	the	geometry:
•	Use	the	InstanceIndex	built-in	decoration	on	a	vertex	shader	input	to
receive	the	index	of	the	current	instance	as	an	input	to	the	shader.	This	input
variable	can	then	be	used	to	fetch	parameters	from	a	uniform	buffer	or
programmatically	compute	per-instance	variation,	for	example.
•	Use	instanced	vertex	attributes	to	have	Vulkan	feed	your	vertex	shader	with
unique	data	for	each	instance.

Listing	8.4	shows	an	example	of	using	the	instance	index	through	the
gl_InstanceIndex	built-in	variable	in	GLSL.	The	example	draws	many
different	cubes	using	instancing	where	each	instance	of	the	cube	has	a	different
color	and	transformation	applied.	The	transformation	matrix	and	color	of	each
cube	are	placed	in	arrays	that	are	stored	in	a	pair	of	uniform	buffers.	The	shader
then	indexes	into	these	arrays	with	the	gl_InstanceIndex	built-in	variable.
The	result	of	rendering	with	this	shader	is	shown	in	Figure	8.3.

Listing	8.4:	Using	the	Instance	Index	in	a	Shader	Click	here	to	view	code
image

#version	450	core

layout	(set	=	0,	binding	=	0)	uniform	matrix_uniforms_b

{

				mat4	mvp_matrix[1024];

};

layout	(set	=	0,	binding	=	1)	uniform	color_uniforms_b

{

				vec4	cube_colors[1024];

};

layout	(location	=	0)	in	vec3	i_position;

out	vs_fs

{

				flat	vec4	color;

};

void	main(void)

{

				float	f	=	float(gl_VertexIndex	6)	6.0f;

				vec4	color1	=	cube_colors[gl_InstanceIndex];

				vec4	color2	=	cube_colors[gl_InstanceIndex	&	512];

				color	=	mix(color1,	color2,	f);

				gl_Position	=	mvp_matrix[gl_InstanceIndex]	*	vec4(i_position,

1.0f);

}



Figure	8.3:	Many	Instanced	Cubes

Indirect	Draws
In	the	vkCmdDraw()	and	vkCmdDrawIndexed()	commands,	the
parameters	to	the	command	(vertexCount,	vertexOffset,	and	so	on)	are
passed	as	immediate	parameters	directly	to	the	commands	themselves.	This
means	that	you	need	to	know	the	exact	parameters	of	each	draw	call	at	the	time
that	your	application	builds	its	command	buffers.	In	most	cases,	having	access	to
the	parameters	of	drawing	commands	is	a	natural	part	of	the	application.
However,	in	some	situations,	you	don’t	know	the	exact	parameters	for	each	and
every	draw.	Examples	include	the	following:

•	The	overall	structure	of	the	geometry	is	known,	but	the	exact	number	of
vertices	and	locations	of	data	in	the	vertex	buffers	is	not	known,	such	as
when	an	object	is	always	rendered	the	same	way	but	its	level	of	detail	may
change	over	time.
•	The	drawing	commands	are	to	be	generated	by	the	device,	rather	than	the



host.	In	this	situation,	the	total	number	and	layout	of	vertex	data	may	never
be	known	to	the	host.

In	these	cases,	you	can	use	an	indirect	draw,	which	is	a	drawing	command	that
sources	its	parameters	from	device-accessible	memory	rather	than	embedding
them	in	the	command	buffer	along	with	the	command.	The	first	indirect	draw
command	is	vkCmdDrawIndirect(),	which	performs	a	nonindexed	draw
using	parameters	contained	in	a	buffer.	Its	prototype	is	Click	here	to	view	code
image

void	vkCmdDrawIndirect	(

				VkCommandBuffer																		commandBuffer,

				VkBuffer																									buffer,

				VkDeviceSize																					offset,

				uint32_t																									drawCount,

				uint32_t																									stride);

The	command	itself	is	still	placed	into	the	command	buffer,	just	as	with
vkCmdDraw().	commandBuffer	is	the	command	buffer	into	which	the
command	is	placed.	However,	the	parameters	of	the	command	are	sourced	from
the	buffer	specified	in	buffer	at	the	offset	specified	in	offset,	which	is
measured	in	bytes.	At	this	offset	in	the	buffer,	an	instance	of	the
VkDrawIndirectCommand	structure	should	appear,	containing	the	actual
parameters	of	the	command.	Its	definition	is	Click	here	to	view	code	image

typedef	struct	VkDrawIndirectCommand	{

				uint32_t				vertexCount;

				uint32_t				instanceCount;

				uint32_t				firstVertex;

				uint32_t				firstInstance;

}	VkDrawIndirectCommand;

The	members	of	VkDrawIndirectCommand	have	the	same	meanings	as	the
similarly	named	parameters	of	vkCmdDraw().	vertexCount	and
instanceCount	are	the	numbers	of	vertices	and	indices	to	invoke,
respectively,	and	firstVertex	and	firstInstance	are	the	starting	values
for	the	vertex	and	instance	indices,	respectively.
vkCmdDrawIndirect()	performs	a	nonindexed,	indirect	draw	using
parameters	from	a	buffer	object.	It’s	also	possible	to	perform	an	indexed	indirect
draw	using	vkCmdDrawIndexedIndirect().	The	prototype	of	this
function	is	Click	here	to	view	code	image

void	vkCmdDrawIndexedIndirect	(

				VkCommandBuffer																					commandBuffer,

				VkBuffer																												buffer,



				VkDeviceSize																								offset,

				uint32_t																												drawCount,

				uint32_t																												stride);

The	parameters	of	vkCmdDrawIndexedIndirect()	are	identical	to	those
of	vkCmdDrawIndirect().	commandBuffer	is	the	command	buffer	into
which	the	command	is	written,	buffer	is	the	buffer	containing	the	parameters;
and	offset	is	the	offset,	in	bytes,	at	which	the	parameters	are	located	in	that
buffer.	However,	the	data	structure	containing	the	parameters	of
vkCmdDrawIndexedIndirect()	is	different.	It	is	an	instance	of	the
VkDrawIndexedIndirectCommand	structure,	the	definition	of	which	is
Click	here	to	view	code	image

typedef	struct	VkDrawIndexedIndirectCommand	{

				uint32_t				indexCount;

				uint32_t				instanceCount;

				uint32_t				firstIndex;

				int32_t					vertexOffset;

				uint32_t				firstInstance;

}	VkDrawIndexedIndirectCommand;

Again,	the	members	of	VkDrawIndexedIndirectCommand	have	the	same
meanings	as	the	similarly	named	parameters	of	vkCmdDrawIndexed().
indexCount	and	instanceCount	are	the	numbers	of	vertex	indices	and
instances	to	push	into	the	pipeline;	the	firstIndex	member	specifies	where
to	start	fetching	indices	from	the	index	buffer;	vertexOffset	specifies	the
offset	value	to	be	added	to	the	index	data;	and	firstInstance	specifies	the
value	from	which	the	instance	counter	should	start	counting.
What	is	important	to	remember	about	indirect	drawing	commands	is	that	while
the	buffer	object	and	the	offset	into	it	are	baked	into	the	command	buffer,	the
parameters	for	the	draw	don’t	need	to	be	in	the	sourced	buffer	object	until	the
command	buffer	is	executed	by	the	device.	As	the	device	executes	the	command
buffer,	when	it	reaches	the	command,	it	will	read	whatever	parameters	are	in	the
buffer	and	execute	the	drawing	command	as	though	those	parameters	had	been
specified	directly	to	a	regular	drawing	command.	As	far	as	the	rest	of	the
pipeline	is	concerned,	there	is	no	difference	between	a	direct	and	an	indirect
draw.
This	means	several	things:	•	You	can	build	command	buffers	with	indirect	draws
long	before	they’re	needed,	filling	in	the	final	parameters	for	the	draw	(in	the
buffer	object	rather	than	the	command	buffer)	before	the	command	buffer	is
submitted	for	execution.



•	You	can	create	a	command	buffer	containing	an	indirect	draw,	submit	it,
overwrite	the	parameters	in	the	buffer	object,	and	submit	the	same	command
buffer	again.	This	effectively	patches	new	parameters	into	what	could	be	a
long,	complex	command	buffer.
•	You	can	write	parameters	into	a	buffer	object	by	using	stores	from	a	shader
object,	or	by	using	a	command	such	as	vkCmdFillBuffer()	or
vkCmdCopyBuffer()	to	generate	drawing	parameters	on	the	device
itself—either	in	the	same	command	buffer	or	in	another	submitted	just
before	the	one	containing	the	draw	commands.

You	may	have	noticed	that	both	vkCmdDrawIndirect()	and
vkCmdDrawIndexedIndirect()	take	a	drawCount	and	a	stride
parameter.	These	parameters	allow	you	to	pass	arrays	of	drawing	commands	to
Vulkan.	A	single	call	to	vkCmdDrawIndirect()	or
vkCmdDrawIndexedIndirect()	will	kick	off	drawCount	separate
draws,	each	sourcing	its	parameters	from	a	VkDrawIndirectCommand	or
VkDrawIndexedIndirectCommand	structure,	respectively.
The	array	of	structures	still	begins	at	offset	bytes	into	the	buffer	object,	and
each	of	these	structures	is	separated	from	the	previous	by	stride	bytes.	If
stride	is	zero,	then	the	same	parameter	structure	will	be	used	for	every	draw.1

1.	Note	that	this	behavior	differs	from	OpenGL,	in	which	a	stride	of	zero	causes	the	device	to	assume	a
tightly	packed	array,	and	it	is	impossible	to	source	the	same	parameters	over	and	over.

The	number	of	draws	is	still	baked	into	the	command	buffer,	but	draws	whose
indexCount	or	instanceCount	parameters	are	zero	will	be	skipped	by	the
device.	While	this	doesn’t	mean	that	you	can	truly	produce	a	fully	dynamic	draw
count,	by	using	a	fixed	upper	limit	on	the	number	of	draws	and	ensuring	that	all
unused	entries	in	the	array	of	parameters	have	at	least	one	of	vertexCoount,
indexCount,	or	instanceCount,	set	to	zero,	you	can	generate	a	variable
number	of	draws	by	using	a	single	command.
Note	that	support	for	counts	other	than	one	(and	zero)	is	optional.	To	check
whether	the	device	supports	a	count	greater	than	one,	check	the
multiDrawIndirect	field	of	the	device’s
VkPhysicalDeviceFeatures	structure	as	returned	from	a	call	to
vkGetPhysicalDeviceFeatures(),	and	remember	to	enable	the	feature
in	the	set	of	enabled	features	passed	to	vkCreateDevice()	when	creating
the	logical	device.
When	indirect	counts	are	supported,	the	maximum	number	of	draws	that	can	be
passed	to	a	single	call	to	vkCmdDrawIndirect()	or



vkCmdDrawIndexedIndirect()	may	still	be	limited.	To	check	the
supported	count,	inspect	the	maxDrawIndirectCount	field	of	the	device’s
VkPhysicalDeviceLimits	structure.	When	multiDrawIndirect	is
not	supported,	this	field	will	be	1.	If	it	is	supported,	then	it	is	guaranteed	to	be	at
least	65,535.	If	the	number	of	draws	you’re	pushing	through	each	of	these
commands	is	less	than	this	amount,	then	there’s	no	need	to	directly	check	the
limit.
Drawing	many	pieces	of	geometry	back	to	back	with	the	same	pipeline	and
graphics	state	can	sometimes	be	limiting.	However,	in	many	cases,	all	that	is
different	between	draws	is	parameters	passed	to	shaders.	This	is	especially	true
when	applications	use	über	shaders	or	physically	based	rendering	techniques.
There	is	no	direct	way	to	pass	parameters	to	the	individual	draws	that	make	up	a
single	call	to	vkCmdDrawIndirect()	or
vkCmdDrawIndexedIndirect()	with	a	drawCount	greater	than	one.
However,	what	is	available	in	the	shader	is	the	SPIR-V	decoration	DrawIndex
decoration	on	an	input	to	the	vertex	shader.	This	is	produced	by	using	the
gl_DrawIDARB	input	in	GLSL.
When	decorated	with	DrawIndex,	the	shader	input	will	contain	the	index	of
the	draw,	starting	from	zero	and	counting	upward	as	the	draws	are	generated	by
the	device.	This	can	then	be	used	to	index	into	arrays	of	data	stored	in	uniform
or	shader	storage	blocks.	Listing	8.5	shows	a	GLSL	shader	that	uses
gl_DrawIDARB	to	retrieve	per-draw	parameters	from	a	shader	storage	block.

Listing	8.5:	Draw	Index	Used	in	a	Shader	Click	here	to	view	code	image

#version	450	core

//	Enable	the	GL_ARB_shader_draw_parameters	extensions.

#extension	GL_ARB_shader_draw_parameters	:	require

layout	(location	=	0)	in	vec3	position_3;

layout	(set	=	0,	binding	=	0)	uniform	FRAME_DATA

{

				mat4	view_matrix;

				mat4	proj_matrix;

				mat4	viewproj_matrix;

};

layout	(set	=	0,	binding	=	1)	readonly	buffer	OBJECT_TRANSFORMS

{

				mat4	model_matrix[];

};



void	main(void)

{

				//	Extend	input	position	to	vec4.

				vec4	position	=	vec4(position_3,	1.0);

				//	Compute	per-object	model-view	matrix.

				mat4	mv_matrix	=	view_matrix	*	model_matrix[gl_DrawIDARB];

				//	Output	position	using	global	projection	matrix.

				gl_Position	=	proj_matrix	*	P;

}

The	shader	in	Listing	8.5	uses	a	single	uniform	block	to	store	per-frame
constants	and	a	single	shader	storage	block	to	store	a	large	array	of	per-object
transformation	matrices.2	The	gl_DrawIDARB	built-in	variable	is	used	to
index	into	the	model_matrix	array	stored	in	the	shader	storage	block.	The
result	is	that	each	subdraw	in	the	single	vkCmdDrawIndirect()	call	uses	its
own	model	transformation	matrix.

2.	At	the	time	of	writing,	the	reference	GLSL	compiler	does	not	contain	support	for	the
GL_ARB_draw_parameters	extension	that	exposes	gl_DrawID.	This	shader	was	developed	in
an	OpenGL	test	environment	and	then	edited	to	suit	Vulkan.	It	is	expected	to	work	once	support	for
GL_ARB_draw_parameters	lands	in	the	reference	compiler.

Summary
This	chapter	covered	the	various	drawing	commands	supported	by	Vulkan.	You
were	reintroduced	to	vkCmdDraw(),	which	was	first	mentioned	in	Chapter	7,
“Graphics	Pipelines,”	and	which	produces	nonindexed	draws.	Indexed	draws
were	covered,	and	then	we	explored	instancing,	which	is	a	technique	for	drawing
many	copies	of	the	same	geometry	with	varying	parameters	driven	by	the
instance	index.	Finally,	we	looked	at	indirect	draws,	which	allow	the	parameters
for	drawing	commands	to	be	sourced	from	device	memory	rather	than	specified
at	command-buffer	construction	time.	Together,	instancing	and	indirect	draws
are	powerful	tools	that	allow	complex	scenes	to	be	built	up	with	very	few
drawing	commands.



Chapter	9.	Geometry	Processing

What	You’ll	Learn	in	This	Chapter	•	Using	tessellation	to	increase
the	geometric	detail	of	your	scene	•	Using	geometry	shaders	to
process	whole	primitives	•	Clipping	geometry	against	user-specified
planes

While	many	Vulkan	programs	will	stick	to	vertex	and	fragment	shaders,	two
optional	pieces	of	functionality	can	be	used	to	increase	the	geometric	detail	of
the	rendered	images.	These	functions	are	tessellation	and	geometry	shading.
Although	these	concepts	were	briefly	introduced	earlier,	this	chapter	digs	deeper
into	the	details	of	both	tessellation	and	geometry	shader	functionality	and
discusses	how	to	make	effective	use	of	these	powerful	sections	of	the	geometry
processing	pipeline.

Tessellation
Tessellation	is	controlled	by	a	collection	of	stages	that	appear	near	the	front	of
the	graphics	pipeline,	immediately	after	vertex	shading.	We	briefly	introduced
tessellation	in	Chapter	7,	“Graphics	Pipelines.”	However,	because	tessellation	is
an	optional	stage	in	the	pipeline,	we	mostly	glossed	over	it	in	order	to	cover	the
remaining	stages.	This	section	covers	it	in	more	detail.
Tessellation	takes	as	input	patches,	which	are	really	just	collections	of	control
points	represented	as	vertices,	and	breaks	them	down	into	many	smaller,	simpler
primitives—such	as	points,	lines,	or	triangles—that	can	be	rendered	by	the	rest
of	the	pipeline	in	the	normal	manner.	Tessellation	is	an	optional	feature	in
Vulkan.	Presence	of	support	can	be	determined	by	checking	the
tessellationShader	member	of	the	device’s
VkPhysicalDeviceFeatures	structure.	If	this	is	VK_FALSE,	then
pipelines	containing	tessellation	shaders	cannot	be	created	or	used	in	your
application.

Tessellation	Configuration
From	the	application’s	perspective,	the	tessellation	engine	is	a	fixed-function,
though	highly	configurable,	block	of	functionality	surrounded	by	two	shader
stages.	The	first	stage,	the	tessellation	control	shader,	is	responsible	for



processing	the	control	points	of	a	patch,	setting	up	some	per-patch	parameters,
and	handing	control	to	the	fixed-function	tessellation	block.	This	block	takes	the
patch	and	breaks	it	up	into	the	fundamental	point,	line,	or	triangle	primitives,
finally	passing	the	resulting	generated	vertex	data	to	a	second	shading	stage:	the
tessellation	evaluation	shader.	This	shader	appears	much	like	a	vertex	shader
except	that	it	runs	for	each	generated	vertex.
Tessellation	is	controlled	and	configured	through	a	combination	of	two	sources
of	information.	The	first	source	is	the
VkPipelineTessellationStateCreateInfo	structure	passed	through
the	VkGraphicsPipelineCreateInfo	structure	used	to	create	the
graphics	pipeline.	Introduced	in	Chapter	7,	“Graphics	Pipelines,”
VkPipelineTessellationStateCreateInfo	is	defined	as	Click	here
to	view	code	image

typedef	struct	VkPipelineTessellationStateCreateInfo	{

				VkStructureType																											sType;

				const	void*																															pNext;

				VkPipelineTessellationStateCreateFlags				flags;

				uint32_t																																		patchControlPoints;

}	VkPipelineTessellationStateCreateInfo;

The	only	member	that	affects	tessellation	state	in	this	structure	is
patchControlPoints,	which	sets	the	number	of	control	points	that	make
up	a	patch.	The	remaining	state	of	the	tessellation	system	is	set	by	using	the	two
shaders.
The	maximum	number	of	control	points	that	can	be	used	to	construct	a	patch	is
implementation-dependent	but	is	guaranteed	to	be	at	least	32.	If	tessellation	is
supported,	then	the	Vulkan	implementation	will	support	at	least	32	control	points
per	patch,	so	if	you	never	use	patches	larger	than	this,	there	is	no	reason	to	query
the	upper	limit.	If	you	need	to	use	patches	larger	than	32	control	points,	you	can
determine	the	supported	maximum	by	inspecting	the
maxTessellationPatchSize	member	of	the	device’s
VkPhysicalDeviceLimits	structure	as	returned	from	a	call	to
vkGetPhysicalDeviceProperties().

Tessellation	Modes
The	fundamental	operation	of	the	tessellation	engine	is	to	take	the	patch	and,
given	a	set	of	tessellation	levels,	subdivide	each	edge	according	to	its	level.	The
distance	of	each	subdivided	point	along	each	edge	is	assigned	a	value	between
0.0	and	1.0.	The	two	main	modes	of	tessellation	treat	the	patch	as	either	a



rectangle	or	a	triangle.	When	the	patch	is	tessellated	as	a	rectangle,	the
subdivided	coordinates	form	a	2D	barycentric	coordinate,	and	when	the	patch	is
tessellated	as	a	triangle,	the	generated	vertices	have	3D	barycentric	coordinates.
Each	patch	has	a	set	both	of	inner	and	of	outer	tessellation	levels.	The	outer
tessellation	levels	control	the	level	of	tessellation	along	the	outer	edge	of	the
patch.	If	you	set	this	level	the	same	as	that	calculated	for	adjacent	patches	in	a
larger	geometry,	you	can	form	seamless	joins.	The	inner	tessellation	modes
control	the	level	of	tessellation	in	the	center	of	the	patch.	Figure	9.1	shows	how
the	inner	and	outer	levels	are	assigned	to	edges	within	quad	patches	and	how
barycentric	coordinates	are	assigned	to	points	within	each	patch.

Figure	9.1:	Quad	Tessellation

As	you	can	see	from	the	figure,	the	four	outer	tessellation	factors	control	the
level	of	tessellation	along	each	of	the	four	outer	edges	of	the	quad.	The	u	and	v
directions	in	barycentric	coordinate	space	are	marked	in	the	figure.	For	triangle
tessellation,	the	principle	is	similar,	but	the	assignment	of	the	3D	barycentric
coordinate	within	the	triangle	is	a	little	different.	Figure	9.2	demonstrates.



Figure	9.2:	Triangle	Tessellation.

As	you	can	see	in	Figure	9.2,	for	triangle	tessellation	modes,	the	three	outer
tessellation	factors	control	the	level	of	tessellation	along	the	outer	edge	of	the
triangular	patch.	Unlike	with	quad	tessellation,	triangle	tessellation	mode	uses
just	a	single	tessellation	factor,	which	is	applied	to	the	entire	patch	besides	the
outermost	ring	of	triangles	around	its	edge.
In	addition	to	the	quad	and	triangle	tessellation	modes,	a	special	mode	known	as
isoline	mode	allows	a	patch	to	be	broken	down	into	a	series	of	straight	lines.
This	can	be	considered	to	be	a	special	case	of	quad	tessellation	mode.	In	isoline
mode,	the	barycentric	coordinates	of	generated	points	within	the	patch	are	still
2D,	but	there	is	no	inner	tessellation	level,	and	there	are	only	two	outer
tessellation	levels.	Figure	9.3	shows	how	this	mode	works.



Figure	9.3:	Isoline	Tessellation

When	you	set	the	tessellation	mode,	one	(or	both)	of	the	tessellation	control	or
evaluation	shaders	must	include	the	OpExecutionMode	instruction	with	the
Triangles,	Quads,	or	IsoLines	argument.	To	generate	such	a	shader	from
GLSL,	use	an	input	layout	qualifier	in	the	tessellation	evaluation	shader,	as
shown	in	Table	9.1.
In	the	table,	%n	represents	the	index	given	to	the	main	entry	point.	As	SPIR-V
modules	can	have	multiple	entry	points,	it’s	possible	to	create	a	tessellation
evaluation	shader	with	an	entry	point	for	each	mode.	Note,	however,	that	the
tessellation	mode	affects	the	definition	of	the	barycentric	coordinate,	so	care
must	be	taken	to	interpret	it	correctly.
In	SPIR-V,	the	tessellation	mode	instruction	can	appear	in	the	tessellation	control
shader,	the	tessellation	evaluation	shader,	or	both,	so	long	as	both	shaders	agree.
In	addition	to	the	Quads	and	Triangles	tessellation	modes,	which	produce
triangles,	and	the	IsoLines	tessellation	mode,	which	produces	lines,	a	special



fourth	mode,	PointMode,	is	supported.	As	its	name	suggests,	this	mode	allows
the	tessellation	engine	to	produce	points.	To	enable	this	mode,	use	the
OpExecutionMode	instruction	with	the	PointMode	argument.	Again,	this
mode	can	appear	in	the	tessellation	evaluation	shader,	the	tessellation	control
shader,	or	both,	so	long	as	they	agree.	In	GLSL,	this	mode	appears	in	the
tessellation	evaluation	shader	as	an	input	layout	qualifier,	so	that	layout
(point_mode)	in;
becomes

OpExecutionMode	%n	PointMode

PointMode	applies	on	top	of	other	tessellation	modes	such	as	Quads	or
Triangles.	In	this	mode,	the	patch	is	tessellated	as	normal,	but	rather	than
being	joined,	the	resulting	vertices	are	sent	into	the	remainder	of	the	pipeline	as
though	they	were	points.	Note	that	this	is	subtly	different	from	simply	setting	the
polygonMode	field	of	the
VkPipelineRasterizationStateCreateInfo	structure	to
VK_POLYGON_MODE_POINT.	In	particular,	points	produced	by	the	tessellator
in	this	mode	appear	to	the	geometry	shader	(if	enabled)	to	be	points	and	are
rasterized	exactly	once,	rather	than	once	for	each	generated	primitive	in	which
they	appear,	as	they	would	be	otherwise.

Table	9.1:	GLSL	and	SPIR-V	Tessellation	Modes

Controlling	Subdivision
When	subdividing	the	edges	of	the	patches,	the	tessellator	can	use	one	of	three
strategies	to	place	the	split	points,	which	eventually	become	vertices	in	the
resulting	tessellated	mesh.	This	feature	allows	you	to	control	the	appearance	of
the	tessellated	patch	and	particularly	to	control	how	the	edges	of	adjacent
patches	line	up.	The	available	modes	are

•	SpacingEqual:	The	tessellation	level	assigned	to	each	edge	is	clamped
to	the	range	[1,	maxLevel]	and	then	rounded	to	the	next	higher	integer	n.	The
edge	is	then	divided	into	n	segments	of	equal	length	in	barycentric	space.
•	SpacingFractionalEven:	The	tessellation	level	assigned	to	each	edge



is	clamped	to	the	range	[2,	maxLevel]	and	then	rounded	to	the	nearest	even
integer	n.	The	edge	is	then	subdivided	into	n	−	2	segements	of	equal	length,
with	two	additional,	shorter	segments	filling	the	center	region	of	the	edge.
•	SpacingFractionalOdd:	The	tessellation	level	assigned	to	each	edge
is	clamped	to	the	range	[1,	maxLevel	−	1]	and	then	rounded	to	the	nearest
odd	integer	n.	The	edge	is	then	subdivided	into	n	−	2	segements	of	equal
length,	with	two	additional,	shorter	segments	filling	the	center	region	of	the
edge.

For	both	SpacingFractionalEven	and	SpacingFractionalOdd,	the
edge	is	not	tessellated	at	all	if	the	clamped	tessellation	level	is	equal	to	1.	At
levels	over	1,	the	modes	produce	different	visual	effects.	These	effects	are	shown
in	Figure	9.4.

Figure	9.4:	Tessellation	Spacing	Modes

In	the	top-left	image	of	Figure	9.4,	the	tessellation	mode	is	set	to
SpacingEqual.	As	you	can	see,	each	outer	edge	of	the	tessellated	triangle	is



divided	into	a	number	of	equal-length	segments.	The	tessellation	level	in	all
three	images	is	set	to	7.3.	This	level	has	been	rounded	up	to	8,	and	the	edge	has
been	divided	into	that	number	of	segments.
In	the	top-right	image	of	Figure	9.4,	the	tessellation	mode	is
SpacingFractionalEven.	The	tessellation	level	(7.3)	has	been	rounded
down	to	the	next-lower	even	integer	(6),	and	the	outer	edges	of	the	triangle	have
been	divided	into	this	many	equal-length	segments.	The	remaining	section	of	the
edge	is	then	divided	into	two	equal-size	pieces,	producing	two	shorter	segments
in	the	center	of	the	edge.	This	is	most	easily	seen	on	the	long	diagonal	edge	of
the	triangle.
Finally,	in	the	bottom	image	of	Figure	9.4,	the	tessellation	mode	is	set	to
SpacingFractionalOdd.	Here,	the	tessellation	level	has	been	rounded
down	to	the	next-lower	odd	number	(7).	The	outer	edges	of	the	tessellated
triangle	are	then	divided	into	this	many	equal-length	segments,	with	the
remaining	space	made	up	from	two	smaller	segments	inserted	on	either	side	of
the	central	large	segment.	Again,	this	is	easiest	to	see	on	the	long,	diagonal	edge
of	the	triangle.	However,	here	we	see	the	effect	of	the	two	small	segments	as
they	produce	lines	of	higher	tessellation	leading	into	the	center	of	the	tessellated
region.

Table	9.2:	GLSL	and	SPIR-V	Tessellation	Winding	Order

Again,	the	tessellation	spacing	mode	is	set	using	the	OpExecutionMode
instruction	in	SPIR-V	in	the	tessellation	control	shader,	the	evalaution	shader,	or
both,	so	long	as	they	agree.	In	GLSL,	this	instruction	is	also	generated	by	using
an	input	layout	qualifier.
When	the	tessellation	mode	is	either	Triangles	or	Quads,	the	tessellation
engine	will	produce	triangles	as	outputs.	The	order	in	which	the	resulting
vertices	are	processed	by	the	remainder	of	the	pipeline	determines	which	way
the	triangles	face	relative	to	the	original	patch.	The	vertices	of	a	triangle	are	said
to	appear	either	in	clockwise	or	counterclockwise	order,	which	is	the	order	in
which	you	would	encounter	them	when	traversing	the	triangle	edges	in	the
specified	direction	while	viewing	the	triangle	from	the	front.
Again,	the	tessellation	winding	order	is	set	by	using	the	OpExecutionMode



instruction	in	the	tessellation	control	shader,	the	evaluation	shaders,	or	both,	and
the	equivalent	GLSL	declaration	is	an	input	layout	qualifier	specified	in	the
tessellation	evaluation	shader.	The	GLSL	layout	qualifier	declarations	and
resulting	SPIR-V	OpExecutionMode	instructions	are	shown	in	Table	9.2.
Once	again,	in	the	table,	the	SPIR-V	notation	of	%n	indicates	the	index	of	the
entry	point	to	which	the	OpExecutionMode	instruction	applies.

Tessellation	Variables
Each	patch	processed	by	the	tessellation	control	shader	has	a	fixed	number	of
control	points.	This	number	is	set	by	using	the	patchControlPoints
member	of	the	VkPipelineTessellationStateCreateInfo	structure
used	to	create	the	pipeline,	as	discussed	earlier.	Each	control	point	is	represented
as	a	vertex	passed	into	the	pipeline	by	one	of	the	drawing	commands.	The	vertex
shader	processes	the	vertices	one	at	a	time	before	they	are	passed	in	groups	to
the	tessellation	control	shader,	which	has	access	to	all	of	the	vertices	making	up
a	patch.
The	tessellation	evaluation	shader	also	has	access	to	all	of	the	control	points
making	up	a	patch,	but	the	number	of	control	points	in	the	patch	can	be	changed
between	the	tessellation	control	shader	and	the	tessellation	evaluation	shader.
The	number	of	control	points	that	are	passed	from	the	tessellation	control	shader
to	the	tessellation	evaluation	shader	is	set	by	using	a	SPIR-V
OutputVertices	argument	to	the	OpExecutionMode	instruction	applied
to	the	entry	point.	Again,	this	can	appear	in	the	tessellation	control	shader,	the
tessellation	evaluation	shader,	or	both,	so	long	as	they	agree.	This	operation
takes	an	integer	constant	(or	specialization	constant).
In	GLSL,	the	number	of	control	points	passed	from	the	tessellation	control
shader	to	the	tessellation	evaluation	shader	is	specified	by	using	an	output	layout
qualifier	in	the	tessellation	control	shader.	For	example,	the	GLSL	declaration
layout	(vertices	=	9)	out;
becomes

Click	here	to	view	code	image

OpExecutionMode	%n	OutputVertices	9}

The	inner	and	outer	tessellation	levels	are	set	by	using	the	tessellation	control
shader.	This	is	accomplished	in	SPIR-V	by	decorating	variables	in	the
tessellation	control	shader	with	the	TessLevelInner	and
TessLevelOuter	decorations,	respectively.



The	variable	representing	the	outer	tessellation	levels	is	an	array	of	four	floating-
point	values,	all	of	which	are	used	for	Quads	tessellation	mode,	the	first	three	of
which	are	used	in	Triangles	tessellation	mode,	and	only	the	first	two	of
which	are	significant	in	IsoLines	tessellation	mode.
The	variable	representing	the	inner	tessellation	levels	is	an	array	of	two	floating-
point	values.	In	Quads	tessellation	mode,	the	two	values	control	the	inner
tessellation	level	in	the	u	and	v	domains.	In	Triangles	tessellation	mode,	the
first	element	of	the	array	sets	the	tessellation	mode	for	the	center	patch,	and	the
second	is	ignored.	In	IsoLines	mode,	there	is	no	inner	tessellation	level.
The	inner	and	outer	tessellation	levels	appear	in	GLSL	as	the
gl_TessLevelInner	and	gl_TessLevelOuter	built-in	variables,
respectively.	When	you	are	using	these	variables	in	a	GLSL	tessellation	control
shader,	the	compiler	will	generate	the	appropriate	SPIR-V	variable	declaration
and	decorate	it	accordingly.
The	maximum	tessellation	level	that	can	be	used	in	a	Vulkan	pipeline	is	device-
dependent.	You	can	determine	the	maximum	tessellation	level	that	the	device
supports	by	checking	the	maxTessellationGenerationLevel	field	of
the	device’s	VkPhysicalDeviceLimits	structure,	which	can	be	retrieved
by	calling	vkGetPhysicalDeviceProperties().	The	minimum
guaranteed	limit	for	maxTessellationGenerationLevel	is	64,	but	some
devices	may	support	higher	levels.	However,	most	applications	will	not	need
higher	levels	of	tessellation	than	this,	and	in	this	case,	there	is	no	reason	to	query
the	limit.
Consider	the	GLSL	tessellation	control	shader	shown	in	Listing	9.1,	which
simply	sets	the	inner	and	outer	tessellation	levels	of	a	patch	to	some	hard-coded
constants.	This	is	not	a	complete	tessellation	control	shader,	but	it	is	sufficient	to
demonstrate	how	tessellation	assignments	are	translated	from	GLSL	to	SPIR-V.

Listing	9.1:	Trivial	Tessellation	Control	Shader	(GLSL)	Click	here	to	view
code	image

#version	450	core

layout	(vertices	=	1)	out;

void	main(void)

{

				gl_TessLevelInner[0]	=	7.0f;

				gl_TessLevelInner[1]	=	8.0f;



				gl_TessLevelOuter[0]	=	3.0f;

				gl_TessLevelOuter[1]	=	4.0f;

				gl_TessLevelOuter[2]	=	5.0f;

				gl_TessLevelOuter[3]	=	6.0f;

}

After	compilation	into	SPIR-V,	the	shader	shown	in	Listing	9.1	becomes	the
(substantially	longer)	SPIR-V	shader	shown	in	Listing	9.2.	This	listing	is	the	raw
output	of	the	SPIR-V	disassembler	with	comments	added	by	hand.

Listing	9.2:	Trivial	Tessellation	Control	Shader	(SPIR-V)	Click	here	to	view
code	image

;;	Require	tessellation	capability;	import	GLSL450	constructs.

											OpCapability	Tessellation

						%1	=	OpExtInstImport	"GLSL.std.450"

											OpMemoryModel	Logical	GLSL450

;;	Define	"main"	as	the	entry	point	for	a	tessellation	control

shader.

											OpEntryPoint	TessellationControl	%5663	"main"	%3290	%5448

;;	Number	of	patch	output	vertices	=	1

											OpExecutionMode	%5663	OutputVertices	1

;;	Decorate	the	tessellation	level	variables	appropriately.

											OpDecorate	%3290	Patch

											OpDecorate	%3290	BuiltIn	TessLevelInner

											OpDecorate	%5448	Patch

											OpDecorate	%5448	BuiltIn	TessLevelOuter

;;	Declare	types	used	in	this	shader.

						%8	=	OpTypeVoid

			%1282	=	OpTypeFunction	%8

					%13	=	OpTypeFloat	32

					%11	=	OpTypeInt	32	0

;;	This	is	the	declaration	of	the	gl_TessLevelInner[2]	variable.

			%2576	=	OpConstant	%11	2

				%549	=	OpTypeArray	%13	%2576

			%1186	=	OpTypePointer	Output	%549

			%3290	=	OpVariable	%1186	Output

					%12	=	OpTypeInt	32	1

			%2571	=	OpConstant	%12	0

			%1330	=	OpConstant	%13	7

				%650	=	OpTypePointer	Output	%13

			%2574	=	OpConstant	%12	1

			%2807	=	OpConstant	%13	8

;;	Declare	the	gl_TessLevelOuter[4]	variable.

			%2582	=	OpConstant	%11	4

				%609	=	OpTypeArray	%13	%2582

			%1246	=	OpTypePointer	Output	%609

			%5448	=	OpVariable	%1246	Output

;;	Declare	constants	used	for	indexing	into	our	output	arrays	and	the

;;	values	written	into	those	arrays.

			%2978	=	OpConstant	%13	3



			%2921	=	OpConstant	%13	4

			%2577	=	OpConstant	%12	2

			%1387	=	OpConstant	%13	5

			%2580	=	OpConstant	%12	3

			%2864	=	OpConstant	%13	6

;;	Start	of	the	main	function

			%5663	=	OpFunction	%8	None	%1282

		%23934	=	OpLabel

;;	Declare	references	to	elements	of	the	output	arrays	and	write

constants

;;	into	them.

			%6956	=	OpAccessChain	%650	%3290	%2571

											OpStore	%6956	%1330

		%19732	=	OpAccessChain	%650	%3290	%2574

											OpStore	%19732	%2807

		%19733	=	OpAccessChain	%650	%5448	%2571

											OpStore	%19733	%2978

		%19734	=	OpAccessChain	%650	%5448	%2574

											OpStore	%19734	%2921

		%19735	=	OpAccessChain	%650	%5448	%2577

											OpStore	%19735	%1387

		%23304	=	OpAccessChain	%650	%5448	%2580

											OpStore	%23304	%2864

;;	End	of	main

											OpReturn

											OpFunctionEnd

Tessellation	control	shaders	execute	a	single	invocation	for	each	output	control
point	defined	in	the	patch.	All	of	those	invocations	have	access	to	all	of	the	data
associated	with	the	input	control	points	for	the	patch.	As	a	result,	the	input
variables	to	the	tessellation	control	shader	are	defined	as	arrays.	As	discussed,
the	number	of	input	and	output	control	points	in	a	patch	do	not	have	to	be	equal.
In	addition	to	the	tessellation	level	outputs,	the	tessellation	shader	can	define
more	outputs	to	be	used	for	per-control	point	and	per-patch	data.
The	per-control-point	output	from	the	tessellation	control	shader	is	declared	as
arrays	whose	sizes	match	the	number	of	output	control	points	in	the	patch.	There
is	one	tessellation	control	shader	invocation	per	output	control	point,	so	there	is
one	entry	in	each	of	the	output	arrays	that	corresponds	to	each	of	those
invocations.	The	per-control-point	outputs	can	only	be	written	by	the
corresponding	invocation.	The	index	of	the	shader	invocation	within	the	patch	is
available	as	a	built-in	variable,	which	can	be	accessed	by	declaring	an	integer
variable	decorated	by	the	SPIR-V	InvocationId	built-in.	In	GLSL,	this
variable	is	declared	as	the	gl_InvocationID	built-in	variable.	This	variable
must	be	used	to	index	into	the	output	arrays.
Listing	9.3	shows	how	to	declare	output	variables	in	a	GLSL	tessellation	control



shader,	and	Listing	9.4	shows	how	that	shader	is	translated	into	SPIR-V.	Again,
Listing	9.3	is	not	a	complete	tessellation	control	shader	and,	while	legal,	will	not
produce	any	useful	output.	Also,	the	SPIR-V	shader	shown	in	Listing	9.4	has
been	commented	by	hand.

Listing	9.3:	Declaring	Outputs	in	Tessellation	Control	Shaders	(GLSL)	Click
here	to	view	code	image

#version	450	core

layout	(vertices	=	4)	out;

out	float	o_outputData[4];

void	main(void)

{

				o_outputData[gl_InvocationId]	=	19.0f;

}

Listing	9.4:	Declaring	Outputs	in	Tessellation	Control	Shaders	(SPIR-V)
Click	here	to	view	code	image

;;	Declare	a	tessellation	control	shader.

											OpCapability	Tessellation

						%1	=	OpExtInstImport	"GLSL.std.450"

											OpMemoryModel	Logical	GLSL450

											OpEntryPoint	TessellationControl	%5663	"main"	%3227	%4585

;;	4	output	vertices	per	patch,	declare	InvocationId	built-in

											OpExecutionMode	%5663	OutputVertices	4

											OpDecorate	%4585	BuiltIn	InvocationId

						%8	=	OpTypeVoid

			%1282	=	OpTypeFunction	%8

					%13	=	OpTypeFloat	32

					%11	=	OpTypeInt	32	0

			%2582	=	OpConstant	%11	4

				%549	=	OpTypeArray	%13	%2582

			%1186	=	OpTypePointer	Output	%549

			%3227	=	OpVariable	%1186	Output

					%12	=	OpTypeInt	32	1

;;	This	declares	the	InvocationId	input.

				%649	=	OpTypePointer	Input	%12

			%4585	=	OpVariable	%649	Input

					%37	=	OpConstant	%13	19

				%650	=	OpTypePointer	Output	%13

;;	Beginning	of	main

			%5663	=	OpFunction	%8	None	%1282

		%24683	=	OpLabel

;;	Load	the	invocation	ID.

		%20081	=	OpLoad	%12	%4585

;;	Define	a	reference	to	output	variable.



		%13546	=	OpAccessChain	%650	%3227	%20081

;;	Store	into	it	at	invocation	ID.

											OpStore	%13546	%37

;;	End	of	main

											OpReturn

											OpFunctionEnd

The	output	variables	declared	in	the	tessellation	control	shader	are	made
available	in	the	tessellation	evaluation	shader	as	inputs.	The	total	number	of
components	that	can	be	produced	per	output	vertex	by	a	tessellation	control
shader	is	device-dependent	and	is	determined	by	inspecting	the
maxTessellationControlTotalOutputComponents	member	of	the
device’s	VkPhysicalDeviceLimits	structure,	which	you	can	obtain	by
calling	vkGetPhysicalDeviceProperties().	This	is	guaranteed	to	be
at	least	2,048	components.	Some	of	these	components	may	be	used	per	vertex,
and	some	may	be	applied	to	the	patch,	as	discussed	in	the	next	section.
Of	course,	the	per-vertex	limit	is	the	limit	that	applies	to	variables	passed	for
each	vertex	from	tessellation	control	to	tessellation	evaluation	shader.	The	total
number	of	components	that	a	tessellation	evaluation	shader	can	receive	as	input
from	the	tessellation	control	shader	is	contained	in	the
maxTessellationEvaluationInputComponents	field	of	the
VkPhysicalDeviceLimits	structure.	This	limit	is	at	least	64	but	could	be
higher,	depending	on	the	device.

Patch	Variables
Although	normal	output	variables	in	tessellation	control	shaders	are	instantiated
as	arrays	corresponding	to	the	output	control	points,	sometimes	specific	pieces
of	data	are	needed	that	apply	everywhere	in	the	patch.	These	pieces	of	data	can
be	declared	as	patch	outputs.	Patch	outputs	serve	two	purposes:

•	They	store	per-patch	data	and	pass	it	from	tessellation	control	shader	to
tessellation	evaluation	shader.
•	They	allow	data	sharing	between	tessellation	control	shader	invocations
within	a	single	patch.

Within	the	group	of	tessellation	control	shader	invocations	corresponding	to	a
single	patch,	patch	outputs	are	actually	readable	as	well	as	writable.	If	other
invocations	in	the	same	patch	have	written	to	a	patch	output,	it	is	possible	to	read
the	data	they	have	placed	there.
To	declare	a	patch	output	variable	in	GLSL,	use	the	patch	qualifier	on	the
variable	declaration.	This	declaration	is	translated	into	the	Patch	decoration	on



the	variable	subsequently	declared	in	the	SPIR-V	shader.	For	example,	patch
out	myVariable;	becomes

OpName	%n	"myVariable"

OpDecorate	%n	Patch

where	%n	is	the	identifier	assigned	to	the	myVariable	variable.
Because	all	of	the	tessellation	control	shader	invocations	corresponding	to	a
single	patch	may	be	running	in	parallel,	perhaps	at	different	rates,	simply	writing
to	one	patch	variable	and	then	reading	from	another	patch	variable	won’t
produce	well-defined	results.	If	some	invocations	get	ahead	of	others	while
processing	a	patch,	the	invocations	that	are	behind	won’t	“see”	the	results	of
writes	performed	by	the	other	invocations	that	haven’t	reached	the	write	yet.
To	synchronize	the	invocations	within	a	patch	and	ensure	that	they	all	reach	the
same	place	at	the	same	time,	we	can	use	the	OpControlBarrier	instruction,
which	can	synchronize	control	flow	of	invocations	within	the	tessellation	control
shader.	Further,	to	ensure	that	the	write	to	the	patch	variable	is	made	visible	to
other	invocations	within	the	same	patch,	we	also	need	to	include	either	an
OpMemoryBarrier	instruction	or	further	memory	semantics	in	the
OpControlBarrier	instruction.
In	GLSL,	these	instructions	can	be	generated	by	calling	the	barrier()	built-
in	function	inside	the	tessellation	control	shader.	When	called,	the	GLSL
compiler	generates	an	OpMemoryBarrier	instruction	to	force	memory
coherency	across	the	set	of	tessellation	control	shader	invocations,	and	then	it
generates	an	OpControlBarrier	instruction	to	synchronize	their	control
flow.	After	these	instructions	have	executed,	tessellation	control	shader
invocations	can	read	data	written	to	patch	variables	by	other	invocations	in	the
same	patch.
If	any	one	of	the	tessellation	levels	written	by	the	tessellation	control	shader	is
0.0	or	a	floating-point	NaN,	then	the	entire	patch	is	discarded.	This	provides	a
mechanism	for	the	tessellation	control	shader	to	programmatically	throw	out
patches	that	it	determines	will	not	contribute	to	the	output	image.	For	example,	if
the	maximum	deviation	from	a	plane	for	a	displacement	map	is	known,	then	the
tessellation	control	shader	can	inspect	a	patch,	determine	whether	all	of	the
geomery	that	would	result	from	tessellating	that	patch	would	face	away	from	the
viewer,	and	cull	the	patch.	If	such	a	patch	were	to	be	passed	through	by	the
tessellation	control	shader,	then	it	would	be	tessellated,	the	tessellation
evaluation	shader	would	run,	and	all	the	resulting	triangles	would	individually	be
culled	by	subsequent	stages	in	the	pipeline.	This	would	be	very	inefficient.



Tessellation	Evaluation	Shaders
After	the	tessellation	control	shader	runs	and	passes	tessellation	factors	to	the
fixed-function	tessellation	unit,	it	generates	new	vertices	inside	the	patch	and
assigns	them	barycentric	coordinates	in	patch	space.	Each	new	vertex	generates
an	invocation	of	the	tessellation	evaluation	shader,	to	which	the	barycentric
coordinate	of	the	vertex	is	passed.
For	IsoLines	and	Quads	tessellation	mode,	these	are	2D	coordinates.	For
Triangles	tessellation	mode,	these	are	3D	coordinates.	Regardless	of	the
mode,	they	are	delivered	to	the	tessellation	evaluation	shader	via	built-in
variables.
In	GLSL,	this	declaration	corresponds	to	the	gl_TessCoord	built-in	variable.
When	this	variable	is	used,	the	GLSL	compiler	automatically	generates	the
appropriate	variable	declarations	and	decorations	in	SPIR-V.
In	SPIR-V,	the	result	is	the	declaration	of	a	three-element	vector	of	floating-point
values,	decorated	with	the	TessCoord	decoration.	Note	that	this	is	always	a
three-element	array,	even	when	the	tessellation	mode	calls	for	a	2D	barycentric
coordinate	(IsoLines	or	Quads).	In	those	modes,	the	third	component	of	the
array	is	simply	zero.
For	example,	the	minimal	tessellation	evaluation	shader	in	Listing	9.5	becomes
the	SPIR-V	shader	in	Listing	9.6.

Listing	9.5:	Accessing	gl_TessCoord	in	Evaluation	Shader	(GLSL)	Click
here	to	view	code	image

#version	450	core

layout	(quads)	in;

void	main(void)

{

				gl_Position	=	vec4(gl_TessCoord,	1.0);

}

Listing	9.6:	Accessing	gl_TessCoord	in	Evaluation	Shader	(SPIR-V)
Click	here	to	view	code	image

;;	This	is	a	GLSL	450	tessellation	shader;	enable	capabilities.

											OpCapability	Tessellation

											OpCapability	TessellationPointSize

											OpCapability	ClipDistance

											OpCapability	CullDistance



						%1	=	OpExtInstImport	"GLSL.std.450"

											OpMemoryModel	Logical	GLSL450

;;	Declare	the	entry	point	and	decorate	it	appropriately.

											OpEntryPoint	TessellationEvaluation	%5663	"main"	%4930

%3944

											OpExecutionMode	%5663	Quads

											OpExecutionMode	%5663	SpacingEqual

											OpExecutionMode	%5663	VertexOrderCcw

;;	Declare	GLSL	built-in	outputs.

											OpMemberDecorate	%2935	0	BuiltIn	Position

											OpMemberDecorate	%2935	1	BuiltIn	PointSize

											OpMemberDecorate	%2935	2	BuiltIn	ClipDistance

											OpMemberDecorate	%2935	3	BuiltIn	CullDistance

											OpDecorate	%2935	Block

;;	This	is	the	decoration	of	gl_TessCoord.

											OpDecorate	%3944	BuiltIn	TessCoord

						%8	=	OpTypeVoid

			%1282	=	OpTypeFunction	%8

					%13	=	OpTypeFloat	32

					%29	=	OpTypeVector	%13	4

					%11	=	OpTypeInt	32	0

			%2573	=	OpConstant	%11	1

				%554	=	OpTypeArray	%13	%2573

			%2935	=	OpTypeStruct	%29	%13	%554	%554

				%561	=	OpTypePointer	Output	%2935

			%4930	=	OpVariable	%561	Output

					%12	=	OpTypeInt	32	1

			%2571	=	OpConstant	%12	0

;;	Vector	of	3	components,	as	input,	decorated	with	BuiltIn	TessCoord

					%24	=	OpTypeVector	%13	3

				%661	=	OpTypePointer	Input	%24

			%3944	=	OpVariable	%661	Input

				%138	=	OpConstant	%13	1

				%666	=	OpTypePointer	Output	%29

			%5663	=	OpFunction	%8	None	%1282

		%24987	=	OpLabel

;;	Read	from	gl_TessCoord.

		%17674	=	OpLoad	%24	%3944

;;	Extract	the	three	elements.

		%22014	=	OpCompositeExtract	%13	%17674	0

		%23496	=	OpCompositeExtract	%13	%17674	1

			%7529	=	OpCompositeExtract	%13	%17674	2

;;	Construct	the	new	vec4.

		%18260	=	OpCompositeConstruct	%29	%22014	%23496	%7529	%138

;;	Write	to	gl_Postion.

		%12055	=	OpAccessChain	%666	%4930	%2571

											OpStore	%12055	%18260

;;	End	of	main

											OpReturn

											OpFunctionEnd

The	outputs	declared	in	the	tessellation	evaluation	shader	are	fed	to	the	next



stage	of	the	pipeline.	When	a	geometry	shader	is	enabled,	it	receives	its	input
from	the	tessellation	evaluation	shader;	otherwise,	the	tessellation	evaluation
shader	outputs	are	used	to	feed	interpolation	and	are	subsequently	passed	to	the
fragment	shader.	The	total	amount	of	data	that	a	tessellation	evaluation	shader
can	produce	is	device-dependent	and	can	be	determined	by	checking	the
maxTessellationEvaluationOutputComponents	field	of	the
device’s	VkPhysicalDeviceLimits	structure.

Tessellation	Example:	Displacement	Mapping
To	tie	all	of	this	together,	we’ll	walk	through	a	simple	but	complete	example	of
using	tessellation	to	implement	displacement	mapping.	Displacement	mapping	is
a	common	technique	to	add	detail	to	a	surface	by	offesetting	along	its	normal	by
using	a	texture.	To	implement	this,	we’ll	take	a	patch	with	four	control	points,
each	having	a	position	and	a	normal.	We	will	transform	their	positions	and
normals	into	world	space	in	the	vertex	shader;	then,	in	the	tessellation	control
shader,	we	will	compute	their	view	space	positions	and	set	their	tessellation
levels.	The	tessellation	control	shader	then	passes	the	world-space	positions	to
the	tessellation	evaluation	shader.
In	the	tessellelation	evaluation	shader,	we	take	the	barycentric	coordinates
generated	by	the	tessellator	and	use	them	to	compute	an	interpolated	normal	and
world	space	position,	fetch	from	a	texture,	and	then	displace	the	computed
vertex	coordinate	along	the	computed	normal	by	a	value	derived	from	the
texture.	This	final	world-space	coordinate	is	transformed	into	view	space	by
using	the	world-to-view	matrix,	which	is	stored	in	the	same	buffer	as	our	object-
to-world	matrix	used	in	our	vertex	shader.
To	set	this	up,	we’ll	use	a	texture	to	store	our	displacement	map.	In	addition	to
our	texture	resources,	we’ll	use	push	constants	to	communicate	with	our	shaders.
For	the	purposes	of	this	example,	we’ll	use	a	simple	push	constant	to	send	a
transformation	matrix	into	the	tessellation	control	shader.
The	next	two	push	constants	are	floating-point	values.	The	first	is	used	in	the
tessellation	evaluation	shader	to	scale	the	level	of	tessellation	applied	to	the
patch.	The	second	is	used	in	the	tessellation	evaluation	shader	to	scale	the
amount	of	displacement	applied	to	each	vertex.	The	values	read	from	the	texture
are	normalized	to	the	range	[0.0,	1.0],	so	an	external	tessellation	scale	allows	us
to	use	this	range	optimally.
The	description	of	the	VkDescriptorSetLayoutCreateInfo	used	to
create	this	descriptor	set	layout	is	shown	in	Listing	9.7.



Listing	9.7:	Descriptor	Setup	for	Displacement	Mapping	Click	here	to	view
code	image

struct	PushConstantData

{

				vmath::mat4	mvp_matrix;

				float							displacement_scale;

};

static	const	VkDescriptorSetLayoutBinding	descriptorBindings[]	=

{

				//	Only	binding	is	a	sampled	image	with	combined	sampler.

				{

								0,

								VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,

								1,

								VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,

								nullptr

				}

};

static	const	VkDescriptorSetLayoutCreateInfo

descriptorSetLayoutCreateInfo	=

{

				VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,	nullptr,

				0,

				vkcore::utils::arraysize(descriptorBindings),

				descriptorBindings

};

vkCreateDescriptorSetLayout(getDevice(),

																												&descriptorSetLayoutCreateInfo,

																												nullptr,

																												&m_descriptorSetLayout);

//	Define	a	push	constant	range.

static	const	VkPushConstantRange	pushConstantRange[]	=

{

				//	Push	data	into	the	evaluation	shader.

				{

								VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,

								0,

								sizeof	(PushConstantData)

				}

};

VkPipelineLayoutCreateInfo	pipelineLayoutCreateInfo	=

{

				VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,	nullptr,

				0,

				1,

				&m_descriptorSetLayout,

				vkcore::utils::arraysize(pushConstantRange),

				pushConstantRange



};

result	=	vkCreatePipelineLayout(getDevice(),

																																&pipelineLayoutCreateInfo,

																																&nullptr,

																																&m_pipelineLayout);	As	the	geometry

for	the	tessellated	quad	is	simply	four	vertices	arranged	in	a

square,	we’re	not	going	to	use	vertex	buffers	in	this	example,	but

instead	we’ll	programmatically	generate	the	object	space	positions	in

the	vertex	shader.	The	GLSL	vertex	shader	used	in	this	example	is

shown	in	Listing	9.8.

Listing	9.8:	Vertex	Shader	for	Displacement	Mapping	Click	here	to	view
code	image

#version	450	core

void	main(void)

{

				float	x	=	float(gl_VertexIndex	&	1)	-	0.5f;

				float	y	=	float(gl_VertexIndex	&	2)	*	0.5f	-	0.5f;

				gl_Position	=	vec4(x,	y,	0.0f,	1.0f);

}

The	output	of	the	vertex	shader	is	simply	a	quad	of	side	length	1,	centered	on	the
origin.	This	is	passed	into	the	tessellation	control	shader	shown	in	Listing	9.9,
which	sets	the	tessellation	factors	and	passes	the	position	of	the	vertices	through
otherwise	unchanged.

Listing	9.9:	Tessellation	Control	Shader	for	Displacement	Mapping	Click
here	to	view	code	image

#version	450	core

layout	(vertices	=	4)	out;

void	main(void)

{

				if	(gl_InvocationID	==	0)

				{

								gl_TessLevelInner[0]	=	64.0f;

								gl_TessLevelInner[1]	=	64.0f;

								gl_TessLevelOuter[0]	=	64.0f;

								gl_TessLevelOuter[1]	=	64.0f;

								gl_TessLevelOuter[2]	=	64.0f;

								gl_TessLevelOuter[3]	=	64.0f;

				}



				gl_out[gl_InvocationID].gl_Position	=

gl_in[gl_InvocationID].gl_Position;

}

Note	that	the	tessellation	control	shader	shown	in	Listing	9.9	unconditionally
sets	the	tessellation	factors	to	64,	which	is	the	minimum	required	tessellation
level	that	must	be	supported	by	Vulkan	implementations.	This	is	a	very	high
amount	of	tessellation,	and	most	applications	will	not	need	this	level.	Rather,	we
would	divide	the	patch	into	several	smaller	patches	and	then	use	a	smaller,
probably	different	tessellation	level	for	each	of	them.	The	output	of	the
tessellation	control	shader	is	then	passed	to	the	tessellation	evaluation	shader
shown	in	Listing	9.10.

Listing	9.10:	Tessellation	Evaluation	Shader	for	Displacement	Mapping	Click
here	to	view	code	image

#version	450	core

layout	(quads,	fractional_odd_spacing)	in;

layout	(push_constant)	uniform	push_constants_b

{

				mat4	mvp_matrix;

				float	displacement_scale;

}	push_constants;

layout	(set	=	0,	binding	=	0)	uniform	sampler2D	texDisplacement;

void	main(void)

{

				vec4	mid1	=	mix(gl_in[0].gl_Position,	gl_in[1].gl_Position,

gl_TessCoord.x);

				vec4	mid2	=	mix(gl_in[2].gl_Position,	gl_in[3].gl_Position,

gl_TessCoord.x);

				vec4	pos	=	mix(mid1,	mid2,	gl_TessCoord.y);

				float	displacement	=	texture(texDisplacement,	gl_TessCoord.xy).x;

				pos.z	=	displacement	*	push_constants.displacement_scale;

				gl_Position	=	push_constants.mvp_matrix	*	pos;

}

The	shader	in	Listing	9.10	uses	the	content	of	gl_TessCoord.xy	to
interpolate	the	position	of	the	vertices	that	land	at	the	four	corners	of	the	quad
patch	produced	by	the	tessellation	control	shader.	The	final	position,	pos,	is
simply	a	weighted	average	of	the	four	corners.	Additionally,
gl_TessCoord.xy	is	used	as	a	texture	coordinate	to	sample	from	the



displacement	map	texture,	texDisplacement.
This	displacement	value	is	scaled	by	the	displacement_scale	push
constant,	which	allows	our	application	to	vary	the	amount	of	displacement
applied	to	the	mesh.	We	know	that	our	vertex	and	tessellation	control	shaders	set
up	our	patch	in	the	x-y	plane	and	that	the	z	value	for	all	of	our	tessellated	points
will	therefore	be	zero.	Overwriting	the	z	component	with	displacement	produces
a	patch	that	is	like	a	landscape	with	the	z	direction	being	up.	We	transform	this
through	our	final	transformation	matrix	to	produce	a	vertex	in	view	space.
The	rest	of	the	graphics	pipeline	setup	for	the	displacement	mapping	example	is
similar	to	other	applications	shown	thus	far.	However,	because	tessellation	is
enabled,	we	must	set	the	pTessellationState	member	of	our
VkGraphicsPipelineCreateInfo	to	the	address	of	a	valid
VkPipelineTessellationStateCreateInfo	structure.	This	structure
is	extremely	simple	and	is	used	only	to	set	the	number	of	control	points	in	our
patch.	The	VkPipelineTessellationStateCreateInfo	for	this
application	is	shown	in	Listing	9.11.

Listing	9.11:	Tessellation	State	Creation	Information	Click	here	to	view	code
image

VkPipelineTessellationStateCreateInfo	tessellationStateCreateInfo	=

{

				VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO,		//

sType

				nullptr,																																																				//

pNext

				0,																																																										//

flags

				4																																														//

patchControlPoints

};

The	result	of	running	this	application	is	shown	in	Figure	9.5.	As	you	can	see	in
the	figure,	we	have	set	the	polygon	mode	to	VK_POLYGON_MODE_LINE,
which	allows	us	to	see	the	structure	of	the	tessellated	patch.



Figure	9.5:	Result	of	Tessellated	Displacement	Mapping

For	all	of	the	geometric	density	shown	in	Figure	9.5,	remember	that	no	real
geometry	was	passed	into	the	graphics	pipeline.	The	four	corners	of	the	patch	are
programmatically	generated	by	the	vertex	shader,	and	no	real	vertex	attributes
are	used.	All	of	the	triangles	in	the	patch	are	generated	by	the	tessellation	engine,
and	their	positions	are	computed	by	using	a	texture.	By	applying	shading	and
detail	textures	to	the	surface	of	the	patch,	you	can	simulate	even	more	apparent
detail.	Depending	on	the	performance	of	the	system,	the	tessellation	levels
chosen	by	the	tessellation	control	shader	can	be	scaled	to	balance	performance
and	visual	quality.	Tessellation	is	therefore	a	very	effective	way	to	introduce
geometric	density	to	a	scene	without	needing	to	regenerate	mesh	data	or	produce
multiple	versions	of	3D	art	assets.

Geometry	Shaders
The	geometry	shader	is	the	final	stage	in	the	front-end,	geometry-processing	part
of	the	pipeline.	When	enabled,	it	runs	immediately	after	the	tessellation



evaluation	shader	if	tessellation	is	enabled	and	after	the	vertex	shader	if
tessellation	is	not	in	use.	A	geometry	shader	is	unique	in	that	a	single	invocation
of	the	geometry	shader	processes	an	entire	primitive.	Further,	the	geometry
shader	is	the	only	shader	stage	that	can	see	adjacency	primitives.1	Finally,	the
geometry	shader	is	special	in	that	it	can	both	destroy	and	programmatically
create	new	geometry.

1.	The	vertex	shader	can	see	the	additional	vertices	that	make	up	the	adjacency	primitive,	but	it	has	no
knowledge	of	whether	any	particular	vertex	is	part	of	the	main	primitive	or	the	adjacency	information.

To	enable	the	geometry	shader	stage,	include	a	geometry	shader	in	the	pipeline
by	including	an	instance	of	the	VkPipelineShaderStageCreateInfo
structure	describing	a	geometry	shader	in	the	array	of	stages	passed	through
pStages	in	the	VkGraphicsPipelineCreateInfo	structure.	Support
for	geometry	shaders	is	optional,	so	before	creating	a	pipeline	containing	a
geometry	shader,	your	application	should	check	for	support	by	inspecting	the
geometryShader	member	of	the	VkPhysicalDeviceFeatures
structure	returned	from	a	call	to	vkGetPhysicalDeviceFeatures(),	and
then	set	that	same	member	to	VK_TRUE	in	the	VkDeviceCreateInfo
structure	passed	to	vkCreateDevice().
A	geometry	shader	is	created	in	SPIR-V	by	using	the	Geometry	execution
model	with	the	OpEntryPoint	instruction.	A	geometry	shader	must	include
the	following	pieces	of	information:	•	The	input	primitive	type,	which	must	be
one	of	points,	lines,	triangles,	lines	with	adjacency,	or	triangles	with	adjacency	•
The	output	primitive	type,	which	must	be	one	of	points,	line	strips,	or	triangle
strips	•	The	maximum	number	of	vertices	expected	to	be	produced	by	a	single
invocation	of	the	geometry	shader	All	of	these	attributes	are	specified	as
arguments	to	OpExecutionMode	instructions	in	the	SPIR-V	shader.	In	GLSL,
the	first	is	specified	by	using	an	input	layout	qualifier,	and	the	second	two	are
specified	by	using	output	layout	qualifiers.	The	shader	shown	in	Listing	9.12	is	a
minimal	GLSL	geometry	shader,	which	is	legal,	but	it	will	throw	away	all	of	the
geometry	that	passes	down	the	pipe.

Listing	9.12:	Minimal	Geometry	Shader	(GLSL)	Click	here	to	view	code
image

#version	450	core

layout	(triangles)	in;

layout	(triangle_strip)	out;

layout	(max_vertices	=	3)	out;



void	main(void)

{

				//	Do	nothing.

}

As	you	can	see,	Listing	9.12	contains	only	the	required	input	and	output	layout
definitions,	while	its	main	function	is	empty.	When	compiled	to	SPIR-V,	the
shader	shown	in	Listing	9.13	is	produced.

Listing	9.13:	Minimal	Geometry	Shader	(SPIR-V)	Click	here	to	view	code
image

;;	This	is	a	geometry	shader	written	in	GLSL	450.

											OpCapability	Geometry

						%1	=	OpExtInstImport	"GLSL.std.450"

											OpMemoryModel	Logical	GLSL450

;;	Declare	the	main	entry	point.

											OpEntryPoint	Geometry	%5663	"main"

;;	Triangles	input,	triangle	strip	output,	maximum	vertex	count	is	3.

											OpExecutionMode	%5663	Triangles

											OpExecutionMode	%5663	Invocations	1

											OpExecutionMode	%5663	OutputTriangleStrip

											OpExecutionMode	%5663	OutputVertices	3

;;	Start	of	main

						%8	=	OpTypeVoid

			%1282	=	OpTypeFunction	%8

			%5663	=	OpFunction	%8	None	%1282

		%16103	=	OpLabel

;;	End	of	empty	main

											OpReturn

											OpFunctionEnd

In	Listing	9.13,	the	main	entry	point	is	decorated	using	three
OpExecutionMode	instructions.	The	first	uses	Triangles	to	indicate	that
the	shader	expects	triangles	as	input.	The	second,	OutputTriangleStrip,
specifies	that	the	shader	produces	triangle	strips.	Finally,	OutputVertices	is
used	to	specify	that	each	shader	invocation	will	produce	a	maximum	of	3
vertices—a	single	triangle.	The	Invocations	decoration	is	also	specified,	but
it	is	set	to	1,	which	is	the	default,	and	could	therefore	have	been	omitted.
The	maximum	number	of	vertices	that	a	single	geometry	shader	can	produce	is
device-dependent.	To	determine	the	limit	for	your	device,	check	the
maxGeometryOutputVertices	field	of	the	device’s
VkPhysicalDeviceLimits	structure,	which	you	can	retrieve	by	calling
vkGetPhysicalDeviceProperties().	The	OutputVertices
argument	to	the	execution	mode	instruction	must	be	less	than	or	equal	to	this



value.	maxGeometryOutputVertices	is	guaranteed	to	be	at	least	256.
The	maximum	number	of	components	that	a	geometry	shader	can	produce	for
each	vertex	it	outputs	is	also	device-dependent	and	is	determined	by	checking
the	maxGeometryOutputComponents	field	of	the	device’s
VkPhysicalDeviceLimits	structure.	This	is	guaranteed	to	be	at	least	64.
In	addition	to	the	limit	on	the	number	of	vertices	that	the	shader	can	produce,	the
number	of	components	that	the	shader	can	produce	is	subject	to	a	device-
dependent	limit.	This	is	stored	in	the
maxGeometryTotalOutputComponents	field	of	the
VkPhysicalDeviceLimits	structure.	This	is	guaranteed	to	be	at	least
1,024—enough	for	256	vertices	(the	minimum	guarantee	for
maxGeometryOutputVertices),	each	consisting	of	a	single	vec4.	Some
devices	may	advertise	a	higher	value	for	one	or	both	limits.	Note	that	the
minimum	guarantees	aren’t	a	simple	product	of	one	another.	That	is,	the
gaurantee	for	maxGeometryTotalOutputComponents	(1,024)	is	not
equal	to	the	product	of	maxGeometryOutputComponents	(64)	and
maxGeometryOutputVertices	(256).	Many	devices	will	support
producing	a	large	number	of	small	vertices	or	a	small	number	of	larger	vertices.
The	inputs	to	the	geometry	shader	come	from	two	places:	•	Built-in	inputs	that
are	declared	inside	a	gl_PerVertex	input	block	declaration	•	User-defined
inputs	that	match	the	corresponding	output	declaration	in	the	next-earlier	shader
stage	(tessellation	evaluation	or	vertex,	depending	on	whether	tessellation	is
enabled)	To	declare	the	gl_PerVertex	input	block,	declare	an	input	block
called	gl_PerVertex	and	include	in	it	all	of	the	built-in	per-vertex	input
variables	that	your	shader	needs	to	use.	For	example,	Listing	9.14	shows	the
input	block	declared	containing	gl_Position,	which	corresponds	to
gl_Position	as	written	by	the	previous	stage.	This	block	is	declared	as	an
array	of	instances	called	gl_in[],	which	is	implicitly	sized	given	the	primitive
type.

Listing	9.14:	Declaring	gl_PerVertex	in	a	GLSL	Geometry	Shader	in
gl_PerVertex
{
				vec4	gl_Position;
}	gl_in[];

When	a	shader	containing	the	declaration	shown	in	Listing	9.14	and	performing



a	read	from	gl_Position	is	compiled	to	SPIR-V,	the	disassembly	shown	in
Listing	9.15	is	produced.

Listing	9.15:	Reading	gl_PerVertex	in	a	SPIR-V	Geometry	Shader	Click
here	to	view	code	image

...

;;	Decorate	the	first	member	of	our	block	with	the	BuiltIn	Position.

											OpMemberDecorate	%1017	0	BuiltIn	Position

											OpDecorate	%1017	Block

...

;;	Declare	an	array	of	structures,	with	a	pointer	to	this	array	as	an

input.

			%1017	=	OpTypeStruct	%29

				%557	=	OpTypeArray	%1017	%2573

			%1194	=	OpTypePointer	Input	%557

			%5305	=	OpVariable	%1194	Input

				%666	=	OpTypePointer	Input	%29

...

;;	Access	the	input	using	OpLoad.

			%7129	=	OpAccessChain	%666	%5305	%2571	%2571

		%15646	=	OpLoad	%29	%7129

As	with	other	shader	stages,	declaring	an	input	in	the	geometry	shader	that	does
not	include	a	BuiltIn	decoration	means	that	it	will	read	its	value	from	those
produced	in	the	vertex	shader	that	precedes	it.	The	total	number	of	components
across	all	inputs	to	the	geometry	shader	is	subject	to	a	device-dependent	limit.
This	can	be	determined	by	checking	the	maxGeometryInputComponents
member	of	the	device’s	VkPhysicalDeviceLimits	structure.	This	is
guaranteed	to	be	at	least	64	components.
Unless	a	geometry	shader	explicitly	produces	output	data,	it	effectively	does
nothing.	The	shader	can	produce	individual	vertices	one	at	a	time,	and	the
vertices	will	then	be	assembled	into	primitives	after	the	shader	has	executed.	To
produce	a	vertex,	the	shader	should	execute	the	OpEmitVertex	instruction,
which	is	produced	by	the	GLSL	built-in	function	EmitVertex().
When	the	OpEmitVertex	instruction	is	executed,	the	current	values	of	all
output	variables	are	used	to	create	a	new	vertex	and	pushed	down	the	pipeline.
The	values	of	the	output	variables	become	undefined	at	this	point,	so	for	each
output	vertex,	it	is	necessary	to	rewrite	all	of	the	outputs	of	the	shader.	Before
OpEmitVertex	is	useful,	then,	we	must	declare	some	outputs	in	our	shader.
Outputs	are	declared	in	GLSL	using	an	output-block	declaration.	For	example,	to
produce	a	vec4	and	pass	it	to	the	subsequent	fragment	shader,	declare	a	block



as	shown	in	Listing	9.16.

Listing	9.16:	Declaring	an	Output	Block	in	GLSL

out	gs_out

{

				vec4	color;

};

Again,	compiling	this	fragment	to	SPIR-V	produces	a	declaration	of	a	block	with
a	single	member	containing	a	vector	of	four	floating-point	values.	When	this
variable	is	written	to	in	the	shader,	an	OpStore	operation	is	performed	to	write
into	the	block.
A	complete,	pass-through	geometry	shader	is	shown	in	Listing	9.17,	and	the
resulting	SPIR-V	is	shown	in	Listing	9.18.

Listing	9.17:	Pass-Through	GLSL	Geometry	Shader	Click	here	to	view	code
image

#version	450	core

layout	(points)	in;

layout	(points)	out;

layout	(max_vertices	=	1)	out;

in	gl_PerVertex

{

			vec4	gl_Position;

}	gl_in[];

out	gs_out

{

				vec4	color;

};

void	main(void)

{

				gl_Position	=	gl_in[0].gl_Position;

				color	=	vec4(0.5,	0.1,	0.9,	1.0);

				EmitVertex();

}

Listing	9.18:	Pass-Through	SPIR-V	Geometry	Shader	Click	here	to	view
code	image

													OpCapability	Geometry



													OpCapability	GeometryPointSize

													OpCapability	ClipDistance

													OpCapability	CullDistance

								%1	=	OpExtInstImport	"GLSL.std.450"

													OpMemoryModel	Logical	GLSL450

													OpEntryPoint	Geometry	%5663	"main"	%22044	%5305	%4930

													OpExecutionMode	%5663	InputPoints

													OpExecutionMode	%5663	Invocations	1

													OpExecutionMode	%5663	OutputPoints

													OpExecutionMode	%5663	OutputVertices	1

													OpMemberDecorate	%2935	0	BuiltIn	Position

													OpMemberDecorate	%2935	1	BuiltIn	PointSize

													OpMemberDecorate	%2935	2	BuiltIn	ClipDistance

													OpMemberDecorate	%2935	3	BuiltIn	CullDistance

													OpDecorate	%2935	Block

													OpMemberDecorate	%1017	0	BuiltIn	Position

													OpDecorate	%1017	Block

													OpDecorate	%1018	Block

								%8	=	OpTypeVoid

					%1282	=	OpTypeFunction	%8

							%13	=	OpTypeFloat	32

							%29	=	OpTypeVector	%13	4

							%11	=	OpTypeInt	32	0

					%2573	=	OpConstant	%11	1

						%554	=	OpTypeArray	%13	%2573

					%2935	=	OpTypeStruct	%29	%13	%554	%554

						%561	=	OpTypePointer	Output	%2935

				%22044	=	OpVariable	%561	Output

							%12	=	OpTypeInt	32	1

					%2571	=	OpConstant	%12	0

					%1017	=	OpTypeStruct	%29

						%557	=	OpTypeArray	%1017	%2573

					%1194	=	OpTypePointer	Input	%557

					%5305	=	OpVariable	%1194	Input

						%666	=	OpTypePointer	Input	%29

						%667	=	OpTypePointer	Output	%29

					%1018	=	OpTypeStruct	%29

					%1654	=	OpTypePointer	Output	%1018

					%4930	=	OpVariable	%1654	Output

						%252	=	OpConstant	%13	0.5

					%2936	=	OpConstant	%13	0.1

					%1364	=	OpConstant	%13	0.9

						%138	=	OpConstant	%13	1

						%878	=	OpConstantComposite	%29	%252	%2936	%1364	%138

					%5663	=	OpFunction	%8	None	%1282

				%23915	=	OpLabel

					%7129	=	OpAccessChain	%666	%5305	%2571	%2571

				%15646	=	OpLoad	%29	%7129

				%19981	=	OpAccessChain	%667	%22044	%2571

													OpStore	%19981	%15646

				%22639	=	OpAccessChain	%667	%4930	%2571

													OpStore	%22639	%878



													OpEmitVertex

													OpReturn

													OpFunctionEnd

As	you	can	see	in	Listing	9.18,	the	shader	enables	the	Geometry	capability	and
then	simply	copies	its	input	to	its	output.	You	can	see	the	call	to	the
OpEmitVertex	instruction	toward	the	end	of	the	shader,	immediately	before
the	main	function	ends.

Cutting	Primitives
You	may	have	noticed	that	the	only	output	primitive	types	available	in	a
geometry	shader	are	points,	line	strips,	and	triangle	strips.	It	is	not	possible	to
directly	output	individual	lines	or	triangles.	A	geometry	shader	can	output	any
number	of	vertices,	up	to	an	implementation-defined	limit,	so	long	as	the
maximum	output	vertex	count	is	properly	declared.	However,	just	calling
EmitVertex()	many	times	will	produce	a	single	long	strip.
In	order	to	output	several	smaller	strips	and	(within	the	limit)	individual	lines	or
triangles,	the	EndPrimitive()	function	is	available.	This	function	ends	the
current	strip	and	starts	a	new	one	when	the	next	vertex	is	emitted.	The	current
strip	is	automatically	ended	when	the	shader	exits,	so	if	your	maximum	vertex
count	is	3,	and	the	output	primitive	type	is	triangle_strip,	then	it’s	not
necessary	to	explicitly	call	EndPrimitive().	However,	if	you	want	to
produce	several	independent	lines	or	triangles	from	a	single	geometry	shader
invocation,	call	EndPrimitive()	between	each	strip.
The	geometry	shaders	shown	in	previous	listings	use	point	primitives	as	both
input	and	output	to	sidestep	this	issue.	Listing	9.19	shows	a	shader	that	uses	the
triangle_strip	output	primitive	type	to	output	triangle	strips.	However,
this	shader	produces	six	output	vertices,	each	group	of	three	representing	a
separate	triangle.	The	EndPrimitive()	function	is	used	to	cut	the	triangle
strip	after	each	triangle	in	order	to	produce	two	separate	strips	of	one	triangle
each.

Listing	9.19:	Cutting	Strips	in	a	Geometry	Shader	Click	here	to	view	code
image

#version	450	core

layout	(triangles)	in;

layout	(triangle_strip,	max_vertices	=	6)	out;



void	main(void)

{

				int	i,	j;

				vec4	scale	=	vec4(1.0f,	1.0f,	1.0f,	1.0f);

				for	(j	=	0;	j	<	2;	j++)

				{

								for	(i	=	0;	i	<	3;	i++)

								{

												gl_Position	=	gl_in[i].gl_Position	*	scale;

												EmitVertex();

								}

								EndPrimitive();

								scale.xy	=	-scale.xy;

				}

}

In	the	shader	shown	in	Listing	9.19,	the	first	iteration	of	the	outer	loop	produces
a	first	triangle	by	simply	copying	all	three	vertices’	positions	(in	the	inner	loop)
into	the	output	position,	multiplying	by	a	scale	factor,	and	then	calling
EmitVertex().	After	the	inner	loop	has	completed,	the	shader	calls
EndPrimitive()	to	cut	the	strip	at	that	point.	It	then	inverts	the	x	and	y	axes
of	the	scale,	rotating	the	triangle	180	degress	around	the	z	axis	and	iterates	a
second	time.	This	produces	a	second	triangle.

Geometry	Shader	Instancing
Chapter	8,	“Drawing,”	covered	instancing,	which	is	a	technique	to	quickly	draw
many	copies	of	the	same	geometry	using	a	single	drawing	command.	The
number	of	instances	is	passed	as	a	parameter	to	vkCmdDraw()	or
vkCmdDrawIndexed(),	or	through	a	structure	in	memory	to
vkCmdDrawIndirect()	or	vkCmdDrawIndexedIndirect().	With
draw-level	instancing,	the	entire	draw	is	effectively	executed	many	times.	This
includes	fetching	data	from	index	and	vertex	buffers	that	does	not	change,
checking	for	primitive	restart	indices	(if	enabled),	and	so	on.
When	a	geometry	shader	is	enabled,	a	special	mode	of	instancing	is	available
that	runs	the	pipeline	from	the	geometry	shader	onward	multiple	times,	leaving
all	of	the	stages	behind	the	geometry	shader	(including	tessellation,	for	example)
running	only	once.	While	it	may	not	be	worth	introducing	a	geometry	shader
simply	to	use	this	form	of	instancing,	when	a	geometry	shader	is	required
anyway,	this	can	be	a	very	efficient	mechanism	to	quickly	render	multiple	copies
of	a	piece	of	geometry,	with	the	properties	of	each	instance	controlled	by	the



geometry	shader.
You	may	have	noticed	that	some	of	the	SPIR-V	listings	shown	earlier	in	this
chapter	include	a	declaration	of	the	following	form	at	the	front	of	all	of	the
geometry	shaders:	Click	here	to	view	code	image

OpExecutionMode	%n	Invocations	1

This	Invocations	execution	mode	tells	Vulkan	how	many	times	to	run	the
geometry	shader—which	is	the	number	of	instances2	to	run.

2.	In	references	to	an	instanced	geometry	shader,	the	term	invocation	is	often	used	to	mean	instance
because	an	invocation	of	the	geometry	shader	is	run	for	each	instance.	This	disambiguates	the	instance
used	in	instanced	draws	from	the	invocation	being	the	execution	of	the	geometry	shader.	In	fact,	both
can	be	used	at	the	same	time	to	have	an	instanced	draw	using	a	geometry	shader	with	multiple
invocations.

Setting	the	invocation	count	to	1	simply	means	that	the	shader	will	run	once	as
expected.	This	is	the	default	and	is	inserted	by	the	GLSL	compiler	if	you	don’t
instruct	it	otherwise.	To	control	the	number	of	invocations	of	the	geoemtry,	use
the	invocations	input	layout	qualifier	in	the	GLSL	shader.	For	example,	the
following	declaration	sets	the	invocation	count	for	the	shader	to	8:	layout
(invocations	=	8)	in;	When	this	layout	qualifier	is	included	in	a	GLSL
shader,	the	compiler	will	insert	the	appropriate	OpExecutionMode	instruction
to	set	the	invocation	count	for	the	entry	point	to	the	value	you	specified.	While
the	invocation	count	is	hard-coded	into	the	shader	rather	than	passed	as	a
parameter,	as	it	is	in	draw	instancing,	you	can	use	a	specialization	constant	to	set
its	value.	This	allows	you	to	customize	a	single	geometry	shader	to	run	in	a
number	of	different	scenarios.
As	the	shader	executes,	the	invocation	number	is	made	available	to	it	through	the
GLSL	gl_InvocationID	built-in	variable.	In	SPIR-V,	this	is	translated	into	a
decoration	attaching	the	built-in	InvocationId	to	an	input	variable.
The	GLSL	shader	shown	in	Listing	9.20	is	a	complete	example	of	running	two
instances	with	each	sourcing	a	separate	object-to-world	matrix	in	order	to	draw
two	copies	of	an	object,	each	with	a	different	transform.	By	using	the
gl_InvocationID	(which	turns	into	the	InvocationId	decoration),	we
can	index	into	an	array	of	matrices	in	order	to	get	a	different	transform	for	each
invocation.

Listing	9.20:	Instanced	GLSL	Geometry	Shader	Click	here	to	view	code
image

#version	450	core



layout	(triangles,	invocations	=	2)	in;

layout	(triangle_strip,	max_vertices	=	3)	out;

layout	(set	=	0,	binding	=	0)	uniform

{

				mat4	projection;

				mat4	objectToWorld[2];

}	transforms;

void	main(void)

{

				int	i;

				mat4	objectToWorld	=	transforms.objectToWorld[gl_InvocationID];

				mat4	objectToClip	=	objectToWorld	*	transforms.projection;

				for	(i	=	0;	i	<	3;	i++)

				{

							gl_Position	=	gl_in[i].gl_Position	*	objectToClip;

							EmitVertex();

				}

}

The	maximum	number	of	geometry	shader	invocations	is	implementation-
dependent	but	is	guaranteed	to	be	at	least	32.	Some	implementations	support
more	invocations	than	this,	and	the	limit	for	a	particular	implementation	can	be
determined	by	checking	the	maxGeometryShaderInvocations	field	of
the	device’s	VkPhysicalDeviceLimits	structure	as	returned	from	a	call	to
vkGetPhysicalDeviceProperties().

Programmable	Point	Size
When	you	are	rendering	points,	by	default,	a	single	vertex	produces	a	point	that
is	exactly	1	pixel	wide.	On	modern	high-resolution	displays,	a	single	pixel	is
extremely	small,	so	it	is	often	the	case	that	you	wish	to	render	points	that	are
much	larger	than	this.	When	the	primitives	are	rasterized	as	points,	it	is	possible
to	set	the	point	size	by	using	the	last	stage	of	the	geometry-processing	pipeline.
Points	are	rasterized	in	one	of	three	ways:	•	Rendering	with	only	a	vertex	and
fragment	shader,	and	setting	the	primitive	topology	to
VK_PRIMITIVE_TOPOLOGY_POINT_LIST

•	Enabling	tessellation	and	setting	the	tessellation	mode	to	points	by
decorating	the	tessellation	shader’s	entry	point	with	the	SPIR-V
PointMode	execution	mode	•	Using	a	geometry	shader	that	produces
points	The	last	stage	in	the	geometry	pipeline	(vertex,	tessellation



evaluation,	or	geometry)	can	specify	the	size	of	points	by	decorating	a
floating-point	output	with	the	PointSize	parameter	to	the	BuiltIn
decoration.	The	value	written	to	this	output	will	be	used	as	the	diameter	of
the	rasterized	points.

In	GLSL,	such	a	decorated	output	can	be	produced	by	writing	to	the
gl_PointSize	built-in	output.	An	example	vertex	shader	that	writes	to
gl_PointSize	is	shown	in	Listing	9.21,	and	the	resulting	SPIR-V	output	is
shown	in	Listing	9.22.

Listing	9.21:	Use	of	gl_PointSize	in	GLSL

Click	here	to	view	code	image

#version	450	core

layout	(location	=	0)	in	vec3	i_position;

layout	(location	=	1)	in	float	i_pointSize;

void	main(void)

{

				gl_Position	=	vec4(i_position,	1.0f);

				gl_PointSize	=	i_pointSize;

}

The	shader	in	Listing	9.21	declares	two	inputs:	i_position	and
i_pointSize.	Both	are	passed	through	to	their	respective	outputs.	Simply
writing	to	gl_PointSize	causes	the	GLSL	compiler	to	automatically	declare
an	output	variable	in	the	SPIR-V	shader	and	decorate	it	with	the	PointSize
decoration,	as	you	can	see	in	Listing	9.22,	which	has	been	manually	edited	and
commented.

Listing	9.22:	Decorating	an	Output	with	PointSize

Click	here	to	view	code	image

							...

							;;	GLSL	compiler	automatically	declares	per-vertex	output

block.

							OpName	%11	"gl_PerVertex"

							OpMemberName	%11	0	"gl_Position"

							OpMemberName	%11	1	"gl_PointSize"

							OpMemberName	%11	2	"gl_ClipDistance"

							OpMemberName	%11	3	"gl_CullDistance"

							OpName	%13	""

							;;	Naming	inputs

							OpName	%18	"i_position"



							OpName	%29	"i_pointSize"

							;;	Decorating	members	of	the	default	output	block

							OpMemberDecorate	%11	0	BuiltIn	Position

							OpMemberDecorate	%11	1	BuiltIn	PointSize	;;	gl_PointSize

							OpMemberDecorate	%11	2	BuiltIn	ClipDistance

							OpMemberDecorate	%11	3	BuiltIn	CullDistance

							OpDecorate	%11	Block

							OpDecorate	%18	Location	0

							OpDecorate	%29	Location	1

							...

		%4	=	OpFunction	%2	None	%3

							;;	Start	of	"main"

		%5	=	OpLabel

							;;	Load	i_position.

	%19	=	OpLoad	%16	%18

	%21	=	OpCompositeExtract	%6	%19	0

	%22	=	OpCompositeExtract	%6	%19	1

	%23	=	OpCompositeExtract	%6	%19	2

							;;	Construct	vec4	and	write	to	gl_Position.

	%24	=	OpCompositeConstruct	%7	%21	%22	%23	%20

	%26	=	OpAccessChain	%25	%13	%15

							OpStore	%26	%24

							;;	Load	from	i_pointSize	(%29).

	%30	=	OpLoad	%6	%29

							;;	Use	access	chain	to	dereference	built-in	output.

	%32	=	OpAccessChain	%31	%13	%27

							;;	Store	to	output	decorated	with	PointSize.

							OpStore	%32	%30

							OpReturn

							OpFunctionEnd

The	size	produced	by	the	shader	and	written	to	the	output	decorated	as
PointSize	must	fall	within	the	range	of	point	sizes	supported	by	the	device.
This	can	be	determined	by	inspecting	the	pointSizeRange	member	of	the
device’s	VkPhysicalDeviceLimits	structure,	which	you	can	obtain
through	a	call	to	vkGetPhysicalDeviceProperties().	This	is	an	array
of	two	floating-point	values,	the	first	being	the	smallest	point	that	can	be
rasterized	and	the	second	being	the	diameter	of	the	largest	point	that	can	be
rasterized.
The	pixel	size	of	a	point	will	be	quantized	to	a	device-dependent	scale.	The	delta
between	supported	point	sizes	can	be	determined	from	the
pointSizeGranularity	field	of	the	VkPhysicalDeviceLimits
structure.	For	example,	if	an	implementation	can	render	points	at	any	size	in
quarter-pixel	increments,	then	pointSizeGranularity	will	be	0.25.	All
devices	must	be	able	to	render	any	supported	point	size	with	at	least	single-pixel
accuracy,	though	many	devices	will	provide	much	more	precision	than	this.



The	largest	guaranteed	value	for	the	minimum	point	size	is	a	single	pixel.	That
is,	some	implementations	may	be	able	to	accurately	rasterize	points	smaller	than
a	single	pixel,	but	all	implementations	must	be	able	to	rasterize	single-pixel
points.	The	smallest	guaranteed	point	size,	in	pixels,	is	64.0	minus	one	unit	of
the	device’s	granularity	as	given	in	pointSizeGranularity.	So	if	the
device	renders	points	in	quarter-pixel	increments,	the	maximum	point	size	will
be	63.75	pixels.
If	none	of	the	geometry	processing	shaders	writes	a	variable	decorated	as
PointSize,	then	the	default	point	size	of	1	pixel	will	be	assumed.	Many
implementations	may	be	more	efficient	when	a	compile-time	constant	is	written
to	PointSize,	often	removing	the	executable	code	from	the	shader	and	instead
programming	the	point	size	as	the	state	of	the	rasterizer.	It	is	possible	to	set	the
point	size	through	a	specialization	constant	to	produce	a	shader	that	writes	a
compile-time	constant	to	the	point	size	but	is	still	configurable	at	pipeline	build
time,	much	as	the	line	width	is.

Line	Width	and	Rasterization
Optionally,	Vulkan	is	able	to	rasterize	lines	that	are	greater	than	a	single	pixel
wide.	The	width	of	lines	to	be	rasterized	can	be	specified	when	a	graphics
pipeline	is	created	by	setting	the	lineWidth	of	the
VkPipelineRasterizationStateCreateInfo	structure	used	to	create
the	pipeline.	Lines	greater	than	a	single	pixel	wide	are	known	as	wide	lines.
Wide	lines	are	supported	by	the	implementation	if	the	wideLines	field	of	its
VkPhysicalDeviceFeatures	is	VK_TRUE.	In	this	case,	the	range	of
supported	line	widths	is	contained	in	the	lineWidthRange	member	of	the
device’s	VkPhysicalDeviceLimits	structure,	which	can	be	retrieved	with
a	call	to	vkGetPhysicalDeviceProperties().
A	given	Vulkan	implementation	may	render	lines	in	one	of	two	ways:	strict	or
nonstrict.	Which	method	the	device	uses	is	reported	in	the	strictLines	field
of	its	VkPhysicalDeviceLimits	structure.	If	this	is	VK_TRUE,	then	strict
line	rasterization	is	implemented;	otherwise,	only	nonstrict	rasterization	is
supported	by	the	device.	There	is	no	way	to	choose	which	method	is	used;	a
device	will	implement	only	one	method.
In	general,	strict	or	nonstrict	line	rasterization	does	not	affect	single-pixel	wide
lines,	so	it	really	applies	only	to	wide	lines.	When	wide	lines	are	in	use,	a	strict
line	is	essentially	rasterized	as	though	it	were	a	rectangle	centered	on	the	line
running	from	the	starting	point	to	the	ending	point	of	each	segment.	As	a	result,



the	square	end	caps	of	the	line	are	perpendicular	to	the	direction	of	the	line.	This
is	illustrated	in	Figure	9.6,	which	shows	a	line	segment	from	{xa,	ya,	za}	to	{xb,
yb,	zb}	rotated	onto	the	diagonal.	The	original	line	is	shown	as	a	dotted	line,	and
the	outline	of	the	rasterized	line	is	solid.	You	should	be	able	to	see	from	Figure
9.6	that	as	the	line	rotates	away	from	horizontal	or	vertical,	the	width	of	its
cross-section	does	not	change.	It	is	effectively	rasterized	as	a	rectangle	whose
long	edge	is	the	length	of	the	line	and	whose	short	edge	is	the	width	of	the	line.

Figure	9.6:	Rasterization	of	Strict	Lines

Meanwhile,	nonstrict	lines	are	rasterized	as	a	series	of	horizontal	or	vertical
columns	of	fragments,	depending	on	the	major	axis	of	the	line.	The	major	axis	of
a	line	is	the	axis	(either	x	or	y)	in	which	it	moves	the	farthest.	If	the	change	in	x
coordinate	along	the	line	is	greatest,	then	it	is	an	x-major	line	and	will	be
rasterized	as	a	sequence	of	vertical	columns	of	fragments.	Conversely,	if	it
moves	farthest	in	y,	then	it	is	a	y-major	line	and	will	be	rasterized	as	a	sequence
of	horizontal	rows	of	fragments.
As	a	consequence,	the	end	of	the	line	is	no	longer	square	unless	the	line	is
perfectly	horizontal	or	vertical.	Instead,	it	is	wedge-shaped,	with	the	endcap	of
the	line	perpendicular	to	the	line’s	major	axis	rather	than	to	the	line	itself.	For
small	line	widths	up	to	a	few	pixels,	this	may	not	be	noticeable.	For	larger	line
widths,	however,	this	can	be	visually	distracting.	Figure	9.7	illustrates	nonstrict
line	rasterization.	As	you	can	see	in	the	figure,	as	the	line	rotates	away	from	the
horizontal	or	vertical,	it	becomes	a	parallelogram,	with	the	short	side	length
being	the	line	width.	The	farther	the	line	becomes	from	the	horizontal	or	vertical,
the	narrower	it	will	appear	as	its	perpendicular	width	decreases.



Figure	9.7:	Rasterization	of	Nonstrict	Lines

The	width	of	lines	used	for	rasterization	can	also	be	marked	as	a	dynamic	state.
To	do	this,	include	the	VK_DYNAMIC_STATE_LINE_WIDTH	token	in	the	list
of	dynamic	states	passed	through	the	pDynamicStates	member	of	the
VkPipelineDynamicStateCreateInfo	structure	used	to	create	the
graphics	pipeline.	Once	the	line	width	is	marked	as	dynamic,	the	lineWidth
field	of	VkPipelineRasterizationStateCreateInfo	is	ignored,	and
the	line	width	is	instead	set	by	calling	vkCmdSetLineWidth(),	whose
prototype	is	Click	here	to	view	code	image

void	vkCmdSetLineWidth	(

				VkCommandBuffer																						commandBuffer,

				float																																lineWidth);	The	lineWidth

parameter	sets	the	width	of	lines,	in	pixels.	Any	line	primitive

rendered	will	take	this	thickness,	whether	it	is	the	result	of

drawing	with	one	of	the	line	topologies	or	whether	a	tessellation	or

geometry	shader	turns	another	type	of	primitive	into	lines.	The	new

line-width	parameter	must	be	between	the	minimum	and	maximum	line

widths	supported	by	the	Vulkan	implementation.	This	can	be	determined

by	checking	the	lineWidthRange	member	of	the	device’s

VkPhysicalDeviceLimits	structure.	The	first	element	of	lineWidthRange

is	the	minimum	width,	and	the	second	element	is	the	maximum.	Support

for	lines	is	optional,	so	some	implementations	will	return	1.0	for

both	elements.	However,	if	wide	lines	are	supported,	the	Vulkan

implementation	will	support	a	range	of	line	widths	that	includes	1.0

to	8.0	pixels.

User	Clipping	and	Culling
In	order	to	ensure	that	no	geometry	is	rendered	outside	the	viewport,	Vulkan
performs	clipping	of	geometry	against	the	viewport	bounds.	A	typical	method



for	doing	this	is	to	determine	the	distance	of	each	vertex	to	the	planes,	defining
the	viewport	as	a	signed	quantity.	Positive	distances	are	on	the	“inside”	of	the
volume,	and	negative	distances	are	“outside”	the	volume.	The	distance	to	each
plane	is	computed	separately	for	each	vertex.	If	all	of	the	vertices	belonging	to	a
primitive	are	on	the	outside	of	a	single	plane,	then	the	whole	primitive	can	be
discarded.	Conversely,	if	all	of	the	vertices	have	a	positive	distance	to	all	planes,
that	means	that	they	are	all	inside	the	volume,	so	the	entire	primitive	can	be
safely	rendered.
If	there	is	a	mix	of	“inside”	and	“outside”	that	make	up	the	primitive,	then	it
must	be	clipped,	which	normally	means	breaking	it	down	into	a	set	of	smaller
primitives.	Figure	9.8	illustrates	this.	As	you	can	see	in	the	figure,	four	triangles
have	been	sent	into	the	pipeline.	Triangle	A	is	entirely	contained	within	the
viewport	and	is	rendered	directly.	Triangle	B,	on	the	other	hand,	lies	entirely
outside	the	viewport	and	can	be	trivially	discarded.	Triangle	C	penetrates	a
single	edge	of	the	viewport	and	is	therefore	clipped	against	it.	The	smaller
triangle	is	produced	by	the	clipper,	and	this	is	the	one	that	is	rasterized.	Finally,
triangle	D	presents	a	more	complex	scenario.	It	lies	partially	inside	the	viewport
but	penetrates	two	of	the	viewport’s	edges.	In	this	case,	the	clipper	breaks	the
triangle	into	several	smaller	triangles	and	rasterizes	those.	The	resulting	polygon
is	shown	in	bold,	and	the	generated	interior	edges	are	shown	as	dotted	lines.



Figure	9.8:	Clipping	Against	a	Viewport

In	addition	to	being	able	to	clip	a	primitive	against	the	edges	of	the	viewport,	it
is	possible	to	supply	other	distance	values	generated	in	your	shaders	that
contribute	to	this	clipping	procedure.	These	are	known	as	clip	distances	and,
once	assigned,	are	treated	exactly	as	the	distances	computed	to	the	viewport
planes.	Positive	values	are	treated	as	being	inside	the	view	volume,	and	negative
values	are	treated	as	being	outside	the	view	volume.
To	generate	a	clip	distance	in	your	shader,	decorate	an	output	variable	by	using
the	ClipDistance	decoration.	This	variable	must	be	declared	as	an	array	of
32-bit	floating-point	values,	each	element	of	which	is	a	separate	clip	distance.
Vulkan	will	aggregate	all	of	the	clip	distances	written	by	your	shaders	when
performing	clipping	on	the	generated	primitives.
Not	all	devices	support	clip	distances.	If	clip	distance	is	supported	by	a	device,



then	the	maximum	number	of	clip	distances	supported	by	that	device	is
guaranteed	to	be	at	least	8.	Some	devices	may	support	more	distances	than	this.
You	can	check	how	many	distances	are	supported	by	the	device	by	inspecting
the	maxClipDistances	field	of	its	VkPhysicalDeviceLimits
structure.	You	can	retrieve	this	by	calling
vkGetPhysicalDeviceProperties().	If	clip	distances	are	not
supported	or	are	not	enabled	at	device-creation	time,	then	this	field	will	be	0.
The	last	geometry-processing	stage	(vertex,	tessellation	evaluation,	or	geometry
shader)	produces	the	clip	distances	that	will	be	used	by	the	clipping	stage	to	clip
the	generated	primitives.	In	any	stage	after	the	clip	distances	have	been	declared
as	outputs,	the	produced	distances	can	be	made	available	as	inputs.	Therefore,	in
the	tessellation	control,	tessellation	evaluation,	or	geometry	shader	stages,	you
can	read	(and	rewrite)	the	values	produced	in	the	previous	stage	if	you	need	to.
The	clip	distance	is	also	available	as	an	input	to	the	fragment	shader.	While
clipping	will	be	performed	at	the	primitive	level	by	most	implementations,
another	way	to	implement	clipping	by	using	the	clip	distance	is	to	interpolate	the
clip	distances	applied	to	the	vertices	across	the	primitive.	Fragments	to	which
are	assigned	any	negative	clip	distance	values	are	discarded	before	fragment
processing	completes.	Even	if	an	implementation	doesn’t	implement	clip
distances	this	way,	the	interpolated	value	of	each	clip	distance	is	made	available
to	the	fragment	shader	should	it	decorate	an	input	variable	with	the
ClipDistance	decoration.
Listing	9.24	shows	an	example	of	decorating	an	output	variable	with
ClipDistance	in	SPIR-V,	and	Listing	9.23	shows	the	GLSL	fragment	that
was	used	to	generate	this	SPIR-V.	As	you	can	see,	in	GLSL,	the	built-in	variable
gl_ClipDistance	is	used	to	write	clip	distances	and	is	translated	to	an
output	variable	with	the	appropriate	decorations	by	the	GLSL	compiler.

Listing	9.23:	Use	of	gl_ClipDistance	in	GLSL

Click	here	to	view	code	image

#version	450	core

//	Redeclare	gl_ClipDistance	to	explicitly	size	it.

out	float	gl_ClipDistance[1];

layout	(location	=	0)	in	vec3	i_position;

//	Push	constant	from	which	to	assign	clip	distance

layout	(push_constant)	uniform	push_constants_b



{

				float	clip_distance[4];

}	push_constant;

void	main(void)

{

				gl_ClipDistance[0]	=	push_constant.clip_distance[0];

				gl_Position	=	vec4(i_position,	1.0f);

}

The	shader	in	Listing	9.23	simply	assigns	the	value	of	a	push	constant	directly	to
the	gl_ClipDistance	output.	A	more	practical	use	of	gl_ClipDistance
would	compute	a	distance	to	a	plane	for	each	vertex	and	assign	that	to	the	clip-
distance	output.	This	rather	simple	shader	serves	to	demonstrate	how	the	SPIR-V
result	is	generated.	This	is	shown	in	Listing	9.24.

Listing	9.24:	Decorating	Outputs	with	ClipDistance

Click	here	to	view	code	image

											OpCapability	Shader

;;	The	shader	requires	the	ClipDistance	capability.

											OpCapability	ClipDistance

						%1	=	OpExtInstImport	"GLSL.std.450"

											OpMemoryModel	Logical	GLSL450

											OpEntryPoint	Vertex	%4	"main"	%13	%29

											OpSource	GLSL	450

											OpName	%4	"main"

											OpName	%11	"gl_PerVertex"

											OpMemberName	%11	0	"gl_Position"

											OpMemberName	%11	1	"gl_PointSize"

;;	Redeclaration	of	gl_ClipDistance	built-in

											OpMemberName	%11	2	"gl_ClipDistance"

											OpMemberName	%11	3	"gl_CullDistance"

											OpName	%13	""

											OpName	%19	"push_constants_b"

											OpMemberName	%19	0	"clip_distance"

											OpName	%21	"push_constant"

											OpName	%29	"i_position"

											OpMemberDecorate	%11	0	BuiltIn	Position

											OpMemberDecorate	%11	1	BuiltIn	PointSize

;;	Decorate	the	built-in	variable	as	ClipDistance.

											OpMemberDecorate	%11	2	BuiltIn	ClipDistance

											OpMemberDecorate	%11	3	BuiltIn	CullDistance

											OpDecorate	%11	Block

											OpDecorate	%18	ArrayStride	4

											OpMemberDecorate	%19	0	Offset	0

											OpDecorate	%19	Block

											OpDecorate	%29	Location	0

						%2	=	OpTypeVoid



						%3	=	OpTypeFunction	%2

						%6	=	OpTypeFloat	32

						%7	=	OpTypeVector	%6	4

						%8	=	OpTypeInt	32	0

						%9	=	OpConstant	%8	1

					%10	=	OpTypeArray	%6	%9

;;	This	creates	the	built-in	output	structure	containing

gl_ClipDistance.

					%11	=	OpTypeStruct	%7	%6	%10	%10

					%12	=	OpTypePointer	Output	%11

;;	Instantiate	the	built-in	outputs.

					%13	=	OpVariable	%12	Output

					...

;;	Beginning	of	main()

						%5	=	OpLabel

;;	Load	from	the	push-constant	array.

					%23	=	OpAccessChain	%22	%21	%16	%16

					%24	=	OpLoad	%6	%23

;;	Store	to	clip	distance.

					%26	=	OpAccessChain	%25	%13	%15	%16

											OpStore	%26	%24

					...

;;	End	of	main()

											OpReturn

											OpFunctionEnd

There	is	no	reason	that	your	shader	should	assign	values	to	the	ClipDistance
outputs	by	computing	distance	to	a	plane.	You	could	assign	the	distance	to	an
analytic	function,	to	a	higher-order	surface,	or	even	to	a	displacement	map	read
from	a	texture,	for	example.	However,	bear	in	mind	that	because	the	primitives
are	clipped	as	though	the	distance	was	computed	from	a	flat	plane,	the	resulting
edges	will	be	a	piecewise	linear	approximation	of	the	function	used	to	compute
those	distances.	If	your	function	represents	tight	curves	or	detailed	surfaces,	you
will	need	quite	a	bit	of	geometry	to	make	the	resulting	edges	appear	smooth.
While	the	tessellation	control	and	geometry	shading	stages	have	access	to	entire
primitives,	the	vertex	and	tessellation	evaluation	shaders	do	not.	Therefore,	if
you	wish	to	discard	an	entire	primitive	from	one	of	these	stages,	it	is	hard	to
coordinate	the	shader	invocations	corresponding	to	that	primitive	in	order	to
assign	a	negative	clip	distance	to	all	of	them.	For	this	purpose,	you	can	instead
use	the	cull	distance	for	each	vertex.	The	cull	distance	works	very	similarly	to
the	clip	distance.	The	difference	is	that	the	entire	primitive	is	discarded	if	any
vertex	it	contains	has	a	negative	cull	distance,	regardless	of	the	values	of	the	cull
distances	for	the	other	vertices.
To	use	cull	distance,	decorate	an	output	variable	with	the	CullDistance
decoration.	The	cull	distance	is	also	available	as	in	input	to	subsequent	shader



stages,	just	as	ClipDistance	is.	Also,	if	CullDistance	is	used	as	an	input
in	the	fragment	shader,	its	content	will	be	the	interpolated	value	of	the	distance
assigned	in	the	geometry-processing	stages.	Listings	9.25	and	9.26	show	minor
modifications	to	Listings	9.23	and	9.24,	respectively,	to	show	assignment	to
variables	decorated	with	CullDistance	rather	than	ClipDistance.

Listing	9.25:	Use	of	gl_CullDistance	in	GLSL

Click	here	to	view	code	image

#version	450	core

out	float	gl_CullDistance[1];

layout	(location	=	0)	in	vec3	i_position;

layout	(push_constant)	uniform	push_constants_b

{

				float	cull_distance[4];

}	push_constant;

void	main(void)

{

				gl_CullDistance[0]	=	push_constant.cull_distance[0];

				gl_Position	=	vec4(i_position,	1.0f);

}

As	you	can	see,	Listing	9.25	is	almost	identical	to	Listing	9.23	except	that	we
have	used	gl_CullDistance	in	place	of	gl_ClipDistance.	As	you
might	expect,	the	resulting	SPIR-V	shader	shown	in	Listing	9.26	is	also	almost
identical	to	that	in	Listing	9.24,	which	uses	the	ClipDistance	decoration.

Listing	9.26:	Decorating	Outputs	with	CullDistance

Click	here	to	view	code	image

											OpCapability	Shader

;;	The	shader	requires	the	CullDistance	capability.

											OpCapability	CullDistance

						%1	=	OpExtInstImport	"GLSL.std.450"

											OpMemoryModel	Logical	GLSL450

											OpEntryPoint	Vertex	%4	"main"	%13	%29

											OpSource	GLSL	450

											OpName	%4	"main"

											OpName	%11	"gl_PerVertex"

											OpMemberName	%11	0	"gl_Position"

											OpMemberName	%11	1	"gl_PointSize"

											OpMemberName	%11	2	"gl_ClipDistance"



;;	Redeclaration	of	gl_CullDistance	built-in

											OpMemberName	%11	3	"gl_CullDistance"

											OpName	%13	""

											OpName	%19	"push_constants_b"

											OpMemberName	%19	0	"cull_distance"

											OpName	%21	"push_constant"

											OpName	%29	"i_position"

											OpMemberDecorate	%11	0	BuiltIn	Position

											OpMemberDecorate	%11	1	BuiltIn	PointSize

											OpMemberDecorate	%11	2	BuiltIn	ClipDistance

;;	Decorate	the	built-in	variable	as	CullDistance.

											OpMemberDecorate	%11	3	BuiltIn	CullDistance

											OpDecorate	%11	Block

											OpDecorate	%18	ArrayStride	4

											OpMemberDecorate	%19	0	Offset	0

											OpDecorate	%19	Block

											OpDecorate	%29	Location	0

						%2	=	OpTypeVoid

						%3	=	OpTypeFunction	%2

						%6	=	OpTypeFloat	32

						%7	=	OpTypeVector	%6	4

						%8	=	OpTypeInt	32	0

						%9	=	OpConstant	%8	1

					%10	=	OpTypeArray	%6	%9

;;	This	creates	the	built-in	output	structure	containing

gl_CullDistance.

					%11	=	OpTypeStruct	%7	%6	%10	%10

					%12	=	OpTypePointer	Output	%11

;;	Instantiate	the	built-in	outputs.

					%13	=	OpVariable	%12	Output

					...

;;	Beginning	of	main()

						%5	=	OpLabel

;;	Load	from	the	push-constant	array.

					%23	=	OpAccessChain	%22	%21	%16	%16

					%24	=	OpLoad	%6	%23

;;	Store	to	cull	distance.

					%26	=	OpAccessChain	%25	%13	%15	%16

					...

;;	End	of	main()

											OpReturn

											OpFunctionEnd

As	you	can	see	in	Listing	9.25,	outputs	decorated	with	CullDistance	are
produced	by	writing	to	the	GLSL	built-in	variable	gl_CullDistance.
Whenever	ClipDistance	or	CullDistance	is	used	in	the	fragment
shader,	you	should	only	see	positive	values	for	those	inputs.	This	is	because	any
fragment	that	would	have	had	a	negative	clip	or	cull	distance	should	have	been
discarded.	The	only	possible	exception	to	this	is	helper	invocations,	which	are
invocations	of	the	fragment	shader	that	are	used	to	generate	deltas	during	the



computation	of	gradients.	If	your	fragment	shader	is	sensitive	to	negative	values
of	ClipDistance,	then	this	may	be	a	case	you	care	about.
As	with	clip	distances,	cull	distances	are	declared	in	your	shaders	as	arrays	of
floating-point	values,	and	the	number	of	elements	in	those	arrays	is	device-
dependent.	Some	devices	do	not	support	cull	distances,	but	if	they	do,	they	are
guaranteed	to	support	at	least	8.	To	determine	the	number	of	distances	supported,
check	the	maxCullDistances	field	of	the	device’s
VkPhysicalDeviceLimits	structure.	If	cull	distances	are	not	supported,
then	this	field	will	be	0.
Before	cull	distances	can	be	used	in	a	SPIR-V	shader,	the	shader	must	enable	the
CullDistance	capability	using	an	OpCapability	instruction.	You	can
check	whether	the	device	supports	the	CullDistance	capability	in	SPIR-V
shaders	by	inspecting	the	shaderCullDistance	member	of	the	device’s
VkPhysicalDeviceFeatures	structure	obtained	through	a	call	to
vkGetPhysicalDeviceProperties().	You	must	also	enable	this	feature
when	the	device	is	created	by	setting	shaderCullDistance	to	VK_TRUE	in
the	VkPhysicalDeviceFeatures	structure	used	to	create	the	device.
Likewise,	for	clip	distances,	the	capability	is	enabled	by	executing
OpCapability	with	the	ClipDistance	argument,	and	checked	and
enabled	through	the	shaderClipDistance	field	of
VkPhysicalDeviceFeatures.
Because	clip	and	cull	distances	may	consume	similar	resources,	in	addition	to
the	maxClipDistances	and	maxCullDistances	limits,	many	devices
have	a	combined	limit	for	the	number	of	distances	that	you	can	use	at	once.	This
often	precludes	you	from	using	the	maximum	number	of	both	at	the	same	time.
To	check	the	combined	limit,	look	at	the
maxCombinedClipAndCullDistances	field	of	the	device’s
VkPhysicalDeviceLimits	structure.

The	Viewport	Transformation
The	final	transformation	in	the	pipeline	before	rasterization	is	the	viewport
transformation.	The	coordinates	produced	by	the	last	stage	in	the	geometry
pipeline	(or	produced	by	the	clipper)	are	in	homogeneous	clip	coordinates.	First,
the	homogeneous	coordinates	are	all	divided	through	by	their	own	w
components,	producing	normalized	device	coordinates.



Here,	the	vertex’s	clip	coordinates	are	represented	by	{xc,	yc,	zc,	wc},	and	the
normalized	device	coordinates	are	represented	by	{xd,	yd,	zd}.	Because	the
vertex’s	w	component	is	divided	by	itself,	it	always	becomes	1.0	and	so	can	be
discarded	at	this	point,	and	the	normalized	device	coordinate	is	considered	to	be
a	3D	coordinate.
Before	the	primitive	can	be	rasterized,	it	needs	to	be	transformed	into
framebuffer	coordinates,	which	are	coordinates	relative	to	the	origin	of	the
framebuffer.	This	is	performed	by	scaling	and	biasing	the	vertex	normalized
device	coordinates	by	the	selected	viewport	transform.
One	or	more	viewports	are	configured	as	part	of	the	graphics	pipeline.	This	was
briefly	introduced	in	Chapter	7,	“Graphics	Pipelines.”	Most	applications	will	use
a	single	viewport	at	a	time.	When	there	are	multiple	viewports	configured,	each
behaves	the	same	way;	only	the	selection	of	viewport	is	controlled	by	the
geometry	shader	if	it	is	present.	If	there	is	no	geometry	shader,	then	only	the	first
configured	viewport	is	accessible.
Each	viewport	is	defined	by	an	instance	of	the	VkViewport	structure,	the
definition	of	which	is	typedef	struct	VkViewport	{
				float				x;
				float				y;
				float				width;
				float				height;
				float				minDepth;
				float				maxDepth;
}	VkViewport;
The	transformation	from	normalized	device	coordinates	to	framebuffer
coordinates	is	performed	as	

Here,	xf,	yf,	and	zf	are	the	coordinates	of	each	vertex	in	framebuffer	coordinates.
The	x	and	y	fields	of	VkViewport	are	ox	and	oy,	respectively,	and	minDepth



is	oz.	The	width	and	height	fields	are	used	for	px	and	py.	pz	is	formed	from
the	expression	(maxDepth	-	minDepth).
The	maximum	size	of	a	viewport	is	a	device-dependent	quantity,	although	it	is
guaranteed	to	be	at	least	4,096	×	4,096	pixels	in	size.	If	all	of	your	color
attachments	are	smaller	than	this	(or	if	the	width	and	height	of	all	of	your
viewports	are	smaller),	then	there	is	no	reason	to	query	the	upper	limit	of
viewport	size.	If	you	want	to	render	into	an	image	that	is	larger	than	this,	you
can	determine	the	upper	limit	on	viewport	size	by	inspecting	the
maxViewportDimensions	member	of	the	device’s
VkPhysicalDeviceLimits	structure,	which	you	can	retrieve	by	calling
vkGetPhysicalDeviceFeatures().
maxViewportDimensions	is	an	array	of	two	floating-point	values.	The	first
element	is	the	maximum	supported	viewport	width,	and	the	second	is	the
maximum	supported	viewport	height.	The	width	and	height	members	of
VkViewport	must	be	less	than	or	equal	to	these	values.
Although	the	width	and	height	of	each	viewport	must	be	within	the	limits
reported	in	maxViewportDimensions,	it	is	possible	to	offset	the	viewport
within	a	larger	set	of	attachments.	The	maximum	extent	to	which	the	viewport
can	be	offset	is	determined	by	checking	the	viewportBoundsRange	field	of
the	device’s	VkPhysicalDeviceLimits	structure.	So	long	as	the	left,	right,
top,	and	bottom	of	the	viewport	lie	within	the	range	of
viewportBoundsRange[0]	and	viewportBoundsRange[1],	then	the
viewport	can	be	used.
Although	the	outputs	of	the	vertex	shader	and	the	parameters	of	the	viewport	are
all	floating-point	quantities,	the	resulting	framebuffer	coordinates	are	generally
converted	to	fixed-point	representation	before	rasterization.	The	range	supported
by	the	viewport	coordinates	must	obviously	be	large	enough	to	represent	the
maximum	viewport	size.	The	number	of	fractional	bits	determines	the	accuracy
at	which	vertices	are	snapped	to	pixel	coordinates.
This	precision	is	device-dependent,	and	some	devices	might	snap	directly	to
pixel	centers.	However,	this	is	uncommon,	and	most	devices	employ	some
subpixel	precision.	The	amount	of	precision	a	device	uses	in	its	viewport
coordinate	representation	is	contained	in	the	viewportSubPixelBits	field
of	its	VkPhysicalDeviceLimits	structure.
As	well	as	specifying	the	bounds	of	the	viewports	when	the	graphics	pipeline	is
created,	the	viewport	state	can	be	made	dynamic.	To	do	this,	include



VK_DYNAMIC_STATE_VIEWPORT	in	the	list	of	dynamic	states	when	the
pipeline	is	created.	When	this	token	is	included,	the	values	of	the	viewport
bounds	specified	at	pipeline-creation	time	are	ignored.	Only	the	number	of
viewports	is	relevant.	To	set	the	viewport	bounds	dynamically,	call
vkCmdSetViewport(),	the	prototype	of	which	is	Click	here	to	view	code
image

void	vkCmdSetViewport	(

				VkCommandBuffer																				commandBuffer,

				uint32_t																											firstViewport,

				uint32_t																											viewportCount,

				const	VkViewport*																		pViewports);	Any	subset	of	the

active	viewports	can	be	updated	with	vkCmdSetViewport().	The

firstViewport	parameter	specifies	the	first	viewport	to	update,	and

the	viewportCount	parameter	specifies	the	number	of	viewports

(starting	from	firstViewport)	to	update.	The	dimensions	of	the

viewports	is	specified	in	pViewports,	which	is	a	pointer	to	an	array

of	viewportCount	VkViewport	structures.

The	number	of	viewports	supported	by	the	current	pipeline	is	specified	in	the
viewportCount	field	of	VkPipelineViewportStateCreateInfo
and	is	always	considered	to	be	static.	Unless	the	pipeline	disables	rasterization,
there	must	be	at	least	one	viewport	in	the	pipeline.	You	can	set	viewports	outside
the	number	supported	by	the	current	pipeline	and	then	switch	to	a	pipeline	with
more	viewports,	and	it	will	use	the	state	you	specified.
Usually,	you	will	use	a	single	viewport	that	covers	all	of	the	framebuffer
attachments.	However,	in	some	cases	you	might	want	to	render	to	a	smaller
window	within	the	framebuffer.	Further,	you	may	want	to	render	to	multiple
windows.	For	example,	in	a	CAD-type	application,	you	may	have	a	top,	side,
front,	and	perspective	view	of	an	object	being	modeled.	It	is	possible	to	render	to
multiple	viewports	simultaneously	with	a	single	graphics	pipeline.
Support	for	multiple	viewports	is	optional.	The	total	number	of	viewports
supported	by	a	device	can	be	determined	by	checking	the	maxViewports
member	of	its	VkPhysicalDeviceLimits	structure,	as	returned	from	a	call
to	vkGetPhysicalDeviceProperties().	If	multiple	viewports	are
supported,	then	this	will	be	at	least	16	and	may	be	higher.	If	multiple	viewports
are	not	supported,	then	this	field	will	be	1.
When	you	are	creating	the	graphics	pipeline,	the	number	of	viewports	the
pipeline	will	use	is	specified	in	the	viewportCount	field	of	the
VkPipelineViewportStateCreateInfo	structure	passed	through
pViewportState	in	VkGraphicsPipelineCreateInfo.	When	the



viewports	are	configured	as	static	state,	their	parameters	are	passed	through	the
pViewports	member	of	the	same	structure.
Once	a	pipeline	is	in	use,	its	geometry	shader	can	select	the	viewport	index	by
decorating	one	of	its	outputs	with	the	ViewportIndex	decoration.	You	can
generate	this	code	by	writing	to	the	gl_ViewportIndex	built-in	output	in	a
GLSL	shader.
All	of	the	vertices	in	a	primitive	produced	by	the	geometry	shader	should	have
the	same	viewport	index.	When	the	primitive	is	rasterized,	it	will	use	the
viewport	parameters	from	the	selected	viewport.	Because	geometry	shaders	can
run	instanced,	a	simple	way	to	broadcast	geometry	to	multiple	viewports	is	to
run	the	geometry	shader	with	as	many	instances	as	there	are	viewports	in	the
pipeline,	and	then,	for	each	viewport,	assign	the	invocation	index	to	the	viewport
index,	causing	the	version	of	the	geometry	to	be	rendered	into	the	appropriate
viewport.	Listing	9.27	shows	an	example	of	how	to	do	this.

Listing	9.27:	Using	Multiple	Viewports	in	a	Geometry	Shader	(GLSL)	Click
here	to	view	code	image

			#version	450	core

			layout	(triangles,	invocations	=	4)	in;

			layout	(triangle_strip,	max_vertices	=	3)	out;

			layout	(set	=	0,	binding	=	0)	uniform	transform_block

			{

							mat4	mvp_matrix[4];

			};

			in	VS_OUT

			{

							vec4	color;

			}	gs_in[];

			out	GS_OUT

			{

							vec4	color;

			}	gs_out;

			void	main(void)

			{

							for	(int	i	=	0;	i	<	gl_in.length();	i++)

			{

							gs_out.color	=	gs_in[i].color;

							gl_Position	=	mvp_matrix[gl_InvocationID]*

																					gl_in[i].gl_Position;

							gl_ViewportIndex	=	gl_InvocationID;



							EmitVertex();

			}

			EndPrimitive();

}

In	Listing	9.27,	the	transformation	matrix	to	be	applied	to	the	geometry	for	each
shader	invocation	is	stored	in	a	uniform	block	called	transform_block.	The
number	of	invocations	is	set	to	4,	using	an	input	layout	qualifier,	and	then	the
gl_InvocationID	built-in	variable	is	used	to	index	into	the	array	of
matrices.	The	invocation	index	is	also	used	to	specify	the	viewport	index.

Summary
This	chapter	discussed	the	optional	geometry	processing	stages	of	the	Vulkan
graphics	pipeline:	tessellation	and	geometry.	You	saw	that	the	tessellation	stage
is	made	up	of	a	pair	of	shaders	surrounding	a	fixed-function,	configurable	block
that	breaks	large	patches	into	many	smaller	points,	lines,	or	triangles.	After	the
tessellation	stage	is	the	geometry	shading	stage,	which	receives	primitives	from
the	previous	stage	and	can	process	entire	primitives,	discard	them,	or	create	new
ones,	decimating	or	amplifying	geometry	as	it	passes	down	the	pipeline.
You	also	saw	how	geometry	can	be	clipped	and	culled	using	per-vertex	controls
and	how	selection	of	the	viewport	index	in	a	geometry	shader	can	be	used	to
confine	geometry	to	user-specified	regions.



Chapter	10.	Fragment	Processing

What	You’ll	Learn	in	This	Chapter
•	What	happens	after	a	primitive	is	rasterized
•	How	your	fragment	shaders	determine	the	color	of	fragments
•	How	the	results	of	your	fragment	shaders	are	merged	into	the	final
picture

The	previous	chapters	covered	everything	that	occurs	in	the	Vulkan	graphics
pipeline	up	until	the	point	of	rasterization.	The	rasterizer	takes	your	primitives
and	breaks	them	into	many	fragments,	which	ultimately	come	together	to	form
the	final	pixels	that	will	be	shown	to	your	users.	In	this	chapter,	you	will	see
what	happens	to	those	fragments	as	they	undergo	per-fragment	tests,	shading	and
then	blending	into	color	attachments	used	by	your	application.

Scissor	Testing
The	scissor	test	is	a	stage	in	fragment	processing	that	operates	before	any	other
testing	is	performed.	This	test	simply	ensures	that	fragments	are	within	a
specified	rectangle	on	the	framebuffer.	While	this	is	somewhat	similar	to
viewport	transformations,	there	are	two	important	differences	between	using	a
viewport	that	is	not	the	full	size	of	the	framebuffer	and	the	scissor	test:

•	The	viewport	transformation	changes	the	locations	of	primitives	in	the
framebuffer;	as	the	viewport	rectangle	moves,	so	do	the	primitives	inside	it.
The	scissor	rectangles	have	no	effect	on	the	the	position	of	primitives	and
operate	after	they	have	been	rasterized.
•	While	the	viewport	rectangles	affect	clipping	and	in	some	cases	may
produce	new	primitives,	the	scissor	rectangle	operates	directly	on	rasterized
fragments,	discarding	them	before	fragment	shading.

The	scissor	test	always	runs	before	the	fragment	shader,	so	if	your	fragment
shader	produces	side	effects,	those	side	effects	will	not	be	seen	for	fragments
that	are	scissored	away.	The	scissor	test	is	always	enabled.	However,	in	most
implementations,	setting	the	scissor	rectangle	to	the	full	size	of	the	framebuffer
effectively	disables	it.
The	number	of	scissor	rectangles	is	specified	in	the	scissorCount	field	of



the	VkPipelineViewportStateCreateInfo	structure	used	to	create	the
graphics	pipeline.	This	must	be	the	same	as	the	viewportCount	field.	As
discussed	in	Chapter	9,	“Geometry	Processing,”	the	viewport	to	use	for	the
viewport	transformation	is	chosen	by	writing	to	an	output	in	the	geometry	shader
decorated	with	the	ViewportIndex	decoration.	This	same	output	is	used	to
select	the	scissor	rectangle	used	for	the	scissor	test.	As	such,	it’s	not	possible	to
select	an	arbitrary	combination	of	scissor	rectangle	and	viewport.	If	you	want	to
use	multiple	viewports	and	disable	the	scissor	test,	then	you	need	to	specify	as
many	scissor	rectangles	as	you	do	viewports,	but	set	all	of	the	scissor	rectangles
to	the	full	size	of	the	framebuffer.
Each	scissor	rectangle	is	represented	by	an	instance	of	the	VkRect2D	structure,
the	definition	of	which	is

typedef	struct	VkRect2D	{

				VkOffset2D				offset;

				VkExtent2D				extent;

}	VkRect2D;

A	rectangle	is	made	up	of	an	origin	and	a	size,	stored	in	the	offset	and
extent	fields	of	VkRect2D.	These	are	VkOffset2D	and	VkExtent2D
structures,	the	definitions	of	which	are

typedef	struct	VkOffset2D	{

				int32_t				x;

				int32_t				y;

}	VkOffset2D;

and
typedef	struct	VkExtent2D	{

				uint32_t				width;

				uint32_t				height;

}	VkExtent2D;

The	x	and	y	fields	of	offset	contain	the	coordinates,	in	pixels,	of	the	origin	of
each	scissor	rectangle,	and	the	width	and	height	fields	of	extent	contain
its	size.
As	with	the	viewport	rectangles,	the	number	of	rectangles	accessible	to	a
pipeline	is	always	considered	to	be	static	state,	but	the	sizes	of	the	rectangles
may	be	made	dynamic.	If	VK_DYNAMIC_STATE_SCISSOR	is	included	in	the
list	of	dynamic	states	when	the	pipeline	is	created,	then	the	scissor	rectangle
state	becomes	dynamic	and	can	be	modified	using	vkCmdSetScissor().

Click	here	to	view	code	image



void	vkCmdSetScissor	(

				VkCommandBuffer																		commandBuffer,

				uint32_t																									firstScissor,

				uint32_t																									scissorCount,

				const	VkRect2D*																		pScissors);

The	index	of	the	first	scissor	rectangle	to	update	is	passed	in	firstScissor,
and	the	number	of	scissor	rectangles	to	update	is	passed	in	scissorCount.
The	range	of	scissor	rectangles	can	be	a	subset	of	the	scissor	rectangles
supported	by	Vulkan.	However,	it’s	important	to	set	all	the	scissor	rectangles	that
the	current	pipeline	might	use	before	rendering	into	them.	The	extent	of	the
scissor	rectangles	is	contained	in	an	array	of	VkRect2D	structures,	the	address
of	which	is	passed	in	pScissors.
The	scissor	test	is	essentially	always	enabled.	Setting	one	or	more	of	the	scissor
rectangles	to	cover	the	entire	renderable	area	effectively	disables	the	test	for	that
rectangle.	The	number	of	scissor	rectangles	used	by	a	pipeline	is	always
considered	to	be	part	of	the	pipeline’s	static	state.	This	number	is	set	through	the
scissorCount	member	of	the
VkPipelineViewportStateCreateInfo	structure	used	to	create	the
pipeline.	The	range	of	scissor	rectangles	specified	in	vkCmdSetScissor()
can	extend	outside	the	number	of	scissor	rectangles	supported	by	the	currently
bound	pipeline.	If	you	switch	to	another	pipeline	with	more	scissor	rectangles,
the	rectangles	you	set	will	be	used.

Depth	and	Stencil	Operations
The	depth	and	stencil	buffers	are	special	attachments	that	allow	fragments	to	be
evaluated	against	information	already	contained	in	them	either	before	or	after	the
fragment	shader	runs.	Chapter	7,	“Graphics	Pipelines,”	introduced	the	depth
state.	Additional	state	in	the	rasterization	state	also	controls	how	rasterized
fragments	interact	with	the	depth	and	stencil	buffers.
Logically,	the	depth	and	stencil	operations	run	after	the	fragment	shader	has
executed.	In	practice,	most	implementations	will	execute	the	depth	and	stencil
operations	before1	running	the	fragment	shader	wherever	they	can	prove	that
execution	of	the	fragment	shader	has	no	visible	side	effects,	so	the	result	of
running	tests	(and	potentially	rejecting	fragments)	will	have	no	visible	effect	on
the	rendered	scene.	In	the	following	sections,	we	will	discuss	operation	in	logical
terms—that	is,	assuming	that	tests	occur	after	shading—but	mention	explicitly
where	this	is	not	the	case	or	where	some	caveat	may	preclude	an	implementation
from	running	tests	early.



1.	An	entire	class	of	rendering	hardware—deferred	shading	hardware—will	attempt	to	run	the	depth	test
for	every	fragment	in	the	scene	before	running	any	fragment	shading.	Configuring	state	to	preclude
this	can	have	serious	performance	consequences	on	this	type	of	hardware.

During	testing	against	the	depth	and	stencil	buffers,	those	buffers	can	be
optionally	updated	with	new	data.	In	fact,	writing	to	depth	or	stencil	buffers	is	so
much	considered	to	be	part	of	the	test	that	the	tests	must	be	enabled	in	order	to
see	writes	to	depth	or	stencil	buffers	occur.	This	is	a	common	omission	for
developers	new	to	graphics	programming,	so	it’s	important	to	mention	it	here.
As	introduced	in	Chapter	7,	“Graphics	Pipelines,”	depth	and	stencil	operation
state	is	configured	using	the
VkPipelineDepthStencilStateCreateInfo	structure	passed	through
the	VkGraphicsPipelineCreateInfo	structure	used	to	create	the
graphics	pipeline.	For	reference,	the	definition	of
VkPipelineDepthStencilStateCreateInfo	is

Click	here	to	view	code	image

typedef	struct	VkPipelineDepthStencilStateCreateInfo	{

				VkStructureType																											sType;

				const	void*																															pNext;

				VkPipelineDepthStencilStateCreateFlags				flags;

				VkBool32																																		depthTestEnable;

				VkBool32																																		depthWriteEnable;

				VkCompareOp																															depthCompareOp;

				VkBool32																																		depthBoundsTestEnable;

				VkBool32																																		stencilTestEnable;

				VkStencilOpState																										front;

				VkStencilOpState																										back;

				float																																					minDepthBounds;

				float																																					maxDepthBounds;

}	VkPipelineDepthStencilStateCreateInfo;

As	you	can	see,	this	structure	is	rather	large	and	contains	several	substructures
that	define	properties	of	the	depth	and	stencil	tests.	We	necessarily	glossed	over
much	of	this	detail	in	Chapter	7,	“Graphics	Pipelines,”	but	dig	into	more	of	it
here.	Each	of	the	substructures	is	discussed	in	the	following	sections.

Depth	Testing
The	first	operation	performed	after	rasterization	is	the	depth	test.	The	depth	test
compares	the	depth	value	for	the	fragment	with	the	value	stored	in	the	current
depth-stencil	attachment	using	an	operation	chosen	when	the	pipeline	is	created.
The	fragment’s	depth	value	can	come	from	one	of	two	places:

•	It	may	be	interpolated	as	part	of	rasterization	using	the	depth	values	at	each



of	the	primitive’s	vertices.
•	It	may	be	generated	in	the	fragment	shader	and	output	along	with	other	color
attachments.

Of	course,	generating	the	depth	value	in	the	fragment	shader	is	one	of	the	cases
in	which	an	implementation	would	be	forced	to	run	the	shader	before	performing
the	depth	test.
The	depth	value	interpolated	by	rasterization	is	taken	from	the	result	of	the
viewport	transformation.	Each	vertex	has	a	depth	value	in	the	range	0.0,	1.0	as
produced	from	the	last	stage	in	the	geometry-processing	pipeline.	This	is	then
scaled	and	biased	using	the	parameters	of	the	selected	viewport	to	yield	a
framebuffer	depth.
The	depth	test	must	be	enabled	by	setting	the	depthTestEnable	field	of	the
VkPipelineDepthStencilStateCreateInfo	structure	to	VK_TRUE.
When	enabled,	the	operation	used	to	compare	the	fragment’s	computed	depth
value	(either	interpolated	during	rasterization	or	produced	by	your	fragment
shader)	is	specified	in	the	depthCompareOp	field	of	the	pipeline’s
VkPipelineDepthStencilStateCreateInfo.	This	is	one	of	the
standard	VkCompareOp	tokens,	and	their	meanings	when	applied	to	depth
testing	are	shown	in	Table	10.1.
If	the	depth	test	passes,	the	resulting	depth	(whether	interpolated	or	produced	by
the	fragment	shader)	may	be	written	to	the	depth	buffer.	To	do	this,	set
depthWriteEnable	to	VK_TRUE.	If	depthWriteEnable	is	VK_FALSE,
then	the	depth	buffer	is	not	written	to,	regardless	of	the	outcome	of	the	depth
test.



Table	10.1:	Depth	Comparison	Functions

It	is	important	to	note	that	the	depth	buffer	is	not	updated	unless	the	depth	test	is
enabled,	regardless	of	the	state	of	depthWriteEnable.	Therefore,	if	you
want	to	unconditionally	write	the	fragment’s	depth	value	into	the	depth	buffer,
you	need	to	enable	the	test	(set	depthTestEnable	to	VK_TRUE),	enable
depth	writes	(set	depthWriteEnable	to	VK_TRUE),	and	configure	the	depth
test	to	always	pass	(set	depthCompareEnable	to
VK_COMPARE_OP_ALWAYS).

DepthBounds	Testing



The	depth-bounds	test	is	a	special,	additional	test	that	can	be	performed	as	part
of	depth	testing.	The	value	stored	in	the	depth	buffer	for	the	current	fragment	is
compared	with	a	specified	range	of	values	that	is	part	of	the	pipeline.	If	the
value	in	the	depth	buffer	falls	within	the	specified	range,	then	the	test	passes;
otherwise,	it	fails.	What’s	interesting	about	the	depth-bounds	test	is	that	it	is	not
in	any	way	dependent	on	the	depth	value	of	the	fragment	being	tested.	This
means	that	it	can	be	quickly	evaluated	at	the	same	time	as	or	even	before	depth
interpolation	or	fragment	shading	executes.
A	use	case	for	the	depth-bounds	test	is	to	intersect	volumetric	geometry	with	an
existing	depth	buffer.	For	example,	if	we	prerender	the	depth	buffer	for	a	scene,
we	can	project	a	light’s	sphere	of	influence	into	the	scene.	We	then	set	the	depth
bounds	to	the	minimum	and	maximum	distance	from	the	light’s	center	and
enable	the	test.	When	we	render	the	light	geometry	(using	a	fragment	shader	that
will	perform	deferred	shading	computations),	the	depth-bounds	test	will	quickly
reject	fragments	that	will	not	be	influenced	by	the	light.
To	enable	the	depth-bounds	test,	set	the	depthBoundsTestEnable	member
of	VkPipelineDepthStencilStateCreateInfo	to	VK_TRUE,	and
configure	the	minimum	and	maximum	depth-bounds	values	in
minDepthBounds	and	maxDepthBounds,	respectively.	Perhaps	more
usefully,	though,	the	minimum	and	maximum	extents	for	the	depth-bounds	test
can	be	configured	as	dynamic	state.
To	do	this,	include	VK_DYNAMIC_STATE_DEPTH_BOUNDS	as	one	of	the
dynamic	states	in	the	pipeline’s	VkPipelineDynamicStateCreateInfo
structure.	Once	the	depth-bounds	test	is	set	to	dynamic,	the	minimum	and
maximum	extents	for	the	test	are	set	with	vkCmdSetDepthBounds(),	the
prototype	of	which	is

Click	here	to	view	code	image

void	vkCmdSetDepthBounds	(

				VkCommandBuffer																					commandBuffer,

				float																															minDepthBounds,

				float																															maxDepthBounds);

Again,	for	the	depth-bounds	test	to	take	effect,	it	must	be	enabled	by	setting	the
depthBoundsTestEnable	member	of	the
VkPipelineDepthStencilStateCreateInfo	structure	used	to	create
the	pipeline	to	VK_TRUE.	The	minDepthBounds	and	maxDepthBounds
parameters	take	similar	meaning	to	the	similarly	named	parameters	in	the
VkPipelineDepthStencilStateCreateInfo	structure.	Whether	the



depth-bounds	test	is	enabled	or	not	is	always	static	state,	even	if	the	depth-
bounds	values	themselves	are	marked	as	dynamic.
Note	that	the	depth-bounds	test	is	an	optional	feature,	and	not	all	Vulkan
implementations	support	it.	To	determine	whether	the	Vulkan	implementation
supports	the	depth-bounds	test,	check	the	depthBounds	member	of	the
device’s	VkPhysicalDeviceFeatures	structure.	In	order	to	use	the	depth-
bounds	test,	you	should	also	set	the	depthBounds	field	of	the
VkPhysicalDeviceFeatures	structure	used	to	create	the	device	to
VK_TRUE.

Depth	Bias
When	two	primitives	are	rendered	on	top	of	each	other	or	very	close	to	it,	their
interpolated	depth	values	may	be	the	same	or	very	close.	If	the	primitives	are
exactly	coplanar,	then	their	interpolated	depth	values	should	be	identical.	If	there
is	any	deviation,	then	their	depth	values	will	differ	by	a	very	small	amount.	As
the	interpolated	depth	values	are	subject	to	floating-point	imprecision,	this	can
result	in	depth	testing	producing	inconsistent	and	implementation-dependent
results.	The	visual	artifact	that	results	is	known	as	depth	fighting.
To	counteract	this,	and	to	enable	predictable	results	from	depth	testing	generally,
a	programmable	bias	value	can	be	applied	to	the	interpolated	depth	values	to
force	them	to	be	offset	toward	or	away	from	the	viewer.	This	is	known	as	depth
bias	and	is	actually	part	of	rasterization	state	because	it	is	the	rastrerizer	that
produces	the	interoplated	depth	values.
To	enable	depth	bias,	set	the	depthBiasEnable	field	of	the
VkPipelineRasterizationStateCreateInfo	structure	used	to	create
the	rasterizer	state	in	the	graphics	pipeline	to	VK_TRUE.	For	reference,	the
definition	of	VkPipelineRasterizationStateCreateInfo	is

Click	here	to	view	code	image

typedef	struct	VkPipelineRasterizationStateCreateInfo	{

				VkStructureType																												sType;

				const	void*																																pNext;

				VkPipelineRasterizationStateCreateFlags				flags;

				VkBool32																																			depthClampEnable;

				VkBool32																																			rasterizerDiscardEnable;

				VkPolygonMode																														polygonMode;

				VkCullModeFlags																												cullMode;

				VkFrontFace																																frontFace;

				VkBool32																																			depthBiasEnable;

				float																																						depthBiasConstantFactor;



				float																																						depthBiasClamp;

				float																																						depthBiasSlopeFactor;

				float																																						lineWidth;

}	VkPipelineRasterizationStateCreateInfo;

When	depthBiasEnable	is	VK_TRUE,	the	next	three	fields
—depthBiasConstantFactor,	depthBiasClamp,	and
depthBiasSlopeFactor—configure	the	depth-bias	equations	used	to
compute	an	offset	that	is	applied	to	the	interpolated	depth	values.
First,	the	maximum	depth	slope	of	the	polygon	m	is	computed	as

This	is	often	approximated	as

In	both	equations,	xf,	yf,	and	zf	represent	a	point	on	the	triangle.
Once	m	is	computed,	the	offset	o	is	computed	as

The	term	r	is	the	minimum	resolvable	delta	in	depth	values	for	the	primitive.	For
fixed-point	depth	buffers,	this	is	a	constant	that	depends	only	on	the	number	of
bits	in	the	depth	buffer.	For	floating-point	depth	buffers,	this	depends	on	the
range	of	depth	values	spanned	by	the	primitive.
If	depthBiasClamp	in
VkPipelineRasterizationStateCreateInfo	is	0.0	or	NaN,	then	the
computed	value	of	o	is	used	to	directly	bias	the	interpolated	depth	values.
However,	if	depthBiasClamp	is	positive,	then	it	forms	an	upper	bound	on	o,
and	if	it	is	negative,	it	forms	a	lower	bound	on	o.
By	biasing	the	depth	value	toward	or	away	from	the	viewer	slightly,	it’s	possible
to	ensure	that	for	a	given	pair	of	coplanar	(or	almost	coplanar)	primitives,	one
always	“wins”	the	depth	test.	This	can	essentially	eliminate	depth	fighting.
The	depth-bias	parameters	can	either	be	static	state	contained	in	the	rasterization
state	of	the	graphics	pipeline	or	configured	to	be	dynamic	state.	To	enable	the
depth-bias	state	to	be	dynamic,	include	VK_DYNAMIC_STATE_DEPTH_BIAS
in	the	list	of	dynamic	states	passed	in	the	pDynamicStates	member	of	the
VkPipelineDynamicStateCreateInfo	structure	used	to	create	the
graphics	pipeline.



Once	depth	bias	is	configured	to	be	dynamic,	the	parameters	for	depth-bias
equations	can	be	set	by	calling	vkCmdSetDepthBias(),	the	prototype	of
which	is

Click	here	to	view	code	image

void	vkCmdSetDepthBias	(

				VkCommandBuffer																			commandBuffer,

				float																													depthBiasConstantFactor,

				float																													depthBiasClamp,

				float																													depthBiasSlopeFactor);

The	command	buffer	to	set	the	depth-bias	state	for	is	specified	in
commandBuffer.	The	depthBiasConstantFactor,
depthBiasClampFactor,	and	depthBiasSlopeFactor	have	the	same
meanings	as	the	similarly	named	members	of
VkPipelineRasterizationStateCreateInfo.	Note	that	while	the
depth	bias	parameters	can	be	made	part	of	a	pipeline’s	dynamic	state,	the	depth
bias	must	still	be	enabled	by	setting	the	depthBiasEnable	flag	to	VK_TRUE
in	the	VkPipelineRasterizationStateCreateInfo	structure	used	to
create	the	pipeline.	The	depthBiasEnable	flag	is	always	considered	to	be
static	state,	although	setting	the	depth-bias	factors	to	0.0	effectively	disables	it.

Stencil	Testing
The	stencil	test	is	enabled	by	setting	the	stencilTestEnable	field	of
VkPipelineDepthStencilStateCreateInfo	to	VK_TRUE.
The	stencil	test	can	actually	be	different	for	front-and	back-facing	primitives.
The	state	of	the	stencil	test	is	represented	by	an	instance	of	the
VkStencilOpState	structure,	and	there	is	one	for	each	of	the	front-and
back-facing	states.	The	definition	of	VkStencilOpState	is

Click	here	to	view	code	image

typedef	struct	VkStencilOpState	{

				VkStencilOp				failOp;

				VkStencilOp				passOp;

				VkStencilOp				depthFailOp;

				VkCompareOp				compareOp;

				uint32_t							compareMask;

				uint32_t							writeMask;

				uint32_t							reference;

}	VkStencilOpState;

There	are	three	possible	outcomes	between	the	depth	and	stencil	tests.	If	the
depth	test	fails,	then	the	operation	specified	in	depthFailOp	is	performed,



and	the	stencil	test	is	skipped.	If	the	depth	test	passes,	however,	then	the	stencil
test	is	performed,	producing	one	of	two	further	outcomes:	If	the	stencil	test	fails,
then	the	operation	specified	in	failOp	is	performed,	and	if	the	stencil	test
passes,	the	operation	specified	in	passOp	is	performed.	Each	of
depthFailOp,	failOp,	and	passOp	is	a	member	of	the	VkStencilOp
enumeration.	The	meaning	of	each	operation	is	shown	in	Table	10.2.
If	enabled,	the	stencil	test	compares	the	stencil	reference	value	with	that	of	the
current	content	of	the	stencil	buffer.	The	operator	used	to	compare	the	two
values	is	specified	in	the	compareOp	field	of	the	VkStencilOpState
structure.	This	is	the	same	set	of	values	used	for	depth	testing,	only	comparing
the	stencil	reference	with	the	content	of	the	stencil	buffer.

Table	10.2:	Stencil	Operations

The	reference	value,	compare	mask	value,	and	write	mask	value	can	also	be
made	dynamic.	To	mark	these	states	as	dynamic,	include
VK_DYNAMIC_STATE_STENCIL_REFERENCE,
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK,	and
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK,	respectively,	in	the	list	of
dynamic	states	passed	in	the	pDynamicStates	member	of	the
VkPipelineDynamicStateCreateInfo	structure	used	to	create	the
graphics	pipeline.
Parameters	of	the	stencil	test	can	be	set	using	three	functions:
vkCmdSetStencilReference(),
vkCmdSetStencilCompareMask(),	and
vkCmdSetStencilWriteMask().	They	set	the	stencil	reference	value	and
the	compare	and	write	masks,	respectively.	Their	prototypes	are



Click	here	to	view	code	image

void	vkCmdSetStencilReference	(

				VkCommandBuffer																				commandBuffer,

				VkStencilFaceFlags																	faceMask,

				uint32_t																											reference);

void	vkCmdSetStencilCompareMask	(

				VkCommandBuffer																				commandBuffer,

				VkStencilFaceFlags																	faceMask,

				uint32_t																											compareMask);

void	vkCmdSetStencilWriteMask	(

				VkCommandBuffer																				commandBuffer,

				VkStencilFaceFlags																	faceMask,

				uint32_t																											writeMask);

Each	of	these	three	states	can	be	independently	made	either	static	or	dynamic.
All	three	functions	take	a	faceMask	parameter,	which	determines	whether	the
new	state	applies	to	front-facing	primitives,	back-facing	primitives,	or	both.	To
specify	each	of	these,	set	faceMask	to	VK_STENCIL_FACE_FRONT_BIT,
VK_STENCIL_FACE_BACK_BIT,	or	VK_STENCIL_FRONT_AND_BACK,
respectively.	Note	that	VK_STENCIL_FRONT_AND_BACK	has	the	same
numeric	value	as	VK_STENCIL_FACE_FRONT_BIT	and
VK_STENCIL_FACE_BACK_BIT	added	together.

Early	Fragment	Tests
Normally,	the	depth	and	stencil	tests	are	configured	to	run	after	the	fragment
shader	has	run.	Because	updating	the	depth	buffer	occurs	as	part	of	the	test—the
test	is	considered	to	be	an	indivisible	read-modify-write	operation—this	has
three	primary	consequences	that	are	visible	to	the	application:

•	The	fragment	shader	can	update	the	depth	value	of	the	fragment	by	writing
to	a	floating-point	output	decorated	with	the	BuiltIn	FragDepth
decoration.	In	this	case,	the	depth	test	executes	after	the	fragment	shader	and
uses	the	value	produced	by	the	shader	rather	than	the	value	generated	by
interpolation.
•	The	fragment	shader	has	side	effects	such	as	storing	into	an	image.	In	this
case,	the	side	effects	from	shader	execution	will	be	visible,	even	for
fragments	that	later	fail	the	depth	test.
•	If	the	fragment	shader	throws	away	the	fragment	by	executing	the	OpKill
SPIR-V	instruction	(produced	by	calling	the	discard()	function	in
GLSL),	then	the	depth	buffer	is	not	updated.



If	none	of	these	conditions	can	occur,	Vulkan	implementations	are	permitted	to
detect	this	case	and	reorder	testing	such	that	the	depth	and	stencil	tests	occur
before	the	fragment	shader	executes.	This	saves	the	work	of	executing	the
fragment	shader	for	fragments	that	would	fail	the	tests.
Because	the	default	logical	order	of	the	pipeline	specifies	that	the	depth	and
stencil	tests	occur	after	the	fragment	shader	has	executed,	when	any	of	the
conditions	hold,	the	implementation	must	run	operations	in	that	order.	You	can,
however,	force	the	shader	to	run	after	the	depth	and	stencil	tests	even	when	one
of	these	conditions	is	true.	There	are	two	ways	to	do	this.
First,	you	can	force	the	fragment	shader	to	run	early	regardless	of	any	other
condition	detected	by	the	Vulkan	implementation.	To	do	this,	decorate	the	SPIR-
V	entry	point	for	the	fragment	shader	with	the	EarlyFragmentTests
decoration.	This	will	cause	execution	of	the	fragment	shader	to	be	delayed	(or	at
least	appear	to	be	delayed)	until	after	the	depth	and	stencil	tests	have	been
executed.	Should	the	depth	test	fail,	then	the	fragment	shader	will	not	be
executed,	and	any	side	effects	that	it	may	have	produced,	such	as	updates	to	an
image	via	image	stores,	will	not	be	visible.
This	first	mode	is	useful,	for	example,	to	run	depth	tests	against	a	prerendered
depth	image	produced,	say,	in	an	earlier	subpass	of	a	renderpass,	but	to	produce
output	from	the	fragment	shader	using	image	stores	rather	than	normal	fragment
shader	outputs.	Because	the	number	of	fixed-function	outputs	from	the	fragment
shader	is	limited	but	the	number	of	stores	it	may	perform	to	images	is	effectively
unlimited,	this	is	a	good	way	to	increase	the	amount	of	data	that	a	fragment
shader	can	produce	for	a	single	fragment.
The	second	mechanism	for	running	the	fragment	shader	after	depth	testing	is
more	subtle.	It	interacts	specifically	with	the	case	where	the	fragment	shader
writes	to	the	fragment’s	depth	value.	Under	normal	circumstances,	the
implementation	must	assume	that	the	fragment	shader	may	write	any	arbitrary
value	to	the	fragment’s	depth	unless	it	can	definitively	prove	otherwise.
In	cases	where	you	know	that	the	fragment	shader	will	move	the	depth	value	in
only	one	direction	(toward	or	away	from	the	viewer),	you	can	apply	the	SPIR-V
DepthGreater	or	DepthLess	execution	modes	to	the	fragment	shader’s
entry	point	with	the	OpExecutionMode	instruction.
When	DepthGreater	is	applied,	then	Vulkan	knows	that	no	matter	what	your
shader	does,	the	resulting	depth	values	produced	by	the	fragment	shader	will
only	be	greater	than	the	values	produced	by	interpolation.	Therefore,	if	the	depth
test	is	VK_COMPARE_OP_GREATER	or



VK_COMPARE_OP_GREATER_OR_EQUAL,	then	the	fragment	shader	cannot
negate	the	result	of	a	depth	test	that’s	already	passed.
Likewise,	when	DepthLess	is	applied,	then	Vulkan	knows	that	the	fragment
shader	will	only	make	the	resulting	depth	value	less	than	it	would	have	been	and
therefore	cannot	negate	the	result	of	a	passing	VK_COMPARE_OP_LESS	or
VK_COMPARE_OP_LESS_OR_EQUAL	test.
Finally,	the	SPIR-V	DepthUnchanged	execution	mode	tells	Vulkan	that	no
matter	what	the	fragment	shader	appears	to	do	to	the	depth	value	of	the	fragment
shader,	it	should	treat	it	as	though	it	did	not	update	the	value	at	all.	Therefore,
any	optimizations	it	might	make	if	the	shader	did	not	write	to	the	fragment’s
depth	remain	valid	and	can	be	enabled	where	appropriate.

Multisample	Rendering
Multisample	rendering	is	a	method	to	improve	image	quality	by	storing	multiple
depth,	stencil,	or	color	values	for	each	pixel.	As	the	image	is	rendered,	multiple
samples	within	each	pixel	are	generated	(hence	the	term	multisample	rendering)
and	when	the	image	is	to	be	displayed	to	the	user,	the	samples	are	merged	using
a	filter	to	produce	a	final,	single	value	per	pixel.
There	are	two	general	ways	to	produce	a	multisample	image:

•	Multisampling:	Determining	which	samples	within	a	pixel	are	covered,
computing	a	single	color	value	for	that	pixel,	and	then	broadcasting	that
value	to	all	covered	samples	within	the	pixel
•	Supersampling:	Computing	unique	color	values	for	each	and	every	sample
within	a	pixel

Obviously,	supersampling	comes	at	significantly	higher	cost	than	multisampling
because	potentially	many	more	color	values	are	computed	and	stored.
To	create	a	multisample	image,	set	the	samples	field	of	the
VkImageCreateInfo	structure	used	to	create	the	image	to	one	of	the	values
of	the	VkSampleCountFlagBits	enumeration.	The	samples	field	is	a	one
hot	encoding	of	the	sample	count	to	be	used	in	the	image.	The	numeric	value	for
the	enumeration	is	simply	n,	where	n	is	the	number	of	samples	in	the	image.
Only	power-of-two	sample	counts	are	supported.
While	the	current	Vulkan	header	defines	enumerants	from
VK_SAMPLE_COUNT_1_BIT	to	VK_SAMPLE_COUNT_64_BIT,	most
Vulkan	implementations	will	support	sample	counts	between	1	and	8	or	maybe
16.	Further,	not	every	sample	count	between	1	and	the	maximum	sample	count



supported	by	an	implementation	will	be	supported	for	every	image	format.	In
fact,	support	for	different	sample	counts	varies	per	format	and	even	per	tiling
mode	and	should	be	queried	using
vkGetPhysicalDeviceFormatProperties().	As	discussed	in	Chapter
2,	“Memory	and	Resources,”
vkGetPhysicalDeviceImageFormatProperties()	returns
information	about	a	particular	format.	For	reference,	its	prototype	is

Click	here	to	view	code	image

VkResult	vkGetPhysicalDeviceImageFormatProperties	(

				VkPhysicalDevice																							physicalDevice,

				VkFormat																															format,

				VkImageType																												type,

				VkImageTiling																										tiling,

				VkImageUsageFlags																						usage,

				VkImageCreateFlags																					flags,

				VkImageFormatProperties*															pImageFormatProperties);

The	format	to	be	queried	is	passed	along	with	the	image	type,	tiling	mode,	usage
flags	and	other	information,	and
vkGetPhysicalDeviceImageFormatProperties()	writes	the
support	information	about	the	format	into	the	VkImageFormatProperties
structure	pointed	to	by	pImageFormatProperties.	The	sampleCounts
field	of	this	structure	then	contains	the	supported	sample	counts	for	an	image	in
the	specified	format	with	the	configuration	described	by	the	remaining
parameters.
As	a	primitive	is	rasterized,	the	rasterizer	computes	coverage	information	for	the
pixels	hit	by	it.	When	multisample	rendering	is	off,	rasterization	works	by
simply	determining	whether	the	center	of	each	pixel	is	inside	the	primitive	and,
if	so,	considering	the	pixel	hit.	The	depth	and	stencil	tests	are	then	performed	at
the	center	of	the	pixel,	and	the	fragment	shader	is	executed	to	determine	the
resulting	shading	information	for	that	pixel.
When	multisample	rendering	is	enabled,	coverage	is	determined	for	each	sample
in	each	pixel.	For	each	sample	that	is	considered	to	be	inside	the	pixel,	the	depth
and	stencil	tests	are	computed	individually.	If	any	sample	is	determined	to	be
visible,	then	the	fragment	shader	is	run	once	to	determine	the	output	color	for	the
fragment.	That	output	color	is	then	written	into	every	visible	sample	in	the
image.
By	default,	the	samples	are	distributed	evenly	within	a	pixel	at	a	set	of	standard
locations.	These	locations	are	illustrated	in	Figure	10.1.	The	standard	sample
locations	shown	in	the	figure	are	supported	if	the



standardSampleLocations	field	of	the	device’s
VkPhysicalDeviceLimits	structure	is	VK_TRUE.	In	this	case,	the	sample
locations	shown	in	Figure	10.1	are	used	for	1-,	2-,	4-,	8-,	and	16-sample	images
(if	supported).	Even	if	the	device	supports	32,	64,	or	higher	sample	count
images,	there	are	no	defined	standard	sample	locations	for	those	sample	counts.

Figure	10.1:	Standard	Sample	Locations

If	standardSampleLocations	is	VK_FALSE	in	the
VkPhysicalDeviceLimits	structure,	then	those	sample	counts	may	be
supported	with	nonstandard	sample	locations.	Determining	the	sample	locations
used	by	a	device	in	this	scenario	would	likely	require	a	device	extension.

Sample	Rate	Shading
Usually,	when	a	multisample	image	is	bound	to	the	framebuffer,	multisampling
is	used	to	render	into	it.	As	described	earlier,	coverage	is	determined	at	each	of
the	sample	locations	in	each	pixel,	and	if	any	of	them	is	covered	by	the
primitive,	the	fragment	shader	is	run	once	to	determine	the	values	of	its	outputs.
Those	values	are	then	broadcast	to	all	covered	samples	in	the	pixel.
For	even	higher	image	quality,	we	can	use	supersampling,	which	causes	the



fragment	shader	to	be	executed	for	each	covered	sample	and	the	unique	output
values	it	produces	to	be	written	directly	to	the	pixel’s	samples.
While	multisampling	can	improve	the	appearance	of	the	edges	of	primitives,	it
can	do	nothing	to	prevent	aliasing	artifacts	resulting	from	high	spacial
frequencies	produced	by	the	fragment	shader.	However,	by	running	a	fragment
shader	at	sample	rate,	high	frequencies	produced	by	the	fragment	shader	can	be
antialiased	along	with	primitive	edges.
To	enable	sample	rate	shading,	set	the	sampleShadingEnable	member	of
the	VkPipelineMultisampleStateCreateInfo	structure	used	to
create	the	graphics	pipeline	to	VK_TRUE.	When	sampleShadingEnable	is
enabled,	the	minSampleShading	field	further	controls	the	frequency	at
which	the	shader	will	be	executed.	This	is	a	floating-point	value	between	0.0	and
1.0.	At	least	this	fraction	of	the	samples	in	the	pixel	will	receive	a	unique	set	of
values	as	produced	by	a	separate	invocation	of	the	fragment	shader.
If	minSampleShading	is	1.0,	then	every	sample	in	the	pixel	is	guaranteed	to
receive	its	own	data	from	a	separate	invocation	of	the	fragment	shader.	Any
value	less	than	1.0	causes	the	device	to	compute	colors	for	at	least	that	many
samples	and	then	distribute	the	values	to	the	samples	in	a	device-dependent
manner.	For	example,	if	minSampleShading	is	0.5,	then	a	fully	covered	8-
sample	pixel	would	cause	the	fragment	shader	to	execute	at	least	4	times	and	for
the	4	sets	of	outputs	to	be	distributed	to	the	8	samples	in	the	pixel	in	a	device-
dependent	manner.
It	is	possible	to	configure	the	pipeline	to	update	only	a	subset	of	the	samples	in
the	framebuffer.	You	can	specify	a	sample	mask,	which	is	a	bitmask	with	a
single	bit	corresponding	to	each	of	the	samples	in	the	framebuffer.	This	mask	is
specified	by	passing	an	array	of	unsigned	32-bit	integers	through	the
pSampleMask	member	of
VkPipelineMultisampleStateCreateInfo.	The	array	divides	the
arbitrarily	long	bitmask	into	32-bit	chunks,	each	chunk	being	an	element	of	the
array.	If	the	framebuffer	has	32	or	fewer	samples,	then	the	array	becomes	a
single	element	long.
The	Nth	sample	is	represented	by	the	(N%32)th	bit	of	the	(N/32)th	element	of	the
array.	When	the	bit	is	set,	the	sample	may	be	updated	by	the	pipeline.	If	the	bit	is
cleared,	then	the	pipeline	will	not	modify	the	content	of	samples	at	that	index.	In
effect,	the	sample	mask	is	logically	ANDed	with	the	coverage	computed	during
rasterization.	If	pSampleMask	is	nullptr,	then	all	samples	are	enabled	for
writing.



In	addition	to	generating	coverage	during	rasterization,	it	is	possible	for	a
fragment	shader	to	produce	a	pseudo-coverage	value	by	writing	into	the	alpha
channel	of	its	output.	By	setting	the	alphaToCoverage	field	of
VkPipelineMultisampleStateCreateInfo	to	VK_TRUE,	the	alpha
value	written	into	the	fragment	shader’s	first	output	is	used	to	create	a	new
coverage	value	for	the	fragment.	A	fraction	of	the	samples	in	the	temporarily
created	sample	mask	are	enabled	in	an	implementation-defined	order,	according
to	the	value	written	by	the	shader	into	the	alpha	channel.	This	is	then	logically
ANDed	with	the	coverage	mask	computed	during	rasterization.	This	allows
simple	transparency	and	coverage	effects	to	be	implemented	by	simply	exporting
alpha	values	from	the	shader.
The	question	then	remains	what	to	do	with	the	actual	alpha	channel	in	the
framebuffer.	If	the	shader	writes	a	fraction	of	coverage	into	the	alpha	channel,	it
may	not	make	sense	to	write	this	value	directly	into	the	framebuffer	along	with
the	RGB	color	data.	Instead,	you	can	ask	Vulkan	to	subsitute	a	value	of	1.0	for
alpha	for	the	other	alpha-related	operations,	as	though	the	shader	had	not
produced	an	alpha	value	at	all.	To	do	this,	set	the	alphaToOneEnable	field	to
VK_TRUE.

Multisample	Resolves
When	rendering	to	a	multisample	image	is	completed,	it	can	be	resolved	to	a
single	sample	image.	This	process	aggregates	all	of	the	values	stored	in	the
multiple	samples	for	each	pixel	into	a	single	value,	producing	a
nonmultisampled	image.	There	are	two	ways	to	resolve	an	image.
The	first	is	to	include	a	nonmultisampled	image	in	the
pResolveAttachments	array	passed	to	through	the
VkSubpassDescription	used	to	create	a	subpass	that	would	render	to	the
original	multisample	color	attachments.	The	subpass	will	produce	a	multisample
image	into	the	corresponding	color	attachment,	and	when	the	subpass	ends	(or	at
least	by	the	time	the	renderpass	ends),	Vulkan	will	automatically	resolve	the
multisample	image	into	the	corresponding	nonmultisampled	image	in
pResolveAttachments.
You	can	then	set	the	storeOp	for	the	multisample	image	to
VK_ATTACHMENT_STORE_OP_DONT_CARE	to	discard	the	original
multisampled	data,	assuming	that	it	is	not	needed	for	something	else.	This	is
likely	the	most	efficient	way	of	resolving	a	multisample	image,	as	many
implementations	will	be	able	to	fold	the	resolve	operation	into	some	other



internal	operations	that	are	already	part	of	the	renderpass,	or	at	least	perform	the
resolve	operation	while	the	original	multisample	data	is	in	caches	rather	than
writing	it	all	into	memory	and	reading	it	back	later.
It’s	also	possible	to	explicitly	resolve	a	multisample	image	into	a	single	sample
image	by	calling	vkCmdResolveImage(),	the	prototype	of	which	is

Click	here	to	view	code	image

void	vkCmdResolveImage	(

				VkCommandBuffer																			commandBuffer,

				VkImage																											srcImage,

				VkImageLayout																					srcImageLayout,

				VkImage																											dstImage,

				VkImageLayout																					dstImageLayout,

				uint32_t																										regionCount,

				const	VkImageResolve*													pRegions);

The	command	buffer	that	will	perform	the	resolve	operation	is	passed	in
commandBuffer.	The	source	image	and	its	expected	layout	at	the	time	of	the
resolve	operation	are	passed	in	srcImage	and	srcImageLayout,
respectively.	Likewise,	the	destination	image	and	its	expected	layout	are	passed
in	dstImage	and	dstImageLayout.	vkCmdResolveImage()	behaves
much	like	the	blit	and	copy	operations	discussed	in	Chapter	4,	“Moving	Data.”
As	such,	the	layout	of	the	source	image	should	be	either
VK_IMAGE_LAYOUT_GENERAL	or
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,	and	the	layout	of	the
destination	image	should	be	VK_IMAGE_LAYOUT_GENERAL	or
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL.
As	with	the	other	blit	and	copy	commands,	vkCmdResolveImage()	can
resolve	only	parts	of	an	image	if	needed.	The	number	of	regions	to	resolve	is
passed	in	regionCount,	and	pRegions	points	to	an	array	of
VkImageResolve	structures,	each	defining	one	of	the	regions.	The	definition
of	VkImageResolve	is

Click	here	to	view	code	image

typedef	struct	VkImageResolve	{

				VkImageSubresourceLayers				srcSubresource;

				VkOffset3D																		srcOffset;

				VkImageSubresourceLayers				dstSubresource;

				VkOffset3D																		dstOffset;

				VkExtent3D																		extent;

}	VkImageResolve;

Each	region	to	resolve	is	represented	by	one	instance	of	the	VkImageResolve



structure.	Each	structure	contains	a	description	of	the	regions	in	the	source	and
destination	regions.	The	subresource	from	which	source	data	is	to	be	taken	is	in
the	srcSubresource	field,	and	the	subresource	to	which	the	resolved	image
data	is	to	be	written	is	in	the	dstSubresource	field.
vkCmdResolveImage()	cannot	rescale	the	multisample	image,	so	the	sizes
of	the	source	and	destination	regions	are	the	same.	This	is	stored	in	the	extent
member	of	the	VkImageResolve	structure.	However,	the	region	in	the	source
and	destination	image	does	not	need	to	be	at	the	same	location	in	the	two
images.	The	origin	of	the	region	in	the	source	image	is	stored	in	the
srcOffset	field,	and	the	origin	of	the	output	region	is	stored	in	the
dstOffset	field.
When	an	image	is	resolved	by	specifying	it	as	one	of	the	resolve	attachments	in
the	renderpass,	the	entire	region	is	resolved	at	the	end	of	the	subpass	that
references	it—at	least	the	region	that	is	included	in	the	renderArea	passed	to
vkCmdBeginRenderPass().	With	vkCmdResolveImage(),	however,
it’s	possible	to	resolve	parts	of	an	image.	Although	explicitly	calling
vkCmdResolveImage()	is	likely	to	be	less	efficient	than	resolving
attachments	at	the	end	of	a	renderpass,	it	may	be	that	you	need	to	resolve	only
part	of	the	image,	so	vkCmdResolveImage()	is	the	more	appropriate	choice
in	that	case.

Logic	Operations
Logic	operations	allow	logical	operations	such	as	AND	and	XOR	to	be	applied
between	the	output	of	the	fragment	shader	and	the	content	of	a	color	attachment.
Logical	operations	are	supported	on	most	integer	formats	that	can	be	used	as
color	attachments.	Logical	operations	are	enabled	by	setting	the
logicOpEnable	field	of	the
VkPipelineColorBlendStateCreateInfo	used	to	create	a	color	blend
state	object	to	VK_TRUE.	Introduced	in	Chapter	7,	“Graphics	Pipelines,”	the
definition	of	VkPipelineColorBlendStateCreateInfo	is

Click	here	to	view	code	image

typedef	struct	VkPipelineColorBlendStateCreateInfo	{

				VkStructureType																															sType;

				const	void*																																			pNext;

				VkPipelineColorBlendStateCreateFlags										flags;

				VkBool32																																						logicOpEnable;

				VkLogicOp																																					logicOp;

				uint32_t																																						attachmentCount;

				const	VkPipelineColorBlendAttachmentState*				pAttachments;



				float																																									blendConstants[4];

}	VkPipelineColorBlendStateCreateInfo;

When	logical	operations	are	enabled,	the	logical	operation	specified	by
logicOp,	is	performed	between	each	of	the	fragment	shader’s	outputs	and	the
corresponding	color	attachment.	The	same	logical	operation	is	used	for	every
attachment—that	is,	it	is	not	possible	to	use	a	different	logical	operation	for
different	attachments.	The	available	logical	operations,	represented	by	members
of	the	VkLogicOp,	are	shown	in	Table	10.3.

Table	10.3:	Logic	Operations

In	Table	10.3,	Source	refers	to	the	value(s)	produced	by	the	fragment	shader,	and
Destination	refers	to	the	values	already	in	the	color	attachment.
Although	the	selected	logical	operation	is	global	(if	enabled)	and	applies	to	all
color	outputs,	logical	operations	are	applied	only	to	color	attachments	with
formats	that	support	them.	If	the	format	used	for	one	of	the	color	attachments
does	not	support	logical	operations,	then	the	selected	logic	operation	is	ignored



for	that	attachment,	and	the	value	is	written	directly	to	the	attachment.

Fragment	Shader	Outputs
Each	fragment	shader	may	have	one	or	more	outputs.	It	is	possible	to	construct	a
fragment	shader	that	has	no	outputs	and	produces	visible	side	effects	by
performing	image	store	operations.	However,	in	the	majority	of	cases,	fragment
shaders	produce	outputs	by	writing	them	to	special	variables	declared	as	outputs.
To	declare	an	output	in	a	GLSL	fragment,	simply	create	a	variable	at	global
scope	with	the	out	storage	qualifier.	This	produces	a	SPIR-V	declaration	of	an
output	variable,	which	in	turn	is	used	by	Vulkan	to	connect	the	fragment
shader’s	output	to	subsequent	processing.	Listing	10.1	shows	a	simple	GLSL
fragment	shader	that	declares	a	single	output	and	writes	an	opaque	red	color	into
it.	The	resulting	SPIR-V	shader	is	shown	in	Listing	10.2.

Listing	10.1:	Declaring	an	Output	in	a	Fragment	Shader	(GLSL)

Click	here	to	view	code	image

#version	450	core

out	vec4	o_color;

void	main(void)

{

				o_color	=	vec4(1.0f,	0.0f,	0.0f,	1.0f);

}

When	the	code	in	Listing	10.1	is	used	to	create	the	SPIR-V	shader	in	Listing
10.2,	you	can	see	that	the	o_color	output	is	translated	into	an	output	variable
(%9)	of	type	vector	of	four	floating-point	values	(%7).	The	OpStore	instruction
is	then	used	to	write	to	it.

Listing	10.2:	Declaring	an	Output	in	a	Fragment	Shader	(SPIR-V)

Click	here	to	view	code	image

;	SPIR-V

;	Version:	1.0

;	Generator:	Khronos	Glslang	Reference	Front	End;	1

;	Bound:	13

;	Schema:	0

															OpCapability	Shader

										%1	=	OpExtInstImport	"GLSL.std.450"

															OpMemoryModel	Logical	GLSL450

															OpEntryPoint	Fragment	%4	"main"	%9

															OpExecutionMode	%4	OriginUpperLeft

															OpSource	GLSL	450



															OpName	%4	"main"

															OpName	%9	"o_color"

										%2	=	OpTypeVoid

										%3	=	OpTypeFunction	%2

										%6	=	OpTypeFloat	32

										%7	=	OpTypeVector	%6	4

										%8	=	OpTypePointer	Output	%7

										%9	=	OpVariable	%8	Output

									%10	=	OpConstant	%6	1

									%11	=	OpConstant	%6	0

									%12	=	OpConstantComposite	%7	%10	%11	%11	%10

										%4	=	OpFunction	%2	None	%3

										%5	=	OpLabel

															OpStore	%9	%12

															OpReturn

															OpFunctionEnd

When	the	framebuffer	color	attachment	is	floating-point,	or	signed-or	unsigned-
normalized	format,	the	fragment	shader	output	should	be	declared	using	a
floating-point	variable.	When	the	color	attachment	is	a	signed	or	unsigned
integer	format,	then	the	fragment	shader	output	should	be	declared	as	a	signed	or
unsigned	integer	type	too.	The	number	of	components	in	the	fragment	shader
output	should	be	at	least	as	many	as	the	number	of	components	in	the
corresponding	color	attachment.
As	you	saw	in	Chapter	7,	“Graphics	Pipelines,”	a	single	graphics	pipeline	can
have	many	color	attachments	and	access	these	attachments	through	attachment
references	in	each	subpass.	Each	subpass	can	reference	several	output
attachments,	which	means	that	a	fragment	shader	can	write	to	several
attachments.	To	do	this,	we	declare	multiple	outputs	in	our	fragment	shader	and,
in	GLSL,	specify	an	output	location	using	a	location	layout	qualifier.
Listing	10.3	shows	a	GLSL	fragment	shader	that	declares	multiple	outputs,
writing	a	different	constant	color	to	each	one.	Each	is	assigned	a	different
location	using	a	location	layout	qualifier.

Listing	10.3:	Several	Outputs	in	a	Fragment	Shader	(GLSL)

Click	here	to	view	code	image

#version	450	core

layout	(location	=	0)	out	vec4	o_color1;

layout	(location	=	1)	out	vec4	o_color2;

layout	(location	=	5)	out	vec4	o_color3;

void	main(void)

{



				o_color1	=	vec4(1.0f,	0.0f,	0.0f,	1.0f);

				o_color2	=	vec4(0.0f,	1.0f,	0.0f,	1.0f);

				o_color3	=	vec4(0.0f,	0.0f,	1.0f,	1.0f);

}

The	result	of	compiling	the	shader	in	Listing	10.3	to	SPIR-V	is	shown	in	Listing
10.4.

Listing	10.4:	Several	Outputs	in	a	Fragment	Shader	(SPIR-V)

Click	here	to	view	code	image

;	SPIR-V

;	Version:	1.0

;	Generator:	Khronos	Glslang	Reference	Front	End;	1

;	Bound:	17

;	Schema:	0

															OpCapability	Shader

										%1	=	OpExtInstImport	"GLSL.std.450"

															OpMemoryModel	Logical	GLSL450

															OpEntryPoint	Fragment	%4	"main"	%9	%13	%15

															OpExecutionMode	%4	OriginUpperLeft

															OpSource	GLSL	450

															OpName	%4	"main"

															OpName	%9	"o_color1"

															OpName	%13	"o_color2"

															OpName	%15	"o_color3"

															OpDecorate	%9	Location	0

															OpDecorate	%13	Location	1

															OpDecorate	%15	Location	5

										%2	=	OpTypeVoid

										%3	=	OpTypeFunction	%2

										%6	=	OpTypeFloat	32

										%7	=	OpTypeVector	%6	4

										%8	=	OpTypePointer	Output	%7

										%9	=	OpVariable	%8	Output

									%10	=	OpConstant	%6	1

									%11	=	OpConstant	%6	0

									%12	=	OpConstantComposite	%7	%10	%11	%11	%10

									%13	=	OpVariable	%8	Output

									%14	=	OpConstantComposite	%7	%11	%10	%11	%10

									%15	=	OpVariable	%8	Output

									%16	=	OpConstantComposite	%7	%11	%11	%10	%10

										%4	=	OpFunction	%2	None	%3

										%5	=	OpLabel

															OpStore	%9	%12

															OpStore	%13	%14

															OpStore	%15	%16

															OpReturn

															OpFunctionEnd



As	you	can	see	in	Listing	10.4,	the	outputs	are	declared	as	normal	but	are
decorated	using	OpDecorate	instructions	with	the	locations	assigned	in	the
original	GLSL	shader	of	Listing	10.3.
The	locations	assigned	in	the	fragment	shader	do	not	have	to	be	contiguous.	That
is,	you	can	leave	gaps.	The	shader	in	Listing	10.3	assigns	to	outputs	at	locations
0,	1,	and	5,	leaving	locations	2,	3,	and	4	(and	locations	beyond	5)	unwritten.
However,	it	is	best	practice	to	tightly	assign	locations	to	fragment	shader
outputs.
Further,	the	maximum	location	that	can	be	assigned	to	a	fragment	shader	output
is	device-dependent.	All	Vulkan	devices	support	writing	to	at	least	four	color
attachments	from	a	fragment	shader.	The	actual	maximum	supported	by	a	device
can	be	determined	by	checking	the	maxFragmentOutputAttachments
member	of	the	device’s	VkPhysicalDeviceLimits	structure	as	returned
from	a	call	to	vkGetPhysicalDeviceProperties().	Most	desktop-class
hardware	will	support	writing	to	eight	or	possibly	more	color	attachments.
Fragment	shader	outputs	may	also	be	aggregated	into	arrays.	Of	course,	all
elements	in	the	array	have	the	same	type,	so	this	method	is	suitable	only	for
writing	to	multiple	color	attachments	with	the	same	types.	When	a	fragment
shader	declares	an	output	as	an	array,	the	first	element	in	that	array	consumes	the
location	assigned	by	the	location	layout	qualifier,	and	each	subsequent
element	in	the	array	consumes	a	consecutive	location.	In	the	resulting	SPIR-V
shader,	this	produces	a	single	output	variable	declared	as	an	array	with	a	single
OpDecorate	instruction.	When	writing	to	the	outputs,	an	OpAccessChain
instruction	is	used	to	dereference	the	appropriate	element	of	the	array,	the	result
of	which	is	passed	to	the	OpStore	instruction	as	normal.

Color	Blending
Blending	is	the	process	of	merging	the	outputs	of	the	fragment	shader	into	the
corresponding	color	attachments.	When	blending	is	disabled,	the	outputs	of	the
fragment	shader	are	simply	written	into	the	color	attachment	unmodified,	and	the
original	content	of	the	attachment	is	overwritten.	However,	when	blending	is
enabled,	the	value	written	into	the	color	attachment	becomes	a	function	of	the
value	produced	by	the	shader,	some	configurable	constants,	and	the	value
already	in	the	color	attachment.	This	allows	effects	such	as	transparency,
accumulation,	translucency,	and	so	on	to	be	implemented	using	fast,	often	fixed-
function	hardware	acceleration	rather	than	shader	code.	Blending	also	happens
entirely	in	order,	whereas	read-modify-write	operations	in	a	fragment	shader



may	execute	out	of	order	with	respect	to	the	primitives	that	they	are	part	of.
Blending,	whether	it’s	enabled,	and	the	parameters	of	the	equation	are	controlled
on	a	per-attachment	basis	using	the
VkPipelineColorBlendAttachmentState	structure	passed	for	the
attachment	in	the	VkPipelineColorBlendStateCreateInfo	structure
used	to	create	a	color	blend	state	object.	Introduced	in	Chapter	7,	“Graphics
Pipelines,”	the	definition	of	VkPipelineColorBlendAttachmentState
is

Click	here	to	view	code	image

typedef	struct	VkPipelineColorBlendAttachmentState	{

				VkBool32																	blendEnable;

				VkBlendFactor												srcColorBlendFactor;

				VkBlendFactor												dstColorBlendFactor;

				VkBlendOp																colorBlendOp;

				VkBlendFactor												srcAlphaBlendFactor;

				VkBlendFactor												dstAlphaBlendFactor;

				VkBlendOp																alphaBlendOp;

				VkColorComponentFlags				colorWriteMask;

}	VkPipelineColorBlendAttachmentState;

If	the	colorBlendEnable	member	of	each
VkPipelineColorBlendAttachmentState	structure	is	VK_TRUE,	then
blending	is	applied	to	the	corresponding	color	attachment.	The	outputs	of	the
fragment	shader	are	considered	to	be	the	source,	and	the	existing	content	of	the
color	attachment	is	considered	to	be	the	destination.	First,	the	source	color	(R,
G,	and	B)	channels	are	multiplied	by	a	factor	specified	in	the
srcColorBlendFactor.	Likewise,	the	destination	color	channels	are
multiplied	by	factors	specified	by	dstColorBlendFactor.	The	results	of
these	multiplications	are	then	combined	using	an	operation	specified	by
colorBlendOp.



Table	10.4:	Blend	Equations

The	blend	operations	are	specified	with	members	of	the	VkBlendOp
enumeration,	and	their	effects	are	listed	in	Table	10.4.	In	the	table,	Srgb	and	Drgb
are	the	the	source	and	destination	color	factors,	Sa	and	Da	are	the	source	and
destination	alpha	factors,	RGBs	and	RGBd	are	the	source	and	destination	RGB
values,	and	As	and	Ad	are	the	source	and	destination	alpha	values.

Note	that	the	VK_BLEND_FACTOR_MIN	and	VK_BLEND_FACTOR_MAX
modes	do	not	include	the	source	or	destination	factors	(Srgb,	Sa,	Drgb	or	Da),	only
the	source	and	destination	colors	or	alpha	values.	These	modes	can	be	used	to
find	the	maximum	or	minumum	values	produced	at	a	particular	pixel	for	the
attachment.
The	available	blend	factors	for	use	in	srcColorBlendFactor,
dstColorBlendFactor,	srcAlphaBlendFactor,	and
dstAlphaBlendFactor	are	represented	by	members	of	the
VkBlendFactor	enumeration.	Table	10.5	shows	its	members	and	their
meanings.
In	the	table,	Rs0,	Gs0,	Bs0,	and	As0	are	the	R,	G,	B,	and	A	channels	of	the	first
color	output	from	the	fragment	shader,	and	Rs1,	Gs1,	Bs1,	and	As1	are	the	R,	G,	B,



and	A	channels	of	the	secondary	color	output	from	the	fragment	shader.	These
are	used	for	dual-source	blending,	which	is	explained	in	more	detail	in	the	next
section.

Table	10.5:	Blend	Factors

In	the	entries	VK_BLEND_FACTOR_CONSTANT_COLOR	and
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR	in	Table	10.5,	the
term	CONSTANT_COLOR	refers	to	the	(Rc,	Gc,	Bc,	Ac)	constant	color,	which	is	a
constant	that	is	part	of	the	pipeline.	This	can	be	any	arbitrary	set	of	floating-
point	values	and	can	be	used,	for	example,	to	scale	the	content	of	the
framebuffer	by	a	fixed	amount.
When	this	state	is	static,	it	is	specified	in	the	blendConstants	field	of	the
VkPipelineColorBlendStateCreateInfo	structure	used	to	create	the
color	blend	state	object.	When	the	color	blend	constant	state	is	configured	as



dynamic,	the	vkCmdSetBlendConstants()	function	is	used	to	change	the
blend	constants.	The	prototype	of	vkCmdSetBlendConstants()	is

Click	here	to	view	code	image

void	vkCmdSetBlendConstants	(

				VkCommandBuffer																					commandBuffer,

				const	float																									blendConstants[4]);

The	command	buffer	to	set	the	blend	constant	state	for	is	specified	in
commandBuffer,	and	the	new	blend	constants	are	specified	in
blendConstants.	This	is	an	array	of	four	floating-point	values	that	take	the
place	of	the	blendConstants	member	of	the
VkPipelineColorBlendStateCreateInfo	structure	used	to	initialize
the	graphics	pipeline’s	blend	state.
As	discussed	in	Chapter	7,	“Graphics	Pipelines,”	to	set	the	constant	blend	color
as	part	of	the	dynamic	state	for	a	pipeline,	include
VK_DYNAMIC_STATE_BLEND_CONSTANTS	in	the	list	of	dynamic	states
passed	through	the	VkPipelineDynamicStateCreateInfo	structure
when	creating	the	graphics	pipeline.
In	Table	10.5,	you	notice	that	the	last	few	factor	tokens	include	the	terms
SRC1_COLOR	or	SRC1_ALPHA,	which	correspond	to	RGBs1	and	As1,
respectively.	These	are	the	second	source-blending	values	taken	from	the
fragment	shader.	The	fragment	shader	can	output	two	terms	for	a	single	color
attachment,	and	these	terms	can	be	used	in	the	blending	stage	to	implement
slightly	more	advanced	blending	modes	than	are	achievable	with	a	single	color
output.
For	example,	it	is	possible	to	multiply	the	destination	color	(the	values	already	in
the	color	attachment)	by	one	set	of	values	produced	by	the	fragment	shader	and
then	add	a	second	set	of	values	produced	by	the	same	shader	invocation.	To
implement	this,	set	srcColorBlendFactor	to	VK_BLEND_FACTOR_ONE
and	dstColorBlendFactor	to	VK_BLEND_FACTOR_SRC1_COLOR.
When	dual-source	blending	is	in	use,	the	two	source	colors	produced	by	the
fragment	shader	are	both	directed	to	the	same	attachment	location,	but	with
different	color	indices.	To	specify	the	color	index	in	SPIR-V,	decorate	the	output
from	the	fragment	shader	with	the	Index	decoration	using	the	OpDecorate
or	OpMemberDecorate	instruction.	Index	0	(which	is	the	default	if	the
decoration	is	missing)	corresponds	to	the	first	color	output,	and	index	1
corresponds	to	the	second	color	output.



Dual-source	blending	may	not	be	supported	by	all	Vulkan	implementations.	To
determine	whether	your	Vulkan	drivers	and	hardware	supports	dual-source
blending,	check	the	dualSrcBlend	member	of	the	device’s
VkPhysicalDeviceFeatures	structure,	which	you	can	retrieve	by	calling
vkGetPhysicalDeviceFeatures().	When	dual-source	blending	is
supported	and	enabled,	the	total	number	of	color	attachments	that	can	be
referenced	by	a	subpass	in	the	pipeline	using	that	mode	may	be	limited.	This
limit	is	stored	in	maxFragmentDualSrcAttachments.	If	there	is	any
support	at	all,	then	at	least	one	attachment	can	be	used	in	dual-source	blending
mode.

Summary
This	chapter	covered	the	operations	that	occur	as	part	of	fragment	processing,
after	rasterization.	These	operations	include	depth	and	stencil	tests,	scissor
testing,	fragment	shading,	blending,	and	logic	operations.	Together,	these
operations	compute	the	final	colors	of	the	pixels	produced	by	your	application.
They	determine	visibility	and	ultimately	produce	the	image	that	will	be	shown	to
your	users.



Chapter	11.	Synchronization

What	You’ll	Learn	in	This	Chapter	•	How	to	synchronize	the	host
and	the	device	•	How	to	synchronize	work	on	different	queues	on
the	same	device	•	How	to	synchronize	work	conducted	at	different
points	in	the	pipeline

Vulkan	is	designed	to	run	work	asynchronously,	in	parallel,	with	multiple	queues
on	a	device	working	together	with	the	host	to	keep	physical	resources	busy	and
in	use.	At	various	points	in	your	application,	you	will	need	to	keep	the	host	and
the	various	parts	of	the	device	in	sync.	In	this	chapter,	we	discuss	the	multiple
synchronization	primitives	that	are	available	to	Vulkan	applications	for	this
purpose.
Synchronization	in	Vulkan	is	accomplished	through	the	use	of	various
synchronization	primitives.	There	are	several	types	of	synchronization	primitives
and	they	are	intended	for	different	uses	in	an	application.	The	three	main	types
of	synchronization	primitives	are	•	Fences:	Used	when	the	host	needs	to	wait	for
the	device	to	complete	execution	of	large	pieces	of	work	represented	by	a
submission,	usually	with	the	assistance	of	the	operating	system.

•	Events:	Represent	a	fine-grained	synchronization	primitive	that	can	be
signaled	either	by	the	host	or	the	device.	It	can	be	signaled	mid-command
buffer	when	signaled	by	the	device,	and	it	can	be	waited	on	by	the	device	at
specific	points	in	the	pipeline.
•	Semaphores:	Synchronization	primitives	that	are	used	to	control	ownership
of	resources	across	different	queues	on	a	single	device.	They	can	be	used	to
synchronize	work	executing	on	different	queues	that	would	otherwise
operate	asynchronously.

We’ll	cover	each	of	these	three	synchronization	primitives	in	the	following	few
sections.

Fences
A	fence	is	a	medium-weight	synchronization	primitive	that	is	generally
implemented	with	the	help	of	the	operating	system.	A	fence	is	given	to
commands	that	interact	with	the	operating	system,	such	as



vkQueueSubmit(),	and	when	the	work	that	these	commands	provoke	is
completed,	the	fence	is	signaled.
Because	the	fence	often	corresponds	to	a	native	synchronization	primitive
provided	by	the	operating	system,	it	is	generally	possible	to	put	threads	to	sleep
while	they	wait	on	fences,	which	saves	power.	However,	this	is	intended	for
operations	in	which	waiting	may	take	some	time,	such	as	waiting	for	the
completion	of	the	execution	of	a	number	of	command	buffers	or	the	presentation
of	a	completed	frame	to	the	user.
To	create	a	new	fence	object,	call	vkCreateFence(),	the	prototype	of	which
is	Click	here	to	view	code	image

VkResult	vkCreateFence	(

				VkDevice																														device,

				const	VkFenceCreateInfo*														pCreateInfo,

				const	VkAllocationCallbacks*										pAllocator,

				VkFence*																														pFence);

The	device	that	will	create	the	fence	object	is	specified	in	device,	and	the
remaining	parameters	of	the	fence	are	passed	through	a	pointer	to	an	instance	of
the	VkFenceCreateInfo	structure,	the	definition	of	which	is	Click	here	to
view	code	image

typedef	struct	VkFenceCreateInfo	{

				VkStructureType							sType;

				const	void*											pNext;

				VkFenceCreateFlags				flags;

}	VkFenceCreateInfo;

The	sType	field	of	the	VkFenceCreateInfo	structure	should	be	set	to
VK_STRUCTURE_TYPE_FENCE_CREATE_INFO,	and	pNext	should	be	set
to	nullptr.	The	only	remaining	field,	flags,	specifies	a	set	of	flags	that
controls	the	behavior	of	the	fence.	The	only	flag	defined	for	use	here	is
VK_FENCE_CREATE_SIGNALED_BIT.	If	this	bit	is	set	in	flags,	then	the
initial	state	of	the	fence	is	signaled;	otherwise,	it	is	unsignaled.
If	vkCreateFence()	is	successful,	a	handle	to	the	new	fence	object	is	placed
in	the	variable	pointed	to	by	pFence.	If	pAllocator	is	not	nullptr,	it
should	point	to	a	host	memory	allocation	structure	that	will	be	used	to	allocate
any	host	memory	required	by	the	fence.
As	with	most	other	Vulkan	objects,	when	you	are	done	with	the	fence,	you
should	destroy	it	in	order	to	free	its	resources.	To	do	this,	call
vkDestroyFence(),	the	prototype	of	which	is	Click	here	to	view	code



image
void	vkDestroyFence	(

				VkDevice																												device,

				VkFence																													fence,

				const	VkAllocationCallbacks*								pAllocator);

The	device	that	owns	the	fence	object	is	specified	in	device,	and	the	handle	to
the	fence	to	be	destroyed	is	passed	in	fence.	If	a	host	memory	allocator	was
used	with	vkCreateFence(),	then	pAllocator	should	point	to	a	host
memory	allocation	structure	compatible	with	the	one	used	to	allocate	the	object;
otherwise,	pAllocator	should	be	nullptr.
The	fence	may	be	used	in	any	command	that	takes	a	fence	parameter.	These
commands	usually	operate	on	queues	and	provoke	work	to	be	executed	on	that
queue.	For	example,	here	is	the	prototype	of	vkQueueSubmit():	Click	here
to	view	code	image

VkResult	vkQueueSubmit	(

				VkQueue																												queue,

				uint32_t																											submitCount,

				const	VkSubmitInfo*																pSubmits,

				VkFence																												fence);

Notice	that	the	last	parameter	to	vkQueueSubmit()	is	a	VkFence	handle.
When	all	of	the	work	provoked	on	queue	is	complete,	the	fence	specified	in
fence	will	be	set	to	signaled.	In	some	cases,	the	device	can	signal	the	fence
directly.	In	other	cases,	the	device	will	signal	the	operating	system	through	an
interrupt	or	other	hardware	mechanism,	and	the	operating	system	will	change	the
state	of	the	fence.
The	application	can	determine	the	state	of	the	fence	at	any	time	by	calling
vkGetFenceStatus(),	the	prototype	of	which	is	Click	here	to	view	code
image

VkResult	vkGetFenceStatus	(

				VkDevice																												device,

				VkFence																													fence);

The	device	that	owns	the	fence	is	specified	in	device,	and	the	fence	whose
status	to	query	is	passed	in	fence.	The	value	returned	from
vkGetFenceStatus()	indicates	the	state	of	the	fence.	On	success,
vkGetFenceStatus()	can	be	one	of	the	following	values:	•	VK_SUCCESS:
The	fence	is	currently	signaled.

•	VK_NOT_READY:	The	fence	is	currently	unsignaled.



If	there	was	some	problem	retrieving	the	status	of	the	fence,
vkGetFenceStatus()	may	return	an	error	code.	It	can	be	tempting	to	poll
the	state	of	a	fence	by	spinning	in	a	loop	until	vkGetFenceStatus()	returns
VK_SUCCESS.	However,	this	is	extremely	inefficient	and	bad	for	performance,
especially	if	there	is	any	chance	that	the	application	could	wait	for	a	long	time.
Rather	than	spin,	your	application	should	call	vkWaitForFences(),	which
allows	the	Vulkan	implementation	to	provide	a	more	optimal	mechanism	for
waiting	on	one	or	more	fences.
The	prototype	of	vkWaitForFences()	is	Click	here	to	view	code	image

VkResult	vkWaitForFences	(

				VkDevice																												device,

				uint32_t																												fenceCount,

				const	VkFence*																						pFences,

				VkBool32																												waitAll,

				uint64_t																												timeout);

The	device	that	owns	the	fences	that	will	be	waited	on	is	passed	in	device.
vkWaitForFences()	can	wait	on	any	number	of	fences.	The	number	of
fences	upon	which	it	should	wait	is	passed	in	fenceCount,	and	pFences
should	point	to	an	array	of	this	many	VkFence	handles	to	the	fences	to	wait	on.
vkWaitForFences()	can	either	wait	for	all	the	fences	in	the	pFences
array	to	become	signaled	or	can	return	as	soon	as	any	fence	in	the	array	becomes
signaled.	If	waitAll	is	VK_TRUE,	then	vkWaitForFences()	will	wait	for
all	of	the	fences	in	pFences	to	become	signaled;	otherwise,	it	will	return	as
soon	as	any	of	them	becomes	signaled.	In	this	case,	you	can	use
vkGetFenceStatus()	to	determine	which	fences	are	signaled	and	which	are
unsignaled.
Because	vkWaitForFences()	could	end	up	waiting	for	a	very	long	time,	it
is	possible	to	ask	it	to	time	out.	The	timeout	parameter	specifies	the	time,	in
nanoseconds,	that	vkWaitForFences()	should	wait	for	the	termination
condition	(at	least	one	of	the	fences	becomes	signaled)	to	be	met.	If	timeout	is
zero,	then	vkWaitForFences()	will	simply	check	the	status	of	the	fences
and	return	immediately.	This	is	similar	to	vkGetFenceStatus()	except	for
two	differences:	•	vkWaitForFences()	can	check	the	status	of	multiple
fences,	possibly	more	efficiently	than	multiple	calls	to
vkGetFenceStatus().

•	If	the	fences	in	the	pFences	array	are	not	signaled,	then
vkWaitForFences()	indicates	a	timeout	rather	than	a	not-ready



condition.
There	is	no	way	to	ask	vkWaitForFences()	to	wait	forever.	However,
because	timeout	is	a	64-bit	value	measured	in	nanoseconds	and	264	−	1
nanoseconds	is	a	little	over	584	years,	the	value	~0ull	is	probably	a	sufficient
proxy	for	infinity.
The	result	of	the	wait	operation	is	represented	by	the	value	returned	from
vkWaitForFences().	It	may	be	one	of	the	following	values:	•
VK_SUCCESS:	The	condition	being	waited	on	was	met.	If	waitAll	was
VK_FALSE,	then	at	least	one	fence	in	pFences	was	signaled.	If	waitAll	was
VK_TRUE,	then	all	of	the	fences	in	pFences	became	signaled.

•	VK_TIMEOUT:	The	condition	being	waited	on	was	not	met	before	the
timeout	period	occurred.	If	timeout	was	zero,	this	represents	an
instantaneous	polling	of	the	fences.

If	an	error	occurs,	such	as	one	of	the	handles	in	the	pFences	array	being
invalid,	then	vkWaitForFences()	will	return	an	appropriate	error	code.
Once	a	fence	has	become	signaled,	it	will	remain	in	that	state	until	it	is	reset	to
an	unsignaled	state	explicitly.	When	a	fence	is	no	longer	signaled,	it	can	be
reused	in	commands	such	as	vkQueueSubmit().	There	are	no	commands
that	cause	the	device	to	reset	a	fence,	and	there	are	no	commands	that	can	wait
for	a	fence	to	become	unsignaled.	To	reset	one	or	more	fences	to	an	unsignaled
state,	call	vkResetFences(),	the	prototype	of	which	is	Click	here	to	view
code	image

VkResult	vkResetFences	(

				VkDevice																							device,

				uint32_t																							fenceCount,

				const	VkFence*																	pFences);

The	device	that	owns	the	fences	is	passed	in	device;	the	number	of	fences	to
reset	is	passed	in	fenceCount;	and	a	pointer	to	an	array	of	VkFence	handles
is	passed	in	pFences.	Take	care	that	you	don’t	try	waiting	on	a	fence	that	has
been	reset	without	calling	another	function	that	will	eventually	signal	that	fence.
A	primary	use	case	for	fences	is	to	prevent	the	host	from	overwriting	data	that
might	be	in	use	by	the	device—or,	more	accurately,	data	that	might	be	about	to
be	used	by	the	device.	When	a	command	buffer	is	submitted,	it	does	not	execute
immediately,	but	is	placed	in	queue	and	executed	by	the	device	in	turn.	It	also
does	not	execute	infinitely	quickly,	but	takes	some	time	to	execute.	Therefore,	if
you	place	data	in	memory	and	then	submit	a	command	buffer	that	references	that



data,	you	must	be	careful	to	ensure	that	the	data	remains	valid	and	in	place	until
the	command	buffer	has	executed.	The	fence	supplied	to	vkQueueSubmit()
is	the	means	to	determine	this.
In	this	example,	we	create	a	buffer,	map	it,	and	place	some	data	in	it	using	the
host;	then	we	submit	a	command	buffer	that	references	that	data.	Three
mechanisms	are	provided	to	perform	synchronization	between	the	host	and
device	and	to	ensure	that	the	host	does	not	overwrite	the	data	in	the	buffer	before
it’s	used	by	the	device.
In	the	first	method,	we	call	vkQueueWaitIdle()	to	ensure	that	all	work
submitted	to	the	queue	(including	our	work	that	consumes	the	data	in	the	buffer)
has	completed.	In	the	second	method,	we	use	a	single	fence,	associated	with	the
submission	that	consumes	the	data,	and	we	wait	on	that	fence	before	overwriting
the	content	of	the	buffer.	In	the	third	method,	we	subdivide	the	buffer	into	four
quarters,	associate	a	fence	with	each	quarter,	and	wait	for	the	fence	associated
with	that	section	of	the	buffer	before	overwriting	it.
In	addition,	a	method	with	no	synchronization	at	all	is	provided.	This	method
simply	overwrites	the	data	in	the	buffer	without	waiting	at	all.	In	this	method,	we
invalidate	the	data	in	the	buffer	before	overwriting	it	with	new,	valid	data.	This
should	demonstrate	the	kind	of	corruption	that	can	occur	in	the	absence	of
proper	synchronization.
The	code	for	the	first	two	methods—brute-force	idle	of	the	queue	and	waiting
for	a	single	fence	(which	is	essentially	equivalent	in	this	scenario)—is	somewhat
trivial	and	is	therefore	not	shown	here.	Listing	11.1	shows	the	initialization
sequence	for	the	method	using	four	separate	fences.

Listing	11.1:	Setup	for	Four-Fence	Synchronization	Click	here	to	view	code
image

//	kFrameDataSize	is	the	size	of	the	data	consumed	in	a	single	frame.

//	kRingBufferSegments	is	the	number	of	frames'	worth	of	data	to

keep.

//	Create	a	buffer	large	enough	to	hold	kRingBufferSegments	copies

//	of	kFrameDataSize.

static	const	VkBufferCreateInfo	bufferCreateInfo	=

{

				VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,	nullptr,		//	sType,pNext

				0,																																														//	flags

				kFrameDataSize*kRingBufferSegments,													//	size

				VK_BUFFER_USAGE_TRANSFER_SRC_BIT,															//	usage

				VK_SHARING_MODE_EXCLUSIVE,																						//	sharingMode

				0,																																														//

queueFamilyIndexCount



				nullptr																																									//

pQueueFamilyIndices

};

result	=	vkCreateBuffer(device,

																								&bufferCreateInfo,

																								nullptr,

																								&m_buffer);

//	Create	kRingBufferSegments	fences,	all	initially	in	signaled

state.

static	const	VkFenceCreateInfo	fenceCreateInfo	=

{

				VK_STRUCTURE_TYPE_FENCE_CREATE_INFO,nullptr,

				VK_FENCE_CREATE_SIGNALED_BIT

};

for	(int	i	=	0;i	<	kRingBufferSegments;	++i)

{

				result	=	vkCreateFence(device,

																											&fenceCreateInfo,

																											nullptr,

																											&m_fence[i]);

}

As	you	can	see,	in	Listing	11.1	we	create	a	buffer	that	is	four	times	the	size	of
the	data	to	be	used	by	the	device;	then	we	create	four	fences,	each	guarding	one
quarter	of	the	total	buffer	size.	The	fences	are	created	in	the	signaled	state.	This
is	so	we	can	simply	enter	our	loop	that	waits	on	the	fence	guarding	the	current
section	of	the	buffer	to	be	signaled,	fills	the	buffer,	and	generates	a	new
command	buffer	referencing	that	section	of	the	buffer.	The	first	time	this	loop
executes,	the	fence	is	already	signaled	because	it	was	created	in	that	state,	and	no
special	case	is	required	for	the	first	entry	into	the	loop.
Listing	11.2	shows	the	inner	loop	that	waits	for	each	fence	to	be	signaled,	fills
the	appropriate	section	of	the	buffer,	resets	the	fence,	generates	a	command
buffer	to	consume	the	data,	submits	it	to	the	queue,	and	specifies	the	fence.

Listing	11.2:	Loop	Waiting	on	Fences	for	Synchronization	Click	here	to	view
code	image

//	Beginning	of	frame	-	compute	the	segment	index.

static	int	framesRendered	=	0;

const	int	segmentIndex	=	framesRendered	%	kRingBufferSegments;

//	Use	a	ring	of	command	buffers	indexed	by	segment.

const	VkCommandBuffer	cmdBuffer	=	m_cmdBuffer[segmentIndex];



//	Wait	for	the	fence	associated	with	this	segment.

result	=	vkWaitForFences(device,

																									1,

																									&m_fence[segmentIndex],

																									VK_TRUE,

																									UINT64_MAX);

//	It's	now	safe	to	overwrite	the	data.	m_mappedData	is	an	array	of

//	kRingBufferSegments	pointers	to	persistently	mapped	backing	store

for

//	the	source	buffer.

fillBufferWithData(m_mappedData[segmentIndex]);

//	Reset	the	command	buffer.	We	always	use	the	same	command	buffer	to

copy

//	from	a	given	segment	of	the	the	staging	buffer,	so	it's	safe	to

reset	it

//	here	because	we've	already	waited	for	the	associated	fence.

vkResetCommandBuffer(cmdBuffer,	0);

//	Rerecord	the	command	buffer.

static	const	VkCommandBufferBeginInfo	beginInfo	=

{

				VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,					//	sType

				nullptr,																																									//	pNext

				VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,					//	flags

				nullptr																																										//

pInheritanceInfo

};

vkBeginCommandBuffer(cmdBuffer,	&beginInfo);

//	Copy	from	the	staging	buffer	at	the	appropriate	segment	index	into

//	the	final	destination	buffer.

VkBufferCopy	copyRegion	=

{

				segmentIndex	*	kFrameDataSize,																			//	srcOffset

				0,																																															//	dstOffset

				kFrameDataSize																																			//	size

};

vkCmdCopyBuffer(cmdBuffer,

																m_stagingBuffer,

																m_targetBuffer,

																1,

																&copyRegion);

vkEndCommandBuffer(cmdBuffer);

//	Reset	the	fence	for	this	segment	before	submitting	this	chunk	of



work	to

//	the	queue.

vkResetFences(device,	1,	&m_fence[segmentIndex]);

//	Note	that	this	example	doesn't	use	any	submission	semaphores.	In	a

real

//	application,	you	would	submit	many	command	buffers	in	a	single

submission

//	and	protect	that	submission	using	wait	and	signal	semaphores.

VkSubmitInfo	submitInfo	=

{

				VK_STRUCTURE_TYPE_SUBMIT_INFO,	nullptr,									//	sType,	pNext

				0,																																														//

waitSemaphoreCount

				nullptr,																																								//

pWaitSemaphores

				nullptr,																																								//

pWaitDstStageMask

				1,																																														//

commandBufferCount

				&cmdBuffer,																																					//

pCommandBuffers

				0,																																														//

signalSemaphoreCount

				nullptr																																									//

pSignalSemaphores

};

vkQueueSubmit(m_queue,

														1,

														&submitInfo,

														m_fence[segmentIndex]);

framesRendered++;

Note	that	the	code	in	Listing	11.2	is	incomplete	and	serves	only	to	demonstrate
the	use	of	fences	to	protect	shared	data.	In	particular,	the	example	omits	several
things	that	a	real	application	will	need:	•	It	does	not	include	any	pipeline	barriers
to	protect	the	target	buffer	(m_targetBuffer)	from	being	overwritten	or	to
move	the	source	buffer	from	host	writable	to	the	source	for	transfers.

•	It	does	not	use	any	semaphores	to	protect	the	submission.	Semaphores	will
be	needed	if	this	is	part	of	a	larger	frame	that	includes	presentation	or
submission	to	other	queues.
•	It	does	not	include	any	calls	to	vkFlushMappedMemoryRanges(),
which	will	be	required	unless	the	memory	backing	the	buffer	was	allocated
with	the	VK_MEMORY_PROPERTY_HOST_COHERENT_BIT	set.



Events
Event	objects	represent	a	fine-grained	synchronization	primitive	that	can	be	used
to	accurately	delimit	operations	occurring	within	a	pipeline.	An	event	exists	in
one	of	two	states:	signaled	and	unsignaled.	Unlike	a	fence,	which	is	typically
moved	from	state	to	state	by	the	operating	system,	events	can	be	signaled	or
reset	explicitly	by	the	device	or	host.	Not	only	can	the	device	directly	manipulate
the	state	of	an	event,	but	it	can	do	this	at	specific	points	in	the	pipeline.
Unlike	a	fence,	where	only	the	host	can	wait	on	the	object,	the	device	can	wait
on	event	objects.	When	waiting,	the	device	can	wait	at	a	specific	point	in	the
pipeline.	Because	the	device	can	signal	an	event	at	one	part	of	the	pipeline	and
wait	for	it	at	another,	events	provide	a	way	to	synchronize	execution	occurring	at
different	parts	of	the	same	pipeline.
To	create	an	event	object,	call	vkCreateEvent(),	the	prototype	of	which	is
Click	here	to	view	code	image

VkResult	vkCreateEvent	(

				VkDevice																													device,

				const	VkEventCreateInfo*													pCreateInfo,

				const	VkAllocationCallbacks*									pAllocator,

				VkEvent*																													pEvent);

The	device	which	is	to	create	the	event	is	specified	in	device,	and	the
remaining	parameters	describing	the	event	are	passed	through	a	pointer	to	an
instance	of	the	VkEventCreateInfo	structure,	the	definition	of	which	is
Click	here	to	view	code	image

typedef	struct	VkEventCreateInfo	{

				VkStructureType							sType;

				const	void*											pNext;

				VkEventCreateFlags				flags;

}	VkEventCreateInfo;

The	sType	field	of	VkEventCreateInfo	should	be	set	to
VK_STRUCTURE_TYPE_EVENT_CREATE_INFO,	and	pNext	should	be	set
to	nullptr.	The	flags	field	of	VkEventCreateInfo	specifies	additional
behavior	of	the	event.	However,	there	are	currently	no	event	creation	flags
defined,	and	flags	should	be	treated	as	reserved	and	set	to	zero.
If	vkCreateEvent()	is	successful,	it	will	place	the	VkEvent	handle	to	the
newly	created	object	in	the	variable	pointed	to	by	pEvent.	If
vkCreateEvent()	requires	host	memory,	then	it	will	use	the	allocator
specified	in	pAllocator.	A	compatible	allocator	should	be	used	when	the



event	is	destroyed.
When	you	are	done	with	the	event,	you	should	free	its	resources	by	destroying
the	object.	To	destroy	an	event	object,	call	vkDestroyEvent(),	the
prototype	of	which	is	Click	here	to	view	code	image

void	vkDestroyEvent	(

				VkDevice																																device,

				VkEvent																																	event,

				const	VkAllocationCallbacks*												pAllocator);

The	device	that	owns	the	event	object	should	be	passed	in	device,	and	the
event	object	to	be	destroyed	should	be	passed	in	event.	You	should	make	sure
that	the	event	is	not	accessed	again	after	it	has	been	destroyed.	This	includes
direct	access	to	the	event	on	the	host	by	passing	its	handle	to	a	function	call,	and
also	implied	access	to	the	event	through	the	execution	of	a	command	buffer	that
may	contain	a	reference	to	it.
The	initial	state	of	an	event	is	unsignaled	or	reset.	Either	the	host	or	the	device
can	change	the	state	of	the	event.	To	change	the	state	of	an	event	to	set	on	the
host,	call	vkSetEvent(),	the	prototype	of	which	is	Click	here	to	view	code
image

VkResult	vkSetEvent	(

				VkDevice																								device,

				VkEvent																									event);

The	device	that	owns	the	event	object	should	be	passed	in	device,	and	the
event	object	to	set	is	specified	in	event.	Access	to	the	event	object	should	be
externally	synchronized.	Attempting	to	set	or	reset	the	event	from	multiple
threads	concurrently	will	result	in	a	race	condition	and	produce	an	undefined
result.	When	an	event	object	is	set	by	the	host,	its	state	immediately	changes	to
set.	If	another	thread	is	waiting	on	the	event	through	a	call	to
vkCmdWaitEvents(),	then	that	thread	will	immediately	be	unblocked,
assuming	that	other	waiting	conditions	are	satisfied.
Events	can	also	be	moved	from	set	to	reset	state	on	the	host	by	calling
vkResetEvent().	The	prototype	of	vkResetEvent	is	Click	here	to	view
code	image

VkResult	vkResetEvent	(

				VkDevice																							device,

				VkEvent																								event);

Again,	the	device	that	owns	the	event	is	passed	in	device,	and	the	event	object
to	reset	is	passed	in	event.	Again,	access	to	the	event	must	be	externally



synchronized.	The	specified	event	is	immediately	moved	to	the	reset	state.	The
vkSetEvent()	and	vkResetEvent()	commands	have	no	effect	if	the
specified	event	is	already	in	the	set	or	reset	state,	respectively.	That	is,	it	is	not	an
error	to	call	vkSetEvent()	on	an	event	that	is	already	set	or
vkResetEvent()	on	an	event	that	is	already	reset,	although	it	might	not	be
what	you	intended	to	do.
You	can	determine	the	immediate	state	of	an	event	with
vkGetEventStatus(),	the	prototype	of	which	is	Click	here	to	view	code
image

VkResult	vkGetEventStatus	(

				VkDevice																												device,

				VkEvent																													event);

The	device	that	owns	the	event	is	passed	in	device,	and	the	event	whose	state
to	query	is	passed	in	event.	Unlike	with	vkSetEvent()	and
vkResetEvent(),	vkGetEventStatus()	can	be	called	on	an	event
object	without	synchronization.	In	fact,	this	is	the	intended	use	case.
The	return	value	of	vkGetEventStatus()	reports	the	state	of	the	event.	The
possible	return	values	include	•	VK_EVENT_SET:	The	specified	event	is	in	the
set	or	signaled	state.

•	VK_EVENT_RESET:	The	specified	event	is	in	the	reset	or	unsignaled	state.
If	anything	goes	wrong,	such	as	the	event	parameter	not	being	a	handle	to	a
valid	event,	vkGetEventStatus()	will	return	an	appropriate	error	code.
There	is	no	way	for	the	host	to	wait	on	an	event	besides	spinning	in	a	loop
waiting	for	vkGetEventStatus()	to	return	VK_EVENT_SET.	This	is	not
particularly	efficient,	and	you	should	be	sure	to	cooperate	with	the	system	in	the
case	that	you	need	to	do	this	by,	for	example,	sleeping	the	current	thread	or
doing	other	useful	work	in	between	queries	of	the	event	object	status.
Event	objects	may	also	be	manipulated	by	the	device.	As	with	almost	any	other
work	executed	by	the	device,	this	is	done	by	placing	commands	in	a	command
buffer	and	then	submitting	the	command	buffer	to	one	of	the	device’s	queues	for
execution.	The	command	for	setting	an	event	is	vkCmdSetEvent(),	the
prototype	of	which	is	Click	here	to	view	code	image

void	vkCmdSetEvent	(

				VkCommandBuffer																		commandBuffer,

				VkEvent																										event,

				VkPipelineStageFlags													stageMask);



The	command	buffer	that	will	eventually	set	the	event	is	specified	in
commandBuffer,	and	a	handle	to	the	event	object	that	will	be	signaled	is
passed	in	event.	Unlike	vkSetEvent(),	vkCmdSetEvent()	takes	a
pipeline	stage	at	which	to	signal	the	event.	This	is	passed	in	stageMask,	which
is	a	bitfield	made	up	of	members	of	the	VkPipelineStageFlagBits
enumeration.	If	multiple	bits	are	set	in	stageMask,	then	the	event	will	be	set
when	execution	of	the	command	passes	each	of	the	specified	stages.	This	may
seem	redundant,	but	if	there	are	calls	to	vkCmdResetEvent(),	it	may	be
possible	to	observe	the	state	of	the	event	object	toggle	between	set	and	reset	as
the	commands	pass	down	the	pipeline.
The	corresponding	command	to	reset	an	event	is	vkCmdResetEvent(),	the
prototype	of	which	is	Click	here	to	view	code	image

void	vkCmdResetEvent	(

				VkCommandBuffer																				commandBuffer,

				VkEvent																												event,

				VkPipelineStageFlags															stageMask);

Again,	the	command	buffer	that	is	to	reset	the	event	is	passed	in
commandBuffer;	the	event	to	reset	is	passed	in	event;	and	as	with
vkCmdSetEvent(),	the	vkCmdResetEvent()	command	takes	a
stageMask	parameter	that	contains	a	bitfield	representing	the	stages	at	which
the	event	will	assume	the	reset	state.
While	it	is	possible	on	the	host	to	retrieve	the	immediate	state	of	an	event	object
using	vkGetEventStatus()	but	it	is	not	possible	to	directly	wait	on	the
event,	the	converse	is	true	on	the	device;	there	is	no	command	to	directly
retrieve	the	state	of	an	event	on	the	device,	but	it	is	possible	to	wait	on	one	or
more	events.	To	do	this,	call	vkCmdWaitEvents(),	the	prototype	of	which	is
Click	here	to	view	code	image

void	vkCmdWaitEvents	(

				VkCommandBuffer																								commandBuffer,

				uint32_t																															eventCount,

				const	VkEvent*																									pEvents,

				VkPipelineStageFlags																			srcStageMask,

				VkPipelineStageFlags																			dstStageMask,

				uint32_t																															memoryBarrierCount,

				const	VkMemoryBarrier*																	pMemoryBarriers,

				uint32_t																															bufferMemoryBarrierCount,

				const	VkBufferMemoryBarrier*											pBufferMemoryBarriers,

				uint32_t																															imageMemoryBarrierCount,

				const	VkImageMemoryBarrier*												pImageMemoryBarriers);



The	vkCmdWaitEvents()	command	takes	many	parameters	and	behaves
much	as	a	barrier	does.	The	command	buffer	whose	execution	will	be	stalled
waiting	for	the	events	is	specified	in	commandBuffer;	the	number	of	events
to	wait	on	is	specified	in	eventCount;	and	a	pointer	to	an	array	of	VkEvent
handles	to	the	events	to	be	waited	on	is	passed	in	pEvents.
The	srcStageMask	and	dstStageMask	specify	the	pipeline	stages	in
which	the	events	may	have	been	signaled	and	the	stages	that	will	wait	for	the
events	to	become	signaled,	respectively.	Waiting	will	always	occur	at	the	stages
specified	in	dstStageMask.	The	stages	specified	in	srcStageMask	allow	a
Vulkan	implementation	to	synchronize	pairs	of	stages	rather	than	all	work	in	the
pipeline,	which	can	be	somewhat	more	efficient.
Once	all	of	the	events	contained	in	the	pEvents	array	have	become	signaled,
the	device	will	execute	all	of	the	memory,	buffer,	and	image	barriers	specified	in
pMemoryBarriers,	pBufferMemoryBarriers,	and
pImageMemoryBarriers	before	resuming	execution	of	the	work	in	the
pipeline.	The	number	of	elements	in	the	array	pointed	to	by
pMemoryBarriers	is	memoryBarrierCount;	the	number	of	elements	in
the	array	pointed	to	by	pBufferMemoryBarriers	is
bufferMemoryBarrierCount;	and	the	number	of	elements	in	the	array
pointed	to	by	pImageMemoryBarriers	is
imageMemoryBarrierCount.
Although	the	flags	contained	in	VkPipelineStageFlagBits	are	quite
fine-grained,	most	Vulkan	implementations	will	be	able	to	perform	a	wait
operation	at	only	some	of	them.	It	is	always	legal	for	an	implementation	to	wait
at	an	earlier	point	in	the	pipeline.	It	is	still	guaranteed	that	work	executed	at	later
points	in	the	pipeline	will	happen	after	the	events	in	pEvents	have	become
signaled.

Semaphores
The	final	type	of	synchronization	primitive	supported	in	Vulkan	is	the
semaphore.	Semaphores	represent	flags	that	can	be	atomically	set	or	reset	by	the
hardware,	the	views	of	which	are	coherent	across	queues.	When	you	are	setting
the	semaphore,	the	device	will	wait	for	it	to	be	unset,	set	it,	and	then	return
control	to	the	caller.	Likewise,	when	resetting	the	semaphore,	the	device	waits
for	the	semaphore	to	be	set,	resets	it,	and	then	returns	to	the	caller.	This	all
happens	atomically.	If	multiple	agents	are	waiting	on	a	semaphore,	only	one	of
them	will	“see”	the	semaphore	as	unset	or	set	and	receive	control.	The	rest	will



continue	to	wait.
Semaphores	cannot	be	explicitly	signaled	or	waited	on	by	the	device.	Rather,
they	are	signaled	and	waited	on	by	queue	operations	such	as
vkQueueSubmit().
To	create	a	semaphore	object,	call	vkCreateSemaphore(),	the	prototype	of
which	is	Click	here	to	view	code	image

VkResult	vkCreateSemaphore	(

				VkDevice																																device,

				const	VkSemaphoreCreateInfo*												pCreateInfo,

				const	VkAllocationCallbacks*												pAllocator,

				VkSemaphore*																												pSemaphore);

The	device	that	will	create	the	semaphore	is	passed	in	device,	and	additional
parameters	of	the	semaphore	are	passed	through	pCreateInfo,	which	is	a
pointer	to	an	instance	of	the	VkSemaphoreCreateInfo	structure.	The
definition	of	VkSemaphoreCreateInfo	is	Click	here	to	view	code	image

typedef	struct	VkSemaphoreCreateInfo	{

				VkStructureType											sType;

				const	void*															pNext;

				VkSemaphoreCreateFlags				flags;

}	VkSemaphoreCreateInfo;

The	sType	field	of	VkSemaphoreCreateInfo	should	be	set	to
VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO,	and	pNext	should
be	set	to	nullptr.	The	flags	field	is	reserved	and	should	be	set	to	zero.
If	vkCreateSemaphore()	is	successful,	the	resulting	semaphore	object	is
written	into	the	variable	pointed	to	by	pSemaphore.
When	you	are	done	with	the	semaphore	object,	you	should	destroy	it	in	order	to
free	any	resources	associated	with	it.	To	destroy	a	semaphore,	call
vkDestroySemaphore(),	the	prototype	of	which	is	Click	here	to	view	code
image

void	vkDestroySemaphore	(

				VkDevice																															device,

				VkSemaphore																												semaphore,

				const	VkAllocationCallbacks*											pAllocator);

The	device	that	owns	the	semaphore	object	should	be	passed	in	device,	and
the	semaphore	that	is	to	be	destroyed	should	be	passed	in	semaphore.	Access
to	the	semaphore	must	be	externally	synchronized.	In	particular,	a	semaphore
must	not	be	destroyed	while	it	may	be	accessed	from	another	thread.	If	a	host



memory	allocator	was	used	to	create	the	semaphore,	a	pointer	to	a	compatible
allocator	should	be	passed	in	pAllocator.
Unlike	the	other	synchronization	primitives,	events	and	fences,	semaphore
objects	do	not	allow	you	to	explicitly	set,	reset,	or	wait	on	them.	Instead,	you	use
these	objects	to	synchronize	access	to	resources	across	queues	and	form	an
integral	part	of	submission	of	work	to	the	device.	Recall	that	the	prototype	of
vkQueueSubmit()	is	Click	here	to	view	code	image

VkResult	vkQueueSubmit	(

				VkQueue																												queue,

				uint32_t																											submitCount,

				const	VkSubmitInfo*																pSubmits,

				VkFence																												fence);

vkQueueSubmit()	takes	an	array	of	VkSubmitInfo	structures,	the
definition	of	which	is	Click	here	to	view	code	image

typedef	struct	VkSubmitInfo	{

				VkStructureType																	sType;

				const	void*																					pNext;

				uint32_t																								waitSemaphoreCount;

				const	VkSemaphore*														pWaitSemaphores;

				const	VkPipelineStageFlags*					pWaitDstStageMask;

				uint32_t																								commandBufferCount;

				const	VkCommandBuffer*										pCommandBuffers;

				uint32_t																								signalSemaphoreCount;

				const	VkSemaphore*														pSignalSemaphores;

}	VkSubmitInfo;

Each	entry	of	the	pSubmits	array	passed	to	vkQueueSubmit()	contains	a
pWaitSemaphores	and	a	pSignalSemaphores	member,	which	are
pointers	to	arrays	of	semaphore	objects.	Before	executing	the	commands	in
pCommandBuffers,	the	queue	will	wait	for	all	of	the	semaphores	in
pWaitSemaphores.	In	doing	so,	it	will	take	“ownership”	of	the	semaphores.
It	will	then	execute	the	commands	contained	in	each	of	the	command	buffers	in
the	pCommandBuffers	array,	and	when	it	is	done,	it	will	signal	each	of	the
semaphores	contained	in	pSignalSemaphores.
Access	to	the	semaphores	referenced	by	the	pWaitSemaphores	and
pSignalSemaphores	arrays	must	be	externally	synchronized.	In	practice,
this	means	that	if	you	submit	command	buffers	to	two	different	queues	from	two
different	threads	(which	is	perfectly	legal),	you	need	to	be	careful	that	the	same
semaphore	doesn’t	end	up	in	the	wait	list	for	one	submission	and	the	signal	list
for	the	other.



This	mechanism	can	be	used	to	synchronize	access	to	resources	that	is
performed	by	work	submitted	to	two	or	more	different	queues.	For	example,	we
can	submit	a	number	of	command	buffers	to	a	compute-only	queue,	which	then
signals	a	semaphore	upon	completion.	That	same	semaphore	appears	in	the	wait
list	for	a	second	submission	to	a	graphics	queue.	Listing	11.3	shows	an	example
of	this.

Listing	11.3:	Cross-Queue	Submission	with	Semaphores	Click	here	to	view
code	image

//	First,	perform	a	submission	to	the	compute	queue.	The	compute

submission

//	includes	the	compute	->	graphics	semaphore

(m_computeToGfxSemaphore)	in

//	the	pSignalSemaphores	list.	This	sempaphore	will	become	signaled

once	the

//	compute	queue	finishes	processing	the	command	buffers	in	the

submission.

VkSubmitInfo	computeSubmitInfo	=

{

				VK_STRUCTURE_TYPE_SUBMIT_INFO,	nullptr,								//	sType,	pNext

				0,																																													//

waitSemaphoreCount

				nullptr,																																							//	pWaitSemaphores

				nullptr,																																							//

pWaitDstStageMask

				1,																																													//

commandBufferCount

				&computeCmdBuffer,																													//	pCommandBuffers

				1,																																													//

signalSemaphoreCount

				&m_computeToGfxSemaphore																							//

pSignalSemaphores

};

vkQueueSubmit(m_computeQueue,

														1,

														&computeSubmitInfo,

														VK_NULL_HANDLE);

//	Now	perform	a	submission	to	the	graphics	queue.	This	submission

includes

//	m_computeToGfxSemaphore	in	the	pWaitSemaphores	list	passed	to	the

//	submission.	We	need	to	wait	at	a	specific	stage.	Here,	we	just	use

//	VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,	but	if	you	know	that	the	data

produced

//	on	the	source	queue	will	be	consumed	at	a	later	stage	of	the

pipeline	in

//	the	destination	queue,	you	could	place	the	wait	point	later.



static	const	VkFlags	waitStages	=	VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;

VkSubmitInfo	graphicsSubmitInfo	=

{

				VK_STRUCTURE_TYPE_SUBMIT_INFO,	nullptr,									//	sType,	pNext

				1,																																														//

waitSemaphoreCount

				&m_computeToGfxSemaphore,																							//

pWaitSemaphores

				&waitStages,																																				//

pWaitDstStageMask

				1,																																														//

commandBufferCount

				&graphicsCmdBuffer,																													//

pCommandBuffers

				0,																																														//

signalSemaphoreCount

				nullptr																																									//

pSignalSemaphores

};

vkQueueSubmit(m_graphicsQueue,

														1,

														&graphicsSubmitInfo,

														VK_NULL_HANDLE);

In	Listing	11.3,	you	can	see	that	a	single	semaphore	object	is	used	in	both
submissions.	The	first	time,	it	appears	in	the	signal	list	for	work	performed	on
the	compute	queue.	When	the	work	is	complete,	the	compute	queue	signals	the
semaphore.	The	same	semaphore	then	appears	in	the	wait	list	for	the	submission
on	the	graphics	queue.	The	graphics	queue	will	wait	for	this	semaphore	to
become	signaled	before	proceeding	to	execute	the	command	buffers	submitted	to
it.	This	ensures	that	work	executed	on	the	compute	queue	to	produce	data	is
completed	before	work	executing	on	the	graphics	queue	that	consumes	that	data
begins.
The	same	synchonization	mechanism	using	semaphores	is	employed	by	the
sparse	memory	binding	commands	that	also	operate	at	the	queue	level.	The
vkQueueBindSparse()	function	was	introduced	in	the	“Sparse	Resources”
section	of	Chapter	2,	“Memory	and	Resources.”	To	recap,	the	prototype	of
vkQueueBindSparse()	is	Click	here	to	view	code	image

VkResult	vkQueueBindSparse	(

				VkQueue																															queue,

				uint32_t																														bindInfoCount,

				const	VkBindSparseInfo*															pBindInfo,

				VkFence																															fence);

Each	binding	operation	is	represented	as	an	instance	of	the



VkBindSparseInfo	structure,	and	each	of	those	operations	also	has	a
pWaitSemaphores	and	pSignalSemaphores	array	that	behaves	similarly
to	the	parameters	passed	to	vkQueueSubmit().	Again,	access	to	those
semaphores	must	be	externally	synchronized,	meaning	that	you	must	ensure	that
no	two	threads	attempt	to	access	the	same	semaphores	at	the	same	time.

Summary
This	chapter	taught	you	about	the	synchronization	primitives	available	in
Vulkan:	fences,	events,	and	semaphores.	Fences	provide	a	mechanism	for	the
operating	system	to	signal	your	application	when	it	has	completed	operations
requested	of	it,	such	as	submission	of	command	buffers	or	presentation	of
images	via	the	window	system.	Events	provide	a	fine-grained	signaling
mechanism	that	can	be	used	to	control	flow	of	data	through	the	pipeline	and
allow	different	points	within	the	pipeline	to	synchronize.	Finally,	semaphores
provide	a	primitive	that	can	be	signaled	and	waited	on	different	queues	on	the
same	device,	allowing	synchronization	and	transfer	of	ownership	of	resources
across	queues.
Together,	these	primitives	provide	a	powerful	toolbox.	As	Vulkan	is	an
asynchronous	API	with	work	occurring	in	parallel	across	the	host	and	device,
and	across	multiple	queues	on	a	single	device,	synchronization	primitives	and
their	correct	use	are	key	to	the	operation	of	an	efficient	application.



Chapter	12.	Getting	Data	Back

What	You’ll	Learn	in	This	Chapter
•	Gather	information	about	the	execution	of	your	application	on	the
device
•	Time	operations	performed	by	the	device
•	Read	data	produced	by	the	device	on	the	host

For	the	most	part,	graphics	and	compute	operations	supported	by	Vulkan	are
“fire	and	forget,”	in	that	you	build	a	command	buffer	and	submit	it,	and
eventually,	data	is	displayed	to	the	user.	Your	application	has	very	little	feedback
or	input	from	Vulkan.	However,	there	are	reasons	to	want	to	retrieve	data	from
Vulkan.	This	chapter	covers	topics	related	to	reading	data	and	information	back
from	Vulkan.	This	data	includes	statistics	about	the	operations	your	application
performs,	timing	information,	and	reading	data	produced	directly	by	your
application.

Queries
The	primary	mechanism	for	reading	statistical	data	back	from	Vulkan	is	the
query	object.	Query	objects	are	created	and	managed	in	pools,	and	each	object	is
effectively	one	slot	in	a	pool	rather	than	a	discrete	object	that	is	managed	alone.
There	are	several	types	of	query	objects,	each	measuring	a	different	aspect	of	the
device’s	operation	as	it	executes	work	you	submit	to	it.	All	types	of	queries	are
managed	in	pools,	so	the	first	step	in	using	queries	is	creating	a	pool	object	to
store	them	in.
Most	queries	execute	by	wrapping	commands	contained	inside	a	command
buffer	with	a	pair	of	commands	to	start	and	stop	the	query.	The	exception	to	this
is	the	timestamp	query,	which	takes	an	instantaneous	snapshot	of	the	device	time
and	therefore	doesn’t	really	have	a	duration.	For	other	query	types,	while	they
execute,	statistics	about	the	operation	of	the	device	are	gathered,	and	when	the
query	is	stopped,	the	results	are	written	into	device	memory	represented	by	the
pool.	At	some	later	time,	your	application	can	gather	the	results	of	any	number
of	queries	contained	in	the	pool	and	read	them	back.
A	query	pool	is	created	by	callingvkCreateQueryPool(),	the	prototype	of



which	is
Click	here	to	view	code	image

VkResult	vkCreateQueryPool	(

				VkDevice																																device,

				const	VkQueryPoolCreateInfo*												pCreateInfo,

				const	VkAllocationCallbacks*												pAllocator,

				VkQueryPool*																												pQueryPool);

The	device	that	will	create	the	pool	is	specified	in	device.	The	remaining
parameters	of	the	pool	are	passed	through	a	pointer	to	an	instance	of	the
VkQueryPoolCreateInfo	structure,	the	definition	of	which	is

Click	here	to	view	code	image

typedef	struct	VkQueryPoolCreateInfo	{

				VkStructureType																		sType;

				const	void*																						pNext;

				VkQueryPoolCreateFlags											flags;

				VkQueryType																						queryType;

				uint32_t																									queryCount;

				VkQueryPipelineStatisticFlags				pipelineStatistics;

}	VkQueryPoolCreateInfo;

The	sType	field	of	VkQueryPoolCreateInfo	should	be	set	to
VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO,	and	pNext	should
be	set	to	nullptr.	The	flags	field	is	reserved	for	future	use	and	should	be
set	to	zero.	The	type	of	query	to	be	stored	in	the	pool	is	specified	in	the
queryType	field,	which	is	a	member	of	the	VkQueryType	enumeration.
Each	pool	can	contain	only	one	type	of	query,	although	it	is	possible	to	create	as
many	pools	as	you	wish	and	to	run	several	queries	at	the	same	time.
The	types	of	query	are

•	VK_QUERY_TYPE_OCCLUSION:	Occlusion	queries	count	the	number	of
samples	that	pass	the	depth	and	stencil	tests.
•	VK_QUERY_TYPE_PIPELINE_STATISTICS:	Pipeline	statistics	queries
count	various	statistics	generated	by	operations	of	the	device.
•	VK_QUERY_TYPE_TIMESTAMP:	Timestamp	queries	measure	the	amount
of	time	the	execution	of	commands	in	a	command	buffer	takes.

Each	type	of	query	is	discussed	in	more	detail	later	in	this	chapter.
The	number	of	queries	that	can	be	stored	in	the	pool	is	specified	in
queryCount.	When	the	pool	is	used	to	execute	queries,	the	individual	queries
are	referenced	by	their	index	within	the	pool.



Finally,	when	the	query	type	is
VK_QUERY_TYPE_PIPELINE_STATISTICS,	some	additional	flags
controlling	how	those	statistics	are	gathered	is	specified	in
pipelineStatistics.
IfvkCreateQueryPool()	is	successful,	a	handle	to	the	new	query	pool
object	will	be	written	into	the	variable	pointed	to	by	pQueryPool.	If
pAllocator	is	a	pointer	to	a	valid	host	memory	allocator,	then	that	allocator
will	be	used	to	allocate	any	host	memory	needed	by	the	pool	object.	Otherwise,
pAllocator	should	be	nullptr.
As	with	any	other	object	in	Vulkan,	when	you	are	done	with	it,	you	should
destroy	the	query	pool	to	free	its	resources.	To	do	this,	call
vkDestroyQueryPool(),	the	prototype	of	which	is

Click	here	to	view	code	image

void	vkDestroyQueryPool	(

				VkDevice																												device,

				VkQueryPool																									queryPool,

				const	VkAllocationCallbacks*								pAllocator);

The	device	that	owns	the	pool	should	be	passed	in	device,	and	the	pool	to	be
destroyed	should	be	passed	in	queryPool.	If	a	host	memory	allocator	was
used	when	the	pool	was	created,	a	pointer	to	a	compatible	allocator	should	be
passed	in	pAllocator;	otherwise,	pAllocator	should	be	nullptr.
Each	query	in	the	query	pool	is	marked	as	available	or	unavailable.	Initially,	all
queries	in	the	pool	are	in	an	undefined	state,	and	before	any	query	can	be	used,
you	need	to	reset	the	pool.	As	the	only	agent	that	can	write	into	the	pool	is	the
device,	you	need	to	execute	a	command	on	the	device	to	reset	the	pool.	The
command	to	do	this	is	vkCmdResetQueryPool(),	the	prototype	of	which	is

Click	here	to	view	code	image

void	vkCmdResetQueryPool	(

				VkCommandBuffer																						commandBuffer,

				VkQueryPool																										queryPool,

				uint32_t																													firstQuery,

				uint32_t																													queryCount);

The	command	buffer	that	will	execute	the	reset	command	is	specified	in
commandBuffer,	and	the	pool	containing	the	queries	is	specified	in
queryPool.	It	is	possible	to	reset	only	a	selection	of	queries	within	a	pool.	The
firstQuery	parameter	specifies	the	index	of	the	first	query	to	reset,	and
queryCount	is	the	number	of	queries	to	reset.	You	must	submit	the	command



buffer	containingvkCmdResetQueryPool()	to	an	appropriate	queue	before
the	pool	can	be	used	for	anything	else.

Executing	Queries
Queries	are	executed	by	wrapping	commands	contained	inside	a	command
buffer	in	a	pair	of	additional	commands	to	start	and	stop	the
query:vkCmdBeginQuery()	and	vkCmdEndQuery(),	respectively.
The	prototype	for	vkCmdBeginQuery()	is

Click	here	to	view	code	image

void	vkCmdBeginQuery	(

				VkCommandBuffer																	commandBuffer,

				VkQueryPool																					queryPool,

				uint32_t																								query,

				VkQueryControlFlags													flags);

The	command	buffer	that	contains	the	commands	to	gather	statistics	about	and
that	will	execute	the	query	is	specified	in	commandBuffer.	Queries	are
referred	to	by	their	index	within	the	pool	that	contains	them.	The	pool	is
specified	in	queryPool,	and	the	index	of	the	query	within	the	pool	is	specified
in	query.
Additional	flags	that	control	the	execution	of	the	query	can	be	specified	in
flags.	The	only	defined	flag	is	VK_QUERY_CONTROL_PRECISE_BIT.	If
this	flag	is	set,	then	the	results	gathered	by	the	query	will	be	precise	(the
meaning	of	precise	varies	by	query	type);	otherwise,	Vulkan	might	produce
approximate	results.	In	some	cases,	gathering	precise	results	may	reduce
performance,	so	you	should	set	this	flag	only	when	you	require	exact	results.
Be	aware,	however,	that	if	there	is	no	performance	penalty	to	running	an	exact
query,	an	implementation	might	ignore	this	flag	and	always	return	exact	results.
You	should	be	sure	to	test	your	application	on	multiple	Vulkan	implementations
to	make	sure	that	it	really	is	tolerant	of	inexact	results.
Once	the	query	has	begun,	place	the	commands	to	gather	statistics	about	in	the
command	buffer,	and	after	you	have	executed	those	commands,	end	the	query	by
callingvkCmdEndQuery().	The	prototype	ofvkCmdEndQuery()	is

Click	here	to	view	code	image

void	vkCmdEndQuery	(

				VkCommandBuffer																		commandBuffer,

				VkQueryPool																						queryPool,

				uint32_t																									query);



The	command	buffer	containing	the	currently	executing	query	is	specified	in
commandBuffer.	The	pool	containing	the	query	is	passed	in	queryPool,
and	the	index	of	the	query	within	the	pool	is	specified	in	query.
Before	you	begin	a	query,	the	query	must	be	reset.	The	queries	in	a	pool	are	reset
by	thevkCmdResetQueryPool()	command,	as	discussed	earlier.	This
command	must	be	executed	when	the	queue	is	created	and	also	between	each
use	of	a	query	object.
Calls	tovkCmdBeginQuery()	andvkCmdEndQuery()	must	appear	in
pairs.	If	you	begin	a	query	and	forget	to	end	it,	the	result	will	never	become
available	to	your	application.	If	you	end	a	query	more	than	once	or	without
beginning	it	first,	the	result	of	the	query	will	be	undefined.
To	retrieve	the	results	of	one	or	more	queries	from	a	pool,
callvkGetQueryPoolResults().	Its	prototype	is

Click	here	to	view	code	image

VkResult	vkGetQueryPoolResults	(

				VkDevice																												device,

				VkQueryPool																									queryPool,

				uint32_t																												firstQuery,

				uint32_t																												queryCount,

				size_t																														dataSize,

				void*																															pData,

				VkDeviceSize																								stride,

				VkQueryResultFlags																		flags);

The	device	that	owns	the	pool	from	which	to	retrieve	results	is	passed	in
device,	and	the	pool	is	passed	in	queryPool.	The	index	of	the	first	query	to
retrieve	results	for	is	passed	in	firstQuery,	and	the	number	of	queries	is
passed	in	queryCount.
vkGetQueryPoolResults()	places	the	results	of	the	requested	queries	in
host	memory	pointed	to	by	pData.	The	size	of	the	memory	region	is	passed	in
dataSize.	Vulkan	will	not	write	more	than	this	amount	of	data	into	memory.
The	result	of	each	query	is	written	to	memory	stride	bytes	apart.	If	stride
is	not	at	least	as	large	as	the	amount	of	data	produced	by	each	query,	the	results
may	overwrite	one	another,	and	the	result	is	undefined.
What	is	written	to	memory	depends	on	the	query	type.	flags	provides
additional	information	to	Vulkan	about	how	the	queries	should	be	reported.	The
flags	available	for	use	in	flags	are

•	VK_QUERY_RESULT_64_BIT:	If	this	bit	is	set,	results	are	returned	as	64-
bit	quantities;	otherwise,	results	are	returned	as	32-bit	quantities.



•	VK_QUERY_RESULT_WAIT_BIT:	If	this	bit	is	set,
thenvkGetQueryPoolResults()	will	wait	until	results	of	the	queries
are	available.	Otherwise,vkGetQueryPoolResults()	returns	a	status
code	to	report	whether	the	commands	contributing	to	the	results	of	the
queries	were	ready.
•	VK_QUERY_RESULT_WITH_AVAILABILITY_BIT:	If	this	bit	is	set,
then	Vulkan	will	write	a	zero	result	for	queries	that	were	not	ready
whenvkGetQueryPoolResults()	was	called.	Any	query	that	was
ready	will	have	a	nonzero	result.
•	VK_QUERY_RESULT_PARTIAL_BIT:	If	this	bit	is	set,	Vulkan	might
write	the	current	value	of	a	query	into	the	result	buffer	even	if	the	commands
surrounded	by	the	query	have	not	finished	executing.

It	is	also	possible	to	write	the	results	of	queries	directly	into	a	buffer	object.	This
allows	results	to	be	gathered	asynchronously	by	the	device,	depositing	results
into	a	buffer	for	later	use.	The	buffer	can	then	either	be	mapped	and	accessed	by
the	host	or	used	as	the	source	of	data	in	subsequent	graphics	or	compute
operations.
To	write	the	results	of	queries	into	a	buffer	object,
callvkCmdCopyQueryPoolResults(),	the	prototype	of	which	is

Click	here	to	view	code	image

void	vkCmdCopyQueryPoolResults	(

				VkCommandBuffer																										commandBuffer,

				VkQueryPool																														queryPool,

				uint32_t																																	firstQuery,

				uint32_t																																	queryCount,

				VkBuffer																																	dstBuffer,

				VkDeviceSize																													dstOffset,

				VkDeviceSize																													stride,

				VkQueryResultFlags																							flags);

The	command	buffer	that	will	execute	the	copy	operation	is	specified	in
commandBuffer.	This	does	not	need	to	be	the	same	command	buffer	that
executed	the	queries.	The	queryPool	parameter	specifies	the	pool	containing
the	queries	that	will	be	summarized	into	the	buffer,	and	firstQuery	and
queryCount	specify	the	index	of	the	first	query	and	the	number	of	queries	to
copy,	respectively.	They	have	the	same	meanings	as	the	similarly	named
parameters	tovkGetQueryPoolResults().
Rather	than	taking	a	pointer	to	host	memory
asvkGetQueryPoolResults()



does,vkCmdCopyQueryPoolResults()	takes	a	buffer	object	handle	in
dstBuffer	and	an	offset	into	that	buffer,	measured	in	bytes,	where	the	results
will	be	written	in	dstOffset.	The	stride	parameter	is	the	number	of	bytes
between	each	result	in	the	buffer,	and	flags	is	a	bitfield	made	up	of	the	same
flags	as	the	flags	parameter	tovkGetQueryPoolResults().
AftervkCmdCopyQueryPoolResults()	executes,	access	to	the	resulting
values	written	to	the	buffer	object	must	be	synchronized	using	a	barrier	where
the	source	is	VK_PIPELINE_STAGE_TRANSFER_BIT	and	the	access	is
VK_ACCESS_TRANSFER_WRITE_BIT.

Occlusion	Queries
If	the	query	type	of	the	pool	is	VK_QUERY_TYPE_OCCLUSION,	then	the	count
is	the	number	of	fragments	that	pass	the	depth	and	stencil	tests.	This	can	be	used
to	determine	visibility	or	even	to	measure	the	area	of	geometry,	in	pixels.	If	the
depth	and	stencil	tests	are	disabled,	then	the	result	of	the	occlusion	query	is
simply	the	area	of	the	rasterized	primitives.
A	common	use	case	is	to	render	a	view	of	part	of	a	scene—for	example,
buildings	or	terrain—only	to	the	depth	buffer.	Then	render	a	simplified	version
of	characters	or	other	high-detail	geometry—such	as	trees	and	vegetation,
objects,	or	building	details—with	an	occlusion	query	surrounding	each.	Such
low-detail	stand-ins	are	often	referred	to	as	proxies.	Finally,	make	the	decision	as
to	whether	to	render	the	full-detail	version	of	the	object	based	on	the	result	of
each	query.	Because	the	query	also	tells	you	the	approximate	area	of	the	object,
you	can	perhaps	render	different	versions	of	the	final	geometry	based	on	its
expected	size	onscreen.	As	an	object	gets	farther	away,	you	can	substitute	a
version	with	lower	geometric	detail,	substitute	simplified	shaders,	or	reduce
tessellation	levels,	for	example.
If	you	don’t	care	too	much	about	the	visible	area	of	an	object	but	only	about
whether	the	object	is	visible,	be	sure	not	to	set	the
VK_QUERY_CONTROL_PRECISE_BIT	flag	in	the	flags	parameter	when
you	create	the	query	pool.	If	this	flag	is	not	set	(indicating	that	you’re	interested
only	in	approximate	results),	then	the	results	of	the	queries	should	be	treated	as
Boolean	values.	That	is,	they	will	be	zero	if	the	object	was	not	visible	and
nonzero	if	it	was.	The	actual	value	is	not	defined.

Pipeline	Statistics	Queries
Pipeline	statistics	queries	allow	your	application	to	measure	various	aspects	of



the	operation	of	the	graphics	pipeline.	Each	query	can	measure	a	number	of
different	counters	that	are	updated	by	the	device	as	it	executes	the	command
buffer.	The	set	of	counters	to	enable	is	a	property	of	the	query	pool	and	is
specified	at	pool-creation	time	in	the	pipelineStatistics	parameter.
The	counters	available	and	the	flags	that	need	to	be	set	in
pipelineStatistics	are	VK_QUERY_PIPELINE_STATISTIC_...

•	...INPUT_ASSEMBLY_VERTICES_BIT:	When	enabled,	the	pipeline
statistics	query	will	count	the	number	of	vertices	assembled	by	the	vertex
assembly	stage	of	the	graphics	pipeline.
•	...INPUT_ASSEMBLY_PRIMITIVES_BIT:	When	enabled,	the	pipeline
statistics	query	will	count	the	number	of	complete	primitives	assembled	by
the	primitive	assembly	stage	of	the	graphics	pipeline.
•	...VERTEX_SHADER_INVOCATIONS_BIT:	When	enabled,	the	pipeline
statistics	query	will	count	the	total	number	of	invocations	of	the	vertex
shader	produced	in	the	graphics	pipeline.	Note	that	this	may	not	be	the	same
as	the	number	of	vertices	assembled	because	Vulkan	can	sometimes	skip
vertex	shader	execution	if	a	vertex	is	determined	not	to	be	part	of	a	primitive
or	if	it	is	part	of	multiple	primitives	and	its	result	can	be	reused.
•	...GEOMETRY_SHADER_INVOCATIONS_BIT:	When	enabled,	the
pipeline	statistics	query	will	count	the	total	number	of	invocations	of	the
geometry	shader	produced	by	the	graphics	pipeline.
•	...GEOMETRY_SHADER_PRIMITIVES_BIT:	When	enabled,	the
pipeline	statistics	query	will	count	the	total	number	of	primitives	produced
by	the	geometry	shader.
•	...CLIPPING_INVOCATIONS_BIT:	When	enabled,	the	pipeline
statistics	query	will	count	the	number	of	primitives	that	enter	the	clipping
stage	of	the	graphics	pipeline.	If	a	primitive	can	be	trivially	discarded
without	clipping,	this	counter	does	not	increment.
•	...CLIPPING_PRIMITIVES_BIT:	When	enabled,	the	pipeline
statistics	query	will	count	the	number	of	primitives	produced	when	clipping.
If	the	clipping	stage	of	a	Vulkan	implementation	breaks	primitives	that	clip
against	the	viewport	or	a	user-defined	plane	into	multiple	smaller	primitives,
this	query	will	count	those	smaller	primitives.
•	...FRAGMENT_SHADER_INVOCATIONS_BIT:	When	enabled,	the
pipeline	statistics	query	will	count	the	total	number	of	invocations	of	the
fragment	shader.	This	includes	helper	invocations	and	invocations	of	a



fragment	shader	that	produce	a	fragment	that	is	ultimately	discarded	due	to
late	depth	or	stencil	tests.
•	...TESSELLATION_CONTROL_SHADER_PATCHES_BIT:	When
enabled,	the	pipeline	statistics	query	will	count	the	total	number	of	patches
processed	by	the	tessellation	control	shader.	This	is	not	the	same	as	the
number	of	tessellation	control	shader	invocations	because	the	tessellation
control	shader	runs	an	invocation	for	each	output	control	point	in	each	patch,
whereas	this	counter	increments	once	for	each	patch.
•	...TESSELLATION_EVALUATION_SHADER_INVOCATIONS_BIT:
When	enabled,	the	pipeline	statistics	query	will	increment	each	time	the
tessellation	evaluation	shader	is	invoked	during	tessellation	processing.	This
is	not	necessarily	the	same	as	the	number	of	vertices	produced	by	the
tessellator	as,	depending	on	the	implementation,	the	tessellation	evaluation
shader	may	be	invoked	more	than	once	for	some	tessellated	vertices.
•	...COMPUTE_SHADER_INVOCATIONS_BIT:	When	enabled,	the
pipeline	statistics	query	will	count	the	total	number	of	compute	shader
invocations.	This	is	the	only	counter	that	will	count	when	dispatches	are
passed	down	the	pipeline.

When	reading	the	results	of	a	pipeline	statistics	query,	the	number	of	counters
written	into	memory	(either	host	memory
usingvkGetQueryPoolResults()	or	buffer	memory
usingvkCmdCopyQueryPoolResults())	depends	on	the	number	of
enabled	counters—i.e.,	the	number	of	set	bits	in	pipelineStatistics.
Each	result	is	written	into	consecutive	32-or	64-bit	unsigned	integers,	and	the
start	of	each	block	of	results	is	separated	by	stride	bytes,	as	specified	to	the
relevant	command.
The	counters	are	written	into	memory	in	the	order	of	the	lowest-valued	member
of	the	VkQueryPipelineStatisticFlagBits	enumeration	to	the
highest.
For	a	given	set	of	enabled	pipeline	statistics	queries	and	bitness	of	results,	it	is
therefore	possible	to	construct	a	C	structure	that	represents	the	results.	For
example,	the	C	structure	shown	in	Listing	12.1	represents	the	full	set	of	counters
available	when	every	defined	bit	is	set	in	pipelineStatistics	for	64-bit
queries.

Listing	12.1:	C	Structure	for	All	Pipeline	Statistics



Click	here	to	view	code	image

//	Example	structure	containing	all	available	pipeline	statistics

counters

typedef	struct	VkAllPipelineStatistics	{

				uint64_t	inputAssemblyVertices;

				uint64_t	inputAssemblyPrimitives;

				uint64_t	vertexShaderInvocations;

				uint64_t	geometryShaderInvocations;

				uint64_t	geometryShaderPrimitives;

				uint64_t	clipperInvocations;

				uint64_t	clipperOutputPrimitives;

				uint64_t	fragmentShaderInvocations;

				uint64_t	tessControlShaderPatches;

				uint64_t	tessEvaluationShaderInvocations;

				uint64_t	computeShaderEvaluations;

}	VkAllPipelineStatistics;

Note	that	there	may	be	a	performance	penalty	for	accumulating	the	statistics
queries	or	gathering	their	results.	You	should	enable	only	the	counters	you
actually	need.
Because	the	results	of	some	of	the	counters	may	be	approximate,	and	because
their	exact	values	are	generally	implementation-dependent—for	example,	how
many	output	primitives	the	clipping	stage	produces	depends	on	how	the	clipper
is	implemented—you	shouldn’t	use	the	results	of	these	queries	to	compare
Vulkan	implementations.	However,	you	can	use	these	queries	to	get	a	measure	of
the	relative	complexity	of	different	parts	of	your	application,	which	can	help	you
find	bottlenecks	while	performance	tuning.
Also,	comparing	different	counters	can	give	you	insight	into	the	operation	of
Vulkan.	For	example,	by	comparing	the	number	of	primitives	produced	by	the
primitive	assembler	with	the	number	of	clipper	invocations	and	the	number	of
clipper	output	primitives,	you	can	determine	some	details	of	how	clipping	is
implemented	by	a	particular	Vulkan	device	and	how	that	device	handles	the
geometry	rendered	by	your	application.

Timing	Queries
A	timing	query	measures	the	amount	of	time	taken	to	execute	commands	in	a
command	buffer.	If	the	type	of	query	in	the	query	pool	is
VK_QUERY_TYPE_TIMESTAMP,	then	the	values	written	into	the	output	buffer
are	the	number	of	nanoseconds	taken	to	execute	the	commands	in	the	command
buffer	betweenvkCmdBeginQuery()	andvkCmdEndQuery().
You	can	also	retrieve	an	instantaneous	measure	of	time	from	the	pipeline	by
using	thevkCmdWriteTimestamp()	command	to	write	the	current	device



time	into	a	slot	in	a	query	pool.	The	prototype	ofvkCmdWriteTimestamp()
is

Click	here	to	view	code	image

void	vkCmdWriteTimestamp	(

				VkCommandBuffer																				commandBuffer,

				VkPipelineStageFlagBits												pipelineStage,

				VkQueryPool																								queryPool,

				uint32_t																											query);

The	command	buffer	that	will	write	a	timestamp	into	the	pool	is	specified	in
commandBuffer,	and	the	pool	and	the	index	within	it	where	the	timestamp
should	be	written	are	specified	in	queryPool	and	query,	respectively.	When
the	device	executes	the	vkCmdWriteTimestamp()	command,	it	writes	the
current	device	time	into	the	specified	query	at	the	pipeline	stage	specified	in
pipelineStage.	This	is	a	single	member	of	the
VkPipelineStageFlagBits	enumeration,	each	bit	representing	a	single
logical	pipeline	stage.
In	theory,	it’s	possible	to	ask	the	device	to	write	multiple	timestamps	from
different	stages	of	the	pipeline.	However,	not	all	devices	are	capable	of	writing	a
timestamp	from	every	stage	of	the	pipeline.	If	a	device	cannot	write	a	timestamp
from	a	particular	stage,	it	will	write	it	at	the	next	logical	stage	of	the	pipeline
after	the	one	requested.	Therefore,	the	results	might	not	reflect	the	actual	time
taken	to	process	the	commands	between	timestamps	if	they	are	not	written	from
the	same	stage.
For	example,	if	you	perform	a	draw	with	tessellation	enabled,	request	a
timestamp	after	vertex	processing	by	using
VK_PIPELINE_STAGE_VERTEX_SHADER_BIT,	and	then	request	another
after	the	tessellation	evaluation	shader	has	executed	by	using
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT,
you	might	expect	that	the	measured	time	delta	would	be	the	amount	of	time
taken	to	execute	the	tessellation	control	shader,	the	fixed-function	tessellation,
and	the	tessellation	evaluation	shader	for	that	draw.	However,	if	the
implementation	cannot	write	timestamps	in	the	middle	of	geometry	processing,
it	may	honor	your	timestamps	at	some	later	stage	in	the	pipeline,	possibly	even
after	fragment	processing	is	complete.	Hence,	the	time	measured	will	be	very
small.
The	units	of	measure	used	for	timestamps	are	device-dependent.	The	timestamp
will	always	be	monotonically	increasing,	but	each	increment	of	the	timestamp
value	represents	a	device-dependent	number	of	nanoseconds.	You	can	determine



the	number	of	nanoseconds	represented	by	a	single	increment	of	the	device
timestamp	by	inspecting	the	timestampPeriod	member	of	the	device’s
VkPhysicalDeviceProperties	structure,	which	you	can	retrieve	by
callingvkGetPhysicalDeviceProperties().
To	determine	the	absolute	time	delta	between	two	timestamps,	therefore,	you
should	take	the	two	integer	timestamp	values,	subtract	the	first	from	the	second
to	compute	a	delta	in	“ticks,”	and	then	multiply	this	integer	delta	by	the	floating-
point	timestampPeriod	value	in	order	to	get	a	time	in	nanoseconds.

Reading	Data	with	the	Host
In	some	cases,	it	may	be	necessary	to	read	data	produced	by	the	device	into	your
application.	Example	uses	of	this	include	reading	image	data	to	take	screen	shots
or,	in	compute	applications,	to	save	the	results	of	compute	shaders	to	disk.	The
primary	mechanism	for	this	is	to	issue	commands	to	copy	data	into	a	buffer	that
is	mapped	and	then	read	the	data	from	the	mapping	using	the	host.
Memory	allocations	are	mapped	into	host	address	space	by
callingvkMapMemory().	This	function	was	introduced	in	Chapter	2,	“Memory
and	Resources.”	You	can	map	memory	and	leave	it	mapped	indefinitely.	This	is
known	as	a	persistent	mapping.	When	you	are	performing	a	read	from	a	mapped
memory	region,	data	is	typically	written	to	the	memory	by	the	device	with	a
command	such	asvkCmdCopyBuffer()	or
vkCmdCopyImageToBuffer().	Before	the	host	reads	the	memory,	it	must
do	two	things:

•	Ensure	that	the	device	has	executed	the	command.	This	is	normally
accomplished	by	waiting	on	a	fence	that	is	signaled	when	the	command
buffer	containing	the	copy	command	completes	execution.
•	Ensure	that	the	host	memory	system’s	view	of	the	data	is	the	same	as	the
device’s.

If	the	memory	mapping	was	made	using	a	memory	object	allocated	from	a
memory	type	that	exposes	the
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT	property,	then	the
mapping	between	the	host	and	device	is	always	coherent.	That	is,	the	host	and
device	communicate	in	order	to	ensure	that	their	respective	caches	are
synchronized	and	that	any	reads	or	writes	to	shared	memory	are	seen	by	the
other	peer.
If	memory	is	not	allocated	from	a	memory	type	exposing	the
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT	property,	then	you	must



execute	a	pipeline	barrier	to	move	the	resource	into	a	host-readable	state.	To	do
this,	make	sure	that	the	destination	access	mask	includes
VK_ACCESS_HOST_READ_BIT.	Listing	12.2	shows	an	example	of	how	to
construct	a	pipeline	barrier	that	moves	a	buffer	resource	(and	therefore	the
memory	backing	it)	into	a	host-readable	state	after	being	written	to	by	a
vkCmdCopyImageToBuffer()	command.

Listing	12.2:	Moving	a	Buffer	to	Host-Readable	State

Click	here	to	view	code	image

VkBufferMemoryBarrier	bufferMemoryBarrier	=

{

				VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,	//	sType

				nullptr,																																	//	pNext

				VK_ACCESS_TRANSFER_WRITE_BIT,												//	srcAccessMask

				VK_ACCESS_HOST_READ_BIT,																	//	dstAccessMask

				VK_QUEUE_FAMILY_IGNORED,																	//	srcQueueFamilyIndex

				VK_QUEUE_FAMILY_IGNORED,																	//	dstQueueFamilyIndex

				buffer,																																		//	buffer

				0,																																							//	offset

				VK_WHOLE_SIZE																												//	size

};

vkCmdPipelineBarrier(

				cmdBuffer,																															//	commandBuffer

				VK_PIPELINE_STAGE_TRANSFER_BIT,										//	srcStageMask

				VK_PIPELINE_STAGE_HOST_BIT,														//	dstStageMask

				0,																																							//	dependencyFlags

				0,																																							//	memoryBarrierCount

				nullptr,																																	//	pMemoryBarriers

				1,																																							//

bufferMemoryBarrierCount

				&bufferMemoryBarrier,																				//	pBufferMemoryBarriers

				0,																																							//

imageMemoryBarrierCount

				nullptr);																																//	pImageMemoryBarriers

In	Listing	12.2,	we	insert	a	pipeline	barrier	after	the
vkCmdCopyImageToBuffer()	command	(not	shown	in	the	listing),	which
is	considered	to	be	a	transfer	command.	Therefore,	the	source	pipeline	stage	is
VK_PIPELINE_STAGE_TRANSFER_BIT,	and	as	the	host	will	read	the	data,
the	destination	pipeline	stage	is	VK_PIPELINE_STAGE_HOST_BIT.	These
stages	are	virtual	pipeline	stages	that	do	not	participate	in	normal	graphics
operations	but	potentially	represent	points	in	internally	created	pipelines	that
perform	copy	operations.



In	addition	to	the	pipeline	stages,	which	is	what	the	barrier	synchronizes,	we
specify	the	access	mask	for	each	end	of	the	barrier.	The	source	of	data	is	writes
by	the	transfer	operation,	so	we	specify
VK_ACCESS_TRANSFER_WRITE_BIT,	and	the	destination	of	the	data	is
reads	performed	by	the	host,	so	we	specify	VK_ACCESS_HOST_READ_BIT.
These	bits	are	used	to	ensure	that	any	caches	that	need	to	be	synchronized	are
correctly	made	coherent	between	device	and	host.

Summary
In	this	chapter,	you	read	about	the	two	ways	that	Vulkan	can	produce
information	that	your	application	can	consume:	queries	and	explicit	data	reads.
Queries	provide	a	series	of	counters	that	can	be	enabled	and	will	increment	when
events	occur	inside	the	graphics	pipeline.	You	learned	about	occlusion	queries,
which	count	fragments	that	pass	the	depth	and	stencil	tests.	You	learned	about
pipeline	statistics	queries,	which	can	provide	insight	into	the	inner	operation	of
Vulkan	graphics	and	compute	pipelines.	You	saw	how	timing	queries	allow	you
to	measure	the	amount	of	time	taken	to	execute	commands	inside	a	command
buffer,	as	well	as	how	to	ask	Vulkan	to	write	immediate	timestamps	into	buffers
that	you	can	read.
Finally,	you	learned	about	reading	data	from	mapped	buffers	and	correctly
synchronizing	access	to	buffers	from	the	device	and	the	host.



Chapter	13.	Multipass	Rendering

What	You’ll	Learn	in	This	Chapter	•	How	to	use	renderpass
objects	to	accelerate	multipass	rendering	•	How	to	fold	clears	and
barriers	into	renderpass	objects	•	How	to	control	how	and	when
data	gets	saved	to	memory

Many	graphics	applications	make	multiple	passes	over	each	frame	or	are
otherwise	able	to	subdivide	rendering	into	multiple	logical	phases.	Vulkan	brings
this	into	the	core	of	its	operation,	exposing	the	concept	of	multipass	rendering
within	a	single	object.	This	object	was	briefly	introduced	in	Chapter	7,
“Graphics	Pipelines,”	but	we	skimmed	over	many	of	the	details,	instead	going
only	into	enough	depth	to	enable	basic	single-pass	rendering	to	be	achieved.	In
this	chapter,	we	dig	deeper	into	the	topic	to	explain	how	multipass	rendering
algorithms	can	be	implemented	in	a	few	renderpass	objects	or	even	a	single	one.
When	we	introduced	the	renderpass	object	back	in	Chapter	7,	“Graphics
Pipelines,”	we	covered	it	in	only	enough	detail	to	explain	how	a	framebuffer	can
be	attached	to	a	command	buffer	at	the	beginning	of	a	renderpass	and	how	the
renderpass	could	be	configured	to	allow	drawing	into	a	single	set	of	color
attachments.	A	renderpass	object,	however,	can	contain	many	subpasses,	each
performing	some	of	the	operations	required	to	render	the	final	scene.
Dependency	information	can	be	introduced,	allowing	a	Vulkan	implementation
to	build	a	directed	acyclic	graph	(DAG)	and	determine	where	data	flows,	who
produces	it	and	who	consumes	it,	what	needs	to	be	ready	by	when,	and	so	on.

Input	Attachments
Recall	the	VkRenderPassCreateInfo	structure,	the	definition	of	which	is

Click	here	to	view	code	image

typedef	struct	VkRenderPassCreateInfo	{

				VkStructureType																			sType;

				const	void*																							pNext;

				VkRenderPassCreateFlags											flags;

				uint32_t																										attachmentCount;

				const	VkAttachmentDescription*				pAttachments;

				uint32_t																										subpassCount;

				const	VkSubpassDescription*							pSubpasses;

				uint32_t																										dependencyCount;



				const	VkSubpassDependency*								pDependencies;

}	VkRenderPassCreateInfo;

Within	this	structure,	we	have	pointers	to	arrays	of	attachments,	subpasses,	and
dependency	information.	Each	subpass	is	defined	by	a
VkSubpassDescription	structure,	the	definition	of	which	is	Click	here	to
view	code	image

typedef	struct	VkSubpassDescription	{

				VkSubpassDescriptionFlags								flags;

				VkPipelineBindPoint														pipelineBindPoint;

				uint32_t																									inputAttachmentCount;

				const	VkAttachmentReference	*				pInputAttachments;

				uint32_t																									colorAttachmentCount;

				const	VkAttachmentReference	*				pColorAttachments;

				const	VkAttachmentReference	*				pResolveAttachments;

				const	VkAttachmentReference	*				pDepthStencilAttachment;

				uint32_t																									preserveAttachmentCount;

				const	uint32_t*																		pPreserveAttachments;

}	VkSubpassDescription;

In	the	example	renderpass	we	set	up	in	Chapter	7,	we	used	a	single	subpass	with
no	dependencies	and	a	single	set	of	outputs.	However,	each	subpass	can	have
one	or	more	input	attachments,	which	are	attachments	from	which	you	can	read
in	your	fragment	shaders.	The	primary	difference	between	an	input	attachment
and	a	normal	texture	bound	into	a	descriptor	set	is	that	when	you	read	from	an
input	attachment,	you	read	from	the	current	fragment.
Each	subpass	may	write	to	one	or	more	output	attachments.	These	are	either	the
color	attachments	or	the	depth-stencil	attachment	(of	which	there	is	only	one).
By	inspecting	the	subpasses,	which	output	attachments	they	write	to	and	input
attachments	they	read	from,	Vulkan	can	build	up	a	graph	of	where	data	flows
within	a	renderpass.
In	order	to	demonstrate	this,	we	will	construct	a	simple	three-pass	renderpass
object	that	performs	deferred	shading.	In	the	first	pass,	we	render	only	to	a	depth
attachment	in	order	to	produce	what	is	known	as	a	depth	prepass.
In	a	second	pass,	we	render	all	the	geometry	with	a	special	shader	that	produces
a	g-buffer,	which	is	a	color	attachment	(or	set	of	color	attachments)	that	stores	a
normal	diffuse	color,	specular	power,	and	other	parameters	needed	for	shading.
In	this	second	pass,	we	test	against	the	depth	buffer	we	just	generated,	so	we	do
not	write	out	the	large	amounts	of	data	for	geometry	that	will	not	be	visible	in
the	final	output.	Even	when	the	geometry	is	visible,	we	do	not	run	complex
lighting	shaders;	we	simply	write	out	data.
In	our	third	pass,	we	perform	all	of	our	shading	calculations.	We	read	from	the



depth	buffer	in	order	to	reconstruct	the	view-space	position,	which	allows	us	to
create	our	eye	and	view	vectors.	We	also	read	from	our	normal,	specular,	and
diffuse	buffers,	which	supply	parameters	for	our	lighting	computation.	Note	that
in	the	third	pass,	we	don’t	actually	need	the	real	geometry,	and	we	instead	render
a	single	triangle	that,	after	clipping,	covers	the	entire	viewport.
Figure	13.1	shows	this	schematically.	As	you	can	see	from	the	figure,	the	first
subpass	has	no	inputs	and	only	a	depth	attachment.	The	second	subpass	uses	the
same	depth	attachment	for	testing	but	also	has	no	inputs,	producing	only	outputs.
The	third	and	final	pass	uses	the	depth	buffer	produced	by	the	first	pass	and	the
g-buffer	attachments	produced	by	the	second	pass	as	input	attachments.	It	can	do
this	because	the	lighting	calculations	at	each	pixel	require	only	the	data
computed	by	previous	shader	invocations	at	the	same	location.

Figure	13.1:	Data	Flow	for	a	Simple	Deferred	Renderer

Listing	13.1	shows	the	code	required	to	construct	a	renderpass	that	represents
these	three	subpasses	and	their	attachments.

Listing	13.1:	Deferred	Shading	Renderpass	Setup	Click	here	to	view	code
image

enum

{

				kAttachment_BACK										=	0,

				kAttachment_DEPTH									=	1,

				kAttachment_GBUFFER							=	2

};



enum

{

				kSubpass_DEPTH												=	0,

				kSubpass_GBUFFER										=	1,

				kSubpass_LIGHTING									=	2

};

static	const	VkAttachmentDescription	attachments[]	=

{

				//	Back	buffer

				{

								0,																																	//	flags

								VK_FORMAT_R8G8B8A8_UNORM,										//	format

								VK_SAMPLE_COUNT_1_BIT,													//	samples

								VK_ATTACHMENT_LOAD_OP_DONT_CARE,			//	loadOp

								VK_ATTACHMENT_STORE_OP_STORE,						//	storeOp

								VK_ATTACHMENT_LOAD_OP_DONT_CARE,			//	stencilLoadOp

								VK_ATTACHMENT_STORE_OP_DONT_CARE,		//	stencilStoreOp

								VK_IMAGE_LAYOUT_UNDEFINED,									//	initialLayout

								VK_IMAGE_LAYOUT_PRESENT_SRC_KHR				//	finalLayout

				},

				//	Depth	buffer

				{

								0,																																	//	flags

								VK_FORMAT_D32_SFLOAT,														//	format

								VK_SAMPLE_COUNT_1_BIT,													//	samples

								VK_ATTACHMENT_LOAD_OP_DONT_CARE,			//	loadOp

								VK_ATTACHMENT_STORE_OP_DONT_CARE,		//	storeOp

								VK_ATTACHMENT_LOAD_OP_DONT_CARE,			//	stencilLoadOp

								VK_ATTACHMENT_STORE_OP_DONT_CARE,		//	stencilStoreOp

								VK_IMAGE_LAYOUT_UNDEFINED,									//	initialLayout

								VK_IMAGE_LAYOUT_UNDEFINED										//	finalLayout

				},

				//	G-buffer	1

				{

								0,																																	//	flags

								VK_FORMAT_R32G32B32A32_UINT,							//	format

								VK_SAMPLE_COUNT_1_BIT,													//	samples

								VK_ATTACHMENT_LOAD_OP_DONT_CARE,			//	loadOp

								VK_ATTACHMENT_STORE_OP_DONT_CARE,		//	storeOp

								VK_ATTACHMENT_LOAD_OP_DONT_CARE,			//	stencilLoadOp

								VK_ATTACHMENT_STORE_OP_DONT_CARE,		//	stencilStoreOp

								VK_IMAGE_LAYOUT_UNDEFINED,									//	initialLayout

								VK_IMAGE_LAYOUT_UNDEFINED										//	finalLayout

				}

};

//	Depth	prepass	depth	buffer	reference	(read/write)

static	const	VkAttachmentReference	depthAttachmentReference	=

{

				kAttachment_DEPTH,																																		//	attachment

				VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL				//	layout

};



//	G-buffer	attachment	references	(render)

static	const	VkAttachmentReference	gBufferOutputs[]	=

{

				{

								kAttachment_GBUFFER,																												//	attachment

								VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL								//	layout

				}

};

//	Lighting	input	attachment	references

static	const	VkAttachmentReference	gBufferReadRef[]	=

{

				//	Read	from	g-buffer.

				{

								kAttachment_GBUFFER,																												//	attachment

								VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL								//	layout

				},

				//	Read	depth	as	texture.

				{

								kAttachment_DEPTH,																														//	attachment

								VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL	//	layout

				}

};

//	Final	pass-back	buffer	render	reference

static	const	VkAttachmentReference	backBufferRenderRef[]	=

{

				{

								kAttachment_BACK,																															//	attachment

								VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL								//	layout

				}

};

static	const	VkSubpassDescription	subpasses[]	=

{

				//	Subpass	1	-	depth	prepass

				{

								0,																																		//	flags

								VK_PIPELINE_BIND_POINT_GRAPHICS,				//	pipelineBindPoint

								0,																																		//	inputAttachmentCount

								nullptr,																												//	pInputAttachments

								0,																																		//	colorAttachmentCount

								nullptr,																												//	pColorAttachments

								nullptr,																												//	pResolveAttachments

								&depthAttachmentReference,										//

pDepthStencilAttachment

								0,																																		//

preserveAttachmentCount

								nullptr																													//	pPreserveAttachments

				},

				//	Subpass	2	-	g-buffer	generation



				{

								0,																																		//	flags

								VK_PIPELINE_BIND_POINT_GRAPHICS,				//	pipelineBindPoint

								0,																																		//	inputAttachmentCount

								nullptr,																												//	pInputAttachments

								vkcore::utils::arraysize(gBufferOutputs),	//

colorAttachmentCount

								gBufferOutputs,																					//	pColorAttachments

								nullptr,																												//	pResolveAttachments

								&depthAttachmentReference,										//

pDepthStencilAttachment

								0,																																		//

preserveAttachmentCount

								nullptr																													//	pPreserveAttachments

				},

				//	Subpass	3	-	lighting

				{

								0,																																	//	flags

								VK_PIPELINE_BIND_POINT_GRAPHICS,			//	pipelineBindPoint

								vkcore::utils::arraysize(gBufferReadRef),		//

inputAttachmentCount

								gBufferReadRef,																				//	pInputAttachments

								vkcore::utils::arraysize(backBufferRenderRef),//

colorAttachmentCount

								backBufferRenderRef,															//	pColorAttachments

								nullptr,																											//	pResolveAttachments

								nullptr,																											//	pDepthStencilAttachment

								0,																																	//	preserveAttachmentCount

								nullptr																												//	pPreserveAttachments

				},

};

static	const	VkSubpassDependency	dependencies[]	=

{

				//	G-buffer	pass	depends	on	depth	prepass.

				{

								kSubpass_DEPTH,																																	//	srcSubpass

								kSubpass_GBUFFER,																															//	dstSubpass

								VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,		//

srcStageMask

								VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,										//

dstStageMask

								VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,											//

srcAccessMask

								VK_ACCESS_SHADER_READ_BIT,																						//

dstAccessMask

								VK_DEPENDENCY_BY_REGION_BIT																					//

dependencyFlags

				},

				//	Lighting	pass	depends	on	g-buffer.

				{

								kSubpass_GBUFFER,																															//	srcSubpass



								kSubpass_LIGHTING,																														//	dstSubpass

								VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,		//

srcStageMask

								VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,										//

dstStageMask

								VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,											//

srcAccessMask

								VK_ACCESS_SHADER_READ_BIT,																						//

dstAccessMask

								VK_DEPENDENCY_BY_REGION_BIT																					//

dependencyFlags

				},

};

static	const	VkRenderPassCreateInfo	renderPassCreateInfo	=

{

				VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,	nullptr,

				0,																																																		//	flags

				vkcore::utils::arraysize(attachments),														//

attachmentCount

				attachments,																																								//

pAttachments

				vkcore::utils::arraysize(subpasses),																//

subpassCount

				subpasses,																																										//	pSubpasses

				vkcore::utils::arraysize(dependencies),													//

dependencyCount

				dependencies																																								//

pDependencies

};

result	=	vkCreateRenderPass(device,

																												&renderPassCreateInfo,

																												nullptr,

																												&m_renderPass);

As	you	can	see,	Listing	13.1	is	quite	long.	However,	the	code	complexity	is
relatively	low;	most	of	the	listing	is	simply	definitions	of	static	data	structures
describing	the	renderpass.
The	attachments[]	array	contains	a	list	of	all	of	the	attachments	used	in	the
renderpass.	This	is	referenced	by	index	by	the	arrays	of
VkAttachmentReference	structures,	depthAttachmentReference,
gBufferOutputs,	gBufferReadRef,	and	backBufferRenderRef.
These	reference	the	depth	buffer,	the	g-buffer	as	an	output,	the	g-buffer	as	an
input,	and	the	back	buffer,	respectively.
The	subpasses[]	array	is	a	description	of	the	subpasses	contained	in	the
renderpass.	Each	is	desribed	by	an	instance	of	the	VkSubpassDescription
structure,	and	you	can	see	there	is	one	for	each	of	the	depth	prepass,	g-buffer



generation,	and	lighting	passes.
Note	that	for	the	lighting	pass,	we	include	the	g-buffer	read	references	and	the
depth	buffer	as	input	attachments	to	the	pass.	This	is	so	that	the	lighting
computations	performed	in	the	shader	can	read	the	g-buffer	content	and	the
pixels’	depth	value.
Finally,	we	see	the	dependencies	between	the	passes	described	in	the
dependencies[]	array.	There	are	two	entries	in	the	array,	the	first	describing
the	dependency	of	the	g-buffer	pass	on	the	depth	prepass,	and	the	second
describing	the	dependency	of	the	lighting	pass	on	the	g-buffer	pass.	Note	that
there	is	no	reason	to	have	a	dependency	between	the	lighting	pass	and	the	depth
prepass	even	though	one	technically	exists,	because	there	is	already	an	implicit
depencency	through	the	g-buffer	generation	pass.
The	subpasses	inside	a	renderpass	are	logically	executed	in	the	order	in	which
they	are	declared	in	the	array	of	subpasses	referenced	by	the
VkRenderPassCreateInfo	structure	used	to	create	the	renderpass	object.
When	vkCmdBeginRenderPass()	is	called,	the	first	subpass	in	the	array	is
automatically	begun.	In	simple	renderpasses	with	a	single	subpass,	this	is
sufficient	to	execute	the	entire	renderpass.	However,	once	we	have	multiple
subpasses,	we	need	to	be	able	to	tell	Vulkan	when	to	move	from	subpass	to
subpass.
To	do	this,	we	call	vkCmdNextSubpass(),	the	prototype	of	which	is	Click
here	to	view	code	image

void	vkCmdNextSubpass	(

				VkCommandBuffer																									commandBuffer,

				VkSubpassContents																							contents);	The	command

buffer	in	which	to	place	the	command	is	specified	in	commandBuffer.

The	contents	parameter	specifies	where	the	commands	for	the	subpass

will	come	from.	For	now,	we’ll	set	this	to

VK_SUBPASS_CONTENTS_INLINE,	which	indicates	that	you	will	continue	to

add	commands	to	the	same	command	buffer.	It’s	also	possible	to	call

other	command	buffers,	in	which	case	we’d	set	this	to

VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS.	We’ll	cover	this

scenario	later	in	this	chapter.

When	vkCmdNextSubpass()	is	called,	the	current	command	buffer	moves
to	the	next	subpass	in	the	current	renderpass.	Correspondingly,	you	can	call
vkCmdNextSubpass()	only	between	calls	to
vkCmdBeginRenderPass()	and	vkCmdEndRenderPass(),	and	only
until	you	have	exhausted	the	subpasses	within	the	renderpass.
With	renderpasses	containing	multiple	subpasses,	we	still	must	call



vkCmdEndRenderPass()	to	terminate	the	current	renderpass	and	finalize
rendering.

Attachment	Contents
Each	color	and	depth-stencil	attachment	associated	with	a	renderpass	has	a	load
operation	and	a	store	operation	that	determine	how	its	contents	are	loaded	from
and	stored	to	memory	as	the	renderpass	is	begun	and	ended.

Attachment	Initialization
When	the	renderpass	is	begun,	the	operations	that	should	be	performed	on	each
of	the	attachments	are	specified	in	the	loadOp	field	of	the
VkAttachmentDescription	structure	describing	the	attachment.	There	are
two	possible	values	for	this	field.
VK_ATTACHMENT_LOAD_OP_DONT_CARE	means	that	you	don’t	care	about
the	initial	contents	of	the	attachment.	This	means	that	Vulkan	can	do	whatever	it
needs	to	do	to	get	the	attachment	ready	to	render	into	(including	doing	nothing),
without	worrying	about	the	actual	values	in	the	attachment.	For	example,	if	it
has	a	super-fast	clear	that	clears	only	to	purple,	then	purple	it	shall	be.
Setting	loadOp	for	the	attachment	to	VK_ATTACHMENT_LOAD_OP_CLEAR
means	that	the	attachment	will	be	cleared	to	a	value	you	specify	at
vkCmdBeginRenderPass()	time.	While	logically,	this	operation	happens	at
the	very	start	of	the	renderpass,	in	practice,	implementations	may	delay	the
actual	clear	operation	to	the	beginning	of	the	first	pass	that	uses	the	attachment.
This	is	the	preferred	method	of	clearing	color	attachments.
It’s	also	possible	to	explicitly	clear	one	or	more	color	or	depth-stencil
attachments	inside	a	renderpass	by	calling	vkCmdClearAttachments(),
the	prototype	of	which	is	Click	here	to	view	code	image

void	vkCmdClearAttachments	(

				VkCommandBuffer																								commandBuffer,

				uint32_t																														attachmentCount,

				const	VkClearAttachment*															pAttachments,

				uint32_t																														rectCount,

				const	VkClearRect*																					pRects);

The	command	buffer	that	will	execute	the	command	is	specified	in
commandBuffer.	vkCmdClearAttachments()	will	clear	the	contents	of
several	attachments.	The	number	of	attachments	to	clear	is	specified	in
attachmentCount,	and	pAttachments	should	be	a	pointer	to	an	array	of



attachmentCount	VkClearAttachment	structures,	each	defining	one
of	the	attachments	to	clear.	The	definition	of	VkClearAttachment	is	Click
here	to	view	code	image

typedef	struct	VkClearAttachment	{

				VkImageAspectFlags				aspectMask;

				uint32_t														colorAttachment;

				VkClearValue										clearValue;

}	VkClearAttachment;

The	aspectMask	field	of	VkClearAttachment	specifies	the	aspect	or
aspects	of	the	attachment	to	be	cleared.	If	aspectMask	contains
VK_IMAGE_ASPECT_DEPTH_BIT,	VK_IMAGE_ASPECT_STENCIL_BIT,
or	both,	then	the	clear	operation	will	be	applied	to	the	depth-stencil	attachment
for	the	current	subpass.	Each	subpass	can	have	at	most	one	depth-stencil
attachment.	If	aspectMask	contains	VK_IMAGE_ASPECT_COLOR_BIT,
then	the	clear	operation	will	be	applied	to	the	color	attachment	at	index
colorAttachment	in	the	current	subpass.	It	is	not	possible	to	clear	a	color
attachment	and	a	depth-stencil	attachment	with	a	single
VkClearAttachment	structure,	so	aspectMask	should	not	contain
VK_IMAGE_ASPECT_COLOR_BIT	along	with
VK_IMAGE_ASPECT_DEPTH_BIT	or
VK_IMAGE_ASPECT_STENCIL_BIT.
The	values	to	clear	the	attachment	with	are	specified	in	the	clearValue	field,
which	is	an	instance	of	the	VkClearValue	union.	This	was	introduced	in
Chapter	8,	“Drawing,”	and	its	definition	is	Click	here	to	view	code	image

typedef	union	VkClearValue	{

				VkClearColorValue												color;

				VkClearDepthStencilValue					depthStencil;

}	VkClearValue;

If	the	referenced	attachment	is	a	color	attachment,	then	the	values	from	the
color	field	of	the	VkClearAttachment	structure	will	be	used.	Otherwise,
the	values	contained	in	the	depthStencil	field	of	the	structure	will	be	used.
In	addition	to	clearing	multiple	attachments,	a	single	call	to
vkCmdClearAttachments()	can	clear	rectangular	regions	of	each
attachment.	This	provides	additional	functionality	over	setting	the	loadOp	for
the	attachment	to	VK_ATTACHMENT_LOAD_OP_CLEAR.	If	an	attachment	is
cleared	with	VK_ATTACHMENT_LOAD_OP_CLEAR	(which	is	what	you	want	in
the	majority	of	cases),	the	whole	attachment	is	cleared,	and	there	is	no



opportunity	to	clear	only	part	of	the	attachment.	However,	when	you	use
vkCmdClearAttachments(),	multiple	smaller	regions	can	be	cleared.
The	number	of	regions	to	clear	is	specified	in	the	rectCount	parameter	to
vkCmdClearAttachments(),	and	the	pRects	parameter	is	a	pointer	to	an
array	of	rectCount	VkClearRect	structures,	each	defining	one	of	the
rectangles	to	clear.	The	definition	of	VkClearRect	is	Click	here	to	view	code
image

typedef	struct	VkClearRect	{

				VkRect2D				rect;

				uint32_t				baseArrayLayer;

				uint32_t				layerCount;

}	VkClearRect;

The	VkClearRect	structure	defines	more	than	a	rectangle.	The	rect	field
contains	the	actual	rectangle	to	clear.	If	the	attachment	is	an	array	image,	then
some	or	all	of	its	layers	can	be	cleared	by	specifying	the	range	of	layers	in
baseArrayLayer	and	layerCount,	which	contain,	respectively,	the	index
of	the	first	layer	to	clear	and	the	number	of	layers	to	clear.
In	addition	to	containing	more	information	and	providing	more	functionality
than	the	attachments	load	operation,	vkCmdClearAttachments()	also
potentially	provides	more	convenience	than	vkCmdClearColorImage()	or
vkCmdClearDepthStencilImage().	Both	of	these	commands	require
that	the	image	be	in	VK_IMAGE_LAYOUT_GENERAL	or
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL	layout	and	therefore	may
require	a	pipeline	barrier	around	them	to	ensure	this.	Also,	these	commands
cannot	be	called	inside	a	renderpass.	On	the	other	hand,
vkCmdClearAttachments()	takes	advantage	of	the	fact	that	the
attachments	are	already	bound	for	rendering	and	are	considered	to	be	part	of	the
renderpass	content,	almost	like	a	special	kind	of	draw.	Therefore,	no	barrier	or
special	handling	is	needed	beyond	ensuring	that	the	command	is	executed	inside
a	renderpass.
That	said,	it	is	still	recommended	that	you	use	the
VK_ATTACHMENT_LOAD_OP_CLEAR	load	operation	when	you	need	the
entirety	of	an	attachment	to	be	cleared	as	part	of	a	renderpass,	and	the
VK_ATTACHMENT_LOAD_OP_DONT_CARE	operation	when	you	will
guarantee	that	you	will	overwrite	every	pixel	in	the	attachment	by	the	time	the
renderpass	has	completed.



Render	Areas
When	a	renderpass	instance	is	executed,	it	is	possible	to	tell	Vulkan	that	you’re
going	to	update	only	a	small	area	of	the	attachments.	This	area	is	known	as	the
render	area	and	can	be	specified	when	vkCmdBeginRenderPass()	is
called.	We	introduced	this	briefly	in	Chapter	8,	“Drawing,”	and	the
renderArea	member	of	the	VkRenderPassBeginInfo	structure	is
passed	to	vkCmdBeginRenderPass().
If	you	are	rendering	to	the	entire	framebuffer,	set	the	renderArea	field	to
cover	the	entire	area	of	the	framebuffer.	However,	if	you	want	to	update	only	a
small	part	of	the	framebuffer,	you	can	set	the	renderArea	rectangle
accordingly.	Any	part	of	the	renderpass’s	attachments	that	are	not	contained
inside	this	render	area	are	not	affected	by	any	of	the	operations	in	the	renderpass
including	the	renderpass’s	load	and	store	operations	for	those	attachments.
When	you	are	using	a	render	area	smaller	than	the	entire	attachment,	it	is	the
application’s	responsibility	to	ensure	that	it	doesn’t	render	outside	this	area.
Some	implementations	may	ignore	the	render	area	entirely	and	trust	your
application	to	stick	within	it;	some	may	round	the	render	area	up	to	some
multiple	of	an	internal	rectangular	region;	and	some	may	strictly	adhere	to	the
area	you’ve	specified.	The	only	way	to	get	well-defined	behavior	is	to	make	sure
you	render	only	inside	this	area,	using	a	scissor	test	if	needed.
Rendering	to	a	smaller	render	area	than	the	entire	attachment	may	also	come	at
some	performance	cost	unless	the	area	matches	the	granularity	of	the	supported
render	areas	for	the	implementation.	Consider	the	framebuffer	to	be	tiles	in	a
grid	that	are	potentially	rendered	one	at	a	time.	Completely	covering	and
redefining	the	content	of	a	single	tile	should	be	fast,	but	updating	only	part	of	a
tile	may	cause	Vulkan	to	do	extra	work	to	keep	the	untouched	parts	of	the	tile
well	defined.
To	acheive	maximum	performance,	you	should	ensure	that	the	render	areas	you
use	match	the	render	area	granularity	supported	by	the	implementation.	This	can
be	queried	using	vkGetRenderAreaGranularity(),	the	prototype	of
which	is	Click	here	to	view	code	image

void	vkGetRenderAreaGranularity	(

				VkDevice																												device,

				VkRenderPass																								renderPass,

				VkExtent2D*																									pGranularity);	For	a

renderpass	specified	in	renderPass,	vkGetRenderAreaGranularity()

returns,	in	the	variable	pointed	to	by	pGranularity,	the	dimensions

of	a	tile	used	for	rendering.	The	device	that	owns	the	renderpass

should	be	passed	in	device.



To	ensure	that	the	render	area	you	pass	to	vkCmdBeginRenderPass()
performs	optimally,	you	should	ensure	two	things:	First,	that	the	x	and	y
components	of	its	origin	are	integer	multiples	of	the	width	and	height	of	the
render-area	granularity;	and	second,	that	the	width	and	height	of	the	render	area
are	either	integer	multiples	of	that	granularity	or	extend	to	the	edge	of	the
framebuffer.	Obviously,	a	render	area	that	completely	covers	the	attachments
trivially	meets	these	requirements.

Preserving	Attachment	Content
In	order	to	preserve	the	contents	of	the	attachment,	we	need	to	set	the
attachment’s	store	operation	(contained	in	the	storeOp	field	of	the
VkAttachmentDescription	structure	used	to	create	the	renderpass)	to
VK_ATTACHMENT_STORE_OP_STORE.	This	causes	Vulkan	to	ensure	that
after	the	renderpass	has	completed,	the	contents	of	the	image	used	as	the
attachment	accurately	reflect	what	was	rendered	during	the	renderpass.
The	only	other	choice	for	this	field	is
VK_ATTACHMENT_STORE_OP_DONT_CARE,	which	tells	Vulkan	that	you
don’t	need	the	content	of	the	attachment	after	the	renderpass	has	completed.	This
is	used,	for	example,	when	an	attachment	is	used	to	store	intermediate	data	that
will	be	consumed	by	some	later	subpass	in	the	same	renderpass.	In	this	case,	the
content	doesn’t	need	to	live	longer	than	the	renderpass	itself.
In	some	cases,	you	need	to	produce	content	in	one	subpass,	execute	an	unrelated
subpass,	and	then	consume	the	content	created	more	than	one	subpass	ago.	In
this	case,	you	should	tell	Vulkan	that	it	cannot	discard	the	content	of	an
attachment	over	the	course	of	rendering	another	subpass.	In	practice,	a	Vulkan
implementation	should	be	able	to	tell	by	inspecting	the	input	and	output
attachments	for	the	subpasses	in	a	renderpass	which	ones	produce	and	which
ones	consume	data	and	will	do	the	right	thing.	However,	to	be	fully	correct,
every	live	attachment	should	appear	as	an	input,	an	output,	or	a	preserve
attachment	in	each	subpass.	Furthermore,	by	including	an	attachment	in	the
preserve	attachment	array	for	a	subpass,	you	are	telling	Vulkan	that	you	are
about	to	use	the	attachment	content	in	an	upcoming	subpass.	This	may	enable	it
to	keep	some	of	the	data	in	cache	or	some	other	high-speed	memory.
The	list	of	attachments	to	preserve	across	a	subpass	is	specified	using	the
pPreserveAttachments	field	of	the	VkSubpassDescription
structure	describing	each	subpass.	This	is	a	pointer	to	an	array	of	uint32_t
indices	into	the	renderpass’s	attachment	list,	and	the	number	of	integers	in	this



array	is	contained	in	the	preserveAttachmentCount	field	of
VkSubpassDescription.
To	demonstrate	this,	we	extend	our	example	further	to	render	transparent	objects.
We	render	a	depth	buffer,	then	render	a	g-buffer	containing	per-pixel
information,	and	finally	we	render	a	shading	pass	that	calculates	lighting
information.	Because	we	have	only	1	pixel’s	worth	of	information,	this	deferred
shading	approach	cannot	render	transparent	or	translucent	objects.	Therefore,
these	objects	must	be	rendered	separately.	The	traditional	approach	is	to	simply
render	all	the	opaque	geometry	in	one	pass	(or	passes)	and	then	composite	the
translucent	geometry	on	top	at	the	end.	This	introduces	a	serial	dependency,
causing	rendering	of	the	translucent	geometry	to	wait	for	opaque	geometry	to
complete	rendering.
This	serial	dependency	is	shown	in	the	DAG	illustrated	in	Figure	13.2.

Figure	13.2:	Serial	Dependency	of	Translucent	on	Opaque	Geometry

Rather	than	introduce	a	serial	dependency,	which	would	preclude	Vulkan	from
rendering	any	of	the	translucent	geometry	in	parallel	with	opaque	geometry,	we
take	another	approach:	Render	the	translucent	geometry	to	another	color
attachment	(using	the	same	depth	prepass	information	for	depth	rejection)	and
the	opaque	geometry	into	a	second	temporary	attachment.	After	both	the	opaque
and	transparent	geometry	have	been	rendered,	we	perform	a	composition	pass
that	blends	the	translucent	geometry	on	top	of	the	opaque	geometry.	This	pass
can	also	perform	other	per-pixel	operations,	such	as	color	grading,	vignetting,
film-grain	application,	and	so	on.	The	new	DAG	for	this	is	shown	in	Figure	13.3.



Figure	13.3:	Parallel	Rendering	of	Translucent	and	Opaque	Geometry

As	you	can	see	from	the	updated	DAG	in	Figure	13.3,	first	the	depth	information
is	rendered	and	then	the	g-buffer	generation	pass	executes,	followed	by	the
lighting	pass.	The	translucency	buffer	generation	pass	has	no	dependency	on	the
g-buffer	or	the	result	of	the	lighting	pass,	so	it	is	able	to	run	in	parallel,
depending	only	on	the	depth	information	from	the	depth	prepass.	The	new
composite	pass	now	depends	on	the	result	of	the	lighting	pass	and	the	translucent
pass.
As	the	subpasses	in	the	renderpass	are	expressed	serially,	regardless	of	the	serial
ordering	of	the	opaque	g-buffer	pass	and	the	translucency	pass	in	the	renderpass,
we	need	to	preserve	the	content	of	the	first	pass’s	outputs	until	the	shading	pass
is	able	to	execute.	Because	there	is	less	data	to	store,	we	render	the	translucent
objects	first	and	preserve	the	translucency	buffer	across	the	g-buffer	generation
pass.	The	g-buffer	and	translucency	buffer	are	then	used	as	input	attachments	to
the	shading	pass.
The	code	to	set	all	this	up	is	shown	in	Listing	13.2.

Listing	13.2:	Translucency	and	Deferred	Shading	Setup	Click	here	to	view
code	image

enum

{

				kAttachment_BACK									=	0,

				kAttachment_DEPTH								=	1,

				kAttachment_GBUFFER						=	2,

				kAttachment_TRANSLUCENCY	=	3,

				kAttachment_OPAQUE							=	4



};

enum

{

				kSubpass_DEPTH											=	0,

				kSubpass_GBUFFER									=	1,

				kSubpass_LIGHTING								=	2,

				kSubpass_TRANSLUCENTS				=	3,

				kSubpass_COMPOSITE							=	4

};

static	const	VkAttachmentDescription	attachments[]	=

{

				//	Back	buffer

				{

								0,																																		//	flags

								VK_FORMAT_R8G8B8A8_UNORM,											//	format

								VK_SAMPLE_COUNT_1_BIT,														//	samples

								VK_ATTACHMENT_LOAD_OP_DONT_CARE,				//	loadOp

								VK_ATTACHMENT_STORE_OP_STORE,							//	storeOp

								VK_ATTACHMENT_LOAD_OP_DONT_CARE,				//	stencilLoadOp

								VK_ATTACHMENT_STORE_OP_DONT_CARE,			//	stencilStoreOp

								VK_IMAGE_LAYOUT_UNDEFINED,										//	initialLayout

								VK_IMAGE_LAYOUT_PRESENT_SRC_KHR					//	finalLayout

				},

				//	Depth	buffer

				{

								0,																																		//	flags

								VK_FORMAT_D32_SFLOAT,															//	format

								VK_SAMPLE_COUNT_1_BIT,														//	samples

								VK_ATTACHMENT_LOAD_OP_DONT_CARE,				//	loadOp

								VK_ATTACHMENT_STORE_OP_DONT_CARE,			//	storeOp

								VK_ATTACHMENT_LOAD_OP_DONT_CARE,				//	stencilLoadOp

								VK_ATTACHMENT_STORE_OP_DONT_CARE,			//	stencilStoreOp

								VK_IMAGE_LAYOUT_UNDEFINED,										//	initialLayout

								VK_IMAGE_LAYOUT_UNDEFINED											//	finalLayout

				},

				//	G-buffer	1

				{

								0,																																		//	flags

								VK_FORMAT_R32G32B32A32_UINT,								//	format

								VK_SAMPLE_COUNT_1_BIT,														//	samples

								VK_ATTACHMENT_LOAD_OP_DONT_CARE,				//	loadOp

								VK_ATTACHMENT_STORE_OP_DONT_CARE,			//	storeOp

								VK_ATTACHMENT_LOAD_OP_DONT_CARE,				//	stencilLoadOp

								VK_ATTACHMENT_STORE_OP_DONT_CARE,			//	stencilStoreOp

								VK_IMAGE_LAYOUT_UNDEFINED,										//	initialLayout

								VK_IMAGE_LAYOUT_UNDEFINED											//	finalLayout

				},

				//	Translucency	buffer

				{

								0,																																		//	flags



								VK_FORMAT_R8G8B8A8_UNORM,											//	format

								VK_SAMPLE_COUNT_1_BIT,														//	samples

								VK_ATTACHMENT_LOAD_OP_DONT_CARE,				//	loadOp

								VK_ATTACHMENT_STORE_OP_DONT_CARE,			//	storeOp

								VK_ATTACHMENT_LOAD_OP_DONT_CARE,				//	stencilLoadOp

								VK_ATTACHMENT_STORE_OP_DONT_CARE,			//	stencilStoreOp

								VK_IMAGE_LAYOUT_UNDEFINED,										//	initialLayout

								VK_IMAGE_LAYOUT_UNDEFINED											//	finalLayout

				}

};

//	Depth	prepass	depth	buffer	reference	(read/write)

static	const	VkAttachmentReference	depthAttachmentReference	=

{

				kAttachment_DEPTH,																																		//	attachment

				VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL				//	layout

};

//	G-buffer	attachment	references	(render)

static	const	VkAttachmentReference	gBufferOutputs[]	=

{

				{

								kAttachment_GBUFFER,																												//	attachment

								VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL								//	layout

				}

};

//	Lighting	input	attachment	references

static	const	VkAttachmentReference	gBufferReadRef[]	=

{

				//	Read	from	g-buffer.

				{

								kAttachment_GBUFFER,																												//	attachment

								VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL								//	layout

				},

				//	Read	depth	as	texture.

				{

								kAttachment_DEPTH,																														//	attachment

								VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL	//	layout

				}

};

//	Lighting	pass	-	write	to	opaque	buffer.

static	const	VkAttachmentReference	opaqueWrite[]	=

{

				//	Write	to	opaque	buffer.

				{

								kAttachment_OPAQUE,																													//	attachment

								VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL								//	layout

				}

};



//	Translucency	rendering	pass	-	translucency	buffer	write

static	const	VkAttachmentReference	translucentWrite[]	=

{

				//	Write	to	translucency	buffer.

				{

								kAttachment_TRANSLUCENCY,																							//	attachment

								VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL								//	layout

				}

};

static	const	VkAttachmentReference	compositeInputs[]	=

{

				//	Read	from	translucency	buffer.

				{

								kAttachment_TRANSLUCENCY,																							//	attachment

								VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL								//	layout

				},

				//	Read	from	opaque	buffer.

				{

								kAttachment_OPAQUE,																													//	attachment

								VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL								//	layout

				}

};

//	Final	pass	-	back	buffer	render	reference

static	const	VkAttachmentReference	backBufferRenderRef[]	=

{

				{

								kAttachment_BACK,																															//	attachment

								VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL								//	layout

				}

};

static	const	VkSubpassDescription	subpasses[]	=

{

				//	Subpass	1	-	depth	prepass

				{

								0,																																		//	flags

								VK_PIPELINE_BIND_POINT_GRAPHICS,				//	pipelineBindPoint

								0,																																		//	inputAttachmentCount

								nullptr,																												//	pInputAttachments

								0,																																		//	colorAttachmentCount

								nullptr,																												//	pColorAttachments

								nullptr,																												//	pResolveAttachments

								&depthAttachmentReference,										//

pDepthStencilAttachment

								0,																																		//

preserveAttachmentCount

								nullptr																													//	pPreserveAttachments

				},

				//	Subpass	2	-	g-buffer	generation

				{



								0,																																		//	flags

								VK_PIPELINE_BIND_POINT_GRAPHICS,				//	pipelineBindPoint

								0,																																		//	inputAttachmentCount

								nullptr,																												//	pInputAttachments

								vkcore::utils::arraysize(gBufferOutputs),		//

colorAttachmentCount

								gBufferOutputs,																					//	pColorAttachments

								nullptr,																												//	pResolveAttachments

								&depthAttachmentReference,										//

pDepthStencilAttachment

								0,																																		//

preserveAttachmentCount

								nullptr																													//	pPreserveAttachments

				},

				//	Subpass	3	-	lighting

				{

								0,																																		//	flags

								VK_PIPELINE_BIND_POINT_GRAPHICS,				//	pipelineBindPoint

								vkcore::utils::arraysize(gBufferReadRef),	//

inputAttachmentCount

								gBufferReadRef,																					//	pInputAttachments

								vkcore::utils::arraysize(opaqueWrite),	//

colorAttachmentCount

								opaqueWrite,																								//	pColorAttachments

								nullptr,																												//	pResolveAttachments

								nullptr,																												//

pDepthStencilAttachment

								0,																																		//

preserveAttachmentCount

								nullptr																													//	pPreserveAttachments

				},

				//	Subpass	4	-	translucent	objects

				{

								0,																																		//	flags

								VK_PIPELINE_BIND_POINT_GRAPHICS,				//	pipelineBindPoint

								0,																																		//	inputAttachmentCount

								nullptr,																												//	pInputAttachments

								vkcore::utils::arraysize(translucentWrite),	//

colorAttachmentCount

								translucentWrite,																			//	pColorAttachments

								nullptr,																												//	pResolveAttachments

								nullptr,																												//

pDepthStencilAttachment

								0,																																		//

preserveAttachmentCount

								nullptr																													//	pPreserveAttachments

				},

				//	Subpass	5	-	composite

				{

								0,																																		//	flags

								VK_PIPELINE_BIND_POINT_GRAPHICS,				//	pipelineBindPoint

								0,																																		//	inputAttachmentCount



								nullptr,																												//	pInputAttachments

								vkcore::utils::arraysize(backBufferRenderRef),	//

colorAttachmentCount

								backBufferRenderRef,																//	pColorAttachments

								nullptr,																												//	pResolveAttachments

								nullptr,																												//

pDepthStencilAttachment

								0,																																		//

preserveAttachmentCount

								nullptr																													//	pPreserveAttachments

				}

};

static	const	VkSubpassDependency	dependencies[]	=

{

				//	G-buffer	pass	depends	on	depth	prepass.

				{

								kSubpass_DEPTH,																																	//	srcSubpass

								kSubpass_GBUFFER,																															//	dstSubpass

								VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,		//

srcStageMask

								VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,										//

dstStageMask

								VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,											//

srcAccessMask

								VK_ACCESS_SHADER_READ_BIT,																						//

dstAccessMask

								VK_DEPENDENCY_BY_REGION_BIT																					//

dependencyFlags

				},

				//	Lighting	pass	depends	on	g-buffer.

				{

								kSubpass_GBUFFER,																															//	srcSubpass

								kSubpass_LIGHTING,																														//	dstSubpass

								VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,		//

srcStageMask

								VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,										//

dstStageMask

								VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,											//

srcAccessMask

								VK_ACCESS_SHADER_READ_BIT,																						//

dstAccessMask

								VK_DEPENDENCY_BY_REGION_BIT																					//

dependencyFlags

				},

				//	Composite	pass	depends	on	translucent	pass.

				{

							kSubpass_TRANSLUCENTS,																											//	srcSubpass

							kSubpass_COMPOSITE,																														//	dstSubpass

							VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,			//

srcStageMask

							VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,											//

dstStageMask



							VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,												//

srcAccessMask

							VK_ACCESS_SHADER_READ_BIT,																							//

dstAccessMask

							VK_DEPENDENCY_BY_REGION_BIT																						//

dependencyFlags

				},

				//	Composite	pass	also	depends	on	lighting.

				{

							kSubpass_LIGHTING,																															//	srcSubpass

							kSubpass_COMPOSITE,																														//	dstSubpass

							VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,			//

srcStageMask

							VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,											//

dstStageMask

							VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,												//

srcAccessMask

							VK_ACCESS_SHADER_READ_BIT,																							//

dstAccessMask

							VK_DEPENDENCY_BY_REGION_BIT																						//

dependencyFlags

				}

};

static	const	VkRenderPassCreateInfo	renderPassCreateInfo	=

{

				VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,	nullptr,

				0,																																																		//	flags

				vkcore::utils::arraysize(attachments),														//

attachmentCount

				attachments,																																								//

pAttachments

				vkcore::utils::arraysize(subpasses),																//

subpassCount

				subpasses,																																										//	pSubpasses

				vkcore::utils::arraysize(dependencies),													//

dependencyCount

				dependencies																																								//

pDependencies

};

result	=	vkCreateRenderPass(device,

																												&renderPassCreateInfo,

																												nullptr,

																												&m_renderPass);

Again,	the	code	in	Listing	13.2	is	extremely	long	but	is	mostly	a	set	of	constant
data	structures.	Here,	we’ve	added	the	translucent	pass	and	the	composite	pass	to
the	list	of	passes	in	subpasses[].	The	final	pass	is	now	the	composite	pass,
so	it	is	the	one	that	references	the	back	buffer	in	its	pColorAttachments
array.	The	result	of	the	lighting	pass	is	now	written	to	the	temporary	opaque



buffer,	indexed	by	kAttachment_OPAQUE.
Although	this	appears	to	consume	a	significant	amount	of	memory,	we	can	note
several	redeeming	points	about	this	configuration:	•	There	are	likely	to	be	at
least	two	or	three	back	buffers,	while	you	can	use	the	same	buffer	every	frame
for	intermediate	results.	The	additional	overhead	of	one	extra	buffer	is	not	that
large.

•	The	lighting	pass	consumes	the	g-buffer,	after	which	it	is	no	longer	needed.
You	can	either	write	the	opaque	result	back	into	the	g-buffer	or	mark	the
attachment	as	transient	and	hope	that	the	Vulkan	implementation	does	this
for	you.
•	If	you	are	rendering	high	dynamic	range,	then	you	may	want	your	rendering
results	to	be	in	a	higher-precision	format	than	the	back	buffer	anyway	and
then	perform	tone	mapping	or	other	processing	during	the	composition	pass.
In	this	case,	you’ll	need	the	intermediate	buffers.

Secondary	Command	Buffers
Secondary	command	buffers	are	command	buffers	that	can	be	called	from
primary	command	buffers.	Although	not	directly	related	to	multipass	rendering,
they	are	used	primarily	to	allow	the	commands	contributing	to	a	render
consisting	of	many	subpasses	to	be	built	up	in	multiple	command	buffers.	As
you	know,	a	renderpass	must	begin	and	end	in	the	same	command	buffer.	That
is,	the	call	to	vkCmdEndRenderPass()	must	appear	in	the	same	command
buffer	as	its	corresponding	vkCmdBeginRenderPass().
Given	this	requirement,	it’s	very	difficult	to	render	a	large	amount	of	the	scene	in
a	single	renderpass	and	still	build	command	buffers	in	parallel.	In	the	ideal	case
(from	an	implementation	point	of	view),	the	entire	scene	will	be	rendered	in	a
single	large	renderpass,	with	potentially	many	subpasses.	Without	secondary
command	buffers,	this	would	require	most,	if	not	all,	of	a	scene	to	be	rendered
using	a	single	long	command	buffer,	precluding	parallelized	command
generation.
To	create	a	secondary	command	buffer,	create	a	command	pool	and	then	from	it
allocate	one	or	more	command	buffers.	In	the
VkCommandBufferAllocateInfo	structure	passed	to
vkAllocateCommandBuffers(),	set	the	level	field	to
VK_COMMAND_BUFFER_LEVEL_SECONDARY.	We	then	record	commands
into	the	command	buffer	as	usual,	but	with	certain	restrictions	as	to	which
commands	can	be	executed.	A	table	listing	which	commands	may	and	may	not



be	recorded	in	secondary	command	buffers	is	shown	in	the	Appendix,	“Vulkan
Functions.”
When	the	secondary	command	buffer	is	ready	to	execute	from	another	primary
command	buffer,	call	vkCmdExecuteCommands(),	the	prototype	of	which	is
Click	here	to	view	code	image

void	vkCmdExecuteCommands	(

				VkCommandBuffer																				commandBuffer,

				uint32_t																											commandBufferCount,

				const	VkCommandBuffer*													pCommandBuffers);	The	command

buffer	from	which	to	call	the	secondary	command	buffers	is	passed	in

commandBuffer.	A	single	call	to	vkCmdExecuteCommands()	can	execute

many	secondary-level	command	buffers.	The	number	of	command	buffers

to	execute	is	passed	in	commandBufferCount,	and	pCommandBuffers

should	point	to	an	array	of	this	many	VkCommandBuffer	handles	to	the

command	buffers	to	execute.

Vulkan	command	buffers	contain	a	certain	amount	of	state.	In	particular,	the
currently	bound	pipeline,	the	various	dynamic	states,	and	the	currently	bound
descriptor	sets	are	effectively	properties	of	each	command	buffer.	When	multiple
command	buffers	are	executed	back	to	back,	even	when	sent	to	the	same	call	to
vkQueueSubmit(),	no	state	is	inherited	from	one	to	the	next.	That	is,	the
initial	state	of	each	command	buffer	is	undefined,	even	if	the	previously
executed	command	buffer	left	everything	as	it	needs	to	be	for	the	next.
When	you	are	executing	a	large,	complex	command	buffer,	it’s	probably	fine	to
begin	with	an	undefined	state	because	the	first	thing	you’ll	do	in	the	command
buffer	is	set	up	everything	required	for	the	first	few	drawing	commands.	That
cost	is	likely	to	be	small	relative	to	the	cost	of	the	whole	command	buffer,	even
if	it’s	partially	redundant	with	respect	to	previously	executed	command	buffers.
When	a	primary	command	buffer	calls	a	secondary	command	buffer,	and
especially	when	a	primary	command	buffer	calls	many	short	secondary
command	buffers	back	to	back,	it	can	be	costly	to	reset	the	complete	state	of	the
pipeline	in	each	and	every	secondary	command	buffer.	To	compensate	for	this,
some	state	can	be	inherited	from	primary	to	secondary	command	buffers.	This	is
done	using	the	VkCommandBufferInheritanceInfo	structure,	which	is
passed	to	vkBeginCommandBuffer().	The	definition	of	this	structure	is
Click	here	to	view	code	image

typedef	struct	VkCommandBufferInheritanceInfo	{

				VkStructureType																		sType;

				const	void*																						pNext;

				VkRenderPass																					renderPass;

				uint32_t																									subpass;



				VkFramebuffer																				framebuffer;

				VkBool32																									occlusionQueryEnable;

				VkQueryControlFlags														queryFlags;

				VkQueryPipelineStatisticFlags				pipelineStatistics;

}	VkCommandBufferInheritanceInfo;

The	VkCommandBufferInheritanceInfo	provides	a	mechanism	for	your
application	to	tell	Vulkan	that	you	know	what	the	state	will	be	when	the
secondary	command	buffer	is	executed.	This	allows	the	properties	of	the
command	buffer	to	begin	in	a	well-defined	state.
The	sType	field	of	VkCommandBufferInheritanceInfo	should	be	set
to	VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO,	and
pNext	should	be	set	to	nullptr.
The	renderpass	and	subpass	fields	specify	the	renderpass	and	the	subpass
of	the	render	that	the	command	buffer	will	be	called	inside,	respectively.	If	the
framebuffer	to	which	the	renderpass	will	be	rendering	is	known,	then	it	can	be
specified	in	the	framebuffer	field.	This	can	sometimes	result	in	better
performance	when	the	command	buffer	is	executed.	However,	if	you	don’t	know
which	framebuffer	will	be	used,	then	you	should	set	this	field	to
VK_NULL_HANDLE.
The	occlusionQueryEnable	field	should	be	set	to	VK_TRUE	if	the
secondary	command	buffer	will	be	executed	while	the	primary	command	buffer
is	executing	an	occlusion	query.	This	tells	Vulkan	to	keep	any	counters
associated	with	occlusion	queries	consistent	during	execution	of	the	secondary
command	buffer.	If	this	flag	is	VK_FALSE,	then	the	secondary	command	buffer
should	not	be	executed	while	occlusion	queries	are	active	in	the	calling
command	buffer.	While	the	behavior	is	technically	undefined,	the	most	likely
outcome	is	that	the	results	of	the	occlusion	queries	are	garbage.
You	can	execute	occlusion	queries	inside	secondary	command	buffers	regardless
of	the	value	of	occlusionQueryEnable.	You	will	need	to	begin	and	end	the
query	inside	the	same	secondary	command	buffer	if	you	don’t	inherit	the	state
from	a	calling	primary.
If	occlusion	query	inheritance	is	enabled,	then	the	queryFlags	field	contains
additional	flags	that	control	the	behavior	of	occlusion	queries.	The	only	flag
defined	for	use	here	is	VK_QUERY_CONTROL_PRECISE_BIT,	which,	if	set,
indicates	that	precise	occlusion-query	results	are	needed.
The	pipelineStatistics	field	includes	flags	that	tell	Vulkan	which
pipeline	statistics	are	being	gathered	by	calling	the	primary	command	buffer.



Again,	you	can	gather	pipeline	statistics	during	the	execution	of	a	secondary
command	buffer,	but	if	you	want	the	operation	of	the	pipeline	invoked	by	a
secondary	command	buffer	to	contribute	counters	accumulated	by	the	primary
command	buffer,	you	need	to	set	these	flags	accurately.	The	available	bits	are
members	of	the	VkQueryPipelineStatisticFlagBits	enumeration.

Summary
This	chapter	delved	deeper	into	the	renderpass,	a	fundamental	feature	of	Vulkan
that	enables	efficient	multipass	rendering.	You	saw	how	to	construct	a	nontrivial
renderpass	that	contains	many	subpasses	and	how	to	build	the	contents	of	those
subpasses	as	separate	command	buffers	that	can	be	called	from	your	main
command	buffer.	We	discussed	some	potential	optimizations	that	Vulkan
implementations	could	make	to	improve	the	performance	of	rendering	when	they
are	given	all	the	information	about	what	will	come	in	the	frame.	You	also	saw
how	many	of	the	functions	performed	by	barriers	and	clears	can	be	folded	into
the	renderpass,	sometimes	making	them	close	to	free.	The	renderpass	is	a
powerful	feature	and,	if	possible,	you	should	endeavor	to	make	use	of	it	in	your
applications.



Appendix.	Vulkan	Functions

This	appendix	contains	a	table	of	the	Vulkan	command	buffer	building
commands.	It	provides	a	quick	reference	to	what	can	and	cannot	be	used	inside
and	outside	a	renderpass,	as	well	as	to	what	is	legal	inside	a	primary	or
secondary	command	buffer.



Command	Buffer	Building	Functions



Glossary

adjacency	primitive	One	of	the	primitive	topologies	that	includes,	for	each
primitive,	additional	vertex	data	representing	adjacent	primitives	in	the
original	geometry.	Examples	include	triangles	and	lines	with	adjacency.

aliasing	Technically,	the	loss	of	signal	information	in	an	image	reproduced	at
some	finite	resolution.	It	is	most	often	characterized	by	the	appearance	of
sharp,	jagged	edges	along	points,	lines,	or	polygons	due	to	the	nature	of
having	a	limited	number	of	fixed-size	pixels.

alpha	A	fourth	color	value	added	to	provide	a	degree	of	transparency	to	the
color	of	an	object.	An	alpha	value	of	0.0	means	complete	transparency;	1.0
denotes	no	transparency	(opaque).

ambient	light	Light	in	a	scene	that	doesn’t	come	from	any	specific	point	source
or	direction.	Ambient	light	illuminates	all	surfaces	evenly	and	on	all	sides.

antialiasing	A	rendering	method	used	to	smooth	lines,	curves,	and	polygon
edges.	This	technique	averages	the	color	of	pixels	adjacent	to	the	line.	It	has
the	visual	effect	of	softening	the	transition	from	the	pixels	on	the	line	and
those	adjacent	to	the	line,	thus	providing	a	smoother	appearance.

Apple	An	apple	is	a	piece	of	fruit.	Fruit	does	not	support	Vulkan.

ARB	Acronym	for	the	Architecture	Review	Board,	the	committee	body
consisting	of	3D	graphics	hardware	vendors,	previously	charged	with
maintaining	the	OpenGL	Specification.	This	function	has	since	been
assumed	by	the	Khronos	Group.	See	Khronos	Group.

aspect	When	applied	to	an	image,	a	logical	part	of	that	image,	such	as	the	depth
or	stencil	component	of	a	combined	depth-stencil	image.

aspect	ratio	The	ratio	of	the	width	of	a	window	to	the	height	of	the	window—
specifically,	the	width	of	the	window	in	pixels	divided	by	the	height	of	the
window	in	pixels.

associativity	A	sequence	of	operations	in	which	changing	the	order	of	the
operations	(but	not	the	order	of	the	arguments)	does	not	affect	the	result.	For
example,	addition	is	associative	because	a	+	(b	+	c)	=	(a	+	b)	+	c.



atomic	operation	A	sequence	of	operations	that	must	be	indivisible	for	correct
operation.	The	term	usually	refers	to	a	read-modify-write	sequence	on	a
single	memory	location.

attachment	An	image	associated	with	a	renderpass	that	can	be	used	as	the	input
or	output	of	one	or	more	of	its	subpasses.

barrier	A	point	in	a	computer	program	that	serves	as	a	marker	across	which
operations	may	not	be	reordered.	Between	barriers,	certain	operations	may	be
exchanged	if	their	movement	does	not	logically	change	the	operation	of	the
program.	Barriers	operate	on	resources	or	memory	and	can	also	be	used	to
change	the	layout	of	images.

Bézier	curve	A	curve	whose	shape	is	defined	by	control	points	near	the	curve
rather	than	by	the	precise	set	of	points	that	define	the	curve	itself.

bitplane	An	array	of	bits	mapped	directly	to	screen	pixels.

blending	The	process	of	merging	a	new	color	value	into	an	existing	color
attachment	using	an	equation	and	parameters	that	are	configured	as	part	of	a
graphics	pipeline.

blit	Short	for	block	image	transfer—an	operation	that	copies	image	data	from
one	place	to	another,	potentially	processing	it	further	as	it	is	copied.	In
Vulkan,	a	blit	is	used	to	scale	image	data	and	to	perform	basic	operations
such	as	format	conversion.

branch	prediction	An	optimization	strategy	used	in	processor	design	whereby
the	processor	tries	to	guess	(or	predict)	the	outcome	of	some	conditional
code	and	start	executing	the	more	likely	branch	before	it	is	certain	that	it	is
required.	If	the	processor	is	right,	it	gets	ahead	by	a	few	instructions.	If	the
processor	is	wrong,	it	needs	to	throw	away	the	work	and	start	again	with	the
other	branch.

buffer	An	area	of	memory	used	to	store	image	information.	This	information
can	be	color,	depth,	or	blending	information.	The	red,	green,	blue,	and	alpha
buffers	are	often	collectively	referred	to	as	the	color	buffers.

Cartesian	A	coordinate	system	based	on	three	directional	axes	placed	at	a	90°
orientation	to	one	another.	These	coordinates	are	labeled	x,	y,	and	z.

clip	coordinates	The	2D	geometric	coordinates	that	result	from	the	model-view
and	projection	transformation.



clip	distance	A	distance	value	assigned	by	a	shader	that	is	used	by	fixed-
function	clipping	to	allow	primitives	to	be	clipped	against	an	arbitrary	set	of
planes	before	rasterization.

clipping	The	elimination	of	a	portion	of	a	single	primitive	or	group	of
primitives.	The	points	that	would	be	rendered	outside	the	clipping	region	or
volume	are	not	drawn.	The	clipping	volume	is	generally	specified	by	the
projection	matrix.	Clipped	primitives	are	reconstructed	such	that	the	edges	of
the	primitive	do	not	lie	outside	the	clipping	region.

command	buffer	A	list	of	commands	that	can	be	executed	by	the	device.

commutative	An	operation	in	which	changing	the	order	of	its	operands	does	not
change	its	result.	For	example,	addition	is	commutative,	whereas	subtraction
is	not.

compute	pipeline	A	Vulkan	pipeline	object	consisting	of	a	compute	shader	and
related	state	that	is	used	to	execute	computational	work	on	a	Vulkan	device.

compute	shader	A	shader	that	executes	a	work	item	per	invocation	as	part	of	a
local	work	group,	a	number	of	which	may	be	grouped	into	a	global	work
group.

concave	A	reference	to	the	shape	of	a	polygon.	A	polygon	is	said	to	be	concave
if	a	straight	line	through	it	will	enter	and	subsequently	exit	the	polygon	more
than	once.

contention	A	term	used	to	describe	the	condition	in	which	two	or	more	threads
of	execution	attempt	to	use	a	single	shared	resource.

convex	A	reference	to	the	shape	of	a	polygon.	A	convex	polygon	has	no
indentations,	and	no	straight	line	can	be	drawn	through	the	polygon	that
intersects	it	more	than	twice	(once	entering,	once	leaving).

CRT	Cathode	ray	tube.

cull	distance	A	value	applied	to	a	vertex	within	a	primitive	that	will	cause	the
entire	primitive	to	be	discarded	if	any	of	its	vertices	are	assigned	a	negative
value.

culling	The	elimination	of	graphics	primitives	that	would	not	be	seen	if
rendered.	Back-face	culling	eliminates	the	front	or	back	face	of	a	primitive
so	that	the	face	isn’t	drawn.	Frustum	culling	eliminates	whole	objects	that



would	fall	outside	the	viewing	frustum.

depth	fighting	A	visual	artifact	caused	by	primitives	with	very	close	depth
values	being	rendered	on	top	of	one	another	and	producing	inconsistent
depth-test	results.

depth	test	A	test	performed	between	a	depth	value	computed	for	a	fragment	and
a	value	stored	in	a	depth	buffer.

descriptor	A	data	structure	containing	an	implementation-specific	description	of
a	resource	such	as	a	buffer	or	an	image.

destination	color	The	stored	color	at	a	particular	location	in	the	color	buffer.
This	terminology	is	usually	used	when	describing	blending	operations	to
distinguish	between	the	color	already	present	in	the	color	buffer	and	the	color
coming	into	the	color	buffer	(source	color).

device	memory	Memory	that	is	accessible	to	a	Vulkan	device.	This	may	be
dedicated	memory	that’s	physically	attached	to	the	device,	or	some	or	all	of
the	host’s	memory	that	is	accessible	to	the	device.

dispatch	A	command	that	begins	the	execution	of	compute	shaders.

displacement	mapping	The	act	of	taking	a	flat	surface	and	displacing	it	along	a
normal	by	an	amount	determined	by	a	texture	or	other	source	of	data.

dithering	A	method	used	to	simulate	a	wider	range	of	color	depth	by	placing
different-colored	pixels	together	in	patterns	that	create	the	illusion	of	shading
between	the	two	colors.

double	buffering	A	drawing	technique	used	to	present	stable	images.	The	image
to	be	displayed	is	assembled	in	memory	and	then	placed	on	the	screen	in	a
single	update	operation	rather	than	built	primitive	by	primitive	onscreen.
Double	buffering	is	a	much	faster	and	smoother	update	operation	and	can
produce	animations.

event	A	synchronization	primitive	used	within	a	Vulkan	command	buffer	to
synchronize	the	execution	of	different	parts	of	the	pipeline.

extruding	The	process	of	taking	a	2D	image	or	shape	and	adding	a	third
dimension	uniformly	across	the	surface.	This	process	can	transform	2D	fonts
into	3D	lettering.

eye	coordinates	The	coordinate	system	based	on	the	position	of	the	viewer.	The



viewer’s	position	is	placed	along	the	positive	z	axis,	looking	down	the
negative	z	axis.

fence	An	object	used	to	synchronize	execution	on	the	host	with	completion	of
command	buffers	executed	by	the	device.

FMA	Acronym	for	fused	multiply	add,	an	operation	commonly	implemented	in
a	single	piece	of	hardware	that	multiplies	two	numbers	together	and	adds	a
third,	with	the	intermediate	result	generally	computed	at	higher	precision
than	a	stand-alone	multiplication	or	addition	operation.

fragment	A	single	piece	of	data	that	may	eventually	contribute	to	the	color	of	a
pixel	in	an	image.

fragment	shader	A	shader	that	executes	once	per	fragment	and	generally
computes	the	final	color	of	that	fragment.

framebuffer	An	object	containing	references	to	images	that	will	be	used	as	the
attachments	during	rendering	with	graphics	pipelines.

frustum	A	pyramid-shaped	viewing	volume	that	creates	a	perspective	view.
(Near	objects	are	large;	far	objects	are	small.)

gamma	correction	The	process	of	transforming	a	linear	value	through	a	gamma
curve	to	produce	nonlinear	output.	Gamma	(γ)	can	be	greater	or	less	than	one
to	move	from	linear	to	gamma	space	and	back	again,	respectively.

garbage	Uninitialized	data	that	is	read	and	consumed	by	a	computer	program,
often	resulting	in	corruption,	crashes,	or	other	undesired	behavior.

geometry	shader	A	shader	that	executes	once	per	primitive,	having	access	to	all
vertices	making	up	that	primitive.

gimbal	lock	A	state	in	which	a	sequence	of	rotations	can	essentially	become
stuck	on	a	single	axis.	This	occurs	when	one	of	the	rotations	early	in	the
sequence	rotates	one	Cartesian	axis	onto	another.	After	this,	rotation	around
either	of	the	axes	results	in	the	same	rotation,	making	it	impossible	to	escape
from	the	locked	position.

GLSL	Acronym	for	OpenGL	Shading	Language,	a	high-level	C-like	shading
language.

GPU	Acronym	for	graphics	processing	unit—a	specialized	processor	that	does
most	of	the	heavyweight	lifting	for	Vulkan.



graphics	pipeline	A	Vulkan	pipeline	object	constructed	using	one	or	more
graphics	shaders	(vertex,	tessellation,	geometry,	and	fragment)	and	related
state	that	is	capable	of	processing	drawing	commands	and	rendering	graphics
primitives	on	a	Vulkan	device.	See	also	pipeline	and	compute	pipeline.

handle	An	opaque	variable	used	to	refer	to	another	object.	In	Vulkan,	all	handles
are	64-bit	integers.

hazard	In	reference	to	memory	operations,	a	situation	in	which	undefined	order
of	transactions	in	memory	may	lead	to	undefined	or	undesired	results.
Typical	examples	include	read-after-write	(RAW),	write-after-write	(WAW),
and	write-after-read	(WAR)	hazards.

helper	invocation	An	invocation	of	a	fragment	shader	that	does	not	represent	a
fragment	that	lies	inside	a	primitive,	but	is	executed	in	order	to	produce
derivatives	or	other	information	required	to	correctly	process	shader
invocations	for	fragments	that	do	lie	inside	the	primitive.

host	memory	Memory	that	is	dedicated	for	use	by	the	host	and	inaccessible	to
the	device.	This	type	of	memory	is	generally	used	to	store	data	for	use	by	the
CPU.

implementation	A	software-or	hardware-based	device	that	performs	Vulkan
rendering	operations.

index	buffer	A	buffer	bound	for	use	as	the	source	of	indices	for	an	indexed
draw.

indexed	draw	A	drawing	command	that	chooses	vertices	by	using	indices	read
from	a	buffer	rather	than	simply	counting	them	monotonically.

indirect	draw	A	drawing	command	that	sources	its	parameters	from	device
memory	accessed	through	a	buffer	object	rather	than	reading	them	directly
from	a	command	buffer.

instance	Applied	to	drawing	commands,	the	process	of	drawing	the	same	set	of
data	many	times,	potentially	with	different	parameters	applied.

instancing	See	instance.

invocation	A	single	execution	of	a	shader.	The	term	is	most	commonly	used	to
describe	compute	shaders	but	is	applicable	to	any	shader	stage.

Khronos	Group	The	industry	consortium	that	manages	the	maintenance	and



promotion	of	the	Vulkan	specification.

linked	list	A	list	of	data	elements	joined	by	pointers	or	indices	stored	or
associated	with	each	element	in	the	list.

literal	A	value,	not	a	variable	name.	A	literal	is	a	specific	string	or	numeric
constant	embedded	directly	in	source	code.

mapping	See	memory	mapping.

matrix	A	2D	array	of	numbers.	Matrices	can	be	operated	on	mathematically	and
are	used	to	perform	coordinate	transformations.

memory	mapping	Obtaining	a	pointer	to	a	region	of	device	memory	that	is
usable	by	the	host.

mipmapping	A	technique	that	uses	multiple	levels	of	detail	for	a	texture.	This
technique	selects	among	the	different	sizes	of	an	image	available	or	possibly
combines	the	two	nearest	matches	to	produce	the	final	fragments	used	for
texturing.

model-view	matrix	The	matrix	that	transforms	position	vectors	from	model	(or
object)	space	to	view	(or	eye)	space

multisample	An	image	in	which	each	pixel	has	more	than	one	sample.
Multisample	images	are	typically	used	in	antialiasing.	See	antialiasing.

multisampling	The	act	of	rendering	to	a	multisample	image.

normal	A	directional	vector	that	points	perpendicularly	to	a	plane	or	surface.
When	used,	normals	must	be	specified	for	each	vertex	in	a	primitive.

normalize	The	reduction	of	a	normal	to	a	unit	normal.	A	unit	normal	is	a	vector
that	has	a	length	of	exactly	1.0.

normalized	device	coordinate	The	coordinate	space	produced	by	taking	a
homogeneous	position	and	dividing	it	through	by	its	own	w	component.

occlusion	query	A	graphics	operation	whereby	visible	(or	more	accurately
potentially	visible)	pixels	are	counted	and	the	count	is	returned	to	the
application.

one	hot	A	method	of	encoding	a	number	or	state	using	a	single	bit	of	a	binary
number.	For	example,	a	state	machine	or	enumeration	with	32	states	would
require	only	5	bits	using	regular	encoding	but	an	entire	32-bit	value	to



encode	as	one	hot.	In	hardware,	one	hot	is	often	simpler	to	decode,	and
multiple	one-hot	flags	can	be	included	in	a	single	integer	value.

orthographic	A	drawing	mode	(also	called	parallel	projection)	in	which	no
perspective	or	foreshortening	takes	place.	The	lengths	and	dimensions	of	all
primitives	are	undistorted	regardless	of	orientation	or	distance	from	the
viewer.

out-of-order	execution	The	ability	of	a	processor	to	determine	interinstruction
dependencies	and	start	executing	those	instructions	whose	inputs	are	ready
before	other	instructions	that	may	have	preceded	them	in	program	order.

overloading	In	computer	languages,	the	practice	of	creating	two	or	more
functions	that	share	a	name	but	have	different	function	signatures.

perspective	A	drawing	mode	in	which	objects	farther	from	the	viewer	appear
smaller	than	nearby	objects.

perspective	divide	The	transformation	applied	to	homogeneous	vectors	to	move
them	from	clip	space	into	normalized	device	coordinates	by	dividing	them
through	by	their	w	components.

pipeline	An	object	representing	the	state	of	a	large	part	of	the	device	that	is	used
to	execute	work.

pixel	Condensed	from	the	words	picture	element,	the	smallest	visual	division
available	on	the	computer	screen.	Pixels	are	arranged	in	rows	and	columns
and	are	individually	set	to	the	appropriate	color	to	render	any	given	image.

pixmap	A	2D	array	of	color	values	that	comprise	a	color	image.	Pixmaps	are	so
called	because	each	picture	element	corresponds	to	a	pixel	onscreen.

polygon	A	2D	shape	drawn	with	any	number	of	sides	(but	must	have	at	least
three	sides).

presentation	The	act	of	taking	an	image	and	displaying	it	to	the	user.

primitive	A	group	of	one	or	more	vertices	formed	into	a	geometric	shape	by
Vulkan,	such	as	a	line,	point,	or	triangle.	All	objects	and	scenes	are
composed	of	various	combinations	of	primitives.

primitive	topology	The	arrangement	of	vertices	into	a	single	primitive	or	group
of	primitives.	This	arrangement	includes	points,	lines,	strips,	and	triangles,	as
well	as	adjoined	primives	such	as	line	strips,	triangle	strips,	and	adjacency



primitives.

projection	The	transformation	of	lines,	points,	and	polygons	from	eye
coordinates	to	clipping	coordinates	onscreen.

push	constant	A	uniform	constant	accessible	to	a	shader	that	can	be	updated
directly	from	a	command	buffer	by	calling	vkCmdPushConstants()
without	synchronization,	avoiding	the	need	for	memory	backing	or	barriers
associated	with	the	update	of	small	uniform	buffers.	In	some
implementations,	these	constants	may	be	accelerated	in	hardware.

quadrilateral	A	polygon	with	exactly	four	sides.

query	object	An	object	used	to	retrieve	statistical	data	about	the	operation	of
your	application	as	it	runs	on	the	device.

queue	A	construct	within	a	device	that	can	execute	work,	potentially	in	parallel
with	work	submitted	to	other	queues	on	the	same	device.

queue	family	Queues	with	identical	properties	grouped	into	families	within	a
device.	Queues	within	a	family	are	considered	to	be	compatible,	and
command	buffers	built	for	a	particular	family	may	be	submitted	to	any
member	of	that	family.

race	condition	A	state	in	which	multiple	parallel	processes	such	as	threads	in	a
program	or	invocations	of	a	shader	attempt	to	communicate	or	otherwise
depend	on	one	another	in	some	way,	but	no	ensurance	of	ordering	is
performed.

rasterization	The	process	of	converting	projected	primitives	and	bitmaps	into
pixel	fragments	in	the	framebuffer.

render	The	conversion	of	primitives	in	object	coordinates	to	an	image	in	the
framebuffer.	The	rendering	pipeline	is	the	process	by	which	Vulkan
commands	and	statements	become	pixels	onscreen.

renderpass	An	object	representing	one	or	more	subpasses	over	a	common	set	of
framebuffer	attachments.

sample	A	component	of	a	pixel	or	texel	that,	when	resolved,	will	contribute	to
the	final	output	color.	Sampling	an	image	is	the	process	of	gathering	one	or
more	samples	from	it	and	resolving	that	group	of	samples	to	produce	a	final
color.



scintillation	A	sparkling	or	flashing	effect	produced	on	objects	when	a
nonmipmapped	texture	map	is	applied	to	a	polygon	that	is	significantly
smaller	than	the	size	of	the	texture	being	applied.

scissor	A	fragment	ownership	test	that	rejects	fragments	that	lie	outside	a
window-aligned	rectangle.

semaphore	A	synchronization	primitive	that	can	be	used	to	synchronize	work
executed	by	different	queues	on	a	single	device.

shader	A	small	program	that	is	executed	by	the	graphics	hardware,	often	in
parallel,	to	operate	on	individual	vertices	or	pixels.

single	static	assignment	A	form	of	writing	a	program	in	which	any	variable,
often	represented	as	a	register	for	a	virtual	machine,	is	written	to	or	assigned
only	once.	This	makes	data-flow	resolution	simple	and	facilitates	a	number
of	common	optimizations	in	compilers	and	other	code	generation
applications.

source	color	The	color	of	the	incoming	fragment,	as	opposed	to	the	color
already	present	in	the	color	buffer	(destination	color).	This	term	is	usually
used	to	describe	how	the	source	and	destination	colors	are	combined	during	a
blending	operation.

specification	The	design	document	that	specifies	Vulkan	operation	and	fully
describes	how	an	implementation	must	work.

spline	A	general	term	used	to	describe	any	curve	created	by	placing	control
points	near	the	curve	that	have	a	pulling	effect	on	the	curve’s	shape.	This
effect	is	similar	to	the	reaction	of	a	piece	of	flexible	material	when	pressure
is	applied	at	various	points	along	its	length.

sRGB	Nonlinear	encoding	used	for	image	data	using	a	gamma	curve	that
matches	phosphor-based	CRTs	of	the	late	1990s.

SSA	See	single	static	assignment.

stipple	A	binary	bit	pattern	used	to	mask	out	pixel	generation	in	the	framebuffer.
This	is	similar	to	a	monochrome	bitmap,	but	1D	patterns	are	used	for	lines
and	2D	patterns	are	used	for	polygons.

submission	See	submit.

submit	When	applied	to	work	executed	by	devices,	the	act	of	sending	the	work



in	the	form	of	command	buffers	to	one	of	the	device’s	queues.

subpass	A	single	pass	of	rendering	contained	within	a	renderpass	object.

super	scalar	A	processor	architecture	that	is	capable	of	executing	two	or	more
independent	instructions	at	the	same	time	on	multiple	processor	pipelines,
which	may	or	may	not	have	the	same	capabilities.

supersampling	The	process	of	computing	multiple	color,	depth,	and	stencil
values	for	every	sample	within	a	multisample	image.

surface	An	object	representing	an	output	for	presentation.	This	type	of	object	is
generally	platform-specific	and	is	provided	using	the	VK_KHR_surface
extension.

swap	chain	An	object	representing	a	sequence	of	images	that	can	be	presented
into	a	surface	for	viewing	by	the	user.

tessellation	The	process	of	breaking	down	a	complex	polygon	or	analytic
surface	into	a	mesh	of	convex	polygons.	This	process	can	also	be	applied	to
separate	a	complex	curve	into	a	series	of	less-complex	lines.

tessellation	control	shader	A	shader	that	runs	before	fixed-function	tessellation
occurs.	The	shader	executes	once	per	control	point	in	a	patch	primitive,
producing	tessellation	factors	and	a	new	set	of	control	points	as	an	output
primitive.

tessellation	evaluation	shader	A	shader	that	runs	after	fixed-function
tessellation	occurs.	The	shader	executes	once	per	vertex	generated	by	the
tessellator.

tessellation	shader	A	term	used	to	describe	either	a	tessellation	control	shader
or	a	tessellation	evaluation	shader.

texel	A	texture	element.	A	texel	represents	a	color	from	a	texture	that	is	applied
to	a	pixel	fragment	in	the	framebuffer.

texture	An	image	pattern	of	colors	applied	to	the	surface	of	a	primitive.

texture	mapping	The	process	of	applying	a	texture	image	to	a	surface.	The
surface	does	not	have	to	be	planar	(flat).	Texture	mapping	is	often	used	to
wrap	an	image	around	a	curved	object	or	to	produce	a	patterned	surface,	such
as	wood	or	marble.



transformation	The	manipulation	of	a	coordinate	system.	This	can	include
rotation,	translation,	scaling	(both	uniform	and	nonuniform),	and	perspective
division.

translucence	A	degree	of	transparency	of	an	object.	In	Vulkan,	this	is
represented	by	an	alpha	value	ranging	from	1.0	(opaque)	to	0.0	(transparent).

unified	memory	architecture	A	memory	architecture	in	which	multiple	devices
in	the	system,	such	as	a	Vulkan	device	and	the	host	processor,	have	equal
access	to	a	common	pool	of	memory	rather	than	accessing	physically
segmented	memory.

vector	A	directional	quantity	usually	represented	by	x,	y,	and	z	components.

vertex	A	single	point	in	space.	Except	when	used	for	point	and	line	primitives,
the	term	also	defines	the	point	at	which	two	edges	of	a	polygon	meet.

vertex	buffer	A	buffer	being	used	as	the	source	of	data	for	vertex	shader	inputs.

vertex	shader	A	shader	that	executes	once	per	incoming	vertex.

view	Applied	to	a	resource,	another	object	that	references	the	same	underlying
data	in	a	different	manner	from	the	object	of	which	it	is	a	view,	allowing	that
data	to	be	reinterpreted	or	sectioned	as	required	by	an	application.

viewing	volume	The	area	in	3D	space	that	can	be	viewed	in	the	window.	Objects
and	points	outside	the	viewing	volume	are	clipped	(cannot	be	seen).

viewport	The	area	within	a	window	that	is	used	to	display	a	Vulkan	image.
Usually,	this	area	encompasses	the	entire	client	area.	Stretched	viewports	can
produce	enlarged	or	shrunken	output	within	the	physical	window.

wireframe	The	representation	of	a	solid	object	by	a	mesh	of	lines	rather	than
solid	shaded	polygons.	Wireframe	models	are	usually	rendered	faster	and	can
be	used	to	view	both	the	front	and	back	of	an	object	at	the	same	time.



Index

Enumerations
VkAccessFlagBits,	116,	119
VkBlendFactor,	363
VkBlendOp,	362
VkBorderColor,	221
VkBufferUsageFlagBits,	43
VkColorComponentFlagBits,	263
VkColorSpaceKHR,	145
VkCommandBufferUsageFlagBits,	102
VkCommandPoolCreateFlagBits,	98
VkCompareOp,	222,	261,	342
VkComponentSwizzle,	67
VkCompositeAlphaFlagBitsKHR,	145,	148
VkDescriptorType,	191,	201,	204
VkDisplayPlaneAlphaFlagBitsKHR,	155
VkDynamicState,	264,	265
VkFilter,	216
VkFormat,	50,	231
VkFormatFeatureFlagBits,	45
VkFrontFace,	259
VkImageAspectFlagBits,	68,	130
VkImageCreateFlagBits,	50
VkImageLayout,	53
VkImageTiling,	52
VkImageType,	66,	69
VkImageUsageFlags,	52,	145
VkImageViewType,	66,	70
VkIndexType,	273
VkLogicOp,	263,	357
VkMemoryPropertyFlagBits,	11



VkPipelineStageFlagBits,	113,	119,	379,	380,	397
VkPrimitiveTopology,	251
VkQueryPipelineStatisticFlagBits,	396,	423
VkQueryType,	388
VkQueueFlagBits,	13
VkResult,	162
VkSampleCountFlagBits,	52,	88,	351
VkSamplerMipmapMode,	218
VkShaderStageFlagBits,	213,	214
VkStencilOp,	347
VkSurfaceTransformFlagBitsKHR,	145,	148,	158
VkSurfaceTransformsFlagsKHR,	153
VkSystemAllocationScope,	37

Functions
vkAcquireNextImageKHR,	151,	162
vkAllocateCommandBuffers,	99,	100,	105,	420
vkAllocateDescriptorSets,	201,	202,	208
vkAllocateMemory,	76,	83,	85
vkBeginCommandBuffer,	102,	422
vkBindBufferMemory,	85,	91
vkBindImageMemory,	85,	91
vkCmdBeginQuery,	390,	391,	397
vkCmdBeginRenderPass,	268,	270,	356,	408,	409,	411,	412,	420
vkCmdBindDescriptorSets,	207,	208
vkCmdBindIndexBuffer,	273
vkCmdBindPipeline,	186
vkCmdBindVertexBuffers,	271
vkCmdBlitImage,	133–135
vkCmdClearAttachments,	409–411
vkCmdClearColorImage,	125–127,	411
vkCmdClearDepthStencilImage,	127,	411
vkCmdCopyBuffer,	103–105,	112,	115,	117,	124,	125,	399
vkCmdCopyBufferToImage,	73,	117,	128,	131,	132



vkCmdCopyImage,	115,	117,	131,	132,	134
vkCmdCopyImageToBuffer,	130–132,	399,	400
vkCmdCopyQueryPoolResults,	393,	396
vkCmdDispatchIndirect,	116,	188
vkCmdDispatch,	187,	188
vkCmdDraw,	229,	268,	273,	280–282,	286,	316
vkCmdDrawIndexed,	116,	273,	274,	276,	280,	281,	283,	316
vkCmdDrawIndexedIndirect,	116,	283–285,	317
vkCmdDrawIndirect,	116,	282–286,	317
vkCmdEndQuery,	390,	391,	397
vkCmdEndRenderPass,	270,	408,	420
vkCmdExecuteCommands,	421
vkCmdFillBuffer,	123–125,	284
vkCmdNextSubpass,	408
vkCmdPipelineBarrier,	113,	116,	119,	120
vkCmdPushConstants,	212,	214,	215
vkCmdResetEvent,	379
vkCmdResetQueryPool,	390,	391
vkCmdResolveImage,	355,	356
vkCmdSetBlendConstants,	265,	365
vkCmdSetDepthBias,	265,	346
vkCmdSetDepthBounds,	265,	343
vkCmdSetEvent,	379
vkCmdSetLineWidth,	265,	323
vkCmdSetScissor,	265,	339,	340
vkCmdSetStencilCompareMask,	265,	348
vkCmdSetStencilReference,	265,	348
vkCmdSetStencilWriteMask,	265,	348
vkCmdSetViewport,	265,	333
vkCmdUpdateBuffer,	124,	125
vkCmdWaitEvents,	377,	380
vkCmdWriteTimestamp,	397
vkCreateBufferView,	64,	65



vkCreateBuffer,	42
vkCreateCommandPool,	97–99,	101,	107
vkCreateComputePipelines,	177,	178,	180,	181,	186,	199,	240
vkCreateDescriptorPool,	200,	202,	203
vkCreateDescriptorSetLayout,	190,	194,	199
vkCreateDevice,	16,	18,	96,	285,	309
vkCreateDisplayModeKHR,	157,	158
vkCreateDisplayPlaneSurfaceKHR,	158
vkCreateEvent,	376,	377
vkCreateFence,	368,	369
vkCreateFramebuffer,	238,	239
vkCreateGraphicsPipelines,	181,	240
vkCreateImage,	49
vkCreateImageView,	66
vkCreateInstance,	4,	7,	30,	33,	36,	38
vkCreatePipelineCache,	182
vkCreatePipelineLayout,	194
vkCreateQueryPool,	388,	389
vkCreateRenderPass,	230,	268
vkCreateSampler,	216
vkCreateSemaphore,	381
vkCreateShaderModule,	173–175,	181
vkCreateSwapchainKHR,	143
vkCreateWin32SurfaceKHR,	139,	144
vkCreateXcbSurfaceKHR,	142,	143
vkCreateXlibSurfaceKHR,	141,	144
vkDestroyBuffer,	73
vkDestroyBufferView,	73
vkDestroyCommandPool,	101
vkDestroyDescriptorPool,	203
vkDestroyDescriptorSetLayout,	199
vkDestroyDevice,	33
vkDestroyEvent,	377



vkDestroyFence,	369
vkDestroyFramebuffer,	239
vkDestroyImage,	74
vkDestroyImageView,	74
vkDestroyInstance,	33
vkDestroyPipeline,	181
vkDestroyPipelineCache,	185
vkDestroyPipelineLayout,	199
vkDestroyQueryPool,	389
vkDestroyRenderPass,	237
vkDestroySampler,	224
vkDestroySemaphore,	382
vkDestroyShaderModule,	174
vkDestroySwapchainKHR,	162
vkDeviceWaitIdle,	32,	108,	162
vkEndCommandBuffer,	105
vkEnumerateDeviceExtensionProperties,	30
vkEnumerateDeviceLayerProperties,	26
vkEnumerateInstanceExtensionProperties,	28–30
vkEnumerateInstanceLayerProperties,	25,	26
vkEnumeratePhysicalDevices,	7–9,	14,	34,	38
vkFlushMappedMemoryRanges,	81,	82,	376
vkFreeCommandBuffers,	100,	105
vkFreeDescriptorSets,	202,	203
vkFreeMemory,	77,	78
vkGetBufferMemoryRequirements,	82,	83,	85
vkGetDeviceMemoryCommitment,	78
vkGetDeviceProcAddr,	31,	32
vkGetDeviceQueue,	97
vkGetDisplayModePropertiesKHR,	156,	158
vkGetDisplayPlaneCapabilitiesKHR,	155
vkGetDisplayPlaneSupportedDisplaysKHR,	154
vkGetEventStatus,	378,	379



vkGetFenceStatus,	370,	371
vkGetImageMemoryRequirements,	82,	83,	85
vkGetImageSparseMemoryRequirements,	86
vkGetImageSubresourceLayout,	56,	57
vkGetInstanceProcAddr,	30
vkGetPhysicalDeviceDisplayPlanePropertiesKHR,	154
vkGetPhysicalDeviceDisplayPropertiesKHR,	152
vkGetPhysicalDeviceFeatures,	10,	18,	51,	285,	309,	332,	366
vkGetPhysicalDeviceFormatProperties,	45,	47,	65,	351
vkGetPhysicalDeviceImageFormatProperties,	47,	48,	90,	351,
352
vkGetPhysicalDeviceMemoryProperties,	10,	12,	77
vkGetPhysicalDeviceProperties,	9,	17,	61,	65,	77,	80,	176,	184,
188,	194,	195,	205,	216,	222,	234,	247,	248,	257,	274,	289,	297,	300,	311,
318,	320,	321,	325,	330,	334,	361,	398
vkGetPhysicalDeviceQueueFamilyProperties,	12,	14,	17,	96
vkGetPhysicalDeviceSparseImageFormatProperties,	90,	95
vkGetPhysicalDeviceSurfaceCapabilitiesKHR,	144,	145,	147,
150,	159
vkGetPhysicalDeviceSurfaceFormatsKHR,	150
vkGetPhysicalDeviceSurfaceSupportKHR,	159,	160
vkGetPhysicalDeviceWin32PresentationSupportKHR,	139
vkGetPhysicalDeviceXcbPresentationSupportKHR,	142
vkGetPhysicalDeviceXlibPresentationSupportKHR,	140
vkGetPipelineCacheData,	182,	183,	185,	186
vkGetQueryPoolResults,	391–393,	396
vkGetRenderAreaGranularity,	412
vkGetSwapchainImagesKHR,	148,	149,	151
vkInvalidateMappedMemoryRanges,	82
vkMapMemory,	79–81,	399
vkMergePipelineCaches,	185
vkQueueBindSparse,	91,	94,	384
vkQueuePresentKHR,	161,	162
vkQueueSubmit,	107,	108,	368,	370,	372,	381,	382,	384,	421



vkQueueWaitIdle,	108,	373
vkResetCommandBuffer,	105,	106
vkResetCommandPool,	106
vkResetDescriptorPool,	202,	203
vkResetEvent,	378
vkResetFences,	372
vkSetEvent,	377–379
vkUnmapMemory,	80
vkUpdateDescriptorSets,	203,	206,	207
vkWaitForFences,	370–372

Objects
VkBuffer,	44,	84,	271
VkCommandBuffer,	18,	100,	268,	421
VkCommandBufferAllocateInfo,	99
VkDescriptorPool,	201
VkDescriptorSet,	202,	208
VkDescriptorSetLayout,	194,	195,	202
VkDevice,	18
VkDeviceMemory,	75,	76
VkDisplayModeKHR,	156
VkEvent,	377,	380
VkFence,	370–372
VkFramebuffer,	239
VkImage,	84,	149,	161
VkImageView,	238
VkInstance,	18
VkNullHandle,	238
VkPhysicalDevice,	7,	18,	47
VkPipelineCache,	38,	185
VkPipelineLayout,	194
VkQueue,	18,	97
VkSurface,	141,	152
VkSurfaceKHR,	138,	143,	158



Structures	and	Unions
VkAllocationCallbacks,	36,	37,	65
VkApplicationInfo,	5,	8
VkAttachmentDescription,	231,	409,	413
VkAttachmentReference,	234,	407
VkBindSparseInfo,	89–92,	384
VkBufferCopy,	103,	104
VkBufferCreateInfo,	42–44,	49,	52,	53,	65,	85
VkBufferImageCopy,	128,	131,	132
VkBufferMemoryBarrier,	119
VkBufferViewCreateInfo,	64
VkClearAttachment,	409,	410
VkClearColorValue,	126,	270
VkClearDepthStencilValue,	127,	128,	270
VkClearRect,	410
VkClearValue,	269,	270,	410
VkCommandBufferAllocateInfo,	99,	420
VkCommandBufferBeginInfo,	102,	103
VkCommandBufferInheritanceInfo,	103,	422
VkCommandPoolCreateInfo,	98,	99,	107
VkComponentMapping,	67,	68
VkComputePipelineCreateInfo,	177,	198,	242
VkCopyDescriptorSet,	204,	206
VkDescriptorBufferInfo,	205
VkDescriptorImageInfo,	204
VkDescriptorPoolCreateInfo,	200
VkDescriptorPoolSize,	200,	201
VkDescriptorSetAllocateInfo,	201
VkDescriptorSetCreateInfo,	202
VkDescriptorSetLayoutBinding,	191
VkDescriptorSetLayoutCreateInfo,	190,	305
VkDeviceCreateInfo,	15,	16,	25,	29,	96,	97,	309
VkDeviceQueueCreateInfo,	15,	16,	96,	97



VkDispatchIndirectCommand,	188
VkDisplayModeCreateInfoKHR,	157
VkDisplayModeParametersKHR,	157
VkDisplayModePropertiesKHR,	156
VkDisplayPlaneCapabilitiesKHR,	155
VkDisplayPlanePropertiesKHR,	154
VkDisplayPropertiesKHR,	152,	153
VkDisplaySurfaceCreateInfoKHR,	155,	158
VkDrawIndexedIndirectCommand,	283,	284
VkDrawIndirectCommand,	282,	284
VkEventCreateInfo,	376,	377
VkExtensionProperties,	28,	29
VkExtent2D,	339
VkExtent3D,	48,	50,	134
VkFenceCreateInfo,	369
VkFormatProperties,	45
VkFramebufferCreateInfo,	238,	239
VkGraphicsPipelineCreateInfo,	240–242,	246,	251,	255–257,
260–262,	264,	271,	278,	288,	308,	309,	334,	340
VkImageBlit,	134
VkImageCopy,	131–134
VkImageCreateInfo,	49,	50,	69–71,	77,	85,	351
VkImageFormatProperties,	48,	352
VkImageMemoryBarrier,	120,	121
VkImageResolve,	356
VkImageSubresource,	56,	92
VkImageSubresourceLayers,	129
VkImageSubresourceRange,	68,	121,	126,	127
VkImageViewCreateInfo,	66,	71,	72
VkInstanceCreateInfo,	5,	6,	8,	25,	29
VkLayerProperties,	24,	25
VkMappedMemoryRange,	80,	81
VkMemoryAllocateInfo,	75
VkMemoryBarrier,	116,	119



VkMemoryHeap,	12
VkMemoryRequirements,	82
VkMemoryType,	11,	12
VkOffset2D,	339
VkOffset3D,	134
VkPhysicalDeviceFeatures,	10,	16,	17,	61–63,	285,	288,	309,	321,
330,	344,	366
VkPhysicalDeviceLimits,	10,	13,	16,	51,	65,	76,	79,	176,	188,	194,
195,	205,	215,	216,	222,	234,	239,	247–249,	257,	260,	274,	285,	289,	297,
300,	304,	311,	313,	318,	320–322,	324,	325,	330,	332–334,	352,	361
VkPhysicalDeviceMemoryProperties,	11,	12
VkPhysicalDeviceProperties,	9,	10,	184,	398
VkPhysicalDeviceSparseProperties,	10
VkPipelineCacheCreateInfo,	182
VkPipelineColorBlendAttachmentState,	263,	362
VkPipelineColorBlendStateCreateInfo,	262,	263,	357,	362,	364,
365
VkPipelineDepthStencilCreateInfo,	262
VkPipelineDepthStencilStateCreateInfo,	261,	340–344,	346
VkPipelineDynamicStateCreateInfo,	264,	323,	343,	346,	348,	365
VkPipelineInputAssemblyStateCreateInfo,	251,	255,	278
VkPipelineLayoutCreateInfo,	194,	212
VkPipelineLayout,	194
VkPipelineMultisampleStateCreateInfo,	260,	353,	354
VkPipelineRasterizationStateCreateInfo,	257,	258,	293,	321,
323,	344–346
VkPipelineShaderStageCreateInfo,	177,	178,	242,	309
VkPipelineTessellationStateCreateInfo,	255,	256,	288,	295
VkPipelineVertexInputStateCreateInfo,	246,	247,	271
VkPipelineViewportStateCreateInfo,	256,	257,	333,	334,	338,
340
VkPresentInfoKHR,	161
VkPushConstantRange,	212,	213
VkQueryPoolCreateInfo,	388



VkQueueFamilyProperties,	13,	96
VkRect2D,	257,	338,	339
VkRenderPassBeginInfo,	269,	270,	411
VkRenderPassCreateInfo,	230,	231,	235,	402,	408
VkSamplerCreateInfo,	216,	219,	222
VkSemaphoreCreateInfo,	381
VkShaderModuleCreateInfo,	174
VkSparseBufferMemoryBindInfo,	90,	91
VkSparseImageFormatProperties,	86–89
VkSparseImageMemoryBind,	92,	93
VkSparseImageMemoryBindInfo,	92
VkSparseImageMemoryRequirements,	85–87
VkSparseImageOpaqueMemoryBindInfo,	91
VkSparseMemoryBind,	90,	91
VkSpecializationInfo,	178,	180
VkSpecializationMapEntry,	180
VkStencilOpState,	347
VkSubmitInfo,	90,	107,	382
VkSubpassDependency,	235
VkSubpassDescription,	233,	355,	402,	407,	413
VkSubresourceLayout,	57
VkSurfaceCapabilitiesKHR,	147,	148
VkSurfaceFormatKHR,	150,	151
VkSwapchainCreateInfoKHR,	144,	147,	150
VkVertexInputAttributeDescription,	247–249
VkVertexInputBindingDescription,	246–248
VkViewport,	256,	331–333
VkWin32SurfaceCreateInfoKHR,	140
VkWriteDescriptorSet,	204,	205
VkXcbSurfaceCreateInfoKHR,	142
VkXlibSurfaceCreateInfoKHR,	141

adjacency	primitive,	253
antialiasing,	435



aspect,	68
attachment,	231
color,	117
input,	117

barrier,	113,	380,	393
blending,	361
blit,	133,	135

cache,	119
clip	distance,	324
clipping,	23
command	buffer,	xxii,	97
compute	pipeline,	xxii
compute	shader,	431
cull	distance,	328

depth	fighting,	344
descriptor,	199
device	memory,	19
dispatch,	187
displacement	mapping,	304

event,	xxiii

fence,	xxiii
framebuffer,	237

gamma	correction,	59
graphics	pipeline,	xxii

handle,	7,	18
hazard,	118
helper	invocation,	330,	395
host	memory,	19

index	buffer,	273
indexed	draw,	273,	434



indirect	draw,	282
instance,	229,	280,	435
instancing,	229,	280,	316
invocation,	175

layout,	112
image,	121

layout	qualifier,	292
linked	list,	5

mapping,	78
memory	mapping,	435
mipmap,	121
multisample,	350,	435
multisampling,	231

normalized	device	coordinate,	23,	331

one	hot,	351

perspective	divide,	23
pipeline,	xxii
presentation,	137
primitive,	229
primitive	topology,	251
push	constant,	169,	212,	277

query	object,	388
queue,	xxii
queue	family,	96

renderpass,	102,	230,	430,	439

sample,	215
semaphore,	xxiii
shader,	165
shading	sample	rate,	352
single	static	assignment,	172,	439



specialization	constant,	321
sRGB,	57
SSA,	172
submit,	97,	439
subpass,	230
supersampling,	353
surface,	138
swap	chain,	143

unified	memory	architecture,	75

vertex,	229
vertex	buffer,	271
vertex	shader,	226
view,	63
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