

Early praise for Web Development with ReasonML

By the time of the book’s conclusion, the reader will not only have become familiar
with a new language’s syntax and semantics in isolation, but will have learned
how to integrate it with other familiar tools and frameworks like React and webpack
to build a modest web application. In other words, the reader will walk away armed
not only with a paradigmatic shift in their thinking towards a functional style of
programming, but also with the skills required to put it to practical use in their
daily work.

➤ Arno Bastenhof
Solution Architect, Rabobank

An authoritative and comprehensive introduction to ReasonML. I definitely learned
a lot and look forward to finding excuses to use it in a new application.

➤ Peter Hampton
Senior Software Developer, Citi

Finally, a complete path for learning how to be a functional programmer for the
web with ReasonML and React. The author incrementally builds upon what you’ve
created in the previous chapters. When you complete the book, you’ll have all the
elements needed to start to work with ReasonML by yourself.

➤ Massimiliano Bertinetti
Full-Stack Developer, Softwave Soluzioni e Tecnologie

This is great book for people who want to learn ReasonML properly.

➤ Riza Fahmi
Developer Evangelist, Co-Founder, HACKTIV8

Even though ReasonML is still young, there are already plenty of success stories
of organizations adopting it to become more productive. J. David Eisenberg has
put together the best starter manual on ReasonML. Anyone who wants access to
build more robust web applications using ReasonML’s powerful toolchain should
definitely give this a read.

➤ Lewis Chung
CTO, ShopWith

Web Development with ReasonML
Type-Safe, Functional Programming for JavaScript Developers

J. David Eisenberg

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Andrea Stewart
Copy Editor: Sean Dennis
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-633-4
Book version: P1.0—April 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Contents

Introduction ix

1. Make Your First ReasonML Project 1
Running Your First Program 1
Using Variables and Doing Arithmetic in ReasonML 4
Working with Types 5
Doing Conditional Computation 8
Working with Strings 10
It’s Your Turn 13
Summing Up 13

2. Writing Functions 15
Defining Functions 15
Using Labeled Parameters 17
Providing Default Values for Labeled Parameters 19
Shortening Code with refmt 19
Specifying Parameter Types 21
Writing Functions without Parameters or Return Values 23
Currying: Handling One Argument at a Time 24
Currying and Labeled Parameters 27
It’s Your Turn 28
Summing Up 28

3. Creating Your Own Data Types 29
Renaming a Data Type 30
Creating Variant Data Types 30
Using Variant Data Types 32
Creating Variant Data Types with Parameters 34
It’s Your Turn 36
Using the option Type 37

Working with option Values 40
Working with Belt.Option 41
Using Pipe First 44
It’s Your Turn 45
Getting Another Perspective 45
Summing Up 46

4. Interacting with Web Pages 47
Creating an Example Web Page 47
Setting Up the Project 48
Accessing the DOM 49
Building the Web Bundle 51
Completing the Calculation 52
Getting a Value 53
It’s Your Turn 56
Reviewing DOM Functions 58
Summing Up 59

5. Using Collections 61
Accessing Functions in Other Files 61
Grouping Heterogeneous Data with Tuples 63
Using Lists 64
Manipulating Lists with Belt.List 65
Using map(), keep(), and reduce() with Lists 68
Interlude: Displaying Lists 73
Using Arrays 75
Using map(), keep(), and reduce() with Arrays 78
Putting Arrays to Work 78
It’s Your Turn 86
Summing Up 87

6. Repeating with Recursion 89
Defining Recursion 89
Analyzing a Recursive Algorithm 90
Writing Recursive Functions 91
Interlude: Measuring Performance 93
Understanding Tail Recursion 95
Practicing More Recursion 97
Using Recursion with Lists 99
It’s Your Turn 100
Summing Up 101

Contents • vi

7. Structuring Data with Records and Modules 103
Specifying Records 103
Accessing and Updating Records 105
Creating Modules 105
Creating Interface Files for Modules 108
Putting Modules to Work 110
It’s Your Turn 116
Summing Up 118

8. Connecting to JavaScript 119
Adding Raw JavaScript 119
Binding to Existing Functions 120
Interoperating with Data Types 122
Interoperating with Objects 123
It’s Your Turn 125
Working with JSON 126
Setting Up the Server 129
Implementing the Client 133
It’s Your Turn 137
Summing Up 139

9. Making Applications with Reason/React 141
Viewing React from 20,000 Meters 141
Starting a ReasonReact Project 142
Investigating the Sample Project 144
Creating a More Complex Stateless Component 146
It’s Your Turn 150
Using Stateful Components 151
Putting Components Together 152
It’s Your Turn 160
Adding Side Effects with Storage 161
It’s Your Turn 166
Summing Up 166

A1. Understanding the ReasonML Ecosystem 169
In the Beginning was OCaml 170
Enter ReasonML 170
A Non-Unified Ecosystem 171
Summing Up 171

Contents • vii

A2. Miscellaneous Topics 173
Switching to fun 173
Using open 174
Using Belt.Map.update() 175
Dangerous Interop 177
Hiding Type Information 178

Index 181

Contents • viii

Introduction
JavaScript has taken its place as a major programming language. It seems
to be everywhere, has a large, flourishing ecosystem, and works both client-
and server-side. It has effectively become a lingua franca for the Web. At the
same time that JavaScript has grown, two trends in programming have grown
in popularity for front-end web development: functional programming and
static typing. Functional programming helps you avoid the problems that
come with mutable data and mutable global state. Static typing moves many
programming errors from runtime to compile time so your program’s users
never encounter them.

The result of this convergence has been the creation of functional programming
libraries such as Lodash,1 tools like Flow2 that help with static typing, and
functional, statically typed languages that compile to JavaScript, such as
TypeScript,3 PureScript,4 Elm,5 and ReasonML.6

What Makes ReasonML Special?
With all these choices, why choose ReasonML? First, ReasonML is not a new
language that compiles to JavaScript. Rather, it is a new syntax for OCaml,
an established language used in industry for over 20 years. With ReasonML,
you get OCaml’s strong static-type system with an excellent type inference
engine as well as its features for functional programming with immutable
variables.

For those times when you need to break away from the functional world,
ReasonML allows “opt-in side-effect, mutation and object[s] for familiarity &

1. lodash.com/
2. flow.org/
3. www.typescriptlang.org/
4. www.purescript.org/
5. elm-lang.org/
6. reasonml.github.io/

report erratum • discuss

https://lodash.com/
https://flow.org/
https://www.typescriptlang.org/
http://www.purescript.org/
http://elm-lang.org/
https://reasonml.github.io/
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

interop[eration with JavaScript], while keeping the rest of the language pure,
immutable and functional.”7 ReasonML hits the sweet spot between the
purely theoretical world and the laissez-faire approach of JavaScript, but
always with the emphasis on getting things done.

ReasonML’s syntax has been designed to be familiar to JavaScript program-
mers, with features that let you create bindings to existing JavaScript libraries.
The compilation is incredibly fast, and the code ReasonML produces is highly
readable. You aren’t restricted to compiling to JavaScript—because ReasonML
is OCaml, you can also compile to native code.

There are combinations of languages and libraries that give you all these
capabilities, but ReasonML has them all—it’s a “one-stop shop” for your
programming needs, and that’s why it’s special.

What Should You Know?
We’re going to presume that you have some experience programming in
JavaScript. On the client side, you are familiar with HTML and CSS and have
some knowledge of programming the Document Object Model (DOM). It’s useful
but not necessary to have experience with a framework like React or Vue.

What’s in This Book?
In Chapter 1, Make Your First ReasonML Project, on page 1, you’ll learn to
set up your system to compile and run short programs using variables, built-
in data types, and operations on numbers and strings.

Chapter 2, Writing Functions, on page 15 shows you how to write functions
as you learn more about ReasonML’s type inference. You’ll also learn about
currying, which allows you to apply only some of a function’s arguments to
create a new function.

In Chapter 3, Creating Your Own Data Types, on page 29, you’ll be able to
create your own data types which automatically take advantage of ReasonML’s
type inference engine. You’ll also learn about the option data type, which
ensures that your code handles both cases of an operation that may or may
not succeed. This helps you avoid the dreaded null or undefined errors at
run time.

Chapter 4, Interacting with Web Pages, on page 47 will have you creating web
pages that call on ReasonML code. You’ll use the bs-webapi library to directly
manipulate the DOM.

7. reasonml.github.io/docs/en/what-and-why.html

Introduction • x

report erratum • discuss

https://reasonml.github.io/docs/en/what-and-why.html
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

In Chapter 5, Using Collections, on page 61, you’ll work with tuples, lists,
and arrays, and find out how to use the map(), keep(), and reduce() functions to
transform the data in these collections without needing loops.

While map(), keep(), and reduce() are powerful and useful, sometimes you need
to customize the iteration through a collection. In Chapter 6, Repeating with
Recursion, on page 89, you will see how recursion lets you do this customiza-
tion quite elegantly. You will also find out how the use of a technique called
tail recursion lets ReasonML optimize the JavaScript it produces for best
performance.

In Chapter 7, Structuring Data with Records and Modules, on page 103, you’ll
learn to construct data types with multiple fields and values, much like (but
not identical to) JavaScript objects. You’ll also explore how the use of modules
lets you avoid name collisions between fields of different record types.

Chapter 8, Connecting to JavaScript, on page 119 returns to the world of
JavaScript, showing you how to write bindings to existing JavaScript libraries
so that they can be used in your ReasonML code. This is where you’ll see how
to deal with JavaScript objects.

Continuing further into JavaScript, Chapter 9, Making Applications with
Reason/React, on page 141 shows you how to use the React framework with
ReasonML to build a basic single-page web application. You’ll see that Rea-
sonML has been designed to integrate well with React.

Acknowledgments
Thanks to Andrea Stewart, a great editor.

Thanks also to the people who contributed to OpenClipArt.org:8

• Cell phone in Chapter 2, Writing Functions, on page 15 by user lifein-
colour, keypad by user Startright

• Icons in Chapter 9, Making Applications with Reason/React, on page 141
by user sixsixfive

• Animal drawings by users scout, deb53, juhele, and davidblyons

• Graphics for recursive drawing in Chapter 6, Repeating with Recursion,
on page 89 by users Arvin61r58, DooFi, Firkin, gnokii, and tomas_arad

Special thanks to the technical reviewers who made many useful and insightful
suggestions: Arno Bastenhof, Massimiliano Bertinetti, Eduard Bondarenko,

8. openclipart.org/

report erratum • discuss

Acknowledgments • xi

https://openclipart.org/
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Lewis Chung, Sam Elliott, Riza Fahmi, Avi Goel, Peter Hampton, Luca Mezza-
lira, Nick McGinness, António Monteiro, Khoa Nguyen, Carmelo Piccione,
Kristof Semjen, and Gianluigi Spagnuolo. Thanks go to all the people who
noted errata in the beta versions of this book, especially Peer Reynders for
his many excellent comments. Also, thanks to the people in the Discord chat
rooms who answered my many naïve questions.

Online Resources
You can download all the example source code for this book from its Pragmatic
Bookshelf website.9 You can also provide feedback by submitting errata entries.

If you’re reading the book in PDF form, you can click the link above a code
listing to view or download the specific examples.

Ready to get started? Great—let’s begin.

9. pragprog.com/book/reasonml/

Introduction • xii

report erratum • discuss

https://pragprog.com/book/reasonml/
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

CHAPTER 1

Make Your First ReasonML Project
This is the introductory chapter and, as with most such chapters, its main
purpose is to give you a quick start with ReasonML and let you become
comfortable with editing, compiling, and running ReasonML programs. The
programs themselves are of limited interest—there’s only so much charm in
the phrase “Hello, world,” and doing simple arithmetic isn’t particularly
exciting.

On the other hand, the things you’ll learn from these programs are quite
interesting. In the process of writing programs that use variables and opera-
tions on numbers and strings, we’ll introduce you to one of ReasonML’s main
features: its type system. You’ll see how ReasonML automatically ensures at
compile time that operators work only with operands of the proper type. This
makes it easier to write robust code, because type errors which would have
happened at runtime are now caught before your program even has an
opportunity to run. You’ll also learn how to annotate your programs to make
the typing explicit. Let’s get started.

Running Your First Program
In this first section, we’ll go through the steps involved in installing ReasonML,
creating a project, and building and running the code.

Installing ReasonML
The ReasonML compiler takes your code and translates it to OCaml’s abstract
syntax tree (AST)—the intermediate stage of compilation. The AST code can
be compiled into native code or JavaScript. In this book, we’re focusing on
JavaScript. The task of translating to JavaScript is handled by the Buckle-
Script compiler, which produces (surprisingly readable) JavaScript code. You
can get ReasonML and BuckleScript by installing bs-platform (the bs in bs-platform

report erratum • discuss

http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

stands for BuckleScript), and the easiest way to do this is to use a package
manager like npm1 or Yarn.2 In either case, you will need to have Node.js®3

(which comes with npm).

npm install -g bs-platform

or

yarn global add bs-platform

bs-platform and a plain old text editor is enough to get you going, but you’d do
well to visit reasonml.github.io/docs/en/installation and follow the instructions there
to get tools and plugins for whichever editor you’re currently using. This will
make your life ever so much easier.

The ReasonML Ecosystem

In case you are wondering what OCaml and BuckleScript are and
what they’re doing in a book about ReasonML, you’ll find the
answer in Appendix 1, Understanding the ReasonML Ecosystem,
on page 169.

Creating a Project
Create a directory for your projects and a new project named first-project with
commands like these:

you@computer:~> mkdir book-projects
you@computer:~> cd book-projects
you@computer:~/book-projects> bsb -init first-project -theme basic-reason
Making directory first-project
Symlink bs-platform in /home/you/book-projects/first-project
you@computer:~/book-projects>

The -theme option creates a template for a basic ReasonML program. The
directory created by -init will look like this:

first-project
├── bsconfig.json
├── node_modules
│ └── bs-platform -> /path/to/.node/lib/node_modules/bs-platform
├── package.json
├── README.md
└── src

└── Demo.re

1. www.npmjs.com/get-npm
2. yarnpkg.com/en/docs/install
3. nodejs.org/en/

Chapter 1. Make Your First ReasonML Project • 2

report erratum • discuss

https://reasonml.github.io/docs/en/installation
https://www.npmjs.com/get-npm
https://yarnpkg.com/en/docs/install
https://nodejs.org/en/
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

File bsconfig.json contains configuration information about our project. It will
become important later on. bs-platform is a symbolic link to the global bs-platform
that we installed earlier. File package.json contains information that npm uses.
README.md contains a standard set of instructions about building and running
the program. The pièce de résistance is Demo.re, which, at this point, contains:

Js.log("Hello, BuckleScript and Reason!");

Yes, it’s the infamous “Hello, world!” example, customized for ReasonML.
There are things to be gleaned from even this short example:

• By convention, ReasonML uses the .re extension to indicate a ReasonML
source file.

• The Js.log() function writes to your terminal (in Node) and to the web console
for web apps.

• Strings are enclosed in double quotes. Unlike JavaScript, you can’t use
single quotes—we’ll cover that in more detail in Working with Strings, on
page 10.

• ReasonML requires a semicolon at the end of a statement to separate it
from the next one. Here, we have only one statement, so we could omit
this semicolon. But it doesn’t hurt to keep it.

You can change the file name if you wish. For now, we’ll keep it as it is. You
can also add as many other .re files as you wish in your src directory. We’ll
discuss this further in Chapter 7, Structuring Data with Records and Modules,
on page 103.

Building and Running the Program
Now let’s build the project. We have to be in the project directory, so our first
command will be to change to that directory. If you want to build the project
one time only, do npm run build. If you want to set things up to rebuild your
project every time you change the source file, do npm run start. Here’s what npm
run build looks like. The command invokes the bsb (BuckleScript build) program:

you@computer:~/book_projects> cd first_project
you@computer:~/book_projects/first_project> npm run build

> first-project@0.1.0 build /home/you/book-projects/first-project
> bsb -make-world

ninja: Entering directory `lib/bs'
[3/3] Building src/Demo.mlast.d
[1/1] Building src/Demo-Firstproject.cmj

If you’re using Yarn, you build the code with the command yarn build.

report erratum • discuss

Running Your First Program • 3

http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

This creates a JavaScript file named Demo.bs.js in the src directory. Then, in
the same terminal window (or a different one if you’re using npm run start), run
the program:

you@computer:~/book-projects/first-project> node src/Demo.bs.js
Hello, BuckleScript and Reason!

Using Variables and Doing Arithmetic in ReasonML
Now that you know your way around compiling and running a program, let’s
create a program that uses variables and performs calculations. Specifically,
we’ll write a program that calculates a total price, given a quantity and per-
unit price. From this point on, we’ll be using examples from the code samples
accompanying this book, downloadable from the Pragmatic Programmers
website.

first-project/src/TotalPrice.re
let qty = 7;
let price = 15;
let total = qty * price;
Js.log2("The total price is $", total);

This code introduces variables. Variable names in ReasonML, like those in
many other programming languages, must begin with a lowercase letter and
may be followed by letters, digits, single quotes, and underscores. Variable
names are case-sensitive.

Different from variables in other languages, where a variable is a reference to
a location in memory where the data resides and can be modified at will,
variables in ReasonML more closely resemble variables in algebra. In algebra,
when you say x = 6, this binds the symbol x to the value 6. Wherever you
have a 6, you can substitute x. Wherever you have x, you can substitute 6.
You can’t just change your mind in the middle of a proof and say x = 7.

Similarly, ReasonML variables are immutable. Once you bind a symbol to a
value, you can’t change it. To make the difference from other programming
languages clear, this book uses bind instead of set or assign.

It is possible to write code like this:

let x = 6;
let x = 7;
Js.log(x);

This code won’t generate any errors and will output a 7. Are we confused
about immutable variables? Nope. When we write let x = 7; ReasonML creates

Chapter 1. Make Your First ReasonML Project • 4

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/first-project/src/TotalPrice.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

a new binding of the same name x, which shadows the previous binding
(which is no longer accessible). There are places where shadowing a variable
can lead to more readable code, but using it to simulate mutability is con-
sidered to be very bad practice. Don’t do it! ReasonML is designed to work
well with immutable variables. (We’ll investigate how to do mutability cor-
rectly—when you absolutely need it—in Working with Mutable Variables,
on page 137.)

In our example code, the symbol qty is bound to the value 7, price to 15, and
total to whatever qty * price works out to.

The Js.log2() function writes the values of its arguments to the console. There
are Js.log3() and Js.log4() as well. ReasonML doesn’t have functions with a non-
fixed number of arguments, so we need these functions when we want to
write two, three, or four items to the console. When we run the program, we
get this:

you@computer:/path/to/code/first-project> node src/TotalPrice.bs.js
The total price is $ 105

Instead of using Js.log2(), why didn’t we write something similar to what we
would do in JavaScript:

Js.log("The total price is $" ++ total);

Two reasons: First, we haven’t gotten to Working with Strings, on page 10 to
discuss string concatenation with ++. And second, we’re attempting to con-
catenate a string and an integer. In JavaScript, "The total price is $" + total auto-
matically converts the integer to a string. ReasonML doesn’t—it’s very partic-
ular about making sure that operators are only used with operands of the
correct types. This helps avoid the unpleasant surprises you can get in a
dynamically typed language when you give an operand of the wrong type and
the system “helpfully” does a conversion for you when the program runs.

Working with Types
To see an example of ReasonML’s attention to detail about types, let’s modify
the preceding price calculation program to handle prices that aren’t integers,
such as $14.50. If we change the code to read:

let qty = 7;
let price = 14.50;
let total = qty * price;
Js.log2("The total price is $", total);

report erratum • discuss

Working with Types • 5

http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

We get this compile error:

We've found a bug for you!
/path/to/code/first-project/src/FloatPrice.re 3:19-23

1 │ let qty = 7;
2 │ let price = 14.50;
3 │ let total = qty * price;
4 │ Js.log2("The total price is $", total);

This has type:
float

But somewhere wanted:
int

You can convert a float to a int with int_of_float.
If this is a literal, you want a number without a trailing dot (e.g. 20).

The 3:19-23 in the error message means that the error is in line 3, characters
19 through 23. On your terminal, you’ll see that part of the line highlighted
in the section of code following the error message.

ReasonML is a typed language, and its type inference engine has figured out
that we’re trying to multiply an integer by a float. But why is it insisting that
we convert the float value 14.50 to an integer? Because we used the * operator,
which is the integer multiplication operator. If we want to multiply floats, we
need the *. operator. This is as good a time as any to give a summary of the
integer and floating point arithmetic operators:

FloatIntegerOperation

+.+Addition

-.-Subtraction

*.*Multiplication

/./Division

modRemainder

**Exponentiation

We want to multiply by 14.50, so we must use the *. operator, and both
operands must be float.

first-project/src/FloatPrice.re
let qty = 7.0;
let price = 14.50;
let total = qty *. price;
Js.log2("The total price is $", total);

Chapter 1. Make Your First ReasonML Project • 6

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/first-project/src/FloatPrice.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

That produces this output:

you@computer:/path/to/code/first-project> node src/FloatPrice.bs.js
The total price is $ 101.5

Converting and Annotating Types
The error message we received in the preceding program was You can convert a
float to a int with int_of_float. int_of_float is one of several data type conversion func-
tions built into ReasonML. They were originally from BuckleScript/OCaml,
so underscores are used to separate the words. THus, int_of_float(14.50) returns
the integer 14. The decimal part is truncated—int_of_float(14.99) also returns
14. float_of_int(7) will convert its integer argument to 7.0.

Naming Variables

The naming convention from OCaml and BuckleScript is to use
underscores to separate words in a multi-word variable name. The
naming convention for ReasonML follows the JavaScript lower
camel case convention where each word is capitalized. In OCaml
or BuckleScript, you might see a variable named age_in_years. In
ReasonML, you’d write it as ageInYears. Again, this is the convention.
If you decide to use underscores in ReasonML, the compiler won’t
complain. We can’t make any promises about the people who read
your code, though.

ReasonML does a very good job of figuring out your data types. You can add
type specifications when you bind a variable by following its name with a
colon and its data type. In this fully annotated version of the price program,
we have returned qty to an integer and used float_of_int() to convert it for the
multiplication:

first-project/src/TypedPrice.re
let qty: int = 7;
let price: float = 14.50;
let total: float = float_of_int(qty) *. price;
Js.log2("The total price is $", total);

But just because you can do something doesn’t mean you should. Program-
mers rarely give explicit type annotations to individual variables in ReasonML
code. In this book, you’ll occasionally see variables explicitly typed in order
to make a point clear. It’s more common to see function definitions annotated,
as described on page 22.

report erratum • discuss

Working with Types • 7

http://media.pragprog.com/titles/reasonml/code/first-project/src/TypedPrice.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

More About Math
The sqrt() function, and trigonometric functions such as sin(), cos(), and tan(),
are available directly through the automatically imported Pervasives module.4

That lets us write things like this:

let result = sqrt(abs_float(-3.75));

For any functions or constants that aren’t available in Pervasives, you can
access JavaScript’s Math methods via the Js.Math library:5

let r = 7.0;
let area = Js.Math._PI *. r *. r;

Why the Underscore?

In ReasonML, if a name begins with a lowercase letter or
underscore, it’s a variable. If it begins with an uppercase letter,
it’s a module name. The authors of the Js.Math module wanted
to use the famliar convention of using all capital letters for
constants like PI and E. This required putting in the leading
underscore to allow ReasonML to parse these constants as
variable bindings.

If you’re compiling ReasonML to native code, the Js.Math module isn’t available
to you. You’ll have to to stick with Pervasives, as they’re built into OCaml.

Doing Conditional Computation
Let’s add a bit of complexity to our price calculator: discounts. If you order
fewer than ten items, you get a 5% discount. Otherwise, you get a 10% dis-
count. We want the program to:

1. Calculate the total price.

2. Calculate the appropriate discount rate.

3. Calculate the cost with and without discount.

4. Print both, properly labeled.

Step 2 requires us to use an if/else expression:

4. reasonml.github.io/api/Pervasives.html
5. bucklescript.github.io/bucklescript/api/Js.Math.html

Chapter 1. Make Your First ReasonML Project • 8

report erratum • discuss

https://reasonml.github.io/api/Pervasives.html
https://bucklescript.github.io/bucklescript/api/Js.Math.html
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

first-project/src/DiscountPrice.re
let discount =

if (qty < 10) {
0.05;

} else {
0.10;

};

In ReasonML, the if keyword introduces an expression, not a statement. This
crucial difference means you can bind the result of an if expression to a variable.
It also means you must provide an else clause, and the results of both clauses
must be of the same type. The following two if expressions will cause compile
errors. We’re also introducing ReasonML comments, enclosed in /* and */.

/* Missing else clause */
let bad1 = if (qty < 10) { 0.05; };

/* if yields integer; else yields float */
let bad2 = if (qty < 10) {

0;
} else {

0.05;
};

The Case of the Missing else Keyword

In actuality, if you leave out the else clause, as in:

let bad1 = if (qty < 10) { 0.05; }

ReasonML provides one for you, yielding a special value known
as unit, which we will see more of when we discuss writing func-
tions on page 19. The preceding code is the same as:

let bad1 = if (qty < 10) {
0.05

} else {
()

}

The compiler will complain with a type error, because float and unit
are not the same type.

Even when your if clause yields unit, don’t leave out the else clause
because ReasonML programmers always expect to see it.

report erratum • discuss

Doing Conditional Computation • 9

http://media.pragprog.com/titles/reasonml/code/first-project/src/DiscountPrice.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Here’s the complete discounted price program:

first-project/src/DiscountPrice.re
let qty = 7;

let price = 14.50;

let discount =
if (qty < 10) {

0.05;
} else {

0.10;
};

let total = float_of_int(qty) *. price;

let afterDiscount = total *. (1.0 -. discount);

Js.log2("Price before discount: $", total);
Js.log2("Price after discount: $", afterDiscount);

And its output:

> node src/DiscountPrice.bs.js
Price before discount: $ 101.5
Price after discount: $ 96.425

Along with the less than operator <, ReasonML supports the comparison
operators <=, >, >=, ==, and !=.

All these operators yield values of type bool, which has two possible values:
true and false. Operations on bool values are && (and), || (or), and ! (not).

If you have a simple if/else, such as the one in the discount program, you can
use the ternary operator instead. It does the same thing as if/else, but you
don’t have to type as much:

let discount = (qty < 10) ? 0.05 : 0.10;

Working with Strings
The last data type we’ll take up in this introduction is strings. Multi-character
strings are enclosed in double quotes, and the ++ operator concatenates
strings. Consider this statement:

let str = "door" ++ "bell"; /* binds value "doorbell" to variable str */

Back in the discussion of output for the program on page 5, we noted that
code such as the example below doesn’t compile properly because ++ requires

Chapter 1. Make Your First ReasonML Project • 10

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/first-project/src/DiscountPrice.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

both its operands to be strings. The variable total is float, and the compiler
will complain bitterly:

let total = float_of_int(qty) *. price;

let afterDiscount = total *. (1.0 -. discount);

Js.log("Price before discount: $" ++ total ++ ".");
Js.log("Price after discount: $" ++ afterDiscount ++ ".");

We've found a bug for you!
/path/to/code/first-project/src/BadConcatDiscount.re 17:38-42

15 │ let afterDiscount = total *. (1.0 -. discount);
16 │
17 │ Js.log("Price before discount: $" ++ total ++ ".");
18 │ Js.log("Price after discount: $" ++ afterDiscount ++ ".");

This has type:
float

But somewhere wanted:
string

You can convert a float to a string with string_of_float.

With our newfound knowledge of ReasonML’s type system, the last line of the
error message tells us exactly how to fix the problem by using string_of_float()
to convert the float to a string (there’s also a string_of_int() function for converting
integers to strings):

first-project/src/ConcatDiscount.re
Js.log("Price before discount: $" ++ string_of_float(total) ++ ".");
Js.log("Price after discount: $" ++ string_of_float(afterDiscount) ++ ".");

This produces the desired output:

> node src/ConcatDiscount.bs.js
Price before discount: $101.5.
Price after discount: $96.425.

Characters vs. Strings

ReasonML also has character variables that contain exactly one
character enclosed in single quotes:

let ch = 'Y';

This data type isn’t commonly used in ReasonML programs
because JavaScript, which is the most common target language
for ReasonML, doesn’t distinguish between one-character and
multi-character strings.

report erratum • discuss

Working with Strings • 11

http://media.pragprog.com/titles/reasonml/code/first-project/src/ConcatDiscount.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

ReasonML provides many functions in the Js.String library.6 These functions
correspond to the JavaScript String functions.7 Here are a few of the function
calls, using a string variable str:

ReasonMLJavaScript

Js.String.length(str)str.length
Js.String.toUpperCase(str)str.toUpperCase
Js.String.indexOf("Reason", str)str.indexOf("Reason")

Working with Unicode
Let’s translate the price program to French and run it:

first-project/src/BadUnicode.re
let qty = 7;

let price = 14.50;

let discount =
if (qty < 10) {

0.05;
} else {

0.10;
};

let total = float_of_int(qty) *. price;

let afterDiscount = total *. (1.0 -. discount);

Js.log("Prix avant réduction: " ++ string_of_float(total)
++ " €");

Js.log("Prix après réduction: " ++ string_of_float(afterDiscount)
++ " €");

> node src/BadUnicode.bs.js
Prix avant rÃ©duction: 101.5â ¬
Prix aprÃ¨s rÃ©duction: 96.425â ¬

The output isn’t what we expected. In ReasonML, strings in double quotes
are evaluated as ASCII, whereas JavaScript evaluates them as Unicode. The
solution is to use the delimiters {js|...|js} that tell ReasonML to evaluate the
strings as Unicode:

first-project/src/Unicode.re
Js.log({js|Prix avant réduction: |js} ++ string_of_float(total)

++ {js| €|js});
Js.log({js|Prix après réduction: |js} ++ string_of_float(afterDiscount)

++ {js| €|js});

6. bucklescript.github.io/bucklescript/api/Js.String.html
7. developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

Chapter 1. Make Your First ReasonML Project • 12

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/first-project/src/BadUnicode.re
http://media.pragprog.com/titles/reasonml/code/first-project/src/Unicode.re
https://bucklescript.github.io/bucklescript/api/Js.String.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

> node src/Unicode.bs.js
Prix avant réduction: 101.5 €
Prix après réduction: 96.425 €

And voilà—we get the output we want. The {js|...|js} notation also allows multi-
line strings:

first-project/src/Poem.re
let poem = {js|The boy stood on the burning deck,

Whence all but he had fled;
The flames that lit the battle’s wreck...|js};

Js.log(poem);

We can also interpolate variables into a string by using the {j|...|j} notation
with a $ before variable names to be interpolated:

first-project/src/Interpolation.re
Js.log({j|Prix avant réduction: $total €|j});
Js.log({j|Prix après réduction: $afterDiscount €|j});

It’s Your Turn
Write a program that calculates wind chill. Given an air temperature T in
degrees Celsius and a wind velocity V in kilometers per hour, the formula is:
13.12 + (0.6215 · T)−(11.37 · V 0.16) + (0.3965 · T · V 0.16). Make sure you label your
output properly. For example:

At temperature 5 degrees C and wind speed 20 km/hr,
the wind chill temperature is 1.0669572525115663.

You will need to explicitly bind the values for your temperature and wind
speed variables, since we have not discussed how to get user input. That is
in Chapter 4, Interacting with Web Pages, on page 47. You can see a solution
at code/first-project/src/WindChill.re.

Summing Up
Congratulations! You now know how to write, compile, and run simple Rea-
sonML programs. You’ve learned how to work with numbers, perform condi-
tional operations, and output strings. You’ve also seen how ReasonML’s type
system keeps you from accidentally mixing types.

In the next chapter, we will look at one of the most important concepts in
ReasonML: functions.

report erratum • discuss

It’s Your Turn • 13

http://media.pragprog.com/titles/reasonml/code/first-project/src/Poem.re
http://media.pragprog.com/titles/reasonml/code/first-project/src/Interpolation.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

CHAPTER 2

Writing Functions
ReasonML is a functional programming language, which allows you to take
advantage of the many benefits of that programming style. Pure functions
(functions that have no side effects) make debugging and testing easier. You
never have to worry about your function changing some global state, which,
in turn, makes things like concurrent and asynchronous code much easier
to write.

This chapter is concerned mostly with the mechanics of writing functions.
We’ll look at syntax shortcuts and labeled parameters that let you specify
arguments by name rather than order. We’ll also discuss how ReasonML’s
type inference automatically checks that our functions’ parameters and results
have the right types. Though, as you’ll see, function annotations let you
explicitly describe the types required for parameters and return values.

ReasonML’s functions share the same purpose as functions in other languages
—allowing you to write more modular, reusable code. As in JavaScript, functions
in ReasonML are first class. You can pass a function as an argument to another
function, and you can write a function that returns a new function as its result.
This last ability produces the superpower of currying, which lets you create a
new function by applying only some of a function’s arguments. Together, first-
class functions and currying let you write much more flexible code.

Defining Functions
Let’s jump right in and define a function that takes the average of two floating-
point numbers and binds that function to the symbol avg:

functions/src/Functions.re
let avg = (a, b) => {

(a +. b) /. 2.0;
};

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/functions/src/Functions.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

A function definition begins with the parameters in parentheses, followed by
a thick arrow =>, then the body of the function enclosed in braces. The last
expression in the braces (in this case, the only expression) is the function’s
return value.

Once you have avg() defined, you can call the function in your code. In fact,
ReasonML requires you to define your functions before you use them:

functions/src/Functions.re
let result = avg(3.0, 4.5);
Js.log(result);

And here it is in action:

code/functions> bsb -make-world
ninja: Entering directory `lib/bs'
[3/3] Building src/Functions.mlast.d
[1/1] Building src/Functions-Simplefunctions.cmj
code/functions> node src/Functions.bs.js
3.75

Let’s write a more complex function to find the monthly payment on a loan
using this formula:

payment = p ·
r (1 + r)n

(1 + r)n−1

Where p is the principal, r is the monthly interest rate, and n is the number
of months of the loan. Ordinarily, you’d see the interest rate of a loan quoted
as an annual percentage rate (APR) and a number of years. So our function
will have to do a bit of work:

functions/src/Functions.re
let payment = (principal, apr, years) => {

let r = (apr /. 12.0) /. 100.0;
let n = float_of_int(years * 12);
let powerTerm = (1.0 +. r) ** n;
principal *. (r *. powerTerm) /. (powerTerm -. 1.0);

};

let amount = payment(10000.0, 5.0, 30);
Js.log2("Amount per month: $", amount);

Let’s go through this function line by line. The first line binds the variable
payment to a function with three parameters: principal, apr, and years.

Chapter 2. Writing Functions • 16

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/functions/src/Functions.re
http://media.pragprog.com/titles/reasonml/code/functions/src/Functions.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

The next three lines bind local variables. The rate r is a monthly rate as a
decimal, so we need to divide the annual percentage rate by 12 to convert
years to months, and by 100 to convert from percent to decimal.

Since payments are monthly, n is bound to years * 12. n is used with the **
operator, which requires floats. That’s why we used float_of_int().

The last variable, powerTerm, is just for convenience, so we do not have to write
(1.0 +. r) ** n twice when evaluating the result, which is in the last line of the
function. The last expression evaluated in a function is its return value, so
there’s no need to bind it to a variable and use a return statement as you might
need in other programming languages.

Compiling and running gives us this output (with the output of the compiler
and the result of the avg() call omitted):

code/functions> node src/Functions.bs.js
Amount per month: $ 53.68216230121382

That output leaves something to be desired—we really want to display two
decimal places. We’ll use JavaScript’s toFixedWithPrecision() method from the
Js.Float module.

functions/src/Functions.re
Js.log2("Amount per month: $",

Js.Float.toFixedWithPrecision(amount, ~digits=2));

Here’s what the output looks like when we run it again (showing only the new
output):

code/functions> node src/Functions.bs.js
Amount per month: $ 53.68

There’s something new in the call: ~digits=2. This is a labeled parameter, so
let’s address that topic right now.

Using Labeled Parameters
The authors of toFixedWithPrecision() wanted you to be able to use that function
without ever having to remember whether the number of digits was the first
or the last parameter. Similarly, there is nothing wrong with the payment()
function, but it would be nice if people using it did not have to remember
the order of the parameters. ReasonML lets you label parameters by preceding

report erratum • discuss

Using Labeled Parameters • 17

http://media.pragprog.com/titles/reasonml/code/functions/src/Functions.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

the parameter names with the ~ character. Here’s the payment() function with
labeled parameters:

functions/src/LabeledParams.re
let payment = (~principal, ~apr, ~years) => {

let r = apr /. 12.0 /. 100.0;
let n = float_of_int(years * 12);
let powerTerm = (1.0 +. r) ** n;
principal *. (r *. powerTerm) /. (powerTerm -. 1.0);

};

While you can still call the function without using the labels:

let amount = payment(10000.0, 5.0, 30);

The compiler will give you a warning:

code/functions/src/LabeledParams.re 11:14-20

10 │
11 │ let amount = payment(10000.0, 5.0, 30);
12 │

labels were omitted in the application of this function.

To avoid the warning, you label the arguments, which you can then specify
in any order:

functions/src/LabeledParams.re
let amount = payment(~principal=10000.0, ~apr=5.0, ~years=30);
Js.log2("Amount per month for loan 1: $",

Js_float.toFixedWithPrecision(amount, ~digits=2));

let amount2 = payment(~apr=7.5, ~years=15, ~principal=25000.0);
Js.log2("Amount per month for loan 2: $",

Js_float.toFixedWithPrecision(amount2, ~digits=2));

code/functions> node src/LabeledParams.bs.js
Amount per month for loan 1: $ 53.68
Amount per month for loan 2: $ 231.75

Labeled parameters can also have aliases. If, for example, you’re a purist and
want to use the name p in the last step of the formula while still providing
the name principal to your users, you could rewrite the function like this:

let payment = (~principal as p, ~apr, ~years) => {➤

let r = apr /. 12.0 /. 100.0;
let n = float_of_int(years * 12);
let powerTerm = (1.0 +. r) ** n;
p *. (r *. powerTerm) /. (powerTerm -. 1.0); /* using p here */➤

};

Chapter 2. Writing Functions • 18

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/functions/src/LabeledParams.re
http://media.pragprog.com/titles/reasonml/code/functions/src/LabeledParams.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Behind the Scenes

In fact, what we did in the first line is un-sugaring! This code:

let payment = (~principal, ~apr, ~years)

is syntactic sugar for the following—and aren’t you glad you don’t
have to type it out every time you use labeled parameters?

let payment = (~principal as principal, ~apr as apr,
~years as years)

Providing Default Values for Labeled Parameters
In the United States, the standard for mortgages is a 30-year loan. If the
majority of our users are in the US, we might want to provide a default of 30
for years. In order to provide default values, we need to have at least one
unlabeled parameter because of the way ReasonML does currying, as described
on page 27. All our parameters are labeled, so we’ll add a special parameter
() called unit as an unlabeled, do-nothing parameter:

functions/src/DefaultParams.re
let payment = (~principal, ~apr, ~years=30, ()) => {

let r = apr /. 12.0 /. 100.0;
let n = float_of_int(years * 12);
let powerTerm = (1.0 +. r) ** n;
principal *. (r *. powerTerm) /. (powerTerm -. 1.0);

};

When you call the function, you must provide unit, written as (), as one of the
parameters:

functions/src/DefaultParams.re
let amount = payment(~principal=10000.0, ~apr=5.0, ());
Js.log2("Amount per month for loan 1: $",

Js.Float.toFixedWithPrecision(amount, ~digits=2));

let amount2 = payment(~apr=7.5, ~years=15, ~principal=25000.0, ());
Js.log2("Amount per month for loan 2: $",

Js.Float.toFixedWithPrecision(amount2, ~digits=2));

It’s also possible to have optional parameters, but we can’t discuss that until
we go over variant types on page 30.

Shortening Code with refmt
All the functions we’ve written so far have been fully written out. Here, for
example, is a function that squares its argument:

report erratum • discuss

Providing Default Values for Labeled Parameters • 19

http://media.pragprog.com/titles/reasonml/code/functions/src/DefaultParams.re
http://media.pragprog.com/titles/reasonml/code/functions/src/DefaultParams.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

let sqr = (x) => {
x * x;

};

This function doesn’t take advantage of any of ReasonML’s syntactic sugar.
Syntactic sugar is syntax that makes programs easier to read or write, thus
making your life sweeter. If a function has only one parameter, you don’t need
to enclose it in parentheses. If there’s only one expression in the body of the
function, you don’t need the braces. You’d write the function in its most
compact form this way:

let sqr = x => x * x;

Perhaps you’d like to keep your code as compact as possible, but you don’t
want to waste neurons wondering if the rules allow you to leave out punctu-
ation or not. Never fear—when you installed BuckleScript you got the bsrefmt
program. It will parse your ReasonML code and apply the syntax sugar for
you. In its simplest form, you provide the name of the file, and bsrefmt outputs
the reformatted code to standard output (your terminal). Here’s an example
of running the program and redirecting the output to a file:

/code/functions> bsrefmt src/Functions.re > src/ReformattedFunctions.re

A comparison of the files shows these before and after changes:

Before:
let avg = (a, b) => {

(a +. b) /. 2.0;
};

After:
let avg = (a, b) => (a +. b) /. 2.0;

Before:
Js.log2("Amount per month: $",

Js.Float.toFixedWithPrecision(amount, ~digits=2));

After:
Js.log2(

"Amount per month: $",
Js.Float.toFixedWithPrecision(amount, ~digits=2),

);

Some ReasonML editor plugins let you set an option to automatically reformat
code every time you save your file, so there’s no need to manually run bsrefmt.

Here’s some bonus syntactic sugar for you: punning. If you are calling a
function with labeled parameters and you are passing a variable with the

Chapter 2. Writing Functions • 20

report erratum • discuss

http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

same name as the parameter, you don’t have to repeat the variable name. In
the following code, the last two lines are equivalent:

functions/src/DefaultParams.re
let apr = 7.5;
let principal = 10000.0;
let month1 = payment(~principal=principal, ~apr=apr, ~years=15, ());
let month2 = payment(~principal, ~apr, ~years=15, ());

Shortening Function Names

If you’re tired of typing a long name like Js.Float.toFixedWithPrecision,
you can bind that name to a shorter name and use that instead:

let toFixed = Js.Float.toFixedWithPrecision;
let example = toFixed(3.1415926, ~digits=4);

We’re binding one symbol to another. We don’t put any parentheses
after the function name on the right-hand side—that would be a
function call, and that’s not what we want.

Specifying Parameter Types
In the introduction on page 5, we mentioned that ReasonML’s static type system
keeps you from making the sort of errors that can sink a dynamically typed
program. You might be feeling a bit cheated in that we haven’t done a single bit
of type specification so far in this chapter. That’s because ReasonML’s type
inference engine has been doing a fantastic job of figuring everything out for us.

If, for example, you try to call the payment() function with an integer for the
annual percentage rate, the compiler won’t permit it:

We've found a bug for you!
code/functions/src/TypeSpecifications.re 25:48

23 │
24 │
25 │ let badCall = payment(~principal=10000.0, ~apr=5, ~years=15);
26 │
27 │

This has type:
int

But somewhere wanted:
float

You can convert a int to a float with float_of_int.
If this is a literal, you want a number with a
trailing dot (e.g. 20.).

report erratum • discuss

Specifying Parameter Types • 21

http://media.pragprog.com/titles/reasonml/code/functions/src/DefaultParams.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

It seems like ReasonML knows the types, but how can we see what it has
determined? Many editor plugins for ReasonML will show you the type signa-
tures (the types of parameters and the return type), also called type annotation
for functions:

Should I Annotate My Functions?

The automatic type inference works so well that many people in
the ReasonML community recommend that you not annotate, but
instead let the inference engine do its work. I’m going to be the
heretic here and suggest there are several reasons for annotating:

First, there are times when the inference engine can’t make an
unambiguous conclusion, and you must tell ReasonML what types
are intended. Second, when you write an API or functions for
other people to use, you can create an interface file that exposes
the functions you want to be exported—the annotations serve as
part of the API documentation. Finally, I’ve found that writing
annotations keeps me focused on what input and output the
functions expect, and this encourages me to do more pre-planning
before I write code.

The good news of annotation is that your functions accept the exact
types that you specify. The bad news is that your functions accept
the exact types that you specify, and those may be more restrictive
than what the type inference engine would have chosen for you.

On all these points, your mileage may vary.

To annotate a function, follow each of the parameters by a colon : and the
data type for that parameter. After the closing parenthesis of the parameters,
put another colon and the function’s return type. As an example, here are
the annotations of the functions we’ve written so far. Notice how we’re using
unit as the data type for () in the last annotation:

functions/src/Annotations.re
let avg = (a: float, b: float) : float => {
let payment = (~principal: float, ~apr: float,

~years: int=30, ():unit) : float=> {

Chapter 2. Writing Functions • 22

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/functions/src/Annotations.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

It’s also possible to annotate a function definition in a style that specifies the
parameter types first, then the parameters:

functions/src/AlternateAnnotation.re
let avg: (float, float) => float =

(a, b) => {
let payment:

(~principal: float, ~apr: float, ~years: int=?, unit) => float =
(~principal, ~apr, ~years = 30, ()) => {

If you are coming to ReasonML from Haskell, this alternate form is more
familiar to you—Haskell also separates type information from implementation
(separation of concerns).1 If you are coming from the world of TypeScript or
Flow, you may prefer the form where parameters and their types are together.
For what it’s worth, the majority of ReasonML code that I have seen in the
wild uses the form with parameter name and type together rather than this
alternate form.

Writing Functions without Parameters or Return Values
All the functions we’ve written so far have been much like the functions you
know from math: they take one or more arguments and return some value.
(Similarly, our functions always return the same values for the same inputs
—they’re pure functions.)

Some functions don’t require any inputs—the Js.Math.random() function doesn’t
need any input argument. Calling it will give you back a random number from
0.0 to 1.0, and you’ll get a different one every time. When calling a function
with no parameters, you must provide the parentheses after the function name:

functions/src/UsingUnit.re
let random1 = Js.Math.random();
Js.log(random1);

let random2 = Js.Math.random;
Js.log(random2);

If you run this code, you’ll see this output:

0.03326409915331441
[Function: random2]

The first call does what we expect. The second call—without parentheses—
has the effect of binding the function Js.Math.random to the symbol random2, which
is probably not what we had in mind.

1. en.wikipedia.org/wiki/Separation_of_concerns

report erratum • discuss

Writing Functions without Parameters or Return Values • 23

http://media.pragprog.com/titles/reasonml/code/functions/src/AlternateAnnotation.re
http://media.pragprog.com/titles/reasonml/code/functions/src/UsingUnit.re
https://en.wikipedia.org/wiki/Separation_of_concerns
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Other functions, like Js.log(), don’t provide any useful return value. We only
love Js.log() for its side effect of putting text on the terminal. So how do we write
our own functions with no output? The answer is unit.

Here’s a function you might write to help provide debug output. This function
has input parameters but provides no return value, so its return type is unit,
which is what Js.log() returns.

functions/src/UsingUnit.re
let debugInt = (varName: string, value: int) : unit => {

Js.log(varName ++ " is: " ++ string_of_int(value));
};

Here’s a function that outputs a separator line, so you can visually divide
your output into sections. This function has neither input parameters nor a
return value:

functions/src/UsingUnit.re
let separator = () : unit => {

Js.log("---------------");
};

If you want to explicitly return a unit value, use a pair of parentheses, as in
the following function—intended as a good example of an example rather than
as useful code:

functions/src/UsingUnit.re
let doNothing = (): unit => {

();
};

Currying: Handling One Argument at a Time
What would happen if we called the avg() function but only gave it one argu-
ment? Surely we’d get some sort of error:

functions/src/Currying.re
let avg = (a: float, b: float) : float => {

(a +. b) /. 2.0;
};

Js.log2("Average of 3 and 4", avg(3.0, 4.0));
Js.log2("Average of 3?!", avg(3.0));

code/functions> bsb -make-world
ninja: Entering directory `lib/bs'
[3/3] Building src/Currying.mlast.d
[1/1] Building src/Currying-Simplefunctions.cmj
code/functions> node src/Currying.bs.js
Average of 3 and 4 3.5

Chapter 2. Writing Functions • 24

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/functions/src/UsingUnit.re
http://media.pragprog.com/titles/reasonml/code/functions/src/UsingUnit.re
http://media.pragprog.com/titles/reasonml/code/functions/src/UsingUnit.re
http://media.pragprog.com/titles/reasonml/code/functions/src/Currying.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Average of 3?! function (param) {
return avg(3.0, param);

}

It compiles without errors, and when we run it, we get a function as output
rather than an error message. What strange sorcery is this? It’s currying, a
term named after the mathematician and logician Haskell Curry. To under-
stand what currying is, imagine a cell phone’s contact list. A phone number
consists of a country code, an area code, and a number. Look at this phone
contact list:

The entry for Kim has a full phone number with country 49, area code 030,
and phone number 118 99. The other entries are partial entries—for example,
the entry for Germany shows only its country code, and Berlin shows only
the country and area code. If you were to select the entry for Berlin on a reg-
ular cell phone, it would dial 49 030, which is an invalid number. But this
imaginary cell phone is magic—when you select Berlin:

report erratum • discuss

Currying: Handling One Argument at a Time • 25

http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

The phone presents you with those digits and waits for you to enter the rest
of the phone number. This would save a lot of time if you have to call many
people in Berlin who aren’t in the contact list. You could bring up Berlin in
the contact list and have much of the number pre-entered.

Rather than attempting to dial a bad number, the magic phone presents a
partially complete screen for entering the number if we don’t give it all the
parts. In a similar way, if we call a ReasonML function with fewer parameters
than it expects, ReasonML doesn’t try to call the function. Instead, it curries
—it gives us back a new function with those arguments filled in and space
for the remaining parameters.

With that in mind, let’s write a function that calls a number when it’s given
a country code, area, and phone number, and give Kim a call:

functions/src/Currying.re
let call = (country: string, area: string, number: string)

: string => {
country ++ " " ++ area ++ " " ++ number;

};

Js.log2("Call Kim at", call("49", "030", "118 99"));

/code/functions> node src/Currying.bs.js
Call Kim at 49 030 118 99

Now we’ll create a function for dialing people in Germany, and another one
for dialing Berlin:

functions/src/Currying.re
let callGermany = call("049");
let callBerlin = call("049", "030");

Js.log2("Call Germany:", callGermany);
Js.log2("Call Berlin:", callBerlin);

/code/functions> node src/Currying.bs.js
Call Germany: function callGermany(param, param$1) {

return call("049", param, param$1);
}
Call Berlin: function callBerlin(param) {

return call("049", "030", param);
}

When calling these new functions, we need to provide only the missing
parameters:

Chapter 2. Writing Functions • 26

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/functions/src/Currying.re
http://media.pragprog.com/titles/reasonml/code/functions/src/Currying.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

functions/src/Currying.re
Js.log2("Call someone in Germany:", callGermany("040", "118 01"));
Js.log2("Call someone in Berlin:", callBerlin("118 23"));

code/functions> node src/Currying.bs.js
Call someone in Germany: 049 040 118 01
Call someone in Berlin: 049 030 118 23

You can even use curried functions as the basis of other curried functions.
We could also have written:

let callGermany = call("049"); /* same as before */
let callBerlin = callGermany("030"); /* uses curried callGermany() */

In summary: currying lets you call a function with fewer parameters than
specified in the function definition. Instead of giving you an error, ReasonML
gives you a new function with your parameters filled in.

Currying and Default Values
In the case of default parameters on page 19, we needed to provide unit as an
unlabeled parameter. Otherwise, this code would be ambiguous:

let amount = payment(~principal=10000.0, ~apr=5.0);

Is this a call to payment() with all its parameters (using the default value for
~years), or is it a call to payment() that’s really curried and awaiting that last
parameter? ReasonML solves this dilemma by saying, “If there is a positional
(non-labeled) argument, then this is a complete call with a default value.
Otherwise, it’s curried.” And that’s why we need to make our intention clear
by putting in the unit. (In this case, we use unit because we have no unlabeled
parameters.) For all the details on currying, see the ReasonML documentation
at reasonml.github.io/docs/en/function.html#currying.

Currying and Labeled Parameters
As an alternative to default values, you can use currying with labeled
parameters. In the example code we wrote on page 19, the default was
appropriate for US mortgages. Rather than have one function with a single
default, currying lets you create several functions with different values for
one or more of the parameters. In this code, we create payment calculation
functions for standard mortgage lengths in the US (30 years), UK (25 years),
and Germany (20 years):

report erratum • discuss

Currying and Labeled Parameters • 27

http://media.pragprog.com/titles/reasonml/code/functions/src/Currying.re
https://reasonml.github.io/docs/en/function.html#currying
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

functions/src/CurryingWithNames.re
let usPayment = payment(~years=30);
let ukPayment = payment(~years=25);
let dePayment = payment(~years=20);

let toFixed = Js.Float.toFixedWithPrecision;

Js.log("Loan of 10000 at 5%");
Js.log2({js|US: $|js},

toFixed(usPayment(~principal=10000.0, ~apr=5.0), ~digits=2));
Js.log2({js|UK: £|js},

toFixed(ukPayment(~principal=10000.0, ~apr=5.0), ~digits=2));
Js.log2({js|DE: €|js},

toFixed(dePayment(~principal=10000.0, ~apr=5.0), ~digits=2));

code/functions> node src/CurryingWithNames.bs.js
Loan of 10000 at 5%
US: $ 53.68
UK: £ 58.46
DE: € 66.00

It’s Your Turn
Write a function named discount() that calculates discount prices. It should
have two labeled parameters (choose any names you like):

• The original price, which is float
• The discount percent, which is also float

If the original price is, say, $30.00 and the discount percent is 5%, the amount
saved is $1.50 (5% of $30.00), making the result $28.50.

Then, use currying to create functions named halfOff() which uses 50 as the
value for the percent, and tenPercentOff(), which uses 10 as the value for the
percent. Write complete type annotations on the discount() function. Make sure
you write code that uses these functions and displays the results so you can
be sure everything works! You can see a solution at code/functions/src/Discount.re.

Summing Up
You can now write functions that have labeled parameters (making them
more flexible to call). Reason’s automatic type inference gives your functions
type safety, but you can now annotate the parameter types manually if you
prefer. Finally, you can use currying to make new functions that have some
of their arguments already filled in.

So far, the functions we’ve covered use ReasonML’s built-in data types. What
if you need to represent other data types? The next chapter will give us the
answers to this question.

Chapter 2. Writing Functions • 28

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/functions/src/CurryingWithNames.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

CHAPTER 3

Creating Your Own Data Types
In this chapter, you will learn how to go beyond ReasonML’s built-in data
types such as int, float, and string by defining your own data types. This powerful
capability will help you build reliable, robust programs. In addition to letting
you express your programs in terms that mirror your data structures, data
types give you these extra advantages:

• You can create data types such as Price or Discount to ensure type safety—
the compiler will make sure you can’t ever pass a Discount as an argument
to a function that expects a Price.

• You can create variant data types that specify a set of valid values. For
example, in a survey, you might define a type with values Agree, Disagree,
and Neutral. ReasonML’s compiler will make sure that those are the only
possible values a variable of that type can have, and it will not allow
nonexistent values like the misspelled Nuetral.

• ReasonML’s built-in option type formalizes the representation of values
that could be invalid. The compiler makes sure you handle both valid and
invalid cases, avoiding null or undefined values. This will be incredibly useful
when you interact with web pages, where you might have to handle invalid
user-entered data.

In all these cases, ReasonML moves the detection of a large class of errors
from runtime to compile time.

Best of all, ReasonML’s type inference system automatically recognizes the
data types you’re using—you don’t have to explicitly specify data types
everywhere.

report erratum • discuss

http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Renaming a Data Type
A data type alias is the simplest of all custom data types—it gives a new name
to an existing data type. For example, if you want types to represent test
scores and percents, you could do this:

type scoreType = int;
type percentType = float;

let calcPercent = (score: scoreType, max: scoreType) : percentType =>
float_of_int(score) /. float_of_int(max) *. 100.0;

The only advantage of using a data type alias is to increase readability, though
you might also achieve this by using labeled parameters. Aliases don’t give
you any type safety. You can still write meaningless code like this:

datatypes/src/BizarreAliases.re
type scoreType = int;
type percentType = float;

type userId = int;

/* Explicitly annotate this type to make a point */
let person: userId = 60;

let calcPercent = (score: scoreType, max: scoreType) : percentType =>
float_of_int(score) /. float_of_int(max) *. 100.0;

let result = calcPercent(person, 75);
Js.log({j|Bogus result is $result|j}); /* output: Bogus result is 80 */

Since the aliases are mere alternate names, the code can merrily pass what
is purportedly a userId data type to a parameter expecting a scoreType. This is
less than ideal to say the least.

Creating Variant Data Types
Here’s where ReasonML’s type system begins to show some of its power. Let’s
say we want a data type to represent shirt sizes: Small, Medium, Large, and XLarge
(extra-large). We could use an alias for the string type, but it wouldn’t keep us
from doing things like this:

datatypes/src/StringSizes.re
type shirtSize = string;

let mySize = "Medium";
let otherSize = "Large";
let wrongSize = "M";

Chapter 3. Creating Your Own Data Types • 30

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/datatypes/src/BizarreAliases.re
http://media.pragprog.com/titles/reasonml/code/datatypes/src/StringSizes.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

ReasonML lets us create a data type that allows only valid values with a data
type constructor, which, as its name implies, tells us how to construct a value
of that particular data type. This is called a variant data type, as we’re speci-
fying the various values the data type can have:

datatypes/src/ShirtSizes.re
type shirtSize =

| Small
| Medium
| Large
| XLarge;

Constructor names must begin with a capital letter. We can bind shirtSize values
to variables. The first example has its type annotated:

datatypes/src/ShirtSizes.re
let mySize: shirtSize = Medium;
let otherSize = Large;

The constructors for a variant data type give you all the possible values. But
they’re not strings! Doing the following:

let badSize: shirtSize = "Medium";

Gives us this error:

We've found a bug for you!
/path/to/code/datatypes/src/ShirtSizes.re 16:26-33

15 │
16 │ let badSize: shirtSize = "Medium";

This has type:
string

But somewhere wanted:
shirtSize

If we try to create a shirtSize binding with an illegal value:

let badSize: shirtSize = M;

The compiler tells us that we’ve used a value that isn’t in our data type:

We've found a bug for you!
/path/to/code/datatypes/src/ShirtSizes.re 16:26

15 │
16 │ let badSize: shirtSize = M;

This variant expression is expected to have type shirtSize
The constructor M doesn't belong to type shirtSize

report erratum • discuss

Creating Variant Data Types • 31

http://media.pragprog.com/titles/reasonml/code/datatypes/src/ShirtSizes.re
http://media.pragprog.com/titles/reasonml/code/datatypes/src/ShirtSizes.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Using Variant Data Types
Let’s say that a small shirt costs $11.00, a medium costs $12.50, a large
costs $14.00, and an extra-large costs $16.00. We can write a function to
return the price of a shirt given its size:

datatypes/src/ShirtSizes.re
let priceIf = (size: shirtSize) : float => {

if (size === Small) {
11.00

} else if (size === Medium) {
12.50

} else if (size === Large) {
14.00

} else {
16.00

}
};

Js.log(priceIf(mySize)); /* output: 12.5 */
Js.log(priceIf(otherSize)); /* output: 14 */

But it’s much more common in ReasonML to use a switch expression to pattern
match the size:

datatypes/src/ShirtSizes.re
let price = (size: shirtSize) : float => {

switch (size) {
| Small => 11.00
| Medium => 12.50
| Large => 14.00
| XLarge => 16.00

}
};

Js.log(price(mySize)); /* output: 12.5 */
Js.log(price(otherSize)); /* output: 14 */

Each of the variants (patterns) is preceded by a vertical bar | and followed by
a thick arrow =>, which is followed by the expression to yield for that variant.
You can think of the vertical bar as introducing an alternative to match to.
ReasonML attempts to match the value size with each of the patterns in the
order given. When we do a pattern match on a variant data type, we must
account for all the variants. If we were to leave off the pattern match for XLarge,
we would get this error:

Chapter 3. Creating Your Own Data Types • 32

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/datatypes/src/ShirtSizes.re
http://media.pragprog.com/titles/reasonml/code/datatypes/src/ShirtSizes.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Warning number 8

28 │
29 │ let price = (size: shirtSize) : float => {
30 │ switch (size) {
. │ ...

34 │ }
35 │ };
36 │

You forgot to handle a possible value here, for example:
XLarge

Let’s use switch to write a function that converts a shirtSize value to a string giving
the abbreviation for the sizes:

datatypes/src/ShirtSizes.re
let stringOfShirtSize = (size: shirtSize) : string => {

switch (size) {
| Small => "S"
| Medium => "M"
| Large => "L"
| XLarge => "XL"

};
};

Js.log(stringOfShirtSize(mySize)); /* output: M */

We absolutely need the stringOfShirtSize() function. Consider this code:

datatypes/src/PrintType.re
type shirtSize =

| Small
| Medium
| Large
| XLarge;

let mySize = Medium;
Js.log2("Size is", mySize);

Here’s what you get when you run it:

you@computer:~/book_projects/datatypes> node src/PrintType.bs.js
Size is 1

What’s going on here?! Why do we get a number? The answer is that all of
ReasonML’s type checking and manipulation is done entirely at compile time.
Once the types are checked, ReasonML is free to use any internal form it likes

report erratum • discuss

Using Variant Data Types • 33

http://media.pragprog.com/titles/reasonml/code/datatypes/src/ShirtSizes.re
http://media.pragprog.com/titles/reasonml/code/datatypes/src/PrintType.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

to represent the types. In this case, it is optimized into numeric form at run-
time, as we can see in the JavaScript code that was generated:

datatypes/src/PrintType.bs.js
// Generated by BUCKLESCRIPT VERSION 5.0.0-dev.4, PLEASE EDIT WITH CARE
'use strict';

console.log("Size is", /* Medium */1);

var mySize = /* Medium */1;

exports.mySize = mySize;
/* Not a pure module */

The moral of the story: ReasonML’s data types exist only at compile time. If
you want to display the value in a readable form, you must provide a function
to convert the type to a string.

We’ll also want a function that converts a string parameter, an abbreviation
for the size, to a shirtSize value. But we have a problem: what happens if
someone gives us a bad string, such as "N" or "Medium"? If switch requires us to
write out all possible values, how do we handle all possible strings? Luckily,
switch is provided with a catch-all pattern, _ (underscore), which stands for
“any case that hasn’t been matched yet.”

datatypes/src/ShirtSizes.re
let shirtSizeOfString = (str: string) : shirtSize => {

switch (str) {
| "S" => Small
| "M" => Medium
| "L" => Large
| "XL" => XLarge
| _ => Medium

}
};

Our approach in this code is to throw our hands up in the air and say, “If we
can’t figure out what you want, we’ll give you Medium.” If you aren’t thrilled
with this, don’t worry—we’ll find a better way to handle this later in the
chapter.

Creating Variant Data Types with Parameters
Shirt sizes don’t end with extra-large. There are double, triple, and even
quadruple extra-large, usually abbreviated as XXL, XXXL, and XXXXL.
Parameterized types let us specify a parameter for the constructor. In our
case, we want the parameter to tell us how many Xs are on the shirt size.

Chapter 3. Creating Your Own Data Types • 34

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/datatypes/src/PrintType.bs.js
http://media.pragprog.com/titles/reasonml/code/datatypes/src/ShirtSizes.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Here’s a parameterized version of the shirt size constructor (it has the same
name, but it’s in a separate file):

datatypes/src/ParamShirtSizes.re
type shirtSize =

| Small
| Medium
| Large
| XLarge(int);

The last line says that to construct an XLarge variant, you need to provide an
integer, which we’ll use to tell how many “extras” we want:

datatypes/src/ParamShirtSizes.re
let mySize: shirtSize = Medium;
let bigSize = XLarge(1);
let veryBigSize = XLarge(3);

When it comes to setting the price, let’s say that XLarge(1) costs $16.00, plus
$0.50 for every additional X. We modify the switch to accept the parameter and
use it:

datatypes/src/ParamShirtSizes.re
let price = (size: shirtSize) : float => {Line 1

switch (size) {-

| Small => 11.00-

| Medium => 12.50-

| Large => 14.005

| XLarge(n) => 16.00 +.-

(float_of_int(n - 1) *. 0.50)-

}-

};-

10

Js.log(price(mySize)); /* output: 12.5 */-

Js.log(price(bigSize)); /* output: 16 */-

Js.log(price(veryBigSize)); /* output: 17 */-

Line 6 uses destructuring to extract the parameter from the size variable. For
example, if size were XLarge(3), n would have the value 3 in the calculation. In
addition to extracting parameters, destructuring also lets you extract fields
from a data structure. We’ll see this come into play in later chapters.

The next function to modify is stringOfShirtSize(). Again, we need destructuring
to extract the parameter n in variants of the form XLarge(n) and make a string
of that many Xs. The make() function in BuckleScript’s String module1 does
exactly that.

1. reasonml.github.io/api/String.html

report erratum • discuss

Creating Variant Data Types with Parameters • 35

http://media.pragprog.com/titles/reasonml/code/datatypes/src/ParamShirtSizes.re
http://media.pragprog.com/titles/reasonml/code/datatypes/src/ParamShirtSizes.re
http://media.pragprog.com/titles/reasonml/code/datatypes/src/ParamShirtSizes.re
https://reasonml.github.io/api/String.html
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

datatypes/src/ParamShirtSizes.re
let stringOfShirtSize = (size: shirtSize) : string => {

switch (size) {
| Small => "S"
| Medium => "M"
| Large => "L"
| XLarge(n) => String.make(n, 'X') ++ "L"

};
};

Js.log(stringOfShirtSize(veryBigSize)); /* output: XXXL */

Note that the second argument to make() is a character in single quotes. We’ll
solve the problem of repeating a multi-character string when we discuss
recursion on on page 94.

The shirtSizeOfString() function needs the addition of a few lines to handle the
new “extra” sizes (showing only the additions here):

datatypes/src/ParamShirtSizes.re
| "L" => Large
| "XL" => XLarge(1)
| "XXL" => XLarge(2)
| "XXXL" => XLarge(3)
| "XXXXL" => XLarge(4)
| _ => Medium

This function still leaves the issue of what to do with invalid strings—it’s still
blindly assigning Medium. Let’s find a better way to handle this after you first
try your hand at creating a variant data type.

It’s Your Turn
Create a variant data type called colorSpec that lets you specify a color in one
of these ways:

let color1 = White;
let color2 = Black;
let color3 = Gray(0.50); /* Percentage gray as a float */
let color4 = RGB(255, 255, 255); /* Integers for Red, Green, and Blue */

Write a function that converts a colorSpec to a string in the form rgb(r,g,b). Here’s
the starting point for your function:

let stringOfColorSpec = (cspec: colorSpec) : string => {
/* your code here */

};

Here are examples of what it produces:

Chapter 3. Creating Your Own Data Types • 36

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/datatypes/src/ParamShirtSizes.re
http://media.pragprog.com/titles/reasonml/code/datatypes/src/ParamShirtSizes.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Using One-Variant Data Types

Now that we know how to create a variant data type with a parameter, we can improve
on the bogus example that we made with aliases on page 30.

Instead of aliases, we define the score, percent, and user ID types as data type con-
structors:

datatypes/src/SingleVariant.re
type scoreType = Score(int);
type percentType = Percent(float);
type userId = UserId(int);

When we use variables of these parameterized types, we must construct values, as
in line 1, and destructure them, as in line 4.

datatypes/src/SingleVariant.re
let person: userId = UserId(60);Line 1

-

let calcPercent = (score: scoreType, max: scoreType) : percentType => {-

let Score(s) = score;-

let Score(m) = max;5

Percent(float_of_int(s) /. float_of_int(m) *. 100.0);-

};-

-

/* Won't compile. Comment out next line to get a working program */-

/*let result = calcPercent(person, Score(75));*//**/10

-

let Percent(result) = calcPercent(Score(40), Score(75));-

Js.log({j|Good result is $result|j}); /* output: Good result is 53.33333... */-

Using these data types gives us type safety. ReasonML will complain in line 10 that
you’re trying to use a userId where a score is required.

Js.log(stringOfColorSpec(White)); /* rgb(255,255,255) */
Js.log(stringOfColorSpec(Black)); /* rgb(0,0,0) */
Js.log(stringOfColorSpec(Gray(0.5))); /* rgb(127,127,127) */
Js.log(stringOfColorSpec(RGB(64, 128, 192))); /* rgb(64,128,192) */

Writing a colorSpecOfString() is tricky because you need to handle a much larger
range of possible inputs than you’d need for the shirt sizes, so let’s not go for
that one right now. You can see a solution in file code/datatypes/src/ColorSpec.re.

Using the option Type
In JavaScript, we could have solved the problem of bad input for shirtSizeOfString()
by returning null or undefined, but that leads to all manner of difficulties. What
we really want is a way to handle invalid data in a type-safe manner.

ReasonML solves the problem with a built-in variant data type named option.
If you were to write it yourself, it would look like this:

report erratum • discuss

Using the option Type • 37

http://media.pragprog.com/titles/reasonml/code/datatypes/src/SingleVariant.re
http://media.pragprog.com/titles/reasonml/code/datatypes/src/SingleVariant.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

type option('a) =
| Some('a)
| None;

This is a parametric data type (see What’s a Parametric Data Type?, on page
38 for details) where 'a is a type variable. The leading single quote is required
for type variables.

Joe asks:

What’s a Parametric Data Type?
Functions use parameters as placeholders that get filled in by argument values. In
a similar way, instead of having to write specialized option types for each possible
basic data type:

type optionInt =
| Some(int)
| None;

type optionFloat =
| Some(float)
| None;

let x: optionInt = Some(3);
let y: optionFloat = Some(4.0);

We can write the following definition using the type parameter 'a:

type option('a) =
| Some('a)
| None;

Type parameter names must begin with a single quote. Unlike function parameters,
which are filled in by a number or string value, the type parameter 'a is filled in by a
data type. Now, rather than writing multiple specialized types, we can define a single
parametric data type and “fill in the blank” with any data type we need:

let x: option(int) = Some(3);
let y: option(float) = Some(4.0);
let z: option(shirtSize) = Some(XL);

Parametric data types are similar to what other languages call generics.

The Some('a) variant indicates valid data; None represents what would normally
be null or undefined in other languages. Using the option data type doesn’t mean
we can never have invalid data. Rather, option gives us an organized way of
dealing with invalid data within ReasonML’s type system.

Instead of accepting that an invalid string passed to shirtSizeOfString() returns
Medium as the default, we rewrite the function to return an option(shirtSize):

Chapter 3. Creating Your Own Data Types • 38

report erratum • discuss

http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

datatypes/src/OptionShirtSizes.re
let shirtSizeOfString = (str: string) : option(shirtSize) => {

switch (str) {
| "S" => Some(Small)
| "M" => Some(Medium)
| "L" => Some(Large)
| "XL" => Some(XLarge(1))
| "XXL" => Some(XLarge(2))
| "XXXL" => Some(XLarge(3))
| "XXXXL" => Some(XLarge(4))
| _ => None

}
};

For valid strings, the function returns a shirtSize wrapped in Some(). Invalid
strings return None. We can rewrite the price() function to accept an option(shirtSize)
and return an option(float):

datatypes/src/OptionShirtSizes.re
let price = (size: option(shirtSize)) : option(float) => {

switch (size) {
| Some(Small) => Some(11.00)
| Some(Medium) => Some(12.50)
| Some(Large) => Some(14.00)
| Some(XLarge(n)) => Some(16.00 +. (float_of_int(n - 1) *. 0.50))
| None => None

}
};

Once we’re in option-land, we must account for both the Some() and None cases.
At some point, we have to unwrap the value from the Some() or handle None
when we need to give a final result.

datatypes/src/OptionShirtSizes.re
let toFixed = Js.Float.toFixedWithPrecision;

let displayPrice = (input: string) : unit => {
let size = shirtSizeOfString(input);
let amount = price(size);
let text = switch (amount) {

| Some(cost) => {
let costStr = toFixed(cost, ~digits=2);
{j|Your $input shirt costs \$$costStr.|j}

}

| None => {j|Cannot determine price for $input|j}
};
Js.log(text);

};

displayPrice("XXL"); /* output: Your XXL shirt costs $16.50. */

report erratum • discuss

Using the option Type • 39

http://media.pragprog.com/titles/reasonml/code/datatypes/src/OptionShirtSizes.re
http://media.pragprog.com/titles/reasonml/code/datatypes/src/OptionShirtSizes.re
http://media.pragprog.com/titles/reasonml/code/datatypes/src/OptionShirtSizes.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Because the $ interpolates variables inside {j|...|j}, if we want a true dollar
sign, we must escape it with a backslash as \$.

Working with option Values
In a program of any significant length, we’ll eventually end up passing option
values through a series of functions, some of which accept and/or return
option values, and some that don’t. Consider these functions:

datatypes/src/BeltExamples.re
let toFloat = (str: string) : option(float) => {

let result = (Js.Float.fromString(str));
if (Js.Float.isNaN(result)) {

None
} else {

Some(result)
}

};

let cube = (x: float) : float => x *. x *. x;

let reciprocal = (x: float) : option(float) => {
if (x !== 0.0) {

Some(1.0 /. x)
} else {

None
}

};

We’d like to stitch these together into a program that performs the following
steps:

1. Use toFloat() to convert a string to float. Since the string might not be valid,
the output has to be option(float).

2. Use reciprocal() to take the reciprocal of the result of step 1. Since we might
have been given an invalid value of 0, the output of this function must
also be option(float).

3. Use cube() to cube the result of step 2.

4. Convert the result to a string with the help of Js.Float.toFixedWithPrecision().

5. Display the result of step 4, which may be an error message if either step
1 or step 2 failed.

Chapter 3. Creating Your Own Data Types • 40

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/datatypes/src/BeltExamples.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

We can do it this way:

datatypes/src/BeltExamples.re
let method1 = (input: string): unit => {Line 1

let x = toFloat(input);-

let oneOver = switch (x) {-

| Some(value) => reciprocal(value)-

| None => None5

};-

let result = switch(oneOver) {-

| Some(value) => Some(cube(value))-

| None => None-

};10

let output = switch(result) {-

| Some(value) => Some(Js.Float.toFixedWithPrecision(value, ~digits=3))-

| None => None-

};-

let resultText = switch (output) {15

| Some(value) => "The result is " ++ value-

| None => "Could not calculate result."-

};-

Js.log(resultText);-

};20

-

method1("2.0"); /* output: The result is 0.125 */-

In line 4, we need to extract the value of the option that toFloat() returned, because
reciprocal() requires a plain value, not an option. The result of reciprocal() is an option.

Line 8 again extracts the value of an option value. If we want to stay in option-land,
we need to put the normal return value from cube() into Some().

Similarly, in line 12, we extract a normal value from the option and re-wrap
the result in Some().

The switch starting at line 15 takes us out of option-land so we can display an
ordinary string.

In all this code, a value of None is passed on from one step to the next. Once you
have invalid data, it stays invalid—we can’t accidentally use it in a calculation.

Working with Belt.Option
There’s nothing wrong with the preceding example—it works as advertised
and accounts for possible invalid data. But all of those switches make the code

report erratum • discuss

Working with Belt.Option • 41

http://media.pragprog.com/titles/reasonml/code/datatypes/src/BeltExamples.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

harder to read. The Belt.Option module gives us functions that let us write this
sort of code without all the busy work. The Belt.Option module is part of Belt2

standard library shipped with BuckleScript.

In line 4, we want the value of an option to go to a function that takes an ordinary
value and returns an option. In this case, we use the Belt.Option.flatMap() function.
This function expects two parameters: an option(..) value, and the name of a
function that takes a normal value and returns an option(...).

Belt.Option.flatMap() extracts the value of the option(...) value and passes it to the
function you specified. The result is that function’s option(...) value:

let oneOver = Belt.Option.flatMap(x, reciprocal);

Higher Order Functions

Belt.Option.flatMap() is our first encounter with a higher-order function,
a function that takes a function as one of its parameters. In
ReasonML, functions are just another thing that you can bind to
a symbol, and you can pass them to functions and return them
from functions—just as you would with any other ReasonML value
or variable. We’ll be using higher-order functions a lot in Chapter
5, Using Collections, on page 61.

We’re still in option-land—oneOver contains Some(0.5). In line 8 we’re passing that
option parameter to cube(). We can’t use Belt.Option.flatMap() here, because cube()
returns a normal value, not an option(...) value.

Instead, we use Belt.Option.map(), which takes an option value and a function with
non-option input and output values (like cube()) as its parameters. Belt.Option.map()
extracts the value of the option(...) value and passes it to the function you
specified. The result is wrapped up into an option(...) as a Some(...) value:

let result = Belt.Option.map(oneOver, cube);

The variable result now contains Some(0.125).

What if either x or oneOver had come out to None, which would happen if we
had done either of these:

method1("two"); /* toFloat() returns None */
method1("0.0"); /* reciprocal returns None */

When Belt.Option.flatMap() and Belt.Option.map() get None as their first parameter,
they return None immediately without ever calling the function you gave them.

2. bucklescript.github.io/bucklescript/api/Belt.html

Chapter 3. Creating Your Own Data Types • 42

report erratum • discuss

https://bucklescript.github.io/bucklescript/api/Belt.html
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

We’d like to use Belt.Option.map() to eliminate the switch before the function call
in line 12. toFixedWithPrecision() is another function that takes and returns ordi-
nary values, but it has two parameters, not one. No problem. We can call
Js.Float.toFixedWithPrecision() with just one of the arguments—the desired number
of decimal points. This returns a new function that needs only one argument,
namely, the number to be formatted.

let output = Belt.Option.map(result,
Js.Float.toFixedWithPrecision(~digits=3));

Currying vs. Partial Application

Technically, currying is “the technique of translating the evaluation
of a function that takes multiple arguments into evaluating a
sequence of functions, each with a single argument.”3 In
ReasonML, all functions are curried, but ReasonML performs
optimization so it does not have to create a lot of intermediate
functions.4

In this expression: Js.Float.toFixedWithPrecision(~digits=3), we did what
is usually called partial application. This is the process of providing
a number of arguments to a function, producing another function
with a smaller number of parameters.

Currying and partial application are not the same thing, but they
are closely related, and people often use the terms interchangeably.

Here’s the rewritten code:

datatypes/src/BeltExamples.re
let method2 = (input: string): unit => {

let x = toFloat(input);
let oneOver = Belt.Option.flatMap(x, reciprocal);
let result = Belt.Option.map(oneOver, cube);
let output = Belt.Option.map(result,

Js.Float.toFixedWithPrecision(~digits=3));
let resultText = switch (output) {

| Some(value) => "The result is " ++ value
| None => "Could not calculate result."

};
Js.log(resultText);

};

method2("2.0"); /* output: The result is 0.125 */

3. en.wikipedia.org/wiki/Currying
4. reasonml.github.io/docs/en/function#currying

report erratum • discuss

Working with Belt.Option • 43

http://media.pragprog.com/titles/reasonml/code/datatypes/src/BeltExamples.re
https://en.wikipedia.org/wiki/Currying
https://reasonml.github.io/docs/en/function#currying
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Using Pipe First
The preceding code works fine, but it’s a bit clunky. Each stage of the calcu-
lation is stored in a new variable binding that is used in the next stage.
Wouldn’t it be nice if we could pass the result of each calculation to the next
one without all those variables? We can do exactly that with ->, the pipe first
operator.

Pipe first says: “take the value to the left of the -> and pipe it to the function
on the right.” (In older code, you may see |. used as the pipe first operator.
You may also see it referred to by its former name: fast pipe.)

We’ll put the final switch into a function, allowing us to do this:

datatypes/src/BeltExamples.re
let makeDisplayText = (s: option(string)): string => {

switch (s) {
| Some(value) => "The result is " ++ value
| None => "Could not calculate result."

}
};

let method3 = (input: string): unit => {
toFloat(input)
-> Belt.Option.flatMap(_, reciprocal)
-> Belt.Option.map(_, cube)
-> Belt.Option.map(_, Js.Float.toFixedWithPrecision(~digits=3))
-> makeDisplayText(_)
-> Js.log(_)

};

method3("2.0"); /* output: The result is 0.125 */

Pipe first places the piped value in the position where the underscore is. The
default position is the first parameter (hence the name). When using the
default, if the function you’re piping to has only one parameter, you don’t
need to provide parentheses. Using these defaults, we can write an even more
compact form:

datatypes/src/BeltExamples.re
let method4 = (input: string): unit => {

toFloat(input)
-> Belt.Option.flatMap(reciprocal)
-> Belt.Option.map(cube)
-> Belt.Option.map(Js.Float.toFixedWithPrecision(~digits=3))
-> makeDisplayText
-> Js.log

};

Chapter 3. Creating Your Own Data Types • 44

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/datatypes/src/BeltExamples.re
http://media.pragprog.com/titles/reasonml/code/datatypes/src/BeltExamples.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

In this book, we will use the underscore to make the position of the piped
argument explicit—we don’t want to sacrifice clarity for compactness.

Pipe First and Pipe Last

If you read older ReasonML code, you might encounter the |>, or
pipe last operator. Pipe last will pipe the argument on its left to
the last argument of the function on the right. This operator works
nicely with functions whose last argument carries the result, as
is common in the Belt modules. Here are some examples comparing
pipe first and pipe last:

datatypes/src/PipeExamples.re
let f = (a: int, b: int): int => {
3 * a + b

};

Js.log(5 -> f(7)); /* f(5, 7); result is 22 */
Js.log(5 -> f(7, _)); /* f(7, 5); result is 26 */
Js.log(5 |> f(7)); /* f(7, 5); result is 26 */

You can use pipe last here, but best practice is to use pipe first
with an underscore placeholder in case you need to pipe to a
position other than first.

It’s Your Turn
Back in the code on page 38, we had to rewrite the price() function to accept
and return option values.

Change it back to an ordinary function and rewrite the code for displayPrice() (
see the code on page 39) using Belt.Option.map() to handle the option manipulation.
File code/datatypes/src/OptionShirtSizes2.re contains a solution.

Getting Another Perspective
If you’re still a bit uncertain of what Belt.Option.map() and Belt.Option.flatMap() do,
here’s what they’d look like if we were to implement them ourselves:

datatypes/src/BeltExamples.re
let myMap = (optValue: option('a), f: ('a) => 'b) : option('b) => {

switch (optValue) {
| Some(value) => Some(f(value))
| None => None

}
};

report erratum • discuss

It’s Your Turn • 45

http://media.pragprog.com/titles/reasonml/code/datatypes/src/PipeExamples.re
http://media.pragprog.com/titles/reasonml/code/datatypes/src/BeltExamples.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

let myFlatMap = (optValue: option('a), f: ('a) => option('b)) :
option('b) => {
switch (optValue) {

| Some(value) => f(value)
| None => None

}
};

The annotation f: ('a) => option('b) signifies a function taking a parameter of type
'a and returning a value of type option('b).

Similarly, f: ('a) => 'b signifies a function taking a parameter of type 'a and
returning a value of type 'b.

These annotations use two different type parameters because a function being
applied with map() or flatMap() might return a different data type than its input.
We saw this in the code on page 43, where we used map() with Js.Float.toFixedWith-
Precision(), which takes a float as input and produces a string as output.

Summing Up
You now know how to create your own variant data types. You can also use
option values to work with data that may be invalid without having having null
or undefined complicate your life.

We can write a lot of interesting programs at this point, but we have no way
of getting user input. That’s the topic for our next chapter, where you’ll find
out how to interact with web pages.

Chapter 3. Creating Your Own Data Types • 46

report erratum • discuss

http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

CHAPTER 4

Interacting with Web Pages
Interacting with web pages is a key requirement of web development. In this
chapter, we’ll move beyond writing output to the terminal window and
examine how ReasonML lets you get input from and display output to a web
page as part of building web applications.

This means that things are going to get messy, and we’re going to have to
handle a non-ideal world. We might attempt to access an element that isn’t
in the HTML page. A user-entered string that should convert to an integer
might not—if two is entered instead of 2, for example. In each of these cases,
we get an option value as we discussed on page 37. This is where we’ll put the
Belt.Option library that we saw on page 41 to work to handle a chain of opera-
tions, all yielding option values—any of which can potentially fail. (Belt.Option
won’t prevent the failures, but it will let us process them in a consistent
manner.) Finally, we’ll have to update the contents of HTML elements to dis-
play results. Let’s put on our work gloves and get started.

Creating an Example Web Page
We’ll be using some of the code we developed in Chapter 3, Creating Your
Own Data Types, on page 29 to create a web page that asks for a quantity of
shirts and a shirt size. When you click the Calculate button, it’ll display the
total price. This is what the page looks like:

report erratum • discuss

http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

And here’s the HTML, which we’ve put in the src directory of our project. Each
field we’re interested in has its own id= attribute:

webpage/shirts/src/index.html
<!DOCTYPE html>
<html>
<head>

<title>Shirts On Line</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

</head>

<body>
<h1>Shirts On Line</h1>

<p>
Quantity: <input type="text" size="3" id="quantity"/>

Size: <select id="size">
<option value="S">Small</option>
<option value="M">Medium</option>
<option value="L">Large</option>
<option value="XL">Extra Large</option>
<option value="XXL">Extra Extra Large</option>
<option value="XXXL">Triple Extra Large</option>

</select>

<button id="calculate">Calculate</button>
</p>

<p>
Your price: $
</p>

<script type="text/javascript" src="WebShirts.bs.js"></script>
</body>
</html>

Setting Up the Project
We start the project as we have all the projects so far:

bsb -init shirts -theme basic-reason

Rather than using ReasonML’s built-in functions exclusively to create a pro-
gram we can run via npm, we’ll be accessing a web page via the DOM. While
ReasonML does provide a limited DOM library via BuckleScript (bucklescript.github.io/
bucklescript/api/Dom.html), a more powerful external library is available—bs-webapi
(github.com/reasonml-community/bs-webapi-incubator). First, we install the module with
an npm command:

> npm install --save bs-webapi

Then, we put it in the bs-dependencies section of file bsconfig.json:

Chapter 4. Interacting with Web Pages • 48

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/webpage/shirts/src/index.html
https://bucklescript.github.io/bucklescript/api/Dom.html
https://bucklescript.github.io/bucklescript/api/Dom.html
https://github.com/reasonml-community/bs-webapi-incubator
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

webpage/shirts/bsconfig.json
// This is the configuration file used by BuckleScript's build system bsb.
// Its documentation lives here:
// http://bucklescript.github.io/bucklescript/docson/#build-schema.json
// BuckleScript comes with its own parser for bsconfig.json, which is normal
// JSON, with the extra support of comments and trailing commas.
{

"name": "shirts",
"version": "0.1.0",
"sources": {

"dir" : "src",
"subdirs" : true

},
"package-specs": {

"module": "commonjs",
"in-source": true

},
"suffix": ".bs.js",
"bs-dependencies": [➤

// add your dependencies here. You'd usually install them normally➤

// through `npm install my-dependency`. If my-dependency has a➤

// bsconfig.json too, then everything will work seamlessly.➤

"bs-webapi"➤

],➤

"warnings": {
"error" : "+101"

},
"namespace": true,
"refmt": 3

}

Unlike the previous projects where we’ve used node to run the program from
the command line, here we’re creating a web page that could live on a server.
To tie our code and the HTML file together, we need a bundler. A bundler
takes the JavaScript code that our ReasonML generated, the code from the
ReasonML/BuckleScript libraries that our code uses, and any CSS or image
files that might be in our application, making them into a set of files that can
be run from a web server or opened in a browser. In this book, I’m using the
Parcel bundler, which is very fast and requires a minimum amount of setup
(parceljs.org/getting_started.html). Another very popular bundler is webpack (web-
pack.js.org/). You may, of course, use any other bundler that you are already
familiar with.

Accessing the DOM
We’re going to be using parts of the Webapi.Dom module a lot, so we’ll set up
some module aliases to avoid repetitive typing:

report erratum • discuss

Accessing the DOM • 49

http://media.pragprog.com/titles/reasonml/code/webpage/shirts/bsconfig.json
https://parceljs.org/getting_started.html
https://webpack.js.org/
https://webpack.js.org/
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

webpage/shirts/src/WebShirts.re
module D = Webapi.Dom;
module Doc = Webapi.Dom.Document;
module Elem = Webapi.Dom.Element;

Why use D instead of Dom as the alias for Webapi.Dom? Though it would be more
readable, using Dom hides the declaration of the built-in Dom module, which
we’ll use when we’re dealing with events. You’ll learn much more about modules
in Chapter 7, Structuring Data with Records and Modules, on page 103.

Our first task is to set up a click event handler on the button, which means
we have to call getElementById().

let calcButton = Doc.getElementById("calculate", D.document);

In JavaScript, the DOM version of getElementById() can return null. The bs-webapi
function Doc.getElementById() returns an option(Dom.element). Once we call this
function, we’re in option-land, and we’ll stay there as long as possible.

Next, we add a click event listener to the button with addEventListener from the
Webapi.Dom.EventTarget module (using the module alias D):

switch (calcButton) {
| Some(element) =>

D.EventTarget.addEventListener(
"click", calculate, Elem.asEventTarget(element))

| None => ()
};

Reminder: the vertical bars in the switch introduce the alternatives for the
pattern match.

Specific Event Listeners

We also could have used the addClickEventListener() method from the
Dom.EventTarget module and omitted the "click" parameter. The
Dom.EventTarget module has a whole host of such pre-declared
functions for the most common events. Thus, instead of addEventLis-
tener("somename", function, target), you can write addSomeNameEventListen-
er(function, target), where somename is the event you are listening for.
There is also a corresponding set of remove...EventListener() functions.

addEventListener() returns unit, so the None branch must also return (), which is
how we write a value of type unit.

ReasonML requires us to define functions before we use them, so we have to
place the calculate() event handler function before the switch expression. For
now, this will be a placeholder to let us know that things are working:

Chapter 4. Interacting with Web Pages • 50

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/webpage/shirts/src/WebShirts.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

let calculate = (_: Dom.event) : unit => {
Js.log("You clicked me!");

};

Event handlers have one argument of type Dom.event and return unit. In this
program, we don’t need any of the information in the event object (the
parameter), so we use an underscore to indicate we aren’t using it. If we had
put in a parameter name, the compiler would complain about an unused
variable.

In this code, for the return value, we get lucky—Js.log() returns unit, so we don’t
need to return () ourselves.

Building the Web Bundle
If we try to use node to run the compiled code, it won’t work. Since the program
isn’t running in a web context, it won’t be able to find the Calculate button.
We have to use a bundler to make our code and HTML web-ready.

One part of our workflow hasn’t changed—we use npm run build to compile the
program:

> npm run build

shirts@0.1.0 build /home/you/code/webpage/shirts
bsb -make-world

[156/156] Building src/canvas/Canvas2dRe.mlast.d
[78/78] Building src/Webapi.cmj
ninja: Entering directory `lib/bs'
[3/3] Building src/WebShirts.mlast.d
[1/1] Building src/WebShirts-Shirts.cmj

Here’s where we depart from our previous workflow—we use parcel to bundle
our files:

> parcel build src/index.html --public-url ./ --no-minify
✨ Built in 490ms.

dist/WebShirts.bs.182bc817.js 169.99 KB 195ms
dist/index.html 734 B 5ms

The --public-url sets the public URL from which bundled files will be served. In
this case, ./ indicates that the bundled JavaScript will be in the same folder
as the HTML. We use --no-minify to see the generated JavaScript in a readable
form—the default is to minify the output.

The bundled JavaScript goes into the dist directory. Every time you build,
Parcel creates a unique file name (the 182bc817 in the preceding output) for

report erratum • discuss

Building the Web Bundle • 51

http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

your JavaScript. You may want to periodically clear out the directory or remove
it entirely so these files don’t accumulate.

Now you can go into the browser, open the web console, and open file
dist/index.html. Click the Calculate button, and you should see a message in the
console window:

Serving a Bundle

If you use the command parcel src/index.html, Parcel will bundle the
JavaScript for you and start Parcel’s built-in development server.
You can open the browser and go to URL http://localhost:1234 to get
the files served up to you.

Completing the Calculation
Now that we know we can get to an element and detect a click, we can expand
the calculate() function to:

• Retrieve the values from the quantity and shirt size fields—these will be
option(string) values.

• Convert the quantity to option(int).

• Calculate the price, yielding an option(float).

• Convert the result to a string (the empty string if we have a None result).

• Put the string into the .

There are steps where things could go wrong: we might not be able to find
the elements for the fields or convert the quantity string to an integer. This

Chapter 4. Interacting with Web Pages • 52

report erratum • discuss

http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

means we need option variables throughout, and this is where many JavaScript
programmers rebel at the cognitive burden of figuring out which Belt.Option
functions to use in order to pass values along properly.

If you’re at the point of rebellion (or slight dread) at the thought, please con-
sider this a classic “pay now or pay later” problem. ReasonML asks us to pay
now with the use of option, with the possibility of type errors discovered at
compile time. JavaScript asks us to pay later by tracking down runtime null
and undefined errors. In my experience, “pay later” almost always turns out to
be far more expensive, so let’s start to “pay now.”

Getting a Value
getElementById() gives us a value of type option(Webapi.Dom.Element.t), where the t
stands for “type.” This is a generic element. It is the “parent” of more specific
types of elements such as HTML elements or SVG elements, and its interface
doesn’t include any functions for obtaining an element’s value= attribute. The
interface for HTML elements does have such a function. Since we are dealing
with an HTML element, we’ll use unsafeAsHtmlElement() to tell ReasonML to treat
this element as an HTML element.

Why is it Called Unsafe?

The function name unsafeAsHtmlElement() contains unsafe because it
calls JavaScript directly and will work on any element, even one
that is not specifically an HTML element. In terms used by object-
oriented programming languages, you could say we are down-
casting an Element to the HtmlElement subclass.

In this code, we use the module alias Elem for Webapi.Dom.Element (we established
this alias at the beginning of the section on accessing the DOM on page 49).
The t in Elem.t is a convention used when defining types in ReasonML. You
can read it as “element type”:

let getValue = (element: option(Elem.t)) : option(string) => {
let htmlElement = Belt.Option.map(element, Elem.unsafeAsHtmlElement);
Belt.Option.map(htmlElement, D.HtmlElement.value);

};

We can use pipe first, as described on page 44 to rewrite getValue() as follows:

webpage/shirts/src/WebShirts.re
let getValue = (element: option(Elem.t)) : option(string) => {

element
-> Belt.Option.map(_, Elem.unsafeAsHtmlElement)
-> Belt.Option.map(_, D.HtmlElement.value);

};

report erratum • discuss

Getting a Value • 53

http://media.pragprog.com/titles/reasonml/code/webpage/shirts/src/WebShirts.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Converting to Integer
The built-in int_of_string() function throws an exception if we give it bad data.
This code: let x = int_of_string("blah"); produces the following in the web console:

uncaught exception: Failure,-2,int_of_string

If we know the details of an exception, we can process it in a switch expression:

webpage/shirts/src/WebShirts.re
let toInt = (s:string): option(int) => {

switch (int_of_string(s)) {
| result => Some(result)
| exception(Failure("int_of_string")) => None

}
};

We now have a function that returns a well-behaved option rather than
throwing an exception that sends our program into oblivion.

Getting the Quantity and Unit Price
Using the shirtSizeOfString() function that we developed on page 38, we have all
the tools we need to get the information from the quantity and size fields:

webpage/shirts/src/WebShirts.re
let quantity = getValue(Doc.getElementById("quantity", D.document))

-> Belt.Option.flatMap(_, toInt);

let unitPrice = getValue(Doc.getElementById("size", D.document))
-> Belt.Option.flatMap(_, shirtSizeOfString)
-> Belt.Option.map(_, price);

Writing It Out Completely

If you’re still uncomfortable with Belt.Option.map() and
Belt.Option.flatMap(), here’s the code expanded into switch expressions:

let quantity =
switch (getValue(Doc.getElementById("quantity", D.document))) {

| Some(vQty) => toInt(vQty)
| None => None

};
let unitPrice =

switch(getValue(Doc.getElementById("size", D.document))) {
| Some(vSize) =>

switch (shirtSizeOfString(vSize)) {
| Some(sSize) => Some(price(sSize))
| None => None

}
| None => None

};

Chapter 4. Interacting with Web Pages • 54

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/webpage/shirts/src/WebShirts.re
http://media.pragprog.com/titles/reasonml/code/webpage/shirts/src/WebShirts.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Let’s stop, take a deep breath, and figure out where we are right now. quantity
is bound to an option(int). If we’d entered 5 into the quantity field in the HTML
form, the value would be Some(5). If we’d entered five, the value would be None.

Similarly, unitPrice is bound to an option(float). If we’d selected Medium from the
drop-down menu, the value would be Some(12.50). If we’d messed up our <select>
menu to include an invalid <option> tag, the value would be None.

Calculating the Total Price
Okay cool. We have an option(int) for quantity and option(float) for unit price. If
they’re both Some(...) values, we’re good to go. In any other case, at least one
of them is a None and our result has to be None.

We need a switch expression—but we have two values, and doing a nested switch
would make our code clunky and hard to read. ReasonML very conveniently
allows us to use destructuring in a switch on multiple variables, which are
enclosed in parentheses—the uPrice and qty in the following code:

webpage/shirts/src/WebShirts.re
let totalPrice = switch (unitPrice, quantity) {

| (Some(uPrice), Some(qty)) => Some(uPrice *. float_of_int(qty))
| (_, _) => None

};

In this code, the first switch case tries matching against two Some() variables,
and if they match, we return the calculated price wrapped up in Some(). The
second switch case matches everything else—the underscores denoting that
we don’t care what their values are. At least one of them must be a None, and
we pass it along.

It’s time to convert the totalPrice to a string, which lets us emerge from
option-land. If at any point we’ve generated a None, we’ll convert it to the empty
string.

webpage/shirts/src/WebShirts.re
let priceString = switch (totalPrice) {

| Some(total) => Js.Float.toFixedWithPrecision(total, ~digits=2)
| None => ""

};

Setting HTML Text
The final step is to take that string and place it into the inner text of the with setInnerText(). We need to use Belt.Option.map() because Doc.getEle-
mentById() returns an option. We bind the result to _ on the left-hand side because
we don’t need to use the result for any further calculation.

report erratum • discuss

Getting a Value • 55

http://media.pragprog.com/titles/reasonml/code/webpage/shirts/src/WebShirts.re
http://media.pragprog.com/titles/reasonml/code/webpage/shirts/src/WebShirts.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

webpage/shirts/src/WebShirts.re
let _ = Doc.getElementById("price", D.document)

-> Belt.Option.map(_, Elem.setInnerText(_, priceString));

(); /* return unit */

There are two underscores on the right-hand side, and they serve very different
purposes. The first underscore after Belt.Option.Map() tells pipe first where to
put the option(Element). The second underscore takes a bit more explanation.
The setInnerText() function has two parameters: the element and the desired
text, but Belt.Option.Map() wants a function with one parameter. Just as we did
in our discussion ofBelt.Option on page 43, we use partial application to solve
this problem. The underscore in the setInnerText() call skips the first positional
parameter and partially applies the priceString.

Let’s look at the calculate() function all together so we can see the big picture
of the code:

webpage/shirts/src/WebShirts.re
let calculate = (_: Dom.event) : unit => {

let quantity = getValue(Doc.getElementById("quantity", D.document))
-> Belt.Option.flatMap(_, toInt);

let unitPrice = getValue(Doc.getElementById("size", D.document))
-> Belt.Option.flatMap(_, shirtSizeOfString)
-> Belt.Option.map(_, price);

let totalPrice = switch (unitPrice, quantity) {
| (Some(uPrice), Some(qty)) => Some(uPrice *. float_of_int(qty))
| (_, _) => None

};

let priceString = switch (totalPrice) {
| Some(total) => Js.Float.toFixedWithPrecision(total, ~digits=2)
| None => ""

};

let _ = Doc.getElementById("price", D.document)
-> Belt.Option.map(_, Elem.setInnerText(_, priceString));

(); /* return unit */
};

It’s Your Turn
1. Modify the shirts program to add change event listeners to the input text

field and the select menu. (You may want to add an input listener to the
text field if you want to update the results with every keypress.) If you
wish, you can get rid of the Calculate button, which will no longer be
necessary. One solution is in the code/webpage/shirtchange/src directory.

Chapter 4. Interacting with Web Pages • 56

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/webpage/shirts/src/WebShirts.re
http://media.pragprog.com/titles/reasonml/code/webpage/shirts/src/WebShirts.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

2. Write a program to calculate monthly loan payments. Here’s an HTML
page you can use as a starting point. There is no Calculate button, so
you’ll want to have onchange handlers for the input fields, all of which call
your calculation function.

webpage/loan/src/index.html
<!DOCTYPE html>
<html>
<head>

<title>Monthly Payment Calculator</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<style type="text/css">

p { margin-top: 0.5em; margin-bottom: 0.5em; }
</style>

</head>

<body>
<h1>Monthly Payment Calculator</h1>

<p>
Principal: $ <input type="text" size="10" id="principal"/>
</p>
<p>
Annual Percentage Rate: <input type="text" size="7" id="apr"/> %
</p>
<p>
Number of years: <input type="text" size="4" id="years"/>
</p>

<p>
Your monthly payment is $
</p>

<script type="text/javascript" src="LoanPayment.bs.js"></script>
</body>
</html>

The principal and annual percentage rate should be float, while the number
of years should be int. Here’s the code for computing the monthly payments:

functions/src/LabeledParams.re
let payment = (~principal, ~apr, ~years) => {

let r = apr /. 12.0 /. 100.0;
let n = float_of_int(years * 12);
let powerTerm = (1.0 +. r) ** n;
principal *. (r *. powerTerm) /. (powerTerm -. 1.0);

};

Remember to include bs-webapi in the bs-dependencies section of the project’s
bsconfig.json file. You may also want to write utility functions to make your
code more readable:

report erratum • discuss

It’s Your Turn • 57

http://media.pragprog.com/titles/reasonml/code/webpage/loan/src/index.html
http://media.pragprog.com/titles/reasonml/code/functions/src/LabeledParams.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

let getIntValue = (elementId: string) : option(int) => {...}
let getFloatValue = (elementId: string) : option(float) => {...}

Bad data will give a Failure("float_of_string") exception when converting from
string to float. Your code should catch this and produce a None, much as
we did in the toInt() function. One solution is in the code/webpage/loan/src
directory.

Reviewing DOM Functions
Here are the signatures of the DOM access functions we’ve used in this
chapter, plus a couple that you might find useful in working with the DOM:

Webapi.Dom.Document.getElementById: string => option(Dom.Element) Given a string, this
function returns a DOM element wrapped in Some(), or None if the ID isn’t
found.

Webapi.Dom.Element.asEventTarget: Dom.Element.t => Dom.eventTarget This function takes
a DOM element and returns it in a form that can have an event attached
to it.

Webapi.Dom.EventTarget.addEventListener: (string, Dom.event => unit, Dom.eventTarget) => unit
This function takes an event name as a string and a handler function to
call when the event occurs. This function returns unit. The event handler
(the second argument) is a function that takes a Dom.event as its parameter
and returns unit.

Webapi.Dom.Element.unsafeAsHtmlElement: Webapi.Dom.Element.t => Dom.htmlElement This
function takes a DOM element and returns it in a form that allows it to be
treated as an HTML element.

Webapi.Dom.HtmlElement.value: Webapi.Dom.HtmlElement.t_htmlElement => string This
function takes an HTML element as its parameter and returns its value=
as a string.

Webapi.Dom.Element.innerText: Webapi.Dom.Element.t => string This function takes an
Element and returns the text inside it as a string.

Webapi.Dom.Element.setInnerText: (Webapi.Dom.Element.t, string) => unit This function sets
the text inside the given Element to the given string, and returns unit.

Webapi.Dom.Element.getAttribute: (string, Webapi.Dom.Element.t) => option(string) This func-
tion retrieves the value of the given attribute (the first parameter) of the
given Element, wrapped in Some(), if the attribute exists for the element. If
the element doesn’t have the required attribute, the function returns None.

Chapter 4. Interacting with Web Pages • 58

report erratum • discuss

http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Webapi.Dom.Element.setAttribute: (string, string, Webapi.Dom.Element.t) => unit This function
takes three parameters: the name of an attribute, the value you want it
to have, and the Element that owns the attribute. It sets the attribute to
the given value and returns unit.

Summing Up
You now know how to use bs-webapi to interact with a web page by getting an
element by its id attribute, attaching an event listener to a button, retrieving
a form value, and setting an element’s text. You’ve seen how we can use
Belt.Option.map() and Belt.Option.flatMap() to handle invalid data in a type-safe way
without null or undefined issues.

bs-webapi is fairly low-level—if you use it a great deal, you’ll find yourself writing
utility functions to handle common situations. Eventually, you may want to
create a full-blown single-page application. ReasonML is very tightly integrated
with React (reactjs.org/), as you’ll see in Chapter 9, Making Applications with
Reason/React, on page 141.

Before we get there, though, we have to finish discussing some aspects of
ReasonML that will come up in many programs, not just web apps. We’ll
examine one of these in the next chapter—the ability to process collections
of data such as tuples, lists, and arrays.

report erratum • discuss

Summing Up • 59

https://reactjs.org/
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

CHAPTER 5

Using Collections
In this chapter, we’ll investigate three ways to handle multiple, related pieces
of data: tuples, lists, and arrays:

• Tuples let you collect items with different data types. They usually hold
only a few items.

• Lists have elements that are all of the same data type, and are meant to
be traversed from beginning to end.

• Array elements also must be of the same data type, but they allow efficient
random access to the elements.

For lists and arrays, we’ll learn about the Belt.List and Belt.Array modules, which
contain a large number of functions that make it easier to manipulate these
collections. We will also start using three very important higher-order func-
tions: map(), reduce(), and keep(). Combining these functions lets you manipulate
lists and arrays without using for loops, resulting in shorter code that’s easier
to read.

Accessing Functions in Other Files
We’re going to be using the shirt size data type and its associated functions
from Chapter 3, Creating Your Own Data Types, on page 29 for several of the
examples—and it would be nice to not have to duplicate that code to each of
the files. Before getting into the discussion of collections, we can do some
housekeeping and solve that problem. First, create a project:

you@computer:~/book_projects> bsb -init collections -theme basic-reason
Making directory collections
Symlink bs-platform in /home/you/book_projects/collections
you@computer:~/book_projects> cd collections

report erratum • discuss

http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

and put all the shirt size handling code into one file. Let’s rename some of
the functions to make typing and readability easier, and remove the option
from the price() function, like this:

collections/src/ShirtSize.re
type shirtSize =

| Small
| Medium
| Large
| XLarge(int);

type t = shirtSize;

let price = (size: shirtSize) : float => {
switch (size) {

| Small => 11.00
| Medium => 12.50
| Large => 14.00
| XLarge(n) => 16.00 +. (float_of_int(n - 1) *. 0.50)

}
};
let toString = (size: shirtSize) : string => {

switch (size) {
| Small => "S"
| Medium => "M"
| Large => "L"
| XLarge(n) => String.make(n, 'X') ++ "L"

};
};
let fromString = (str: string) : option(shirtSize) => {

switch (str) {
| "S" => Some(Small)
| "M" => Some(Medium)
| "L" => Some(Large)
| "XL" => Some(XLarge(1))
| "XXL" => Some(XLarge(2))
| "XXXL" => Some(XLarge(3))
| "XXXXL" => Some(XLarge(4))
| _ => None

}
};
let toFixed = Js.Float.toFixedWithPrecision;

This file is now a module, and you can access its data type and functions
from the Demo.re file by qualifying the names with the module name ShirtSize:

collections/src/Demo.re
let myShirt = ShirtSize.XLarge(1);

let myPrice = ShirtSize.price(myShirt);

Js.log(ShirtSize.toFixed(myPrice, ~digits=2)); /* output: 16.00 */

Chapter 5. Using Collections • 62

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/collections/src/ShirtSize.re
http://media.pragprog.com/titles/reasonml/code/collections/src/Demo.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

One important addition we’ve made in the module is this type alias:

type t = shirtSize;

This is a convention in ReasonML programs. The t stands for type, which lets
us annotate parameters or variables as ShirtSize.t (read as ShirtSize type) instead
of the longer and less readable ShirtSize.shirtSize. We’ll talk more about modules
in Chapter 7, Structuring Data with Records and Modules, on page 103.

Grouping Heterogeneous Data with Tuples
The simplest form of collection is the tuple, which consists of a series of values
in parentheses. The classic example of a tuple is for use as a pair of (x, y)
coordinates:

collections/src/Coordinates.re
type coord = (float, float);

let distance = (p0: coord, p1: coord) : float => {
let (x0, y0) = p0;
let (x1, y1) = p1;
sqrt((x0 -. x1) ** 2.0 +. (y0 -. y1) ** 2.0)

};

let startPoint = (3.5, 4.6);
let endPoint = (0.5, 9.6);
let result = distance(startPoint, endPoint);
Js.log(result); /* output: 5.830951894845301 */

Pay special attention to the let bindings in the distance() function. They use
destructuring to extract the elements of the tuple into separate bindings for
each element of the tuple. So in the first statement, x0 is bound to the first
element of p0 and y0 to the second element.

Another way we could have written this code is by using the fst() and snd()
functions, which return the first and second element of a tuple that has
exactly two elements (a two-tuple):

collections/src/Coordinates.re
let distance2 = (p0: coord, p1: coord) : float => {

let x0 = fst(p0);
let y0 = snd(p0);
let x1 = fst(p1);
let y1 = snd(p1);
sqrt((x0 -. x1) ** 2.0 +. (y0 -. y1) ** 2.0)

};

report erratum • discuss

Grouping Heterogeneous Data with Tuples • 63

http://media.pragprog.com/titles/reasonml/code/collections/src/Coordinates.re
http://media.pragprog.com/titles/reasonml/code/collections/src/Coordinates.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Using fst() and snd()

I don’t recommend becoming enamored of these two functions.
First, they can make your code longer and more difficult to read.
Second, fst() and snd() work only with two-tuples. They’re only here
in the book for the sake of completeness, as you may encounter
them in your travels through ReasonML-land.

One of the nice things about tuples is they don’t have to have the same type
of data in each element. In this chapter, we’re going to be working with two-
tuples that represent an order for shirts. The first element of the tuple tells
how many have been ordered and the second element tells which size was
ordered:

collections/src/Order.re
type order = (int, ShirtSize.t);

let order1 = (3, ShirtSize.Medium);
let order2 = (5, ShirtSize.XLarge(3));

We’ll need a function that converts an order to a string:

collections/src/Order.re
let toString = ((qty, size): order) : string =>

string_of_int(qty) ++ " " ++ ShirtSize.toString(size);

Js.log(toString(order1)); /* 3 M */
Js.log(toString(order2)); /* 5 XXXL */

Hey, I just sneaked in something new. I’m destructuring the order parameter
in the function declaration. This is perfectly legal, and it’s a nifty trick for
making your code shorter.

Using Lists
To create a list, you um… list the elements within square brackets. Unlike
tuples, whose elements may be of different types, a list’s elements must all
have the same type. Lists in ReasonML are immutable. Once you create a list,
you can’t change the contents of an individual element. Instead, all of the list
manipulation functions we’ll look at return a brand-new list. Let’s create and
display a short list of integers:

collections/src/IntList.re
let example = [10, 11, 12];
Js.log(example);

With this rather surprising result:

you@computer:~/book_projects/collections> node src/IntList.bs.js
[10, [11, [12, 0]]]

Chapter 5. Using Collections • 64

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/collections/src/Order.re
http://media.pragprog.com/titles/reasonml/code/collections/src/Order.re
http://media.pragprog.com/titles/reasonml/code/collections/src/IntList.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

What we’re seeing is a reflection of the internal form of a list. If we had more
than three elements in the list, we’d see the word Array (or Object, depending
on which JavaScript engine is in use) to represent the remaining elements.
Luckily, we’ll never have to deal directly with this internal representation,
but here are two consequences of the internal representation (and the fact
that we are dealing with them in a functional setting):

1. Lists are designed to be processed from beginning to end. Accessing a
single element in the middle of a list is possible, but it’s not an extremely
efficient operation.

2. When you add an element to a list, it is added at the beginning of the list,
not the end.

Manipulating Lists with Belt.List
The Belt.List module defines a large number of functions for processing lists.
(Just a note: the Belt.List definitions and examples1 are written in OCaml for-
mat.) We’ll use the following list for many of the examples:

collections/src/ListExamples.re
let items = [10, 11, 12, 13, 14, 15, 16];

For example, the length() function returns the number of elements in the list,
so length(items) returns 7. You can use size() as a synonym for length().

This section is going to be somewhat of a laundry list of utility functions
because it’s difficult to find a specific example that uses all of them. (It’s not
an exhaustive list. See the documentation for that.) To make it easier to read,
I’ll avoid prefacing each function name with Belt.List in the explanation.

Creating Lists and Adding Elements to Lists
If you need a list consisting of an element repeated many times, use make().
For example make(5, 7.0) returns the list [7.0, 7.0, 7.0, 7.0, 7.0]

The more versatile makeBy() function takes the number of repetitions as its
first argument (call it n) and a function as its second argument. That function
will be called with the numbers 0 through n - 1, and the results of that function
will populate the list. For example, if we want a list of the square roots of 1
through 5, we would write code like this:

1. bucklescript.github.io/bucklescript/api/Belt.List.html

report erratum • discuss

Manipulating Lists with Belt.List • 65

http://media.pragprog.com/titles/reasonml/code/collections/src/ListExamples.re
https://bucklescript.github.io/bucklescript/api/Belt.List.html
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

collections/src/ListExamples.re
let sqrtPlusOne = (x) => { sqrt(float_of_int(x) +. 1.0) };
let roots = Belt.List.makeBy(5, sqrtPlusOne);

This gives the result [1., 1.41421356237, 1.73205080757, 2., 2.2360679775].

As mentioned, adding an element to a list adds it at the start (also called the
head) of the list. You can add a 9 to the start of the items list either with the
add() function or by using notation reminiscent of JavaScript’s spread syntax
—see the section titled Spread in array literals on the MDN Web Docs site:2

collections/src/ListExamples.re
let added1 = Belt.List.add(items, 9);
let added2 = [9, ...items];

If you need to join two lists, use concat(). The following code will result in [10,
11, 12, 13, 14, 15, 16, 17, 18, 19]:

collections/src/ListExamples.re
let more = [17, 18, 19];
let joined = Belt.List.concat(items, more);

Splitting Lists
The two most-used functions for splitting a list are head() and tail(), which
return the first element in a list and the remaining elements in the list,
respectively. In this case, head(items) returns 10, and tail(items) returns [11, 12,
13, 14, 15, 16].

If you want the first n elements of a list, use take(). To get everything except
the first n elements, use drop(). These functions return an option type, and they
return None if the number of elements you request is negative or greater than
the number of elements in the list:

collections/src/ListExamples.re
let taken3 = Belt.List.take(items, 3); /* Some([10, 11, 12]) */
let dropped3 = Belt.List.drop(items, 3); /* Some([13, 14, 15, 16]) */
let badTake = Belt.List.take(items, 10); /* None */

The splitAt(items, n) function returns an option two-tuple. If successful, the first
element in the tuple is a list of the first n list elements, and the second element
in the tuple is a list of the remaining elements. If n is negative or greater than
the number of elements in the list, splitAt() returns None:

2. developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax

Chapter 5. Using Collections • 66

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/collections/src/ListExamples.re
http://media.pragprog.com/titles/reasonml/code/collections/src/ListExamples.re
http://media.pragprog.com/titles/reasonml/code/collections/src/ListExamples.re
http://media.pragprog.com/titles/reasonml/code/collections/src/ListExamples.re
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

collections/src/ListExamples.re
let result = Belt.List.splitAt(items, 3);
switch (result) {

| Some((firstPart, lastPart)) => {
Js.log(firstPart); /* [10, 11, 12] */
Js.log(lastPart); /* [13, 14, 15, 16] */

}
| None => Js.log("None")

};

Accessing Individual List Elements
Belt.List provides two functions for extracting a single element from a list: get()
and getExn(). Both of these functions take the index of the element you want as
their argument, with zero being the first element in the list. get() returns an option
value—Some(value) if the index is within the bounds of the list, None otherwise.

If you don’t want to deal with option or you enjoy living dangerously, use getExn(),
which will return the element if the index is valid or will throw a getExn error
if the index is invalid.

collections/src/ListExamples.re
let optElement = Belt.List.get(items, 3); /* Some(13) */
let badOptElement = Belt.List.get(items, 10); /* None */
let element = Belt.List.getExn(items, 3); /* 13 */
let badElement: int =

try (Belt.List.getExn(items, 10)) {
| Js.Exn.Error(e) =>

switch (Js.Exn.message(e)) {
| Some(message) => Js.log({j|Error: $message|j}) /* "Error: getExn"*/
| None => Js.log("An unknown error occurred")
};
(-1);

};
Js.log(badElement);

The preceding code uses try—another way of handling exceptions in addition
to what we have seen on page 54. If the expression in try succeeds, its value
is returned. Otherwise, the Js.Exn.Error() pattern match puts the exception into
variable e, allowing us to display the error message (if any). The (-1) at the end
of the try structure is there to return an integer (which is what a successful
getExn() would return.

Again, these aren’t tremendously efficient operations—lists are designed for
sequential rather than random access—but if you need them, you have them
available.

report erratum • discuss

Manipulating Lists with Belt.List • 67

http://media.pragprog.com/titles/reasonml/code/collections/src/ListExamples.re
http://media.pragprog.com/titles/reasonml/code/collections/src/ListExamples.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Using map(), keep(), and reduce() with Lists
Before we get started on this section, you might be having a slight case of
déjà vu—haven’t we already covered map() in the discussion ofoption on page 42?
Yes and no. The plain truth is that the word map occurs in a large number
of contexts in functional programming. Almost any time you find a construct
that’s even remotely like the mathematical idea of a function mapping a domain
onto a range, sure enough, someone has slapped the term map onto it. The
map() in this section isn’t the same as the one you saw before, and—fair
warning—it’s not the last time you’ll see that term pop up in this book.

Now that we’ve done the housekeeping and laundry, it’s time to use list
functions to process the data in a list. Consider this list of order tuples:

collections/src/MapKeepReduce.re
let orderList = [(7, ShirtSize.Medium), (5, ShirtSize.XLarge(3)),

(4, ShirtSize.Small), (6, ShirtSize.Large), (8, ShirtSize.Small),
(2, ShirtSize.Large), (9, ShirtSize.Medium), (3, ShirtSize.XLarge(2))];

We’ll use the map(), keep(), and reduce() functions to do things like this:

• Determine the price of each order
• Create a new list with only the orders for size Medium
• Figure out the total price for all the orders
• Figure out the total price for the Medium shirts only

There’s an important point to be noted here: All of these operations are
transforming the original list of orders into some new form. In other languages,
for the first task, you might use a for loop of the form:

priceList = []
for (i = 0; i < orderList.length(); i++) {

/* calculate price of order and append to priceList */
}

for loops won’t fly in ReasonML because mutating variables (like i and the
price list) is frowned upon. When working in a functional programming lan-
guage like ReasonML, we take a different approach. We pass the original list
to a function like map() and receive a transformed list. This, in turn, can be
passed on to other transformations.

Using map()
Let’s tackle the first task of creating a list of prices for each order. The map()
function takes two parameters: the list to be processed and a function that
does the appropriate calculation on a single element. map() will then apply the

Chapter 5. Using Collections • 68

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/collections/src/MapKeepReduce.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

function to each element in the list, add the result to a new list, and return
the new list after all elements are processed. It’s probably easier to show you
some code:

collections/src/MapKeepReduce.re
let onePrice = ((qty: int, size: ShirtSize.t)) : float => {

float_of_int(qty) *. ShirtSize.price(size);
};

let priceList = Belt.List.map(orderList, onePrice);

The onePrice() function takes a single order and returns the total price by
multiplying the quantity of shirts by the price per shirt. The call to map()
accepts the list of orders and applies onePrice() to each element of orderList. The
resulting list, which is bound to priceList, is [87.5, 85., 44., 84., 88., 28., 112.5, 49.5].

Using keep()
The second task, creating a new list consisting of only the Medium shirt orders,
is a job for keep(). Like map(), it’s a higher-order function. Its first parameter
is also the list of elements to be processed. The second parameter is a function,
but this function takes an element and returns true if the element is to be
added to the result list or false if it won’t be kept. This code:

collections/src/MapKeepReduce.re
let isMedium = ((_, size)): bool => {

size === ShirtSize.Medium;
};

let mediums = Belt.List.keep(orderList, isMedium);

Produces the list [(7, Medium), (9, Medium)]. In the isMedium() function, the outer
parentheses in ((_, size)) delimit the argument list. The inner parentheses denote
a two-tuple. The underscore is used to ignore the quantity part of the tuple,
as it isn’t used in the function body. The body of isMedium() is only one line, so
this is a case where it might be better to express it as an anonymous function.
We make the anonymous function by using the body of isMedium() (everything
to the right of the =). We’ve also dropped the annotation and braces to save
space.

collections/src/MapKeepReduce.re
let mediums2 = Belt.List.keep(orderList,

((_, size)) => size === ShirtSize.Medium);

An anonymous function is a function body that hasn’t been bound to a name.
In general, anonymous functions tend to be short—most often one or two
lines. If the function you’re passing to another function is fairly lengthy, it’s
best to define it as a separate, named function and then pass on the name.

report erratum • discuss

Using map(), keep(), and reduce() with Lists • 69

http://media.pragprog.com/titles/reasonml/code/collections/src/MapKeepReduce.re
http://media.pragprog.com/titles/reasonml/code/collections/src/MapKeepReduce.re
http://media.pragprog.com/titles/reasonml/code/collections/src/MapKeepReduce.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

This makes your code more readable. There is a school of thought that says
readability should be your primary concern—you and other people will be
reading the code more often than the computer will—so you should use named
functions instead of anonymous functions, no matter how short they are. In
this book I have not subscribed entirely to this philosophy, so you will see
quite a few short anonymous functions. Your mileage may vary.

keep() in Other Programming Languages

Many other functional languages use the name filter instead of keep.
In English, people think of things being filtered out, but the
function argument returns true for elements that should be kept
in. If you ask me, keep is a much more descriptive name for the
function.

Using reduce()
The map() function returns a list with the same number of elements as the
input list, though the result may be list of a different type than the input.
keep() returns a list with (potentially) a different number of elements, but of
the same type as the input list. Sometimes you might like to process the list
and return a result with a different number of elements and/or a different
type. This is the case with our third task: figuring out the total price for all
the orders. We want to return a single float from a list of order. The reduce()
function lets us do exactly that.

reduce() has three parameters:

• The list to be processed, of type 'a (see What’s a Parametric Data Type?,
on page 38).

• The starting value of an accumulator that will accumulate the function
result as elements are processed. It’s of type 'b. (It’s not of type 'a because
reduce() can return a different type than the list type. 'a and 'b might turn
out to be the same type, but they don’t have to be.)

• The reducer function.

reduce() goes through the input list, one element at a time. For each element,
it passes the current value of the accumulator and the element to the reducer
function. The reducer function takes those two values and returns the new
value for the accumulator. When reduce() has processed all the elements, it
returns the current value of the accumulator as its result. Let’s look at some

Chapter 5. Using Collections • 70

report erratum • discuss

http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

code and its output. We’ve added a call to Js.log() so you can see what is hap-
pening, step by step:

collections/src/MapKeepReduce.re
let addPriceLogged = (runningTotal, orderItem) => {

let price = onePrice(orderItem);
Js.log({j|$runningTotal, $price|j});
runningTotal +. price;

};

Js.log("Running total / Price")
let totalPrice = Belt.List.reduce(orderList, 0.0, addPriceLogged);
Js.log2("Total price:", totalPrice); /* Total price: 578.5 */

Running total / Price
0, 87.5
87.5, 85
172.5, 44
216.5, 84
300.5, 88
388.5, 28
416.5, 112.5
529, 49.5
Total price: 578.5

It’s worthwhile to analyze what’s happening in this code. This description is
for someone who’s never used the reduce() function before:

1. The accumulator is set to 0.0.

2. The accumulator and the first element in the list (7, ShirtSize.Medium) are
sent to addPrice().

3. addPrice() returns 0.0 (the accumulator) plus 87.50 (the price of seven
Medium shirts). This is the new value of the accumulator.

4. reduce() now passes this new value 87.50 and the next element in the list
(5, ShirtSize.XLarge(3)) to addPrice().

5. addPrice() returns 87.50 plus 85.00 (the price of five XLarge(3) shirts). The
result, 172.50, becomes the new value of the running total (accumulator).

6. reduce() now calls addPrice(172.50, (4, ShirtSize.small)) to process the next elements.

7. addPrice() returns 172.50 plus 44.00 (the price of four Small shirts), which
is 216.50.

This continues until the list is totally processed and we get 587.5 as the total
price for all our shirt orders.

report erratum • discuss

Using map(), keep(), and reduce() with Lists • 71

http://media.pragprog.com/titles/reasonml/code/collections/src/MapKeepReduce.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Without the logging, the code would be written like this:

collections/src/MapKeepReduce.re
let addPrice = (runningTotal, orderItem) => {

runningTotal +. onePrice(orderItem);
};

let totalPrice = Belt.List.reduce(orderList, 0.0, addPrice);

Other programming languages use different names like fold() or fold_left() to do
what ReasonML calls reduce().

Combining map(), keep(), and reduce()
Each of these functions is quite useful. When combined, they can do wonderful
things. For example, you, as a sharp-eyed reader, might have noticed that
we already calculated the list of prices for each order on page 69. We could
have calculated the grand total price this way:

collections/src/MapKeepReduce.re
let addPriceToTotal = (runningTotal, price) => runningTotal +. price;

let totalPrice2 =
Belt.List.map(orderList, onePrice) ->
Belt.List.reduce(_, 0.0, addPriceToTotal);

Js.log2("Total price:", totalPrice2); /* Total price: 578.5 */

In the preceding code, we used the pipe first operator -> to send the result of
calculating the price list (via Belt.List.map()) to Belt.List.reduce(). Though the reducer
function is short enough to be expressed as an anonymous function, we have
defined addPriceToTotal() to add the price from the calculated list to the accumulator.

Using Operators as Functions

For the true minimalists among you, we could make our reducer
function even shorter. In the following code, we put the floating point
addition operator +. in parentheses. This tells ReasonML to use it
as a function rather than an operator, and it’s the function we want:
it takes two arguments and returns the result of adding them:

collections/src/MapKeepReduce.re
let totalPrice3 =

Belt.List.map(orderList, onePrice) ->
Belt.List.reduce(_, 0.0, (+.));

Js.log2("Total price:", totalPrice3); /* Total price: 578.5 */

When you’re using an operator, the accumulator is the first
operand and the list element is the second operand. Thus,
this code:

Chapter 5. Using Collections • 72

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/collections/src/MapKeepReduce.re
http://media.pragprog.com/titles/reasonml/code/collections/src/MapKeepReduce.re
http://media.pragprog.com/titles/reasonml/code/collections/src/MapKeepReduce.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Using Operators as Functions

let data = [2.0, 4.0, 5.0];
let n = Belt.List.reduce(data, 1.0, (/.))

Works out to (((1.0 / 2.0) / 4.0) / 5.0), or 0.025. You may see this
sort of notation in other people’s code, and you should be able to
recognize what it does. However, you don’t have to write your code
this way. If you’re more comfortable with an anonymous function
or a named reducer function, then use that instead.

Another example of combining these functions is our final task: figuring out
the total price for the Medium shirts only. The logic is: keep() only the Medium
shirts (using the previously defined isMedium() predicate function), use map() to
calculate the individual prices, and send those to reduce() to add them:

collections/src/MapKeepReduce.re
let mediumTotal =

Belt.List.keep(orderList, isMedium) ->
Belt.List.map(_, onePrice) ->
Belt.List.reduce(_, 0.0, addPriceToTotal);

Js.log2("Medium total:", mediumTotal); /* Medium total: 200*/

Interlude: Displaying Lists
As we saw at the beginning of this chapter on page 64, the default display of
a list leaves much to be desired. If we have a list with more than three ele-
ments, we see only the first three and then the word Array (which is odd, given
that we have a list rather than array) or Object to indicate that there are more
elements. While writing this chapter, though, I needed to see all the elements,
so I wrote a function named stringOfList to get things done.

The general plan was to use reduce(): the accumulator starts off as the empty
string. The reducer function converts a list element to a string and appends
it, along with a comma and space, to the accumulator. Here’s the code for a
list of integers:

collections/src/DisplayList.re
let intReducer = (accumulator: string, item: int) => {

accumulator ++ string_of_int(item) ++ ", ";
};

let stringOfIntList = (items: list(int)): string => {
"[" ++ Belt.List.reduce(items, "", intReducer)

++ "]";
}

let items = [10, 11, 12, 13, 14, 15];
Js.log(stringOfIntList(items));

report erratum • discuss

Interlude: Displaying Lists • 73

http://media.pragprog.com/titles/reasonml/code/collections/src/MapKeepReduce.re
http://media.pragprog.com/titles/reasonml/code/collections/src/DisplayList.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Here’s the result of running the program:

you@computer:~/book_projects/collections> node src/DisplayList.bs.js
[10, 11, 12, 13, 14, 15,]

That output is definitely more useful. Now, what about a list of floats?

collections/src/DisplayList.re
let floatReducer = (accumulator: string, item: float) => {

accumulator ++ string_of_float(item) ++ ", ";
};

let stringOfFloatList = (items: list(float)): string => {
"[" ++ Belt.List.reduce(items, "", floatReducer)

++ "]";
}

let floatItems = [3.6, 7.9, 8.25, 41.0];
Js.log(stringOfFloatList(floatItems));

And its output…

you@computer:~/book_projects/collections> node src/DisplayList.bs.js
[3.6, 7.9, 8.25, 41.,]

There’s a problem brewing here: we’re going to need a different display and
reducer function (or at least a display function if we decide to go with an
anonymous reducer function) for every different data type. This, again, is far
from ideal. Instead, we’d like to use a parametric data type as described on
page 38. In addition to passing the list, we’ll also need to pass in a function
that tells us how to convert the elements in that list to a string. The partial
code will look like this:

let displayList = (items: list('a), stringify: ('a) => string) : string => {
"[" ++ Belt.List.reduce(items, "", elementReducer) ++ "]";

};

Js.log(displayList(items, string_of_int));
Js.log(displayList(floatItems, string_of_float))

This creates another problem. The as-yet-unwritten elementReducer() function
will take the accumulator and current element as parameters—but it will also
need access to the stringify() function. There are two ways to handle this prob-
lem. The first and easier solution is to define elementReducer() inside of displayList().
This will work because ReasonML allows us to define functions within func-
tions, and the inner functions have access to all parameters and variables in
the outer function:

Chapter 5. Using Collections • 74

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/collections/src/DisplayList.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

collections/src/DisplayList.re
let stringOfList = (items: list('a), stringify: ('a) => string) : string => {

let elementReducer = (accumulator: string, item: 'a) => {
accumulator ++ stringify(item) ++ ", ";

};
"[" ++ Belt.List.reduce(items, "", elementReducer) ++ "]";

};

Js.log(stringOfList(items, string_of_int));
Js.log(stringOfList(floatItems, string_of_float));

I’ll confess that I didn’t think of this easier solution first. Instead, I did it in
a slightly more difficult way. I created a function with three parameters: the
convert-to-string function, the accumulator, and the item:

let conversion = (converter: ('a => string), acc: string, item: 'a) => {
acc ++ converter(item) ++ ", "

};

This function isn’t suitable for using with reduce() because it has three
parameters. But I can use currying as described on page 24 to partially call
conversion() by providing that first argument:

let stringOfList = (items: list('a), stringify: (('a) => string)): string => {
let reducerFcn = conversion(stringify);
"[" ++ Belt.List.reduce(items, "", reducerFcn) ++ "]";

};

Since I’ve provided one argument to conversion() in the definition of reducerFcn(),
that new function now needs two arguments to fulfill its duty: the accumulator
and the item. This makes it a perfect fit for Belt.List.reduce().

In either case, I end up with a function that displays all the items in a list, even
though the extra comma and space at the end are ugly. (It turns out that the
String.concat() function will solve this problem, though it would not have
afforded me the opportunity to give another example of reduce() and currying.)

Using Arrays
Arrays are a lot like lists, but there are significant differences. While lists are
immutable, arrays can be changed in place. (Whether this is a good idea or
not is another question entirely. One school of thought says mutating arrays
is a source of errors.) Unlike lists, arrays don’t have a performance penalty
for random access.

You define an array by placing the elements, separated by commas, between
the delimiters [| and |].

report erratum • discuss

Using Arrays • 75

http://media.pragprog.com/titles/reasonml/code/collections/src/DisplayList.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

collections/src/IntArray.re
let items = [|10, 11, 12, 13, 14, 15, 16|];
Js.log(items);

Unlike lists, arrays display quite nicely, but they display square brackets [
and] rather than the delimiters [| and |] you used when you created the array:

you@computer:~/book_projects/collections> node src/IntArray.bs.js
[10, 11, 12, 13, 14, 15, 16]

In this section, we’ll look at Belt.Array, which has many of the same functions
as Belt.List, except it takes arrays as parameters instead of lists. You can also
take advantage of the Js.Array library,3 which provides many of the capabilities
of the JavaScript Array object.4

Creating Arrays and Adding Elements to Arrays
The Belt.Array.make() and Belt.Array.makeBy() functions work like their counterparts
in Belt.List.

If you need to join two arrays, use concat(). The following code will result in
[|10, 11, 12, 13, 14, 15, 16, 17, 18, 19|]:

collections/src/ArrayExamples.re
let more = [|17, 18, 19|];
let joined = Belt.Array.concat(items, more);

There’s no function corresponding to Belt.List.add(), nor can you use the ...
notation with arrays. These would be slow operations for arrays, involving
reallocation of the entire array. If you want to append a single value to an
array (yielding a new array), make an array that contains that single value
and use Belt.Array.concat():

collections/src/ArrayExamples.re
let part1 = [|"the", "array", "has"|];
let part2 = Belt.Array.concat(part1, [|"more"|]);
Js.log(part2); /* [|"the", "array", "has", "more"|] */

Splitting Arrays
Belt.Array has no functions analogous to head(), tail(), take(), drop(), and splitAt() from
Belt.List. Instead, Belt.Array has a slice() function which takes two parameters: a
starting offset and a length. The function returns a new array with the specified
elements.

3. bucklescript.github.io/bucklescript/api/Js.Array.html
4. developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

Chapter 5. Using Collections • 76

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/collections/src/IntArray.re
http://media.pragprog.com/titles/reasonml/code/collections/src/ArrayExamples.re
http://media.pragprog.com/titles/reasonml/code/collections/src/ArrayExamples.re
https://bucklescript.github.io/bucklescript/api/Js.Array.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

collections/src/ArrayExamples.re
/* items contains [|10, 11, 12, 13, 14, 15, 16|]; */
Js.log(Belt.Array.slice(items, ~offset=1, ~len=3)); /* [|11, 12, 13|] */
Js.log(Belt.Array.slice(items, ~offset=5, ~len=9)); /* [|15, 16|] */
Js.log(Belt.Array.slice(items, ~offset=-3, ~len=2)); /* [|14, 15|] */
Js.log(Belt.Array.slice(items, ~offset=3, ~len=-2)); /* [| |] */

If you try to go beyond the end of the array, as in the second line, you get
everything up to and including the end of the array. If you specify a negative
offset, it counts from the end of the array (thus, -1 is the last element, -2 is
the next to last element, etc.). If you specify a negative length, slice() returns
an empty array. As this function always returns a valid array, it doesn’t need
to return an option value.

Here’s a quick exercise for you: write functions arrayTake(), arrayDrop() and
arraySplitAt() that work by calling Belt.Array.slice(). You can see my solution at
code/collections/src/ArrayAnalogs.re.

Accessing Individual Array Elements
Belt.Array provides three functions for extracting a single element from a array:
get(), getExn(), and getUnsafe(). All of these functions take the index of the element
you want as their argument, with zero being the first element in the array.
get() returns an option value—Some(value) if the index is within the bounds of
the array, None otherwise.

If you don’t want to deal with option, or you simply enjoy living dangerously,
use getExn(), which will return the element if the index is valid or will throw a
getExn error if the index is invalid. If you really want to live dangerously, use
the appropriately labeled getUnsafe(), which returns the JavaScript undefined
value if the index is out of bounds—with all the lovely runtime errors that go
along with that!

You may also use square brackets to access array elements, as in JavaScript.
You’ll get an out-of-bounds exception if you attempt to go outside the array
bounds.

collections/src/ArrayExamples.re
let optElement = Belt.Array.get(items, 3); /* Some(13) */
let badOptElement = Belt.Array.get(items, 10); /* None */
let badOptElement2 = Belt.Array.getUnsafe(items, 10); /* undefined */
let element = Belt.Array.getExn(items, 3); /* 13 */
let bracketElement = items[3]; /* 13 */
let badElement = Belt.Array.getExn(items, 10); /* throws error */

report erratum • discuss

Using Arrays • 77

http://media.pragprog.com/titles/reasonml/code/collections/src/ArrayExamples.re
http://media.pragprog.com/titles/reasonml/code/collections/src/ArrayExamples.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Using map(), keep(), and reduce() with Arrays
All these functions work precisely as their counterparts in Belt.List do. You can
see the examples, adapted to arrays, in file code/collections/src/ArrayMapKeepReduce.re.
Rewriting took very little effort beyond a search-and-replace.

Putting Arrays to Work
Time to build another mini web app. We’ll let the user enter a comma-sepa-
rated list of orders in an input field, then we’ll calculate and display the price
for each order, the total number of shirts, and the total price.

Here’s the HTML:

collections-app/src/index.html
<!DOCTYPE html>
<html>
<head>

<title>Shirt Price Calculator</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<style type="text/css">

.right {text-align: right;}

.center {text-align: center;}
th, td {border: 1px solid gray; padding: 3px}

</style>
</head>

<body>
<h1>Shirt Price Calculator</h1>

<p>
Enter list of orders separated by commas:
</p>

<p>
<input type="text" size="40" id="orders"

placeholder="Example: 3M, 4@XL, 5 S"/>
<button id="calculate">Calculate</button>
</p>

<h2>Results</h2>
<div id="table"></div>

<p>Total shirts: </p>
<p>Total price: $</p>

<script type="text/javascript" src="OrderPage.bs.js"></script>
</body>
</html>

For example, if someone entered 2@M, 7Q, 6XXL in the text field, the output
would read something like the table on page 79.

Chapter 5. Using Collections • 78

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/collections-app/src/index.html
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

PriceSizeQuantity

$25.00M2

Bad input 7Q

$96.00XXL6

Total number of shirts: 8
Total price: $121.00

Parsing the Input
Let’s hold off on the web interaction for now and instead concentrate on the
processing we need to do. We’ll use regular expressions5 to analyze the input
string and split it into individual orders. Here’s the plan, presuming an input
string of "2@M, 7Q, 6 XXL":

First, split the string using commas as delimiters. This produces an array:
[|"2@M", "7Q", "6 XXL"|]. Then use a regular expression to split each item into
digits and a size string such a "2" and "M". These strings can be converted to
an integer and shirtSize, then combined into an order tuple.

What happens when we get to the bad order 7Q? Your first thought might be to
create an option(order) to handle errors. But when we output the table, we would
like to show the original data in an error message so users can see their input
was invalid, and None (our “error” condition) doesn’t store any information. The
Belt library anticipates this sort of situation with the Belt.Result library. It’s
designed for representing the result of an operation that can either succeed or
fail, when you need to have data for each case. Its definition looks like this:

type t('a, 'b) =
| Ok(a)
| Error(b)

The definition uses two different algebraic data types, so the Ok variant can
hold a different data type than the Error variant. When we get a good string
like 6 XXL, the Ok variant will hold an order—Ok((6, XLarge(2)). When we get a bad
string like 7Q, we’ll create an Error("7Q"). That way, our code for handling errors
has access to the original string that caused the error.

The plan, then, is for our program to take the input string and give us an
array of Belt.Result orders, which we may process with map(), keep(), and reduce()
to produce the data for the web page.

5. developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions

report erratum • discuss

Putting Arrays to Work • 79

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Confession Time

The first time I wrote this code, I did use an option type and wrote
that it “just felt right” to use it. Only when I started creating the
HTML table did I realize I didn’t have the original string informa-
tion. That meant I would have to re-parse the input string in order
to display it in the table. I had to solve the problem in a more
efficient way. Belt.Result is that other way.

I then rewrote the code and rewrote the explanation to make it
appear as if I had anticipated the problem from the very start (and
make you think I’m a very clever person indeed).

The moral of the story really is, as Fred Brooks wrote in The
Mythical Man Month, “plan to throw one away.” If you have painted
yourself into a corner, feel free to tear the code apart and rewrite.
Like confession, it’s good for the soul.

Here’s the code for splitting on commas:

collections-app/src/OrderPage.re
let commaSplit = (s: string) : array(string) => {

let pattern = [%re "/\\s*,\\s*/"];
Js.String.splitByRe(pattern, s) ->

Belt.Array.map(_, (item) => {
Belt.Option.getWithDefault(item, "")

})
};

You create a regular expression with the form [%re "patternString"]. If your pattern
contains backslashes, you must put two of them in a row so that ReasonML
will treat them as a true backslash rather than an escape character. Alterna-
tively, you may use this quoting format: {|/\s*,\s*/|} to avoid double backslashes.
The pattern: \s*,\s* means “zero or more spaces, followed by a comma, followed
by zero or more spaces.” Using \s* makes the pattern match more flexible by
allowing users to input any number of spaces before or after the commas.
Js.String.splitByRe()—the Split By Regular Expression function—returns an array
of option delimited strings. If the delimiter pattern isn’t in the input string, it
returns an array with a single option entry (the entire string). Here’s an example:

let pattern = [%re "/\\s*,\\s*/"];

Js.String.splitByRe(pattern, "ab, cd , ef, gh"));
/* result: [|Some("ab"), Some("cd"), Some("ef"), Some("gh")|] */

Js.String.splitByRe(pattern, "no commas"));
/* result: [|Some("no commas")|] */

Chapter 5. Using Collections • 80

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/collections-app/src/OrderPage.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

We have to change this array of option values to normal values. To do this, we
pipe the results of splitByRe() to Belt.Array.map() and use Belt.Option.getWithDefault() in
our mapping function. If given Some(value), getwithDefault() returns the value
inside the Some. If given None, it returns a default value (in our case, the
empty string).

Here’s the code for parsing one of the items as an order:

collections-app/src/OrderPage.re
type order = (int, ShirtSize.t);Line 1

type resultOrder = Belt.Result.t(order, string)-

-

let orderFromCaptures = (optCaptures: option(array(string)),-

input: string): resultOrder => {5

switch (optCaptures) {-

| Some(captures) => {-

switch (ShirtSize.fromString(captures[2])) {-

| Some(size) => Belt.Result.Ok((int_of_string(captures[1]), size))-

| None => Belt.Result.Error(input)10

}-

}-

| None => Belt.Result.Error(input)-

}-

};15

-

let toOrder = (input: string) : resultOrder => {-

let pattern = [%re "/(\\d{1,4})\\s*@?\\s*(S|M|X{0,4}L)/"];-

Js.String.toUpperCase(input)-

-> Js.String.match(pattern, _)20

-> orderFromCaptures(input)-

};-

Wow. There’s a lot to unpack here. The first type definition says an order is a
tuple of an integer and a ShirtSize.t. The type definition resultOrder is a type alias
for a Belt.Result.t (the t, again, is the ReasonML convention for “type”) that will
have an order as its Ok variant and a string as its Error variant. It’s here mostly
to make the annotations, such as the one in the first line of toOrder(), (line 17)
easier to read.

Next, the regular expression bound to pattern (line 18):

• (\d{1,4}): one to four digits. If you need more than 9,999 shirts in a single
order, you’re out of luck. The parentheses tell the regular expression
engine to store the matched substring. This is also called a capture.

• \s*: zero or more spaces.

• @?: an optional at sign.

report erratum • discuss

Putting Arrays to Work • 81

http://media.pragprog.com/titles/reasonml/code/collections-app/src/OrderPage.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

• \s*: zero or more spaces.

• (S|M|X{0,4}L): The vertical bars separate alternatives. Match S, M, or zero to
four occurrences of the letter X followed by L. This last will match L, XL, XXL,
etc. Again, parentheses mean that we want the matching substring stored.

The result of Js.String.match() is Some(array(string)) if the pattern matches, None
otherwise. In the case of a match, the first element of the array is the entire
matched substring, and the subsequent elements are the matches from the
parenthesized portions of the pattern. Matching the pattern against "5 XL" will
result in Some([|"5 XL", "5", "XL"|]). The match result is sent to orderFromCaptures()
(line 21)

Let’s look at the Some(captures) case in line 7 when the pattern matches. The
third element in the array, arr[2], is the shirt size as a string, which we must
convert to our ShirtSize.t type. Even though the regular expression has guaran-
teed that the size will be a valid string, the function that does this conversion
returns option(ShirtSize.t), so we need an inner switch in line 8 to handle that. The
success result is the expression Belt.Result.Ok((int_of_string(captures[1]), size)).

Calculating the Totals
Okay. We now have an array of Belt.Result.t(order, string). We use reduce() to get
the total number of shirts. The reducer function adder() adds the number of
shirts to the accumulator if the item is Belt.Result.Ok and does no processing of
anything else (which would be Belt.Result.Error entries) by passing on the accu-
mulator unchanged:

collections-app/src/OrderPage.re
let calculateTotalShirts = (orders: array(resultOrder)): int => {

let adder = (accumulator: int, resOrder: resultOrder) => {
switch (resOrder) {
| Belt.Result.Ok((n, _)) => accumulator + n
| _ => accumulator

}
};
Belt.Array.reduce(orders, 0, adder);

};

We can then use pipe first to calculate the total number of shirts sold—this
is the code I wrote to test the parts:

let str = "3M, 5 @ S, 7 BAD, 9 XXL";
let nShirts = commaSplit(str) ->

Belt.Array.map(_, toOrder) ->
calculateTotalShirts(_);

Js.log(nShirts); /* 17 */

Chapter 5. Using Collections • 82

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/collections-app/src/OrderPage.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

We could write a similar function to calculate the total price, but there would
be a fair amount of duplicated code. Let’s do something clever—process both
the total number of shirts and total price, and return them as a tuple. That
means the accumulator must be a tuple as well. In order to keep the code
from getting too messy, let’s also write a convenience function to calculate
the total price for a single order and make the reducer function separate for
readability:

collections-app/src/OrderPage.re
let orderPrice = ((n, size): order): float => {Line 1

float_of_int(n) *. ShirtSize.price(size);-

};-

-

let addOrderTotal = ((totalShirts, totalPrice) as current, orderResult) => {5

switch (orderResult) {-

| Belt.Result.Ok((n, _) as order) => (-

totalShirts + n,-

totalPrice +. orderPrice(order)-

)10

| _ => current-

}-

};-

-

let calculateTotals = (orders: array(resultOrder)): (int, float) => {15

Belt.Array.reduce(orders, (0, 0.0), addOrderTotal);-

};-

There’s something new here on line 5. We are destructuring the tuple into
variables totalShirts and totalPrice (we’ve done that before), but this time we are
adding as current. This binds the variable current to the entire non-destructured
tuple, so we can refer to it in line 11 without having to say (totalShirts, totalPrice).
We use this same trick in lines 7 and 9 to refer to the entire order.

Creating the Output
We’d like to display the individual orders in table form, with each row giving
a quantity, size, and total price. If an order is invalid, that row in the table
will give the original data with an error message.

The easiest way to create the table is to set the innerHTML of the <div id="table">,
so we’ll need a function that changes an OK(order) into the HTML for a table
row with the quantity, size, and total price. The function changes an Error(string)
into the HTML for a table row containing the string and an error message. It
uses the {j|...|j} notation to interpolate variables:

report erratum • discuss

Putting Arrays to Work • 83

http://media.pragprog.com/titles/reasonml/code/collections-app/src/OrderPage.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

collections-app/src/OrderPage.re
/* Create a row from an order */
let createRow = (anOrder: resultOrder): string => {

switch (anOrder) {
| Belt.Result.Ok((n, size)) => {

let totalPrice =
Js.Float.toFixedWithPrecision(orderPrice((n, size)), ~digits=2);

let sizeStr = ShirtSize.toString(size);
{j|<tr><td class="right">$n</td>

<td class="center">$sizeStr</td>
<td class="right">\$$totalPrice</td></tr>\n|j}

}
| Belt.Result.Error(s) =>

{j|<tr><td colspan="3">Bad input $s</td></tr>\n|j}
}

};

Now that we can create a single row, we use reduce() to accumulate the strings
corresponding to each row, and we put them between the start and end of
an HTML <table>:

collections-app/src/OrderPage.re
let createTable = (orderArray: array(resultOrder)) : string => {

let tableBody = Belt.Array.reduce(orderArray, "",
(accumulator, item) => accumulator ++ createRow(item));

{j|
<table>

<thead>
<tr><th>Quantity</th><th>Size</th><th>Price</th>

</thead>
<tbody>

|j} ++ tableBody ++ {j|
</tbody>

</table>
|j};
};

Here’s the HTML generated from the string 2@M, 7Q, 6 XXL:

<table>
<thead>

<tr><td>Quantity</td><td>Size</td><td>Price</td>
</thead>
<tbody>

<tr><td class="right">2</td>
<td class="center">M</td>
<td class="right">$25.00</td></tr>

<tr><td colspan="3">7Q is not valid</td></tr>

Chapter 5. Using Collections • 84

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/collections-app/src/OrderPage.re
http://media.pragprog.com/titles/reasonml/code/collections-app/src/OrderPage.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

<tr><td class="right">6</td>
<td class="center">XXL</td>
<td class="right">$99.00</td></tr>

</tbody>
</table>

Something you might have noticed: the vast majority of the code is setup,
short functions for processing individual elements, and literal strings. The
actual processing consists of a few calls to map() or reduce(). This indicates the
kind of power they have in making your code clear and compact.

Creating the User Interface
Just as we did in Chapter 4, Interacting with Web Pages, on page 47, we set
up module aliases, write a function to get a field’s value, and connect the
Calculate button to an event handler:

collections-app/src/OrderPage.re
module D = Webapi.Dom;
module Doc = Webapi.Dom.Document;
module Elem = Webapi.Dom.Element;

let getValue = (element: option(Elem.t)) : option(string) => {
element

-> Belt.Option.map(_, Elem.unsafeAsHtmlElement)
-> Belt.Option.map(_, D.HtmlElement.value);

};
let calcButton = Doc.getElementById("calculate", D.document);
switch (calcButton) {

| Some(element) =>
D.EventTarget.addEventListener(

"click", calculate, D.Element.asEventTarget(element))
| None => ()

};

And here is the event handler itself:

collections-app/src/OrderPage.re
let setInnerHTML = (id: string, htmlString: string) => {

Doc.getElementById(id, D.document)
-> Belt.Option.map(Elem.setInnerHTML(_, htmlString))

};

let setInnerText = (id: string, textString: string) => {
Doc.getElementById(id, D.document)
-> Belt.Option.map(Elem.setInnerText(_, textString))

};

report erratum • discuss

Putting Arrays to Work • 85

http://media.pragprog.com/titles/reasonml/code/collections-app/src/OrderPage.re
http://media.pragprog.com/titles/reasonml/code/collections-app/src/OrderPage.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

let calculate = (_: Dom.event) : unit => {
switch (getValue(Doc.getElementById("orders", D.document))) {

| Some(str) => {
let orderArray = commaSplit(str) ->

Belt.Array.keep(_, (item) => {item !== ""}) ->
Belt.Array.map(_, toOrder);

let (nShirts, grandTotal) = calculateTotals(orderArray);
let priceString = Js.Float.toFixedWithPrecision(grandTotal, ~digits=2);

let _ = setInnerHTML("table",createTable(orderArray));
let _ = setInnerText("totalShirts", string_of_int(nShirts));
let _ = setInnerText("totalPrice", priceString);
()

}
| None => ()

}
};

There are a couple of things to note about this code. Rather than passing an
option value all the way through the code (because the orders field might not
exist), we immediately do a switch at the start of the code. When creating the
orderArray, we’ve added an extra step that uses keep() with an anonymous
function to make sure we process only non-empty strings. This lets the code
work properly when the user doesn’t enter anything in the input field. We
have also added utility functions setInnerHTML() and setInnerText() to make the
code a bit more readable.

It’s Your Turn
Consider a two-tuple of data that gives temperature in degrees Celsius and
relative humidity as a percent. Write a program that takes a list (or array—
whichever you prefer) of these tuples and calculates:

• The dew point for each tuple, using the formula

T
d
= T − ((100 − RH) / 5)

This formula is the simplest one available; it is fairly accurate for relative
humidity over 50%. There are more accurate formulas—if you want to
research them and implement one of those instead, be my guest.

• The maximum, minimum, and average dew points

Hint: You can use the built-in min() and max() functions, which return the
lesser and greater of their two arguments, or you can use reduce() and keep()
with your own predicate functions.

Chapter 5. Using Collections • 86

report erratum • discuss

http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Bonus challenge: for the maximums and minimums, give the element indices
where they occur. Display the indices starting with one for the benefit of
humans, as opposed to zero, which is for the benefit of programmers. For
example, in this data: [(27, 55), (15, 70), (18.3, 58.1))], you might display:

Minimum value: 9. (at position 2)
Maximum value: 18. (at position 1)
Average value: 12.3066666667

If you wish, create a web page interface for doing these calculations and figure
out any representation for input of those tuples that makes sense to you. You
can see my solution in the code/collections-dewpoint/src directory.

Summing Up
ReasonML gives you the ability to deal with data en masse with tuples, lists,
and arrays. You’ve seen how map(), keep(), and reduce(), either alone or in com-
bination, make it easy for you to transform collections.

In the next chapter, we’ll investigate recursion, a technique that lets you fine-
tune the processing of collections and simplify the way you express algorithms.
You’ll also see how recursion solves the problem of the extra comma and
space that we saw on on page 75.

report erratum • discuss

Summing Up • 87

http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

CHAPTER 6

Repeating with Recursion
Using map(), reduce(), and keep() takes care of most of your needs when you
process lists and arrays. There are some drawbacks, though. The functions
process every element in the collection, and sometimes they don’t quite fit as
a solution to the problem, so the higher-order function you provide is difficult
to express.

Recursion is the answer to these annoying issues. It lets you process only
part of a collection and can also let you express your algorithm more cleanly.

Recursion has a bad reputation for being arcane or confusing. It does take a
bit of getting used to, but it’s one of those things that—once you start using
it—you’ll wonder how you ever got along without it. In fact, in this chapter,
we’ll even use recursion to help us assess the performance of one of the other
recursive functions we write. That being said, let’s start investigating recursion.

Defining Recursion
You may have seen pictures like this:

report erratum • discuss

http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

It’s a drawing of a still life in front of a picture frame. In the picture frame is
the still life with a picture frame, which shows the still life with a picture
frame, and so on. The image is defined in terms of itself: a drawing of a
drawing of a drawing. How far does that sequence go on? In theory, it goes
on infinitely. In practice, as soon as the image becomes too small to resolve,
the artist stops drawing the smaller images and says, “Okay, that’s it.”

When dealing with images, this is little more than a clever visual trick. In
mathematics and computing, there are many algorithms that can be described
compactly in terms of themselves, called recursive algorithms. Similarly,
functions that call themselves are called recursive functions.

Analyzing a Recursive Algorithm
A good example of using recursion is determining whether a word is a palin-
drome (the same backwards and forwards). Is the word redivider a palindrome?
To answer this question, you’ll probably look at the first and last letter to see
if they’re the same, then mentally ignore them and look at the remaining part,
seeing that the new first and last letter es match, and so on, until you get to
the v in the middle, and then you’ll conclude that the word is a palindrome.

Now this word: runner. Again, you can see that the beginning and ending
letters are the same, ignore them, and then stop as soon as you see that the
u and e don’t match—there’s no need to proceed further.

Here’s a pseudocode representation of your mental process for finding palin-
dromes:

Is this a palindrome?
If the first and last letters are different, the answer is “no.”
Otherwise, drop the first and last letters. Is this a palindrome?

The last step of the pseudocode asks the same question as the first step—there’s
your recursion. The only problem here is that we have an infinite series of picture
frames. There’s no way to stop the process. This “how to stop” is called the base
case in a recursive algorithm. In the case of the palindrome-finding algorithm,
we have to stop when we either run out of letters or have only one letter left (since
empty strings or a single letter are the same backwards as forwards). Let’s update
the pseudocode, where the first condition is our base case:

Is this a palindrome?
If there’s only one letter or no letters left, the answer is “yes”
Otherwise:

If the first and last letters are different, the answer is “no.”
Otherwise, drop the first and last letters. Is this a palindrome?

Chapter 6. Repeating with Recursion • 90

report erratum • discuss

http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Let’s see how this pseudocode works with the word radar:

• Does radar have one or zero letters? No, it doesn’t.
• Are the first and last letters of radar different? No, they aren’t.
• Drop the first and last letters. Is ada a palindrome?

– Does ada have one or zero letters? No, it doesn’t.
– Are the first and last letters of ada different? No, they aren’t.
– Drop the first and last letters. Is d a palindrome?

• Does d have one or zero letters? Yes. We have a palindrome!

Here’s our pseudocode at work on the word runner:

• Does runner have one or zero letters? No, it doesn’t.
• Are the first and last letters of runner different? No, they aren’t.
• Drop the first and last letters. Is unne a palindrome?

– Does unne have one or zero letters? No, it doesn’t.
– Are the first and last letters of unne different? Yes, they are. This is

not a palindrome.

When you’re developing recursive functions, always define your base case
first. This will help avoid infinite recursion.

Writing Recursive Functions
Let’s translate this pseudocode into actual ReasonML code. You use the
keyword rec to indicate that a function can be called recursively. Here’s the
code for determining if a string is a palindrome, plus some tests.

recursion/palindrome/src/Palindrome.re
let rec isPalindrome = (s: string) : bool => {Line 1

let len = Js.String.length(s);-

if (len <= 1) {-

true;-

} else if (Js.String.get(s, 0) != Js.String.get(s, len - 1)) {5

false;-

} else {-

isPalindrome(Js.String.slice(~from= 1, ~to_=len - 1, s));-

}-

};10

-

Js.log(isPalindrome("civic")); /* output: true */-

Js.log(isPalindrome("deed")); /* output: true */-

Js.log(isPalindrome("runner")); /* output: false */-

Wow. There is lots of new stuff here. On line 1, as advertised, we made the
function recursive by specifying rec. (If you leave it out, you’ll get an error

report erratum • discuss

Writing Recursive Functions • 91

http://media.pragprog.com/titles/reasonml/code/recursion/palindrome/src/Palindrome.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

when ReasonML gets to line 8.) This is also the first time we’ve seen a function
that returns a bool, which has two possible values: true or false.

In line 2, we make a call to the length() function in the Js.String module. You can
see it documented at bucklescript.github.io/bucklescript/api/Js.String.html

ReasonML Documentation

As ReasonML is a syntax for OCaml/BuckleScript (as described
in Appendix 1, Understanding the ReasonML Ecosystem, on page
169), it can use code written in BuckleScript, such as the JavaScript
interface functions. The documentation for these functions is
written in OCaml syntax, so you’ll have to do some mental
translation.

The Js.String.get() function in line 5 takes a string and an index number as its
arguments and returns the character at that location within the string.

On line 8, we strip off the beginning and ending letters by calling Js.String.slice(),
using named parameters. Note that one of the parameters is named to_. The
underscore at the end is required because to is a keyword and can’t be used
as a variable name.

To see the recursion in action, you can add some calls to Js.log:

recursion/palindrome/src/Palindrome.re
let rec isPalindromeLogged = (s: string) : bool => {

let len = Js.String.length(s);
Js.log("Seeing if '" ++ s ++ "' is a palindrome");
if (len <= 1) {

Js.log("Length is " ++ string_of_int(len) ++ " - we have a palindrome");
true;

} else if (Js.String.get(s, 0) != Js.String.get(s, len - 1)) {
Js.log("Mismatch between " ++ Js.String.get(s, 0) ++ " and "
++ Js.String.get(s, len - 1) ++ " - not a palindrome");

false;
} else {

isPalindromeLogged(Js.String.slice(~from= 1, ~to_=len - 1, s));
}

};

Here are two calls and their output:

recursion/palindrome/src/Palindrome.re
Js.log(isPalindromeLogged("civic"));
Js.log(isPalindromeLogged("cynic"));

Seeing if 'civic' is a palindrome
Seeing if 'ivi' is a palindrome
Seeing if 'v' is a palindrome

Chapter 6. Repeating with Recursion • 92

report erratum • discuss

https://bucklescript.github.io/bucklescript/api/Js.String.html
http://media.pragprog.com/titles/reasonml/code/recursion/palindrome/src/Palindrome.re
http://media.pragprog.com/titles/reasonml/code/recursion/palindrome/src/Palindrome.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Length is 1 - we have a palindrome
true
Seeing if 'cynic' is a palindrome
Seeing if 'yni' is a palindrome
Mismatch between y and i - not a palindrome
false

Interlude: Measuring Performance
You may have noticed this line:

Js.String.slice(~from= 1, ~to_= (len - 2), s)

and thought, “Holy crapoley. He’s allocating a new string every time he does
a recursive call. That must be slow as a turtle trudging through molasses.”
Let’s be clear—it’s the reallocation that is expensive, not the fact that we’re
using recursion. A while loop using the same approach would be doing the
reallocation as well. So, even though performance of this particular example
isn’t a major issue and CPU time is cheap, let’s find out how long it takes to
determine if a string of 50,000 repetitions of the letter a is a palindrome or
not (it is). Writing that code is as good an excuse as any to give more examples
of recursion.

We can create the test string with the following function, which produces a
string with n repetitions of a given string s. It uses reduce() to take an array of
integers ranging from 0 to n - 1 and accumulate copies of s:

recursion/palindrome/src/Palindrome.re
let repeatWithReduce = (s: string, n: int) : string => {

Belt.Array.reduce(Belt.Array.range(0, n - 1), "",
(accumulator: string, _item: int) => { accumulator ++ s });

};

This is a horribly inefficient function, as it requires building an array of inte-
gers with n entries solely so reduce will have something to work on. Since I
want many examples of recursion in this chapter, we’ll use recursion to solve
the problem more elegantly, even though the most efficient way to build the
string is to call String.make(50000, 'a'). To see how the recursive solution works,
let’s say you want to repeat the string "ha" four times. That’s…

• the empty string plus 4 repetitions of "ha", which is the same as
• "ha" plus 3 repetitions of "ha", which is the same as
• "haha" plus 2 repetitions of "ha", which is the same as
• "hahaha" plus 1 repetition of "ha", which is the same as
• "hahahaha" plus 0 repetitions of "ha"—and we’re finished

report erratum • discuss

Interlude: Measuring Performance • 93

http://media.pragprog.com/titles/reasonml/code/recursion/palindrome/src/Palindrome.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Do you see the recursive pattern here? To “repeat a string n times,” you add
the string to the result, then “repeat a string n - 1 times,” with zero being the
base case. Translating that into ReasonML, we end up with a recursive
function that takes the string to be repeated (s), the accumulated result
accumulator, and the number of repetitions n:

recursion/palindrome/src/Palindrome.re
let rec repeatRec = (s: string, accumulator: string, n: int) : string => {

switch (n) {
| 0 => accumulator /* base case; we’re finished */
| _ => repeatRec(s, accumulator ++ s, n - 1)

};
};
Js.log(repeatRec("ha", "", 4)); /* output: hahahaha */

Does it bother you that you have to provide the empty string as a starting
value of the accumulator? Would you rather have just two parameters as in
the first version that used reduce()? You can do that by wrapping a version of
repeatRec() in a two-argument function:

recursion/palindrome/src/Palindrome.re
let repeat = (s: string, n: int) => {

let rec repeatHelper = (accumulator: string, counter: int) : string => {
switch (counter) {
| 0 => accumulator /* base case; we’re finished */
| _ => repeatHelper(accumulator ++ s, counter - 1)

};
};
repeatHelper("", n);

};
Js.log(repeat("ha", 4)); /* output: hahahaha */

This technique of making the recursive function a “helper” function and
wrapping it in a more appealing interface is a very common technique in
functional programming. Note that the repeatHelper() function doesn’t need to
have s as one of its parameters because that value is available within
repeatHelper()’s scope.

Now that we can create the 50,000-character string, it’s time to see how well
or poorly the isPalindrome() function performs by doing 1,000 iterations of the
function and getting the average time. The following code uses Js.Date.now() to
get the current time, accurate to the millisecond. We could use reduce() to do
the iteration, but let’s keep using recursion:

Chapter 6. Repeating with Recursion • 94

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/recursion/palindrome/src/Palindrome.re
http://media.pragprog.com/titles/reasonml/code/recursion/palindrome/src/Palindrome.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

recursion/palindrome/src/Palindrome.re
let testString = repeat("a", 50000);
let rec repeatTest = (n: int, accumulatedTime: float) : float => {

switch (n) {
| 0 => accumulatedTime
| _ => {

let startTime = Js.Date.now();
let _ = isPalindrome(testString);
let endTime = Js.Date.now();
repeatTest(n - 1, accumulatedTime +. (endTime -. startTime))

}
}

};
let totalTime = repeatTest(1000, 0.0);

Js.log2("Average time in msec:", totalTime /. 1000.0);

On an Intel® Core™ i7-4600U CPU at 2.10GHz, average time for an iteration
is 0.7 milliseconds. On a cell phone with a 1.9GHz Snapdragon™ 600 proces-
sor, the average time is 4.4 milliseconds. That seems to be an enormous
amount of time, but remember: this is for a string with a length of 50,000.

You might be thinking, “Great, but I still would like to optimize this function.”
Here’s an exercise for you, then. Write a new function isPalindrome2() that has
three parameters: the string being tested and two integers (call them start and
finish) that are indices into the string. If the characters at the indices are the
same, then recursively call with start + 1 and finish - 1. This avoids doing a
Js.String.slice() for every recursive call. I’ll leave it to you to figure out the base
case. You might want to use a nested “helper” function so users of your
function can call it as isPalindrome2(stringValue). You can see my solution at the
end of file code/recursion/palindrome/src/Palindrome.re

Understanding Tail Recursion
You may have noticed that the logic of the recursion in all the preceding
examples has looked a lot like a while loop in most programming languages.
This has been intentional. Look back at the examples, and you’ll see that the
recursive call has always been the very last part of the recursion. Compare
these two recursive functions for repeating a string a given number of times:

recursion/tailrec/src/Repeat.re
let rec repeatRec = (s: string, accumulator: string, n: int) : string => {

switch (n) {
| 0 => accumulator /* base case; we’re finished */
| _ => repeatRec(s, accumulator ++ s, n - 1)

};
};

report erratum • discuss

Understanding Tail Recursion • 95

http://media.pragprog.com/titles/reasonml/code/recursion/palindrome/src/Palindrome.re
http://media.pragprog.com/titles/reasonml/code/recursion/tailrec/src/Repeat.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

let rec repeatRec2 = (s:string, n:int) : string => {
switch (n) {

| 0 => ""
| n => s ++ repeatRec2(s, n - 1)

}
};

Why would we use the first version with its accumulator rather than the second
version, whose logic is: to repeat a string n times, add the string to n - 1 copies
of itself?

Look at what happens when we call the first version with the parameters "go",
"", and 3:

• n (3) is not zero, so we call repeatRec() with arguments "go", "go" ("" ++ "go"),
and 2

• n (2) is not zero, so we call repeatRec() with arguments "go", "gogo" ("go" ++
"go"), and 1

• n (1) is not zero, so we call repeatRec() with arguments "go", "gogogo" ("gogo"
++ "go"), and 0

• n (0) is zero, so we return the accumulator: "gogogo"

What happens in the second version (this time the steps are numbered)?

1. repeatRec2() is called with "go" and 3.

2. n (3) isn’t zero, so the result is s ("go") plus whatever repeatRec2(s, n -1) works
out to. In this case we can’t do the concatenation right away—we have to
wait until we figure out repeatRec2("go", 2), so we make that recursive call.

3. n (2) isn’t zero, but we can’t do the concatenation to s until we evaluate
repeatRec2("go", 2 - 1) so we make that recursive call.

4. n (1) isn’t zero, but we still can’t do the concatenation to s until we evaluate
repeatRec2("go", 1 - 1), so we make that recursive call.

5. n is finally zero. Now we know what repeatRec2("go", 0) is—"", so we can
complete the concatenation from step 4.

6. The result of that concatenation ("go" ++ "") tells us what repeatRec2("go", 1)
worked out to, so we can now complete the concatenation from step 3.

7. The result of that concatenation ("go" ++ "go") tells us what repeatRec2("go", 2)
worked out to, so we can now complete the concatenation from step 2, and
finally concatenate "go" and "gogo" to give the result of "gogogo".

Chapter 6. Repeating with Recursion • 96

report erratum • discuss

http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

In the second version of the repeat function, the concatenation is the last
operation in the function, not the recursive call, so we have to hold off until
we get all the way down to the base case, then wind our way back up.
“Holding off” means the intermediate results have to be stored somewhere.
The mechanism for doing this is called stack allocation, and if we have too
many repetitions, we’ll run out of space to store those intermediate results
and get an error called a stack overflow.

The first version, on the other hand, carries a running accumulator so that
the intermediate results become part of the recursive call—the very last thing
the function does. When the recursive call is the very last operation, the
function is tail recursive. No extra storage space is needed, and ReasonML
will optimize the tail recursion into a JavaScript while loop, so the code avoids
stack overflow. Take a look at the JavaScript that ReasonML generates, and
you’ll see the tail recursive call has indeed become a while.

A Philosophical Note

Most books start teaching recursion with a non-tail recursive
version of calculating factorials. (The factorial of a number n is
the product of all positive integers less than or equal to n.) While
this matches brilliantly well with one of the mathematical defini-
tions of factorials, the business of holding off until the base case
and then winding your way back up the chain adds a level of
abstraction that makes recursion seem difficult or mysterious.
That’s why I started with the palindrome function. It’s naturally
tail recursive: you work your way down to the base case and you’re
finished. While expressing the algorithm seems more difficult
because it uses an accumulator, the tail-recursive process is
conceptually simpler, and that’s why I waited to introduce non-
tail recursion (with its possibility of stack overflow) until this point
in the chapter.

Practicing More Recursion
As you saw in the chapter about collections on page 61, the Belt.Array and
Belt.List modules provide a keep() function that produces a new collection of
only those items which return true when given to a filtering function.

What if we want to keep only the indices of the matching items? For example,
when filtering this array for words less than 6 characters long: [| "cow", "aardvark",
"squirrel", "fish", "snake", "capybara"|], the result would be [|0, 3, 4|].

report erratum • discuss

Practicing More Recursion • 97

http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Here’s the pseudocode, given an empty array of integers as the accumulated
result, a position starting at index number zero, and a predicate function f():

If the position is at the end of the array:
return the accumulated result (base case)

otherwise:
If f(item at current position) returns true:

Do a recursive call with position appended to the result
and (position + 1) as the index

otherwise:
Do a recursive call with the current result unchanged
and (position + 1) as the index

Here’s the recursive function in ReasonML:

recursion/keep-indices/src/WithoutHelper.re
let rec keepIndices = (arr: array('a), position: int, accumulator: array(int),

f : ('a => bool)) : array(int) => {
if (position < Belt.Array.length(arr)) {

f(Belt.Array.getUnsafe(arr, position))
? keepIndices(arr, position + 1,

Belt.Array.concat(accumulator, [|position|]), f)
: keepIndices(arr, position + 1, accumulator, f)

} else {
accumulator

}
};

let words = [|"cow", "aardvark", "squirrel", "fish", "snake", "capybara"|];
let isShortWord = (s: string) : bool => {Js.String.length(s) < 6};
let result = keepIndices(words, 0, [||], isShortWord);
Js.log(result); /* result array: [|0, 3, 4|] */

This code would definitely be easier for others to use if it didn’t need all those
parameters to keepIndices(), so we’ll embed it as a helper function:

recursion/keep-indices/src/WithHelper.re
let keepIndices = (arr: array('a), f : ('a => bool)) :

array(int) => {
let rec helper = (position: int, accumulator: array(int)) : array(int) => {

if (position < Belt.Array.length(arr)) {
f(Belt.Array.getUnsafe(arr, position))

? helper(position + 1, Belt.Array.concat(accumulator, [|position|]))
: helper(position + 1, accumulator)

} else {
accumulator

}
};
helper(0, [| |]);

};

Chapter 6. Repeating with Recursion • 98

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/recursion/keep-indices/src/WithoutHelper.re
http://media.pragprog.com/titles/reasonml/code/recursion/keep-indices/src/WithHelper.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

let words = [|"cow", "aardvark", "squirrel", "fish", "snake", "capybara"|];
let isShortWord = (s: string) : bool => {Js.String.length(s) < 6};
let result = keepIndices(words, isShortWord);
Js.log(result); /* result array: [|0, 3, 4|] */

Using Recursion with Lists
Lists are designed to work hand-in-glove with recursion. Here’s a recursive
function that will produce the sum of all the numbers in a list up to but not
including the first negative number. (Again, you could do this with reduce(),
but it would require going through every item in the list.) There are two cases
when recursion has to stop: when you encounter a negative number, and
when you have an empty list. The latter case happens if there are no negative
numbers in the list:

recursion/sum-until-negative/src/Sum.re
let rec sumUntilNegative = (items: list(int), total: int) : int => {

switch (items) {
| [] => total
| [x, ..._] when x < 0 => total
| [x, ...xs] => sumUntilNegative(xs, total + x)

}
};

Let’s look at the three cases of the switch statement.

• [] is the empty list.

• [x, ..._] destructures the list. The first item in the list is bound to variable
x, and the rest of the list (symbolized by ...) is ignored by the underscore.
The when clause tests to see if x is negative.

• [x, ...xs] is another destructuring. The first item in the list is bound to x,
and the rest of the list is bound to xs (pronounced “ex-es”, the plural of
“x”). That becomes the new list for sumUntilNegative() to process, with total + x being
the new running total. The use of xs is by convention; you can use any
name you like, such as remainder or theRest.

This destructuring pattern that assigns the head (first element) and tail
(everything else) is very common when dealing with lists.

Here’s how we can use recursion to solve the problem of the extra comma
and space at the end of our stringOfList() function from Interlude: Displaying
Lists, on page 73. The following recursive function distinguishes between lists
with zero or one element (the base cases)—where we don’t add the comma
and space—and lists with more than one element, where we do.

report erratum • discuss

Using Recursion with Lists • 99

http://media.pragprog.com/titles/reasonml/code/recursion/sum-until-negative/src/Sum.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

For Lists Only!

You can’t destructure arrays in this way. The internal representa-
tion of a list makes getting the tail of a list a very fast operation
that doesn’t require copying any data. The internal representation
of arrays, however, would require copying data to get the tail. This
might be acceptable for a small array, but ReasonML has to handle
the general case where an array might have hundreds of thousands
of elements, each of which takes up a great deal of memory. The
performance penalty would be too high, so ReasonML doesn’t
allow it.

recursion/display-list/src/DisplayList.re
let items = [10, 11, 12, 13, 14, 15];
let floatItems = [3.6, 7.9, 8.25, 41.0];

let stringOfList = (items: list('a), stringify: ('a) => string) : string => {
let rec helper = (accumulator: string, theList: list('a)) => {

switch (theList) {
| [] => accumulator
| [x] => accumulator ++ stringify(x)
| [x, ...xs] => helper(accumulator ++ stringify(x) ++ ", ", xs)

}
};
helper("[", items) ++ "]";

};

Js.log(stringOfList(items, string_of_int));
Js.log(stringOfList(floatItems, string_of_float));

It’s Your Turn
The Belt.List module has two functions: take(), which gives you the first n elements
of a list, and drop(), which gives you everything except the first n elements of
a list.

Your task is to use recursion to write two new functions, takeWhile() and drop-
While(). Instead of taking a parameter n, the parameter is a predicate function
returning true or false when given an item from the list. takeWhile() gives the first
elements of the list that satisfy the predicate, stopping when it encounters
an element that doesn’t fit. dropWhile() returns everything except the first ele-
ments of the list that satisfy the predicate. Here is an example:

let data = [2, 6, 42, 5, 7, 20, 3];
let isEven = (n) => { (n mod 2) == 0 };

let taken = takeWhile(data, isEven); /* [2, 6, 42] */
let dropped = dropWhile(data, isEven); /* [5, 7, 20, 3] */

Chapter 6. Repeating with Recursion • 100

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/recursion/display-list/src/DisplayList.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Both functions stop taking (or dropping) as soon as they encounter an item
that doesn’t fulfill the predicate. Even though 20 is an even number, it isn’t
included in the result of the takeWhile().

Hint: You’ll probably end up writing nested helper functions for both of these.
The Belt.List.reverse() may come in handy for takeWhile().

Summing Up
Recursion, the ability of a function to call itself, lets you take finer control
over processing collections. You don’t have to process every item, and the
code can in some cases be more concise than using map() or reduce(). Most
operations where you would use a loop in other languages are done via
recursion in ReasonML. When you use recursion, you should make your
functions tail recursive if at all possible so that ReasonML can optimize the
code it generates. The ability to think recursively is a great skill to add to your
programmer’s toolkit.

In the next chapter, we’ll return to the world of data types. We’ll investigate
records in ReasonML, which let you make a data structure that contains
multiple data types. Additionally, we’ll talk about creating your own modules
in ReasonML.

report erratum • discuss

Summing Up • 101

http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

CHAPTER 7

Structuring Data with Records and Modules
While the tuple we built in Chapter 5, Using Collections, on page 61 was
useful and appropriate for the task, tuples aren’t the answer when we have
to work with more complex data structures. Instead, ReasonML has records,
which let you create immutable data structures with field names. This makes
your code more organized and readable.

Modules also help in keeping code organized. You’ll see that you can create
modules to hold data types, records, and functions that operate on them.
Modules are also first-class citizens in the ReasonML world. You’ll see this
in action as we create custom modules that serve as arguments to other
modules.

Specifying Records
Tuples were adequate for defining a data type for an order of shirts expressed
as the quantity of shirts and the shirt size, as we saw on page 63. But there’s
more to shirts than just their size. You need to know whether each one is
long-sleeved or short-sleeved, the color, pattern, type of cuff, and type of collar.
This is definitely not a job for a tuple. There are seven pieces of data, and I’ll
bet if you walk away from this book for five minutes, you won’t remember
what order they are in.

First, let’s define some data types for size, sleeve length, color, pattern, cuff,
and collar:

records/shirts/src/Shirts.re
type size =

| XSmall(int)
| Small
| Medium
| Large
| XLarge(int);

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/records/shirts/src/Shirts.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

type sleeve =
| Short
| Long
| XLong; /* for tall people */

type color =
| White
| Blue
| Red
| Green
| Brown;

type pattern =
| Solid
| Pinstripe
| Check;

type cuff =
| Button
| French
| NoCuff;

type collar =
| Button
| Straight
| Spread;

Even though Button appears in both cuff and collar, there’s no conflict. If you
have code like this:

let ambiguous = Button;
let explicit: cuff = Button;

In the first line, ReasonML’s type inference will choose the last Button you
specified (from collar). You can always explicitly tell ReasonML which Button
you want by annotating your variables.

Now, we define a record type that gives all the information needed to specify
a shirt. It’s okay to have a field name the same as its data type. (And yes,
short-sleeve shirts with French cuffs really exist.)

records/shirts/src/Shirts.re
type order = {

quantity: int,
size: size,
sleeve: sleeve,
color: color,
pattern: pattern,
cuff: cuff,
collar: collar

};

Chapter 7. Structuring Data with Records and Modules • 104

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/records/shirts/src/Shirts.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Accessing and Updating Records
Here’s a definition of a record of the order type and an example of how you
access the individual fields using dot notation. You don’t have to specify the
fields in the same order that you used when you created the data type:

records/shirts/src/Shirts.re
let myOrder = {

quantity: 1,
size: XLarge(1),
sleeve: Long,
color: Blue,
pattern: Solid,
cuff: Button,
collar: Button

};

Js.log2("Size:", myOrder.size); /* Size: [1, tag: 1] */

This looks a lot like a JavaScript object, but it isn’t one. Let me say that again:
ReasonML records are not JavaScript objects. We’ll discuss that when we talk
about Interoperating with Objects, on page 123. One of the biggest differences
is that records are immutable. You can’t change the value of a field in a record.
Instead, you have to create a brand-new record. Looking at all those fields,
you might be terribly disheartened, but don’t worry. ReasonML has the spread
operator. Here’s the code to create a new order the same size as the first one,
but with a different color and different style of cuff:

records/shirts/src/Shirts.re
let otherOrder = {

...myOrder,

color: White,
cuff: French

};

Js.log2("Cuff:", otherOrder.cuff); /* Cuff: 1 */

Creating Modules
Just as there’s not a lot to defining records, there’s not much to the basics
of modules. In fact, we’ve been working with modules all along—any .re file
is automatically a module, as we saw on page 61 when we put the shirt size
data type and its associated functions in a separate file. You can also create
a module within a file by using the keyword module, the module name (which
must begin with a capital letter), an equal sign, and then code in braces.
Anything you could put in a ReasonML file can be in a module definition.

report erratum • discuss

Accessing and Updating Records • 105

http://media.pragprog.com/titles/reasonml/code/records/shirts/src/Shirts.re
http://media.pragprog.com/titles/reasonml/code/records/shirts/src/Shirts.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

If You Really Need Mutability

Okay, maybe records aren’t that immutable. If you absolutely,
positively must have a modifiable field in a record, precede its
name with the keyword mutable. As you adopt a more functional
programming style, you’ll find that you won’t need mutability as
much as you thought, so try to keep mutable to a minimum.

records/mutable-record/src/Demo.re
type person = {

name: string,
mutable age: int

};

let happyBirthday = (someone:person) : unit => {
someone.age = someone.age + 1;
()

};

let friend = {
name: "Juanita Fulano",
age: 34

};

happyBirthday(friend);
Js.log(friend.age); /* 35 */

So let’s expand our type definitions and add utility functions for converting
to and from strings in our types, each of which will be in its own mini-module.
First, let’s look at the Size module:

records/mod-shirts/src/Shirts.re
module Size = {

type t =
| XSmall(int)
| Small
| Medium
| Large
| XLarge(int);

let toString = (size: t) : string => {
switch (size) {
| XSmall(n) => String.make(n, 'X') ++ "S"
| Small => "S"
| Medium => "M"
| Large => "L"
| XLarge(n) => String.make(n, 'X') ++ "L"

}
};

Chapter 7. Structuring Data with Records and Modules • 106

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/records/mutable-record/src/Demo.re
http://media.pragprog.com/titles/reasonml/code/records/mod-shirts/src/Shirts.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

let fromString = (str: string) : option(t) => {
switch (Js.String.toUpperCase(str)) {
| "S" => Some(Small)
| "M" => Some(Medium)
| "L" => Some(Large)
| s when Js.Re.test(s, [%re "/^X+S$/"]) =>

Some(XSmall(String.length(s) - 1))
| s when Js.Re.test(s, [%re "/^X+L$/"]) =>

Some(XLarge(String.length(s) - 1));
| _ => None

}
};

};

There’s something new in the switch statement in fromString(): guards. A guard
starts with the keyword when, followed by a boolean expression. If the boolean
comes out true, that pattern matches. Here’s one of the guards:

| s when Js.Re.test(s, [%re "/^X+S$/"]) =>
Some(XSmall(String.length(s) - 1))

ReasonML will use this switch case when string s matches the regular
expression (one or more occurrences of the letter X followed by the letter S).
That regular expression matches strings like XS, XXS, and so forth. The action
we take in that case is to figure out how many Xs there are—one less than
the length of the string—and use that in the XSmall constructor.

Here’s the Cuff module. The definitions of Color, Pattern, Sleeve, and Collar follow
the same pattern as Cuff and would be needlessly repetitive here. The full code
is in code/records/mod-shirts/src/Shirts.re:

records/mod-shirts/src/Shirts.re
module Cuff = {

type t =
| Button
| French
| NoCuff

let toString = (cuff: t) : string => {
switch (cuff) {
| Button => "button"
| French => "french"
| NoCuff => "none"

}
};

report erratum • discuss

Creating Modules • 107

http://media.pragprog.com/titles/reasonml/code/records/mod-shirts/src/Shirts.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

let fromString = (s: string) : option(t) => {
switch (Js.String.toLowerCase(s)) {
| "button" => Some(Button)
| "french" => Some(French)
| ""
| "none"
| "nocuff" => Some(NoCuff)
| _ => None

}
};

};

Multiple Switch Cases

In the Cuff.fromString() function, we’ve used another feature of the
switch statement. If you have multiple patterns that all take the
same action, you can list them one after another (on one line or,
as we did, on separate lines for readability) and put the action on
the last pattern.

So what does using module buy us? First, we have everything in one file instead
of multiple files. Second, each module is its own namespace, so we can use
a consistent naming system (toString() and fromString()) without fear of name
collisions.

Redefining the types requires us to redefine the record type:

records/mod-shirts/src/Shirts.re
type order = {

quantity: int,
size: Size.t,
sleeve: Sleeve.t,
color: Color.t,
pattern: Pattern.t,
cuff: Cuff.t,
collar: Collar.t

};

Creating Interface Files for Modules
You don’t have to do anything special to let others use your modules. As long
as the compiler can find the .re file, you’re good to go, and other people can
use everything in your modules. However, you might want to have certain
private functions or types that aren’t available to people using your modules.
You can accomplish this by creating interface files.

Interface files, which end with .rei, specify function names and types without
the function bodies, so the annotation looks like the alternate annotation

Chapter 7. Structuring Data with Records and Modules • 108

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/records/mod-shirts/src/Shirts.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Using Nested Modules

In this chapter, I’m duplicating the code for the type-defining
modules used in the shirt examples because I want each example
to be independent of the others. If we were writing an application
where several files needed to use the shirt types, we’d move them
to a file named, say, Shirt.re. Then, in a file named, say, Order.re, we
could write code like this:

let price = switch (order.sleeve) {
| Shirt.Sleeve.Short => 12.00
| Shirt.Sleeve.Long => 15.00
| Shirt.Sleeve.XLong => 16.00

};

You can also directly nest modules:

records/books/src/BookExample.re
module Book = {

module Author = {
type t = {

firstName: string,
lastName: string,

};
};

type t = {
title: string,
author: Author.t,
isbn13: string

};
};

let b: Book.t = {
title: "Anathem",
author: {

firstName: "Neal",
lastName: "Stephenson"

},
isbn13: "978-0-06-147409-5"

};

Js.log(b.author.lastName); /* Stephenson */

style we examined on page 23, with no equal sign after the function name
and the return type after the =>. These .rei files are useful for documentation.
Much like header files in a language like C or C++, they give other people a
convenient list of functions available in a module. Only the functions listed
in the .rei file are available to people using your module, so this gives you the
ability to create private functions.

report erratum • discuss

Creating Interface Files for Modules • 109

http://media.pragprog.com/titles/reasonml/code/records/books/src/BookExample.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

We could create the interface files by hand, but it’s easier to compile the
project first. Then we can use the BuckleScript compiler’s -bs-re-out option to
analyze its intermediate output files and create the .rei file. This avoids a lot
of repetitive busy work on our part. The name of the intermediate output file
is the name of your source file, dropping the .re and adding a hyphen, the
camel case name of your project, and .cmi.

Here’s the command to create the interface file for Shirts.re:

bsc -bs-re-out lib/bs/src/Shirts-ModShirts.cmi > src/Shirts.rei

This is what part of that output file looks like:

records/mod-shirts/src/Shirts.rei
module Size:

{
type t = XSmall(int) | Small | Medium | Large | XLarge(int);
let toString: t => string;
let fromString: string => option(t);

};
module Sleeve:

{
type t = Short | Long | XLong;
let toString: t => string;
let fromString: string => option(t);

};
module Color:

{
type t = White | Blue | Red | Green | Brown;
let toString: t => string;
let fromString: string => option(t);

};

Putting Modules to Work
Now that we have our records and modules set up, we’re going to write a
command-line NodeJS program in ReasonML that reads a file of shirt orders,
with each order represented as a line of comma-separated values. The program
will get the name of the file to read from the command line argument and
output a list of sales by size, color, pattern, collar, and cuff type. Here’s what
it looks like when it grows up:

$ node src/Stats.bs.js orders.csv
Color Quantity
white 118
blue 114
red 73
...

Chapter 7. Structuring Data with Records and Modules • 110

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/records/mod-shirts/src/Shirts.rei
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Here are the first few lines of a sample input file, with the first line being a
header line:

Quantity,Size,Color,Pattern,Collar,Sleeve,Cuff
6,L,white,solid,straight,long,button
5,L,blue,pinstripe,straight,xlong,button
5,M,red,check,spread,long,button
4,M,blue,check,button,xlong,french

You can see a file containing 100 orders at code/records/shirt-stats/orders.csv and a
smaller test file of six orders at code/records/shirt-stats/mini-orders.csv.

Accessing Command Line Arguments
BuckleScript has a Node module that provides an interface to NodeJs. Accord-
ing to the website, “it is still a work in progress, use it with care, and we may
break API backward compatibility in the future.”1 I’m willing to let the future
take care of itself, so here is the code you need to get a file name from the
command line.

records/shirt-stats/src/Stats.re
let nodeArg = Belt.Array.get(Node.Process.argv, 0);
let progArg = Belt.Array.get(Node.Process.argv, 1);
let fileArg = Belt.Array.get(Node.Process.argv, 2);

switch (nodeArg, progArg, fileArg) {
| (_, _, Some(inFileName)) => processFile(inFileName)
| (Some(node), Some(prog), _) =>

Js.log("Usage: " ++ node ++ " " ++ prog ++ " inputfile.csv")
| (_, _, _) =>

Js.log("How did you get here without NodeJS or a program to run?")
};

This code gets the first three elements of the Node.process.argv array: the path
to the NodeJS executable, the name of the file being executed, and any other
command-line arguments you may have provided. The Belt.Array.get() returns
an option value. When we have a file argument (argv[2]), we process that file.
Otherwise, we print an error message explaining how the program is used.
The last case in the switch statement handles the “can’t happen” case when
we have neither a path to NodeJS nor our program.

Processing the File
To process the file, we read in the entire file into a single string, split it on
newlines, discard the header line, use reduce() to convert each line to an order,
and—if the conversion is successful—add it to a list. Once that list is complete,

1. bucklescript.github.io/bucklescript/api/index.html

report erratum • discuss

Putting Modules to Work • 111

http://media.pragprog.com/titles/reasonml/code/records/shirt-stats/src/Stats.re
https://bucklescript.github.io/bucklescript/api/index.html
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

we hand it to a function that prints the statistics. The return value from the
processFile() function is unit. We don’t expect it to return anything we need anywhere
else—we only want it for its side effects of reading a file and printing results.

records/shirt-stats/src/Stats.re
let processFile = (inFileName: string): unit => {

let fileContents = Node.Fs.readFileAsUtf8Sync(inFileName);
let lines = Js.String.split("\n", fileContents) ->

Belt.Array.sliceToEnd(1); /* get rid of header line */

let orders = Belt.Array.reduce(lines, [], lineReducer);

printStatistics(orders);
};

Creating a Record
Here’s the plan for the lineReducer() function that adds a record from a line in
the CSV file to the accumulator. This is where, as reviewer António Monteiro
put it, we’re “hitting the problem that strongly typed languages have, which
is boundaries between the internal typing and external data.” This part is
tricky, so I’ll go through my thought process. Those of you who are experienced
with functional programming can skim to the end of this subsection.

The first steps are relatively straightforward: split the line on commas, creating
an array of strings. If the number of items in the array doesn’t equal the number
of expected items, then I have bad data and return the accumulator unchanged.

If I do have the correct number of items, there’s no guarantee that they all
contain valid data. This is a job for an option(order). The plan is to start with
an initialized Some(order) and look at the first item in the array (the quantity).
If it’s a valid integer, I’ll update my Some(order). If not, the result is None.

If I still have a valid order, I try converting the second string in the array to
a Size. If successful, I update the order. If not, it’s None, and so on. My first
version of the plan looked like this, where initial is my starting value:

let result1 = switch (optInt(items[0])) {
| Some(n) => Some({...initial, quantity: n})
| None => None;

};

let result2 = switch (result1) {
| Some(r) => switch (Size.fromString(items[1])) {

| Some(sz) => Some({...r, size: sz}})
| None => None;

}
| None => None;

};

Chapter 7. Structuring Data with Records and Modules • 112

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/records/shirt-stats/src/Stats.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

let result3 = switch(result2) {
| Some(r) => switch (Color.fromString(items[2])) {

| Some(c) => Some({...r, color: c}})
| None => None

}
| None => None

};

/* etc. */

There’s nothing inherently wrong with this code. It does exactly what I want,
and I could have used it as-is. However. I didn’t like all those switches, Somes,
and Nones. This code looks like what we saw at the beginning of the discussion
ofoption on page 41. There, we used map() and flatMap() to shorten a similar series
of switches. That’s what I want to do here, but I can’t use either of those functions.
They’re designed for functions with one argument, and here I have two option
variables: the order I’m building, and the result from the fromString() call.

There is no Belt.Option.map2(), but there’s no law that says I can’t write my own:

records/shirt-stats/src/Stats.re
let map2 = (optX, optY, f) =>

switch (optX, optY) {
| (Some(x), Some(y)) => Some(f(x, y))
| (_, _) => None
};

In map2(), optX and optY are option arguments, and f is a function that takes two
non-option arguments and returns a non-option value. If both optX and optY are
Some(), it’s okay to apply function f() to their contents and wrap up the result
in Some(). Otherwise, one or both of them must be None, and the result will be
None. Once I have map2(), I can write my reducer function:

records/shirt-stats/src/Stats.re
let lineReducer = (acc: list(order), line: string): list(order) => {Line 1

let items = Js.String.split(",", line);-

if (Belt.Array.length(items) != 7) {-

acc;-

} else {5

let initial =-

Some({-

quantity: 0,-

size: Small,-

sleeve: Short,10

color: White,-

pattern: Solid,-

cuff: Button,-

collar: Straight,-

});15

-

report erratum • discuss

Putting Modules to Work • 113

http://media.pragprog.com/titles/reasonml/code/records/shirt-stats/src/Stats.re
http://media.pragprog.com/titles/reasonml/code/records/shirt-stats/src/Stats.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

let orderRecord = map2(initial, optInt(items[0]),-

(result, n) => {...result, quantity: n})-

-> map2(Size.fromString(items[1]),-

(result, sz) => {...result, size: sz})20

-> map2(Color.fromString(items[2]),-

(result, c) => {... result, color: c})-

-> map2(Pattern.fromString(items[3]),-

(result, pat) => {...result, pattern: pat})-

-> map2(Collar.fromString(items[4]),25

(result, coll) => {...result, collar: coll})-

-> map2(Sleeve.fromString(items[5]),-

(result, sleeve) => {...result, sleeve: sleeve})-

-> map2(Cuff.fromString(items[6]),-

(result, cuff) => {...result, cuff: cuff});30

-

switch (orderRecord) {-

| Some(result) => [result, ...acc]-

| None => acc-

};35

};-

};-

In line 7, I put a Some() around my initial order so that I could use map2()
everywhere. I use an anonymous function to update the order, as in lines 18
and 20, and I’ll use a pipe first to pass the result of each map2() to the next
one in line.

Once I finish analyzing the strings in the array (line 32), I either have a valid
order, which I add to the accumulated list, or I have None and leave the
accumulated list unchanged.

Again, this was my thought process. You might prefer the original long way
I wrote the code, or you may have gone directly to the map2 solution, or you
may have even figured out a different, better way of doing it.

Analyzing the Data
Now that we have a list of orders, we can analyze it. The first thing we’ll do
is get a distribution by color, and we’ll need a new sort of collection to do this
efficiently. Instead of an array, which is indexed by number, we’d like a key-
and-value collection where the key is a Color.t variant and the value is the
number of shirts of that color. A key/value collection is called a dictionary in
Python and hash, hash table, or associative array in other languages. In
ReasonML, it’s called … a Map. Yes, I know. Yet another use of the word “map”
for a completely different purpose.

Chapter 7. Structuring Data with Records and Modules • 114

report erratum • discuss

http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

There are several different implementations of key/value in ReasonML; the
List module implements it as a list of (key, value) tuples. This has the advantage
of simplicity, but is not particularly speedy, as most operations require you
to traverse the list. The Map module from the OCaml standard library is a
better choice, as it is optimized for the task. The best choice, and the one
we’ll use here, is the Belt.Map module.

Belt.Map provides three pre-built types of maps: Belt.Map.Int, where the keys are
integers, Belt.Map.String, where the keys are strings, and Belt.Map.Dict, which is
labeled “for advanced use only.” In our case, the key is a Color.t, not an integer
or string, so we have to use the generic Belt.Map. In order to do its job efficiently,
Belt.Map needs to be able to compare the keys of items in the map. This requires
us to provide a comparator module when creating a map. Here’s the compara-
tor that will tell Belt.Map how to compare Color.t values:

records/shirt-stats/src/Stats.re
module ColorComparator =Line 1

Belt.Id.MakeComparable({2

type t = Color.t;3

let cmp = compare;4

});5

Line 3 defines the data type being compared. Line 4 defines a function to be
used to compare sizes. In this case, we’re using the built-in compare() function.
This is a function that compares two items and returns a negative integer if
the first item is less than the second, zero if the two items are equal, and a
positive integer if the first item is greater than the second. Here is compare() in
action with various Color.t values.

Js.log(compare(Color.White, Color.Red)); /* -1 */
Js.log(compare(Color.Green, Color.Green)); /* 0 */
Js.log(compare(Color.Brown, Color.Blue)); /* 1 */

The result of Belt.Id.MakeComparable() (called in line 2) is a uniquely identified
module that we can give to Belt.Map.make():

Modules Creating Modules

Just as you can pass functions as arguments to other functions,
ReasonML allows you to pass modules as arguments to other
modules. A module that takes another module as an argument is
called a functor. You can see a full explanation of functors online.2

2. reasonml.github.io/docs/en/module#module-functions-functors

report erratum • discuss

Putting Modules to Work • 115

http://media.pragprog.com/titles/reasonml/code/records/shirt-stats/src/Stats.re
https://reasonml.github.io/docs/en/module#module-functions-functors
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Here’s the function for generating the statistics, which also returns unit:

records/shirt-stats/src/Stats.re
type colorMapType = Belt.Map.t(Color.t, int, ColorComparator.identity);Line 1

-

let colorReducer = (accumulatedMap: colorMapType, item: order): colorMapType-

=> {-

let n = Belt.Map.getWithDefault(accumulatedMap, item.color, 0);5

Belt.Map.set(accumulatedMap, item.color, n + item.quantity);-

}-

-

let printStatistics = (orders: list(order)): unit => {-

let colorDistribution =10

Belt.List.reduce(-

orders,-

Belt.Map.make(~id=(module ColorComparator)),-

colorReducer);-

Js.log2("Color","Quantity");15

Belt.Map.forEach(colorDistribution,-

(key, value) => Js.log2(Color.toString(key), value)-

);-

};-

We start off with a type alias in line 1 to allow us to annotate functions in a
readable manner.

The printStatistics()() function creates a map (colorDistribution) by reducing the orders
list. The initial value of the accumulator is a new, empty map created on line 13.
The reducing function on line 3 has the current map as its accumulator and the
current item from the order list. It uses Belt.map.getWithDefault() to get the current
count associated with a item’s color—or zero if it’s not in the map yet (line 5),
and then creates a new map with the accumulator, setting the value for item.color
to its current value plus the quantity ordered (line 6). The result is now a map
with the shirt colors as keys and the total number ordered as the values.

Printing the Data
We now have to iterate through the entries in colorDistribution and print them out.
This is not a job for Belt.Map.map() or Belt.Map.reduce(), which return some value. We
don’t need a return value—we just want output. This is why Belt.Map.foreach()
exists. Given a key/value map, it iterates through each item in the map (in
ascending order of its keys) and calls a function that we provide. Our anonymous
function (on line 17) takes a key and value as its parameters and returns unit.

It’s Your Turn
Our program currently shows the distribution only for colors. Add the code
to show distribution for size, sleeve, pattern, cuff, and collar.

Chapter 7. Structuring Data with Records and Modules • 116

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/records/shirt-stats/src/Stats.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Here are some things to consider:

1. You’ll need to implement comparators for all the data types. All of them
can use the built-in compare() procedure, but if you try using it with the
Size.t type, you will get some interesting results.

Js.log(compare(Size.Small, Size.Medium)); /* -1 as expected */
Js.log(compare(Size.XLarge(3), Size.XLarge(2))); /* 1 as expected */
Js.log(compare(Size.Large, Size.XLarge(1))); /* -1 as expected */
Js.log(compare(Size.XSmall(2), Size.Medium)); /* 1 not as expected */

Because of the way ReasonML represents variant data types, the last
comparison says that XSmall(2) is greater than Medium. That means that
Belt.Map.forEach will print the sizes in the “wrong” order. If you’re okay with
that, use compare. If you prefer to see the keys in their correct order, you’ll
have to implement a function in the Size module that takes two Size.t items
and returns the correct result of comparison. The signature of your
function should look like this:

let compareSize = (a: t, b: t) : int => {
/* your code here */

};

You can then use Size.compareSize for the cmp in your comparator module.

2. You could copy and paste the code in the printStatistics() function for each
of the other fields and then edit the map name, the field accessor in
Belt.Map.set(), and the module name preceding the toString() call. That will
work fine, but it’s repetitive, and the editing process is error-prone. Find
a way to create other functions that will minimize the repetitive code. You
can see my solution in code/records/stats-complete/src/Stats.re.

Creating the CSV File

I can assure you that I didn’t write each of the 100 lines in
code/records/stats-complete/orders.csv by hand. Instead, I wrote a
program to generate them for me. That program didn’t need any
specialized modules or records, so it’s not a good example for this
chapter. You might, however, want to try your hand at writing a
program to generate random orders. As an extra challenge, don’t
give equal distributions of all the choices—your program should,
for example, generate more medium shirts than XXL shirts and
more button cuffs than French cuffs. You can see my version in
code/records/make-csv/src/MakeCSV.re.

report erratum • discuss

It’s Your Turn • 117

http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Summing Up
Every ReasonML file is automatically a module, but you are free to define a
module within a file at any time. A module within a file can contain anything
that you’d put in a ReasonML file—for example, type definitions, function
definitions, and even other modules.

ReasonML records are immutable data structures with field names that exist
at compile time. You access the fields with the dot operator (.) and update
fields (which creates a new record) using the spread operator (...). They look
like JavaScript objects, but they aren’t.

If you’re still pining for JavaScript objects—or, more likely, you need to
interoperate with existing JavaScript libraries that are object-based—well,
that’s what we’ll look at in the next chapter.

Chapter 7. Structuring Data with Records and Modules • 118

report erratum • discuss

http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

CHAPTER 8

Connecting to JavaScript
In this chapter, you’ll learn how to interoperate with existing JavaScript code
by calling functions written in JavaScript and by creating and accessing
JavaScript objects. This lets your ReasonML programs make use of the
enormous number of libraries and modules written in JavaScript. By the end
of this chapter, we’ll have developed a program that involves interoperating
with JavaScript on both the client and server, using the shirt orders that we
looked at in Putting Modules to Work, on page 110.

• We’ll set up an Express1 server and send the client an
HTML page with a form.

• The client will select the information they want summa-
rized and send the server an XHTTP request.

• The server will use Papa Parse,2 a JavaScript module
that parses CSV files, to read in the shirt order data
file, create a JSON response, and send it back.

• The client will take the response and create an HTML
table displaying the results, as you see in the figure.

To do all this, we’ll need to use existing ReasonML bindings to JavaScript
packages (for Express and JSON), write our own bindings (for Papa Parse),
and interoperate with JavaScript objects. Let’s get started.

Adding Raw JavaScript
The easiest and least type-safe way to access JavaScript is by placing raw
JavaScript code in the middle of your ReasonML code. The generic form is:

1. expressjs.com/
2. www.papaparse.com/

report erratum • discuss

http://expressjs.com/
https://www.papaparse.com/
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

[%raw {| /* Js expression */ |}]. The JavaScript must be an expression, not a series
of statements, nor even an expression followed by a semicolon.

What if you really need multiple statements? You can get around the limitation
by using an immediately invoked function expression (IIFE). You create an
IIFE by putting the statements into an anonymous JavaScript function and
then calling the function with a set of parentheses () at the end.

As an example, here’s a program using an IIFE with raw JavaScript to get
the current date and time as a string:

interop/raw-js/src/RawJS.re
let rightNow = [%raw {|
function () {
var d = new Date();
return d.toString();

}()
|}];

let message = "It is now " ++ rightNow;
Js.log(message);

Using [%raw] is unsatisfying because it puts you back in the JavaScript world,
and if you wanted to write in plain JavaScript, you would not be reading
this book. However, if you need to interoperate with JavaScript and none
of the other techniques we’re going to examine work, you have [%raw] as a
last resort. The BuckleScript site has more details and cautionary notes
about [%raw].3

Binding to Existing Functions
There’s a more satisfying way to use the functions in the JavaScript Date
object: write a binding that tells ReasonML how it should communicate with
them. Before writing your own bindings, you may want to visit the Reason
Package index at redex.github.io to see if the needed bindings already exist. You
can also try doing an npm search for bs- as a prefix to the package name whose
bindings you want.

Although there’s already a set of bindings for Date,4 it’s good for us to derive
some of them ourselves so we’re ready when we come across a library that
doesn’t have bindings. Among the things we’ll do from ReasonML:

3. bucklescript.github.io/docs/en/embed-raw-javascript
4. bucklescript.github.io/bucklescript/api/Js.Date.html

Chapter 8. Connecting to JavaScript • 120

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/interop/raw-js/src/RawJS.re
https://redex.github.io
https://bucklescript.github.io/docs/en/embed-raw-javascript
https://bucklescript.github.io/bucklescript/api/Js.Date.html
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

• Create a new Date object.

• Call class-level methods such as now(), which returns the number of mil-
liseconds since January 1, 1970 00:00:00 UTC (the epoch), and parse(),
which converts a string to milliseconds since the epoch or NaN if the string
is invalid.

• Call instance methods such as toString(), which returns a Date object’s string
representation, and getFullYear(), which returns the four-digit year specified
by a given Date object.

The general plan for defining a binding is to give one or more directives that
tell what kind of binding we need, the keyword external, the ReasonML name
of the binding and its type annotation, and the name of the function in the
JavaScript code. Here are our bindings for Date, in a file whose name is JsDate.re:

interop/date/src/JsDate.re
type t;Line 1

[@bs.new] external createDate: unit => t = "Date";-

[@bs.scope "Date"] [@bs.val] external now: unit => float = "";-

[@bs.scope "Date"] [@bs.val] external jsDateParse: string => float = "parse";-

[@bs.send] external toString: t => string = "";5

[@bs.send] external getFullYear: t => float = "";-

-

let parse = (s: string): option(float) => {-

let result = jsDateParse(s);-

if (Js.Float.isNaN(result)) {10

None;-

} else {-

Some(result);-

}-

};15

Line 1 gives a name for ReasonML to use for the Date. Since we’re in file JsDate.re,
other programs will refer to the JsDate.t type.

Line 2 shows how to call the JavaScript new() from ReasonML. The directive
is [@bs.new]. We’ll use the name createDate, which takes no arguments (unit) and
returns our type (t). Calling createDate() will compile to newDate() in the resulting
JavaScript, so we use "Date" as the JavaScript name.

The now() method in line 3 is a class method of Date rather than an instance
method, so we need to specify its module using [@bs.scope "Date"], which
specifies the class name. The [@bs.val] directive says we’re binding to a value.
The ReasonML function name is now. It takes no arguments (unit) and returns
a float. The name of the JavaScript function is also now, so we can use a
shortcut and use the empty string as the JavaScript name.

report erratum • discuss

Binding to Existing Functions • 121

http://media.pragprog.com/titles/reasonml/code/interop/date/src/JsDate.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

In line 4, I have made a design decision. I would prefer to have parse() return
an option(float) rather than NaN or undefined, so I made up a new name (jsDateParse())
that calls the JavaScript parse() function.

That takes care of the class-level methods. Let’s look at an instance method
like toString. In JavaScript, we’d write something like this:

var d = new Date();
var dateStr = d.toString();

Because we aren’t using object-orientation, we have to translate the instance
method call into the following ReasonML, where the object becomes the first
parameter to our function:

let d = JsDate.createDate();
let dateStr = JsDate.toString(d);

That’s the purpose of the [@bs.send] directive in line 5. It tells us that the first
parameter in the ReasonML function is the object, and the function name is
the method to call on that object. Put in generic terms: [@bs.send] says that a
JavaScript call of the form someObject.name(arg1, arg2, ...) is written in ReasonML
as name(someObject, arg1, arg2, ...).

The getFullYear() method in line 6 uses the same [@bs.send] directive to indicate
that we’re calling the instance method getFullYear on a Date object provided as
the argument.

Finally, starting in line 8, I write the parse() method that I want users of my
module to employ. It calls jsDateParse() and returns an option(float)—Some(result) if
the parse succeeded, or None if JavaScript gave me NaN.

Hiding a Binding

If I want to make sure that people using my JsDate bindings can’t
inadvertently use the jsDateParse() bindings, I can create a .rei file as
described on page 108 to control which bindings are exposed:

interop/date/src/JsDate.rei
type t;
let createDate: (unit) => t;
let now: (unit) => float;
let toString: (t) => string;
let getFullYear: (t) => float;
let parse: (string) => option(float);

Interoperating with Data Types
In the preceding examples, you saw a little bit of JavaScript and ReasonML
data type interaction. ReasonML shares certain data types with JavaScript.

Chapter 8. Connecting to JavaScript • 122

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/interop/date/src/JsDate.rei
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

The ReasonML string, bool, and array types correspond directly to JavaScript
string, boolean, and array types. Tuples are compiled to JavaScript arrays,
which is very handy if you ever need to process a non-homogeneous array
from JavaScript—treat it as a tuple on the ReasonML side. You may depend
upon these shared data types. The BuckleScript site has a handy cheat sheet
for you.5

For all other data types, ReasonML compiles to a JavaScript representation
that can vary depending on the version of the compiler. For example, as of
this writing, a ReasonML char value compiles to the numeric code point for
that character on the JavaScript side, and a ReasonML list compiles to an
array of arrays. Don’t rely on the internal structures in your JavaScript
because they’re subject to change. Instead, do conversions to shared data
types:

let ch = 'a';
let s = String.make(1, ch); /* convert character to string */

let dataList = [1, 2, 3, 4];
let dataArray = Belt.List.toArray(dataList);
let newList = Belt.List.fromArray(dataArray);

Interoperating with Objects
Objects are the JavaScript data structure you’ll almost certainly be working
with the most. As we discussed in the chapter on records and modules on
page 105, ReasonML records aren’t objects. However, to interoperate with
JavaScript objects, we’ll use a type definition that looks a lot like that of a
record.

Consider this JavaScript object, which describes metadata from Papa Parse,
a JavaScript module that parses comma-separated value files:

{
delimiter: // Delimiter used
linebreak: // Line break sequence used
aborted: // Whether process was aborted
fields: // Array of field names
truncated: // Whether preview consumed all input

}

We represent this data type as follows. To make the example a bit clearer, we
aren’t putting this type in its own module:

5. bucklescript.github.io/docs/en/common-data-types#cheat-sheet

report erratum • discuss

Interoperating with Objects • 123

https://bucklescript.github.io/docs/en/common-data-types#cheat-sheet
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

interop/record/src/RecordExample.re
[@bs.deriving abstract] type meta = {

delimiter: string,
linebreak: string,
aborted: bool,
fields: array(string),
truncated: bool

};

The [@bs.deriving abstract] tells ReasonML to build functions that let us create
meta objects and access them. The function for creating an object has the
same name as the type, and its arguments are labeled the same as the fields.
Because the arguments are labeled, they can be in any order:

interop/record/src/RecordExample.re
let metaData = meta(~delimiter=",",~aborted=false,

~linebreak="\n", ~truncated=false,
~fields=[|"Quantity", "Size", "Color"|]);

The preceding code generates this JavaScript:

var metaData = {
delimiter: ",",
linebreak: "\n",
aborted: false,
fields: /* array */[

"Quantity",
"Size",
"Color"

],
truncated: false

};

The [@bs.deriving abstract] directive also creates functions of the form fieldnameGet.
These functions take an object as their argument and return the value of the
given fieldname:

interop/record/src/RecordExample.re
Js.log(fieldsGet(metaData)); /* ["Quantity", "Size", "Color"] */
Js.log(truncatedGet(metaData)); /* false */

Let’s take a look at the JavaScript object that Papa Parse returns for an error:

{
type: "", // A generalization of the error
code: "", // Standardized error code
message: "", // Human-readable details
row: 0, // Row index of parsed data where error is

}

Chapter 8. Connecting to JavaScript • 124

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/interop/record/src/RecordExample.re
http://media.pragprog.com/titles/reasonml/code/interop/record/src/RecordExample.re
http://media.pragprog.com/titles/reasonml/code/interop/record/src/RecordExample.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Handling Missing Fields

Since JavaScript is dynamic, you can’t count on a library returning
an object with all the fields you’ve specified in the ReasonML type.
For example, in Papa Parse, if you haven’t specified a header row
in the CSV you’re parsing, the meta object won’t have the field
named fields, and calling fieldsGet() will return undefined. You can test
for this situation by using the Js.Nullable.isNullable() function, which
returns true if the value passed to it is null or undefined.

There’s a potential problem here: the field name type is a reserved word in
ReasonML, so we can’t use it in our type definition. To solve this problem,
ReasonML lets us use @bs.as to specify a non-reserved name such as type_ (the
convention is to add a trailing underscore) that will generate type in the
JavaScript.

interop/record/src/RecordExample.re
[@bs.deriving abstract] type error = {

[@bs.as "type"] type_: string,
code: string,
message: string,
row: int,
index: int

};

let errExample = error(~code="InvalidQuotes",
~type_="Quotes", ~row=1, ~index=30,
~message="Trailing quote on quoted field is malformed");

And here is the JavaScript:

var errExample = {
type: "Quotes",
code: "InvalidQuotes",
message: "Trailing quote on quoted field is malformed",
row: 1,
index: 30

};

It’s Your Turn
Add record types and bindings to the code that analyzes shirt orders as
described on page 116, to allow it to use Papa Parse. Start with file
code/interop/stats/src/Stats.re, which contains comments that tell you what you
need to add. Look for sections marked TODO: for instructions. The Error module,
which we’ve already developed, is in the file as a guide for the other records
you need to create. I’ve taken the shirt-oriented types and separated them
into file code/interop/stats/src/Shirt.re to reduce the size of the Stats.re file.

report erratum • discuss

It’s Your Turn • 125

http://media.pragprog.com/titles/reasonml/code/interop/record/src/RecordExample.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

You’ll need to do npm install --save papaparse in the stats directory to run the code:

presume you are in the stats directory
bsb -make-world
node src/Stats.bs.js orders.csv

You may see the solution in code/interop/stats-complete/src/Stats.re.

Working with JSON
JSON (JavaScript Object Notation) is the last piece of the puzzle we’ll need
to solve in order to write our project for this chapter. We need JSON to send
the server data to the client in a way that it can understand, and the client
has to be able to decode the JSON object into ReasonML data types.

There are two main JSON libraries for ReasonML: bs-json6 and bs-decode.7 The
main differences are:

• bs-json can be used in a way that throws exceptions when it finds bad
JSON, whereas bs-decode always returns an option or Belt.Result when it
encounters errors.

• bs-json has facilities for parsing and encoding JSON, whereas bs-decode
devotes itself purely to decoding, as its name indicates.

In this section, we’ll go with bs-json, and create a project named json-example.
We’ll add bs-json to the dependencies in bsconfig.json:

"bs-dependencies": [
"@glennsl/bs-json"

],

Then we npm install --save@glennsl/bs-json. Once that’s set up, you’re ready to parse
a JSON string. You can use the parse() function, which returns an option(Json.t)
result, or you can use parseOrRaise(), which, if successful, returns a Json.t result,
or raises a ParseError exception in the case of an error.

Decoding JSON
Once you have a JSON object (Json.t), you can decode the JSON object into
ReasonML data types.

6. github.com/glennsl/bs-json
7. github.com/mlms13/bs-decode

Chapter 8. Connecting to JavaScript • 126

report erratum • discuss

https://github.com/glennsl/bs-json
https://github.com/mlms13/bs-decode
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

interop/json-example/src/JsonExample.re
module D = Json.Decode;Line 1

-

let decodedStr = switch (Json.parse({js|"two words"|js})) {-

| Some(jsonStr) => D.string(jsonStr)-

| None => "";5

};-

Js.log(decodedStr); /* "two words" */-

-

/* Compose array decoder with float decoder with partial application */-

let floatArrayDecoder = D.array(D.float);10

let decodedArray =-

Json.parse("[3.4, 5.6, 7.8]")-

-> Belt.Option.mapWithDefault([||], floatArrayDecoder);-

Js.log(decodedArray); /* [|3.4, 5.6, 7.8|] */-

15

let decodedObj = switch (Json.parse({|{"size": "XXL", "qty": 10}|})) {-

| Some(jsonObj) => D.field("qty", D.int, jsonObj)-

| None => 0;-

};-

Js.log(decodedObj); /* 10 */20

To make our lives easier, let’s use D as an abbreviation for the Json.Decode
module in line 1. Line 4 shows the conversion of a JSON string to a ReasonML
string.

To convert a JSON array to a ReasonML array, you need to tell the decoder
the array elements’ type, as in line 10. In this code, we’ve gotten fancy and
built a decoder by composing two functions. We’re also using Belt.Option.map-
WithDefault() to avoid the need for a switch.

Finally, you can extract fields from a JSON object, as in line 17, by specifying
the field name, its type, and the JSON object.

For a more complete example, here’s code that will convert a JSON object to
a ReasonML record:

interop/json-example/src/JsonExample.re
type statsRecord = {

title: string,
choices: array(string),
totals: array(int)

};

let objStats = {js|{"title": "color",
"choices": ["White", "Blue", "Red", "Green", "Brown"],
"totals": [118, 114, 73, 67,28]}

|js};

report erratum • discuss

Working with JSON • 127

http://media.pragprog.com/titles/reasonml/code/interop/json-example/src/JsonExample.re
http://media.pragprog.com/titles/reasonml/code/interop/json-example/src/JsonExample.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

let colorStats = switch (Json.parse(objStats)) {
| Some(jsonObj) =>

{
title: D.field("title", D.string, jsonObj),
choices: D.field("choices", D.array(D.string), jsonObj),
totals: D.field("totals", D.array(D.int), jsonObj)

}
| None => { title: "", choices: [| |], totals: [| |] }

};
Js.log(colorStats)

Encoding JSON
If you’re interoperating with a JavaScript library that expects you to send it
a JSON object, you’ll need to encode your ReasonML data as JSON:

interop/json-example/src/JsonExample.re
let sleeveStats = {Line 1

title: "sleeve",-

choices: [|"short sleeve", "long sleeve", "extra-long sleeve"|],-

totals: [| 129, 217, 54 |]-

};5

-

module E = Json.Encode;-

-

let sleeveJson = E.object_([-

("title", E.string(sleeveStats.title)),10

("choices", E.stringArray(sleeveStats.choices)),-

("totals", E.array(E.int, sleeveStats.totals))]);-

-

Js.log(Json.stringify(sleeveJson));-

As with decoding, we make a module alias in line 7. To create a JSON object,
we use Json.Encode.object_(), starting in line 9. The trailing underscore is necessary
to avoid a collision with the ReasonML object keyword. The object_() function
takes a list of tuples as its argument. The first element of the tuple is the field
name, and the second is its encoded value. For ReasonML data types that
have direct equivalents in JavaScript, there are specialized encoder functions,
such as string() and stringArray() in lines 10 and 11. There’s a specialized numArray()
encoder, but it requires an array of float, and we have an array of integer in
line 4. We can solve this problem by using the generic array() encoder. Its first
argument is a function that encodes the element type in the array (int), and
the second argument is the array to be encoded (line 12).

The result is a JSON object suitable for passing to a function that expects an
object. If you need to convert the JSON object to a string, use the Json.stringify()
function as in line 14.

Chapter 8. Connecting to JavaScript • 128

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/interop/json-example/src/JsonExample.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Setting Up the Server
We now have all the parts we need for our project. Let’s set up the server.
But first, a disclaimer: this section isn’t intended as a complete guide to using
Express. It provides just enough explanation to get our project working.

Create a project named server, install the Express server, and add the depen-
dencies to the bsconfig.json file:

cd server
npm install --save express # the server
npm install --save bs-express # ReasonML bindings
npm install --save @glennsl/bs-json
npm install --save papaparse # to parse the CSV file

"bs-dependencies": [
"bs-express",
"@glennsl/bs-json"

],

The server code starts by instantiating a server and then telling it to listen
on port 3000:

interop/server/src/Server.re
let onListen = e =>

switch (e) {
| exception (Js.Exn.Error(e)) =>

Js.log(e);
Node.Process.exit(1);

| _ => Js.log("Listening at http://127.0.0.1:3000")
};

let app = Express.express();
let server = Express.App.listen(app, ~port=3000, ~onListen, ());

The listen() function specifies the application, the port, and a callback function
that’s invoked when the connection is made or if there’s an error. The () at
the end of the call is required because listen has default labeled parameters,
as described in Providing Default Values for Labeled Parameters, on page 19.

This code is followed by a series of routes that tell the server how to respond
to GET or POST requests using these functions, all of which are part of the Express
module:

App.get() and App.post() These functions have three parameters: the server app,
the route path, and a function to handle the request. If you precede a part
of the path with a colon, it becomes a route parameter that you can access
in your handler.

report erratum • discuss

Setting Up the Server • 129

http://media.pragprog.com/titles/reasonml/code/interop/server/src/Server.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Middleware.from() This function takes a handler function as its parameter. The
function you give to Middleware.from() has two parameters: the next handler
in a chain, and the request that the server received.

Request.query() This function takes a request as its single parameter and returns
a Js.Dict.t(Js.Json.t) object like {"key":"value"} containing information about the
request query string (the part after the ? in the URL).

Response.sendFile() This function has two parameters: a URL and an object con-
taining options, such as the root directory for relative file names and HTTP
headers to serve with the file.

Response.sendStatus() This function has one parameter: the status code to send
to the client. The code has data type Response.StatusCode.t.

Response.sendJson() This function has one parameter: a JSON object to send to
the client. It sends a string that represents the object.

The first route is for the root path (/). It serves up file index.html.

interop/server/src/Server.re
[@bs.deriving abstract]
type options = {

root: string,
};

Express.App.get(app, ~path="/",
Express.Middleware.from((_, _) => {

Express.Response.sendFile("index.html", options(~root="./dist"));
}

));

We will create a JavaScript object for the sendFile() options parameter. In this
case, the root option tells the server that relative path names should be served
from the dist directory. This code is using a relative path name for the root—
in a production environment, you would be well advised to use an absolute
path name.

Testing the Server
This is a perfect time to test the code we have so far. Create a directory named
dist and put an index.html file in it, with some minimal content:

<!DOCTYPE html>
<html>

<head>
<title>Test File</title>

</head>

Chapter 8. Connecting to JavaScript • 130

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/interop/server/src/Server.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

<body>
<h1>It works!</h1>

</body>
</html>

Build the server, get rid of any typographical errors you might have made—I
know I had a few—then run it:

npm run build # or bsb -make-world
node src/Server.bs.js

You should get the message Listening at http://127.0.0.1:3000. Open up a browser,
go to that URL, and you should see your test file displayed. (You can also use
http://localhost:3000. It doesn’t save any typing, but it involves fewer numbers.)

Now we need to create another similar route for any file name the user hap-
pens to enter. This route uses a route parameter (:filename). The actual file
name the user enters is extracted from the request’s param dictionary. The
params() function returns a dictionary of Json.t, which is why the code needs to
use Json.Decode.string():

interop/server/src/Server.re
Express.App.get(app, ~path="/:filename") @@
Express.Middleware.from((_, req) => {

Express.Request.params(req)
-> Js.Dict.unsafeGet("filename")
-> Json.Decode.string
-> Express.Response.sendFile(options(~root="./dist"))

});

There’s something new here: the @@ operator. This is the application operator,
and it’s a way to call a function without using parentheses. For sqrt @@ 2 is
the same as sqrt(2). Using @@ is helpful if you have deeply nested functions.
These are equivalent:

let x = cos(sqrt(floor(5.7)));
let x = cos @@ sqrt @@ floor @@ 5.7;

In the server code, @@ avoids one extra set of parentheses and makes the
code slightly more readable.

This is another good place for a test. Create another minimal HTML file with
different content from index.html as dist/otherfile.html. Recompile and fire up the
server again. Go to http://127.0.0.1:3000/otherfile.html in your browser. You should
see that file’s content.

report erratum • discuss

Setting Up the Server • 131

http://media.pragprog.com/titles/reasonml/code/interop/server/src/Server.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Finally, the route we’ve all been waiting for… the route to handle XMLHttpRe-
quests. We’ve given it the path /json, and we’ll follow it with a query string that
tells which column we want from the file of orders. For example, to retrieve the
distribution of collar types, we’d go to the URL http://localhost:3000/json?choice=collar.

I’m putting this last in the explanation since it’s conceptually the most com-
plex, but this route must come before the /:filename route. Remember, Express
tries routes in the order they occur, so we need to put the specific route /json
before the /:filename route (which will match any single name).

interop/server/src/Server.re
Express.App.get(app, ~path="/json") @@

Express.Middleware.from((_, req) => {
Express.Request.query(req)
-> Js.Dict.unsafeGet("choice")
-> Json.Decode.string
-> Stats.processFile("orders.csv", _)
-> Express.Response.sendJson;

});

This code uses the query() to get the client’s choice of column and sends it to
Stats.processFile(), which returns a JSON object that sendJson() returns to the
client. The Stats code is a modified version of the solution that we asked you
to create on page 125. You can see the full code at code/interop/server/src/Stats.re.
The only part we’ll show here is the section where we create a JSON object
from a Belt.Map:

interop/server/src/Stats.re
let makeObject = (title: string, distribution: Belt.Map.t('k, 'v, 'id),

toString: ('a) => string): Js.Json.t => {

/* Create an array of pairs (key, value) from the distribution map */
let pairs = Belt.Map.reduce(distribution, [| |],

(acc, key, value) =>
{Belt.Array.concat(acc, [|(toString(key), value)|])});

/* Separate into two arrays */
let (names, totals) = Belt.Array.unzip(pairs);

/* And return a JSON object */
E.object_([

("title", E.string(title)),
("choices", E.stringArray(names)),
("totals", E.array(E.int, totals))]);

};

There’s one new thing in this code: Belt.Array.unzip(). This handy function takes
an array of paired tuples and separates them into two arrays. For example:

Chapter 8. Connecting to JavaScript • 132

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/interop/server/src/Server.re
http://media.pragprog.com/titles/reasonml/code/interop/server/src/Stats.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

let arr = [|("solid", 165), ("pinstripe", 153), ("check",82)|];
let (choices, totals) = Belt.Array.unzip(arr);
Js.log(choices); /* [|"solid", "pinstripe", "check"|] */
Js.log(totals); /* [|165, 153, 82|] */

You can test this code by entering this URL in your browser: http://local-
host:3000/json?choice=color. You’ll see the result come back in your browser’s web
console. If you haven’t written the Stats.processFile() function yet but you still
want to do some sort of test, send back an explicit JSON object:

let jsonObject = Json.Encode.object_([
("title", Json.Encode.string("Pattern")),
("choices", Json.Encode.stringArray([|"solid", "pinstripe", "check"|])),
("totals", Json.Encode.array(Json.Encode.int, [|165, 153, 82|]))]);

Implementing the Client
Now let’s get the client side working. We’ll need to use bs-webapi to access the
DOM, bs-fetch to send data to the server and get a response, and bs-json to
analyze the response. Create a project named client and install those libraries:

cd client
npm install --save bs-webapi
npm install --save bs-fetch
npm install --save @glennsl/bs-json

Remember to add the dependencies to the bsconfig.json file:

"bs-dependencies": [
"bs-webapi",
"bs-fetch",
"@glennsl/bs-json"

],

Our HTML page will be just enough to get the job done: a <select> menu to
select the summary we want, and a <div> to hold the resulting table:

interop/client/src/index.html
<!DOCTYPE html>
<html>
<head>

<title>Shirt Statistics</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<link rel="stylesheet" type="text/css" href="style.css"/>

</head>
<body>

<h1>Shirt Statistics</h1>
<p>
<select id="category">

<option value="">Select...</option>

report erratum • discuss

Implementing the Client • 133

http://media.pragprog.com/titles/reasonml/code/interop/client/src/index.html
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

<option value="color">Color</option>
<option value="size">Size</option>
<option value="sleeve">Sleeve length</option>
<option value="pattern">Pattern</option>
<option value="cuff">Cuff</option>
<option value="collar">Collar</option>

</select>
</p>

<div id="resultTable"></div>

<script type="text/javascript" src="Client.bs.js"></script>
</body>

</html>

The ReasonML on the client side starts off with the definitions we used in
Accessing the DOM, on page 49 and ends with the code that will send a
request to the server when the selection menu changes:

interop/client/src/Client.re
module D = Webapi.Dom;
module Doc = Webapi.Dom.Document;
module Elem = Webapi.Dom.Element;

let getValue = (element: option(Elem.t)) : option(string) => {
element

-> Belt.Option.map(_, Elem.unsafeAsHtmlElement)
-> Belt.Option.map(_, D.HtmlElement.value);

};

/* ... */

let category = Doc.getElementById("category", D.document);
switch (category) {

| Some(element) =>
D.EventTarget.addEventListener(

"change", sendRequest, D.Element.asEventTarget(element))
| None => ()

};

Here’s the code for sending the request to the server:

interop/client/src/Client.re
let sendRequest = (_: Dom.event) : unit => {Line 1

let choice = getValue(Doc.getElementById("category", D.document));-

switch (choice) {-

| Some(choiceString) => {-

if (choiceString != "") {5

Fetch.fetchWithInit(-

"http://localhost:3000/json" ++ "?choice=" ++ choiceString,-

Fetch.RequestInit.make(~method_=Get, ())-

)-

|> Js.Promise.then_(Fetch.Response.json)10

Chapter 8. Connecting to JavaScript • 134

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/interop/client/src/Client.re
http://media.pragprog.com/titles/reasonml/code/interop/client/src/Client.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

|> Js.Promise.then_(json => processResponse(json)-

|> Js.Promise.resolve)-

|> ignore;-

} else {-

()15

}-

}-

| None => ()-

};-

};20

We retrieve the select menu choice in line 2. If the choice isn’t the empty
string, we use the fetchWithInit() to do an asynchronous GET request to a URL
with a query string that includes the selected choice (line 7). When the server
sends back the response, the first then_() call (line 10) will get the JSON
response, send it on to the processResponse(), and mark the promise as resolved.
This chain of calls uses pipe last (|>) because each of these calls wants the
value we’re sending on as its last argument. We’re not using the result for
any further calculation, so we pipe it to ignore() (line 13), which throws away
the result and returns unit.

Now it’s time to handle the response from the server:

interop/client/src/Client.re
module JD = Json.Decode;Line 1

/* utility routines for creating HTML string */-

let capitalize = (s: string): string => {-

Js.String.toUpperCase(Js.String.get(s, 0)) ++-

Js.String.toLowerCase(Js.String.substr(s, ~from=1))5

};-

-

let makeTableRow = (choice: string, total:int): string => {-

"<tr><td>" ++ choice ++ "</td><td>"-

++ string_of_int(total) ++ "</td></tr>\n"10

};-

-

let processResponse = (json: Js.Json.t): unit =>-

{-

let optResult = Doc.getElementById("resultTable", D.document);15

-

switch (optResult) {-

| Some(resultElement) => {-

let title = JD.field("title", JD.string, json);-

let choices = JD.field("choices", JD.array(JD.string), json);20

let totals = JD.field("totals", JD.array(JD.int), json);-

let htmlStr = "<table><thead><tr><th>" ++ capitalize(title)-

++ "</th><th>Total</th></tr>\n"-

++ Belt.Array.reduce(Belt.Array.zip(choices, totals), "",-

(acc, (choice, total)) => acc ++ makeTableRow(choice, total))25

++ "</table>\n";-

report erratum • discuss

Implementing the Client • 135

http://media.pragprog.com/titles/reasonml/code/interop/client/src/Client.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Elem.setInnerHTML(resultElement, htmlStr);-

}-

| None => ()-

}30

};-

The server’s response—the JSON data—is ready for us in the parameter. If
we found the element where our HTML table will go (line 18), we convert the
JSON object to ReasonML data starting in line 19 and create an HTML string
with the table of results (line 22). That code uses Belt.Array.zip(), which is the
opposite of the unzip() function: it takes two arrays and combines them into a
single array of paired tuples. (If we didn’t find the element for the HTML
table, the None case in line 29 returns unit and does nothing.)

Line 27 deposits our HTML into the result table <div>.

We now build the client code, bundle it up with parcel, and—here’s the key—
move the resulting dist folder to the server project’s directory so we can test
the whole client/server system. Presume we’re in the client directory with the
following directory structure. (The server/dist directory was created when we
tested the server. You did test the server first, didn’t you?)

├── interop
│ ├── client
│ │ ├── bsconfig.json
│ │ └── src
│ ├── server
│ │ ├── bsconfig.json
│ │ ├── dist
│ │ ├── src
│

Here’s the sequence of commands that I described. I found myself doing this
sequence of commands so often that I created a bash shell script to save some
typing. You might wish to do likewise.

npm run build
Create bundle in client/dist directory
parcel build src/index.html --public-url ./ --no-minify
Remove old server/dist directory
rm -rf ../server/dist
Transfer newly-built client code to server area
mv dist ../server

Now restart the server (if it’s not already running), go to http://localhost:3000/,
and enjoy your spiffy new table-maker.

Chapter 8. Connecting to JavaScript • 136

report erratum • discuss

http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

It’s Your Turn
Okay, tables aren’t that spiffy. Charts are a lot more attractive, so your task
in this exercise is to create a new client project that uses Chart.js.8 Again,
I’m explaining just enough of that library to help you write the bindings you
need to create a horizontal bar chart for the shirt statistics. If you feel ener-
gized and want to write a complete set of bindings for Chart.js, make sure
you share it with the rest of us when you finish.

You’ll need to install Chart.js with npm install --save chart.js. This will add an entry
to the dependencies in your package.json file. You don’t have to add it to the
dependencies in bsconfig.json.

Here’s a summary of the information you need to draw a horizontal bar chart.
You create a chart by calling the Chart object constructor with two parameters.
The first parameter is a DOM element reference to a <canvas> element. The
second parameter is a rather deeply nested object describing the graph data
and appearance, which we’ll go over in a bit. The constructor creates the chart
and displays it on the canvas.

Before you can draw another chart on the canvas, you have to free all the
data structures that Chart.js is using for the current chart. You do that by
calling the destroy() method of the Chart object you constructed. This means
you have to do something we haven’t done before: create a global variable
that can change.

Working with Mutable Variables
The norm in ReasonML is to presume that variables are immutable. Functions
in Belt.Array treat ReasonML arrays as immutable—the functions return a new
array, leaving the argument untouched, even though the underlying JavaScript
arrays are mutable. To create a mutable variable, you need to wrap it in a ref.
Here’s code that creates a global variable for a person’s age, and accesses
and changes it:

let age: ref(int) = ref(22);

let birthday = (a: ref(int)): unit => {
a := a^ + 1

}

birthday(age);
Js.log(age^); /* 23 */

8. www.chartjs.org/

report erratum • discuss

It’s Your Turn • 137

http://www.chartjs.org/
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

To access the content of a ref variable, follow its name with an circumflex (^).
To assign a value to a ref variable, use :=, which updates the content of the
reference, rather than =, which creates a binding between a name and value.

Here’s the code I used to create a global variable for the chart and update it:

interop/graphic-client/src/GraphicClient.re
let theChart: ref(option(Chart.t)) = ref(None);
/* ... */

Let’s get back to the second parameter of the Chart constructor—the deeply
nested object that describes the chart. In short, it specifies:

• The labels for the bars
• One or more data sets, which consist of:

– The label for the data set
– The data values
– The background color, border color, and border width for the bars

• Options that specify whether the graph is responsive or not, and how to
scale the x and y axes

Here’s an example of what that object looks like:

{
type: "horizontalBar",
data: {

labels: ["Red", "Green", "Blue"], // labels for the bars
datasets: [// an array of objects, each describing a set of data
{

label: "label for set of data",
data: [20, 30, 40], // data points
backgroundColor: [// fill color for bars

"rgba(255, 0, 0, 0.5)",
"rgba(0, 255, 0, 0.5)",
"rgba(0, 0, 255, 0.5)"

],
borderColor: [// border color for bars

"#ff0000",
"#008000",
"#0000ff",

],
borderWidth: 1 // integer

}
]

},
options: {

legend: {
display: false, // display data set label

},
responsive: false,

Chapter 8. Connecting to JavaScript • 138

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/interop/graphic-client/src/GraphicClient.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

scales: {
xAxes: [{ // array of objects

ticks: {
beginAtZero:true

}
}],
yAxes: []

}
}

}

A few notes: if you specify fewer background colors than there are bars, the
remaining bars will be 50% transparent gray. If you specify fewer border colors
than bars, the bars will have no border. Colors can be specified in any CSS-
compatible format. In the options object, you must set responsive to false for the
graph to be sized to the area of your <canvas>. It’s possible to have multiple
axes (useful if there are multiple data sets), which is why xAxes and yAxes are
arrays. If you specify an empty array for an axis, as we did for yAxes, Chart.js
doesn’t do anything special for that axis.

There are a lot of objects here, so you’re going to be creating a lot of types
with [@bs.deriving abstract]. I strongly suggest you put all your Chart.js types and
bindings in a separate file named Chart.re. I also recommend that you put each
type in its own module to avoid name collisions. It’s possible to nest modules.
But again, for readability, I wouldn’t recommend nesting too deeply:

interop/graphic-client/src/Chart.re
module Axis = {

module Tickmark = {
[@bs.deriving abstract] type t = {

beginAtZero: bool
};

};
[@bs.deriving abstract] type t = {

ticks: Tickmark.t
};

};

You can see the full code in directory code/interop/graphic-client/src.

Summing Up
You now have the basics of interoperating with JavaScript: binding to Java-
Script functions, working with JavaScript objects, and encoding and decoding
JSON. For the full details of BuckleScript/ReasonML’s extensive interop
capabilities, see bucklescript.github.io/docs/en/interop-overview.

report erratum • discuss

Summing Up • 139

http://media.pragprog.com/titles/reasonml/code/interop/graphic-client/src/Chart.re
https://bucklescript.github.io/docs/en/interop-overview
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

You may have noticed in Working with Mutable Variables, on page 137 my
reluctance—bordering on distaste—for talking about mutable objects and, in
particular, mutable global state. This is an issue that bothers many people
who are used to the functional programming style, and some exceptionally
bright programmers have come up with an answer: reactive programming.
That’s what we’ll investigate in the next chapter.

Chapter 8. Connecting to JavaScript • 140

report erratum • discuss

http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

CHAPTER 9

Making Applications with Reason/React
Learning React will make it far easier for you to develop web applications. First,
React will take care of the DOM manipulation. You can say goodbye to all the
work we had to do to make sure that we were dealing with a Dom.HtmlElement
instead of Dom.Element.t. Second, your code will be better organized. React lets
you tie together a DOM element and the code that manipulates it as a component.
It’s easier to modify your application when your web page is composed of these
building blocks instead of a monolithic mass of code and data. React lets you
create more complex, powerful web applications with the same or less effort
than you would need if using plain ReasonML with the DOM.

Viewing React from 20,000 Meters
This section is written for those of us who haven’t used React or aren’t
familiar with it. (Yes, that includes me.)

React lets you think of a web page as consisting of components. A component
accepts input (properties, also called props) and returns “React elements
describing what should appear on the screen.”1 You can write these as func-
tions, or you can use a notation called JSX, an extension to JavaScript that
lets you write HTML-like expressions mixed in with JavaScript code. ReasonML
also lets you use JSX-style notation that contains ReasonML code.

An example of a component might be a Notice component with properties that
describe the message text, the color of the text, and the icon to display with
the message. In JSX, that might look like:

<Notice message="Variable y is not defined"
color="#880000" icon="notice_icons/error.svg" />

1. reactjs.org/docs/components-and-props.html

report erratum • discuss

https://reactjs.org/docs/components-and-props.html
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

To address the problem of global state, you can have what React calls stateful
components. A stateful component contains a JavaScript object whose fields
describe the component’s current status. We could, for example, revise the
preceding chapter’s graphic example on page 138 to use a FrequencyChart compo-
nent, where the Chart.t object is part of the component rather than a global
variable.

Components can have event-handling code that updates their state, and
components can contain other components.

Once you have your components, you tell React to render them into a web
page. React keeps track of everything, displaying the components and
updating them as events occur, as specified by your code. The most magical
part of React is that it updates only the parts of the page that need updating,
rather than updating the entire page’s DOM. That’s the idea of React in a
nutshell, and its power is now available to you in ReasonML. You may find
Dan Abramov’s explanation of React components, elements, and instances
to be informative as well.2

Other Frameworks

React isn’t the only game in town. There are other frameworks
that provide similar capabilities, which also use a reactive program-
ming approach. Among the options are Vue,3 Angular,4 and Preact.5

Starting a ReasonReact Project
As specified in the ReasonReact web site6, you start a project with ReasonReact
like this:

bsb -init react-test -theme react
cd react-test

Here’s the directory structure it creates:

│
├── bsconfig.json
├── node_modules
│ └── bs-platform
├── package.json
├── README.md

2. reactjs.org/blog/2015/12/18/react-components-elements-and-instances.html
3. vuejs.org/
4. angular.io/
5. preactjs.com/
6. reasonml.github.io/reason-react/docs/en/installation

Chapter 9. Making Applications with Reason/React • 142

report erratum • discuss

https://reactjs.org/blog/2015/12/18/react-components-elements-and-instances.html
https://vuejs.org/
https://angular.io/
https://preactjs.com/
https://reasonml.github.io/reason-react/docs/en/installation
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

├── src
│ ├── Component1.re
│ ├── Component2.re
│ ├── index.html
│ └── Index.re
└── webpack.config.js

The main differences between this project and non-React projects are that
the src directory contains some sample components and an HTML file. We’ll
look at the source files more closely later. There’s also webpack.config.js which,
as its name suggests, is a configuration file for the webpack7 bundler. This
is the default bundler for ReasonReact projects, so we’ll be using it instead
of parcel, as we did on page 49.

Now let’s install the dependencies that a React project needs. This step will
take a while, and it will install many things in the node_modules directory, but
you’ll only need to do it once:

npm install

Then compile the project with an option to monitor files and recompile
whenever a source file changes:

npm start

Go to another terminal window and issue the following command, which runs
webpack to create a bundle we can run and it also watches for file changes:

npm run webpack

If you open yet another terminal window and look at the file structure, you’ll
see a new directory:

├── build
│ ├── index.html
│ └── Index.js

You can go to your browser and open the index.html file (no server required).
You’ll see this rather plain-looking page:

7. webpack.js.org/

report erratum • discuss

Starting a ReasonReact Project • 143

https://webpack.js.org/
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

As we’ll see when we look at the code, the first component is stateless—it
conveys a static message. If you open your web console and click on the word
“Hello!”, you should see the word “clicked” appear in the console. The second
component is stateful—it keeps track of the number of clicks on the left button
and whether the greeting following the right button should be visible or not.

Investigating the Sample Project
The index.html file has two <div> elements with id= attributes. The Index.re file
renders (displays) the components in those <div>s.

reason-react/react-test/src/index.html
<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="UTF-8">
<title>ReasonReact Examples</title>

</head>
<body>

Component 1:
<div id="index1"></div>

Component 2:
<div id="index2"></div>

<script src="Index.js"></script>
</body>
</html>

reason-react/react-test/src/Index.re
ReactDOMRe.renderToElementWithId(<Component1 message="Hello!" />, "index1");

ReactDOMRe.renderToElementWithId(<Component2 greeting="Hello!" />, "index2");

What’s this code <Component1 message="Hello!" /> that looks like an HTML tag?
That’s JSX, and it’s shorthand for this code:

ReasonReact.element(Component1.make(~message="Hello!",[||])

The properties of the component—in this case, the only property—become
labeled parameters to make(). The last argument is an array of child compo-
nents, which is unused in this case. Let’s take a look at the Component1 module
and flesh out the comments in the file.

reason-react/react-test/src/Component1.re
/* This is the basic component. */Line 1

let component = ReasonReact.statelessComponent("Component1");-

-

/* Your familiar handleClick from ReactJS. This mandatorily takes the payload,-

then the `self` record, which contains state (none here), `handle`, `reduce`5

and other utilities */-

Chapter 9. Making Applications with Reason/React • 144

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/reason-react/react-test/src/index.html
http://media.pragprog.com/titles/reasonml/code/reason-react/react-test/src/Index.re
http://media.pragprog.com/titles/reasonml/code/reason-react/react-test/src/Component1.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

let handleClick = (_event, _self) => Js.log("clicked!");-

-

/* `make` is the function that mandatorily takes `children` (if you want to use-

`JSX). `message` is a named argument, which simulates ReactJS props. Usage:10

-

`<Component1 message="hello" />`-

-

Which desugars to-

15

`ReasonReact.element(Component1.make(~message="hello", [||]))` */-

let make = (~message, _children) => {-

...component,-

render: self =>-

<div onClick=(self.handle(handleClick))>20

{ReasonReact.string(message)}-

</div>,-

};-

The argument to ReasonReact.statelessComponent() in line 2 is a string that’s used
for debugging, console logging, and error messages. It can have any value
you want. A very good choice is __MODULE__, which the compiler replaces with
the name of the module.8

This component doesn’t do anything in response to clicks except log the fact
that you clicked the greeting, so line 7 doesn’t need to use either of its argu-
ments. The leading underscore prevents “unused variable” messages.

The component really gets down to business in line 17. make() is a function
that takes as its argument the component’s property (or properties) and an
array of child components. In this case, the single property is ~message (the
value of the JSX message= attribute). We don’t need to access the children—
there aren’t any—so again, we use a leading underscore.

This function returns an ordinary ReasonML record with all the current fields
of the component (using the ... spread operator) and a new value for the render
field. The value for render is a function that takes a single argument, self, which
is essentially the equivalent of JavaScript’s this, and returns the React elements
to be rendered. Expressions in braces are evaluated when the component is
rendered.

First, let’s look at line 21, which displays the message. We can’t use {message}
because items being rendered must be React elements. ReasonReact.string()
converts the ReasonML string to a React element. There is also a ReasonRe-
act.array() function that converts a ReasonML array to a React element.

8. reasonml.github.io/api/Pervasives.html#VAL__MODULE__

report erratum • discuss

Investigating the Sample Project • 145

https://reasonml.github.io/api/Pervasives.html#VAL__MODULE__
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Newer Versions of the Template

In older versions of the template, the comments starting in line
8 refer to Page. This is a mistype. The component name is Compo-
nent1. ReasonML also allows you to have single expressions in
parentheses rather than braces, with braces reserved for blocks
of code. This book shows an updated version of the template that
has the mistype corrected and uses braces throughout. But as
of this writing, it may not yet be in your installation of ReasonML.

Event names in JSX use camel case. Line 20 uses onClick rather than the all
lowercase onclick you would see in JavaScript.

Creating a More Complex Stateless Component
After reading this, you might be thinking, “Okay, I got this.“ I thought that,
too. Then I decided to create the Notice component I mentioned earlier in the
chapter. I soon realized that no, I don’t “got this,” because there are a lot of
new things we need to make this component happen. Let’s dive in!

First, the figure on page 147 shows what we want the notices to look like when
they grow up. The notice box will need styling to get the border and the verti-
cally aligned text.

We’ll put the icons, which are in SVG format, into a directory named notice_icons
at the top level of our project directory:

├── bsconfig.json
├── lib
│ └── bs
├── node_modules
├── notice_icons
│ ├── error.svg
│ ├── information.svg
│ └── warning.svg
├── package.json
├── README.md
├── src
│ ├── index.html
│ ├── Index.re
│ ├── Notice.re
└── webpack.config.js

When we bundle with webpack, it processes JavaScript files (compiled from
ReasonML) and HTML files, but it doesn’t know how to deal with image files.

Chapter 9. Making Applications with Reason/React • 146

report erratum • discuss

http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

We have to install the file-loader module,9 using the --save-dev option. This indicates
that file-loader is a developer-time dependency, not to be included in production.

npm install file-loader --save-dev

Next, we must inform webpack when to use file-loader by adding this to our
webpack.config.js file:

reason-react/notices/webpack.config.js
plugins: [Line 1

new HtmlWebpackPlugin({-

template: 'src/index.html',-

inject: false-

})5

],-

module: {-

rules: [-

{-

test: /\.(png|jpg|svg)$/,10

use: [-

{-

loader: 'file-loader',-

options: {-

name: '[path][name].[ext]'15

}-

}-

]-

}-

]20

},-

devServer: {-

9. github.com/webpack-contrib/file-loader

report erratum • discuss

Creating a More Complex Stateless Component • 147

http://media.pragprog.com/titles/reasonml/code/reason-react/notices/webpack.config.js
https://github.com/webpack-contrib/file-loader
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

The code we’ve added starts in line 7. We use a regular expression in line 10
to specify that files ending in .png, .jpg, and .svg should use the file loader (line
13). The loader will copy the files to the bundle with the path name (relative
to the top of our project), the file name, and its extension (line 15). This means
that the icons will be in a directory named notice_icons, that lives in the same
directory as the bundled HTML and JavaScript files:

build
├── index.html
├── Index.js
└── notice_icons

├── error.svg
├── information.svg
└── warning.svg

Now that the housekeeping is out of the way, let’s turn our attention to the
code. The index.html file is pretty much the same as the sample, with three
<div> elements to hold our Notice components:

reason-react/notices/src/index.html
<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="UTF-8">
<title>Notices</title>

</head>
<body>

<div id="info"></div>
<div id="warn"></div>
<div id="err"></div>

<script src="Index.js"></script>
</body>
</html>

Similarly, there’s not a lot new in our Index.re file, which renders one of each
type of Notice to the appropriate <div>:

reason-react/notices/src/Index.re
ReactDOMRe.renderToElementWithId(

<Notice message="Total file size 1280 bytes"
color="#000" icon="information" />, "info");

ReactDOMRe.renderToElementWithId(
<Notice message="Variable x is unused"

color="#FF8C00" icon="warning" />, "warn");

ReactDOMRe.renderToElementWithId(
<Notice message="Variable y is not defined"

color="#8B0000" icon="error" />, "err");

Chapter 9. Making Applications with Reason/React • 148

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/reason-react/notices/src/index.html
http://media.pragprog.com/titles/reasonml/code/reason-react/notices/src/Index.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

However, when we get to the component itself in Notice.re, you’ll see a lot of
new things.

reason-react/notices/src/Notice.re
[@bs.val] external require : string => string = "";Line 1

-

require("../notice_icons/warning.svg");-

require("../notice_icons/error.svg");-

require("../notice_icons/information.svg");5

-

let component = ReasonReact.statelessComponent("Notice");-

-

let noticeStyle = (color) =>-

ReactDOMRe.Style.make(10

~color=color, ~clear="left",-

~minHeight="64px", ~marginBottom="0.5em",-

~width="30%", ~display="flex", ~alignItems="center",-

~border="1px solid black", ());-

15

let make = (~message, ~color, ~icon, _children) => {-

...component,-

render: _self =>-

<div style={noticeStyle(color)}>-

<img src={"notice_icons/" ++ icon ++ ".svg"}20

style = {ReactDOMRe.Style.make(~width="48px", ~float="left", ())} />-

{ReasonReact.string(message)}-

</div>,-

};-

First, we have to require() the SVG files. This lets webpack know that it has to
process them. We give the paths relative to the source file, which is why the
paths start with ../.

To make the code more readable, we put the creation of the styling information
for the component in a separate function starting on line 10. The ReactDOM-
Re.Style.make() function uses labeled parameters for the style properties. CSS
hyphenated names such as min-height, margin-bottom, and align-items become the
camel case minHeight, marginBottom, and alignItems.

In line 16, the make() function has three properties plus the (unused) _children
parameter. The style function is called in line 19 to provide a value for the
style= attribute.

The SVG file is included as an , and we build the file name in line 20
by concatenating the directory name—where the images will be after the
bundle is built, the icon string, and the .svg extension.

Lastly, line 22 provides the message, expressed as a ReasonReact.string().

report erratum • discuss

Creating a More Complex Stateless Component • 149

http://media.pragprog.com/titles/reasonml/code/reason-react/notices/src/Notice.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

It’s Your Turn
Create an <Animal species="..." name="..."> component that renders as a PNG of
an animal of the given species, with the specified name below the image. The
starting point for this project is in the code/reason-react/animal-component directory.
Here is the index.html file and the style.css that it refers to:

reason-react/animal-component/src/index.html
<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="UTF-8">
<title>ReasonReact and file-loader</title>
<link rel="stylesheet" type="text/css" href="style.css"/>

</head>
<body>

<div class="horiz" id="image1"></div>
<div class="horiz" id="image2"></div>
<div class="horiz" id="image3"></div>
<div class="horiz" id="image4"></div>

<script src="Index.js"></script>
</body>
</html>

reason-react/animal-component/src/style.css
div.horiz {

display: inline-block;
}

The images are in directory code/reason-react/animal-component/images. When the
program is finished, the web page should look like this:

The starting point for the <Animal> component is in code/reason-react/animal-compo-
nent/src/Animal.re. You will also need to make changes to code/reason-react/animal-
component/webpack.config.js.

One solution is in directory code/reason-react/animal-component-complete.

Chapter 9. Making Applications with Reason/React • 150

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/reason-react/animal-component/src/index.html
http://media.pragprog.com/titles/reasonml/code/reason-react/animal-component/src/style.css
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Using Stateful Components
The Component1, Notice, and Animal components all have one thing in common—
the properties completely define everything we need to render the component.
On the other hand, Component2 in the template, which defines a stateful com-
ponent, has to keep track of the number of times the left button has been
clicked and whether the text is visible or not. The component starts out with
a definition of a type that reflects this information:

reason-react/react-test/src/Component2.re
/* State declaration */
type state = {

count: int,
show: bool,

};

The state of the component is changed in response to user actions, which we
define in the action type:

reason-react/react-test/src/Component2.re
/* Action declaration */
type action =

| Click
| Toggle;

We can then create a reducerComponent (rather than a statelessComponent) and its
make() function:

reason-react/react-test/src/Component2.re
/* Component template declaration.Line 1

Needs to be **after** state and action declarations! */-

let component =-

ReasonReact.reducerComponent("Example");-

5

/* greeting and children are props. `children` isn't used, therefore ignored.-

We ignore it by prepending it with an underscore */-

let make =-

(~greeting, _children) => {-

/* spread the other default fields of component here and override a few */10

...component,-

-

initialState: () => {count: 0, show: true},-

-

/* State transitions */15

reducer: (action, state) =>-

switch (action) {-

| Click => ReasonReact.Update({...state, count: state.count + 1})-

| Toggle => ReasonReact.Update({...state, show: ! state.show})-

},20

-

report erratum • discuss

Using Stateful Components • 151

http://media.pragprog.com/titles/reasonml/code/reason-react/react-test/src/Component2.re
http://media.pragprog.com/titles/reasonml/code/reason-react/react-test/src/Component2.re
http://media.pragprog.com/titles/reasonml/code/reason-react/react-test/src/Component2.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

render: self => {-

let message =-

"You've clicked this " ++ string_of_int(self.state.count) ++ " times(s)";-

<div>25

<button onClick={_event => self.send(Click)}>-

{ReasonReact.string(message)}-

</button>-

<button onClick={_event => self.send(Toggle)}>-

{ReasonReact.string("Toggle greeting")}30

</button>-

{self.state.show ? ReasonReact.string(greeting) : ReasonReact.null}-

</div>;-

},-

};35

In addition to the render field, we have to create the initial state of the compo-
nent in line 13. Notice that init() is a function with no arguments that returns
a record. The reducer field in line 16 uses ReasonReact.Update() to return a new
state in response to actions. The actions are initiated by the send() function
when events occur (lines 26 and 29).

Putting Components Together
Let’s use our shirt data structure to create a web page that lets you specify
shirt orders and put them in a table. Here’s what it looks like after adding
three valid orders and trying to add an order with a negative quantity:

The data entry form, which holds the strings from the input fields, an array of
the orders entered so far, and the error message to display, will be the responsi-
bility of a single stateful OrderForm component whose state looks like this:

Chapter 9. Making Applications with Reason/React • 152

report erratum • discuss

http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

reason-react/shirt-react/src/OrderForm.re
type state = {

qtyStr: string,
sizeStr: string,
sleeveStr: string,
colorStr: string,
patternStr: string,
nextOrderNumber: int,
orders: array(Shirt.Order.t),
errorText: string,

};

There’s an extra field in this record, nextOrderNumber, used to keep track of
which orderNumber to assign to the orders the user enters.

The order record is very much like the one we’ve seen in Chapter 7, Structuring
Data with Records and Modules, on page 103, and it is represented by a
stateless OrderItem component that renders an order as a table row:

reason-react/shirt-react/src/Shirt.re
module Order = {

type t = {
orderNumber: int,
quantity: int,
size: Size.t,
sleeve: Sleeve.t,
color: Color.t,
pattern: Pattern.t,

}
};

To save space, we’ve omitted the Cuff and Collar types, and we’ve added an
orderNumber field to distinguish among otherwise identical records. We’ve also
changed the toString() functions—not shown here to save space—to return
capitalized strings.

Conceptually, the OrderForm will contain OrderItem components:

<OrderForm>
<OrderItem .../>
<OrderItem .../>

</OrderForm>

The OrderItem Component
Here’s the code for the OrderItem component:

report erratum • discuss

Putting Components Together • 153

http://media.pragprog.com/titles/reasonml/code/reason-react/shirt-react/src/OrderForm.re
http://media.pragprog.com/titles/reasonml/code/reason-react/shirt-react/src/Shirt.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

reason-react/shirt-react/src/OrderItem.re
module RR = ReasonReact;Line 1

-

let component = RR.statelessComponent("OrderItem");-

-

let make = (~order: Shirt.Order.t,5

~deleteFunction: (ReactEvent.Mouse.t) => unit, _children) =>-

{-

...component,-

-

render: (_self) => {10

<tr>-

<td>{RR.string(string_of_int(order.quantity))}</td>-

<td>{RR.string(Shirt.Size.toString(order.size))}</td>-

<td>{RR.string(Shirt.Sleeve.toString(order.sleeve))}</td>-

<td>{RR.string(Shirt.Color.toString(order.color))}</td>15

<td>{RR.string(Shirt.Pattern.toString(order.pattern))}</td>-

<td>-

<button onClick={deleteFunction}>{RR.string("Delete")}</button>-

</td>-

20

</tr>-

}-

};-

Line 1 saves us some typing.

The render() function starting in line 10 creates a series of table cells from the
order fields. Things get interesting when we create the button in line 18. What
is this deleteFunction, and why is it one of our parameters in line 7? Why didn’t
we just define a function in this component that modifies the parent OrderForm
component? The answer is: we can’t. React has unidirectional data flow. Child
components get a read-only version of the parent’s state. If the child needs
to communicate with the parent, it has to do so via a function provided by
the parent. In this case, that’s the deleteFunction property of the OrderItem. We’ll
see how it’s implemented when we look at the OrderForm component.

The OrderForm Component
There is only one new ReasonML feature in this code, so most of the explana-
tion will be about React features. We start off with functions to convert from
strings to data types, with default values in case the conversions fail:

reason-react/shirt-react/src/OrderForm.re
let convertWithDefault = (str: string, defaultValue: 'a,

convert: (string) => option('a)): 'a => {
Belt.Option.getWithDefault(convert(str), defaultValue);

};

Chapter 9. Making Applications with Reason/React • 154

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/reason-react/shirt-react/src/OrderItem.re
http://media.pragprog.com/titles/reasonml/code/reason-react/shirt-react/src/OrderForm.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

let toIntWithDefault = (s:string, defaultValue:int): int => {
switch (int_of_string(s)) {

| result => result
| exception(Failure("int_of_string")) => defaultValue

}
};

Here are the state (which we saw earlier in this chapter) and the actions: we can
either enter an order, change the fields of an order, or delete an existing order:

reason-react/shirt-react/src/OrderForm.re
type state = {

qtyStr: string,
sizeStr: string,
sleeveStr: string,
colorStr: string,
patternStr: string,
nextOrderNumber: int,
orders: array(Shirt.Order.t),
errorText: string,

};

reason-react/shirt-react/src/OrderForm.re
type action =

| Enter(Shirt.Order.t)
| ChangeQty(string)
| ChangeSize(string)
| ChangeSleeve(string)
| ChangeColor(string)
| ChangePattern(string)
| Delete(Shirt.Order.t);

The Change... variants have a string parameter that will come from the value
of the text field and the drop-down menus.

We have to create several <select> menus, so let’s write a function that takes
the menu label, an array of menu choices, the currently selected value, and
a function that’s invoked whenever the menu’s value changes:

reason-react/shirt-react/src/OrderForm.re
let makeSelect = (label: string, choices: array(string),Line 1

value: string, changeFcn) => {-

-

let makeOptionElement = (value: string) => {-

<option key={value} value={value}>{ReasonReact.string(value)}</option>5

};-

-

let menuOptionElements = Belt.Array.map(choices, makeOptionElement);-

-
10

report erratum • discuss

Putting Components Together • 155

http://media.pragprog.com/titles/reasonml/code/reason-react/shirt-react/src/OrderForm.re
http://media.pragprog.com/titles/reasonml/code/reason-react/shirt-react/src/OrderForm.re
http://media.pragprog.com/titles/reasonml/code/reason-react/shirt-react/src/OrderForm.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

-

<label>{ReasonReact.string(" " ++ label ++ ": ")}</label>-

<select value={value} onChange={changeFcn}>-

{ReasonReact.array(menuOptionElements)}-

</select>15

-

};-

The makeOptionElement() function creates an individual <element> from a value.
The key= attribute in line 5 is a special attribute for React to help it “identify
which items have changed, are added, or are removed”.10

The call to Belt.Array.map() in line 8 produces an array of <option> elements. We
can’t put an ordinary array into the <select> element—we have to convert it
to a ReasonReact.array in line 14.

To set the CSS class of the element in line 11, we use className= instead
of the reserved word class.

When the user clicks the Add button, we will gather the data from the state
and create a Shirt.order.t record with the next available order number:

reason-react/shirt-react/src/OrderForm.re
let createOrder = (state) : Shirt.Order.t => {

{
orderNumber: state.nextOrderNumber,
quantity: toIntWithDefault(state.qtyStr, 0),
size: convertWithDefault(state.sizeStr, Shirt.Size.Medium,

Shirt.Size.fromString),
sleeve: convertWithDefault(state.sleeveStr, Shirt.Sleeve.Long,

Shirt.Sleeve.fromString),
color: convertWithDefault(state.colorStr, Shirt.Color.White,

Shirt.Color.fromString),
pattern: convertWithDefault(state.patternStr, Shirt.Pattern.Solid,

Shirt.Pattern.fromString),
}

};

Let’s move on to the make() function, which starts off by defining an initialState.
The strings will get overwritten as the user changes fields, so I chose what
seemed to be reasonable defaults. There are no orders yet, the nextOrderNumber
will be 1, and there’s no errorText to display:

reason-react/shirt-react/src/OrderForm.re
let component = ReasonReact.reducerComponent("OrderForm");

let make = (_children) => {
...component,

10. reactjs.org/docs/lists-and-keys.html#keys

Chapter 9. Making Applications with Reason/React • 156

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/reason-react/shirt-react/src/OrderForm.re
http://media.pragprog.com/titles/reasonml/code/reason-react/shirt-react/src/OrderForm.re
https://reactjs.org/docs/lists-and-keys.html#keys
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

initialState: () => {
qtyStr: "1",
sizeStr: Shirt.Size.toString(Shirt.Size.Medium),
sleeveStr: Shirt.Sleeve.toString(Shirt.Sleeve.Long),
colorStr: Shirt.Color.toString(Shirt.Color.White),
patternStr: Shirt.Pattern.toString(Shirt.Pattern.Solid),
orders: [| |],
nextOrderNumber: 1,
errorText: ""

},

Next, let’s examine the reducer function’s code for the Enter action.

reason-react/shirt-react/src/OrderForm.re
reducer: (action, state:state) =>Line 1

switch (action) {-

| Enter(order) => {-

let n = toIntWithDefault(state.qtyStr, 0);-

if (n > 0 && n <= 100) {5

ReasonReact.Update({...state,-

orders: Belt.Array.concat(state.orders, [|order|]),-

nextOrderNumber: state.nextOrderNumber + 1,-

errorText: ""-

})10

} else {-

ReasonReact.Update({...state,-

errorText: "Quantity must be between 1 and 100."-

})-

}15

}-

If the quantity ordered is in a valid range, we update the state (line 6) by
concatenating the order to the orders array (line 7), updating the nextOrderNumber
(line 8) and clearing the errorText (line 9), which might have been set by invalid
data (line 13) in a previous entry.

The Change... actions all follow the same pattern: update the corresponding
string in the state. Here is the code for changing the quantity and shirt size.
The remaining actions follow this same pattern:

reason-react/shirt-react/src/OrderForm.re
| ChangeQty(newQty) => {

ReasonReact.Update({...state, qtyStr: newQty})
}

| ChangeSize(newSize) => {
ReasonReact.Update({...state, sizeStr: newSize})

}

The Delete action updates the state by keeping all the orders except the one
whose order number matches the one we want to delete:

report erratum • discuss

Putting Components Together • 157

http://media.pragprog.com/titles/reasonml/code/reason-react/shirt-react/src/OrderForm.re
http://media.pragprog.com/titles/reasonml/code/reason-react/shirt-react/src/OrderForm.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

reason-react/shirt-react/src/OrderForm.re
| Delete(order) => {

ReasonReact.Update({...state,
orders: Belt.Array.keep(state.orders,

(item) => (item.orderNumber != order.orderNumber))})
}

The render function is rather lengthy because it has to display a lot of things,
so let’s analyze it in parts. We create a variable orderItems of all the <OrderItem>
components.

reason-react/shirt-react/src/OrderForm.re
render: self => {

let orderItems = Belt.Array.map(self.state.orders, (order) =>
<OrderItem key={string_of_int(order.orderNumber)}

order={order} deleteFunction=(_event => self.send(Delete(order)))/>);

There are two things to notice here. First, the key= attribute. React insists on
each array element having a unique key= property, and the order numbers
are unique. Second, the assignment of the deleteFunction property. It’s an
anonymous function that sends the form a Delete action. This is the answer
to the question we asked on page 154 about how the child can communicate
with the parent. We’re defining this anonymous function in OrderForm. The
function will become the onClick= handler of the child OrderItem’s button. When
the OrderItem’s button is clicked, the call it makes is to a function belonging
to the parent, which has access to OrderForm’s state.

Next, we create an orderTable variable that renders the table if there are orders.
Again, it has to convert the orderItems array to a ReasonReact.array:

reason-react/shirt-react/src/OrderForm.re
let orderTable =

if (Belt.Array.length(self.state.orders) > 0) {
<table>
<thead>

<tr>
<th>{ReasonReact.string("Qty")}</th>
<th>{ReasonReact.string("Size")}</th>
<th>{ReasonReact.string("Sleeve")}</th>
<th>{ReasonReact.string("Color")}</th>
<th>{ReasonReact.string("Pattern")}</th>
<th>{ReasonReact.string("Action")}</th>

</tr>
</thead>
<tbody>

{ReasonReact.array(orderItems)}
</tbody>

</table>
} else {

Chapter 9. Making Applications with Reason/React • 158

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/reason-react/shirt-react/src/OrderForm.re
http://media.pragprog.com/titles/reasonml/code/reason-react/shirt-react/src/OrderForm.re
http://media.pragprog.com/titles/reasonml/code/reason-react/shirt-react/src/OrderForm.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

<p>
{ReasonReact.string("No orders entered yet.")}

</p>
};

Now we turn our attention to the form fields, starting with the input field for
the quantity:

reason-react/shirt-react/src/OrderForm.re
<div>Line 1

<p className="flex">2

3

{ReasonReact.string("Qty: ")}4

<input type_="text" size=45

value={self.state.qtyStr}6

onChange={(event)=>7

self.send(ChangeQty(ReactEvent.Form.target(event)##value))}/>8

9

The content of the field is set in line 6. We create an onChange handler as an
anonymous function in line 7. This function takes the triggering event as its
parameter and sends a ChangeQty action. The argument to ChangeQty (line 8) is
the value of the target event. This line contains a new operator: ##, which is
used to access a field in a JavaScript object. (We can’t use a function like
valueGet() as we did on page 124 because ReasonReact hasn’t done a [@bs.deriving
abstract] for the target event.)

The select menus all follow the same pattern. They set the menu value from
the appropriate string in the state, and they have an anonymous function that
invokes the corresponding Change...() function when the user selects a different
item. To save space, I am showing only one of these functions:

reason-react/shirt-react/src/OrderForm.re
{makeSelect("Size",Line 1

[|"XS", "S", "M", "L", "XL", "XXL", "XXXL"|],2

self.state.sizeStr,3

(event) => self.send(ChangeSize(4

ReactEvent.Form.target(event)##value)))}5

Finally, we define the <button>, the error text field, and the table of orders:

reason-react/shirt-react/src/OrderForm.re
Line 1

<button onClick=(_event => {-

let order = createOrder(self.state);-

self.send(Enter(order))}) >-

{ReasonReact.string("Add")}5

</button>-

-

</p>-

report erratum • discuss

Putting Components Together • 159

http://media.pragprog.com/titles/reasonml/code/reason-react/shirt-react/src/OrderForm.re
http://media.pragprog.com/titles/reasonml/code/reason-react/shirt-react/src/OrderForm.re
http://media.pragprog.com/titles/reasonml/code/reason-react/shirt-react/src/OrderForm.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

-

<p id="errorText">10

{ReasonReact.string(self.state.errorText)}-

</p>-

-

{orderTable}-

</div>;15

It’s Your Turn
Let’s modify this program. First, change the select menus so that they contain
the menu label, as shown here:

Unlike the current program, which keeps the state of the form after you click
the Add button, the modified program will reset the menus to show the labels
and clear out the quantity field after adding a record.

In the current program, once you add an order to the list, you can’t edit it—
you have to delete it and create a new order. Your task is to modify the current
program so that you can edit any entry in the table. While you’re editing an
order, the selected row should be highlighted, and the Add button should
change to read “Update.” When you click that button, the table row needs to
un-highlight and the button once again should be Add. An order in the process
of being edited might look like this:

Chapter 9. Making Applications with Reason/React • 160

report erratum • discuss

http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Here are some things I had to do while implementing these modifications:

• Add styles for a normal and edited table row to index.html.

• Remove <label> elements from index.html.

• Add editFunction= (callback to parent) and editing= (boolean) properties to
the OrderItem component.

• Add an option(int) in the state that tells which order number is being edited.

• Add an action for missing data (quantity not entered or drop-downs not
chosen).

• Because data can be missing, have the createOrder() function return an
option(Shirt.Order.t).

• Copy themap2()function on page 113 to help deal with option values.

• Because the Enter(order) action checks if the order is being added or edited
—if edited, have the code replace the order rather than append it to
state.orders.

Adding Side Effects with Storage
Let’s use this new, improved shirt order program as the base for our final
example in this chapter. We’ll store the state of the page in the browser’s local
storage11 in JSON format.

We’ll need to include @glennsl/bs-json in our bsconfig.json and install it via npm install
--save @glennsl/bs-json, as we did on page 126:

"bs-dependencies": [
"reason-react",
"@glennsl/bs-json"

],

We need to add code to convert to and from JSON. First, let’s look at the Order
type in file Shirt.re. The new entries here are the encodeJson() and decodeJson()
functions:

reason-react/shirt-storage/src/Shirt.re
module E = Json.Encode;
module D = Json.Decode;

module Order = {
type t = {

orderNumber: int,

11. developer.mozilla.org/en-US/docs/Web/API/Storage/LocalStorage

report erratum • discuss

Adding Side Effects with Storage • 161

http://media.pragprog.com/titles/reasonml/code/reason-react/shirt-storage/src/Shirt.re
https://developer.mozilla.org/en-US/docs/Web/API/Storage/LocalStorage
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

quantity: int,
size: Size.t,
sleeve: Sleeve.t,
color: Color.t,
pattern: Pattern.t,

};

let encodeJson = (order: t): Js.Json.t => {
E.object_([
("orderNumber", E.int(order.orderNumber)),
("quantity", E.int(order.quantity)),
("size", E.string(Size.toString(order.size))),
("sleeve", E.string(Sleeve.toString(order.sleeve))),
("color", E.string(Color.toString(order.color))),
("pattern", E.string(Pattern.toString(order.pattern)))
])

};

let decodeJson = (json: Js.Json.t): t => {
{

orderNumber: D.field("orderNumber", D.int, json),
quantity: D.field("quantity", D.int, json),
size: Size.decodeJson(D.field("size", D.string, json)),➤

sleeve: Sleeve.decodeJson(D.field("sleeve", D.string, json)),➤

color: Color.decodeJson(D.field("color", D.string, json)),➤

pattern: Pattern.decodeJson(D.field("pattern", D.string, json))➤

}
}

};

You may have noticed something else new: calls to decodeJson() for the Size,
Sleeve, Color, and Pattern types (the highlighted lines in the preceding code). We
need these because the fromString() functions we already have return an option
type, and we want the value. Here’s the code we add to Size.decodeJson():

reason-react/shirt-storage/src/Shirt.re
exception InvalidSize;

let decodeJson = (str: string): t =>
switch (fromString(str)) {

| Some(size) => size
| None => raise(InvalidSize)

};

In keeping with the way the rest of bs-json works, this code raises an exception
if we can’t convert the string to our desired type. As an added bonus, it
declares its own new exception type.

Chapter 9. Making Applications with Reason/React • 162

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/reason-react/shirt-storage/src/Shirt.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Storing and Retrieving the State
We’ll use the browser’s localStorage12 to store the application state. Our code
uses these Dom.Storage functions: setItem() takes a key, value, and the localStorage
and returns unit. getItem() takes a key and localStorage and returns an option(string):
Some(value), or None if the key was not found.

We need to be able to encode and decode the application state as JSON.
There’s not much new in this code, but I’m presenting it here for completeness:

reason-react/shirt-storage/src/OrderForm.re
let encodeState = (s: state): Js.Json.t => {

Json.Encode.object_([
("qtyStr", Json.Encode.string(s.qtyStr)),
("sizeStr", Json.Encode.string(s.sizeStr)),
("sleeveStr", Json.Encode.string(s.sleeveStr)),
("colorStr", Json.Encode.string(s.colorStr)),
("patternStr", Json.Encode.string(s.patternStr)),
("nextOrderNumber", Json.Encode.int(s.nextOrderNumber)),
("orders", Json.Encode.array(Shirt.Order.encodeJson, s.orders)),
("errorText", Json.Encode.string(s.errorText)),
("editingNumber", switch (s.editingNumber) {
| Some(n) => Json.Encode.int(n)
| None => Json.Encode.int(-1)
})

]);
};

let decodeState = (json: Js.Json.t): state => {
{

qtyStr: Json.Decode.field("qtyStr", Json.Decode.string, json),
sizeStr: Json.Decode.field("sizeStr", Json.Decode.string, json),
sleeveStr: Json.Decode.field("sleeveStr", Json.Decode.string, json),
colorStr: Json.Decode.field("colorStr", Json.Decode.string, json),
patternStr: Json.Decode.field("patternStr", Json.Decode.string, json),
nextOrderNumber: Json.Decode.field("nextOrderNumber", Json.Decode.int, json),
orders: Json.Decode.field("orders",

Json.Decode.array(Shirt.Order.decodeJson), json),
errorText: Json.Decode.field("errorText", Json.Decode.string, json),
editingNumber: {

let optN = (Json.Decode.field("editingNumber", Json.Decode.int, json));
switch (optN) {

| -1 => None
| n => Some(n)

}
}

}
};

12. developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API/Using_the_Web_Storage_API

report erratum • discuss

Adding Side Effects with Storage • 163

http://media.pragprog.com/titles/reasonml/code/reason-react/shirt-storage/src/OrderForm.re
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API/Using_the_Web_Storage_API
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Here’s the code for storing the application state using encodeState():

reason-react/shirt-storage/src/OrderForm.re
let localStorageKey = "shirt-orders";

let storeStateLocally = theState => {
let jsState = encodeState(theState);
Dom.Storage.setItem(localStorageKey,

Js.Json.stringify(jsState), Dom.Storage.localStorage);
};

Retrieving the state is a bit more involved. The first time someone uses the
page, localStorage has no value corresponding to the key. When there is a value,
there’s no guarantee that it’s valid JSON. Our code has to create a “neutral”
state to return if either of these situations occurs:

reason-react/shirt-storage/src/OrderForm.re
let getStoredState = () => {

let neutralState: state = {
qtyStr: "",
sizeStr: "",
sleeveStr: "",
colorStr: "",
patternStr: "",
orders: [| |],
nextOrderNumber: 1,
errorText: "",
editingNumber: None

};
let optItem = Dom.Storage.getItem(localStorageKey,

Dom.Storage.localStorage);
switch (optItem) {

| Some(jsonStr) =>
switch (Js.Json.parseExn(jsonStr)) {

| result => decodeState(result)
| exception(_) => neutralState

}
| None => neutralState

}
};

Now that we know how to store and retrieve state, the question is where does
it go in our code? Let’s do the easier one first: figuring out where to call the
code to retrieve the state. This involves a change to setting the initial state:

initialState: () => getStoredState(),

We have to store the state whenever adding, updating, or deleting an order.
Instead of using ReasonReact.Update(), we’ll use ReasonReact.UpdateWithSideEffects(),
and that takes a bit of explaining.

Chapter 9. Making Applications with Reason/React • 164

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/reason-react/shirt-storage/src/OrderForm.re
http://media.pragprog.com/titles/reasonml/code/reason-react/shirt-storage/src/OrderForm.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

In the previous versions of our program, the reducer property has been a pure
function. Pure functions return the same output for the same input, and they
don’t depend on or change any variables outside their own scope. This is very
advantageous for writing programs that are concurrent—when one part of
the program can proceed without waiting for another part to finish. However,
when we’re doing input and output (such as writing and reading local storage),
our functions are no longer pure. Imagine two different components on a web
page trying to write to the same key in local storage simultaneously. Hilarity
ensues.

In order to tell React that we’re not only updating the component but also
doing side effects, we must call UpdateWithSideEffects(), which takes as its argu-
ments the new state and a function that performs side effects. The state
update happens first, then the side-effect function, and then the component
rendering. Here’s the code for adding and deleting entries. The highlighted
lines show the changes:

reason-react/shirt-storage/src/OrderForm.re
| Enter(order) => {

let n = Belt.Option.getWithDefault(toInt(state.qtyStr), 0);
if (n > 0 && n <= 100) {

ReasonReact.UpdateWithSideEffects({➤

/* clear out the form fields */
qtyStr: "",
sizeStr: "",
sleeveStr: "",
colorStr: "",
patternStr: "",
orders: switch (state.editingNumber) {

| Some(n) => Belt.Array.map(state.orders,
(item) => {(item.orderNumber == n) ? order : item})

| None => Belt.Array.concat(state.orders, [|order|])
},
nextOrderNumber: state.nextOrderNumber + 1,
editingNumber: None,
errorText: ""

},
(self) => storeStateLocally(self.state));➤

| Delete(order) => {
ReasonReact.UpdateWithSideEffects({➤

...state,
orders: Belt.Array.keep(state.orders,

(item) => (item.orderNumber != order.orderNumber))},
(self) => storeStateLocally(self.state))➤

}

report erratum • discuss

Adding Side Effects with Storage • 165

http://media.pragprog.com/titles/reasonml/code/reason-react/shirt-storage/src/OrderForm.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

When we click the Update button on an existing order, the local storage doesn’t
need to change, so that code still uses plain ReasonReact.Update().

Concurrency and React

As of this writing, React doesn’t use any concurrency features, so
we could get away with using Update() everywhere. However, work
is proceeding on React Fiber, which will allow concurrency.

It’s Your Turn
First, maybe you do want to store the state when people edit an order. Add
the appropriate code to make that happen.

Second (and this will be a much more involved project), as we suggested at
the start of the chapter, revise the preceding chapter’s graphic example on
page 138 to use a FrequencyChart component, where the Chart.t object is part of
the component rather than a global variable.

Note: I haven’t included solutions in the code directory for either of these, but
you are ready to tackle these on your own.

Summing Up
You’ve learned the basics of ReasonReact, and now you can create a simple
single-page web application. There’s a lot more to React and ReasonReact,
but that goes beyond the scope of this book. For the full ReasonReact docu-
mentation, see the web site.13

And, congratulations! You now know enough ReasonML to be dangerous. You
can read Appendix 2, Miscellaneous Topics, on page 173 to find out about
some more advanced topics as well as get filled in on some important topics
that didn’t quite fit elsewhere in the book.

At this point, it’s time to let you take the wheel and drive. What direction
should you go? Here are some suggestions:

• Rewrite one of your existing programs in ReasonML.

• Start a new, fun project and write it in ReasonML.

• If you would like to introduce ReasonML at your workplace, write a useful
tool in ReasonML.

13. reasonml.github.io/reason-react/

Chapter 9. Making Applications with Reason/React • 166

report erratum • discuss

https://reasonml.github.io/reason-react/
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

• Rewrite a non-mission-critical section of your current product in ReasonML
as a proof of concept.

Don’t be surprised or discouraged if it takes you three or four times as long
to write a “simple” program as it would in your favorite programming language.
You’re learning new concepts and new patterns at the same time you’re
solving the original programming problem.

Resources are available to you if you get stuck on a problem. Although this
book isn’t a reference book, you can use it to find similar code examples. The
Articles and Videos page at the ReasonML site has links to advanced topics,14

and the Community page15 provides ways for you to get in contact with other
ReasonML users. I think you’ll find the ReasonML community to be quite
friendly and welcoming.

That’s all I have to say for this book, except a very large thank you for reading
it. My hope is that you will have a lot of fun and success in your endeavors
with ReasonML.

14. reasonml.github.io/docs/en/articles-and-videos#pro-links
15. reasonml.github.io/docs/en/community

report erratum • discuss

Summing Up • 167

https://reasonml.github.io/docs/en/articles-and-videos#pro-links
https://reasonml.github.io/docs/en/community
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

APPENDIX 1

Understanding the ReasonML Ecosystem
ReasonML is a new language—and it isn’t. In fact, ReasonML belongs to an
ecosystem of languages and tools, and this appendix gives you a brief intro-
duction to that ecosystem. Here’s a view of that ecosystem, based on a diagram
by Dr. Axel Rauschmayer:

.re
.rei

.ml
.mli

refmt OCaml parser

OCaml
AST

ocamlc ocamlopt bsc

bytecode native
code JavaScript

report erratum • discuss

http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

In the Beginning was OCaml
The OCaml language has been in development for over 20 years.1 (The ml in
OCaml and in ReasonML stands for meta-language, not machine learning.
The latter abbreviation has become very popular recently and is now a source
of some confusion when talking about ReasonML.) Files written in OCaml
have an extension of .ml for source code and .mli for interface files. The OCaml
parser takes those files to create an internal format known as the OCaml AST
(Abstract Syntax Tree). The parser is not an independent tool. It is built into
the ocamlc, ocamlopt, and bsc tools. Let’s talk about them.

The ocamlc compiler translates the AST to a bytecode executable. This bytecode
format, like Java bytecode, is intended to be portable. Any system that provides
a bytecode interpreter (using the ocamlrun tool, not shown in the diagram) can
run a bytecode file. If you need to compile to native code, you use the ocamlopt
tool, which outputs code that can directly execute on your operating system.
Finally, if you need to compile to JavaScript, you use the bsc (BuckleScript
compiler) tool. This modular system is very clever. Anything that produces a
valid AST can be compiled to bytecode, native code, or JavaScript.

Enter ReasonML
OCaml is a great language. It has strong typing, an excellent type inference
language, features that encourage functional programming, and the ability
to do object-oriented programming if that’s your preference. Why is OCaml
one of the best languages you’ve never heard of? What’s not to like?

The syntax. OCaml’s syntax doesn’t look like the syntax of many commonly
used languages. For example, you don’t use parentheses around a function’s
arguments. You just put them after the function name, separated by whitespace:

let average a b = (a +. b) /. 2.0
let result = average 3.0 4.5

People often cite OCaml’s unusual syntax as a reason for not wanting to learn
or adopt the language. Some people at Facebook decided to make a new
syntax for OCaml that would be more familiar to JavaScript programmers,
so they developed ReasonML. Remember, ReasonML isn’t a new language.
It’s a new syntax for OCaml. The bsrefmt tool takes your ReasonML files (with
extensions .re for source and .rei for interface files) and translates them to the
OCaml AST. Once in that format, your programs are full citizens of the OCaml
ecosystem and can take advantage of other code that is written in OCaml.

1. ocaml.org/learn/history.html

Appendix 1. Understanding the ReasonML Ecosystem • 170

report erratum • discuss

http://ocaml.org/learn/history.html
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

There’s no law that you can’t create other syntaxes that compile to the OCaml
AST—someone has even written a Lisp-style syntax for OCaml.2

Joe asks:

Do I need to know OCaml?
No, you don’t need to learn it, but it is useful to familiarize yourself with the basics
of OCaml syntax. That’s because the documentation of the Belt library has all its
example code written in OCaml format. I would recommend reading the first chapters
of Real World OCamla for a good introduction.

If you are faced with an existing OCaml file, you can use the bsrefmt command to
convert it to ReasonML:

bsrefmt --print=re unfamiliar.ml > familiar.re

a. dev.realworldocaml.org/

A Non-Unified Ecosystem
The ReasonML system is not completely unified. For example, the sketch.sh
website lets you enter scripts and see them executed immediately. Its back
end uses native code—as of this writing, it can’t use the Js library, which is
tied to the JavaScript world, or the Belt library, which is a standard library
shipped with BuckleScript that is also tied to the JavaScript world. On the
other hand, the “try it” option at reasonml.github.io/en/try.html lives in the Buckle-
Script world and allows you to use both Js and Belt.

There are also differences between BuckleScript and native OCaml, which
you may see summarized at bucklescript.github.io/docs/en/difference-from-native-ocaml.
Native and JavaScript are two different worlds, and bridging them is a difficult
task. Also, as of this writing, you have to ship bs-platform as a dependency if
you wish to create an npm package that contains ReasonML/BuckleScript
code, though people are working on solving that problem.

Summing Up
ReasonML provides programmers who know JavaScript with a new, more
familiar syntax for OCaml. Code written in ReasonML can fit nicely into the
existing OCaml system. You can compile ReasonML to portable bytecode,
native code, or JavaScript, with the features available to you dependent on
the platform you choose.

2. github.com/jaredly/myntax

report erratum • discuss

A Non-Unified Ecosystem • 171

http://dev.realworldocaml.org/
https://sketch.sh
https://reasonml.github.io/en/try.html
https://bucklescript.github.io/docs/en/difference-from-native-ocaml
https://github.com/jaredly/myntax
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

APPENDIX 2

Miscellaneous Topics
We’ve covered the basics of ReasonML, and you know enough to write simple
single-page applications with and without React. In this appendix, we’re
going to cover some miscellaneous topics that are useful but didn’t fit any-
where else in the book. We’ll also dive into one advanced topic: hiding type
information.

Switching to fun
If you have a function that consists solely of a switch expression, you can write
it using the keyword fun without needing to give a parameter. The following
two functions do the same thing:

miscellanea/misc/src/Shortcuts.re
let recip1 = (x: float): option(float) =>

switch (x) {
| 0.0 => None
| x => Some(1.0 /. x)

};

let recip2 = fun
| 0.0 => None
| x => Some(1.0 /. x);

This only works if the switch expression is a simple variable. You can’t convert
the following switch to fun:

miscellanea/misc/src/Shortcuts.re
let toFloat = (s:string): option(float) => {

switch (float_of_string(s)) {
| result => Some(result)
| exception(Failure("float_of_string")) => None

}
};

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/miscellanea/misc/src/Shortcuts.re
http://media.pragprog.com/titles/reasonml/code/miscellanea/misc/src/Shortcuts.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Using open
Consider this code, which is similar to what we saw in Using Pipe First, on
page 44:

miscellanea/misc/src/NoOpen.re
let toFloat = (s:string): option(float) => {

switch (float_of_string(s)) {
| result => Some(result)
| exception(Failure("float_of_string")) => None

}
};

let reciprocal = fun
| 0.0 => None
| x => Some(1.0 /. x);

let cube = (x) => x *. x *. x;

let makeDisplayText = fun
| Some(value) => "The result is " ++ value
| None => "Could not calculate result.";

let calculation = (input: string): string => {
toFloat(input)
-> Belt.Option.flatMap(reciprocal)➤

-> Belt.Option.map(cube)➤

-> Belt.Option.map(Js.Float.toFixedWithPrecision(~digits=3))➤

-> makeDisplayText
};

let cubeArray = (data: array(float)): array(float) => {
Belt.Array.map(data, cube);

}

Js.log(calculation("0.125"));
Js.log(cubeArray([|3.0, 4.0, 5.0|]));

Look at all those calls to Belt.Option. Wouldn’t it be nice if we didn’t have to type
it repeatedly, especially if we had many more functions, all using Belt.Option?
The solution to this problem is open. If you place an open followed by the module
name at the top of your source file, the functions in the opened module are
made visible in your module (only the relevant portion is shown here):

miscellanea/misc/src/FullOpen.re
let calculation = (input: string): string => {

toFloat(input)
-> flatMap(reciprocal)
-> map(cube)

Appendix 2. Miscellaneous Topics • 174

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/miscellanea/misc/src/NoOpen.re
http://media.pragprog.com/titles/reasonml/code/miscellanea/misc/src/FullOpen.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

-> map(Js.Float.toFixedWithPrecision(~digits=3))
-> makeDisplayText

};

let cubeArray = (data: array(float)): array(float) => {
Belt.Array.map(data, cube);

}

You should be cautious when you’re doing a full open, especially if you’re
opening multiple modules. For example, if we were to do the following opens,
we would run into trouble because both modules contain a map() function:

open Belt.Option;
open Belt.Array;

Instead of doing an open for the entire file, you can open a module in a local
scope:

miscellanea/misc/src/LocalOpen.re
let calculation = (input: string): string => {

open Belt.Option;
toFloat(input)
-> flatMap(reciprocal)
-> map(cube)
-> map(Js.Float.toFixedWithPrecision(~digits=3))
-> makeDisplayText

};

let cubeArray = (data: array(float)): array(float) => {
open Belt.Array;
map(data, cube);

}

Using Belt.Map.update()
Back in our discussion of Belt.Map on page 115, we updated a map of the color
counts by using Belt.Map.getWithDefault() and Belt.Map.set(). While this works, you
may find it more convenient to use Belt.Map.update(). This function takes as its
parameters the map to be updated, a key, and a function. It works as follows:

• Attempt to get the value for the given key using Belt.Map.get(). This returns
an option. If the value is None, the key isn’t in the map, so return the map
unchanged.

• Otherwise, apply the function to the value. If the function returns None,
return a map with the key and value removed.

• If the function returns Some(value), then return an updated map where the
value for the given key is value.

report erratum • discuss

Using Belt.Map.update() • 175

http://media.pragprog.com/titles/reasonml/code/miscellanea/misc/src/LocalOpen.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Let’s look at a concrete example:

miscellanea/misc/src/MapUpdate.re
let sickDays = Belt.Map.String.fromArray([|Line 1

("David", 4),-

("Cathy", 2), ("Felipe", 1)|]);-

-

let outSick = fun5

| Some(n) => Some(n + 1)-

| None => Some(1);-

-

let remove = (_days: option(int)): option(int) => None;-

10

let result1 = Belt.Map.String.update(sickDays, "Cathy", outSick);-

/* ("David", 4) ("Cathy", 3) ("Felipe", 1) */-

-

let result2 = Belt.Map.String.update(sickDays, "Joe", outSick);-

/* ("David", 4) ("Cathy", 2) ("Felipe", 1) ("Joe", 1) */15

-

let result3 = Belt.Map.String.update(sickDays, "David", remove);-

/* ("Cathy", 2) ("Felipe", 1) */-

-

let result4 = Belt.Map.String.update(sickDays, "Paracelsus", remove);20

/* ("David", 4) ("Cathy", 2) ("Felipe", 1) */-

-

Js.log2("r1: ", result1);-

Js.log2("r2: ", result2);-

Js.log2("r3: ", result3);25

Js.log2("r4: ", result4);-

In this example, we’re using the Belt.Map.String module, which is optimized for
maps with strings as keys. Starting in line 1, we create a map from an array
of key-value tuples.

The outSick() function in line 5 has as its input the number of available sick
days for a person. If Some(n), we return the updated value Some(n+1). If the
person has no sick days, this must be a new entry, thus that person has one
sick day.

The remove() function in line 9 always returns None.

Here are the results of several applications of Update(). In the first example on
line 11, Cathy is in the map, so her value Some(2) is passed to outSick(), which
returns Some(3). The resulting new map is shown as key-value pairs in the
next line.

In the next example, Joe is not in the map, so None is passed to outSick(), which
returns Some(1). The key "Joe" is added to the map with a value of 1. Notice
that Cathy has two sick days—the original sickDays map never gets changed.
Belt.Map.Update() always returns a new map.

Appendix 2. Miscellaneous Topics • 176

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/miscellanea/misc/src/MapUpdate.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

In the third example, David is in the map, so his value Some(4) is passed to
remove(), which returns None. This tells Update() to remove the key "David" with
its value of 4.

In the last example, Paracelsus isn’t in the map, so remove() never gets called
at all, and the new map is identical to the original one.

Dangerous Interop
Sometimes you need to convert a JavaScript type to a ReasonML type. For
example, one of the reviewers of this book suggested using the Performance1

interface for measuring the time required to process the palindrome functions
rather than using Js.Date.now() as we did on page 94. He wrote this code:

miscellanea/misc/src/Identity.re
module Performance = {Line 1

type t; /* DOMHighResTimeStamp - a double, milliseconds since startup */-

-

[@bs.scope "performance"] [@bs.module "perf_hooks"]-

external now: unit => t = "";5

-

external toFloat: t => float = "%identity";-

external fromFloat: float => t = "%identity";-

-

let zero: t = fromFloat(0.0);10

-

let addInterval: (t, t, t) => t =-

(current, start, finish) =>-

(toFloat(finish) -. toFloat(start) +. toFloat(current))->fromFloat;-

};15

The JavaScript Performance interface returns a DOMHighResTimeStamp when you
call its now() method. We need to be able to treat these values as a ReasonML
float. We do this on lines 7 and 8 with "%identity", which is a special escape
hatch designed for exactly these cases.2 One such case is the unsafeAsHtmlEle-
ment()function we saw on page 53, which uses %identity to accomplish its task.

If you like to live dangerously—very dangerously—you can use Obj.magic(),
which lets you put any sort of value in any context you wish. ReasonML’s
type checking will close its eyes, take a deep breath, and do your bidding.
Whatever happens as a result is on you.

miscellanea/misc/src/Magic.re
let x = (Obj.magic(27)) + (Obj.magic(37.5)); /* 64 */
let y = Obj.magic("car") ++ Obj.magic(54); /* car54 */

1. developer.mozilla.org/en-US/docs/Web/API/Performance
2. bucklescript.github.io/docs/en/intro-to-external#special-identity-external

report erratum • discuss

Dangerous Interop • 177

http://media.pragprog.com/titles/reasonml/code/miscellanea/misc/src/Identity.re
http://media.pragprog.com/titles/reasonml/code/miscellanea/misc/src/Magic.re
https://developer.mozilla.org/en-US/docs/Web/API/Performance
https://bucklescript.github.io/docs/en/intro-to-external#special-identity-external
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Hiding Type Information
Consider this short module that defines a “time of day” type as a record with
fields for the hour and minute:

miscellanea/misc/src/RegularType.re
/* Interface */
module type Time {

type t = {
hour: int,
minute:int

};

let make: (int, int) => t;
let add: (t, t) => t;

};

/* Implementation */
module Time: Time = {

type t = {
hour: int,
minute:int

};

let make = (h:int, m:int): t => {
{hour: abs(h) mod 24,
minute: abs(m) mod 60}

}

let add = (t1: t, t2: t): t => {
let total = (t1.hour * 60 + t1.minute) +
(t2.hour * 60 + t2.minute);

make(total / 60, total mod 60)
}

};

Let’s look at the usage of this module:

miscellanea/misc/src/RegularType.re
let time1: Time.t = Time.make(15, 30);Line 1

Js.log(time1); /* [15, 30] */-

-

let time2: Time.t = {hour: 20, minute: 45};-

Js.log(time2); /* [20, 45] */5

-

let time3 = Time.add(time1, time2);-

Js.log(time3); /* [12, 15] */-

-

let wrong: Time.t = {hour: -30, minute: 170};10

Js.log(wrong); /* [-30, 170] */-

We can use the make() function to construct a Time.t as in line 1. We can also
directly create a compatible record, as in line 4, and then add time1 and time2.

Appendix 2. Miscellaneous Topics • 178

report erratum • discuss

http://media.pragprog.com/titles/reasonml/code/miscellanea/misc/src/RegularType.re
http://media.pragprog.com/titles/reasonml/code/miscellanea/misc/src/RegularType.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

It’s all fun and games until someone creates a Time.t with invalid values in
line 10.

ReasonML lets you hide information about your types so that the only way
they can create a valid value is through the functions in your module. We
accomplish this by making the type abstract:

miscellanea/misc/src/HiddenType.re
/* Interface */
module type Time {

type t;➤

let make: (int, int) => t;
let add: (t, t) => t;

};

The highlighted line shows the only change. Now users of our Time module
know only that it has a type t, but they have no access to its internal repre-
sentation. This means that when we try to do a direct assignment—valid or
not—such as:

let time2: Time.t = {hour:20, minute: 45};

ReasonML will complain:

We've found a bug for you!
/path/to/code/miscellanea/misc/src/HiddenType.re 35:22-25

33 │ Js.log(time1); /* [15, 30] */
34 │
35 │ let time2: Time.t = {hour: 20, minute: 45};
36 │ Js.log(time2); /* [20, 45] */
37 │

The record field hour can't be found.

Using the module correctly with the hidden type now looks like this:

miscellanea/misc/src/HiddenType.re
let time1: Time.t = Time.make(15, 30);
Js.log(time1); /* [15, 30] */

let time2: Time.t = Time.make(20, 45);
Js.log(time2); /* [20, 45] */

let time3 = Time.add(time1, time2);
Js.log(time3); /* [12, 15] */

let wrong = Time.make(-30, 170);
Js.log(wrong); /* [6, 50] */

We can still give weird numbers to make(). But, since it forces the numbers
into a valid range, and our other operations such as add() keep the numbers

report erratum • discuss

Hiding Type Information • 179

http://media.pragprog.com/titles/reasonml/code/miscellanea/misc/src/HiddenType.re
http://media.pragprog.com/titles/reasonml/code/miscellanea/misc/src/HiddenType.re
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

in range, we never have to worry about someone using our module to generate
an impossible time like -30 hours and 170 minutes. It would, of course, be
possible to have make() produce option(t) values when given bad input. In fact,
that’s more in the spirit of ReasonML, but I didn’t want to add an extra layer
of complexity to this example.

A closely allied concept is phantom types, which are parameterized types
whose parameters don’t appear on the right-hand side of the definition. You
can find out more about them at medium.com/reasontraining/phantom-types-in-reasonml-
1a4cfc18d999 and gist.github.com/busypeoples/3a28d039272ec3eb33ca2fc6b32dafc7.

Appendix 2. Miscellaneous Topics • 180

report erratum • discuss

https://medium.com/reasontraining/phantom-types-in-reasonml-1a4cfc18d999
https://medium.com/reasontraining/phantom-types-in-reasonml-1a4cfc18d999
https://gist.github.com/busypeoples/3a28d039272ec3eb33ca2fc6b32dafc7
http://pragprog.com/titles/reasonml/errata/add
http://forums.pragprog.com/forums/reasonml

Index

SYMBOLS
+. (addition operator, float), 6

+ (addition operator, integer),
6

@@ (application operator),
131

=> (arrow, thick)
preceding function body,

16
in switch expression, 32

* (asterisk), in regular expres-
sions, 80–81

\ (backslash), in regular ex-
pressions, 80–81

{...} (braces)
enclosing expressions to

be rendered, 145
enclosing function body,

16
enclosing record defini-

tions, 104
enclosing switch expres-

sion variants, 32
{js|...|js} notation, 13
{j|...|j} notation, 13

{|...|} (braces, vertical bar),
enclosing raw JavaScript,
119

^ (circumflex), accessing ref
variables, 138

: (colon), preceding type anno-
tation, 7, 22

:= (colon, equal sign), assign-
ing ref variables, 138

++ (concatenation operator),
10

/. (division operator, float), 6

/ (division operator, integer),
6

$ (dollar sign), preceding
variables to interpolate, 13

. (dot notation), for records,
105

"..." (double quotes), enclosing
strings, 3, 10

= (equal sign), binding vari-
ables, 4

** (exponentiation operator),
6

*. (multiplication operator,
float), 6

* (multiplication operator, in-
teger), 6

(...) (parentheses)
calling functions without,

131
empty, as unit parameter,

9, 19, 22, 24, 27
enclosing function param-

eters, 16
enclosing operators used

as functions, 72
enclosing tuples, 63

% (percent sign)
preceding raw JavaScript,

119
preceding regular expres-

sions, 80–81

-> (pipe first operator), 44–
45, 53, 72

|> (pipe last operator), 45

; (semicolon), separating
statements, 3

’ (single quote), preceding type
variables, 38

’...’ (single quotes), enclosing
characters, 11

... (spread operator)
adding list elements, 66
adding records, 105

[...] (square brackets)
enclosing list elements,

64
enclosing raw JavaScript,

119
enclosing regular expres-

sions, 80

[|...|] (square brackets, verti-
cal bar), enclosing array el-
ements, 75

-. (subtraction operator, float),
6

- (subtraction operator, inte-
ger), 6

? : (ternary operator), 10

~ (tilde), preceding labeled
parameters, 17

_ (underscore)
with pipe first operator,

44
in switch expression, 34

| (vertical bar)
in constructors, 31
in switch expression, 32

A
abstract syntax tree (AST), 1,

170

abstract types, 178–180

accumulator, 70–72

add() function, Belt.List, 66

addEventListener() function, We-
bapi.Dom.EventTarget, 50, 58

addition operator
for floats (+.), 6
for integers (+), 6

aliases
for data types, 30
for labeled parameters,

18
for modules, 49
for types, 63

Angular, 142

annotations
for functions, 22–23
for variables, 7, 31

anonymous functions, 69–70

App.get() function, 129

App.listen() function, 129

application operator (@@),
131

arithmetic operators, 6, see
also math functions

array() function, ReasonReact,
145

arrays
about, 75–76
accessing elements in, 77
adding elements to, 76
combining, 136
concatenating, 76
creating, 75–76
destructuring, not al-

lowed, 100
displaying, 76
mapping, 78
recursion with, 97–98
splitting, 76–77, 132
transforming, 78

arrow, thick (=>)
preceding function body,

16
in switch expression, 32

as keyword, for labeled param-
eter aliases, 18

asEventTarget() function, We-
bapi.Dom.Element, 58

AST (abstract syntax tree), 1,
170

asterisk (*), in regular expres-
sions, 80–81

B
backslash (\), in regular ex-

pressions, 80–81

base case, for recursion, 90–
91

Belt.Array module, 76–78

Belt.Array.concat() function, 76

Belt.Array.get() function, 77

Belt.Array.getExn() function, 77

Belt.Array.getUnsafe() function, 77

Belt.Array.keep() function, 78

Belt.Array.make() function, 76

Belt.Array.makeBy() function, 76

Belt.Array.map() function, 78

Belt.Array.reduce() function, 78,
82, 84

Belt.Array.slice() function, 76–77

Belt.Array.unzip() function, 132

Belt.Array.zip() function, 136

Belt.List module, 65

Belt.List.add() function, 66

Belt.List.concat() function, 66

Belt.List.drop() function, 66

Belt.List.get() function, 67

Belt.List.getExn() function, 67

Belt.List.head() function, 66

Belt.List.keep() function, 68–70,
72–73

Belt.List.length() function, 65

Belt.List.make() function, 65

Belt.List.makeBy() function, 65

Belt.List.map() function, 68–69,
72–73

Belt.List.reduce() function, 68,
70–73

Belt.List.size() function, 65

Belt.List.splitAt() function, 66

Belt.List.tail() function, 66

Belt.List.take() function, 66

Belt.Map module, 115

Belt.Map.foreach() function, 116

Belt.Map.make() function, 115

Belt.Map.update() function, 175–
177

Belt.Option module, 41–43, 45,
52

Belt.Option.flatMap() function, 42,
45, 54

Belt.Option.map() function, 42,
45, 54

Belt.Option.mapWithDefault() func-
tion, 127

Belt.Result library, 79

Belt.Result.Error definition, 79,
81–84

Belt.Result.Ok definition, 79, 81–
84

Belt.Result.t definition, 79, 81–
84

bindings
hiding, 122
symbols, 21
to JavaScript functions,

120–122
variables, 4–5

bool data type, 92

braces ({...})
enclosing expressions to

be rendered, 145
enclosing function body,

16
enclosing record defini-

tions, 104
enclosing switch expres-

sion variants, 32
{js|...|js} notation, 13
{j|...|j} notation, 13

braces, vertical bar ({|...|}),
enclosing raw JavaScript,
119

bs-decode library, 126

bs-dependencies section, bscon-
fig.json file, 48, 126, 129,
133, 161

bs-fetch library, 133

bs-json library, 126, 161

bs-platform, installing, 1

bs-platform library, 171

bs-platform symbolic link, 3

bs-webapi library, 48, 133

@bs.as directive, 125

@bs.deriving abstract directive,
124

.bs.js extension, 4

@bs.new directive, 121

@bs.scope directive, 121

@bs.send directive, 122

bsb command
-init option, 2, 48, 61, 142
-make-world option, 3
-theme option, 2

bsc command, 170
-bs-re-out option, 110

Index • 182

bsconfig.json file, 3, 48, 126,
129, 133, 161

bsrefmt command, 20, 171

BuckleScript
compiler, 1
differences from OCaml,

171
DOM library with, 48
installing, 1

bundlers
Parcel, 49, 51–52
webpack, 143, 147

C
circumflex (^), accessing ref

variables, 138

click events, 50

client, implementing, 133–
136

.cmi extension, 110

code examples, see examples

collections, see arrays; lists

colon (:), preceding type anno-
tation, 7, 22

colon, equal sign (:=), assign-
ing ref variables, 138

command line arguments,
accessing, 111

comparator, 115

components, in React
about, 141
combining, 152–159
stateful, 142, 144, 151–

152
stateless, 144–149

concat() function, Belt.Array, 76

concat() function, Belt.List, 66

concatenation operator (++),
10

concurrency, React not using,
166

conditional computation
if expression, 8–10
switch expression, 32–34
ternary operator (? :), 10

console, writing to, 3, 5

constructors, data type, 31,
37

cos() function, 8

currying
about, 15, 24–27, 75
compared to partial appli-

cation, 43

with default values, 27
with labeled parameters,

27

D
data type constructors, 31,

37, see also variant data
types

data types, see also arrays;
lists; records

about, 5–7
abstract types, 178–180
aliases for, 30, 63
annotating variables

with, 7
converting, 7, 123, 177
incompatibile, in arith-

metic, 6
one-variant data types,

37
option data type, 29, 37–45
parametric data types, 38
phantom types, 180
shared with JavaScript,

122
static typing, 21
type inference, 21–22,

29, 104
type safety, 29, 37
variant data types, 29–36

default values for parameters,
27

Demo.bs.js file, 4

Demo.re file, 3

destructuring
arrays, not allowed, 100
lists, 99
multiple variables in
switch expression, 55

parameterized variants,
35

tuples, 63–64

directives, for JavaScript
bindings, 121–122

dist directory, 51

division operator
for floats (/.), 6
for integers (/), 6

dollar sign ($), preceding
variables to interpolate, 13

DOM library, see also web
applications; web pages

installing, 48
list of functions in, 58–59
using, 49–51, 134

Dom.event argument, 51

Dom.Storage.getItem() function,
163–164

Dom.Storage.setItem() function,
163–164

dot notation (.), for records,
105

double quotes ("..."), enclosing
strings, 3, 10

drop() function, Belt.List, 66

E
editor plugins, 2, 22

element() function, ReasonReact,
144

elements, in React, 141

else clause, 9

equal sign (=), binding vari-
ables, 4

error messages, type incom-
patibilities, 6

event handlers
for click events, 50
handler function for, 50

event listeners, for click
events, 50

examples, downloading, xii

exceptions, handling, 54, 67

exponentiation operator (**),
6

Express module, 129

Express server
installing, 129
setting up, 129–130
testing, 130–133

F
fast pipe operator, see pipe

first operator

file-loader module, 146

files, reading, 111

filter, see keep() function,
Belt.List

first-class functions, 15, see
also functions

flatMap() function, Belt.Option,
42, 45, 54

float_of_int() function, 17

floats, arithmetic operators
for, 6

fold, see reduce() function,
Belt.List

foreach() function, Belt.Map, 116

fst() function, 63

Index • 183

fun keyword, 173

functional programming
about, ix
benefits of, 15

functions
accessing from other

files, 61–63
annotating, 22–23
anonymous functions,

69–70
calling, 16
calling without parenthe-

ses, 131
containing only switch,

173
defining, 15–17
first-class functions, 15
higher-order functions,

42
immediately invoked

function expression,
120

name of, binding to a
shorter one, 21

parameters of, aliases for,
18

parameters of, default
values for, 19, 27

parameters of, defining,
16

parameters of, labeled,
17–19, 27

parameters of, punning,
20

parameters of, unit, 9, 19,
22, 24, 27

pure functions, 15, 23
recursive, 91
return type of, 22
return value of, 17
syntactic sugar for, 19–

21
type signatures for, dis-

playing, 22
using operators as, 72
without a return value,

24
without parameters, call-

ing, 23
without parameters,

writing, 24

functors, 115

G
get() function, Belt.Array, 77

get() function, Belt.List, 67

get() function, Js.String, 92

getAttribute() function, We-
bapi.Dom.Element, 58

getElementById() function, We-
bapi.Dom.Document, 50, 53–
55, 58

getExn() function, Belt.Array, 77

getExn() function, Belt.List, 67

getItem() function, Dom.Storage,
163

getUnsafe() function, Belt.Array,
77

guards, in switch expression,
107

H
head() function, Belt.List, 66

higher-order functions, 42

HTML pages, see web pages

I
%identity keyword, 177

if expression, 8–10

IIFE (immediately invoked
function expression), 120

image files, file-loader module
for, 146

immediately invoked function
expression (IIFE), 120

immutability
of records, 105
of variables, 4

indexOf() function, Js.String, 12

innerText() function, We-
bapi.Dom.Element, 58

installation
BuckleScript, 1
ReasonML, 1

int_of_float() function, 7

int_of_string() function, 54

integers, arithmetic operators
for, 6

interface files, 108–110

J
JavaScript

data types shared with
ReasonML, 122

functions, binding to,
120–122

including in ReasonML
code, 119–120

objects, compared to
records, 105

objects, interoperating
with, 123–125

produced by BuckleScript
compiler, 1

reserved word conflicts
with, 125

types, converting to Rea-
sonML, 177

JavaScript Object Notation,
see JSON

Js.Array library, 76

Js.Float module, 17

Js.Float.toFixedWithPrecision() func-
tion, 17

Js.log() function, 3

Js.log2() function, 5

Js.Math library, 8

Js.String library, 12

Js.String.get() function, 92

Js.String.indexOf() function, 12

Js.String.length() function, 12, 92

Js.String.match() function, 82

Js.String.slice() function, 92

Js.String.splitByRe() function, 80

Js.String.toUpperCase() function,
12

JSON (JavaScript Object No-
tation)

about, 126
decoding objects, 126–

127
encoding and decoding,

163
encoding objects, 128
storing state using, 161–

166

Json.Decode module, 127

Json.Encode module, 128

JSX notation, 141, 144, 146

{js|...|js} notation, 13

{j|...|j} notation, 13

K
keep() function, Belt.Array, 78

keep() function, Belt.List, 68–69,
72–73

L
labeled parameters, 17–19,

27

length() function, Belt.List, 65

length() function, Js.String, 12,
92

Index • 184

List module, 115

lists
about, 65
accessing elements in, 67
adding elements to, 66
concatenating, 66
creating, 64–65
destructuring, 99
displaying, 73–75
internal representation

of, 65
length of, 65
mapping, 68–69
recursion with, 99
splitting, 66
transforming, 68–73

localStorage, for browser, 163

log() function, Js, 3
log2() function, Js, 5

M
make() function, Belt.Array, 76

make() function, Belt.List, 65

make() function, Belt.Map, 115

makeBy() function, Belt.Array, 76

makeBy() function, Belt.List, 65

Map module, 115

map() function, Belt.Array, 78

map() function, Belt.List, 68–69,
72–73

map() function, Belt.Option, 42,
45, 54

mapWithDefault() function,
Belt.Option, 127

mapping
with arrays, 78
with lists, 68–69
with option data type, 41–

43

maps
about, 114–115
creating, 115–116
iterating through, 116

match() function, Js.String, 82

math functions, 8, see al-
so arithmetic operators

Middleware.from() function, 130

.ml extension, 170

.mli extension, 170

mod operator, 6

module keyword, 105

modules
about, 103, 105
aliases for, 49

as arguments to other
modules, 115

benefits of, 108
creating, 61–63, 105–108
examples using, 110–116
interface files for, 108–

110
naming, 8, 105
nested, 109
opening, 174–175

multiplication operator
for floats (*.), 6
for integers (*), 6

mutability
simulating with shadow-

ing, 4
specifying for records,

106
specifying for variables,

137–139

mutable keyword, 106

N
namespace, of modules, 108

nested modules, 109

node command, 4

Node module, 111

Node.js, 2

None keyword, for option data
type, 38

npm install command, 2, 48,
143

npm run build command, 3, 51

npm run start command, 3

npm start command, 143

O
Obj.magic() function, 177

OCaml, 170–171
AST (abstract syntax

tree), 1

ocamlc command, 170

ocamlopt command, 170

ocamlrun command, 170

one-variant data types, 37

online resources, xii

open statement, 174–175

operators
arithmetic, 6
using as functions, 72

option data type
about, 29
with Belt.Option module,

41–43, 52

with pipe first operator,
44–45

using, 37–41

P
package.json file, 3

Papa Parse module, 123, 125

parameterized types, phan-
tom types, 180

parameters
aliases for, 18
currying, 24–27
default values for, 19, 27
defining, 16
functions without, call-

ing, 23
functions without, writ-

ing, 24
labeled, 17–19, 27
punning, 20
types of, 22–23
unit parameter, (), 9, 19,

22, 24, 27
in variant data types, 34–

36

parametric data types, 38, 74

parcel build command, 51, 136

Parcel bundler, 49, 51–52

parcel command, 52

parentheses ((...))
calling functions without,

131
empty, as unit parameter,

9, 19, 22, 24, 27
enclosing function param-

eters, 16
enclosing operators used

as functions, 72
enclosing tuples, 63

parsing, strings, 79–82

partial application, compared
to currying, 43

pattern matching
with regular expressions,

79–82, 107
with switch expression,

32–34

percent sign (%)
preceding raw JavaScript,

119
preceding regular expres-

sions, 80–81

performance, measuring, 93–
95

Performance interface, 177

Pervasives module, 8

Index • 185

phantom types, 180

pipe first operator (->), 44–
45, 53, 72

pipe last operator (|>), 45

Preact, 142

projects, ReasonML
building, 3
creating, 2–3, 48–49
running, 4

projects, ReasonReact
creating, 142–144
sample project in, 144

properties, in React, 141

punning, 20

pure functions, 15, 23, see
also functions

R
%raw keyword, 119–120

.re extension, 3, 105

%re keyword, 80

React, see also ReasonReact
projects

about, 141–142
concurrency not used by,

166
unidirectional data flow

with, 154

ReactDOMRe.renderToElementWithId()
function, 144, 148

ReactDOMRe.Style.make() function,
149

reactive programming frame-
works, 142

README.md file, 3

ReasonML
about, ix–x, 169–171
compiler, 1
editor plugins for, 2, 22
installing, 1

ReasonReact projects
creating, 142–144
sample project in, 144
storing state, 161–166

ReasonReact.array() function, 145

ReasonReact.element() function,
144

ReasonReact.reducerComponent()
function, 151

ReasonReact.statelessComponent()
function, 145

ReasonReact.string() function, 145

ReasonReact.Update() function,
152, 166

ReasonReact.UpdateWithSideEffects()
function, 164

rec keyword, 91

records
about, 103
accessing fields in, 105
as immutable, 105
compared to JavaScript

objects, 105, 123
converting JSON objects

to, 127
creating, 105
defining, 103–104
making mutable, 106

recursion
about, 89–91
with arrays, 97–98
base case for, 90–91
helper function using, 94
with lists, 99
performance of, 93–95
stack overflow with, 97
tail recursion, 95
writing recursive func-

tions, 91

reduce() function, Belt.Array, 78,
82, 84

reduce() function, Belt.List, 68,
70–73

reducerComponent() function,
ReasonReact, 151

ref keyword, 137

refmt command, 170

reformatting code
applying syntax sugar to

ReasonML, 20
OCaml to ReasonML, 171
ReasonML to OCaml AST,

170
shortening, 19–21

regular expressions, 79–82,
107

.rei extension, 108

remainder, mod operator for,
6

Request.query() function, 130

require() function, 149

reserved word conflicts, 125

Response.sendFile() function, 130

Response.sendJson() function, 130

Response.sendStatus() function,
130

S
self keyword, 145

semicolon (;), separating
statements, 3

sendFile() function, Response,
130

sendJson() function, Response,
130

sendStatus() function, Response,
130

server
setting up, 129–130
starting with parcel, 52
testing, 130–133

setAttribute() function, We-
bapi.Dom.Element, 59

setInnerText() function, We-
bapi.Dom.Element, 58

setInnerText() function, We-
bapi.Dom.Element.setInnerText,
55–56

setItem() function, Dom.Storage,
163

shadowing variables, 4

at sign (@), preceding direc-
tives, 121

sin() function, 8

single quote (’), preceding type
variables, 38

single quotes (’...’), enclosing
characters, 11

size() function, Belt.List, 65

sketch.sh website, 171

slice() function, Belt.Array, 76–77

slice() function, Js.String, 92

snd() function, 63

Some() variant, for option data
type, 38

source code for examples,
downloading, xii

splitAt() function, Belt.List, 66

splitByRe() function, Js.String, 80

spread operator (...)
adding list elements, 66
adding records, 105

sqrt() function, 8

square brackets ([...])
enclosing directives, 121
enclosing list elements,

64

Index • 186

enclosing raw JavaScript,
119

enclosing regular expres-
sions, 80

square brackets, vertical bar
([|...|]), enclosing array ele-
ments, 75

src directory, 3

stack allocation, 97

stack overflow, 97

stateful components, 142,
144, 151–152

stateless components, 144–
149

statelessComponent() function,
ReasonReact, 145

static typing, ix, 21, see al-
so data types

string() function, ReasonReact,
145

string_of_float() function, 11

string_of_int() function, 11

strings
about, 10–12
concatenating, 10
converting to upper case,

12
converting variant data

types to, 33–34
evaluating as Unicode,

12–13
format for, 3
interpolating variables

into, 13
length of, 12
parsing, 79–82
searching, 12
type conversions to, 11

subtraction operator
for floats (-.), 6
for integers (-), 6

sugar, syntactic, 19–21

switch expression, 32–34
as entire function, 173
guards in, 107
multiple cases with one

action, 108
with multiple variables,

55

syntactic sugar, 19–21

T
t type alias, 63

tail recursion, 95

tail() function, Belt.List, 66

take() function, Belt.List, 66

tan() function, 8

ternary operator (? :), 10

tilde (~), preceding labeled
parameters, 17

toFixedWidthPrecision() function,
43

toFixedWidthPrecision() function,
Js.Float, 17

toUpperCase() function, Js.String,
12

"try it" website, 171

try statement, 67

tuples, 63–64

type annotations, see annota-
tions

type inference, 21–22, 29,
104

type safety
with one-variant data

types, 37
option data type for, 37
with your own data types,

29

type signatures, displaying in
editor, 22

type variables, 38

types, see data types

U
underscore (_)

with pipe first operator,
44

in switch expression, 34

Unicode, evaluating strings
as, 12–13

unit parameter, (), 9, 19, 22,
24, 27

unsafeAsHtmlElement() function,
Webapi.Dom.Element, 53, 58

unzip() function, Belt.Array, 132

update() function, Belt.Map, 175

Update() function, ReasonReact,
152, 166

UpdateWithSideEffects() function,
ReasonReact, 164

V
value() function, Webapi.Dom.Htm-
lElement, 58

variables
about, 4–5
as immutable, 4
binding, 4–5

interpolating into strings,
13

mutable, 137–139
naming, 4, 7–8
shadowing, 4
type annotations for, 7

variant data types
about, 29
converting to strings for

output, 33–34
creating, 30–31
one-variant data types,

37
option data type, 37–45
parameters in, 34–36
using, 32–34

vertical bar (|)
in constructors, 31
in switch expression, 32

Vue, 142

W
web applications

client for, implementing,
133–136

combining components
in, 152–159

ReasonReact projects for,
142–146

server for, setting up,
129–130

server for, testing, 130–
133

side effects with storage
for, 161–166

stateful components in,
144, 151–152

stateless components in,
144–149

web pages
bundler for, 49, 51–52
creating, 47–48
DOM library for, 48–51,

58–59
getting values from, 53–

55
projects for, creating, 48–

49
setting HTML text in, 55–

56

Webapi.Dom module, 134

Webapi.Dom.Document.getElement-
ById() function, 50, 53–55,
58

Webapi.Dom.Element.asEventTarget()
function, 58

Index • 187

Webapi.Dom.Element.getAttribute()
function, 58

Webapi.Dom.Element.innerText()
function, 58

Webapi.Dom.Element.setAttribute()
function, 59

Webapi.Dom.Element.setInnerText()
function, 55–56, 58

Webapi.Dom.Element.unsafeAsHtmlEle-
ment() function, 53, 58

Webapi.Dom.EventTarget.addEventLis-
tener() function, 50, 58

Webapi.Dom.HtmlElement.value()
function, 58

webpack bundler
running, 143
using file-loader with, 147

webpack.config.js file, 143, 147

when keyword, 107

Y
yarn build command, 3

yarn global command, 2

Z
zip() function, Belt.Array, 136

Index • 188

Thank you!
How did you enjoy this book? Please let us know. Take a moment and email
us at support@pragprog.com with your feedback. Tell us your story and you
could win free ebooks. Please use the subject line “Book Feedback.”

Ready for your next great Pragmatic Bookshelf book? Come on over to
https://pragprog.com and use the coupon code BUYANOTHER2019 to save 30%
on your next ebook.

Void where prohibited, restricted, or otherwise unwelcome. Do not use
ebooks near water. If rash persists, see a doctor. Doesn’t apply to The
Pragmatic Programmer ebook because it’s older than the Pragmatic Bookshelf
itself. Side effects may include increased knowledge and skill, increased
marketability, and deep satisfaction. Increase dosage regularly.

And thank you for your continued support,

Andy Hunt, Publisher

SAVE 30%!
Use coupon code
BUYANOTHER2019

https://pragprog.com

Programming Elm
Elm brings the safety and stability of functional pro-
graming to front-end development, making it one of
the most popular new languages. Elm’s functional na-
ture and static typing means that run-time errors are
nearly impossible, and it compiles to JavaScript for
easy web deployment. This book helps you take advan-
tage of this new language in your web site development.
Learn how the Elm Architecture will help you create
fast applications. Discover how to integrate Elm with
JavaScript so you can update legacy applications. See
how Elm tooling makes deployment quicker and easier.

Jeremy Fairbank
(280 pages) ISBN: 9781680502855. $40.95
https://pragprog.com/book/jfelm

Learn Functional Programming with Elixir
Elixir’s straightforward syntax and this guided tour
give you a clean, simple path to learn modern function-
al programming techniques. No previous functional
programming experience required! This book walks
you through the right concepts at the right pace, as
you explore immutable values and explicit data trans-
formation, functions, modules, recursive functions,
pattern matching, high-order functions, polymorphism,
and failure handling, all while avoiding side effects.
Don’t board the Elixir train with an imperative mindset!
To get the most out of functional languages, you need
to think functionally. This book will get you there.

Ulisses Almeida
(198 pages) ISBN: 9781680502459. $42.95
https://pragprog.com/book/cdc-elixir

https://pragprog.com/book/jfelm
https://pragprog.com/book/cdc-elixir

Programming Clojure, Third Edition
Drowning in unnecessary complexity, unmanaged
state, and tangles of spaghetti code? In the best tradi-
tion of Lisp, Clojure gets out of your way so you can
focus on expressing simple solutions to hard problems.
Clojure cuts through complexity by providing a set of
composable tools—immutable data, functions, macros,
and the interactive REPL. Written by members of the
Clojure core team, this book is the essential, definitive
guide to Clojure. This new edition includes information
on all the newest features of Clojure, such as transduc-
ers and specs.

Alex Miller with Stuart Halloway and Aaron Bedra
(302 pages) ISBN: 9781680502466. $49.95
https://pragprog.com/book/shcloj3

Functional Programming in Java
Get ready to program in a whole new way. Functional
Programming in Java will help you quickly get on top
of the new, essential Java 8 language features and the
functional style that will change and improve your
code. This short, targeted book will help you make the
paradigm shift from the old imperative way to a less
error-prone, more elegant, and concise coding style
that’s also a breeze to parallelize. You’ll explore the
syntax and semantics of lambda expressions, method
and constructor references, and functional interfaces.
You’ll design and write applications better using the
new standards in Java 8 and the JDK.

Venkat Subramaniam
(196 pages) ISBN: 9781937785468. $33
https://pragprog.com/book/vsjava8

https://pragprog.com/book/shcloj3
https://pragprog.com/book/vsjava8

Practical Security
Most security professionals don’t have the words “se-
curity” or “hacker” in their job title. Instead, as a devel-
oper or admin you often have to fit in security alongside
your official responsibilities — building and maintain-
ing computer systems. Implement the basics of good
security now, and you’ll have a solid foundation if you
bring in a dedicated security staff later. Identify the
weaknesses in your system, and defend against the
attacks most likely to compromise your organization,
without needing to become a trained security profes-
sional.

Roman Zabicki
(132 pages) ISBN: 9781680506341. $26.95
https://pragprog.com/book/rzsecur

Secure Your Node.js Web Application
Cyber-criminals have your web applications in their
crosshairs. They search for and exploit common secu-
rity mistakes in your web application to steal user data.
Learn how you can secure your Node.js applications,
database and web server to avoid these security holes.
Discover the primary attack vectors against web appli-
cations, and implement security best practices and
effective countermeasures. Coding securely will make
you a stronger web developer and analyst, and you’ll
protect your users.

Karl Düüna
(230 pages) ISBN: 9781680500851. $36
https://pragprog.com/book/kdnodesec

https://pragprog.com/book/rzsecur
https://pragprog.com/book/kdnodesec

Small, Sharp Software Tools
The command-line interface is making a comeback.
That’s because developers know that all the best fea-
tures of your operating system are hidden behind a
user interface designed to help average people use the
computer. But you’re not the average user, and the
CLI is the most efficient way to get work done fast.
Turn tedious chores into quick tasks: read and write
files, manage complex directory hierarchies, perform
network diagnostics, download files, work with APIs,
and combine individual programs to create your own
workflows. Put down that mouse, open the CLI, and
take control of your software development environment.

Brian P. Hogan
(200 pages) ISBN: 9781680502961. $38.95
https://pragprog.com/book/bhcldev

Rediscovering JavaScript
JavaScript is no longer to be feared or loathed—the
world’s most popular and ubiquitous language has
evolved into a respectable language. Whether you’re
writing frontend applications or server-side code, the
phenomenal features from ES6 and beyond—like the
rest operator, generators, destructuring, object literals,
arrow functions, modern classes, promises, async, and
metaprogramming capabilities—will get you excited
and eager to program with JavaScript. You’ve found
the right book to get started quickly and dive deep into
the essence of modern JavaScript. Learn practical tips
to apply the elegant parts of the language and the
gotchas to avoid.

Venkat Subramaniam
(286 pages) ISBN: 9781680505467. $45.95
https://pragprog.com/book/ves6

https://pragprog.com/book/bhcldev
https://pragprog.com/book/ves6

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/reasonml
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up to Date
https://pragprog.com
Join our announcement mailing list (low volume) or follow us on twitter @pragprog for new
titles, sales, coupons, hot tips, and more.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: https://pragprog.com/book/reasonml

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/reasonml
https://pragprog.com
https://pragprog.com/news
https://pragprog.com/book/reasonml
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Introduction
	What Makes ReasonML Special?
	What Should You Know?
	What’s in This Book?
	Acknowledgments
	Online Resources

	1. Make Your First ReasonML Project
	Running Your First Program
	Using Variables and Doing Arithmetic in ReasonML
	Working with Types
	Doing Conditional Computation
	Working with Strings
	It’s Your Turn
	Summing Up

	2. Writing Functions
	Defining Functions
	Using Labeled Parameters
	Providing Default Values for Labeled Parameters
	Shortening Code with refmt
	Specifying Parameter Types
	Writing Functions without Parameters or Return Values
	Currying: Handling One Argument at a Time
	Currying and Labeled Parameters
	It’s Your Turn
	Summing Up

	3. Creating Your Own Data Types
	Renaming a Data Type
	Creating Variant Data Types
	Using Variant Data Types
	Creating Variant Data Types with Parameters
	It’s Your Turn
	Using the option Type
	Working with option Values
	Working with Belt.Option
	Using Pipe First
	It’s Your Turn
	Getting Another Perspective
	Summing Up

	4. Interacting with Web Pages
	Creating an Example Web Page
	Setting Up the Project
	Accessing the DOM
	Building the Web Bundle
	Completing the Calculation
	Getting a Value
	It’s Your Turn
	Reviewing DOM Functions
	Summing Up

	5. Using Collections
	Accessing Functions in Other Files
	Grouping Heterogeneous Data with Tuples
	Using Lists
	Manipulating Lists with Belt.List
	Using map, keep, and reduce with Lists
	Interlude: Displaying Lists
	Using Arrays
	Using map, keep, and reduce with Arrays
	Putting Arrays to Work
	It’s Your Turn
	Summing Up

	6. Repeating with Recursion
	Defining Recursion
	Analyzing a Recursive Algorithm
	Writing Recursive Functions
	Interlude: Measuring Performance
	Understanding Tail Recursion
	Practicing More Recursion
	Using Recursion with Lists
	It’s Your Turn
	Summing Up

	7. Structuring Data with Records and Modules
	Specifying Records
	Accessing and Updating Records
	Creating Modules
	Creating Interface Files for Modules
	Putting Modules to Work
	It’s Your Turn
	Summing Up

	8. Connecting to JavaScript
	Adding Raw JavaScript
	Binding to Existing Functions
	Interoperating with Data Types
	Interoperating with Objects
	It’s Your Turn
	Working with JSON
	Setting Up the Server
	Implementing the Client
	It’s Your Turn
	Summing Up

	9. Making Applications with Reason/React
	Viewing React from 20,000 Meters
	Starting a ReasonReact Project
	Investigating the Sample Project
	Creating a More Complex Stateless Component
	It’s Your Turn
	Using Stateful Components
	Putting Components Together
	It’s Your Turn
	Adding Side Effects with Storage
	It’s Your Turn
	Summing Up

	A1. Understanding the ReasonML Ecosystem
	In the Beginning was OCaml
	Enter ReasonML
	A Non-Unified Ecosystem
	Summing Up

	A2. Miscellaneous Topics
	Switching to fun
	Using open
	Using Belt.Map.update
	Dangerous Interop
	Hiding Type Information

	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– Y –
	– Z –

