
www.allitebooks.com

http://www.allitebooks.org

WordPress Plugin
Development Cookbook

Over 80 step-by-step recipes to extend the most popular
CMS and share your creations with its community

Yannick Lefebvre

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

WordPress Plugin Development Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: July 2012

Production Reference: 1190712

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-768-3

www.packtpub.com

Cover Image by Andrée Caron (info@nayanna.biz)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Yannick Lefebvre

Reviewers
Liina Buckingham

Joachim Kudish

Acquisition Editor
Usha Iyer

Lead Technical Editor
Sonali Tharwani

Technical Editors
Joyslita D'Souza

Veronica Fernandes

Copy Editor
Laxmi Subramanian

Project Coordinator
Michelle Quadros

Proofreaders
Aaron Nash

Mario Cecere

Indexer
Monica Ajmera Mehta

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Yannick Lefebvre is a plugin developer who has published eight projects to the official
WordPress repository to this day. His first creation, Link Library, has been used on hundreds of
sites around the world. With a background in Computer Science and working for Presagis—a
company providing software tools in the modeling and simulation industry—he started writing
plugins for his own WordPress site in 2004 and quickly started sharing his creations with the
community. He is actively involved in the Montreal WordPress community and has presented
multiple times at WordCamp Montreal. You can find out more about him and his plugins on
his blog, Yannick's Corner (http://ylefebvre.ca).

I would like to thank the WordCamp Montreal organizers for giving me a
chance to speak at multiple editions of the event, for creating great videos
of the presentations, and giving me the opportunity to get involved in the
community. This project would not have existed without them.

I would also like to thank Richard Archambault for his great feedback and
encouragement during the writing process as well as the entire Packt
Publishing team for proposing this great project to me and supporting me
through the entire process.

Finally, I would like to thank my parents for always believing in me and
encouraging me in all my projects.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Liina Buckingham has been developing websites since 2000. She is passionate about
web usability, minimalistic design, and engaging content.

Joachim Kudish is a Web Developer specialized in WordPress development. He is currently
employed at Automattic as a Code Wrangler. He works primarily at WordPress.com, while
dabbling in several other of Automattic's web products. Previously, he was a freelancing web
developer building high-scale WordPress sites and private WordPress plugins. He is author
and contributor to several WordPress plugins as well as a contributor to WordPress core. He is
originally from Montreal, Quebec but is currently located in Vancouver, BC. He is active in the
local Vancouver WordPress community and is a regular WordCamp speaker.

Thank you Yannick for asking me to participate in the making of this book.
It was a great learning experience and a true pleasure to be part of the
project.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

To my wife, Andrée, for her love, her patience throughout the writing process,
and being a great first proofreader

To my daughters, Évelyne and Gabrielle, for always making me smile and
giving the best hugs in the world

Table of Contents
Preface 1
Chapter 1: Preparing a Local Development Environment 5

Introduction 6
Installing a web server on your computer 6
Downloading and configuring a local WordPress installation 11
Creating a local Subversion repository 15
Importing initial files to a local Subversion repository 17
Checking out files from a Subversion repository 19
Committing changes to a Subversion repository 22
Reverting uncommitted file changes 25
Viewing file history and reverting content changes to older revisions 27
Installing a dedicated code/text editor 29
Installing and configuring the NetBeans Integrated
Development Environment 31
Interacting with a Subversion repository from the NetBeans interface 34
Managing a MySQL database server from the NetBeans interface 36

Chapter 2: Plugin Framework Basics 39
Introduction 39
Creating a plugin file and header 40
Adding output content to page headers using plugin actions 44
Using WordPress path utility functions to load external files and images 48
Modifying the page title using plugin filters 50
Adding text after each item's content using plugin filters 54
Inserting link statistics tracking code in page body using plugin filters 56
Troubleshooting coding errors and printing variable content 59
Creating a new simple shortcode 63
Creating a new shortcode with parameters 65
Creating a new enclosing shortcode 67

ii

Table of Contents

Loading a stylesheet to format plugin output 69
Writing plugins using object-oriented PHP 70

Chapter 3: User Settings and Administration Pages 73
Introduction 74
Creating default user settings on plugin initialization 74
Storing user settings using arrays 78
Removing plugin data on deletion 80
Creating an administration page menu item in the Settings menu 82
Creating a multi-level administration menu 85
Hiding items which users should not access from the default menu 87
Rendering the admin page contents using HTML 89
Processing and storing plugin configuration data 92
Displaying a confirmation message when options are saved 95
Adding custom help pages 97
Rendering the admin page contents using the Settings API 100
Accessing user settings from action and filter hooks 107
Formatting admin pages using meta boxes 109
Splitting admin code from the main plugin file to optimize
site performance 115
Storing stylesheet data in user settings 117
Managing multiple sets of user settings from a single admin page 122

Chapter 4: The Power of Custom Post Types 129
Introduction 129
Creating a custom post type 130
Adding a new section to the custom post type editor 135
Displaying single custom post type items using custom templates 138
Creating an archive page for custom post types 143
Displaying custom post type data in shortcodes 146
Adding custom categories for custom post types 150
Hiding the category editor from the custom post type editor 153
Displaying additional columns in the custom post list page 157
Adding filters for custom categories to the custom post list page 161
Updating page title to include custom post data using plugin filters 164

Chapter 5: Customizing Post and Page Editors 167
Introduction 167
Adding extra fields to the post editor using custom meta boxes 168
Displaying custom post data in theme templates 172
Hiding the Custom Field section in the post editor 175
Extending the post editor to allow users to upload files directly 177

iii

Table of Contents

Chapter 6: Accepting User Content Submissions 183
Introduction 183
Creating a client-side content submission form 183
Saving user-submitted content in custom post types 187
Sending e-mail notifications upon new submissions 191
Implementing a captcha on user forms 194

Chapter 7: Creating Custom MySQL Database Tables 199
Introduction 199
Creating new database tables 200
Deleting custom tables on plugin removal 205
Updating custom table structure on plugin upgrade 207
Displaying custom table data in an admin page 209
Inserting and updating records in custom tables 213
Deleting records from custom tables 218
Displaying custom database table data in shortcodes 222
Implementing a search function to retrieve custom table data 224
Importing data from a user file into custom tables 227

Chapter 8: Leveraging JavaScript, jQuery, and AJAX Scripts 231
Introduction 231
Safely loading jQuery onto WordPress web pages 232
Displaying a pop-up dialog using the built-in ThickBox plugin 234
Controlling pop-up dialog display using shortcodes 237
Displaying a calendar day selector using the Datepicker plugin 240
Adding tooltips to admin page form fields using the TipTip plugin 243
Using AJAX to dynamically update partial page contents 246

Chapter 9: Adding New Widgets to the WordPress Library 253
Introduction 253
Creating a new widget in WordPress 254
Displaying configuration options 256
Validating configuration options 259
Implementing the widget display function 261
Adding a custom dashboard widget 264

Chapter 10: Enabling Plugin Internationalization 267
Introduction 267
Changing the WordPress language configuration 268
Adapting default user settings for translation 269
Making admin page code ready for translation 270
Modifying shortcode output for translation 273

iv

Table of Contents

Translating text strings using Poedit 275
Loading a language file in the plugin initialization 277

Chapter 11: Distributing Your Plugin on wordpress.org 281
Introduction 281
Creating a readme file for your plugin 282
Applying for your plugin to be hosted on wordpress.org 285
Uploading your plugin using Subversion 286
Providing a plugin banner image 289

Index 291

Preface
Developing plugins for WordPress is the next big thing for you if you are an administrator
looking to enhance a personal site with custom functionality for which no plugin exists, a
developer looking to enhance the WordPress platform with new ideas for the community,
or a website designer building a specific project for a client. Learning how to create
WordPress plugins will allow you to unleash the full potential of the most popular web
content management system.

As an early WordPress adopter, I started building plugins to add functionality to my personal
site. Once I got these new elements in place, I quickly realized that other users could benefit
from these extensions, and started distributing them online. To this day, I always love hearing
back from users of my creations and finding out how they have put them to use and what new
functionality they think would make them even better.

While developing plugins might initially sound a little bit like black magic, this book shows
you how easy creating plugins actually is through a series of step-by-step recipes. If you have
previously added code to a theme's functions file, you may even be familiar with some of the
mechanics explained in this book. With all of the information contained in this book, you will
quickly be able to create your own plugins or dissect existing ones to add that extra bit of
missing functionality that you require. Before you know, you'll be publishing your own
creations to the official WordPress plugin repository!

Let's start learning how to cook up great WordPress plugins!

What this book covers
Chapter 1, Preparing a Local Development Environment, shows plugin developers how
to install and configure an efficient development environment.

Chapter 2, Plugin Framework Basics, explains the basic mechanics of registering user
functions with WordPress to be executed at key points when web pages are displayed,
forming the basis of plugin creation.

Preface

2

Chapter 3, User Settings and Administration Pages, covers the creation of administration
pages that will allow the users to configure the plugins you create.

Chapter 4, The Power of Custom Post Types, empowers developers to add whole new content
management sections to the WordPress environment.

Chapter 5, Customizing Post and Page Editors, demonstrates how to alter the default
administration post and page editing environment to add new capabilities.

Chapter 6, Accepting User Content Submissions, allows users to submit their own content
to new content sections that will be managed by your plugins.

Chapter 7, Creating Custom MySQL Database Tables, leverages the power of MySQL to create
custom database tables in a site database to store and retrieve custom data.

Chapter 8, Leveraging JavaScript, jQuery, and AJAX Scripts, makes plugin output very dynamic
by using a number of popular script libraries.

Chapter 9, Adding New Widgets to the WordPress Library, indicates how to add new widgets
that users will be able to easily drag-and-drop to add content to their web pages.

Chapter 10, Enabling Plugin Internationalization, prepares your plugin to be translated to any
language to make it easier to be used by non-English speakers.

Chapter 11, Distributing Your Plugin on wordpress.org, shows you how to prepare your plugin
for sharing with the global WordPress community.

What you need for this book
Chapter 1, Preparing a Local Development Environment, walks you through all of the tools
that are useful to have when developing plugins for WordPress, including XAMPP, TortoiseSVN,
and NetBeans.

While this book will always describe all of the steps necessary to perform its recipes, having a
good understanding of WordPress will allow you to fully appreciate the information contained
in these pages.

Who this book is for
This book is for WordPress users, developers, or site integrators with basic knowledge of PHP
and an interest in creating new plugins to address their personal needs, client needs, or share
new ideas with the WordPress community.

Preface

3

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Save and close the httpd.conf file."

A block of code is set as follows:

add_settings_field('Select_List', 'Select List',
 'ch3sapi_select_list',
 'ch3sapi_settings_section', 'ch3sapi_main_section',
 array('name' => 'Select_List',
 'choices' => array('First', 'Second', 'Third')));

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

<h2>My Google Analytics</h2>

<?php if (!empty($_GET['message'])) { ?>
 <div id="message" class="updated fade"><p>Settings Saved
</p></div>
<?php } ?>

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Click on the Settings section
of the administration menu."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

Preface

4

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/support, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will be
uploaded to our website, or added to any list of existing errata, under the Errata section of
that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Preparing a Local

Development
Environment

We will cover the following topics in this chapter:

 f Installing a web server on your computer

 f Downloading and configuring a local WordPress installation

 f Creating a local Subversion repository

 f Importing initial files to a local Subversion repository

 f Checking out files from a Subversion repository

 f Committing changes to a Subversion repository

 f Reverting uncommitted file changes

 f Viewing file history and reverting content changes to older revisions

 f Installing a dedicated code/text editor

 f Installing and configuring the NetBeans Integrated Development Environment

 f Interacting with a Subversion repository from the NetBeans interface

 f Managing a MySQL database server from the NetBeans interface

Preparing a Local Development Environment

6

Introduction
Before we start writing our first WordPress plugin, it is important to have a good set of
tools in place that will allow you to work locally on your computer and be more efficient in your
work. While it is possible to perform some development tasks with the built-in tools that are
provided with the operating system, creating a solid local development environment will help
you develop plugins quickly and have full control over your server settings to be able to test
different configurations.

This chapter proposes a set of free tools that can easily be installed on your computer,
regardless of your preferred operating system, to facilitate the development of your future
WordPress plugins. These tools include a local web server to speed up page access and avoid
sending files constantly to a remote server, a version control system to keep incremental
backups of your work, a code editor for basic file editing capabilities, and an integrated
development environment to accelerate your development tasks. In addition to installing and
learning how to use these tools, this chapter also shows how to download and configure
a local WordPress installation on a local web server.

Installing a web server on your computer
The first step to configure a local development environment is to install a local web server
on your computer. This will transform your computer into a system capable of displaying
web pages and performing all tasks related to rendering a WordPress website locally.

Having a local web server has many benefits:

 f Provides a quick response to the frequent page refreshes that are made as plugin
code is written, tested, and refined, since all information is processed locally

 f Removes the need to constantly upload new plugin file versions to a remote
web server to validate code changes

 f Allows development to take place when no Internet connection is available
(for example, when traveling on an airplane)

 f Offers a worry-free programming environment where you cannot bring down a live
website with a programming error or an infinite loop

There are many free packages available online that contain all of the web server components
necessary to run a WordPress installation. This recipe shows you how to easily install one of
these packages.

Chapter 1

7

How to do it...
1. Visit the XAMPP website (http://www.apachefriends.org/en/xampp.html)

and download the appropriate XAMPP package for your computer.

XAMPP is available for the Windows, Mac OS X, and Linux
platforms. The screenshots in this recipe were taken from
XAMPP version 1.7.5 for Windows. The installation steps
and exact dialog contents might vary slightly based on your
choice of platform.

2. Optional on Windows: Disable the Windows User Access Control (UAC)
feature to give full permissions to XAMPP to install itself on your system
(visit http://windows.microsoft.com/en-US/windows7/Turn-User-
Account-Control-on-or-off for more information on how to perform
this procedure).

3. Launch the XAMPP installer (xampp-win32-1.7.5-VC9-installer.exe on the
Windows platform).

4. Select your language of choice and acknowledge the warning message about User
Access Control (UAC).

5. If possible, do not modify the default installation directory of c:\xampp since some
references to this folder will be made in this book.

6. Uncheck the Create a XAMPP Desktop icon option, unless you want to have an icon
for the web server on your desktop.

7. Check the Install Apache as service option to automatically start the web server
when your computer starts.

8. Check the Install MySQL as service option to automatically start the database server
when your computer starts.

Preparing a Local Development Environment

8

9. Leave the Install Filezilla as service option unchecked since we will not need a local
FTP server during the development of WordPress plugins.

10. Click on the Install button to proceed with the web server installation.

11. Click on Finish once the installation is complete. The XAMPP installer will register
the necessary services with Windows based on the options selected during the
installation process.

12. Launch the XAMPP Control Panel using the Start Menu shortcut to verify the status
of the web and database servers. Both the Apache and MySql services should be
displayed as Running in XAMPP Control Panel Application.

Chapter 1

9

13. Open a web browser and navigate to the address http://localhost to display
your local web server's welcome page.

14. Open the c:\xampp\apache\conf\httpd.conf file in a text editor
(for example, Notepad).

15. Search for the DocumentRoot configuration option and change its value to a
different location on disk to avoid keeping your project files under the original
installation directory. For example, you could set it to a new directory designed
to hold your local development installation of WordPress, such as DocumentRoot
"C:/WPDev".

Notice that forward slashes are used in this path. You should be
careful if you copy and paste a path from a file explorer window.

16. Search for the Directory option and change it to the same path that was used
for the DocumentRoot, that is <Directory "C:/WPDev">.

17. Save and close the httpd.conf file.

18. Create the directory specified as DocumentRoot, if it does not already exist on
your computer.

19. Open the XAMPP Control Panel.

20. Stop and re-start the Apache service for the new configuration to take effect.

Preparing a Local Development Environment

10

Trying to access the local web server's welcome page will no
longer work after having performed steps 14 through 20, since
the new directory specified is currently empty.

How it works...
The XAMPP package contains all of the components necessary to run a web server capable of
hosting a WordPress website on your computer. These components include:

 f Apache web server

 f PHP interpreter

 f MySQL database server

 f phpMyAdmin database management interface

The XAMPP package also includes an FTP server tool called FileZilla Server. We do not need
to install this service since we can just locally access the web server files.

Once XAMPP is installed and started, the keyword localhost that we type in the web
browser is recognized by the operating system as a request to communicate with the web
server on the local computer and the Apache web server displays the welcome page from
its documentation.

The XAMPP documentation is a set of flat HTML files located in the c:\xampp\htdocs
directory on the Windows platform. This is the web server's default working directory.

The last few steps of the recipe instruct the Apache web server to look for the local website's
content in a new directory. This is a safety precaution to be sure that site files are not
deleted inadvertently if XAMPP is uninstalled. It can also help in managing multiple sites
on a single computer.

There's more...
While XAMPP is a full-featured local web server package and is available on the three major
operating systems, there are many others available online. Here is a list of some of the most
popular ones:

 f For Windows:

 � WampServer (http://www.wampserver.com/en/)

 � EasyPHP (http://www.easyphp.org/)

 f For Mac OS X:

 � MAMP (http://www.mamp.info/en/index.html)

Chapter 1

11

For a more complete list of web server packages, visit http://
en.wikipedia.org/wiki/List_of_AMP_packages.

Creating a remote web development environment
If it's not possible for you to set up a local web server to develop WordPress plugins, or if you
are planning to share the development tasks with one or more people, then an alternative to
setting up a local web server is to create a remote development environment.

The easiest way to create such an environment, assuming that you already have a web hosting
account set up, is to create a subdomain off your main domain. This will allow you to create a
standalone test installation for WordPress that will still provide safety from affecting a live site
but will not carry the other benefits of a local installation.

See also
 f Downloading and configuring a local WordPress installation recipe

Downloading and configuring a local
WordPress installation

The next component of our local development environment is to install WordPress on your
local web server to run a fully working website and have all of its files hosted locally.

WordPress has always prided itself with its easy five-minute installation process. Installing it
on a local web server is even easier and quicker than it would be on a live remote server. This
recipe covers the creation of a MySQL database to store all data related to our new WordPress
installation and the actual setup process.

Getting ready
This recipe assumes that you have a local web server installed on your computer. This web
server can be a fresh install performed using the previous recipe or can be from a previous
installation. The steps in the following section are written with a focus on new web servers.
If you have created a new account to access the MySQL database or changed the root user's
password, some of the steps will change slightly. The location of the phpMyAdmin tool might
also be different if you are using a different web server than XAMPP. You should refer to your
web server's documentation to find out what that address is.

Preparing a Local Development Environment

12

How to do it...
1. In the web browser, navigate to the address http://localhost/phpmyadmin/

to access your web server's database administration tool.

2. Click on the Databases tab in phpMyAdmin.

3. Type the name of the new database to be created in the empty field below the words
Create new database. In this case, we will use the name wordpressdev.

4. Click on the Create button to complete the database creation process.

5. Download the latest WordPress installation package from the official
wordpress.org site. The download link can be found on the very first page of
the site and the download package will work on any web server, local or remote.

The following instructions have been tested against
WordPress version 3.4. While the installation process does
not usually change much between versions, there may be
slight differences in these steps on newer versions.

6. Extract the WordPress archive file contents using your favorite file archiver utility or
your operating system's built-in capabilities.

7. Copy the contents of the resulting wordpress folder to your local web server's web
content directory (c:\WPDev, if you followed the previous recipe). You should not
copy the wordpress folder itself unless you want the address of your WordPress
website to be http://localhost/wordpress.

Chapter 1

13

8. Direct your web browser to http://localhost to start the WordPress installation
process. Click on the Create a Configuration File button to start the process. Click on
the Let's Go button to start the configuration process.

9. Update the Database Name field to reflect the name of our newly-created database
(wordpressdev).

10. Set the MySQL User Name to root.

11. Delete all characters from the MySQL Password to leave it empty, since local MySQL
server root accounts are typically configured without any password.

12. Leave the Database Host field with its default value (localhost).

13. Change the Table Prefix field from its default value to wpdev_.

14. Click on the Submit button to validate the information entered. If any parameters
are not entered correctly, or if the WordPress installation process cannot correctly
access your database server, it will display an error page and give you an opportunity
to make corrections. Click on the Run the install button for WordPress to create the
required table structure in the designated MySQL database.

15. Specify a Site Title (for example, Development Site).

16. Set a Password for the admin user.

17. Enter your E-mail address in the appropriate field (although no e-mail will actually be
sent on most local development installations).

Preparing a Local Development Environment

14

18. If you are configuring a live external development server, uncheck the Allow search
engines to index this site option since we do not want this development site to
appear anywhere. Click on Install WordPress to complete the installation. Click
on the Log In button to navigate to your site's login screen.

19. Click on the Back to Development Site link to see your new site.

How it works...
In the first few steps, the phpMyAdmin interface is used to create a database on the local
MySQL server. This web-based database management tool comes bundled with XAMPP and
most other web servers. The http://localhost/phpmyadmin address will always take
you to the database administration tool, even if you relocate your web server's document
root directory as documented in the previous recipe.

Once a database is created and the WordPress files have been copied to the correct location,
pointing your browser to the local web server gets it to search through the document root
directory to find HTML files to send back to the browser or PHP files to execute. In the
case of WordPress, the web server finds the index.php file and executes it using its PHP
interpreter. As the WordPress code is executed, it checks if a configuration file is present and
launches the installation process when it does not find it. The WordPress code does not see
any difference between the local web server that we are running it on and a remote live web
server that would be accessible anywhere online.

Chapter 1

15

While we specified an e-mail address for the administrator during the installation, some local
web servers are not configured to send out e-mail messages so we will never receive any
e-mail communication in these cases. It is preferable to use a remote server when developing
and testing e-mail functionality in a plugin.

Once this recipe has been completed, you will have a fully functional WordPress installation
in place.

Creating a local Subversion repository
Version control is an important part of any code development project to keep track of a
project's history, to have full and organized backups, and to be able to easily roll back changes
to get back to a known working state. Version control is also the best and most efficient way
to share code and other files when developing a project in a team environment. In addition
to being a great version control system that is easy to use and configure, Subversion (often
referred to as SVN) is also the technology that manages all submissions on the official
WordPress plugin directory. Therefore, by setting up and using a local Subversion repository
during your initial plugin development, you will immediately be ready to share your creations
with the community.

How to do it...
1. Visit the TortoiseSVN site (http://tortoisesvn.net/downloads.html) and

download the free Subversion client for your version of Windows (32- or 64-bit).

While this recipe focuses on the creation of a local repository on
the Windows platform, equivalent tools for other platforms are
discussed after the recipe steps, in the There's more... section.

2. Launch the TortoiseSVN installation program and install it using all the default
installation options.

3. Create a new folder on your hard drive that will host the local Subversion repository
(for example, c:\WPSVN).

4. Right-click on the new folder and select the TortoiseSVN | Create Repository Here
menu item. TortoiseSVN will create the required file structure in the target directory
and display a message indicating that the repository has been created successfully.

5. Click on the Start Repobrowser button to launch the repository navigation tool.

Preparing a Local Development Environment

16

6. Type file:///C:/WPSVN in the URL selection dialog box. At this time, TortoiseSVN
displays the contents of the repository, which is currently empty.

How it works...
Subversion is a free open source version control system that is designed to keep file revisions
organized and backed up over the course of a project's development, as well as provide
access to older versions of all files at any time. If you have ever found yourself copying a
directory on your computer and giving each copy sequentially numbered names or adding
dates to their names, then you will recognize that version control is really just a more
organized and efficient method of achieving the same goal of keeping backups of known
working versions of code files, and being able to access any older version of a file.

While the default Subversion interface is a set of command-line utilities, TortoiseSVN and
many other client applications provide graphical tools to create, access, and manage local
and remote repositories.

In addition to familiarizing yourself with this system for later use on wordpress.org, using a
local Subversion repository will ensure that you will always have older versions of your plugins
easily accessible in case a code change that you perform breaks your work and you cannot
figure out how to get back to a working state.

Chapter 1

17

There's more...
While there are many Subversion clients available online to interact with a repository, not all of
them include the necessary administration tools to easily create a repository as shown in this
recipe. You should look for these administration capabilities when searching for a Subversion
client for non-Windows platforms.

On Mac OS X, Versions (http://versionsapp.com/) and Cornerstone (http://www.
zennaware.com/cornerstone/index.php) offer similar capabilities but are
paid applications.

On Linux, the PagaVCS tool (http://code.google.com/p/pagavcs/) is a free clone
of TortoiseSVN that includes both client and administration capabilities to create local
repositories.

Manual repository creation
If your Subversion client does not offer the ability to create a local repository, then you
can download the Subversion command-line tools from the official Subversion website
(http://subversion.apache.org/packages.html) and create a repository
manually following instructions found in the online Subversion reference manual
(http://svnbook.red-bean.com/).

Other version control systems
While Subversion is easy to learn and is the system that is used by WordPress on its
official plugin repository, other version control systems such as Git (http://git-scm.
com/) and Mercurial (http://mercurial.selenic.com/) are gaining traction in the open
source development community and could also be considered to manage your plugin code.

See also
 f Importing initial files to a local Subversion repository recipe

Importing initial files to a local Subversion
repository

Once you have a local repository in place, this recipe describes the steps required to add
files and start tracking their revisions over time. To have the flexibility to create multiple
plugins as discussed throughout this cookbook without having to worry about adding each
of them to the repository individually, we will add the entire WordPress plugin directory to
your local repository.

Preparing a Local Development Environment

18

Getting ready
You should have already installed a Subversion client on your computer and created a local
repository as described in the Creating a local Subversion repository recipe. These steps
will be slightly different based on the Subversion client that you have selected and your
operating system.

How to do it...
1. Navigate to the wp-content\plugins directory of your local WordPress installation

(for example, c:\WPDev\wp-content\plugins, if you followed the previous
recipe) with the file explorer.

2. Right-click in the folder and select the TortoiseSVN | Import menu item.

3. Enter the file location of your local Subversion repository in the URL of repository
field (for example, file:///c:/WPSVN), if it is not already specified.

4. Write a message in the Import message field that gives an overview of the files that
are being imported in the repository.

5. Click on the OK button to complete the Import process.

Once the Import operation has started, TortoiseSVN sends all selected files to the repository,
displaying each of their names in the process. At the end of the Import operation, it also
displays the revision number that it assigned to this first set of files.

Chapter 1

19

How it works...
Using the Import Subversion feature copies all selected files to the repository. In addition
to storing the files themselves, Subversion identifies each file with a revision number and
an import message. The revision number is generated by Subversion and incremented every
time a group of files is added. It is especially useful when searching through a file's history.

The import message is specified by the user and is actually optional. That being said, it is
important to set meaningful import messages when adding files to a repository as it will make
it easier for you to identify what these files are, the state that they are in, and the reason they
were added to the repository when performing future searches.

While these steps have led to a successful import, you may be wondering why nothing
changed in the plugin directory. The reason is that the import process only makes copies
of the selected files to the Subversion repository. An additional step, called the Checkout
process, needs to take place to start keeping track of changes and file history.

See also
 f Checking out files from a Subversion repository recipe

Checking out files from a Subversion
repository

After performing an initial import of files to a Subversion repository, the files need to be
checked out to really start working in a version control environment. This recipe explains
how to check out files from your local repository and what the resulting file structure
changes will be.

Getting ready
You should have already installed a Subversion client, created a local repository, and imported
files before following this recipe. These steps will be slightly different based on the Subversion
client that you have selected and the operating system you are using.

How to do it...
1. Navigate to the WordPress plugin directory of your local installation in the file explorer

if you are not already there.

2. Right-click in the whitespace of the directory window and select the SVN Checkout...
menu item.

Preparing a Local Development Environment

20

3. Enter the file location of your local Subversion repository in the URL of repository
field (for example, file:///c:/WPSVN), if it is not already specified.

4. Set the Checkout directory to the plugin folder of your local WordPress installation
(for example, C:\WPDev\wp-content\plugins).

By default, the TortoiseSVN client adds the word WPSVN at
the end of the path used when performing checkouts. Be sure
to remove that last part of the path so that all files that are
checked out go to the correct location.

5. Click on Yes on the dialog asking if files should be checked in a folder that is not
empty. At this time, TortoiseSVN will retrieve all files that were added to the repository
and copy them locally.

6. Once the operation is complete, look back at the file listing in the plugins directory
to see that it has changed from its previous state.

How it works...
Performing a Checkout operation takes copies of all files from the repository and places
them in the target directory. It also creates .svn directories at all levels of the file hierarchy.
Looking at the default WordPress plugin directory, we can see that two .svn folders have
been created. The first is directly in the plugins directory while the second is in the
akismet subdirectory.

Chapter 1

21

By default, most operating systems do not show folders that have a period at the beginning of
their name since this usually identifies hidden files and directories. To display hidden folders
on the Windows platform, carry out the following steps:

1. Press the Alt key in the file explorer to display the menu system.

2. Select the Tools | Folder options... menu item.

3. Select the View tab.

4. Set the Hidden files and folders radio button to Show hidden files, folders
and drives.

The .svn directory contains information on the address of the repository that is associated
with the files in the current folder. It also contains an original version of each file that was
checked out. These original files are used for Subversion to determine when changes have
been made to each file relative to their state when they were checked out or updated. While it
might seem a bit redundant to have an original copy of all files in the .svn folders when our
repository is locally hosted, this functionality allows Subversion to identify file changes when
working on a remote repository, such as the official WordPress plugin server, even when your
computer is not connected to the Internet.

There's more...
As you work with Subversion and TortoiseSVN, files that you create, modify, and delete
will go through a number of different states. The following section explains what each
of them represents.

Subversion file statuses
The green check mark indicator shown over each file icon, after performing this recipe, shows
us that our files and directories have not been modified since they were last checked out
or updated. These indicators will change over time as we start modifying existing files and
creating new ones. The following is a list of the most common statuses that files will have as
you work on a project, along with their associated TortoiseSVN icons:

 f Normal (green check mark): The file or directory is in a normal state and has not
changed since it was last checked out or updated.

 f Modified (red exclamation mark): The file or directory has been modified since it was
last checked out or updated.

 f Non-versioned (blue question mark): The file or directory is not under version control.

 f Added (blue plus sign): The file or directory is new and has been marked to be
committed to the repository in the next commit operation.

 f Deleted (red x icon): The directory has been deleted and will be removed from the
repository in the next commit operation.

Preparing a Local Development Environment

22

 f Ignored (grey do not pass symbol): This file or directory will never be sent to the
repository and Subversion should stop checking for changes. This state is useful
to keep private files, such as personal documentation or to-do lists, in the same
directory as the plugin but without uploading them to the repository and tracking
their history over time.

 f Conflicted (yellow exclamation mark): This icon appears in situations of conflict,
typically when more than one person works on the same repository and multiple
users made changes to the same file. While the Subversion client will normally try
to merge these changes to create a single file, a conflicted state indicates that the
system was not able to merge these changes automatically. Conflicted files need
to be manually merged or the user needs to indicate if the file has priority over the
version that is currently stored in the repository.

See also
 f Committing changes to a Subversion repository recipe

Committing changes to a Subversion
repository

During the course of a project, plugin files will typically be created, modified, or deleted.
These changes should be transmitted regularly to the Subversion repository to have proper
backups of all files in a project. A good practice is to commit changes at least once a day, with
more frequent commit operations taking place when specific milestones are reached in the
implementation of a plugin's features.

This recipe indicates how to manage file creation, modification, and deletion operations to
keep everything organized and mirrored in the Subversion repository.

Getting ready
You should have already installed a Subversion client, created a local repository, and imported
and checked out files before performing the steps in this recipe. These steps will be slightly
different based on the Subversion client that you have selected and the operating system
you are using.

How to do it...
1. Navigate to the WordPress plugin directory of your local installation in the file explorer

if you are not already there.

2. Open the hello.php file in a text editor.

Chapter 1

23

3. Edit the plugin name on line 7 to change it from Plugin Name: Hello Dolly to
Plugin Name: Goodbye Dolly.

4. Save and close the file. You should now notice that the modified file is identified by a
red exclamation mark icon in the file explorer, indicating that it has been modified.

5. Create a new folder in the plugins directory named chapter1. The new folder will
be displayed, along with a blue question mark icon, indicating that it is not currently
under version control.

6. Right-click on the new folder and select the TortoiseSVN | Add... menu item to bring
up the Add dialog.

7. Click on the OK button to queue the file to be added to the repository when changes
are next committed.

8. Navigate to the chapter1 directory and create a new text file named example.txt.

9. Navigate back to the plugins directory.

10. Right-click on the index.php file and select the TortoiseSVN | Delete menu item.
The selected file is immediately deleted and disappears from the file explorer.

11. Right-click in an empty part of the plugins directory and select the SVN Commit...
menu item. This last step will display the Commit dialog, with a top section to write
a message detailing the changes that are being committed, and a bottom section
containing a file listing. Notice that all files but one have check marks next to them
since they have either been recognized as being changed by the Subversion client
or have been added or deleted through the TortoiseSVN interface. The file that does
not have a check mark next to it is the text file that was created but not tagged to be
included in the next commit operation using the TortoiseSVN contextual menu.

Preparing a Local Development Environment

24

12. Type a message in the appropriate field indicating the reason for the operation.

13. Right-click on the chapter1/example.txt file and select the Add menu item
to add it to the operation.

14. Click on the OK button to send all changes to the Subversion repository.

How it works...
Using the local data stored in the .svn folders, the Subversion client is able to analyze the
directory contents and identify all files that are new, have been modified, or are missing
since the last checkout or update operation was performed, and then generate a list of
these changes.

When the commit operation is performed, new files are added to the repository, modified files
are uploaded and stored next to their previous versions, while deleted files are tagged as no
longer being part of the current project version. While some of these behaviors might seem
strange, it's by preserving previous versions of files and even keeping files that are no longer
part of a project that Subversion is able to let us navigate through a project's entire history.

While it is preferable to use the TortoiseSVN menu to mark files and directories for addition
and to delete items that are no longer needed, it is also possible to perform these operations
when the commit is about to take place, as we saw in the recipe steps.

There's more...
Before files are committed to the repository, many programmers and developers want to see
what changes were made to the modified files, especially in an environment that promotes
peer reviews before committing code changes.

Viewing the differences in modified files
By right-clicking on any modified file in the Commit dialog and selecting the Diff menu item,
the TortoiseSVN client will display its built-in file differencing tool, highlighting the parts that
are different between the last version of the files in the repository and the current version
of this file. This allows users to see what changed at a glance and be sure that no code was
modified inadvertently.

Updating files to latest repository version
If you are the only person committing files to a repository, and you are working on a single
computer, then you will never need to use the SVN Update menu item. This function is
designed to compare your local files with the repository and check if new files or new revisions
are available in the repository that are not present locally. It will then apply all necessary
changes to the local versions of these files. Remember to use the SVN Update option in
TortoiseSVN regularly if you are working in a team environment or are developing a project
across multiple systems.

Chapter 1

25

See also
 f Reverting uncommitted file changes recipe

Reverting uncommitted file changes
Until a file is committed to a repository, it is possible to revert all changes made to it since the
last checkout, update, or committal of that file. This recipe shows us how to revert changes
made to one or more files.

Getting ready
You should have already installed a Subversion client, created a local repository, and imported
and checked out files before performing the steps in this recipe. These steps will be slightly
different based on the Subversion client that you have selected and the operating system that
you are using.

How to do it...
1. Navigate to the WordPress plugin directory of your local installation in the file explorer

if you are not already there.

2. Open the hello.php file in a text editor.

3. Edit the plugin name on line 7 to change it back from Plugin Name: Goodbye
Dolly to Plugin Name: Hello Dolly.

4. Save and close the file. When using the TortoiseSVN client, the file is marked as
modified in the file explorer with a red exclamation mark icon.

5. To show the changes that occurred between the current version of the file and its
original state, right-click on the file and select the TortoiseSVN | Diff menu item.

6. Close the Diff tool.

7. To revert the file back to its state from the last committal, right-click on the file and
select the TortoiseSVN | Revert menu item. The Revert dialog will be displayed with
the selected file listed and checked.

8. Click on OK on the Revert dialog to restore the file.

To revert multiple files to their previous state, right-click on an empty
area of the file explorer and select the TortoiseSVN | Revert menu
item. This will display the same dialog with a list of all files that have
changed since the last commit operation. Select the files which should
be reverted and click on the OK button to perform the reversions.

Preparing a Local Development Environment

26

How it works...
The revert operation uses the saved copies of files that are stored in the .svn directories
located throughout the file structure. These local files allow the Subversion client to perform
a file reversion operation without needing to contact the repository, which may be remote
once you start working in a team environment or publishing plugins to the official WordPress
repository. The reversion operation simply discards the modified files and copies back the last
saved copy to the working directory.

There's more...
While Subversion clients such as TortoiseSVN and many others offer a fairly full set of
functionality to simplify file comparisons and other file manipulations, some of them
also allow support for your favorite tools.

Configuring TortoiseSVN to use an external diff viewer
While TortoiseSVN offers a diff viewer, its results are not always easy to analyze. Therefore, it
can be really useful to substitute it with an external tool such as WinMerge (winmerge.org).
To perform this substitution, carry out the following steps:

1. Right-click in an empty area of a file explorer or the desktop and select the
TortoiseSVN | Settings menu item.

2. Navigate to the External Programs | Diff Viewer section.

3. Set the top radio button to External.

4. Use the browse button (…) to navigate to the location of your external diff viewer and
select its main program executable (for example, C:\Program Files (x86)\
WinMerge\WinMergeU.exe).

See also
 f Viewing file history and reverting content changes to older revisions recipe

Chapter 1

27

Viewing file history and reverting content
changes to older revisions

As multiple versions of files are committed to a repository over time, Subversion keeps track
of all versions of these files along with the messages that were associated with each commit
operation. On occasion, during a plugin's development, it may be necessary to go back to
older versions to bring back functionality that was removed unintentionally or to restore
something that stopped working after changes were made. This recipe shows you how to view
a file and a project's history, see all changes that occurred between two versions of a file, and
restore a version of a file older than the last commit operation.

Getting ready
You should have already installed a Subversion client, created a local repository, imported and
checked out files, as well as performed at least two commit operations, before performing the
steps in this recipe. These steps will be slightly different based on the Subversion client that
you have selected and the operating system that you are using.

How to do it...
1. Navigate to the WordPress plugin directory of your local installation in the file explorer

if you are not already there.

2. Right-click on the hello.php file and select the TortoiseSVN | Show log menu item.
This command displays a chronological listing of all modifications to this file, starting
from its initial import to the repository.

3. Right-click on the oldest revision available for the file and select the Compare with
working copy menu item. A diff view of the selected version of the file compared to
the current working version will be displayed on-screen.

4. Right-click on the oldest revision available for the file and select the Revert to this
revision menu item. Confirm the request by selecting the Revert option. The hello.
php plugin file will revert back to the state it was in at the time of its initial import to
the repository.

Preparing a Local Development Environment

28

5. Right-click in an empty area of the file explorer and select the TortoiseSVN | Show
Log menu item. The resulting dialog shows a chronological listing of all import and
commit operations, indicating the dates when each action occurred and displaying
the messages that were associated to each of them. It also displays a listing of all
files that were involved in each action.

6. Click on each entry in the revision list to see the files that were affected and the type
of operation that was performed on each of them.

7. Find the revision where the index.php file was deleted from the plugin directory.

8. Right-click on the index.php file and select Revert changes from this revision
to restore the file. Select the Revert option to confirm the request.

How it works...
The Subversion client connects to the repository to generate a full history log for the selected
file or directory. It will then traverse all information stored during all import and commit
operations to produce a full listing. Since a Subversion repository keeps track of all versions
of files along with the messages that were stored with each operation, it can easily show how
files change during a project's history or restore a file to a previous state.

Chapter 1

29

Of course, this flexibility comes at a price since all of these file versions use space on the hard
drive that hosts the repository. However, this is a small price to pay for the peace of mind of
having easy access to organized versions of files over the lifetime of a project.

Installing a dedicated code/text editor
Most operating systems provide a built-in text editor. While it is possible to create WordPress
plugins using such a simple tool, it is highly recommended to install a dedicated code editor
on your computer to simplify your plugin development work.

Of course, not all code editors are equal. Here are some of the features that you should look
for when selecting a code editing application:

 f PHP syntax highlighting

 f Completion of PHP function names

 f Ability to search in multiple files simultaneously

 f Ability to highlight all instances of search keyword(s) or selected text

 f Line numbering

 f Ability to resize the editor text or specify a replacement font

 f Possibility of opening multiple files simultaneously

The following free editors contain most or all of these key features:

 f On the Windows platform:

 � Programmer's Notepad (http://www.pnotepad.org)

 � Notepad++ (http://notepad-plus-plus.org/)

 f On the Mac platform:

 � Sublime Text 2 (http://www.sublimetext.com/2)

 � TextMate (http://macromates.com)

 � TextWrangler (http://www.barebones.com/products/
TextWrangler)

 f On the Linux platform:

 � Screem (http://www.screem.org/)

This recipe explains how to install a dedicated code editor and shows basic editor operations.
It provides detailed steps using Programmer's Notepad for Windows.

Preparing a Local Development Environment

30

How to do it...
1. Download the installation package for one of the text editors listed previously.

2. Run the installation program for the editor and select the default settings.

3. Launch the text editor.

4. Open the hello.php file from the plugin directory of your local WordPress
installation. You will see that different parts of the code are displayed in different
colors based on the type of code.

5. Double-click on a word to select it. You will see any other instance of that same word
highlighted across the file contents.

6. Select the View | Line Numbers menu item (or similarly named item based on your
selected text editor) to display line numbers in the editor.

How it works...
Code editors have built-in parsers that enable them to identify the parts of the code that are
comments, PHP language functions, text strings, and a variety of other elements. Having
these elements colored on-screen makes it much easier to read through code and to see
that a function's name is not spelled correctly, or to quickly identify comments.

Chapter 1

31

Another functionality that is crucial when developing plugins for WordPress is the ability to
see line numbers in the editor. This function comes in handy especially when PHP code errors
come up, since the filename and line of code that was being processed at the time of the error
are normally displayed. In most code editors, the developer can either scroll to the specific line
or enter the line number in a quick Go To dialog box to jump to that line right away.

Installing and configuring the NetBeans
Integrated Development Environment

If you have enjoyed moving to a dedicated code editor in the previous recipe but want
a solution that provides even more integration to perform all of your WordPress plugin
development tasks in a single place, an integrated development environment (IDE) such
as the free NetBeans platform will be the perfect solution for you. In addition to having all of
the core features of a code editor, NetBeans has the ability to constantly parse your code to
identify syntax errors and highlight changes made since your last commit or update operation,
right in the editor.

It also features built-in Subversion and MySQL clients to be able to commit code changes
and manage database records straight from its interface. The NetBeans application is cross-
platform, available on the Windows, Mac, and Linux operating systems, and can be quickly
configured to work with a local WordPress installation. This recipe explains how to perform
these installation and configuration tasks.

Getting ready
You should already have set up a local WordPress installation on your computer.

How to do it...
1. Download the PHP NetBeans installer for your choice of platform from the NetBeans

website (http://netbeans.org/downloads/index.html).

While you can choose a version of NetBeans that will support
a large variety of programming languages (Java, C/C++, and so
on), the PHP version of NetBeans contains all the necessary
elements to develop plugins for WordPress.

2. Install the NetBeans tool by running the installer, selecting all default options, and
accepting the license agreement.

3. Launch the NetBeans IDE using the shortcut it created during the installation.

Preparing a Local Development Environment

32

4. Install the latest updates, if applicable, and restart the IDE to run the latest version.

5. Select the File | New Project menu item.

6. Select PHP in the Categories section and PHP Application with Existing Sources in
the Projects section.

7. Click on Next.

8. Set the Sources Folder to the location of your local WordPress installation
(c:\WPDev on Windows, if you followed the previous recipe).

9. Specify a Project Name (for example, WordPress Development Site).

10. Select PHP 5.3 in the PHP Version field.

11. Check the Put NetBeans metadata into a separate directory option and create
a new folder to hold this data (for example, c:\WPNetBeansData).

12. Click on Next.

13. Set the Project URL to http://localhost/.

14. Click on Finish.

15. Once the project is loaded, close the Tasks panel since it will be populated with a
long list of to-do tasks that are extracted from the WordPress source code.

16. Using the Projects view, navigate to the wp-content/plugins directory of your
WordPress installation and double-click on the hello.php file to see it in the
NetBeans editor.

Chapter 1

33

17. Search for the keyword function in the file and remove its last letter n to see a red
exclamation mark displayed in the left margin of the code editor. This indicates
that a PHP syntax error was detected.

18. Undo this last change.

19. Press the F6 key to launch a web browser session pointing to your local
development site.

How it works...
The NetBeans editor works by creating a project that points to your website's directory
structure and loading all files that are found in that location. With its integrated project
browser, it is very easy to find and edit multiple plugin files by starting a single tool. NetBeans
combines all of the functionality of a dedicated code editor, a Subversion client such as
TortoiseSVN, and the phpMyAdmin database administration interface to make it possible
to perform all tasks related to WordPress plugin development in a single environment.

See also
 f Interacting with a Subversion repository from the NetBeans interface recipe

Preparing a Local Development Environment

34

Interacting with a Subversion repository
from the NetBeans interface

One of the multiple benefits of using the NetBeans IDE is that it is pre-integrated with the
Subversion version control system. Whether you're developing plugins for your own private
use, for customers, or for public distribution on wordpress.org, Subversion is a great
system to use to keep track of all important revisions of your work over time.

This recipe explains how to use the built-in Subversion functionality in NetBeans to interact
with a file repository.

Getting ready
You should have already installed the NetBeans IDE and created a project pointing to your
local WordPress development site. You should also have created a Subversion repository
on your system and imported the contents of the WordPress plugin directory.

At the time of writing, an incompatibility between NetBeans 7.1 and
repositories created by TortoiseSVN 1.7.x requires additional steps to
be executed before performing this recipe. These steps can be found
on the Netbeans website at http://netbeans.org/projects/
versioncontrol/pages/Subversion1_7.

How to do it...
1. Using the Projects view in NetBeans, navigate to the wp-content/plugins

directory of your WordPress installation and double-click on the hello.php
file to display it in the code editor.

2. Change any line of code in the plugin header (top section of the plugin information on
the plugin name, author, and so on). Notice that colored bands start appearing on the
left margin of the code editor as lines are modified, added, or deleted.

3. Position the mouse cursor over the colored area that is displayed next to the modified
line to see a tooltip indicating that the line has been modified.

4. Click on the colored notification area to see the previous content of that line and
have the opportunity to roll back the modified content to its last known state from a
previous insert, commit, or update operation.

5. In the project window, right-click on the hello.php file and select the Subversion |
Commit menu. This command displays the NetBeans Subversion Commit interface.
While it is slightly different from the equivalent TortoiseSVN dialog, you should still
recognize the field used to specify a commit message and the list of all files that were
identified as having changed from the last insert, commit, or update operation.

Chapter 1

35

6. Enter a message in the Commit Message field.

7. Click on the Commit button to send your changes to the Subversion repository.

By right-clicking on any file from the plugin directory and selecting the
Subversion menu, we can see that all the functionalities we explored
in the previous Subversion-related recipes are available in the
NetBeans environment. However, some of them have different names.
For example, the Show log menu item is called Search History and
has some more advanced features than the TortoiseSVN client.

How it works...
Similar to the way the TortoiseSVN client works, the NetBeans interface has been built using
the Subversion client libraries to provide us with a full-featured tool that can access any
Subversion repository. Since our WordPress plugin directory files were already imported and
checked out from a repository, NetBeans is able to read the repository information that is
contained in the .svn directories located across the project structure and use this data to
identify code changes on the fly during code editing. It also has access to information on the
repository address that is associated to the plugin files to send new and updated items to the
correct location without asking us to specify where they should be sent.

Preparing a Local Development Environment

36

Managing a MySQL database server from
the NetBeans interface

With its built-in MySQL interface, the NetBeans IDE allows us to perform database queries,
data updates, and table structure modifications from the same interface that we will use to
write our WordPress plugins. This recipe will show you how to get NetBeans to connect to your
local MySQL database server and access data from some of the WordPress data tables.

Getting ready
You should have already installed a local web server on your computer, completed a local
WordPress installation, set up the NetBeans IDE, and created a project pointing to your
local WordPress development site.

How to do it...
1. Click on the Services tab on the left side of the NetBeans interface.

2. Expand the Databases item in the navigation tree.

3. Expand the Drivers item.

4. Right-click on the MySQL (Connector/J driver) item and select the Connect Using...
menu item.

Chapter 1

37

5. Leave the Host field with its default value (localhost).

6. Change the Database name to wordpressdev.

7. Leave all other fields as they are.

8. Click on the Test Connection button. This will try to connect to the MySQL database
server and will display a message indicating if the connection was successful.

9. Click on the Finish button to complete the connection setup.

10. Expand the new jdbc:mysql://localhost:3306/wordpressdev [root on Default
schema] item that appeared below Drivers.

11. Expand the wordpressdev item.

12. Expand the Tables item.

13. Expand the wpdev_posts table element to see a list of all fields in the WordPress
posts table.

14. Right-click on the wpdev_posts table and select the View Data... menu item to show
all data records contained in this table. As you can see, posts and pages are actually
stored in the same database table. In addition to displaying the requested data,
NetBeans also shows the SQL query that it performed to retrieve the data. This
can be useful to learn the basics of this query language.

How it works...
The NetBeans IDE has been compiled with the necessary client libraries to connect to
a MySQL database. By configuring NetBeans to access our database, it is able to get
information on the complete information structure and present us with an interface that
is much more dynamic than the phpMyAdmin web-based interface that was shown in a
previous recipe.

Being aware of the structure of a WordPress database and learning the syntax of SQL
commands will help you greatly as we start developing plugins in the later recipes.

2
Plugin Framework

Basics

In this chapter we will cover the following topics:

 f Creating a plugin file and header

 f Adding output content to page headers using plugin actions

 f Using WordPress path utility functions to load external files and images

 f Modifying the page title using plugin filters

 f Adding text after each item's content using plugin filters

 f Inserting link statistics tracking code in page body using plugin filters

 f Troubleshooting coding errors and printing variable content

 f Creating a new simple shortcode

 f Creating a new shortcode with parameters

 f Creating a new enclosing shortcode

 f Loading a stylesheet to format plugin output

 f Writing plugins using object-oriented PHP

Introduction
From its very first versions, WordPress was always designed as a very open platform. This
openness was exemplified not only through its open source licensing and distribution model
but also with its open plugin architecture, providing developers with the ability to deliver an
even richer experience to its users.

Plugin Framework Basics

40

While a basic WordPress installation provides a great amount of functionality that continues
to expand from one release to the next, users often have a need to add one more feature to
make it the perfect website management system. This is where the plugins come into play.
They can fill this gap by augmenting or manipulating virtually any aspect of a WordPress
website's display and administrative tasks.

Just like WordPress, plugins are written in the PHP programming language, which is
structurally similar to more traditional languages such as C and C++. This code is stored in
plain ASCII text files that are read and executed on the web server when pages are requested
to be displayed. The secret ingredient that enables plugins to have such great power in
WordPress is the inclusion of callback mechanisms called hooks throughout the application's
source code. These hooks come in two flavors, called action and filter hooks, which allow
plugins to add content to a site and modify data before it is displayed, respectively. Whether
it's rendering a site's front page, a single article, or its administration pages, WordPress has
hundreds of entry points where custom functions can be executed.

Beyond their ability to augment the WordPress functionality, a side benefit of plugins is that
most functionality they add to a site is independent of the active theme. Therefore, users who
like to change their theme frequently don't have to worry about manually adding back custom
elements to their new themes when they make a switch.

This chapter explains the difference between action and filter hooks and shows how to use
them to write a first set of plugins that will range in functionality from adding information to
the page header to defining new custom shortcodes.

Creating a plugin file and header
The first step of creating a WordPress plugin is to create a PHP file and add the necessary
information to have it recognized by the web-publishing platform. This first recipe shows you
how to create a basic plugin file for WordPress and how to see and activate this new extension
from the administration interface.

Getting ready
You should have access to a WordPress development environment, either on your local
computer or a remote server, where you will be able to load your new plugin files.

Chapter 2

41

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Create a new directory called ch2-plugin-header.

3. Navigate to this directory and create a new text file called ch2-plugin-header.php.

4. Open the new file in a text editor and add the following text:
<?php
/*
Plugin Name: Chapter 2 - Plugin Header
Plugin URI:
Description: Declares a plugin that will be visible in the
WordPress admin interface
Version: 1.0
Author: Yannick Lefebvre
Author URI: http://ylefebvre.ca
License: GPLv2
*/
?>

While the Description text is shown on two separate lines in the
code example, it should all be entered on a single line in your code to
be completely displayed in the WordPress Installed Plugins list.

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

5. Save and close the new file.

6. Log in to the administration page of your development WordPress installation.

Plugin Framework Basics

42

7. Click on Plugins in the left-hand navigation menu to show a list of all installed
plugins. You should see your new plugin listed next to the two default ones that
come pre-packaged with WordPress.

8. Enable the plugin by clicking on the Activate link under its name. You will see that the
background color of your new plugin changes to indicate that it has been activated
along with a message specifying that the activation was successful.

How it works...
Plugin files can either be located directly in the wp-content\plugins directory or in
a subdirectory under this location. When you access the Installed Plugins list in the
administration interface, WordPress scans all potential plugin locations looking for PHP files
that contain comments following the format specified in this recipe. There can actually be one
or more PHP files containing plugin header data in any of these directories and each of them
will show up as an entry in the plugin list.

Taking a closer look at the code that we entered in the file, the first and last line of the plugin
file are tags that identify the beginning and end of the PHP code that will be analyzed and
executed by the PHP interpreter.

Chapter 2

43

To ensure compatibility with most WordPress installations, it is
important to use complete <?php open tag syntax in your plugin
code instead of the <? short-hand version, since not all PHP
installations are configured to support the short version and many
users don't have access to change this type of configuration on
their server.

The second and second-to-last lines indicate that the enclosed text should be considered as
text comments. Finally, each line within the comment contains a specific label indicating the
type of information that follows it. When this information is found, WordPress retrieves data
about the plugin and adds it to the list.

When a plugin is activated, WordPress validates the file's content to be sure that it is valid PHP
code. It will then execute this content every time any page is rendered on the site, whether
that page is front-facing or a backend administration section. For this reason, it
is preferable to activate plugins only when they are in use, to avoid site slowdowns.

Of course, at this point, our new plugin does not add or modify any functionality in our
WordPress installation since it does not contain real code, but this is still an important
first step.

There's more...
The creation of a plugin file and header can actually be automated if you opted to use the
NetBeans IDE, as discussed in an earlier recipe.

Installing the WordPress plugin creation module in NetBeans
Similar to WordPress, NetBeans has its own plugin architecture that allows developers to add
functionality to the IDE. To automate the creation of WordPress plugin files, you can download
and install a small module that will quickly create these files:

1. Navigate to the following blog entry using your favorite web browser (the typo in the
address is accurate to get you to the blog entry): http://blogs.oracle.com/
netbeansphp/entry/my_fitst_wordpress_plugin_in.

2. Right-click on the link to download the module and save the org-netbeans-
modules-php-wordpress.nbm file to your computer.

3. Start NetBeans IDE.

4. Select the Tools | Plugins menu item.

5. Select the Downloaded tab. Click on the Add Plugins... button.

6. Navigate to the location of the saved NetBeans module, select the file, and click on
the Open button.

Plugin Framework Basics

44

7. Back in the Plugins dialog, verify that the plugin is selected and click on the Install
button located in the bottom-left corner. Click on the Next button, accept the terms of
the license agreements, and click on Install to fully register the plugin with NetBeans.
Click on Continue to accept installing the plugin even if it is not signed. Click on
Finish once the installation is complete.

8. Close the Plugins dialog.

9. Select the File | New File... menu item to create a new file. You will see a new entry
in the File Types section of the file creation dialog named WordPress Plugin.

10. Select the new entry and click on the Next button.

11. Set the File Name to new-netbeans-plugin.php. Click on Finish to create a new
plugin file with a valid WordPress header.

See also
 f Installing a web server on your computer recipe in Chapter 1, Preparing a Local

Development Environment

 f Downloading and configuring a local WordPress installation recipe in Chapter 1,
Preparing a Local Development Environment

 f Installing and configuring the NetBeans Integrated Code Development Environment
recipe in Chapter 1, Preparing a Local Development Environment

Adding output content to page headers
using plugin actions

A common action performed by plugins is to add extra content to the header of visitor-facing
pages generated by WordPress. This recipe shows you how to register an action hook function
to be able to add such additional content. To make this example more concrete, we will use
the Google Analytics page header JavaScript code that so many people use to get good page
view statistics for their site.

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Create a new directory called ch2-page-header-output.

3. Navigate to this directory and create a new text file called
ch2-page-header-output.php.

4. Open the new file in a code editor and add an appropriate header at the top of the
plugin file, naming the plugin Chapter 2 – Page Header Output.

Chapter 2

45

5. Add a few carriage returns before the ?> characters that close the plugin header
section to create space to add the PHP code.

6. Add the following line of code to register a function that will be called when
WordPress renders the page header:
add_action('wp_head', 'ch2pho_page_header_output');

7. Add the following code section to provide an implementation for the
ch2pho_page_header_output function:
function ch2pho_page_header_output() { ?>

 <script type="text/javascript">

 var gaJsHost = (("https:" == document.location.protocol) ?
 "https://ssl." : "http://www.");

 document.write(unescape("%3Cscript src='" + gaJsHost +
 "google-analytics.com/ga.js' \n\
 type='text/javascript'%3E%3C/script%3E"));

 </script>

 <script type="text/javascript">

 try {
 var pageTracker = _gat._getTracker("UA-xxxxxx-x");
 pageTracker._trackPageview();
 } catch(err) {}

 </script>

<?php }

8. Save and close the plugin file.

9. Log in to the administration page of your development WordPress installation.

10. Click on Plugins in the left-hand navigation menu.

11. Activate your new plugin.

Plugin Framework Basics

46

12. Navigate to your website's front page and use your browser's View Page Source
function to see the HTML source code for the site. The exact name of this function
will be slightly different based on which browser you are using. Reading through the
page source code, all of the code contained between the two curled brackets of our
new function will be visible on your website's header.

How it works...
The add_action function is used to associate custom plugin code to one of the two types of
WordPress hooks, the action hook. As mentioned briefly in this chapter's introduction, hooks
are the enabling functionality that make plugins possible in WordPress. Action hooks enable
the execution of additional code at specific points when either public-facing or administration
pages are prepared to be displayed. This code usually adds content to a site or changes the
way a given action is performed.

In this recipe, the first line of code that we wrote registered a function named
ch2pho_page_header_output with an action hook called wp_head. This action is one
among more than 500 action hooks that are available in current versions of WordPress and
it allows any registered function to output additional content to the page header. Since all
echoed content will be displayed, we can write our callback function very simply by placing ?>
and <?php tags around the Google Analytics code. This will tell PHP to display all content that
is within that function's body as opposed to interpreting it.

As you may have noticed, the current code is not very flexible since you would need to
hardcode your Google Analytics account number in the output for it to function properly. The
creation of a configuration panel in Chapter 3, User Settings and Administration Pages will
provide a way to configure such information to make our plugins more flexible.

Chapter 2

47

Now, to fully understand its syntax, let's take a closer look at the complete add_action
function:

add_action ('hook_name', 'your_function_name', [priority],
[accepted_args]);

The first parameter, the hook name, indicates the name of the WordPress hook that we want
our custom function to be associated with. This name must be accurately spelled; otherwise
our function will not be called and no error message will be displayed.

The second parameter is the name of the plugin function that will be called to perform an
action. This function can have any name, with the only condition being that this name must
be unique enough to avoid conflicting with functions from other plugins or from the WordPress
code. In this recipe, the function name starts with an acronym representing the name of the
plugin, making it much more unique.

The priority parameter is optional, as indicated by the square brackets, and has a default
value of 10. It indicates the execution priority of this plugin relative to other plugin functions
that hook into the same action, with a lower number indicating a higher priority.

Any plugin can register one or more functions with an action hook using the add_action
function. As it is rendering web pages, WordPress keeps a queue of all entries and calls them
at the appropriate moment. It is interesting to note that the hook mechanism is also used
by WordPress itself as it regularly calls the add_action function in its own code to register
functions to be called at the right time. If you realize that you need your function to be called
before or after other plugins that are registering with the same hook, change the value of the
priority parameter.

The last parameter of the add_action function, accepted_args, has a default value of 1
and should always be set to a number. It should also only be set to a different value for some
particular hooks where more than one parameter should be passed to the registered function.
Some of these hooks will be covered in later recipes.

There's more...
Finding the right hooks to register plugin functions is a large part of WordPress plugin
development. Fortunately, there are a number of ways to get information on existing
hooks and learn when they get called during the WordPress page generation process.

Action hooks online listings
The WordPress Codex is a Wiki-powered documentation site that contains a multitude of
information that is useful to users and developers alike. When it comes to action hooks,
the Codex contains information on the most commonly-used hooks, with basic descriptions
indicating how they can be used available at http://codex.wordpress.org/Plugin_
API/Action_Reference. That being said, this is not a complete listing.

Plugin Framework Basics

48

There are many third-party sites that parse the WordPress source code and provide their own
hook listings (for example, http://adambrown.info/p/wp_hooks/hook/actions).
While hooks are not as eloquently documented in these types of raw listings, they do provide
basic information on their names and where they are called as WordPress generates pages
for visitors and administrators. These details can be enough to find a hook based on the
functionality that you are trying to implement.

Searching for hooks in the WordPress source code
Since WordPress is open source, another way to find information about hooks is to search
directly within its code. For every action hook that accepts user functions, you will see a call
to the do_action function to execute all registered items. As can be seen, the function takes
two or more arguments, with the second one(s) being optional:

do_action ('tag', [$arg]);

For the example shown in this recipe, a search for do_action('wp_head') reveals that
it is the only function that is called when a theme makes a call to the wp_head() function
in its header file:

do_action('wp_head');

See also
 f Creating a plugin file and header recipe

Using WordPress path utility functions to
load external files and images

On occasion, plugins need to refer to external files (for example, images, JavaScript, or jQuery
script files) that are stored in the plugin directory. Since users are free to rename a plugin's
folder or even install plugin files straight into the WordPress plugin directory, paths to any
external files must be built dynamically based on the actual plugin location. Thankfully, a
number of utility functions are present to simplify this task. In this recipe, we will write a
simple plugin that will add a favicon meta tag to a website's header, pointing to an image file
located in the plugin directory.

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.
2. Create a new directory called ch2-favicon.
3. Use a web service such as http://getfavicon.org to retrieve a website's

favicon (for example, www.packtpub.com) and store it in the plugin directory
with the name favicon.png.

Chapter 2

49

4. Convert the PNG file to an ICO file using a web service such as http://favicon-
generator.org/ to work with a larger number of web browsers and make sure
that the resulting file is called favicon.ico.

5. Navigate to the plugin directory and create a new text file called ch2-favicon.php.

6. Open the new file in a code editor and add an appropriate header at the top of the
plugin file, naming the plugin Chapter 2 – Favicon.

7. Add a few carriage returns before the ?> characters that close the plugin header
section to create space to add the remaining PHP code.

8. Add the following line of code to register a function that will be called when
WordPress renders the page header:
add_action('wp_head', 'ch2fi_page_header_output');

9. Add the following code section to provide an implementation for the
ch2fi_page_header_output function:
function ch2fi_page_header_output() {
 $icon_url = plugins_url('favicon.ico', __FILE__);

 ?>

 <link rel="shortcut icon" href="<?php echo $icon_url; ?>" />

 <?php }

10. Save and close the plugin file.

11. Log in to the administration page of your development WordPress installation.

12. Click on Plugins in the left-hand navigation menu.

13. Activate your new plugin.

14. Navigate to your website's front page and refresh it to see that the icon file that you
assigned through your plugin code now appears in your browser's address bar, title
bar, or navigation tab, depending on your preferred browser. The following screenshot
shows how the favicon file is rendered in Internet Explorer, Mozilla Firefox, and Google
Chrome, from top to bottom:

Plugin Framework Basics

50

How it works...
The plugins_url utility function, used in conjunction with the __FILE__ PHP constant
and the name of our favicon file, enables us to quickly get the URL of the directory where
our plugin files are located and print out the appropriate HTML command to notify browsers
of the location of this file:

plugins_url($path, $plugin);

The plugins_url function can be called with or without parameters. In the first case, it
builds a URL by appending the path found in the first parameter to the location of the file
specified in the second argument. In the second situation, it simply returns the location
of the plugin directory.

There's more...
The plugins_url function is one of the many functions that can be used in plugins to help
find the location of files in a WordPress installation. Other useful functions include:

 f get_theme_root(): Returns the address of the theme installation directory

 f get_template_directory_uri(): Retrieves the URI to the current theme's files

 f admin_url(): Provides the address of the WordPress administrative pages

 f content_url(): Indicates where the wp-content directory can be found

 f site_url() and home_url(): Return the site address

 f includes_url(): Provides the location of WordPress include files

 f wp_upload_dir(): Indicates the directory where user-uploaded files are stored

See also
 f Creating a plugin file and header recipe

 f Adding output content to page headers using plugin actions recipe

Modifying the page title using plugin filters
Beyond adding functionality or content to a site, the other major task commonly performed
by plugins is to augment, modify, or reduce information before it is displayed on-screen. This
is done by using WordPress filter hooks, which allow plugins to register a custom function
through the WordPress API, to be called since content is prepared, before it is sent to the
browser. In this recipe, we will learn how to implement our first filter callback function
to add text to the page title, indicating the type of content that is currently displayed.

Chapter 2

51

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Create a new directory called ch2-title-filter.

3. Navigate to this directory and create a new text file called ch2-title-filter.php.

4. Open the new file in a code editor and add an appropriate header at the top of the
plugin file, naming the plugin Chapter 2 – Title Filter.

5. Add a few carriage returns before the ?> characters that close the plugin header
section, to create space to add the PHP code.

6. Add the following line of code to register a function that will be called when
WordPress is preparing data to output the page title as part of the page header:
add_filter('wp_title', 'ch2tf_title_filter');

7. Add the following code section to provide an implementation for the
ch2tf_title_filter function:
function ch2tf_title_filter ($title) {

 //Select new title based on item type
 if (is_front_page())
 $new_title = 'Front Page >> ';
 elseif (get_post_type() == 'page')
 $new_title = 'Page >> ';
 elseif (get_post_type() == 'post')
 $new_title = 'Post >> ';

 // Append previous title to title prefix
 if (isset($new_title)) {
 $new_title .= $title;
 // Return new complete title to be displayed
 return $new_title;
 } else {
 return $title;
 }
}

8. Save and close the plugin file.

9. Log in to the administration page of your development WordPress installation.

10. Click on Plugins in the left-hand navigation menu.

11. Activate your new plugin.

Plugin Framework Basics

52

12. Use a web browser to visit your website. As you visit pages and single posts, you
will see that the browser's title bar or navigation tabs display additional text before
their name.

How it works...
The add_filter function is used to associate a custom plugin function to the second type
of WordPress hooks, the filter hook. Filter hooks give plugins the chance to augment, modify,
delete, or completely replace information while WordPress is executed. To enable this, filter
functions are sent data that can be modified as a function parameter. They must return the
resulting set of data back to WordPress once they have finished making the changes.

Unlike action hooks, filter functions must not output any text or HTML code since they are
executed while output is being prepared and that will likely result in the output showing up
in unexpected places in the site layout. Instead, they should return the filtered data.

Taking a closer look at the parameters of the add_filter function, we can see that it is very
similar to the add_action function that we saw in the previous recipes:

add_filter('hook_name', 'your_function_name', [priority],
 [accepted_args]);

The first parameter, the hook name, indicates the name of the WordPress hook that we want
our custom function to be associated with. This name must be accurately spelled; otherwise
our function will not be called and no error message will be displayed.

The second parameter is the name of the plugin function that will be called to filter data. This
function can have any name, with the only condition being that this name must be unique
enough to avoid conflicting with functions from other plugins or from the WordPress code.

The priority parameter is optional, as indicated by the square brackets, and has a default
value of 10. It indicates the execution priority of this plugin relative to other plugins that are
loaded by WordPress, with a lower number indicating a higher priority.

The last parameter of the function, accepted_args, has a default value of 1 and indicates
how many parameters will be sent to your custom filter function. It should only be set to higher
values when you are using filters that will send multiple parameters, as will be shown in the
later recipes.

Chapter 2

53

There's more...
Beyond demonstrating how to change a page's title, this plugin also shows how to use some
of WordPress' conditional and query functions. We also take a look at resources to learn more
about filter hooks.

is_front_page function
The is_front_page() function is very useful when you are looking at implementing
functionality that will only be displayed if the WordPress site is displaying its front page. It will
return a simple true or false Boolean value that can be used in a logical comparison test.

get_post_type function
Between posts, pages, and custom post types, WordPress can display a multitude of
information on a site. To create plugins that will adapt to all of these types of content, the
get_post_type() function can come in quite handy. In this recipe, we checked what
type of content was being displayed before making changes to the incoming title data.

Filter hooks online listings and the apply_filters function
Similar to action hooks, information about commonly-used filter hooks can be found on the
WordPress Codex (http://codex.wordpress.org/Plugin_API/Action_Reference)
or on sites that provide raw function lists (for example, http://adambrown.info/p/wp_
hooks/hook/filters).

It is also possible to learn about filter hooks by searching for occurrences of the
apply_filters function in the WordPress code. As can be seen in the following code, this
function has a variable number of arguments, with the first one being the name of the filter
hook, the second representing the value that the registered function will be able to modify,
and the remaining optional parameters containing additional data that may be useful in the
implementation of the filter function:

apply_filters($tag, $value, $var ...);

For the example shown in this recipe, a search for apply_filters('wp_title' in the
WordPress code reveals that it is called within the wp_title template function and actually
sends two additional parameters, in addition to the title to be modified:

$title = apply_filters('wp_title', $title, $sep, $seplocation);

See also
 f Creating a plugin file and header recipe

Plugin Framework Basics

54

Adding text after each item's content using
plugin filters

After making a number of changes to the page header, title, and favicon, the next recipe takes
a more active role by adding a link to each post or page, allowing visitors to e-mail a link to
the item that they are currently viewing. This functionality is implemented using a filter hook
attached to the page and post content, allowing our custom function to append custom output
code to all entries that get displayed on-screen.

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Create a new directory called ch2-email-page-link.

3. Navigate to this directory and create a new text file called
ch2-email-page-link.php.

4. Open the new file in a code editor and add an appropriate header at the top of the
plugin file, naming the plugin Chapter 2 – Email Page Link.

5. Add a few carriage returns before the ?> characters that close the plugin header
section to create space to add the PHP code.

6. Visit an icon download website such as http://iconarchive.com and download
an e-mail icon in a small size (32 x 32 pixels) in PNG format to the new plugin's
directory, giving it the name mailicon.png.

7. Add the following line of code to register a function that will be called when
WordPress is preparing data to display the content of a post or page:
add_filter('the_content', 'ch2epl_email_page_filter');

8. Add the following code section to provide an implementation for the
ch2epl_email_page_filter function:
function ch2epl_email_page_filter ($the_content) {

 // build url to mail message icon downloaded
 // from iconarchive.com
 $mail_icon_url = plugins_url('mailicon.png', __FILE__);

 // Set initial value of $new_content variable to previous
 // content
 $new_content = $the_content;

Chapter 2

55

 // Append image with mailto link after content, including
 // the item title and permanent URL
 $new_content .= "<a title='E-mail article link'
 href='mailto:someone@somewhere.com?subject=Check out
 this interesting article entitled ";
 $new_content .= get_the_title();
 $new_content .= "&body=Hi!%0A%0AI thought you would enjoy
 this article entitled ";
 $new_content .= get_the_title();
 $new_content .= ".%0A%0A";
 $new_content .= get_permalink();
 $new_content .= "%0A%0AEnjoy!'>
 ";

 // Return filtered content for display on the site
 return $new_content;
}

9. Save and close the plugin file.

10. Log in to the administration page of your development WordPress installation.

11. Click on Plugins in the left-hand navigation menu.

12. Activate your new plugin.

13. Visit your website to see the new mail icon at the end of each post and page.

14. Click on one of the mail links. Your mail client will come up with information about the
item you were reading. The only information that needs to be updated is the recipient
address and visitors can quickly send an e-mail.

Plugin Framework Basics

56

How it works...
Similar to the previous recipe, this plugin uses the add_filter function to register a custom
function to be called by WordPress as it prepares an item's content to be displayed on-screen.
When the filter function is called, the first action that it performs is to create a URL to the
e-mail icon that was downloaded in the recipe. It then goes on to modify the original content
by appending the HTML code to display a mailto link. The same technique could be used to
create links to popular social media and link sharing sites, with simple changes to the syntax
of the link. Once the new content is ready, it is returned back to WordPress to be sent to any
other registered filters and subsequently be displayed on the site.

There's more...
This recipe also introduces a pair of useful WordPress utility functions to get access to the
current item's content.

get_the_title and get_permalink functions
While these two functions are mainly seen within theme template files, they can also be used
by plugins to get easy access to the content of items that are currently being processed.

More specifically, the two utility functions that are used in this recipe are as follows:

 f get_the_title(): This function gives us quick access to the item's title

 f get_permalink(): A function that returns the item's permalink (a URL that is
always associated with this post or page even after it is no longer featured on a
website's front page)

See also
 f Creating a plugin file and header recipe

 f Using WordPress path utility functions to load external files and images recipe

 f Modifying the page title using plugin filters recipe

Inserting link statistics tracking code in
page body using plugin filters

After creating two filter functions that append text to the existing content, this recipe shows
you how to modify the page content before it is displayed on-screen. More specifically, the
following plugin will expand on the Google Analytics header plugin created earlier and add a
JavaScript function to all links that are included in posts and pages to track when they are
clicked by visitors.

Chapter 2

57

Getting ready
You should have already followed the Adding output content to page headers using plugin
actions recipe to have a starting point for this recipe. Alternatively, you can download the
resulting code for that recipe from the Packt Publishing website (http://www.packtpub.
com/support).

How to do it...
1. Navigate to the ch2-page-header-output folder in the WordPress plugin directory

of your development installation.

2. Open the ch2-page-header-output.php file in a text editor.

3. Add the following line of code after the existing functions and before the closing ?>
PHP command at the end of the file to register a function that will be called when
WordPress is preparing data to display a page or post's content:
add_filter('the_content', 'ch2lfa_link_filter_analytics');

4. Add the following code section to provide an implementation for the
ch2lfa_link_filter_analytics function:
function ch2lfa_link_filter_analytics ($the_content) {
 $new_content = str_replace("href",
 "onClick=\"recordOutboundLink(this, 'Outbound Links', '" .
 home_url() . "');return false;\" href", $the_content);

 return $new_content;
}

5. Add the following line of code to register a function that will be called when
WordPress renders the page footer:
add_action('wp_footer', 'ch2lfa_footer_analytics_code');

6. Add the following code section to provide an implementation for the
ch2lfa_footer_analytics_code function:
function ch2lfa_footer_analytics_code() { ?>

<script type="text/javascript">
 function recordOutboundLink(link, category, action) {
 _gat._getTrackerByName()._trackEvent(category, action);
 setTimeout('document.location = "' + link.href + '"', 100);
 }
</script>

<?php }

Plugin Framework Basics

58

7. Save and close the plugin file.

8. In your web browser, refresh your website and navigate to a page that contains one or
more links in its content. The default Sample Page that is created in a new WordPress
installation contains a link to the Dashboard page.

9. Open the Source View for the page and find the link to the Dashboard. You will see
that the link tag has additional onClick Javascript code that will be called when
visitors follow it:

10. Scroll to the bottom of the page to see the implementation of the
recordOutboundLink Javascript function that was added to the page footer.

How it works...
The content filter function that is put in place by calling add_filter receives the entire
content of all posts and pages—before they are rendered to the browser—and is allowed
to make any number of changes to this information. In this case, we are using the PHP
str_replace function to search for any occurrence of the string href, which indicates a
link. When the string is found, it is replaced with a call to a JavaScript function as well as the
original href tag.

To make this plugin complete, it also needs to provide an implementation for the JavaScript
recordOutboundLink function. This is done by registering a custom function with the
wp_footer hook that will output extra content with the function code in the website's footer.

The resulting plugin automates many of the tasks related to tracking usage data on a website
using Google Analytics.

See also
 f Adding output content to page headers using plugin actions recipe

 f Adding text after each item's content using plugin filters recipe

Chapter 2

59

Troubleshooting coding errors and printing
variable content

As you transcribe code segments from the pages of this book or start writing your own plugins,
there is a strong chance that you will have to troubleshoot problems with your code or have
trouble working with data that your plugin is meant to manipulate. This recipe shows the basic
techniques to identify and quickly resolve these errors while creating a plugin that will hide an
item from the navigation menu for users who are not logged in to your site.

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Create a new directory called ch2-nav-menu-filter.

3. Navigate to this directory and create a new text file called
ch2-nav-menu-filter.php.

4. Open the new file in a code editor and add an appropriate header at the top of the
plugin file, naming the plugin Chapter 2 – Nav Menu Filter.

5. Add a few carriage returns before the ?> characters that close the plugin header
section to create space to add the PHP code.

6. Add the following line of code to register a function that will be called when
WordPress is preparing data to display the site's navigation menu:
add_filter('wp_nav_menu_objects',
 'ch2nmf_new_nav_menu_items', 10, 2);

7. Add the following code section to provide an implementation for the ch2nmf_new_
nav_menu_items function. Notice that the word functio is mistyped on purpose
at the beginning of the first line:
functio ch2nmf_new_nav_menu_items($sorted_menu_items, $args) {

 print_r($sorted_menu_items);

 return $sorted_menu_items;
}

8. Save the plugin file and leave your code editor open.

9. Log in to the administration page of your development WordPress installation.

10. Click on Plugins in the left-hand navigation menu.

11. Activate your new plugin.

Plugin Framework Basics

60

12. WordPress will display a fatal error message indicating that the plugin could not be
activated since a syntax error was found. It also indicates the exact filename and line
where the error occurred, helping to narrow down where the problem occurred:

13. Go back to your code editor, correct the spelling of the word "function", and save the file.
14. Activate the plugin a second time. It should now activate correctly.
15. Back in the code editor, remove the last letter of the "function" word to reintroduce

a syntax error.
16. Refresh your website. You will now see that the entire site has disappeared and

your browser only displays a blank page with an error message similar to the one
we just saw.

17. Correct the spelling error once again and your website will go back to normal.
18. In the WordPress dashboard, navigate to the Appearance | Menus item and check

if your current installation is using custom menus.
19. If your site does not currently use a menu, create a new menu and associate it

to a valid Theme Location.
20. Add links to the Home and Sample Page pages in your new menu.
21. Create a third item in your menu as a Custom Link called Private Area that points

to the address /privatearea:

Chapter 2

61

22. Click on the Save Menu button to store all of your updates.

23. Refresh your website and you will now see a lot of information printed before the
navigation menu. This output is generated by the print_r function and is meant to
help us understand how the data received by our filter function is organized. Once we
have a good understanding of that data, we will be able to properly make changes
to this information.

24. Replace the print_r function call inside of the filter function with the following code:
// Check if used is logged in, continue if not logged
if (is_user_logged_in() == FALSE) {
 // Loop through all menu items received
 // Place each item's key in $key variable
 foreach ($sorted_menu_items as $key => $sorted_menu_item) {
 // Check if menu item title matches search string
 if ($sorted_menu_item->title == "Private Area") {
 // Remove item from menu array if found using
 // item key
 unset($sorted_menu_items[$key]);
 }
 }
}

25. Refresh your website and you will see that the large array printout has disappeared.
If you are logged in as the administrator, you will also notice the Private Area link in
your menu. Log out to hide the menu item.

How it works...
As WordPress assembles a list of all available plugins to display them in the administration
interface, it does not check to see if each plugin's PHP code is valid. This is actually done
when a plugin is activated. At that time, any syntax error will be caught immediately and the
newly-activated plugin will remain inactive, preventing a failure of the entire website.

That being said, once a plugin is activated, its code is evaluated every time WordPress
renders a web page, and any subsequent code error that gets saved to the plugin file will
cause the site to stop working correctly. For this reason, it is highly recommended to set up
a local development environment, as shown in Chapter 1, Preparing a Local Development
Environment, to avoid affecting a live site when an inevitable error creeps up in your plugin
code. An alternative method would be to deactivate and reactivate plugins before making
changes to them so that they are re-validated. With this method, the plugin's functionality
won't be available on your site while you make changes, so this might not be optimal.

Plugin Framework Basics

62

Once the code is working correctly, the second part of this recipe shows us how to visualize
the information that is received by a custom filter function. While the WordPress Codex
website provides great documentation about the purpose of most filters available, it does
not go into details about the structure of the information that is sent to each filter function.
Thankfully, the PHP print_r function comes in very handy since it can display the content
of any variable on-screen, no matter what information is stored in the variable it receives as
an argument.

Last but not least, the implementation of the custom filter function uses the WordPress API
function is_user_logged_in() to see if the person viewing the site has provided login
credentials, and then goes on to parse all menu items and remove the Private Area menu
item if the visitor is not logged in.

There's more...
In addition to the debugging techniques used in this recipe, WordPress offers a number of
built-in tools to facilitate plugin troubleshooting.

Built-in WordPress debugging features
While the wp-config.php file, located at the top of the WordPress file structure, is primarily
used to store basic site configuration data, it can also be used to trigger a number of
debugging features. The first of these is the debug mode, which will display all PHP errors,
warnings, and notices at the top of site pages. For example, having this option active will
show all undefined variables that you try to access in your code along with any deprecated
WordPress function. To activate this tool, change the second parameter of the line defining
the WP_DEBUG constant from false to true in wp_config.php:

define('WP_DEBUG', true);

To prevent debug messages from affecting the site's layout, you can download a useful plugin
called Debug Bar (http://wordpress.org/extend/plugins/debug-bar/) to collect
messages and display them in the admin bar:

Chapter 2

63

Other debugging features that can be activated from the wp-config.php file are as follows:

 f WP_DEBUG_LOG: Stores all debug messages in a file named debug.log in the site's
wp-content directory for later analysis

 f WP_DEBUG_DISPLAY: Indicates whether or not error messages should be
displayed on-screen

 f SAVEQUERIES: Stores database queries in a variable that can be displayed in the
page footer (see http://codex.wordpress.org/Editing_wp-config.
php#Save_queries_for_analysis for more info)

See also
 f Modifying the page title using plugin filters recipe

Creating a new simple shortcode
First introduced in WordPress 2.5, shortcodes became quite popular as a way to let users
easily add content generated by plugins or themes to any page or post without needing to be
familiar with PHP code and editing theme template files. As they are very simple to create,
shortcodes can also be used to easily automate the output of content that repeatedly needs
to be included in your site's content.

This recipe explains how to create a new custom shortcode that will be used to quickly add
a link to a Twitter page in any post or page, automating a repetitive task.

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Create a new directory called ch2-twitter-shortcode.

3. Navigate to this directory and create a new text file called
ch2-twitter-shortcode.php.

4. Open the new file in a code editor and add an appropriate header at the top of the
plugin file, naming the plugin Chapter 2 – Twitter Shortcode.

5. Add a few carriage returns before the ?> characters that close the plugin header
section to create space to add the PHP code.

6. Add the following line of code to declare a new shortcode, simply using the two
characters 'tf', and specify the name of the function that should be called when
the code is encountered in posts or pages:
add_shortcode('tf', 'ch2ts_twitter_feed_shortcode');

Plugin Framework Basics

64

7. Add the following code section to provide an implementation for the
ch2ts_twitter_feed_shortcode function:
function ch2ts_twitter_feed_shortcode($atts) {
 $output = '
 Twitter Feed';

 return $output;
}

8. Save and close the plugin file.

9. Log in to the administration page of your development WordPress installation.

10. Click on Plugins in the left-hand navigation menu.

11. Activate your new plugin.

12. Edit an existing post on your site and use the shortcode [tf] in the code editor.

13. Save and view the post to see that the shortcode was replaced by a link to a Twitter
page attached to the words Twitter Feed.

How it works...
Shortcodes have similarities with both action hooks and filter hooks, since their associated
custom function is called when it is time to perform a task just like an action hook, but it
must return its output through a return value just like a filter hook. In terms of external data,
the function associated with a shortcode will receive data in the case of some types of codes
while it will only produce output in other cases.

When used in the text of a post or page, any shortcode surrounded by a pair of square
brackets is identified by the WordPress engine, which then searches for functions registered
for that specific code. If found, the associated function is called and the expected result is
used to replace the original shortcode text in the item's content. Just like filter functions,
shortcode functions must not output any text directly since it would likely appear in an
unexpected place in the page layout, as WordPress calls all shortcode-processing functions
before displaying the body of an item.

Chapter 2

65

For simple shortcodes like we have in this recipe, the plugin function associated with it must
return information but it does not receive any additional data through function parameters.
That being said, it can rely on utility functions such as get_the_ID, get_the_title, and
other WordPress utility functions to be able to produce the appropriate output. Other types
of shortcodes seen in the later recipes will have more context and configuration options. It is
also possible for shortcodes to access stored options data, which will be covered in Chapter 3,
User Settings and Administration Pages.

See also
 f Creating a plugin file and header recipe

Creating a new shortcode with parameters
While simple shortcodes already provide a lot of potential to output complex content to a
page by entering a few characters in the post editor, shortcodes become even more useful
when they are coupled with parameters that will be passed to their associated processing
function. Using this technique, it becomes very easy to create a shortcode that accelerates
the insertion of a media embed code in WordPress posts or pages by only needing to specify
the shortcode and the unique identifier of the media element to be displayed.

We will illustrate this concept in this recipe by creating a shortcode that will be used to quickly
add YouTube videos to posts or pages.

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Create a new directory called ch2-youtube-embed.

3. Navigate to this directory and create a new text file called
ch2-youtube-embed.php.

4. Open the new file in a code editor and add an appropriate header at the top of the
plugin file, naming the plugin Chapter 2 – YouTube Embed.

5. Add a few carriage returns before the ?> characters that close the plugin header
section to create space to add the PHP code.

6. Add the following line of code to declare a new shortcode and specify the name of the
function that should be called when the shortcode is found in posts or pages:
add_shortcode('youtubevid', 'ch2ye_youtube_embed_shortcode');

Plugin Framework Basics

66

7. Add the following code section to provide an implementation for the
ch2ye_youtube_embed_shortcode function:
function ch2ye_youtube_embed_shortcode($atts) {

 extract(shortcode_atts(array(
 'id' => ''
), $atts));

 $output = '<iframe width="560" height="315"
 src="http://www.youtube.com/embed/' . $id . '"
 frameborder="0" allowfullscreen></iframe>';
 return $output;
}

8. Save and close the plugin file.

9. Log in to the administration page of your development WordPress installation.

10. Click on Plugins in the left-hand navigation menu.

11. Activate your new plugin.

12. Create a new post and use the shortcode [youtubevid id='R6Z7xceSLy4'] in
the post editor, where R6Z7xceSLy4 is the code of a video on YouTube.

13. Save and view the post to see that the shortcode was replaced by an embedded
YouTube video on your site.

How it works...
When shortcodes are used with parameters, these extra pieces of data are sent to the
associated processing function in the $atts parameter variable. By using a combination of
the standard PHP extract and WordPress-specific shortcode_atts functions, our plugin
is able to parse the data sent to the shortcode and create an array of identifiers and values
that are subsequently transformed into PHP variables that we can use in the rest of our
shortcode implementation function. In this specific example, we expect a single variable to be
used, called id, which will be stored in a PHP variable called $id.

Chapter 2

67

Once we have access to the video ID, we can put together the required HTML code that will
embed a video player in our post and display the selected video file.

While this example only has one argument, it is possible to define multiple parameters
for a shortcode.

See also
 f Creating a new simple shortcode recipe

Creating a new enclosing shortcode
A different type of shortcode is available in WordPress that encloses content in posts and
pages. Using a syntax similar to HTML tags, enclosing shortcodes can be used to identify
parts of an item's content that need to be treated in a special way. For example, it is possible
to use this type of shortcode to style a part of the post.

As an example of how to create enclosing shortcodes, this recipe shows you how to create a
set of tags that will identify part of a post or page that should only be shown to visitors that
are logged in to a site. In this way, the shortcode acts similarly to a filter hook, with the added
bonus that you do not need to parse for instances of these tags as would normally need
to be done in a filter.

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Create a new directory called ch2-private-item-text.

3. Navigate to this directory and create a new text file called
ch2-private-item-text.php.

4. Open the new file in a code editor and add an appropriate header at the top of the
plugin file, naming the plugin Chapter 2 – Private Item Text.

5. Add a few carriage returns before the ?> characters that close the plugin header
section to create space to add the PHP code.

6. Add the following line of code to declare a new shortcode and specify the name of the
function that should be called when the shortcode is found in posts or pages:
add_shortcode('private', 'ch2pit_private_shortcode');

7. Add the following code section to provide an implementation for the
ch2pit_private_shortcode function:
function ch2pit_private_shortcode($atts, $content = null) {
 if (is_user_logged_in())
 return '<div class="private">' . $content . '</div>';

Plugin Framework Basics

68

 else
 return '';
}

8. Save and close the plugin file.

9. Log in to the administration page of your development WordPress installation.

10. Click on Plugins in the left-hand navigation menu.

11. Activate your new plugin.

12. Create a new post and wrap some of the content with the [private] and [/private] tags:

13. Save and view the post to see that the text is visible while you are logged in to
your site.

14. Log out and refresh the page to see that the enclosed text is not visible to regular
visitors and is not found in the HTML source output either.

How it works...
Similar to a filter function, enclosing shortcodes receive a copy of the text that has been
wrapped with the new tags. It is then possible to return this text with additional HTML code, or
completely replace it with new content. In this specific case, we used the is_user_logged_in
WordPress function to determine if the current visitor is logged in to the site. Based on the
result of that query, the code determines if the original content should be displayed with some
additional styling code or if it should not be displayed at all.

See also
 f Creating a new simple shortcode recipe

Chapter 2

69

Loading a stylesheet to format plugin output
When a plugin adds custom content or inserts styling tags to a post or page's existing
content—as was done in the previous recipe showing how to create an enclosing shortcode—it
usually needs to load a custom stylesheet to style these new elements. This recipe shows
how to add a stylesheet in the WordPress style queue to format the private output created
in the previous recipe. This queue is processed when the page header is rendered, listing all
stylesheets that need to be loaded to display the site correctly.

Getting ready
You should have already followed the Creating a new enclosing shortcode recipe to have a
starting point for this recipe. Alternatively, you can download the resulting code of that recipe
from the Packt Publishing website (http://www.packtpub.com/support).

How to do it...
1. Navigate to the ch2-private-item-text folder of the WordPress plugin directory

of your development installation.

2. Open the ch2-private-item-text.php file in a text editor.

3. Add the following line of code after the existing functions and before the closing
?> PHP command at the end of the file to register a function that will be called
at the beginning of the WordPress page display process:
add_action('wp_enqueue_scripts', 'ch2pit_queue_stylesheet');

4. Add the following code section to provide an implementation for the
ch2pit_queue_stylesheet function:
function ch2pit_queue_stylesheet() {
 wp_enqueue_style('privateshortcodestyle',
 plugins_url('stylesheet.css', __FILE__));
}

5. Save and close the plugin file.

6. Create a new text file in the plugin's directory called stylesheet.css and open it in
a code editor.

7. Add the following content to the file:
.private {
 color: #6E6A6B;
}

Plugin Framework Basics

70

8. Save and close the text file.

9. Navigate to your website, making sure you are logged in, and refresh the page
containing the private text content. You should notice that the text is now displayed
in gray.

How it works...
While it would have been possible to write straight HTML code to load the CSS file by
registering a function with the wp_head action hook as we have done previously, WordPress
has utility functions designed to help avoid loading duplicate stylesheets or scripts on a site.
In this specific example, wp_enqueue_script is used to place the plugin's stylesheet file in
a queue that will be processed when the plugin header is rendered, with the associated name
privateshortcodestyle. Once WordPress has processed all plugins and boiled down all
stylesheet requests to single instances, it will output the necessary HTML code to load all
of them.

The content of the stylesheet.css file is normal CSS code that specifies that any text that
is assigned the private class should be displayed in gray.

See also
 f Creating a new enclosing shortcode recipe

Writing plugins using object-oriented PHP
So far, all plugin examples that have been covered in this chapter have been written using the
procedural PHP programming style, with all functions declared directly in the main body of the
plugin and the hook registration functions having direct access to these functions.

WordPress can also be written using an object-oriented PHP approach. This recipe explains how
to convert the code from the previous recipe into a class-based version of the same functionality.

Getting ready
You should have already followed the Loading a stylesheet to format plugin output recipe to
have a starting point for this recipe. Alternatively, you can download the resulting code from
that recipe from the Packt Publishing website (http://www.packtpub.com/support).

Chapter 2

71

How to do it...
1. Log in to the administration page of your WordPress installation.

2. Click on Plugins in the left-hand navigation menu.

3. Check if the Chapter 2 – Private Item Text plugin is currently active and
deactivate it if it is.

4. Copy the entire contents of the ch2-private-item-text directory and name the
copy ch2-oo-private-item-text.

5. Navigate to the newly renamed folder and rename the main PHP code file to
ch2-oo-private-item-text.php.

6. Open the newly renamed plugin file in a code editor.

7. Update the plugin header to change the name of the plugin to
Chapter 2 – Object-Oriented – Private Item Text.

8. Right after the plugin header, add the following text to declare a new class for our
plugin and specify a constructor function for this class:
class CH2_OO_Private_Item_Text {

 function __construct() {
 }

}

$my_ch2_oo_private_item_text = new CH2_OO_Private_Item_Text();

9. Move the calls to the add_shortcode and add_action functions to be placed
inside of the class constructor.

10. Modify the second argument of the add_shortcode and add_action functions
as follows:
add_shortcode('private', array($this,
 'ch2pit_private_shortcode'));

add_action('wp_enqueue_scripts', array($this,
 'ch2pit_queue_stylesheet'));

11. Move the complete ch2pit_private_shortcode and
ch2pit_queue_stylesheet functions inside of the class body.

12. Save and close the modified file.

Plugin Framework Basics

72

13. Log in to the administration page of your development WordPress installation.

14. Click on Plugins in the left-hand navigation menu.

15. Activate the new plugin.

16. Visit your site to see that the private item content functionality is still in place and
works as it did before.

How it works...
The code changes that we applied to the plugin first declares a class for all of our plugin's
functionality and also contains a constructor function for that class. The constructor function
is called once as soon as the class is instantiated by the last line in the plugin's code and can
be used to associate custom functions with all action hooks, filter hooks, and shortcodes.

The main benefit of using an object-oriented approach is that you don't have to be as careful
when naming your hook callbacks and all other functions, since these names are local to the
class and can be the same as function names declared in any other classes or in procedural
PHP code.

See also
 f Creating a new enclosing shortcode recipe

3
User Settings and

Administration Pages

This chapter is focused on setting up pages that enable users to configure plugin settings. It
covers the following topics:

 f Creating default user settings on plugin initialization

 f Storing user settings using arrays

 f Removing plugin data on deletion

 f Creating an administration page menu item in the Settings menu

 f Creating a multi-level administration menu

 f Hiding items which users should not access from the default menu

 f Rendering the admin page contents using HTML

 f Processing and storing plugin configuration data

 f Displaying a confirmation message when options are saved

 f Adding custom help pages

 f Rendering the admin page contents using the Settings API

 f Accessing user settings from action and filter hooks

 f Formatting admin pages using meta boxes

 f Splitting admin code from the main plugin file to optimize site performance

 f Storing stylesheet data in user settings

 f Managing multiple sets of user settings from a single admin page

User Settings and Administration Pages

74

Introduction
As we saw in the previous chapter, it is very easy for a plugin to register custom functions with
action and filter hooks to change or augment the way WordPress renders web pages. That
being said, some of the examples covered in that chapter have limitations when it comes
to dealing with custom user information such as the inability to specify a Google Analytics
account number or the restricted filename and location for the favicon file to be associated
with a website.

To make plugins easy to use for a wide audience, it is usually important to create one or more
administration pages where users will be able to provide details that are specific to their
installation, enter information on external accounts, and customize some of the aspects of
the plugin's functionality. As an example, the Akismet plugin, provided in default WordPress
installations, offers a configuration page that can be found under the Plugins | Akismet
configuration menu. Thankfully, WordPress has a rich set of functions that allows plugin
developers to easily put together configuration pages that will seamlessly blend with the
rest of the administrative panels.

This chapter covers how to use the WordPress Options Application Programming Interface
(API) functions to store and access user options in the site database. It then goes on
to explain how to create custom dialogs to provide users with complete control over the
configuration of the plugins that you create.

Creating default user settings on plugin
initialization

A typical first step of most user-configurable plugins is to create a default set of values for
all options when the plugin is activated. These default options will subsequently be used to
populate the plugin's settings page when it is visited by the site administrator. This recipe
shows how to register a function that is called when a plugin is activated and how to store
option data in the site database.

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Create a new directory called ch3-individual-options.

3. Navigate to this directory and create a new text file called
ch3-individual-options.php.

4. Open the new file in a code editor and add an appropriate header at the top of the
plugin file, naming the plugin Chapter 3 – Individual Options.

Chapter 3

75

5. Add a few carriage returns before the ?> characters that close the plugin header
section to create space to add the remainder of the PHP code.

6. Add the following line of code after the existing functions and before the closing ?>
PHP command at the end of the file to register a function that will be executed when
the plugin is activated, after its initial installation or following an upgrade:
register_activation_hook(__FILE__,
 'ch3io_set_default_options');

7. Add the following code section to provide an implementation for the
ch3io_set_default_options function:
function ch3io_set_default_options() {
 if (get_option('ch3io_ga_account_name') === false) {
 add_option('ch3io_ga_account_name', "UA-000000-0");
 }
}

8. Save and close the plugin file. Execute the activation function that was just added by
clicking on the Activate option of the Chapter 3 – Individual Options plugin.

9. Using your web server's MySQL database administration tool or the Services section
of the NetBeans development interface, query the wpdev_options table of your
WordPress installation for an option named ch3io_ga_account_name.
select * from wpdev_options
where option_name = "ch3io_ga_account_name"

10. Your query should return a single row with the default value assigned to the new
option, as shown in the following screenshot:

User Settings and Administration Pages

76

How it works...
The register_activation_hook function is used to indicate to WordPress the
name of the function that should be called when it activates the plugin. Unlike other hooks,
this function requires the name of the main plugin code file to be sent as its first argument,
along with the name of the associated function. To do this easily, we can leverage the
PHP __FILE__ constant as the first argument, which will resolve to the filename.

When the callback function is called, we can use the Options API to create, update, or delete
settings in the options table of the site's MySQL database. In this specific example, we are
using the add_option function to easily create an option called ch3io_ga_account_name
with a default value of UA-000000-0.

Just like function names, you should be careful when naming plugin
options to avoid conflicts with other plugins. A good practice is to add
a unique prefix to the beginning of each variable name.

Before making a call to create the new option, the activation function checks if the option is
present in the WordPress options table using the get_option function. If the return value is
false, indicating that the option was not found, a new default option can be created. Any other
result would show that the plugin has been activated on the site previously and that options
may have been changed from their default values. It is important to keep in mind when writing
this code that plugins get deactivated and reactivated each time they are updated using the
WordPress update tool, resulting in a call to their activation function. It is also possible that a
user might have deactivated a plugin temporarily to debug site issues and brought it back at
a later time, also resulting in the activation function getting called.

Finally, it should be noted that it is possible to call the add_option function multiple times
if more than one option is needed to implement a plugin's desired functionality. That being
said, it is not necessary to verify the presence of all options as checking for a single one
would indicate that they were all previously set.

There's more...
Beyond the creation of default values for a plugin, the activation hook also plays a role in the
plugin upgrade process and in more advanced concepts such as custom database tables. In
contrast, the similar deactivation function hook does not have a real use within the creation
of most plugins.

Chapter 3

77

Adding new options when upgrading plugins
While the example code in this recipe creates a single new plugin option, it does not do
anything if the option already exists. When creating new versions of a plugin, you might need
to create new options and to initialize these new parameters to default values. This can be
addressed with a few simple changes to the activation function to store a plugin version
number when the plugin is first installed and create new options when the plugin is
re-activated as part of the upgrade process.

function ch3io_set_default_options() {
 if (get_option('ch3io_version') === false) {
 add_option('ch3io_ga_account_name', 'UA-000000-0');
 add_option('ch3io_track_outgoing_links', 'false');
 add_option('ch3io_version', '1.1');
 } elseif (get_option('ch3io_version') < 1.1) {
 add_option('ch3io_track_outgoing_links', 'false');
 update_option('ch3io_version', '1.1');
 }
}

In the previous example, users of any version older than 1.1 will have a new option added to
their installation when they upgrade, while new users will have all options created when they
first activate. This will ensure that users performing an upgrade will not lose any changes that
they made to the plugin options. As part of the upgrade process, it is important to update the
version number to the most recent version, in addition to creating new options. This will avoid
re-creating these new options each time the activation function is executed.

Creating new tables and initializing custom post type data
While entries in the options table are the most common elements that get created in the
initialization function, it is also possible to perform more advanced tasks such as creation
of custom database tables or the initialization of data related to custom post types. These
advanced operations will be described in the later chapters.

Deactivation function
Similar to the activation function that we used in this recipe, WordPress provides a way to
register a deactivation function (using register_deactivation_hook). While it may
be tempting to use this function to remove options created by the plugin, it is not possible
to know why the activation function was called. The three situations that could trigger this
call are a plugin upgrade, a temporary deactivation to debug a site problem, or just before
the plugin gets deleted. Since it is best to keep user options in the first two situations, any
clean up and data removal code should be placed in a plugin's uninstallation file instead, as
described in a later recipe.

User Settings and Administration Pages

78

See also
 f Removing plugin data on deletion recipe

Storing user settings using arrays
While the previous recipe worked quite well in creating entries in the site's options table for
each individual plugin option, another way to manage user settings is to store them as arrays
in the database.

This recipe creates the same options as the previous one but uses an array instead of
individual options to store them. It also incorporates the upgrade code strategy discussed
in the There's more... section of the previous recipe.

Getting ready
You should have already followed the recipe entitled Inserting link statistics tracking code in
page body using plugin filters in Chapter 2, Plugin Framework Basics, to have a starting point
for this recipe. Alternatively, you can get the resulting code (ch2-page-header-output\
ch2-page-header-output-v2.php) from the code bundle downloaded from the Packt
Publishing website (http://www.packtpub.com/support) and rename the file to ch2-
page-header-output.php.

How to do it...
1. Navigate to the ch2-page-header-output folder of the WordPress plugin directory

of your development installation.

2. Open the file ch2-page-header-output.php in a code editor.

3. Add the following line of code after the existing functions and before the closing ?>
PHP command at the end of the file to register a function to be called when the plugin
gets activated:
register_activation_hook(__FILE__,
 'ch2pho_set_default_options_array');

4. Add the following code section to provide an implementation for the
ch2pho_set_default_options_array function:
function ch2pho_set_default_options_array() {
 if (get_option('ch2pho_options') === false) {
 $new_options['ga_account_name'] = "UA-000000-0";
 $new_options['track_outgoing_links'] = false;
 $new_options['version'] = "1.1";
 add_option('ch2pho_options', $new_options);

Chapter 3

79

 } else {
 $existing_options = get_option('ch2pho_options');
 if ($existing_options['version'] < 1.1) {
 $existing_options['track_outgoing_links'] = false;
 $existing_options['version'] = "1.1";
 update_option('ch2pho_options', $existing_options);
 }
 }
}

5. Save and close the plugin file.

6. Go to the Plugins section of the administration interface.

7. Click on the Deactivate link for the Chapter 2 - Page Header Output plugin, followed
by a click on the Activate link to execute the activation function that was just added.

8. Using your web server's MySQL database administration tool or the Services section
of the NetBeans development interface, query the wpdev_options table of your
WordPress installation for an option with the name ch2pho_options.
select * from wpdev_options
where option_name = "ch2pho_options"

9. Your query should return a single row with a serialized set of data representing all of
the fields in the array.

How it works...
The Options API functions accept values as single variables or arrays of data. When given
an array, they transform the information received to a serialized array that gets stored in the
site database. The main advantage of using arrays over multiple options is that all of the
information can be retrieved with a single function call, optimizing the access to the MySQL
database. This is especially important when your plugin options need to be queried every time
a site page needs to be rendered.

User Settings and Administration Pages

80

Of course, this advantage is only true if you need to use most plugin options at the same time.
Otherwise, your code will be managing large amounts of data for no reason.

Another benefit of this method is that the names of each option can be much shorter and
simpler since you only need to worry about avoiding naming conflicts at the top option name
level as opposed to each key in the array. Finally, having all options stored in a single array
makes the bulk removal of these options much easier than if they were all stored separately,
as we will see in the next recipe.

Similar to the previous recipe, this example handles the creation of all options when the
plugin is first activated and the addition of new options for users that are upgrading from
a previous version.

See also
 f Adding output content to page headers using plugin actions recipe in Chapter 2,

Plugin Framework Basics

 f Inserting link statistics tracking code in page body using plugin filters recipe in
Chapter 2, Plugin Framework Basics

 f Removing plugin data on deletion recipe

Removing plugin data on deletion
As with any piece of software, it is quite possible that users might decide to remove a plugin
from their WordPress installation if they no longer require the functionality that it provides or
they have found an alternative that they prefer.

When this happens, the plugin author must decide if all of the configuration data stored in the
site's database should be left in place, making it easier to re-install the plugin down the road,
or to remove all of this information, leaving a clean database behind.

This recipe shows how to create a de-installation function that will remove options data from
a site's database.

Getting ready
You should have already followed the Storing user settings using arrays recipe to have options
data ready for deletion. Alternatively, you can get the resulting code from the downloaded
code bundle. You should rename the file ch2-page-header-output\ch2-page-header-
output-v3.php to ch2-page-header-output.php before starting this recipe.

Chapter 3

81

How to do it...
1. Navigate to the ch2-page-header-output folder of the WordPress plugin directory

of your development installation.

2. Create a new file called uninstall.php.

3. Open the new file in a text editor and add the following code to it:
<?php

 // Check that code was called from WordPress with
 // uninstallation constant declared

 if (!defined('WP_UNINSTALL_PLUGIN'))
 exit;

 // Check if options exist and delete them if present

 if (get_option('ch2pho_options') != false) {
 delete_option('ch2pho_options');
 }

?>

4. Save and close the plugin file.

5. Navigate to the administration page of your development WordPress installation.

6. Click on Plugins in the left-hand navigation menu.

7. Deactivate the Chapter 2 - Page Header Output plugin.

8. Make a copy of your plugin and uninstallation files to avoid losing them upon
deletion of the plugin in the following steps. The copy should be moved outside of the
plugins folder to avoid WordPress seeing two copies of the plugin.

9. Click the Delete link under the Chapter 2 - Page Header Output plugin.

10. Click on the Yes, Delete these files and data button to delete all plugin files.

User Settings and Administration Pages

82

11. Using your web server's MySQL database administration tool or the Services section
of the NetBeans development interface, query the wpdev_options table of your
WordPress installation for an option with the name ch2pho_options to see that
the option has been deleted.

select * from wpdev_options
where option_name = "ch2pho_options"

How it works...
When a plugin is inactive and a site administrator clicks on its deletion link, WordPress checks
for the presence of a file called uninstall.php in the plugin directory. If the file exists, it
understands that it contains code designed to remove plugin data and settings and displays
a message asking the user if they wish to delete the plugin files and data. If it is not found, it
only asks the user to delete the plugin files.

Upon acknowledgment of the user, WordPress proceeds with the deletion of all plugin files
and executes the contents of the uninstall.php file. This file should contain straight PHP
code that deletes all plugin options and any other content created by the plugin's code. Once
executed, the uninstall script will be deleted with the rest of the files.

Looking at the content of the uninstall script, the first few lines of code check for the presence
of a constant that WordPress should have set before calling the script. If it is not present,
the script will abort immediately for security purposes. This ensures that an external visitor
knowing that a certain plugin is installed won't be able to try to delete it. Once the intent has
been verified, the rest of the code checks for the existence of the ch2pho_options array
that was created in the previous recipe and deletes it. If you created more than one option to
store your configuration data, you will need to delete each option with individual calls to the
delete_option function.

See also
 f Storing user settings using arrays recipe

Creating an administration page menu item
in the Settings menu

After defining default values for plugin configuration options, the next step is to create a place
where users will be able to view and change these values. By using the WordPress API, we are
able to create new items in the administration menu that will later allow us to create custom
plugin configuration pages. This recipe shows how to create a new menu item that will appear
under the Settings subsection of the administration menu.

Chapter 3

83

Getting ready
You should have already followed the Storing user settings using arrays recipe to have options
data available to manage. Alternatively, you can get the resulting code from the downloaded
code bundle. You should rename the file ch2-page-header-output\ch2-page-header-
output-v3.php to ch2-page-header-output.php before starting this recipe.

How to do it...
1. Navigate to the ch2-page-header-output folder of the WordPress plugin directory

of your development installation.

2. Open the ch2-page-header-output.php file in a text editor.

3. Add the following line of code after the existing functions and before the closing
?> PHP command at the end of the file to register a function to be called when
WordPress is building the administration pages menu:
add_action('admin_menu', 'ch2pho_settings_menu');

4. Add the following code section to provide an implementation for the
ch2pho_settings_menu function:
function ch2pho_settings_menu() {
 add_options_page('My Google Analytics Configuration',
 'My Google Analytics', 'manage_options',
 'ch2pho-my-google-analytics', 'ch2pho_config_page');
}

5. Save and close the plugin file.

6. Navigate to the administration page of your development WordPress installation.

7. Activate the Chapter 2 - Page Header Output plugin if you left it deactivated after
following the previous recipe.

8. Click on the Settings section in the left-hand navigation menu to expand it. You will
see a new menu item called My Google Analytics in the tree, created from the code
that was just added to the plugin.

User Settings and Administration Pages

84

9. Click on the My Google Analytics menu item. You will see an error message
displayed since WordPress cannot find the function intended to populate the
configuration page. This error will go away once you perform the next recipe.

How it works...
The first line of code of this recipe registers a function to be called when WordPress is building
the administration menu. When it is executed, the custom function that we created makes a
call to the add_options_page function to add an item to the Settings menu. This function
has a number of parameters that we will look at as follows:

add_options_page($page_title, $menu_title, $capability,
 $menu_slug, $function);

The first two parameters are text strings that will be visible to site administrators, with the
first one appearing in the browser title bar or tab title, and the second being the text of the
submenu item that will appear under the Settings menu.

The third parameter is a bit more complicated and refers to the user capability required to
be able to see and access this menu item. When creating users in a WordPress installation,
each user is assigned one of the five default user roles (Subscriber, Administrator, Editor,
Author, or Contributor). Each of these roles is mapped to a number of permissions that
determine the actions that users with this role can perform. For a full list of roles and their
associated capabilities, please refer to the WordPress Codex page on the topic (http://
codex.wordpress.org/Roles_and_Capabilities). In this example, we used the user
capability manage_options, which is assigned to users who have administrative rights on
the site and to super admins, when working in a network WordPress installation.

The fourth menu item, the menu_slug, is a text string that will be used internally by
WordPress to identify the menu item. This string should be unique to avoid conflicts
with other plugins.

The menu_slug name should be all lowercase to ensure that
more advanced functionalities, such as WordPress meta boxes,
work correctly.

Finally, the last parameter specifies the name of the function to be called to display the
contents of the configuration page when the submenu item is clicked.

The Settings menu is a perfect location for plugins that only require a single configuration
page, as you may have seen when installing other plugins, while more complex plugins that
require multiple menu sections should use the technique shown in the next recipe.

Chapter 3

85

There's more...
While new items will always be located under the default Settings menu items created by
WordPress (General, Writing, Reading, and so on), plugin developers do have some control
over the location of their plugin in the list.

Settings hook priority to determine menu order
As mentioned in the previous chapter, when action hooks were first introduced, the
add_action function's third parameter is used to indicate the priority of a registered callback
over other functions registered for the same hook (in this case, the admin_menu hook). To
ensure that the newly created menu item is as high as possible in the menu, the priority of the
registered function can be set to a value of 1.

add_action('admin_menu', 'ch2pho_settings_menu', 1);

It should be noted that other plugins can also set their callback
to this priority. In such cases, alphabetical priority and activation
sequence are other factors to determine which menu item will be
displayed first after Permalinks.

See also
 f Storing user settings using arrays recipe

Creating a multi-level administration menu
When plugins grow in complexity, their configuration options often grow in numbers, giving
users a high level of flexibility in choosing how the plugin behaves on their site. While it is
possible to display all plugin options on a single lengthy configuration page, creating a new
top-level menu item with multiple sections can help organize parameters in logical groupings
that will allow users to find what they are looking for more quickly.

This recipe shows how to create a new top-level menu item in the administration menu, with
an accompanying submenu item.

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Create a new directory called ch3-multi-level-menu.

3. Navigate to this directory and create a new text file called
ch3-multi-level-menu.php.

User Settings and Administration Pages

86

4. Open the new file in a code editor and add an appropriate header at the top of the
plugin file, naming the plugin Chapter 3 – Multi-Level menu.

5. Add a few carriage returns before the ?> characters that close the plugin header
section to create space to add PHP code.

6. Add the following line of code to register a function that will be called when
WordPress is preparing data to display the site's administration menu:
add_action('admin_menu', 'ch3mlm_admin_menu');

7. Add the following code section to provide an implementation for the
ch3mlm_admin_menu function:
function ch3mlm_admin_menu() {
 // Create top-level menu item
 add_menu_page('My Complex Plugin Configuration Page',
 'My Complex Plugin', 'manage_options',
 'ch3mlm-main-menu', 'ch3mlm_my_complex_main',
 plugins_url('myplugin.png', __FILE__));

 // Create a sub-menu under the top-level menu
 add_submenu_page('ch3mlm-main-menu',
 'My Complex Menu Sub-Config Page', 'Sub-Config Page',
 'manage_options', 'ch3mlm-sub-menu',
 'ch3mlm_my_complex_submenu');
}

8. Save and close the plugin file.

9. Find and download a PNG format 16 x 16 pixel icon from a site such as IconArchive
(http://www.iconarchive.com) and save it as myplugin.png in the
plugin directory.

10. Navigate to the Plugins section of your site's administration area.

11. Activate your new plugin.

12. You will now see a new menu item in the administration menu.

13. Expand the top-level new menu item to see the submenu item.

Chapter 3

87

How it works...
The add_menu_page function is very similar to the add_options_page function seen in the
previous recipe, with its first five parameters being identical.

add_menu_page($page_title, $menu_title, $capability, $menu_slug,
$function, $icon_url, $position);

The last two items are specific to this function, with the first allowing us to display a custom
icon in the menu next to our new top-level item, and the second specifying where the new
menu should be positioned within the administration menu.

While it might seem interesting to use the position argument of
the add_menu_page function to specify an exact position for a
new menu item, doing so is risky since only one menu item will be
displayed if two plugins create entries with the same position
value. If the position parameter is not specified, the new menu
item will appear at the bottom of the menu structure, which should
be fine in most cases.

Once the first menu item has been created, the add_submenu_page function can be used to
attach a submenu item. The following are its parameters, which are virtually identical to the
add_options_page function, except for the first parameter that should be the unique string
identifier of the top-level menu item to which the submenu should be attached:

add_submenu_page($parent_slug, $page_title, $menu_title,
 $capability, $menu_slug, $function);

While it is possible to use this technique to create top-level menu items for plugins with a
single configuration page, these simpler extensions should create a single entry under the
Settings menu, as shown in the previous recipe.

See also
 f Creating an administration page menu item in the Settings menu recipe

Hiding items which users should not access
from the default menu

Many users praise WordPress for its ease of use and streamlined administration interface.
That being said, almost everyone who has deployed it to new users has instructed them to
avoid certain menu items as they do not need to enter these sections and could potentially
introduce site malfunctions if they modified settings in these areas.

User Settings and Administration Pages

88

A better solution than prevention through training is to use a few simple API functions to
hide the undesired menu items. This recipe shows how to use these functions, introduced
in version 3.1, to remove the Links editor and Permalinks settings menu items.

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.
2. Create a new directory called ch3-hide-menu-item.
3. Navigate to this directory and create a new text file called

ch3-hide-menu-item.php.
4. Open the new file in a code editor and add an appropriate header at the top of the

plugin file, naming the plugin Chapter 3 – Hide Menu Item.
5. Add a few carriage returns before the ?> characters that close the plugin header

section to create space to add PHP code.
6. Add the following line of code to register a function that will be called when

WordPress is preparing data to display the site's navigation menu:
add_action('admin_menu', 'ch3hmi_hide_menu_item');

7. Add the following code section to provide an implementation for the
ch3hmi_hide_menu_item function, hiding the Links menu item:
function ch3hmi_hide_menu_item() {
 remove_menu_page('link-manager.php');
}

8. Add an extra function call to the ch3hmi_hide_menu_item function to hide the
Permalinks submenu item, found under the Settings menu:
remove_submenu_page('options-general.php',
 'options-permalink.php');

9. Save and close the plugin file.

10. Navigate to the Plugins section of the administration interface.

11. Activate your new plugin.

12. Look at the administration menu to see that the Links menu is no longer visible.

13. Expand the Settings menu to see that the Permalinks submenu item is not
visible either.

Chapter 3

89

How it works...
The default WordPress administration menu uses the names of the PHP code files used to
render each section as their unique identifiers. One way to quickly find out the identifier for a
menu item is to hover the mouse cursor over it in a web browser and to look at the address
that the link points to. In the case of the Links menu item, the URL is http://localhost/
wp-admin/link-manager.php, thus the use of link-manager.php in the call to
remove_menu_page.

A similar technique was used to determine the arguments to
pass to the remove_submenu_page function, identifying that
the Settings section has a URL of http://localhost/wp-
admin/options-general.php while the Permalinks section
has the address http://localhost/wp-admin/options-
permalink.php.

Rendering the admin page contents
using HTML

Once a custom menu item has been created, WordPress will call the function associated with
it when it gets visited. The assigned function's main purpose is to render a configuration page
containing a form with all options available to the user and to send the captured data back to
WordPress for processing.

There are two main methods that can be used to render plugin configuration pages: straight
HTML and the Settings API. This recipe explores the use of HTML to create a configuration
panel while a later recipe will show how to use the Settings API to prepare the page output.

Getting ready
You should have already followed the Creating an administration page menu item in the
Settings menu recipe. Alternatively, you can get the resulting code from the downloaded code
bundle. You should rename the file ch2-page-header-output\ch2-page-header-
output-v4.php to ch2-page-header-output.php before starting this recipe.

How to do it...
1. Navigate to the ch2-page-header-output folder of the WordPress plugin directory

of your development installation.

2. Open the ch2-page-header-output.php file in a text editor.

User Settings and Administration Pages

90

3. Add the following lines of code after the existing functions and before the closing ?>
PHP command at the end of the file to implement the rendering code for the plugin
options page:
function ch2pho_config_page() {
 // Retrieve plugin configuration options from database
 $options = get_option('ch2pho_options');
 ?>

 <div id="ch2pho-general" class="wrap">
 <h2>My Google Analytics</h2>

 <form method="post" action="admin-post.php">

 <input type="hidden" name="action"
 value="save_ch2pho_options" />

 <!-- Adding security through hidden referrer field -->
 <?php wp_nonce_field('ch2pho'); ?>
 Account Name: <input type="text" name="ga_account_name"
 value="<?php echo esc_html($options['ga_account_name']);
 ?>"/>

 Track Outgoing Links: <input type="checkbox"
 name="track_outgoing_links" <?php if (
 $options['track_outgoing_links']) echo ' checked="checked" ';
 ?>/>

 <input type="submit" value="Submit"
 class="button-primary"/>
 </form>
 </div>
<?php }

4. Save and close the plugin file.

5. Click on the Settings section in the administration pages.

6. Click on the My Google Analytics menu item to display the plugin configuration page.

Chapter 3

91

How it works...
Any output generated within the configuration page implementation function will be sent to
the browser, enclosed within the WordPress administration interface layout. In this recipe's
code, we first start by using the get_option function to retrieve all options for the plugin,
conveniently organized in an array that we can store in a single variable.

We then use a closing PHP bracket to be able to write direct HTML code for the rest of the
function's body, sending this content directly to the browser. The HTML code takes care of
creating a standard form, rendering a text field to display and accept new values for the
Google Analytics Account Number, and a checkbox for the user to specify whether or not
outgoing links should be tracked. Finally, the HTML code adds a Submit button to allow users
to submit any changes made to the plugin's configuration.

Taking a closer look at the code, it also contains small snippets of PHP code that display the
current configuration values when the Options page is displayed.

The biggest advantage of using straight HTML to render a plugin's configuration page is that it
allows for the creation of intricate layouts to present all of the options to the end user. This is
in sharp contrast to using the Settings API, as we will see in a later recipe. HTML is also easier
to understand for many web designers than working with intricate functions.

It should be noted that any changes submitted from this form in its
current state won't be saved since we have not implemented the
code necessary to process the submitted data and store it back in
the options database table. This will be covered in the next recipe.

There's more...
As soon as user submission processing comes into play, it is important to think about security.
The form that was created in this recipe is no exception.

wp_nonce_field
The wp_nonce_field function that was used in this recipe is part of a security measure to
ensure that the data being sent for submission comes from the WordPress administration
pages and not an external source. By adding this function call, a hidden text field is added
to the plugin configuration form with information that will be checked when the post data
is received.

While it is optional, the first argument of the function is a unique identifier that should always
be set to ensure better security. If it is not set, default values will be used, facilitating security
breaches. The function also has a number of other optional parameters as follows:

wp_nonce_field($action, $name, $referer, $echo);

User Settings and Administration Pages

92

The other three arguments are used to specify a name for the nonce, which would need to be
matched on the receiving end, a Boolean variable to indicate if the referer field should be set
for validation and another Boolean parameter to determine if the hidden form field should be
displayed or returned.

See also
 f Creating an administration page menu item in the Settings menu recipe

Processing and storing plugin configuration
data

With the configuration page in place, plugin users will be able to modify configuration options
and submit them to be stored in the WordPress database. The missing link at this time is the
creation of a data processing function that will receive the data posted by the user and store it
in the site's options table.

This recipe describes how to implement a data processing function to validate that the
information being sent for storage is legitimate and to store the information in an options array.

Getting ready
You should have already followed the Rendering the admin page contents using HTML recipe.
Alternatively, you can get the resulting code from the downloaded code bundle. You should
rename the file ch2-page-header-output\ch2-page-header-output-v5.php to
ch2-page-header-output.php before starting this recipe.

How to do it...
1. Navigate to the ch2-page-header-output folder of the WordPress plugin directory

of your development installation.

2. Open the ch2-page-header-output.php file in a text editor.

3. Add the following line of code after the existing functions and before the closing
?> PHP command at the end of the file to register a function to be called when
WordPress first identifies that the requested page is an administration page:
add_action('admin_init', 'ch2pho_admin_init');

Chapter 3

93

4. Add the following code section to provide an implementation for the
ch2pho_admin_init function:
function ch2pho_admin_init() {
 add_action('admin_post_save_ch2pho_options',
 'process_ch2pho_options');
}

5. Add the following code section to provide an implementation for the
process_ch2pho_options function that was declared in the previous step:
function process_ch2pho_options() {

 // Check that user has proper security level

 if (!current_user_can('manage_options'))
 wp_die('Not allowed');

 // Check that nonce field created in configuration form
 // is present

 check_admin_referer('ch2pho');

 // Retrieve original plugin options array

 $options = get_option('ch2pho_options');

 // Cycle through all text form fields and store their values
 // in the options array

 foreach (array('ga_account_name') as $option_name) {
 if (isset($_POST[$option_name])) {
 $options[$option_name] =
 sanitize_text_field($_POST[$option_name]);
 }
 }

 // Cycle through all check box form fields and set the options
 // array to true or false values based on presence of
 // variables

 foreach (array('track_outgoing_links') as $option_name) {
 if (isset($_POST[$option_name])) {
 $options[$option_name] = true;
 } else {
 $options[$option_name] = false;
 }
 }

 // Store updated options array to database

User Settings and Administration Pages

94

 update_option('ch2pho_options', $options);

 // Redirect the page to the configuration form that was
 // processed

 wp_redirect(add_query_arg('page',
 'ch2pho-my-google-analytics',
 admin_url('options-general.php')));

 exit;
}

6. Save and close the plugin file.

7. Click on the Settings section of the administration menu.

8. Click on the My Google Analytics menu item to display the configuration page.

9. Change the value of one of the fields and click on the Submit button.

10. When the page refreshes, you will see that the values displayed reflect the
values submitted.

How it works...
This recipe is the first to introduce an action hook that has a variable name. Instead of writing
a specific action hook name when calling add_action, this hook name starts with the
words admin_post_ and is followed by the name of an action that it expects to match with
a hidden form field. In this case, the action name is save_ch2pho_options. Going back to
the previous recipe, you can see that this text is the same as the one that was placed in the
hidden form field called action:

<input type="hidden" name="action"
value="save_ch2pho_options" />

When the configuration page form is submitted, it sends all data to the admin-post.php
script, which checks for an action field and then sends the data that it received to the
associated function, if present.

Once the processing function is executed, the calls to current_user_can and
check_admin_referer are security measures where we check to see if the user who is
currently logged in has administrative rights and if the nonce field that was part of the form is
present. An error in these permission checks will result in a specific error message letting the
user know that he does not have the rights to perform this action while the nonce check will
display a vague error message to throw off potential hackers.

Chapter 3

95

The rest of the function focuses on retrieving the current set of plugin options using the
get_option function, processing the posted fields, and storing the updated values back in
the site database. While using foreach loops might seem to be overkill to store two simple
data fields, this approach can easily scale up to support large amounts of configuration fields.

The final step is a call to the wp_redirect function to send the browser back to the plugin
options page after all data has been stored.

See also
 f Rendering the admin page contents using HTML recipe

Displaying a confirmation message when
options are saved

An important usability aspect of any user interface is to display an acknowledgement
message when users have completed a task successfully. As you may have noticed in the
previous recipe, WordPress does not provide any user feedback by default after configuration
data has been saved to the options table.

This recipe explains how to display an acknowledgement message on the configuration page
after the user has updated the plugin's configuration options.

Getting ready
You should have already followed the Processing and storing plugin configuration data recipe.
Alternatively, you can get the resulting code from the downloaded code bundle. You should
rename the file ch2-page-header-output\ch2-page-header-output-v6.php to
ch2-page-header-output.php before starting this recipe.

User Settings and Administration Pages

96

How to do it...
1. Navigate to the ch2-page-header-output folder of the WordPress plugin directory

of your development installation.

2. Open the ch2-page-header-output.php file in a text editor.

3. Modify the call to wp_redirect at the end of the process_ch2pho_options
function from:
wp_redirect(add_query_arg('page',
 'ch2pho-my-google-analytics',
 admin_url('options-general.php')));

to:
wp_redirect(add_query_arg(
 array('page' => 'ch2pho-my-google-analytics',
 'message' => '1'),
 admin_url('options-general.php')));

4. Add the following code (in bold) after the configuration page title, within the
ch2pho_config_page function:
<h2>My Google Analytics</h2>

<?php if (isset($_GET['message'])
 && $_GET['message'] == '1') { ?>
 <div id='message' class='updated fade'><p>Settings
 Saved</p></div>
<?php } ?>

5. Save and close the plugin file.

6. Click on the Settings section of the administration menu.

7. Click on the My Google Analytics menu item.

8. Change the value of one of the fields and click on the Submit button to see the newly
created message indicating that the settings have been saved.

Chapter 3

97

How it works...
When a redirection call is made, user-submitted fields and PHP variables do not carry forward
to the target page. Therefore, we need to use another method, query arguments, to determine
that a confirmation message should be displayed.

The first part of the recipe modifies the existing call to wp_redirect slightly to add a new
query variable called message, set to a value of 1.

Once it receives this variable, the code responsible to render the options page can display
a message, following the standard WordPress styling.

The same mechanism could be used to display different messages based on the outcome of
the options storage. For example, if some fields need to receive data formatted a certain way,
the process_ch2pho_options function could set the message value differently depending
on the success or failure of the data processing operation.

See also
 f Processing and storing plugin configuration data recipe

Adding custom help pages
As descriptive as field labels can be, a good plugin always needs to be accompanied by a set
of documentation to allow users to quickly understand how to activate the plugin and perform
the right steps to get the expected results. While a ReadMe file is often what developers
first think to produce, users almost never read an external file or instructions on the official
WordPress plugin page. They just install the plugin and try to figure it out by themselves.

To address this concern, version 3.3 of WordPress introduces the ability to create elaborate
multi-section help pages right in the plugin's administration pages to allow users to quickly
get answers to their questions. This recipe shows you how to register the appropriate callback
function to add a help section to your plugin configuration page, containing multiple tabs
of information.

User Settings and Administration Pages

98

Getting ready
You should have already followed the Displaying a confirmation message when options are
saved recipe. Alternatively, you can get the resulting code from the downloaded code bundle.
You should rename the file ch2-page-header-output\ch2-page-header-output-v7.
php to ch2-page-header-output.php before starting this recipe.

How to do it...
1. Navigate to the ch2-page-header-output folder of the WordPress plugin directory

of your development installation.

2. Open the ch2-page-header-output.php file in a text editor.

3. Find the ch2pho_settings_menu function in the existing code.

4. Modify the code to store the return value of the add_options_page function call
to a variable:
$options_page = add_options_page(
 'My Google Analytics Configuration', 'My Google Analytics',
 'manage_options', 'ch2pho-my-google-analytics',
 'ch2pho_config_page');

5. Add the following block of code to the ch2pho_settings_menu function to register
an action that will be called when the plugin's options page is loaded:
if ($options_page)
 add_action('load-' . $options_page,
 'ch2pho_help_tabs');

6. Add the following code to implement the newly declared ch2pho_help_tabs function:
function ch2pho_help_tabs() {
 $screen = get_current_screen();
 $screen->add_help_tab(array(
 'id' => 'ch2pho-plugin-help-instructions',
 'title' => 'Instructions',
 'callback' => 'ch2pho_plugin_help_instructions'
));

 $screen->add_help_tab(array(
 'id' => 'ch2pho-plugin-help-faq',
 'title' => 'FAQ',
 'callback' => 'ch2pho_plugin_help_faq',
));

Chapter 3

99

 $screen->set_help_sidebar('<p>This is the sidebar
 content</p>');
}

7. Add the following code section to provide an implementation for the
ch2pho_plugin_help_instructions function:
function ch2pho_plugin_help_instructions() { ?>
 <p>These are instructions explaining how to use this
 plugin.</p>
<?php }

8. Add the following code section to provide an implementation for the ch2pho_
plugin_help_faq function:
function ch2pho_plugin_help_faq() { ?>
 <p>These are the most frequently asked questions on the use of
 this plugin.</p>
<?php }

9. Save and close the plugin file.

10. Click on the Settings section of the administration menu.

11. Click on the My Google Analytics menu to display the plugin configuration page. You
will now see a Help tab appear in the top-right corner of the page.

12. Click on the Help tab to see all of the help content that was added to the plugin.

How it works...
As first discussed in the Processing and storing plugin configuration data recipe, some
WordPress action hooks have names that contain a variable element that allows the plugin
developer to get code executed when a specific page is rendered or when data from a specific
form is submitted. In this example, the load-<pagename> hook is used to register a function
that gets executed when a specific administration page is accessed by the user.

User Settings and Administration Pages

100

Once the callback occurs, the function's code retrieves a reference to the WordPress screen
object, which contains data about the screen that is currently displayed along with a number
of utility functions to manipulate and add content to the page. The code from the recipe then
proceeds to register functions to render the content of two sections in the Help tab using the
add_help_tab function.

The add_help_tab function is a little different from the functions that we have seen
before, expecting a single array of options as its parameter. These options indicate a unique
identifier for the menu section, which becomes the label displayed on each tab, and the name
of the function that will render the tab contents. It is also possible to replace the callback
argument with a parameter called content, which would directly contain the HTML code
intended to be displayed in the Help tab. With this information, WordPress is able to integrate
the provided HTML code when rendering the options page interface, including all of the
necessary wrapper code to make the Help tab open and close, as well as allow the user
to switch between the different sections.

The other function used in this recipe, set_help_sidebar, is even simpler than
add_help_tab, with a single argument indicating the HTML content to be displayed
on the right-hand side of the help section.

See also
 f Rendering the admin page contents using HTML recipe

Rendering the admin page contents using
the Settings API

Starting from version 2.7, WordPress introduced a set of functions referred to as the
Settings API that can be used to automate the creation of complex configuration pages.
While the work required to put this rendering technique in place is a bit overkill for plugins
that only have a handful of options, it can definitively be useful if you are dealing with tens or
hundreds of configuration fields, simplifying the task of writing out HTML code for every single
item to a single function call. It also automates the task of processing and storing plugin
configuration data.

This recipe explains how to specify the contents of a configuration page using the Settings API
and how to provide rendering functions for the most commonly used types of form field used
in configuration pages. It uses the same set of configuration options as other recipes in this
chapter to show how the two techniques compare.

Chapter 3

101

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Create a new directory called ch3-settings-api.

3. Navigate to this directory and create a new text file called ch3-settings-api.php.

4. Open the new file in a code editor and add an appropriate header at the top of the
plugin file, naming the plugin Chapter 3 – Settings API.

5. Add a few carriage returns before the ?> characters that close the plugin header
section to create space to add PHP code.

6. Add a PHP constant to specify an internal version number that will be used
throughout the plugin code:
define("VERSION", "1.1");

7. Add the following line of code to register a function that will be called when
WordPress activates the plugin:
register_activation_hook(__FILE__,
 'ch3sapi_set_default_options');

8. Add the following code section to provide an implementation for the
ch3sapi_set_default_options function to set default plugin options:
function ch3sapi_set_default_options() {
 if (get_option('ch3sapi_options') === false) {
 $new_options['ga_account_name'] = "UA-000000-0";
 $new_options['track_outgoing_links'] = false;
 $new_options['version'] = VERSION;
 add_option('ch3sapi_options', $new_options);
 }
}

9. Add the following registration function to associate a callback with the admin_init
action hook:
add_action('admin_init', 'ch3sapi_admin_init');

10. Add an implementation for the ch3sapi_admin_init function, creating the
settings group for the plugin and defining its contents:
function ch3sapi_admin_init() {
 // Register a setting group with a validation function
 // so that post data handling is done automatically for us

 register_setting('ch3sapi_settings',
 'ch3sapi_options','ch3sapi_validate_options');

 // Add a new settings section within the group

User Settings and Administration Pages

102

 add_settings_section('ch3sapi_main_section',
 'Main Settings',
 'ch3sapi_main_setting_section_callback',
 'ch3sapi_settings_section');

 // Add each field with its name and function to use for
 // our new settings, put them in our new section

 add_settings_field('ga_account_name', 'Account Name',
 'ch3sapi_display_text_field',
 'ch3sapi_settings_section',
 'ch3sapi_main_section',
 array('name' => 'ga_account_name'));

 add_settings_field('track_outgoing_links',
 'Track Outgoing Links',
 'ch3sapi_display_check_box',
 'ch3sapi_settings_section',
 'ch3sapi_main_section',
 array('name' => 'track_outgoing_links'));
}

11. Declare a body for the ch3sapi_validate_options function, which was declared
when registering the settings in the previous section, to return the user input with one
additional piece of information indicating the plugin version:
function ch3sapi_validate_options($input) {
 $input['version'] = VERSION;
 return $input;
}

12. Declare a body for the ch3sapi_main_setting_section_callback function,
declared when the settings section was created:
function ch3sapi_main_setting_section_callback() { ?>
 <p>This is the main configuration section.</p>
<?php }

13. Provide an implementation for the ch3sapi_display_text_field function,
declared when a text field was added to the settings section:
function ch3sapi_display_text_field($data = array()) {
 extract($data);
 $options = get_option('ch3sapi_options');
 ?>
 <input type="text" name="ch3sapi_options[<?php echo $name;
 ?>]" value="<?php echo esc_html($options[$name]);
 ?>"/>

<?php }

Chapter 3

103

14. Declare and define the ch3sapi_display_check_box function, declared when
a checkbox was added to the settings section:
function ch3sapi_display_check_box($data = array()) {
 extract ($data);
 $options = get_option('ch3sapi_options');
 ?>
 <input type="checkbox"
 name="ch3sapi_options[<?php echo $name; ?>]"
 <?php if ($options[$name]) echo ' checked="checked"';
?>/>
<?php }

15. Add the following line of code to register a function that will be called when
WordPress is preparing data to display the site's administration menu:
add_action('admin_menu', 'ch3sapi_settings_menu');

16. Provide code for the implementation of the ch3sapi_settings_menu function:
function ch3sapi_settings_menu() {
 add_options_page('My Google Analytics Configuration',
 'My Google Analytics - Settings API', 'manage_options',
 'ch3sapi-my-google-analytics',
 'ch3sapi_config_page');
}

17. Add a definition for the ch3sapi_config_page function, defined when the new
options page was declared:
function ch3sapi_config_page() { ?>
 <div id="ch3sapi-general" class="wrap">
 <h2>My Google Analytics – Settings API</h2>

 <form name="ch3sapi_options_form_settings_api" method="post"
 action="options.php">

 <?php settings_fields('ch3sapi_settings'); ?>
 <?php do_settings_sections('ch3sapi_settings_section'); ?>

 <input type="submit" value="Submit" class="button-primary" />
 </form>
 </div>
<?php }

18. Save and close the plugin file.

19. Navigate to the Plugins menu of the administration area.

User Settings and Administration Pages

104

20. Activate your new plugin.

21. Navigate to the Settings menu and click on the My Google Analytics – Settings
API menu item to see the configuration page for this plugin.

22. Make a change to the options and submit them to see that they are automatically
handled by WordPress.

How it works...
The Settings API is an intricate series of callbacks that allow plugin developers to streamline
the creation of administration pages and to automatically store user options to the site
database without needing to write any code.

This self-contained plugin recipe starts with the creation of a new set of default options,
to avoid inadvertently deleting options from previous recipes.

The code continues with registering a function to be called whenever admin pages are
prepared for display using the admin_init action hook. Upon getting called, the callback
function takes care of registering a new setting group, a setting section belonging to this
group and two fields that will display the desired options within the section. As can be seen
throughout this code, additional functions are registered to validate the user-submitted data,
to display custom text at the beginning of the section and to display the two different types of
fields required to capture and display user input.

Taking a closer look at each of the functions that were just used, the first function has three
parameters that are as follows:

register_setting($option_group, $option_name,
 $sanitize_callback);

Within these parameters, the first option is a unique identifier for the settings group, the
second is the name of the options array that will be used to store configuration data in the
site database, while the third is the name of a callback function that will receive user input
for validation.

Chapter 3

105

Moving on to the second function used in this example, add_settings_section, the four
parameters that it requires respectively indicate a unique identifier for the section, the title
string that will be displayed when the section is rendered, a callback function that will be used
to display a description for the section, and finally a page identifier that will be used to render
all similar functions later within the plugin code.

add_settings_section($id, $title, $callback, $page);

The third function of the Settings API that is used in this recipe, add_settings_field, is
called multiple times to define the fields that make up each section.

add_settings_field($id, $title, $callback, $page, $section,
 $args);

Similar to the other functions, the first parameter is a unique identifier for the field, the
second parameter is a label that will be displayed next to the field, and the third parameter
is a callback function that will be executed to output the necessary HTML code to display the
field. The next three parameters indicate the page that the field belongs to, the section that it
is contained in, and an optional array of additional data to be sent to the callback function. As
can be seen in the rest of this recipe, we are leveraging this optional additional data argument
to send data to the field processing function to make them more generic.

When the configuration page is visited, the top-level form is created using regular HTML
code, setting the action to admin_post.php. This script is responsible for automating the
processing of user data. The rest of the form is quite simple since it gets generated by the
settings_fields and do_settings_sections functions. When they are called, the
setting group created earlier is rendered, followed by calls to the functions designed to draw
all sections that it contains and all registered fields within these sections.

While the Settings API provides full control over the layout of the form fields themselves, its
use dictates the general layout of the configuration page, creating a two-column table that
contains the labels for each field in the first column and the code produced by the plugin's
callback functions in the second one. As the functions for each type of field are called, they
receive the array data that was associated with each of them and use it to retrieve current
field values and to specify the name of each field to be stored back upon user input.

The last piece of the puzzle is the validation function that was registered when the setting
group was first created. The purpose of this function is to allow the plugin developers to
perform data type or content validation as user data is submitted through the form. In this
specific example, we simply return the submitted data array, augmented with one piece of
data containing the plugin version number, so that WordPress stores it automatically in the
site database with the rest of the configuration data. This validation function can be used
to create complex data type checks and validation rules, such as verifying date formats.

User Settings and Administration Pages

106

There's more...
While this recipe shows how to create rendering functions for two types of data fields, you may
require other types of options for your plugin. The following are code examples which show
how to handle most typical data types used in plugin options.

Rendering a drop-down list settings field
The first step to rendering a drop-down list is to provide the list of all possible options,
along with the option name, in the optional field data array. Here is an example of the
add_settings_field function call with such a list:

add_settings_field('Select_List', 'Select List',
 'ch3sapi_select_list',
 'ch3sapi_settings_section', 'ch3sapi_main_section',
 array('name' => 'Select_List',
 'choices' => array('First', 'Second', 'Third')));

With this information, we can provide an implementation for the ch3sapi_select_list
function that will be able to render an HTML select element, using the choices array
to populate it.

function ch3sapi_select_list($data = array()) {
 extract ($data);
 $options = get_option('ch3sapi_options');
 ?>
 <select name="ch3sapi_options[<?php echo $name; ?>]'>
 <?php foreach($choices as $item) { ?>
 <option value="<?php echo $item; ?>"
 <?php selected($options[$name] == $item); ?>>
 <?php echo $item; ?></option>;
 <?php } ?>
 </select>
<?php }

Rendering a text area settings field
Another common field type used in configuration pages is a multi-line text area. For this HTML
construct, the add_settings_field function is identical to the text and checkbox examples
shown in the recipe, while the field rendering code is as follows:

function ch3sapi_display_text_area($data = array()) {
 extract ($data);
 $options = get_option('ch3sapi_options');
 ?>

Chapter 3

107

 <textarea type="text"
 name="ch3sapi_options[<?php echo $name; ?>]"
 rows="5" cols="30">
 <?php echo esc_html ($options[$name]); ?></textarea>
<?php }

See also
 f Rendering the admin page contents using HTML recipe

Accessing user settings from action and
filter hooks

After creating a default set of values for our plugin's configuration and creating an interface to
allow users to modify and update these values, we are now ready to start using these options
when pages are rendered using our additional plugin functionality. Going back to the Google
Analytics example created in the previous chapter, this recipe shows how to access the plugin
options data using a familiar function to make the existing code much more flexible.

Getting ready
You should have already followed the Adding custom help pages recipe. Alternatively, you
can get the resulting code from the downloaded code bundle. You should rename the file
ch2-page-header-output\ch2-page-header-output-v8.php to ch2-page-
header-output.php before starting this recipe.

How to do it...
1. Navigate to the ch2-page-header-output folder of the WordPress plugin directory

of your development installation.

2. Open the ch2-page-header-output.php file in a text editor.

3. Modify the implementation of the ch2pho_page_header_output function to
retrieve the plugin options array and use the stored value for the account number
to embed it in the page header code. The new code sections are identified in bold:
function ch2pho_page_header_output() {
 $options = get_option('ch2pho_options');
 ?>

 <script type="text/javascript">

 var gaJsHost = (("https:" == document.location.protocol) ?
 "https://ssl." : "http://www.");

User Settings and Administration Pages

108

 document.write(unescape("%3Cscript src='" + gaJsHost +
 "google-analytics.com/ga.js'
 type='text/javascript'%3E%3C/script%3E"));

 </script>

 <script type="text/javascript">

 try {
 var pageTracker = _gat._getTracker("<?php echo
 $options['ga_account_name']; ?>");
 pageTracker._trackPageview();
 } catch(err) {}

 </script>

<?php }

4. Add code to check if outgoing code tracking should be done before registering an
action hook to filter all post and page content, with the changes made identified
in bold:
$options = get_option('ch2pho_options');

if ($options['track_outgoing_links'] == true) {
 add_filter('the_content','ch2lfa_link_filter_analytics');
}

5. Use the same check to determine if page footer code should be added to provide
the JavaScript necessary for outgoing link tracking to occur, with the changes made
identified in bold:
if ($options['track_outgoing_links'] == true) {
 add_action('wp_footer', 'ch2lfa_footer_analytics_code');
}

6. Save and close the plugin file.

7. Visit the site and look at the page source to see that the previous UA-xxxxxx-x has
been replaced by UA-000000-0.

How it works...
As we saw earlier in this chapter when creating administrative pages, the get_option
function can query the site's database and return the plugin configuration data that it
contains. This data can be in the form of a single variable or an array of information. In this
case, following the Storing user settings using arrays recipe found earlier in this chapter, an
array was used and is accessed to use its values in the page output when header and footer
action hooks are called and when page content is being filtered.

Chapter 3

109

See also
 f Storing user settings using arrays recipe

Formatting admin pages using meta boxes
As a plugin's administration page becomes longer and more complex, it becomes very
important to divide its contents into multiple sections. While standard HTML headers or
fieldset tags could be used for this task, they lack the usefulness and nice visual appearance
of meta boxes. Meta boxes are the containers that show up in most default WordPress
content editors, as well as on the main administration Dashboard page.

Beyond visually organizing content, meta boxes are very powerful since they allow site
administrators to collapse configuration sections that they don't use, re-order sections
based on their needs, and even hide elements that they don't use.

This recipe explains how to convert the HTML-based configuration page that was created
earlier in this chapter to use the built-in meta box system.

Getting ready
You should have already followed the Accessing user settings from action and filter hooks
recipe. Alternatively, you can get the resulting code from the downloaded code bundle. You
should rename the file ch2-page-header-output\ch2-page-header-output-v9.php
to ch2-page-header-output.php before starting the recipe.

How to do it...
1. Browse to the Plugins section of the administration section of your site and

deactivate the Chapter 2 – Page Header Output plugin.

2. Navigate to the ch2-page-header-output folder of the WordPress plugin directory
of your development installation.

3. Copy the file ch2-page-header-output.php to ch2-page-header-output-
metaboxes.php.

4. Open the ch2-page-header-output-metaboxes.php file in a text editor.

5. Change the plugin name in the header from Chapter 2 - Page Header Output
to Chapter 2 - Page Header Output Meta Boxes.

User Settings and Administration Pages

110

6. Right under the top plugin header comment, add a line of code to declare a global
variable to hold the identifier for the options page:
global $options_page;

7. Find the ch2pho_settings_menu function in the existing code.

8. Add a line at the top of the function to point to the global options page variable:
global $options_page;

9. Find the ch2pho_help_tabs function within the plugin code.

10. Add the following block of code at the end of the function body to queue up scripts
to be loaded when rendering the configuration page and to create meta boxes to be
drawn on-screen:
global $options_page;

add_meta_box('ch2pho_general_meta_box',
 'General Settings', 'ch2pho_plugin_meta_box',
 $options_page, 'normal', 'core');

add_meta_box('ch2pho_second_meta_box',
 'Second Settings Section', 'ch2pho_second_meta_box',
 $options_page, 'normal', 'core');

11. Add a line of code at the end of the plugin code file to register a function to be called
when administration page styles are placed in a queue:
add_action('admin_enqueue_scripts',
 'ch2pho_load_admin_scripts');

12. Insert the following code segment to provide an implementation for the
ch2pho_load_admin_scripts function:
function ch2pho_load_admin_scripts() {
 global $current_screen;
 global $options_page;

 if ($current_screen->id == $options_page) {
 wp_enqueue_script('common');
 wp_enqueue_script('wp-lists');
 wp_enqueue_script('postbox');
 }
}

13. Create a new function to implement the ch2pho_plugin_meta_box function that
was declared a few steps back. Notice that the body of the function is a direct copy
and paste of the previous form code that was used to render the Account Name and
Track Outgoing Links field.
function ch2pho_plugin_meta_box($options) { ?>
 Account Name: <input type="text" name="ga_account_name"

Chapter 3

111

 value="<?php echo esc_html($options['ga_account_name']);
 ?>"/>

 Track Outgoing Links <input type="checkbox"
 name="track_outgoing_links" <?php if (
 $options['track_outgoing_links']) echo '
 checked="checked" ';
 ?>/>

<?php }

14. Add the following code to provide an implementation for the ch2pho_second_
meta_box function, to display a second meta box. This second box will not have any
real content. It will only be used to illustrate some of the meta box functionality.
function ch2pho_second_meta_box($options) { ?>
 <p>This is the content of the second metabox.</p>
<?php }

15. Find the code for the ch2pho_config_page function in your code and modify it as
shown in the following code, where all new code segments are in bold. Delete the
original code that rendered the ga_account_name and track_outgoing_links
fields.
function ch2pho_config_page() {
 // Retrieve plugin configuration options from database
 $options = get_option('ch2pho_options');
 global $options_page;
 ?>

 <div id="ch2pho-general" class="wrap">
 <h2>My Google Analytics</h2>

 <?php if (isset($_GET['message'])
 && $_GET['message'] == '1') { ?>
 <div id='message' class='updated fade'>
 <p>Settings Saved</p>
 </div>
 <?php } ?>

 <form action="admin-post.php" method="post">
 <input type="hidden" name="action"
 value="save_ch2pho_options" />

 <!-- Adding security through hidden referrer field -->
 <?php wp_nonce_field('ch2pho'); ?>

 <!-- Security fields for meta box save processing -->

User Settings and Administration Pages

112

 <?php wp_nonce_field('closedpostboxes',
 'closedpostboxesnonce', false); ?>
 <?php wp_nonce_field('meta-box-order',
 'meta-box-order-nonce', false); ?>

 <div id="poststuff" class="metabox-holder">
 <div id="post-body">
 <div id="post-body-content">
 <?php do_meta_boxes($options_page, 'normal', $options) ;
 ?>
 <input type="submit" value="Submit"
 class="button-primary"/>
 </div>
 </div>
 <br class="clear"/>
 </div>
 </form>
 </div>

 <script type="text/javascript">

 //<![CDATA[

 jQuery(document).ready(function($) {

 // close postboxes that should be closed
 $('.if-js-closed') .removeClass('if-js-closed').
 addClass('closed');

 // postboxes setup
 postboxes.add_postbox_toggles
 ('<?php echo $options_page; ?>');

 });

 //]]>

 </script>

<?php }

16. Save and close the plugin file.

17. Activate your new plugin.

18. Click on the Settings section in the left-hand navigation menu to expand it.

Chapter 3

113

19. Click on the My Google Analytics in the tree to display the re-designed
administration page.

20. Drag-and-drop one of the meta boxes to re-order them.

21. Move the mouse cursor over the meta box to display its expansion controls in the top-
right corner. Click on the arrow in the top-right corner to minimize the box.

22. Click on the Screen Options menu on the top-right corner to open a menu to control
the visibility of all meta boxes.

23. Move to another section of the administration menu and come back to the
My Google Analytics section to see that all changes made to the layout of the
configuration page are retained.

How it works...
The setup of the meta box functionality is done in the load-<pagename> callback function
by calling the add_meta_box function multiple times based on the desired number of boxes
to be displayed on-screen.

The function takes a number of arguments, as shown:

add_meta_box($id, $title, $callback, $page, $context, $priority,
 $callback_args);

Going over the parameters in this function, the first is a unique identifier for the meta box,
while the second is the string that will be displayed as the title of the box itself and is also the
name that will show up in the Screen Options configuration tab. The third parameter is the
name of the function to be called to render the contents of the meta box. The fourth argument
identifies the page where the meta boxes will be rendered. In this case, we use the value of
the global variable $options_page for this parameter, to be sure that it will be assigned the
correct page identifier.

User Settings and Administration Pages

114

The fifth parameter is an arbitrary name that indicates the name of a section where the box
should be displayed. This name will be used when making a request to WordPress to render
all meta boxes belonging to a specific section. The only requirement for this to work correctly
is to use the same name when calling the do_meta_boxes function .

The sixth argument indicates the priority of the registered meta box within the section it
belongs to, relative to other meta boxes. If all boxes have the same priority, the order in which
the calls to the add_meta_box function were made will determine their original drawing
order. Of course, as was seen in this recipe, this order can be overridden by the user through
a simple drag-and-drop operation. The final parameter is optional and can be used to send
information to the function that will render the meta box contents.

While it is actually possible to call add_meta_box from other
action hook callbacks, only meta boxes registered during a
load-<pagename> callback will show up in the Screen
Options list to allow the user to control their visibility. This
may be the desired functionality in some cases to be sure that
important boxes are always shown. It also provides a standard
user experience for all users.

In addition to the calls to add_meta_box, we must make multiple calls to the
wp_enqueue_script in the page load function to request for three JavaScript scripts to be
loaded when our configuration page is rendered. These scripts provide the drag-and-drop,
minimize, and hiding functionalities that were demonstrated at the end of the recipe, with
only a few initialization calls needed to be done from our code through JavaScript functions.

Once the meta boxes have been created, the bulk of the work is done within the options page
rendering function. As we can see in the modified code, the first thing that is done is to create
new nonce fields. These unique numbers will be generated as hidden data in the page and
will be used for authentication to save layout changes within the configuration page. Next,
we create a number of div sections with specific id names that contain a nested call to the
do_meta_boxes function. These div tags are used to ensure that the meta boxes are styled
using the WordPress administration pages stylesheet.

Once called, the do_meta_boxes function takes care of drawing all of the meta boxes that
were created for the given page (specified in the first argument) and given section (second
argument). It also passes along any data specified in the third function argument to the
functions associated with each box.

Chapter 3

115

The remaining changes to the page rendering function is a block of JavaScript code that takes
care of closing down any meta box section that was closed by the user during a previous visit
to the page. It also assigns jQuery callbacks to the meta boxes so that any user interaction
with them is saved to the site database by sending AJAX requests to the web server.

Last but not least, the meta box rendering functions are responsible for rendering the content
inside each meta box. They can do this by outputting straight HTML. By passing along the
complete options array to these functions, the code that is contained within them can be
exactly the same as before to render the various options fields.

See also
 f Rendering the admin page contents using HTML recipe

Splitting admin code from the main plugin
file to optimize site performance

As mentioned in the previous chapter, the entire content of the main code file of a WordPress
plugin gets evaluated every time any page is rendered on the site, whether it's a visitor-facing
page or a backend administration page. This means that large amounts of PHP code can
potentially be parsed on every iteration, wasting processing power on the site's server, even
though some of this code will never be active when regular visitors are browsing the site.

A prime example of this waste is all of the code samples that we have been building in this
chapter. While this code is extremely useful for site administrators, there is no sense in having
the web server parse and validate that code when regular pages are displayed. For this
reason, it is better to isolate this code in a separate file which will only be loaded and parsed
when someone is visiting the site's dashboard. The following recipe shows how to isolate the
less-frequently required code to a separate file and only load it when a user is visiting the site
administration section.

Getting ready
You should have already followed the Hiding items which users should not access from the
default menu recipe to have a starting point for this recipe. Alternatively, you can get the
resulting code (ch3-hide-menu-item\ch3-hide-menu-item.php) from the downloaded
code bundle.

User Settings and Administration Pages

116

How to do it...
1. Navigate to the ch3-hide-menu-item folder of the WordPress plugin directory of

your development installation.

2. Open the ch3-hide-menu-item.php file in a text editor.

3. Create a new PHP code file called ch3-hide-menu-item-admin-functions.php
in the same directory.

4. Move the calls to the add_action function and the definition of the ch3hmi_hide_
menu_item function to the new file, surrounded by the standard PHP open and close
tags: <?php and ?>.

5. Back in the main plugin code file (ch3-hide-menu-item.php), add code that will
check if the current page being rendered is an administration page and proceed to
load the administration functions if it is:
if (is_admin()) {
 require plugin_dir_path(__FILE__) .
 'ch3-hide-menu-item-admin-functions.php';
}

6. Save and close the plugin file.

7. While the plugin will continue to work as it did before, the action hook registration
code will only be processed when an administration page is displayed.

How it works...
As we briefly saw in the previous recipes, the is_admin function is used to quickly tell if the
page currently being rendered is an administration page. If it is, our plugin code uses the
standard PHP include function to load and execute the content of a separate file. In this
case, the file is a second PHP file located in the plugin directory. To be flexible with regards
to the location of the plugin files, we build a path to the file containing the administration
functions using the WordPress plugin_dir_path function.

While the benefit of placing so little code in a separate file is minimal, this technique has a
larger impact on performance when dealing with larger administration panels. In addition to
not having to register an action hook on every page load, the PHP interpreter does not have to
make sure that the syntax for the entire contents of that second file is valid when rendering
front-facing pages.

See also
 f Hiding items which users should not access from the default menu recipe

Chapter 3

117

Storing stylesheet data in user settings
While most common plugin options are typically presented to users as simple textboxes,
checkboxes, or drop-down lists, there are instances where more text needs to be stored for user
settings. A good example of this are plugin-specific stylesheets, which allow users to change the
visual appearance of plugin output. While loading a separate stylesheet file worked well in the
Loading a stylesheet to format plugin output recipe in Chapter 2, Plugin Framework Basics, this
approach did not give users a lot of liberty in changing these styling rules to work better with
their site design since any changes that users make to the stylesheet will get overwritten when
the plugin is updated using the WordPress automatic plugin upgrade process.

A solution to this problem is to store stylesheet data with the rest of the configuration
options in the site database. This way, the information will remain intact when upgrades are
performed. This recipe shows how to change the plugin created in the previous chapter to
initialize the plugin options using an external file, how to create an administration panel to
allow users to modify or reset the stylesheet, and how to use the new data to output the style
information to the page header. Many of the lessons learned in this chapter will be put to use
to create the final result.

Getting ready
You should have already followed the Loading a stylesheet to format plugin output recipe in
the previous chapter, to have a starting point for this recipe. Alternatively, you can get the
resulting code (ch2-private-item-text.php\ch2-private-item-text.php) from
the downloaded code bundle.

How to do it...
1. Navigate to the ch2-private-item-text folder of the WordPress plugin directory

of your development installation.

2. Open the ch2-private-item-text.php file in a text editor.

3. Add the following lines of code after the existing functions and before the closing ?>
PHP command at the end of the file to implement an activation callback to initialize
plugin options when it is installed or upgraded:
register_activation_hook(__FILE__,
 'ch2pit_set_default_options_array');

function ch2pit_set_default_options_array() {
 if (get_option('ch2pit_options') === false) {
 $stylesheet_location =
 plugin_dir_path(__FILE__) . 'stylesheet.css';

User Settings and Administration Pages

118

 $options['stylesheet'] =
 file_get_contents($stylesheet_location);

 update_option('ch2pit_options', $options);
 }
}

4. Add the following code segment to register a function to be called when the menu is
built to add an additional item under the Settings menu:
add_action('admin_menu', 'ch2pit_settings_menu');

function ch2pit_settings_menu() {
 add_options_page('Private Item Text Configuration',
 'Private Item Text', 'manage_options',
 'ch2pit-private-item-text', 'ch2pit_config_page');

}

5. Insert the following code to provide an HTML implementation to render the
options page:
function ch2pit_config_page() {
 // Retrieve plugin configuration options from database
 $options = get_option('ch2pit_options');
 ?>

 <div id="ch2pit-general" class="wrap">
 <h2>Private Item Text</h2>

 <!-- Code to display confirmation messages when settings are
 saved or reset -->
 <?php if (isset($_GET['message'])
 && $_GET['message'] == '1') { ?>
 <div id='message' class='updated fade'><p>Settings
 Saved</p></div>
 <?php } elseif (isset($_GET['message'])
 && $_GET['message'] == '2') { ?>
 <div id='message' class='updated
 fade'><p>Stylesheet reverted to
 original</p></div>
 <?php } ?>

 <form name="ch2pit_options_form" method="post"
 action="admin-post.php">

 <input type="hidden" name="action"
 value="save_ch2pit_options" />
 <?php wp_nonce_field('ch2pit'); ?>

Chapter 3

119

 Stylesheet

 <textarea name="stylesheet" rows="10" cols="40" style="font-
 family:Consolas,Monaco,monospace"><?php echo esc_html
 ($options['stylesheet']); ?></textarea>

 <input type="submit" value="Submit" class="button-primary" />
 <input type="submit" value="Reset" name="resetstyle"
 class="button-primary" />
 </form>
 </div>
<?php }

6. Add the following block of code to register a function to be called when user options
are saved, to provide an implementation for this function, and to provide a utility
function to clean up redirection URLs:
add_action('admin_init', 'ch2pit_admin_init');

function ch2pit_admin_init() {
 add_action('admin_post_save_ch2pit_options',
 'process_ch2pit_options');
}

function process_ch2pit_options() {
 // Check that user has proper security level
 if (!current_user_can('manage_options'))
 wp_die('Not allowed');

 // Check that nonce field created in configuration form
 // is present
 check_admin_referer('ch2pit');

 // Retrieve original plugin options array
 $options = get_option('ch2pit_options');

 if (isset($_POST['resetstyle'])) {
 $stylesheet_location =
 plugins_dir_path(__FILE__) . 'stylesheet.css';
 $options['stylesheet'] =
 file_get_contents($stylesheet_location);

 $message = 2;
 } else {
 // Cycle through all fields and store their values
 // in the options array
 foreach (array('stylesheet') as $option_name) {
 if (isset($_POST[$option_name])) {
 $options[$option_name] = $_POST[$option_name];
 }

User Settings and Administration Pages

120

 }

 $message = 1;
 }

 // Store updated options array to database
 update_option('ch2pit_options', $options);

 // Redirect the page to the configuration form that was
 // processed
 wp_redirect(add_query_arg(array(
 'page' => 'ch2pit-private-item-text',
 'message' => $message),
 admin_url('options-general.php')));
 exit;
}

7. Delete the call to the add_action function which associated the function
ch2pit_queue_stylesheet with the wp_enqueue_scripts action hook,
along with the ch2pit_queue_stylesheet function itself.

8. Add the following code to add the user-modifiable stylesheet code to the page header:
add_action('wp_head', 'ch2pit_page_header_output');

function ch2pit_page_header_output() { ?>
 <style type='text/css'>
 <?php
 $options = get_option('ch2pit_options');
 echo $options['stylesheet'];
 ?>
 </style>
<?php }

9. Save and close the plugin file.

10. Deactivate, then activate the Chapter 2 – Private Item Text plugin from the
administration interface.

Chapter 3

121

11. Navigate to the Settings menu and select the Private Item Text submenu item to
see the newly-created configuration panel, with options to submit changes to the
stylesheet or reset it to its initial state:

12. Visit the website and look at the page source to see that the stylesheet data entered
in the configuration page shows up in the HTML header:

<style type='text/css'>
.private {
 color: #CCCCCC;
}
</style>

How it works...
Re-using many of the elements covered in this chapter, this recipe creates a simple yet
effective configuration interface to allow users to make changes to the color that is used to
highlight private text in posts, instead of this color being hardcoded in a plugin file.

That being said, this recipe does introduce two new concepts. The first is the initialization of
the plugin options by reading data from a file instead of having all of that information stored in
the PHP code. This technique is useful when dealing with an option that has a lot of content,
such as a stylesheet.

The next element of interest is within the data processing function, where the code checks to
see which button was pressed between the one to reset the stylesheet and the one to submit
user changes to be stored in the site database. Based on the result, the processing code will
either read back the initial stylesheet from the file or use the user posted data to update the
configuration data.

User Settings and Administration Pages

122

Beyond these two new concepts, the other main change is to the code that was outputting
header code referencing an external stylesheet file. In this new version, a change was made to
echo the content of the stylesheet that is stored in the options table directly to the browser.

It should be noted that this recipe does not check to see if the user
enters valid CSS code in the field before adding it to the page header,
since verifying this would be too complex for now. A library such as
CSSTidy (http://csstidy.sourceforge.net/) could be used
to perform this task as desired.

See also
 f Creating a new enclosing shortcode recipe in Chapter 2, Plugin Framework Basics

 f Loading a stylesheet to format plugin output recipe in Chapter 2, Plugin
Framework Basics

Managing multiple sets of user settings
from a single admin page

Throughout this chapter, we have learned how to create configuration pages to manage single
sets of configuration options for our plugins. In some cases, only being able to specify a single
set of options will not be enough. For example, looking back at the YouTube Embed shortcode
plugin that was created in the previous chapter, a single configuration panel would only allow
users to specify one set of options, such as the desired video dimensions for the clips that
will be displayed. A more flexible solution would be to allow users to specify multiple sets of
configuration options, which could then be called up by using an extra shortcode parameter
(for example, [youtubevid id="R6Z7xceSLy4" optionid="2"]).

While the first thought that might cross your mind to configure such a plugin is to create a
multi-level menu item with submenus to store a number of different settings, this method
would produce a very awkward interface for users to navigate. A better way is to use a single
panel but give the user a way to select between multiple sets of options to be modified.

In this recipe, we will learn how to enhance the previously created YouTube video shortcode
plugin to be able to control the embedded player size from the plugin configuration and to
give the user the ability to specify multiple display sizes.

Chapter 3

123

Getting ready
You should have already followed the Creating a new shortcode with parameters recipe in
the previous chapter to have a starting point for this recipe. Alternatively, you can get the
resulting code (ch2-youtube-embed\ch2-youtube-embed.php) from the downloaded
code bundle.

How to do it...
1. Navigate to the ch2-youtube-embed folder of the WordPress plugin directory of

your development installation.

2. Open the ch2-youtube-embed.php file in a text editor.

3. Add the following lines of code after the existing functions and before the closing ?>
PHP command at the end of the file to implement an activation callback to initialize
plugin options when it is installed or upgraded:
register_activation_hook(__FILE__,
 'ch2ye_set_default_options_array');

function ch2ye_set_default_options_array() {
 if (get_option('ch2ye_options_1') === false) {
 ch2ye_create_setting(1);
 }
}

function ch2ye_create_setting($option_id) {
 $options['setting_name'] = 'Default';
 $options['width'] = 560;
 $options['height'] = 315;
 $options['show_suggestions'] = false;

 $option_name = 'ch2ye_options_' . $option_id;
 update_option($option_name, $options);
}

4. Insert the following code segment to register a function to be called when the
administration menu is put together. When this happens, the callback function adds
an item to the Settings menu and specifies the function to be called to render the
configuration page:
// Assign function to be called when admin menu is constructed
add_action('admin_menu', 'ch2ye_settings_menu');

// Function to add item to Settings menu and

User Settings and Administration Pages

124

// specify function to display options page content
function ch2ye_settings_menu() {
 add_options_page('YouTube Embed Configuration',
 'YouTube Embed', 'manage_options',
 'ch2ye-youtube-embed',
 'ch2ye_config_page');
}

5. Add the following code to implement the configuration page rendering function:
// Function to display options page content
function ch2ye_config_page() {

 // Retrieve plugin configuration options from database
 if (isset($_GET['option_id']))
 $option_id = intval($_GET['option_id']);
 else
 $option_id = 1;

 $options = get_option('ch2ye_options_' . $option_id);

 if ($options === false) {
 ch2ye_create_setting($option_id);
 $options = get_option('ch2ye_options_' . $option_id);
 }

 ?>

 <div id="ch2ye-general" class="wrap">
 <h2>YouTube Embed</h2>

 <!-- Display message when settings are saved -->
 <?php if (isset($_GET['message'])
 && $_GET['message'] == '1') { ?>
<div id='message' class='updated fade'><p>Settings Saved
</p></div>
 <?php } ?>

 <!-- Option selector -->
 <div id="icon-themes" class="icon32">
</div>
 <h2 class="nav-tab-wrapper">
 <?php for ($counter = 1; $counter <= 5; $counter++) {
 $temp_option_name = "ch2ye_options_" . $counter;
 $temp_options = get_option($temp_option_name);
 $class =
 ($counter == $option_id) ? ' nav-tab-active' : '';?>

Chapter 3

125

 <a class="nav-tab<?php echo $class; ?>" href="<?php echo
add_query_arg(array('page' => 'ch2ye-youtube-embed', 'option_id'
=> $counter), admin_url('options-general.php')); ?>"><?php
echo $counter; ?><?php if ($temp_options !== false) echo ' (' .
$temp_options['setting_name'] . ')'; else echo ' (Empty)'; ?>
 <?php } ?>
 </h2>

 <!-- Main options form -->
 <form name="ch2ye_options_form" method="post"
 action="admin-post.php">

 <input type="hidden" name="action" value="save_ch2ye_options"
/>
 <input type="hidden" name="option_id"
 value="<?php echo $option_id; ?>" />
 <?php wp_nonce_field('ch2ye'); ?>

 <table>
 <tr>
 <td>Setting Name</td>
 <td><input type="text" name="setting_name"
value="<?php echo esc_html($options['setting_name']); ?>"/></td>
 </tr>
 <tr>
 <td>Video Width</td>
 <td><input type="text" name="width" value="<?php echo
esc_html($options['width']); ?>"/></td>
 </tr>
 <tr>
 <td>Video Height</td>
 <td><input type="text" name="height" value="<?php echo
esc_html($options['height']); ?>"/></td>
 </tr>
 <tr>
 <td>Display suggestions after viewing</td>
 <td><input type="checkbox" name="show_suggestions"
<?php if ($options['show_suggestions']) echo ' checked="checked"
'; ?>/></td>
 </tr>
 </table>

 <input type="submit" value="Submit" class="button-primary" />
 </form>
 </div>
<?php }

User Settings and Administration Pages

126

6. Add the following block of code to register a function that will process user options
when submitted to the site:
add_action('admin_init', 'ch2ye_admin_init');

function ch2ye_admin_init() {
 add_action('admin_post_save_ch2ye_options',
 'process_ch2ye_options');
}

7. Add the following code to implement the process_ch2ye_options function,
declared in the previous block of code, and to declare a utility function used
to clean the redirection path:
// Function to process user data submission
function process_ch2ye_options() {
 // Check that user has proper security level
 if (!current_user_can('manage_options'))
 wp_die('Not allowed');

 // Check that nonce field is present
 check_admin_referer('ch2ye');

 // Check if option_id field was present
 if (isset($_POST['option_id']))
 $option_id = $_POST['option_id'];
 else
 $option_id = 1;

 // Build option name and retrieve options
 $options_name = 'ch2ye_options_' . $option_id;
 $options = get_option($options_name);

 // Cycle through all text fields and store their values
 foreach (array('setting_name', 'width', 'height') as
 $param_name) {
 if (isset($_POST[$param_name])) {
 $options[$param_name] = $_POST[$param_name];
 }
 }

 // Cycle through all check box form fields and set
 // options array to true or false values
 foreach (array('show_suggestions') as $param_name) {
 if (isset($_POST[$param_name])) {
 $options[$param_name] = true;

Chapter 3

127

 } else {
 $options[$param_name] = false;
 }
 }

 // Store updated options array to database
 update_option($options_name, $options);

 $cleanaddress =
 add_query_arg(array('message' => 1,
 'option_id' => $option_id,
 'page' => 'ch2ye-youtube-embed'),
 admin_url('options-general.php'));
 wp_redirect($cleanaddress);
 exit;
}

8. Find the ch2ye_youtube_embed_shortcode function and modify it as follows to
accept the new option_id parameter and load the plugin options to produce the
desired output. The changes are identified in bold within the recipe:
function ch2ye_youtube_embed_shortcode($atts) {
 extract(shortcode_atts(array(
 'id' => '',
 'option_id' => ''
), $atts));

 if (empty($option_id) ||
 intval($option_id) < 1 ||
 intval($option_id) > 5) {

 $option_id = 1;
 }

 $option_name = 'ch2ye_options_' . intval($option_id);
 $options = get_option($option_name);
 $output = '<iframe width="' . $options['width'];
 $output .= '" height="' . $options['height'];
 $output .= '" src="http://www.youtube.com/embed/' . $id;
 $output .= ($options['show_suggestions'] == true
 ? "" : "?rel=0");
 $output .= '" frameborder="0" allowfullscreen></iframe>';
 return $output;
}

User Settings and Administration Pages

128

9. Save and close the plugin file.

10. Deactivate and re-Activate the Chapter 2 – YouTube Embed plugin from the
administration interface to execute its activation function and create default settings.

11. Navigate to the Settings menu and select the YouTube Embed submenu item to
see the newly-created configuration panel, with a first set of options being displayed
and more sets of options accessible through the drop-down list shown at the top of
the page.

12. To select the set of options to be used, add the parameter optionid to the
shortcode used to display a YouTube video, as follows:
[youtubevid id="R6Z7xceSLy4" optionid="1"]

How it works...
This recipe shows how we can leverage options arrays to create multiple sets of options
simply by creating the name of the options array on-the-fly. Instead of having a specific
option name in the first parameter of the get_option function call, we create a string with
an option ID. This ID is sent through as a URL parameter on the configuration page and as a
hidden text field when processing the form data.

On initialization, the plugin only creates a single set of options, which is probably enough for
most casual users of the plugin. Doing so will avoid cluttering the site database with useless
options. When the user requests to view one of the empty option sets, the plugin creates a
new set of options right before rendering the options page.

The rest of the code is very similar to the other examples that we saw in this chapter, since
the way to access the array elements remains the same.

See also
 f Rendering the admin page contents using HTML recipe

4
The Power of Custom

Post Types

This chapter covers one of the most powerful features of WordPress, custom post types,
through the following topics:

 f Creating a custom post type

 f Adding a new section to the custom post type editor

 f Displaying single custom post type items using custom templates

 f Creating an archive page for custom post types

 f Displaying custom post type data in shortcodes

 f Adding custom categories for custom post types

 f Hiding the category editor from the custom post type editor

 f Displaying additional columns in the custom post list page

 f Adding filters for custom categories to the custom post list page

 f Updating page title to include custom post data using plugin filters

Introduction
Building on its history of openness and ease-of-use, WordPress 3.0 reached new heights in
customization with the introduction of custom post types.

Custom post types are new categories of items that are created by using the WordPress API
and that appear in the WordPress administration interface as complete new sections, next to
the default Posts, Links, and Pages sections. These custom items can be used to store any
type of information, including events, bug reports, recipes, movie reviews, and many more.

The Power of Custom Post Types

130

When using custom post types to implement this kind of functionality, developers are able to
take advantage of WordPress' internal content editing capabilities, including its powerful text
editor and user-friendly media uploader. Custom post types also simplify data management
for developers since all of the information related to these new entries is stored in the site
database using the existing table structures. Finally, custom post types can leverage the
established theme and template system to display the information that site administrators
store in these new content types.

If you ever took a peek at the MySQL database behind a WordPress site, you know that
posts, pages, attachments, revisions, and navigation menu items all share the same tables.
In essence, all of these data elements are custom post types, with some of them using the
standard text editor while others such as the navigation menus, have a custom management
interface. Each of these types of items also has a different mechanism to be displayed on
a site.

Using custom post types opens up endless possibilities to tailor the functionality of a
WordPress installation and provide a very custom solution to end users without needing to
invest a large amount of time re-inventing the wheel. This chapter covers all facets of creating
custom post types through the creation of a Book Review system, including the creation
of the new type of elements, displaying the newly stored information on the website, and
customizing the environment to create an editor with unique capabilities.

Creating a custom post type
The initial creation of a custom post type is extremely easy. It only requires a single function
to be called from an action hook callback. Once in place, a lot of functionality immediately
becomes available to administrators and site visitors. This recipe shows how to create a new
custom post type that will be used to store Book Reviews.

Getting ready
You should have access to a WordPress development environment, either on your local
computer or a remote server, where you will be able to load your new plugin files.

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Create a new directory called ch4-book-reviews.

3. Navigate to this directory and create a new text file called ch4-book-reviews.php.

4. Open the new file in a code editor and add an appropriate header at the top of the
plugin file, naming the plugin Chapter 4 – Book Reviews.

Chapter 4

131

5. Add a few carriage returns before the ?> characters that close the plugin header
section to create space to add the PHP code.

6. Add the following line of code before the closing ?> PHP command at the end of the
file to register a function that will be executed during the initialization phase every
time WordPress generates a page:
add_action('init', 'ch4_br_create_book_post_type');

7. Add the following code block to provide an implementation for the
ch4_br_create_book_post_type function:
function ch4_br_create_book_post_type() {
 register_post_type('book_reviews',
 array(
 'labels' => array(
 'name' => 'Book Reviews',
 'singular_name' => 'Book Review',
 'add_new' => 'Add New',
 'add_new_item' => 'Add New Book Review',
 'edit' => 'Edit',
 'edit_item' => 'Edit Book Review',
 'new_item' => 'New Book Review',
 'view' => 'View',
 'view_item' => 'View Book Review',
 'search_items' => 'Search Book Reviews',
 'not_found' => 'No Book Reviews found',
 'not_found_in_trash' =>
 'No Book Reviews found in Trash',
 'parent' => 'Parent Book Review'
),
 'public' => true,
 'menu_position' => 20,
 'supports' =>
 array('title', 'editor', 'comments',
 'thumbnail', 'custom-fields'),
 'taxonomies' => array(''),
 'menu_icon' =>
 plugins_url('book-16x16.png', __FILE__),
 'has_archive' => true
)
);
}

8. Save and close the plugin file.

The Power of Custom Post Types

132

9. Find and download a PNG format book icon measuring 16 x 16 pixels from a site such
as IconArchive (http://www.iconarchive.com) and save it as book-16x16.png
in the plugin directory.

10. Navigate to the Plugins management page and activate the Chapter 4 – Book
Reviews plugin.

11. Click on the newly available Book Reviews menu item, located under the Pages
section, to see the Book Review creation and management interface.

12. Click on the Add New button, next to the section title, to display the Book Review
editor featuring the complete WordPress text editor, the custom fields editor,
comments control, publishing controls, and the featured image section.

13. Fill in the new entry by specifying the Book Review title (for example, WordPress
Plugin Development Cookbook) and a short description.

14. Scroll to the Custom Fields section and type book_author as the Name of the
field and Yannick Lefebvre as the Value. Click Add Custom Field to create a
second field.

If custom fields already exist in your WordPress installation
(from previous recipes or other data entry), you will need
to click on Enter new before being able to set the Name to
book_author.

15. Set the Name of the second field to book_rating and its Value to 5.

16. Find and download a book cover image from websites such as Google Images
(images.google.com) or Packt Publishing (www.packtpub.com).

17. Click on the Set featured image link, located in the right-hand sidebar of the
editing interface.

18. Click on Select Files to pick the image that you downloaded to your computer and
store it within the WordPress content folder.

Chapter 4

133

19. Once the file is uploaded and WordPress displays information about it, scroll to the
bottom of the media upload dialog and click on the Use as featured image link.

20. Click on the Save all changes button at the bottom of the page, then close the media
uploader. You should see the image you uploaded appear in the Featured Image
meta box. Click on the Publish button to save this first Book Review. Click the View
Book Review button to see the newly-created content in your web browser.

How it works...
By making a call to the register_post_type function, the entire WordPress environment
becomes aware of the existence of this new post type. This awareness includes the creation
of a dedicated section to create and edit posts of this type and the ability to process web
page requests for Book Reviews.

As mentioned in the beginning of this recipe, the function is quite simple to use and only
requires two arguments:

register_post_type($post_type, $args);

The first argument is a text string that indicates the name of the post type. Please note when
choosing this name that it will be used as the default value for the permalinks of all items
that use the new type, and that it should be unique enough to avoid potential conflicts with
other plugins.

The second argument is an array of properties that specify the characteristics of the new post
type and determine how this type will be edited.

In this specific example, the first element of the properties array is actually another array,
which contains a number of labels. These labels indicate the text strings that should be
displayed when managing items created under the new post type. For example, if we look
at the screenshot in step 11, the message No Book Reviews found came directly from the
definition of the not_found label in this array.

The second argument, named public, determines if the post type's administration interface
should be shown to manage it and whether or not its contents should show up in search
results. Next is the menu_position member of the configuration array, indicating the
desired position of the new element in the administration menu. In this example, a value of
20 indicates that it should be displayed below the Pages menu item. Visit WordPress Codex
(http://codex.wordpress.org/Function_Reference/register_post_type) for
a full list of potential values for this parameter and their associated positions. The supports
parameter is another array that indicates which parts of the content editor should be
displayed for items that use the custom post type. In this case, we left out some sections
such as author, excerpt, trackbacks, revisions, page-attributes, and post-
formats as they were not desirable for Book Reviews.

The Power of Custom Post Types

134

The next few parameters in the configuration array indicate that we do not want to define
custom taxonomies at this time and specify the path and name of the image file that should
be displayed next to the post type's name in the administration menu. Finally, the last
argument determines if WordPress should present an archive listing page for the new
type when users visit the /book-reviews page on the site.

There are actually many other parameters that can be included in the configuration array to
get more precise control over some aspects of the new custom post type. Please visit the
WordPress Codex at the address mentioned previously to learn more about them.

There's more...
While the internal post type name is used by default to generate post permalinks, it can
actually be overridden to create better-looking URLs.

Changing the custom post type permalinks slug
An optional member of the custom post type configuration is the rewrite parameter. It can
be defined as follows:

'rewrite' => array('slug' => 'awesome_book_reviews')

Although this may seem very simple, the permalinks won't change over immediately after
making this change. To be more precise, the administration interface will show the new slug
in the post editor, but trying to visit the page for the item with the new address will result in a
404 error (page not found). The solution to this problem is to rebuild the internal WordPress
permalinks configuration using one of the following two techniques:

 f Visit the Permalinks section of the Settings menu and click on the
Save Changes button.

 f Make calls to functions from the rewrite module to programmatically request for the
configuration to be rebuilt. As this is not something that should be done every time
WordPress displays a page, but would be too early to do when a plugin gets initialized
or upgraded, a good place to call these functions would be within the plugin options
storage function. You might even decide to give administrators the ability to specify
their own slug. The code to reset the permalinks rules is as follows:

global $wp_rewrite;
$wp_rewrite->flush_rules();

Chapter 4

135

Adding a new section to the custom post
type editor

While the custom post editor that has been put in place so far is functional, it is not the
friendliest of user interfaces, especially with the custom fields section where users need
to type or select the names of each field as they create new items. A cleaner approach is
to create a custom interface using the meta box mechanism that we saw in the previous
chapter to display all data associated with Book Reviews.

This recipe shows how to create a meta box that will be associated with a custom post type
and how to save the information that is entered in that new interface.

Getting ready
You should have already followed the Creating a custom post type recipe to have a
starting point for this recipe. Alternatively, you can get the resulting code (ch4-book-
reviews\ch4-book-reviews-v1.php) from the code bundle downloaded from the
Packt Publishing website (http://www.packtpub.com/support) and rename the file
to ch4-book-reviews.php.

How to do it...
1. Navigate to the ch4-book-reviews folder of the WordPress plugin directory of your

development installation.

2. Open the ch4-book-reviews.php file in a code editor.

3. Add the following line of code after the existing functions and before the closing
?> PHP command at the end of the file to register a function to be called when the
administration interface is visited:
add_action('admin_init', 'ch4_br_admin_init');

4. Add the following code section to provide an implementation for the
ch4_br_admin_init function and register a meta box to be associated
with the book_reviews post type:
function ch4_br_admin_init() {
 add_meta_box('ch4_br_review_details_meta_box',
 'Book Review Details',
 'ch4_br_display_review_details_meta_box',
 'book_reviews', 'normal', 'high');
}

The Power of Custom Post Types

136

5. Insert this function to implement the ch4_br_display_review_details_meta_
box function and render the meta box contents:
function ch4_br_display_review_details_meta_box($book_review) {
 // Retrieve current author and rating based on review ID

 $book_author =
 esc_html(get_post_meta($book_review->ID,
 'book_author', true));
 $book_rating =
 intval(get_post_meta($book_review->ID,
 'book_rating', true));
 ?>
 <table>
 <tr>
 <td style="width: 100%">Book Author</td>
 <td><input type="text" size="80"
 name="book_review_author_name"
 value="<?php echo $book_author; ?>" /></td>
 </tr>
 <tr>
 <td style="width: 150px">Book Rating</td>
 <td>
 <select style="width: 100px"
 name="book_review_rating">
 <?php

 // Generate all items of drop-down list
 for ($rating = 5; $rating >= 1; $rating --) {
 ?>

 <option value="<?php echo $rating; ?>"
 <?php echo selected($rating,
 $book_rating); ?>>
 <?php echo $rating; ?> stars

 <?php } ?>
 </select>
 </td>
 </tr>
 </table>

<?php }

6. Add the following code segment to register a function that will be called when posts
are saved to the database:
add_action('save_post',
 'ch4_br_add_book_review_fields', 10, 2);

Chapter 4

137

7. Add an implementation for the ch4_br_add_book_review_fields function,
defined in the previous add_action call:
function ch4_br_add_book_review_fields($book_review_id,
 $book_review) {
 // Check post type for book reviews
 if ($book_review->post_type == 'book_reviews') {
 // Store data in post meta table if present in post data
 if (isset($_POST['book_review_author_name']) &&
 $_POST['book_review_author_name'] != '') {
 update_post_meta($book_review_id, 'book_author',
 $_POST['book_review_author_name']);
 }

 if (isset($_POST['book_review_rating']) &&
 $_POST['book_review_rating'] != '') {
 update_post_meta($book_review_id, 'book_rating',
 $_POST['book_review_rating']);
 }
 }
}

8. Find the ch4_br_create_book_post_type function, where the new book
type was originally created, and remove the custom-fields element from the
supports array:
'supports' => array('title', 'editor', 'comments', 'thumbnail'),

9. Save and close the plugin file.

10. Open the previously created Book Review to see the new Book Review Details meta
box, containing a text field to specify the author and a drop-down list for the rating.

How it works...
This recipe uses the WordPress built-in meta box system to create a clean interface that
will allow users to manage fields specific to custom post types without having to use the
cumbersome default Custom Fields editor. As we saw in Chapter 3, User Settings and
Administration Pages, custom meta boxes can be created by using the add_meta_box
function. In addition to declaring the meta box and associating it with the custom post type,
add_meta_box defines a callback that is responsible for rendering the contents of the box.

The Power of Custom Post Types

138

The next section of the recipe implements the function that renders the meta box content.
As we can see, this box receives an object variable that contains information about the Book
Review that is being displayed in the post editor. Using this object, our code retrieves the post
ID and uses it to query the site database for a book author and rating associated with the
entry. Once the custom field data has been retrieved from the database, it can be used to
render the author and rating fields on-screen. When new Book Reviews are created, both calls
to get_post_meta will return an empty string, resulting in the display of an empty text field
and the last entry in the drop-down list.

The last steps of this recipe take care of registering a function that will be called when
posts of all types are saved or deleted by the site administrator. Since it will deal with all
types of data, the saving callback must first check the type of the received post data. If
it's a Book Review, the code proceeds to check if post data was received for the two Book
Review meta box fields and stores the information in the post meta data table. In this recipe,
the parameters for the update_post_meta function are similar to the get_post_meta
function, except for the third argument which is used to specify the data to be stored.

One last detail that should be mentioned about this recipe is the use of the fourth parameter
of the add_action function when associating a callback to the save_post action hook.
This argument indicates that two arguments will be received by the registered callback. If
this argument is not set, the callback function will never receive that second piece of data.

See also
 f Creating a custom post type recipe

 f Formatting admin pages using meta boxes recipe in Chapter 3, User Settings and
Administration Pages

Displaying single custom post type items
using custom templates

Custom post types straddle the line between plugin development and theme development
since displaying any information that is specific to these new elements requires the creation
of custom template files in the theme directory.

While it is not possible to create a solution that will work for all themes, a good practice that
can be followed by plugin developers is to display the new data using the default WordPress
theme. This way, users configuring the plugin on their site can see what needs to be done
and adapt the code to their own theme.

This recipe shows how to create a template file to display all elements that we stored in the
Book Review created in the previous recipe.

Chapter 4

139

Getting ready
You should have already followed the Adding to the custom post type editor recipe to have
a starting point for this recipe. Alternatively, you can get the resulting code (ch4-book-
reviews\ch4-book-reviews-v2.php) from the downloaded code bundle and rename the
file to ch4-book-reviews.php.

How to do it...
1. Navigate to the ch4-book-reviews folder of the WordPress plugin directory of your

development installation.

2. Open the ch4-book-reviews.php file in a code editor.

3. Add the following line of code after the existing functions and before the
closing ?> PHP command at the end of the file to register a function to be
called when the administration interface is visited:
add_filter('template_include',
 'ch4_br_template_include', 1);

4. Add the following code section to provide an implementation for the
ch4_br_template_include function:
function ch4_br_template_include($template_path) {

 if (get_post_type() == 'book_reviews') {
 if (is_single()) {
 // checks if the file exists in the theme first,
 // otherwise serve the file from the plugin
 if ($theme_file = locate_template(array
 ('single-book_reviews.php'))) {
 $template_path = $theme_file;
 } else {
 $template_path = plugin_dir_path(__FILE__) .
 '/single-book_reviews.php';
 }
 }
 }

 return $template_path;
}

5. Save and close the plugin file.

6. Create a new code file called single-book_reviews.php and open it in a
code editor.

The Power of Custom Post Types

140

7. Add the following code in the file to create a template to display Book Reviews,
including their custom fields:
<?php get_header(); ?>

<div id="primary">
 <div id="content" role="main">

 <!-- Cycle through all posts -->
 <?php while (have_posts()) : the_post(); ?>

 <article id="post-<?php the_ID(); ?>" <?php post_class(); ?>>

 <header class="entry-header">
 <!-- Display featured image in right-aligned floating div -->
 <div style="float: right; margin: 10px">
 <?php the_post_thumbnail('large'); ?>
 </div>

 <!-- Display Title and Author Name -->
 Title: <?php the_title(); ?>

 Author:
 <?php echo esc_html(get_post_meta(get_the_ID(),
 'book_author', true)); ?>

 <!-- Display yellow stars based on rating -->
 Rating:
 <?php
 $nb_stars = intval(get_post_meta(get_the_ID(),
 'book_rating', true));
 for ($star_counter = 1; $star_counter <= 5;
 $star_counter++) {
 if ($star_counter <= $nb_stars) {
 echo '<img src="' .
 plugins_url('ch4-book-reviews/star-icon.png') .
 '" />';
 } else {
 echo '<img src="' .
 plugins_url
 ('ch4-book-reviews/star-icon-grey.png')
 . '" />';
 }
 }
 ?>
 </header>

 <!-- Display book review contents -->
 <div class="entry-content"><?php the_content(); ?></div>

Chapter 4

141

 </article>

 <!-- Display comment form -->
 <?php comments_template('', true); ?>

 <?php endwhile; ?>

 </div>
</div>

<?php get_footer(); ?>

8. Save and close the template file.

9. Find and download a PNG format pixel star icon measuring 32 x 32 pixels from a site
such as IconArchive (http://www.iconarchive.com) and save it as star-icon.
png in the plugin directory.

10. Create a black-and-white version of the star icon using any graphic processing tool
and save it as star-icon-grey.png.

11. Go to the Book Reviews management page and click on the View link under the
existing entry created in the previous recipe to see the content rendered using
the new template.

The Power of Custom Post Types

142

How it works...
When rendering any web page, the default WordPress functionality is to search the current
theme directory for an applicable template suitable for the content at hand. In the case of a
single custom post type item such as a Book Review, it first looks for a single item template
named single-<post-type-name>.php, where the latter part is the actual post type
name. If it does not find this file, it defaults to the general single item template. In the first
recipe of this chapter, the template that was used to show the Book Review was the default
single item template, simply named single.php. To add better support for our new post
type, this recipe associates a function with the template_include filter hook to change
that behavior. More specifically, we use the locate_template function to check if the user
provided a template for the book_reviews post type in the theme directory. If no template
was found, we change the template path to load a template that we provide as part of the
plugin files. This gives users the flexibility to use our template, which is more specific than
the generic single item template, or to provide their own.

The rest of the recipe creates a new default template for Book Reviews, following standard
theme mechanics, starting with the display of the site header and followed with a PHP while
loop that cycles through all posts to be displayed (a single one in the case of a specific
Book Review). This is followed by a number of WordPress template functions, such as
the_title() and the_content(), to display various elements of the current post item.

To round out the page layout, the template contains code that displays the featured image
along with the book title, its author, and its rating before showing the main content of the
review and a comment form.

Out of these elements, the author and rating use a new function that we have not
encountered yet called get_post_meta. This function is used to retrieve data that was
stored in the custom fields section of the post editor and has three parameters:

get_post_meta($post_id, $field_name, $single);

The first parameter is the post ID, which can easily be retrieved using the get_the_ID()
template function. This ID is used to identify the post to which the custom information is
associated. The second argument is the custom field name, which should match the name
specified when it is created in the post editor. The third and final argument indicates if the
return value should be a single value or an array of values. If set to false, it will produce an
array containing a single element even if the custom field only contains a single value. In most
cases, it should be set to true to receive a single value that can be accessed directly.

See also
 f Creating a custom post type recipe

Chapter 4

143

Creating an archive page for custom post
types

Similar to the Book Review single item template file created in the previous recipe, WordPress
allows users to create a special template to display archive listings for custom post types. This
recipe shows how to create an archive template file to display a list of all Book Reviews in a
table layout.

Getting ready
You should have already followed the Displaying single custom post type items using custom
templates recipe to have a starting point for this recipe. Alternatively, you can get the resulting
code (ch4-book-reviews\ch4-book-reviews-v3.php) from the downloaded code
bundle and rename the file to ch4-book-reviews.php.

How to do it...
1. Visit the /book_reviews page on your WordPress development site to see the

default archive layout.

2. Navigate to the ch4-book-reviews folder of the WordPress plugin directory of your
development installation.

3. Open the ch4-book-reviews.php file in a code editor.

4. Find the ch4_br_template_include function and add the following
highlighted code:
function ch4_br_template_include($template_path) {

 if (get_post_type() == 'book_reviews') {
 if (is_single()) {
 // checks if the file exists in the theme first,
 // otherwise serve the file from the plugin
 if ($theme_file = locate_template(array
 ('single-book_reviews.php'))) {
 $template_path = $theme_file;
 } else {
 $template_path = plugin_dir_path(__FILE__) .
 '/single-book_reviews.php';
 }
 } elseif (is_archive()) {
 if ($theme_file = locate_template(array
 ('archive-book_reviews.php'))) {
 $template_path = $theme_file;
 } else {

The Power of Custom Post Types

144

 $template_path = plugin_dir_path(__FILE__) .
 '/archive-book_reviews.php';
 }
 }
 }

 return $template_path;
}

5. Save and close the plugin file.

6. Create a new code file called archive-book_reviews.php and open it in
a code editor.

7. Add the following code in the file to provide a template that will cycle through
Book Reviews and display their title and author in a table:
<?php get_header(); ?>

<section id="primary">
 <div id="content" role="main" style="width: 80%">

 <?php if (have_posts()) : ?>

 <header class="page-header">
 <h1 class="page-title">Book Reviews</h1>
 </header>

 <table>
 <!-- Display table headers -->
 <tr>
 <th style="width: 450px">Title</th>
 <th>Author</th>
 </tr>

 <!-- Start the Loop -->
 <?php while (have_posts()) : the_post(); ?>

 <!-- Display review title and author -->
 <tr>
 <td><a href="<?php the_permalink(); ?>">
 <?php the_title(); ?></td>
 <td><?php echo esc_html(get_post_meta(get_the_ID(),
 'book_author', true)); ?></td>
 </tr>

 <?php endwhile; ?>

 </table>

Chapter 4

145

 <!-- Display page navigation -->
 <?php global $wp_query;
 if (isset($wp_query->max_num_pages)
 && $wp_query->max_num_pages > 1) { ?>
 <nav id="<?php echo $nav_id; ?>">
 <div class="nav-previous"><?php next_posts_link(
 '←
 Older reviews'); ?></div>
 <div class="nav-next"><?php previous_posts_link(
 'Newer reviews <span class=
 "meta-nav">→'); ?></div>
 </nav>
 <?php };

 endif; ?>

 </div>
</section>

<?php get_footer(); ?>

8. Save and close the template file.

9. Refresh the archive page to see a new table-based archive layout.

How it works...
Similar to single posts, the default WordPress functionality is to search through the current
theme directory looking for a template designed to render the current post type's archive
page, before resorting to the default archive template. Extending the code from the previous
recipe, we override this mechanism by checking to see if the user provided an archive
template file for Book Reviews in the theme folder and provide our own file if no template is
found. The rest of the recipe creates a new default archive template, where we cycle through
the post entries using a while loop and display them using a table layout.

The Power of Custom Post Types

146

We also output a navigation menu if there are more reviews to display than the maximum
number configured in the Reading configuration section of the Settings administrative
section. This is done by first getting access to the global wp_query object, which contains
data about the query that is currently being executed to render the page contents. If the
maximum number of pages is higher than 1, navigation menus are displayed using the
next_post_links and previous_post_links functions. Both of these functions are
sent a single argument in the form of a string indicating the desired text to be displayed for
the navigation links.

This recipe also uses the get_post_meta function that was covered in the previous recipe
to retrieve custom field data that was created in the post editor.

See also
 f Displaying single custom post type items using custom templates recipe

Displaying custom post type data in
shortcodes

While displaying a list of custom post type items can be done using the archive page as shown
in the previous recipe, it might be desirable to display a list of these elements in other places
such as a page or post, or perhaps even on the front page as part of the basic template. In
any of these cases, a good solution to display these items is to create a shortcode that will
display one or more posts in any of these site areas.

This recipe shows how to create a shortcode that will retrieve and display five Book Reviews
at a time, with accompanying navigation links.

Getting ready
You should have already followed the Creating an archive page for custom post types
recipe to have a starting point for this recipe. Alternatively, you can get the resulting code
(ch4-book-reviews\ch4-book-reviews-v4.php) from the downloaded code bundle
and rename the file to ch4-book-reviews.php.

How to do it...
1. Navigate to the ch4-book-reviews folder of the WordPress plugin directory of your

development installation.

2. Open the ch4-book-reviews.php file in a code editor.

Chapter 4

147

3. Add the following line of code after the existing functions and before the closing ?>
PHP command at the end of the file to register a function that declares the
new shortcode:
add_shortcode('book-review-list', 'ch4_br_book_review_list');

4. Add the following code section to provide an implementation for the
ch4_br_book_review_list function:
function ch4_br_book_review_list() {
 // Preparation of query array to retrieve 5 book reviews
 $query_params = array('post_type' => 'book_reviews',
 'post_status' => 'publish',
 'posts_per_page' => 5);

 // Execution of post query
 $book_review_query = new WP_Query;
 $book_review_query->query($query_params);

 // Check if any posts were returned by the query
 if ($book_review_query->have_posts()) {
 // Display posts in table layout
 $output = '<table>';

 $output .= '<tr><th style="width: 350px">';
 $output .= 'Title</th>';
 $output .= '<th>Author</th></tr>';

 // Cycle through all items retrieved
 while ($book_review_query->have_posts()) {
 $book_review_query->the_post();

 $output .= '<tr><td><a href="' . post_permalink();
 $output .= '">';
 $output .= get_the_title(get_the_ID()) . '</td>';
 $output .= '<td>';
 $output .= esc_html(get_post_meta
 (get_the_ID(), 'book_author', true));
 $output .= '</td></tr>';
 }

 $output .= '</table>';

 // Display page navigation links
 if ($book_review_query->max_num_pages > 1) {
 $output .= '<nav id="nav-below">';
 $output .= '<div class="nav-previous">';

The Power of Custom Post Types

148

 $output .= get_next_posts_link
 ('←
 Older reviews',
 $book_review_query->max_num_pages);
 $output .= '</div>';
 $output .= '<div class="nav-next">';
 $output .= get_previous_posts_link
 ('Newer reviews
 →',
 $book_review_query->max_num_pages);
 $output .= '</div>';
 $output .= '</nav>';
 }

 // Reset post data query
 wp_reset_postdata();
 }

 return $output;
}

5. Save the plugin file.

6. Create a new page and insert the shortcode [book-review-list].

7. Publish and View the page to see that a list of Book Reviews will be displayed
in place of the shortcode.

8. If more than five Book Reviews exist in the system, click on the navigation links that
are displayed. You will see that the URL in the browser address bar changes but the
list of entries show the same first five items as before.

Chapter 4

149

9. Back in the ch4-book-reviews.php file, add the following highlighted code near
the top of the ch4_br_book_review_list, right after the line initializing the value
of the $query_params variable:
// Preparation of query string to retrieve 5 book reviews
$query_params = array('post_type' => 'book_reviews',
 'post_status' => 'publish',
 'posts_per_page' => 5);

// Retrieve page query variable, if present
$page_num = (get_query_var('paged') ?
 get_query_var('paged') : 1);

// If page number is higher than 1, add to query array
if ($page_num != 1)
 $query_params['paged'] = $page_num;

10. Save and close the plugin file. Refresh the page using the shortcode and use the
navigation links to see that the list of items now changes properly.

How it works...
As we have seen in Chapter 3, User Settings and Administration Pages, shortcodes are
text elements that can be inserted in any page and post that will be replaced with content
generated by the plugin when they are found. The registered callback function must prepare
the output and send it back as a return value at the end of its execution.

The first part of the ch4_br_book_review_list function takes care of preparing a query
array to be passed to a new instance of the WP_Query class. This class allows developers to
easily extract information from the site database's post table. In this example, the parameters
that are being set in the query are the internal post type name (post_type), the status of
the items that we want to display (post_status), and the number of items that should be
retrieved at a time (posts_per_page).

Once the query string is in place, we create a global variable called book_review_query
and assign to it a new instance of a WP_Query object. Once created, we initialize it using the
query string that was just assembled. If posts are found by the object, we output HTML code
to create a table and use a while loop to cycle through all items found and display their title
and author using code similar to the previous two recipes.

As part of this recipe we have seen that if more entries exist for the custom post type than the
value specified with the posts_per_page query argument, navigation controls are added
under the table of entries but will not work correctly since we manually created the query
string. To rectify the situation, we use the get_query_var function to see if a page number
was requested. If that is the case, and the page number is not 1, we add that number to our
query parameters.

The Power of Custom Post Types

150

There's more...
As mentioned in the beginning of this recipe, there may be instances where a list of custom
post type items needs to be displayed as part of a theme template. The following section
shows how to get shortcode content to be displayed as part of a template file.

do_shortcode function
The do_shortcode function can be called from any theme template file, for the front page or
any other section of the site, to render content associated with a shortcode. It takes a single
argument, the shortcode string, including any parameters. To display the content created in
this recipe, we would simply need to call the following:

<?php echo do_shortcode('[book-review-list]'); ?>

Adding custom categories for custom
post types

To keep items organized in a site, administrators often use the built-in WordPress categories
and terms to identify similar items. Looking back at the Book Review System that we have
been putting in place so far in this chapter, a type of categorization that would be helpful is a
book type (for example, Science-Fiction, Documentary, Fiction, Poetry, and so on).

This recipe shows how to create a new category (known as a taxonomy in the WordPress
backend) and associate it with the Book Review custom post type.

Getting ready
You should have already followed the Displaying custom post type data in shortcodes and
Displaying single custom post type items using custom templates recipes to have a starting
point for this recipe. Alternatively, you can get the resulting code (ch4-book-reviews\ch4-
book-reviews-v5.php and ch4-book-reviews\single-book_reviews-v1.php)
from the downloaded code bundle. You should then rename them as ch4-book-reviews.
php and single-book_reviews.php, respectively.

How to do it...
1. Navigate to the ch4-book-reviews folder of the WordPress plugin directory of your

development installation.

2. Open the ch4-book-reviews.php file in a code editor.

Chapter 4

151

3. Find the ch4_br_create_book_post_type function and add the following code
after the existing call to register_post_type to create the new taxonomy:
register_taxonomy(
 'book_reviews_book_type',
 'book_reviews',
 array(
 'labels' => array(
 'name' => 'Book Type',
 'add_new_item' => 'Add New Book Type',
 'new_item_name' => "New Book Type Name"
),
 'show_ui' => true,
 'show_tagcloud' => false,
 'hierarchical' => true
)
);

4. Save and close the plugin file.

5. Open the previously created Book Reviews to see the newly added Book Type meta
box on the right-hand side of the post editor.

6. Click on the + Add New Book Type link to create a new item and assign it as the
current item's type. Click on the Update button on the top-right section of the post
editor to save the review.

The Power of Custom Post Types

152

7. Look at the left-hand administration menu to see that a new menu item was added to
manage book types, leading to an editor similar to the post and page category editor.

8. Open the single-book_reviews.php template file in a code editor.

9. Add the following code after the section displaying the author name to display the
book type:
Type:
<?php
 $book_types =
 wp_get_post_terms(get_the_ID(),
 'book_reviews_book_type');

 if ($book_types) {
 $first_entry = true;
 for ($i = 0; $i < count($first_entry); $i++) {
 if ($first_entry == false)
 echo ', ';
 echo $book_types[$i]->name;
 $first_entry = false;
 }
 }
 else
 echo 'None Assigned';
?>

10. Save and close the template file.

11. Visit a Book Review page to see the book type displayed under the author's name.

How it works...
The register_taxonomy function is used to create a new type of category in WordPress
and associate it to a post type. It has three parameters:

register_taxonomy($taxonomy_name, $post_type, $options);

Chapter 4

153

The first argument is a unique identifier for the taxonomy. The second parameter is the
post type that it should be associated with, which should match the type declared with
the register_post_type function. The third argument is an array of parameters that
determine how the new taxonomy will behave.

In this example, we have set a few taxonomy options, including a first item called labels that
contains an array of text strings that will be used in the interface when referring to the new
taxonomy. We also specified a second element, called show_ui, that controls the display of
the taxonomy meta box in the post editor and the presence of a link to access the taxonomy
editor in the administration menu. Next is an option called show_tagcloud, which we set
to false to avoid displaying a tag cloud of all taxonomy values. Finally, the last item in the
options array is called hierarchical. When set to be true, taxonomy items will be able to have
parent/child relationships and will be accessible as a list of checkboxes in the post editor.
If set to false, all taxonomies are organized as a flat list and can be selected using an
interface similar to the tag window in the post and page editor.

There are many more options available for the register_taxonomy function, as can be
seen if you visit the WordPress Codex website (codex.wordpress.org), but the ones
found here are the essential ones to define a basic taxonomy.

See also
 f Creating a custom post type recipe

Hiding the category editor from the custom
post type editor

As we have seen in the previous recipe, when we associated a new taxonomy with the
Book Review custom post type, the show_ui option controls the visibility of the taxonomy
assignment meta box and the admin menu link to the taxonomy editor. In some cases, it is
desirable to give users access to the full taxonomy editor but only let editors choose from a
controlled drop-down list when they create new entries in the custom post type editor.

This recipe shows how to hide the taxonomy interface and create a new menu item to still
have access to the book type editor. It also shows how to update the custom post type
meta box created in the previous recipe to assign a type to new Book Reviews and save
this information in the site database.

The Power of Custom Post Types

154

Getting ready
You should have already followed the Adding custom categories for custom post types recipe
to have a starting point for this recipe. Alternatively, you can get the resulting code (ch4-
book-reviews\ch4-book-reviews-v6.php) from the downloaded code bundle and
rename the file to ch4-book-reviews.php.

How to do it...
1. Click on the Book Reviews top-level menu item in the administration menu.

2. Right-click on the Book Type submenu and select the browser option that will copy
the link destination address (for example, http://localhost/wp-admin/edit-
tags.php?taxonomy=book_reviews_book_type&post_type=book_reviews
in a local development environment).

3. Paste the contents of the clipboard in a new text document for temporary storage.

4. Navigate to the ch4-book-reviews folder of the WordPress plugin directory of your
development installation.

5. Open the ch4-book-reviews.php file in a code editor.

6. Find the call to the register_taxonomy function within the ch4_br_create_
book_post_type function and set the show_ui member of the configuration
array to be false:
'show_ui' => false,

7. Save the plugin and refresh the administration page to see that the Book Type menu
has disappeared.

8. Edit a Book Review to see that the Book Type taxonomy box is no longer displayed.

9. Add the following line of code after all the existing functions and before the closing
?> PHP command at the end of the file to register a function that will be called when
the administration section menu is being constructed:
add_action('admin_menu', 'ch4_br_add_book_type_item');

10. Add the following code section to provide an implementation for the ch4_br_add_
book_type_item function, using the previously stored Book Type editor address as
the last item of the new submenu item array:
function ch4_br_add_book_type_item() {
 global $submenu;

 $submenu['edit.php?post_type=book_reviews'][501] =
 array('Book Type', 'manage_options',
 admin_url('/edit-tags.php?

Chapter 4

155

 taxonomy=book_reviews_book_type&
 post_type=book_reviews'));
}

11. Save the plugin and refresh the administration page to see that the Book Type menu
item is back.

12. Locate the ch4_br_display_review_details_meta_box function in the code
and add the following code within the existing table rendering code to add a new row
containing a drop-down selection box for the book type:
<tr>
 <td>Book Type</td>
 <td>
 <?php

 // Retrieve array of types assigned to post
 $assigned_types = wp_get_post_terms($book_review->ID,
 'book_reviews_book_type');

 // Retrieve array of all book types in system
 $book_types = get_terms('book_reviews_book_type',
 array('orderby' => 'name',
 'hide_empty' => 0));

 if ($book_types) {
 echo '<select name="book_review_book_type"';
 echo ' style="width: 400px">';

 foreach ($book_types as $book_type) {
 echo '<option value="' . $book_type->term_id;
 echo '" ' . selected($assigned_types[0]->term_id,
 $book_type->term_id) . '>';
 echo esc_html($book_type->name);
 echo '</option>';
 }

 echo '</select>';
 } ?>
 </td>
</tr>

The Power of Custom Post Types

156

13. Find the ch4_br_add_book_review_fields function and add the following code
segment, within the if statement checking to see if the post type is a Book Review,
to save the selected book type to the site database upon submission of the post:
if (isset($_POST['book_review_book_type'])
 && $_POST['book_review_book_type'] != '') {
 wp_set_post_terms($book_review->ID,
 $_POST['book_review_book_type'],
 'book_reviews_book_type');
}

14. Save and close the plugin file.

15. Open the previously created Book Review to see the updated Book Review Details
meta box, containing a new drop-down list to specify the Book Type.

How it works...
This recipe tricks WordPress permissions capabilities into giving users access to the book
type editor by taking note of the original editor address and manually adding a link within
the Book Reviews submenu that will take administrators to that page even if the link was
hidden by the system. As can be seen in the recipe's code, this is done by using an action
hook function attached to the admin_menu hook. When the function is executed, it adds an
item to the submenu array for the Book Reviews menu in a slot with a high index to make
sure that it does not conflict with other existing menu elements. The item contains the label to
be displayed in the menu, the user capabilities required to view the item, and the URL of the
taxonomy editor.

The recipe also makes use of three functions related to storing and retrieving taxonomy
entries related to posts. The first, wp_get_post_terms, retrieves an array of terms
associated with a post based on its ID and the name of the taxonomy. The second,
wp_set_post_terms, assigns a term to a post based on its ID and the taxonomy name.
Finally, get_terms retrieves an array of all terms in the taxonomy, ordered based on the
query string found in the second argument.

Chapter 4

157

See also
 f Adding custom categories for custom post types recipe

Displaying additional columns in the custom
post list page

After customizing the post editor to give content creators a tailored environment to create
and edit custom post type entries, this recipe turns its efforts towards the Book Reviews
management page where all entries for this type are listed. By default, custom post type
listings are quite simple, only showing the title, publication date, and number of comments
for each item. To make it easier to identify, sort, and find data in this management page,
WordPress offers a number of customization capabilities, starting with the ability to change
the columns that are displayed.

This recipe shows how to add and remove columns in the post management page, as well as
make sorting in new columns possible.

Getting ready
You should have already followed the Hiding the category editor from the custom post type
editor recipe to have a starting point for this recipe. Alternatively, you can get the resulting
code (ch4-book-reviews\ch4-book-reviews-v7.php) from the downloaded code
bundle and rename the file to ch4-book-reviews.php.

How to do it...
1. Navigate to the ch4-book-reviews folder of the WordPress plugin directory of your

development installation.

2. Open the ch4-book-reviews.php file in a code editor.

3. Add the following line of code after the existing functions and before the closing ?>
PHP command at the end of the file to register a function to be called when the Book
Review listings page is being prepared:
add_filter('manage_edit-book_reviews_columns',
 'ch4_br_add_columns');

4. Add the following code section to provide an implementation for the
ch4_br_add_columns function:
function ch4_br_add_columns($columns) {
 $columns['book_reviews_author'] = 'Author';
 $columns['book_reviews_rating'] = 'Rating';

The Power of Custom Post Types

158

 $columns['book_reviews_type'] = 'Type';

 unset($columns['comments']);

 return $columns;
}

5. Add the following line of code to assign a function to be called when columns data is
getting retrieved for each row in the post listing:
add_action('manage_posts_custom_column',
 'ch4_br_populate_columns');

6. Insert the following code segment to provide an implementation for the
ch4_br_populate_columns function:
function ch4_br_populate_columns($column) {
 if ('book_reviews_author' == $column) {
 $book_author = esc_html(
 get_post_meta(get_the_ID(),
 'book_author',
 true));
 echo $book_author;
 } elseif ('book_reviews_rating' == $column) {
 $book_rating = get_post_meta(get_the_ID(),
 'book_rating', true);
 echo $book_rating . ' stars';
 } elseif ('book_reviews_type' == $column) {
 $book_types = wp_get_post_terms(get_the_ID(),
 'book_reviews_book_type');

 if ($book_types)
 echo $book_types[0]->name;
 else
 echo 'None Assigned';
 }
}

7. Save the plugin file and navigate to the Book Reviews listing page to see that the list
of columns has been altered and that data stored in the post custom fields is now
displayed for each item in the list.

8. Back in the code editor, add the following code at the end of the plugin file, before
the closing ?> PHP tags, to register a function to be called when WordPress identifies
columns that will be sortable for the Book Reviews custom post type:
add_filter('manage_edit-book_reviews_sortable_columns',
 'ch4_br_author_column_sortable');

Chapter 4

159

9. Append the following code to provide an implementation for the
ch4_br_author_column_sortable function:
function ch4_br_author_column_sortable($columns) {
 $columns['book_reviews_author'] = 'book_reviews_author';
 $columns['book_reviews_rating'] = 'book_reviews_rating';

 return $columns;
}

10. Add the following block of code to register a function that will be called when data is
requested to display post lists:
add_filter('request', 'ch4_br_column_ordering');

11. Insert the following code segment to implement the ch4_br_column_ordering
function:
function ch4_br_column_ordering($vars) {
 if (!is_admin())
 return $vars;

 if (isset($vars['orderby']) &&
 'book_reviews_author' == $vars['orderby']) {
 $vars = array_merge($vars, array(
 'meta_key' => 'book_author',
 'orderby' => 'meta_value'));
 } elseif (isset($vars['orderby']) &&
 'book_reviews_rating' == $vars['orderby']) {
 $vars = array_merge($vars, array(
 'meta_key' => 'book_rating',
 'orderby' => 'meta_value_num'));
 }

 return $vars;

}

12. Save and close the plugin file.

The Power of Custom Post Types

160

13. Refresh the Book Reviews listing to see that the Author and Rating column headers
are links that can be clicked to sort these columns.

How it works...
Customizing the post listings page requires an intricate mix of action and filter hooks to
achieve the final goal. The first function we registered is associated with the variable filter
name manage_edit-<post_type>_columns, where <post_type> is replaced with the
internal post type name. When the registered function is called, it receives the default column
list that will be shown when listing Book Reviews entries as an argument. Using this data, it
proceeds to add three columns for author, rating, and type and removes the comments
column from the array. Once finished, it returns the modified array.

The second part of the recipe registers the function that will be responsible for populating the
new columns. Since this function gets called when any custom post type column is rendered,
the code checks which column is currently requested before echoing the requested data to
the browser. The function makes calls to get_the_ID() to get the index of the currently
displayed row and to be able to find its associated data using get_post_meta and
wp_get_post_terms.

At this point in the recipe, the new columns are visible in the Book Reviews management
page and data is displayed for each of them. The purpose of the rest of the recipe is to make
the author and rating columns sortable. This is done by first registering a function with
the variable filter name manage_edit-<post_type>_sortable_columns, where
<post_type> is replaced with the post type name. When the function is executed, it adds
two items to the array of columns that will be sorted. This takes care of making the column
headers links that can be clicked for sorting, associated with the appropriate URLs.

Chapter 4

161

The last function that gets registered is associated with the request filter and takes care
of adding elements to the query array, based on the variables that came through in the
query URL.

The final result allows administrators to easily reorder Book Reviews based on these two
columns that can be sorted, as well as see information about each entry's type.

See also
 f Adding custom categories for custom post types recipe

Adding filters for custom categories to the
custom post list page

A second customization method for the custom post listings is to create a drop-down box
that will allow administrators to only display items that belong to a single category at a time.
This can help significantly reduce the number of entries that are shown to quickly find the
desired entry.

This recipe shows how to add a filter mechanism based on the Book Review type to the
listings page.

Getting ready
You should have already followed the Displaying additional columns in the custom post list
page recipe to have a starting point for this recipe. Alternatively, you can get the resulting code
(ch4-book-reviews\ch4-book-reviews-v8.php) from the downloaded code bundle
and rename the file to ch4-book-reviews.php.

How to do it...
1. Navigate to the ch4-book-reviews folder of the WordPress plugin directory of your

development installation.

2. Open the ch4-book-reviews.php file in a code editor.

3. Add the following line of code after the existing functions and before the closing
?> PHP command at the end of the file to register a function to be called when
WordPress is preparing the filter drop-down boxes for the post listings:
add_action('restrict_manage_posts',
 'ch4_br_book_type_filter_list');

The Power of Custom Post Types

162

4. Add the following code section to provide an implementation for the
ch4_br_book_type_filter_list function:
function ch4_br_book_type_filter_list() {
 $screen = get_current_screen();
 global $wp_query;
 if ($screen->post_type == 'book_reviews') {
 wp_dropdown_categories(array(
 'show_option_all' => 'Show All Book Types',
 'taxonomy' => 'book_reviews_book_type',
 'name' => 'book_reviews_book_type',
 'orderby' => 'name',
 'selected' =>
 (isset($wp_query->query['book_reviews_book_type']) ?
 $wp_query->query['book_reviews_book_type'] : ''),
 'hierarchical' => false,
 'depth' => 3,
 'show_count' => false,
 'hide_empty' => true,
));
 }
}

5. Insert the following line of code to register a function that will be called when the
post display query is being prepared:
add_filter('parse_query',
 'ch4_br_perform_book_type_filtering');

6. Implement the ch4_br_perform_book_type_filtering function with the
following code segment:
function ch4_br_perform_book_type_filtering($query) {
 $qv = &$query->query_vars;

 if (empty($qv['book_reviews_book_type']) &&
 is_numeric($qv['book_reviews_book_type'])) {
 $term = get_term_by('id',
 $qv['book_reviews_book_type'],
 'book_reviews_book_type');
 $qv['book_reviews_book_type'] = $term->slug;
 }
}

Chapter 4

163

7. Save and close the plugin file.

8. Visit the Book Reviews listings to see the new drop-down to restrict what book types
are displayed.

How it works...
This recipe starts by registering an action callback that will be executed when WordPress
renders the various filter controls that are available for each post type listing. When the
function is called, it retrieves a global variable to know the post type that is currently being
displayed and determine if it should show the book type filter list. It also accesses the global
post query variable to see if a book type filter is already in place and sets the correct drop-
down list entry to be selected, if there is one.

The callback then proceeds to use the wp_dropdown_categories function to display
a list of all of the taxonomy items registered for book types. This utility function expects to
receive an array of parameters that determine which taxonomy list to display, the name of the
drop-down list field name, and the label to be displayed for the option to show all types. This
array should also contain a few parameters to determine the order in which the items should
be displayed, specify the item to set as selected, indicate the maximum depth to show for
hierarchical taxonomies, and determine whether or not item counts and empty items should
be shown.

Once the new book type selection list is in place, selecting an entry and clicking on the Filter
button triggers a refresh of the web page and leads to the second registered callback that
was put in place being executed. The filter function receives the current WordPress post
query object and starts by first getting a pointer to the query variables that are stored inside
of the query object. With this in hand, it moves on to verify if a book type is part of the query
variables and if it is numeric. If the result is positive, it replaces the numeric value with the
textual name for the selected book type so that the query can take place.

Once all of this code is executed, users are able to quickly filter which book types should be
displayed in the Book Reviews management page. They are also still able to use the column
sorting mechanism implemented in the previous recipe.

The Power of Custom Post Types

164

See also
 f Adding custom categories for custom post types recipe

Updating page title to include custom post
data using plugin filters

A last customization touch that can be put in place to support our Book Reviews custom post
type is to add custom information about the posts in the title bar when displaying them. For
example, we could add the author's name next to the book title.

This recipe shows how to use the wp_title filter, first seen in Chapter 2, Plugin Framework
Basics, to alter the post title for Book Reviews.

Getting ready
You should have already followed the Adding filters for custom categories to the custom post
list page recipe to have a starting point for this recipe. Alternatively, you can get the resulting
code (ch4-book-reviews\ch4-book-reviews-v9.php) from the downloaded code
bundle and rename the file to ch4-book-reviews.php.

How to do it...
1. Navigate to the ch4-book-reviews folder of the WordPress plugin directory of your

development installation.

2. Open the ch4-book-reviews.php file in a code editor.

3. Add the following line of code after the existing functions and before the closing
?> PHP command at the end of the file to register a function to be called when
WordPress is preparing the text to be displayed in the browser's title bar:
add_filter('wp_title', 'ch4_br_format_book_review_title');

4. Add the following code section to provide an implementation for the
ch4_br_format_book_review_title function:
function ch4_br_format_book_review_title($the_title) {
 if (get_post_type() == 'book_reviews' && is_single()) {
 $book_author = esc_html(get_post_meta(get_the_ID(),
 'book_author', true));
 $the_title .= ' by ' . $book_author;
 }

 return $the_title;
}

Chapter 4

165

5. Save and close the plugin file.

6. Visit a Book Review page. You will see that the book author is now displayed after
the name in the title. However, you will also see that there is a vertical bar character
between the title and the additional text elements.

7. Navigate to the twentyeleven folder of the WordPress themes directory of your
development installation.

8. Open the header.php file in a code editor.

9. Replace the following code segment:
wp_title('|', true, 'right');

// Add the blog name.
bloginfo('name');

with:

wp_title('', true, 'right');

// Add the blog name.
echo ' | ';
bloginfo('name');

10. Save and close the template file.

11. Refresh the Book Review page to see the proper extended title displayed in the
browser's title bar.

How it works...
As seen previously in Chapter 2, Plugin Framework Basics, the wp_title filter allows plugins
to modify or completely replace the page title contents. In this case, the code of the function
that we associated with the filter hook receives the title that WordPress intends to display as
an argument. It then proceeds to check if the item that is being prepared for display is a Book
Review and whether or not it is a single item. While the first condition is something obvious to
check, the is_single verification is done to make sure that the code does not try to add a
book author on the Book Reviews archive listing page.

The Power of Custom Post Types

166

While implementing this filter should have been enough to get the author to be displayed next
to the book title in the title bar, we encounter a problem with the way that the twentyeleven
theme puts together the page title. Namely, it uses the first parameter of the wp_title
function to specify a separator to be displayed after the title. Unfortunately, this separator is
added to the title before our filter function gets executed, even if we use the higher priority
(1) when registering our filter hook callback. Therefore, we must modify the theme header file
template to get the proper output. This may not be required for other themes based on how
they put together the page title.

5
Customizing Post and

Page Editors

In the previous chapters, we learned how to create custom plugin configuration panels
and how to set up custom post types. With this knowledge in hand, we will now see how
to customize the post and page editors as follows:

 f Adding extra fields to the post editor using custom meta boxes

 f Displaying custom post data in theme templates

 f Hiding the Custom Field section in the post editor

 f Extending the post editor to allow users to upload files directly

Introduction
Meta boxes are a very useful tool in the creation of WordPress plugins, as we saw in the
previous two chapters. They were first used to organize large administration panels into
manageable sections in Chapter 3, User Settings and Administration Pages, and then
continued to be a key element in the creation of tailored interfaces to edit custom post types
in Chapter 4, The Power of Custom Post Types.

This chapter explores how meta boxes can be used to augment the default post and page
editors' capabilities. While WordPress posts and pages already offer a lot of functionality in
a default installation, custom data entry fields go a long way in crafting a user experience
that is much smoother than using the custom fields editor. These extra fields can be used to
store anything. For example, they could be used to specify alternative language links for blog
entries, or to assign a pop-up dialog to specific articles on a site.

Customizing Post and Page Editors

168

Adding extra fields to the post editor using
custom meta boxes

The WordPress post and page editors are organized in a series of collapsible sections with
headers called meta boxes. While WordPress is mainly responsible for populating these
containers with all of the appropriate elements, plugin developers can insert their own
sections by registering user meta boxes.

To demonstrate this capability, this recipe shows how to add a custom meta box that will
be used to display and capture information about the name and web address of the source
materials used when writing a new post or page entry.

Getting ready
You should have access to a WordPress development environment, either on your local
computer or a remote server, where you will be able to load your new plugin files.

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Create a new directory called ch5-post-source-link.

3. Navigate to the directory and create a text file called ch5-post-source-link.php.

4. Open the new file in a code editor and add an appropriate header at the top of the
plugin file, naming the plugin Chapter 5 – Post Source Link.

5. Add the following line of code before the closing ?> PHP command at the end of the
file to register a function that will be executed when WordPress is preparing a list of
meta boxes for all administration areas:
add_action('add_meta_boxes',
 'ch5_psl_register_meta_box');

6. Add the following code segment to provide an implementation for the
ch5_psl_register_meta_box function:
function ch5_psl_register_meta_box() {
 add_meta_box('ch5_psl_source_meta_box',
 'Post/Page Source', 'ch5_psl_source_meta_box',
 'post', 'normal');

 add_meta_box('ch5_psl_source_meta_box',
 'Post/Page Source', 'ch5_psl_source_meta_box',
 'page', 'normal');
}

Chapter 5

169

7. Insert this code to provide an implementation for the ch5_psl_source_meta_box
function, responsible for rendering the meta box contents:
function ch5_psl_source_meta_box($post) {

 // Retrieve current source name and address based on post ID
 $post_source_name = esc_html(get_post_meta($post->ID,
 'post_source_name', true));
 $post_source_address = esc_html(get_post_meta($post->ID,
 'post_source_address',
 true));
 ?>

 <!-- Display fields to enter source name and address -->
 <table>
 <tr>
 <td style="width: 100px">Source Name</td>
 <td>
 <input type="text" size="40"
 name="post_source_name" value="<?php echo
 $post_source_name; ?>" />
 </td>
 </tr>
 <tr>
 <td>Source Address</td>
 <td>
 <input type="text" size="40"
 name="post_source_address" value="<?php echo
 $post_source_address; ?>" />
 </td>
 </tr>
 </table>
<?php }

8. Insert the following block of code to register a function that will be called when any
type of post is saved:
add_action('save_post', 'ch5_psl_save_source_data', 10, 2);

9. Append the following code section to provide an implementation for the
ch5_psl_save_source_data function:
function ch5_psl_save_source_data($post_id = false,
 $post = false) {
 // Check post type for posts or pages

Customizing Post and Page Editors

170

 if ($post->post_type == 'post' ||
 $post->post_type == 'page') {

 // Store data in post meta table if present in post data
 if (!empty($_POST['post_source_name']))
 update_post_meta($post_id, 'post_source_name',
 $_POST['post_source_name']);

 if (!empty($_POST['post_source_address']))
 update_post_meta($post_id, 'post_source_address',
 $_POST['post_source_address']);
 }
}

10. Save and close the plugin file.

11. Navigate to the Plugins management page and activate the Chapter 5 – Post Source
Link plugin.

12. Go to the Posts section of the administration and click on one of the entries to open
the post editor and see the new Post/Page Source meta box.

How it works...
Every time an administrator or content manager visits the platform's backend, WordPress
creates a number of meta boxes for all of its internal editors (post, pages, links, and so on)
using the add_meta_box function that we have seen in the previous two chapters.

In this recipe, we use the same add_meta_box function twice to associate a new box to the
page and post editors, with both calls registering the same callback function since we want
the same functionality in both places. As WordPress stores posts and pages in the same
database table, it will automatically make sure that all entries have unique IDs between
both types of entries.

The other function that we have seen before is get_post_meta, which is used to retrieve
custom metadata associated with post entries.

The content of the meta box itself is displayed using standard HTML. As this box will be part
of a larger editor, there is no need to worry about declaring a form in this box.

Chapter 5

171

Once the new dialog section is created, the next task is to put code in place to store data from
the additional fields upon submission, through the use of the save_post action. Functions
associated with this hook get called when posts of any type get saved. When executed, the
associated function receives two parameters from WordPress that contain the ID of the post
being saved and a copy of all data that has been processed to be saved so far. The callback
also has access to all server post data received from the user.

As indicated in the previous chapter, it is important to set the fourth parameter of the
add_action call—that is, accepted_args—for actions and filters that receive more than
one argument. If it is not specified, these additional arguments will not be available to the
receiving hook function.

Working with the assumption that the meta box was only added to the post and page
editors, the code contained in the ch5_psl_save_source_data function first checks to see
if the post type is set as a post or page. If it is one of these two types, it moves on to check
for the presence of post data for the source name and address fields. If found, two calls to
update_post_meta are made to store the new information in the site database, associated
with the posts that it belongs to. Making a call to the update function will actually update the
post custom field data if it exists or create it in the case of new post or page entries.

There's more...
While this recipe specifically adds a new section to the post and page editors, it may be
desirable to make the new fields available to all post types, including custom ones.

Adding a new meta box to all post types (including custom ones)
This recipe made two function calls to register meta boxes with the post and page editors.
This concept does not expand well to register a custom section with all post types since
custom types created by other plugins are not known. Thankfully, there is an easy way to get
an array of all post types that can be used to associate the new meta box to all post editors
using a quick foreach loop.

The following code shows how the ch5_psl_register_meta_box function can be
re-written to associate the new box with all post types:

function ch5_psl_register_meta_box() {
 $post_types = get_post_types(array(), 'objects');
 foreach ($post_types as $post_type) {
 add_meta_box('ch5_psl_post_source_meta_box',
 'Post/Page Source',
 'ch5_psl_source_meta_box',
 $post_type->name, 'normal');

 }
}

Customizing Post and Page Editors

172

Displaying custom post data in theme
templates

If you have ever taken a look inside a theme's template files, you should be familiar with the
functions that WordPress offers to weave content elements in the page layout. With custom
field data associated to posts and pages, two options present themselves to users to display
this information.

The first of these is to make calls to the get_post_meta function and display the resulting
information right from the template code. This method assumes that the user understands
all of the parameters to the function and knows what the names of all custom fields are. A
cleaner alternative is to create a dedicated utility function that will display the new content
with a single call from the template file.

This recipe explains how to create a function to display the source data associated to a post or
page item as a clean link.

Getting ready
You should have already followed the Adding extra fields to the post editor using custom meta
boxes recipe to have a starting point for this recipe. Alternatively, you can get the resulting
code (ch5-post-source-link\ch5-post-source-link-v1.php) from the code
bundle you downloaded from the Packt Publishing website (http://www.packtpub.com/
support) and rename the file to ch5-post-source-link.php.

How to do it...
1. Navigate to the ch5-post-source-link folder of the WordPress plugin directory of

your development installation.

2. Open the ch5-post-source-link.php file in a code editor.

3. Add the following line of code before the closing ?> PHP command at the end of the
file to declare a function to be used to display a source link in a template:
function ch5_psl_display_source_link ($before_link = '',
 $source_intro_text = '',
 $after_link = '',
 $post_id = '') {

 $post_id = (!empty($post_id) ? $post_id :
 get_the_ID());

 $before_link = (!empty($before_link) ? $before_link :

Chapter 5

173

 '<div class="PostSource">');
 $source_intro_text = (!empty($source_intro_text) ?
 $source_intro_text : 'Source: ');
 $after_link = (!empty($after_link) ? $after_link :
 '</div>');

 // Retrieve current source name and address based on post ID
 $post_source_name =
 get_post_meta($post_id, 'post_source_name', true);
 $post_source_address =
 get_post_meta($post_id, 'post_source_address', true);

 // Output information to browser
 if (!empty($post_source_name) &&
 !empty($post_source_address)) {
 echo $before_link;
 echo $source_intro_text;
 echo '<a href="' . esc_url($post_source_address);
 echo '">' . $post_source_name;
 echo '' . $after_link;
 }

}

4. Save and close the plugin file.

5. Navigate to the twentyeleven folder of the WordPress themes directory of your
development installation.

6. Open the template file content-single.php in a code editor.

7. Add a call to the newly created ch5_psl_display_source_link function after
the call to the_content and before the call to wp_link_pages:
<?php the_content(); ?>

<?php ch5_psl_display_source_link(); ?>

<?php wp_link_pages(array('before' => '<div class="page-
link">' . __('Pages:', 'twentyeleven') . '',
'after' => '</div>')); ?>

8. Save and close the template file.

Customizing Post and Page Editors

174

9. Add source data to one of your site's posts and view it to see the new Source link
displayed on the page.

How it works...
This recipe takes advantage of the fact that any function declared in a plugin code file can be
accessed from any theme template file to create a data display utility function. Once in place,
it allows users to easily display the captured article source data on any post or page template.

All parameters of this function are optional:

ch5_psl_display_source_link($before_link,
 $source_intro_text,
 $after_link, $post_id);

The first three parameters are used for styling, allowing for HTML code to be displayed before
and after the link, as well as displaying text in front of the link itself. The last parameter can
be used to specify a post ID, in situations where this function is called outside a WordPress
content processing loop. Unlike filter functions, this custom display function displays text
directly to the browser as it is executed by using the echo function.

The esc_url function that is used in this code is a sanitization function that will make sure
that only allowed HTML code is displayed when displaying the source link.

See also
 f Adding extra fields to the post editor using custom meta boxes recipe

Chapter 5

175

Hiding the Custom Field section in the
post editor

After having full control over which meta boxes are shown when creating custom post type
editor controls and putting together plugin configuration pages, things are a little different
when it comes to altering the basic post and page editors. More specifically, instead of
choosing which meta boxes to display, the editor sections created by WordPress need to be
removed to tailor the user experience.

This recipe shows how to remove the Custom Fields meta boxes from the post and
page editors.

Getting ready
You should have access to a WordPress development environment, either on your local
computer or a remote server, where you will be able to load your new plugin files.

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Create a new directory called ch5-hide-custom-fields.

3. Navigate to this directory and create a new text file called
ch5-hide-custom-fields.php.

4. Open the new file in a code editor and add an appropriate header at the top of the
plugin file, naming the plugin Chapter 5 – Hide Custom Fields.

Customizing Post and Page Editors

176

5. Add the following line of code before the closing ?> PHP command at the end of the
file to register a function that will be executed when WordPress is preparing a list of
meta boxes for all administration areas:
add_action('add_meta_boxes',
 'ch5_hcf_remove_custom_fields_metabox');

6. Add the following code section to provide an implementation for the
ch5_hcf_remove_custom_fields_metabox function:
function ch5_hcf_remove_custom_fields_metabox() {
 remove_meta_box('postcustom', 'post', 'normal');
 remove_meta_box('postcustom', 'page', 'normal');
}

7. Save and close the plugin file.

8. Navigate to the Plugins management page and activate the Chapter 5 – Hide
Custom Fields plugin.

9. Go to the Posts section of the administration and click on one of the entries to open
the post editor. You will see that the Custom Fields section is no longer visible in the
editor and does not show up in the Screen Options configuration tab either.

How it works...
This short recipe contains only a few lines of code, which register a function to be called
when WordPress is preparing meta boxes for all administration sections, followed by the
implementation of this function. The function itself makes two calls to the remove_meta_box
function to remove the custom fields section from the post and page editors. This function
requires three parameters:

remove_meta_box($id, $page, $context);

Chapter 5

177

The first argument is the meta box identifier that was used when it was first created. While you
may not know where the creation code for a given meta box is located within the WordPress
source code, a quick look at the box's div id in the page source from a browser reveals its
name. In this case, the id is postcustom. The other two arguments indicate the name of the
editor from which the meta box is to be removed and the context of the meta box (normal,
advanced, or side).

Once the plugin is activated, the designated box disappears from the interface immediately.

Extending the post editor to allow users
to upload files directly

WordPress offers a very complete media upload dialog. However, some projects might require
users to be able to attach files right from the post editor. This recipe shows how to modify the
post editor form to be able to attach files to articles and how to store these files once they
have been uploaded. While any type of file could be attached using this technique, the code
will be written to accept only items with a PDF file extension.

Getting ready
You should have access to a WordPress development environment, either on your local
computer or a remote server, where you will be able to load your new plugin files.

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Create a new directory called ch5-custom-file-uploader.

3. Navigate to this directory and create a new text file called
ch5-custom-file-uploader.php.

4. Open the new file in a code editor and add an appropriate header at the top of the
plugin file, naming the plugin Chapter 5 – Custom File Uploader.

5. Add the following line of code before the closing ?> PHP command at the end of the
file to register a function that will be executed when WordPress is rendering the HTML
code at the beginning of the post editor form:
add_action('post_edit_form_tag', 'ch5_cfu_form_add_enctype');

6. Add the following code section to provide an implementation for the
ch5_cfu_form_add_enctype function:
function ch5_cfu_form_add_enctype() {
 echo ' enctype="multipart/form-data"';
}

Customizing Post and Page Editors

178

7. Insert the following line of code to register a function to be called when WordPress is
preparing the meta boxes for all administration sections:
add_action('add_meta_boxes', 'ch5_cfu_register_meta_box');

8. Add the following block of code to implement the ch5_cfu_register_meta_box
function:
function ch5_cfu_register_meta_box() {
 add_meta_box('ch5_cfu_upload_file', 'Upload File',
 'ch5_cfu_upload_meta_box', 'post', 'normal');
 add_meta_box('ch5_cfu_upload_file', 'Upload File',
 'ch5_cfu_upload_meta_box', 'page', 'normal');
}

9. Implement the function responsible for rendering the meta box contents,
ch5_cfu_upload_meta_box, with the following code:
function ch5_cfu_upload_meta_box($post) {
?>
 <table>
 <tr>
 <td style="width: 150px">PDF Attachment</td>
 <td>
 <?php
 // Retrieve attachment data for post
 $attachment_data = get_post_meta($post->ID,
 'attachdata',
 true);

 // Display post link if data is present
 if (empty ($attachment_data)) {
 echo 'No Attachment Present';
 } else {
 echo '<a href="';
 echo esc_url($attachment_data['url']);
 echo '">' . 'Download Attachment';
 }
 ?>
 </td>
 </tr>
 <tr>
 <td>Upload File</td>
 <td><input name="uploadpdf" type="file" /></td>
 </tr>
 <tr>

Chapter 5

179

 <td>Delete File</td>
 <td><input type="submit" name="deleteattachment"
 class="button-primary" id="deleteattachment"
 value="Delete Attachment" /></td>
 </tr>
 </table>
<?php }

10. Add the following line of code, which calls the add_function to register a callback
that will be executed when post data is processed to be saved:
add_action('save_post', 'ch5_cfu_save_uploaded_file', 10, 2);

11. Implement the ch5_cfu_save_uploaded_file with the following code:
function ch5_cfu_save_uploaded_file($post_id = false,
 $post = false) {
 if (isset($_POST['deleteattachment'])) {
 $attach_data = get_post_meta($post_id, "attachdata",
 true);

 if ($attach_data != "") {
 unlink($attach_data['file']);
 delete_post_meta($post_id, 'attachdata');
 }
 } elseif ($post->post_type == 'post' ||
 $post->post_type == 'page') {

 // Look to see if file has been uploaded by user
 if(array_key_exists('uploadpdf', $_FILES) &&
 !$_FILES['uploadpdf']['error']) {

 // Retrieve file type and store lower-case version
 $file_type_array = wp_check_filetype(basename(
 $_FILES['uploadpdf']['name']));
 $pdf_file_type = strtolower($file_type_array['ext']
);

 // Display error message if file is not a PDF
 if ($pdf_file_type != 'pdf') {
 wp_die('Only files of PDF type are allowed.');
 exit;
 } else {
 // Send uploaded file data to upload directory
 $upload_return = wp_upload_bits(
 $_FILES['uploadpdf']['name'], null,
 file_get_contents(
 $_FILES['uploadpdf']['tmp_name']));

Customizing Post and Page Editors

180

 // Replace backslashes with slashes
 $upload_return['file'] =
 str_replace('\\', '/', $upload_return['file']);

 // Set upload path data if successful.
 if (isset($upload_return['error']) &&
 $upload_return['error'] != 0) {
 $errormsg = 'There was an error uploading';
 $errormsg .= 'your file. The error is: ';
 $errormsg .= $upload_return['error'];
 wp_die($errormsg);
 exit;
 } else {
 $attach_data = get_post_meta($post_id,
 'attachdata',
 true);

 if ($attach_data != '')
 unlink($attach_data['file']);

 update_post_meta($post_id, 'attachdata',
 $upload_return);
 }
 }
 }
 }
}

12. Insert the following code to implement a utility function that can be called from any
theme template to display files uploaded using the new field:
function ch5_cfu_display_pdf_link($pdf_link_text = '',
 $before_link = '',
 $after_link = '',
 $post_id = '') {

 $post_id = (!empty($post_id) ? $post_id : get_the_ID());

 $pdf_link_text = (!empty($pdf_link_text) ?
 $pdf_link_text : 'PDF Attachment');
 $before_link = (!empty($before_link) ? $before_link :
 '<div class="PDFAttach">');
 $after_link = (!empty ($after_link) ? $after_link :
 '</div>');

 $attachment_data = get_post_meta($post_id, 'attachdata',
 true);

Chapter 5

181

 if (empty($attachment_data)) {
 echo 'No PDF Attachment Present';
 } else {
 echo $before_link . '<a href="';
 echo esc_html($attachment_data['url']);
 echo '">' . $pdf_link_text;
 echo '' . $after_link;
 }
}

13. Save and close the plugin file.

14. Navigate to the Plugins management page and activate the Chapter 5 – Custom File
Uploader plugin.

15. Edit any post on your site to see the new Upload File meta box and upload a PDF file
to be associated with the item.

How it works...
The default WordPress post editor declares a simple form that does not have an encoding
type defined and therefore can only accept regular text input. Fortunately, we have access
to an action hook to register a callback function that will output additional code when the
form gets created, allowing us to upload files. This callback is implemented in the first part
of this recipe.

The next code section registers a meta box, as we have seen in many recipes so far, to display
a new editor section that will display a link to an attached file if present, a file selection box to
upload a new file, and a button to request for the attachment to be deleted.

Moving on to the function responsible for processing the post data, the recipe's code first
checks if the user requested to delete a file associated with a post. If that is the case, it will
proceed with the deletion of the file and remove the associated post meta data. In other
circumstances, if the item's post type is a post or page, the plugin will proceed to search for a
file uploaded by the user within the PHP global $_FILES array. This array contains information
on any uploads that have been processed as part of a form's post data. If an entry is found,
we use the wp_check_filetype function to retrieve information about the file type and
proceed to convert the resulting extension to a lowercase string to make comparisons easier.

Customizing Post and Page Editors

182

As this example only expects to receive PDF files, the code then checks to see if the file
extension is correct to decide whether it will display an error message using the wp_die
function or move the file from the web server's temp directory to the wp-content/uploads
directory in WordPress using the wp_upload_bits function. In the latter case, it also stores
the resulting file's path and URL in the post custom field table.

Once this is done, this recipe ends with the implementation of a utility function that can be
used to easily display a link to the PDF attachment from any theme template file.

See also
 f Adding extra fields to the post editor using custom meta boxes recipe

6
Accepting User

Content Submissions

In this chapter, we will be focusing on giving visitors the ability to make submissions to a site.
We will cover the following topics:

 f Creating a client-side content submission form

 f Saving user-submitted content in custom post types

 f Sending e-mail notifications upon new submissions

 f Implementing a captcha on user forms

Introduction
Giving users the ability to contribute content to a site is always a good way to engage the
community and keep content fresh on a site. Going back to the book review system that was
put in place in Chapter 4, The Power of Custom Post Types, this chapter explains how to allow
visitors to add their own book reviews to a site.

Creating a client-side content submission
form

The first step towards giving visitors the ability to contribute to a site is to present a form that
they will be able to use to submit new content. This recipe shows how to create a shortcode
that can easily be inserted on any WordPress page to render a simple form.

Accepting User Content Submissions

184

Getting ready
You should be running the final version of the Book Reviews plugin created in Chapter 4,
The Power of Custom Post Types.

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Create a new directory called ch6-book-review-user-submission and open it.

3. Create a text file called ch6-book-review-user-submission.php.

4. Open the new file in a code editor and add an appropriate header at the top of the
plugin file, naming the plugin Chapter 6 – Book Review User Submission.

5. Add the following line of code before the closing ?> PHP command at the end of the
file to declare a new shortcode and its associated function:
add_shortcode('submit-book-review',
 'ch6_brus_book_review_form');

6. Add the following code segment to provide an implementation for the
ch6_brus_book_review_form function:
function ch6_brus_book_review_form() {
 // make sure user is logged in
 if (!is_user_logged_in()) {
 echo '<p>You need to be a site member to be able to ';
 echo 'submit book reviews. Sign up to gain access!</p>';
 return;
 }
 ?>

 <form method="post" id="addbookreview" action="">

 <!-- Nonce fields to verify visitor provenance -->
 <?php wp_nonce_field('add_review_form', 'br_user_form'); ?>

 <table>
 <tr>
 <td>Book Title</td>
 <td><input type="text" name="book_title" /></td>
 </tr>
 <tr>
 <td>Book Author</td>
 <td><input type="text" name="book_author" /></td>
 </tr>
 <tr>

Chapter 6

185

 <td>Review</td>
 <td><textarea name="book_review_text"></textarea></td>
 </tr>
 <tr>
 <td>Rating</td>
 <td><select name="book_review_rating">
 <?php
 // Generate all rating items in drop-down list
 for ($rating = 5; $rating >= 1; $rating--) { ?>
 <option value="<?php echo $rating; ?>">
 <?php echo $rating; ?> stars
 <?php } ?>
 </select>
 </td>
 </tr>
 <tr>
 <td>Book Type</td>
 <td>
 <?php
 // Retrieve array of all book types in system
 $book_types = get_terms('book_reviews_book_type',
 array('orderby' => 'name',
 'hide_empty' => 0));

 // Check if book types were found
 if (!is_wp_error($book_types) &&
 !empty($book_types)) {

 echo '<select name="book_review_book_type">';

 // Display all book types
 foreach ($book_types as $book_type) {
 echo '<option value="' . $book_type->term_id;
 echo '">' . $book_type->name . '</option>';
 }

 echo '</select>';
 } ?>
 </td>
 </tr>
 </table>

 <input type="submit" name="submit" value="Submit Review" />
 </form>
 <?php }

Accepting User Content Submissions

186

7. Save and close the plugin file.

8. Activate the Chapter 6 – Book Review User Submission plugin.

9. Create a new page and insert the newly created [submit-book-review]
shortcode in the item's content.

10. Publish and view the page to see the form. Do not submit data as the associated
processing script has not been implemented yet.

How it works...
As seen in previous chapters, shortcodes are special blocks of text that can be easily added in
any post or page to be replaced by content when they are found in pages visited by users. This
recipe uses the add_shortcode function to declare a new shortcode that gets replaced with
a review submission form.

The form itself is created using standard HTML and displays a number of text fields. It also
uses a bit of PHP code to dynamically build the list of ratings and book types defined in the
system. Finally, the form includes a PHP call to the wp_nonce_field function, which was
previously seen when creating plugin configuration panels, to add hidden fields that will be
used as a security measure in the associated data processing function.

When submitted, the form action will send visitor content to the page where the book review
form is displayed. This new content will be intercepted and processed in the code that will be
added in the next recipe.

Chapter 6

187

It should be noted that trying to submit a book review at this time will
result in the display of a blank page since we have not implemented
a processing function for user data yet.

There's more...
While engaging visitors is important, users may not want to allow just anyone to post content
to their site. An easy way to control the source of user submissions is to show the book review
submission form only to those users who have registered accounts on the site.

Controlling access to client-side user form
By using the is_user_logged_in function, the form display function in this recipe can
be quickly modified to display the form only to those users who are registered and logged
into the site.

function ch6_brus_book_review_form() {
 // Check if user is logged in
 if (!is_user_logged_in()) {
 echo '<p>You need to be a site member to be able to';
 echo ' submit book reviews. Sign up to gain access!</p>';
 return;
 } ?>

 <!-- ... Previous form HTML display code goes here ... -->
}

See also
 f Creating a new simple shortcode recipe in Chapter 2, Plugin Framework Basics

Saving user-submitted content in custom
post types

When visitors click on the Submit button on the form created in the previous recipe, the target
of the form is set to be the same page that is hosting the submission form. Since this page
is not capable of handling form data, we must implement an action hook that intercepts this
post data and sends it to a processing function that we will define.

This recipe shows how to implement a function responsible for processing user input.

Accepting User Content Submissions

188

Getting ready
You should be running the final version of the Book Reviews plugin created in Chapter 4, The
Power of Custom Post Types, and should have already followed the Creating a client-side
content submission form recipe. Alternatively, you can get the file from the code bundle and
rename the file ch6-book-review-user-submission-v1.php to ch6-book-review-
user-submission.php.

How to do it...
1. Navigate to the ch6-book-review-user-submission directory of the WordPress

plugin folder of your development installation.

2. Open the file ch6-book-review-user-submission.php in a text editor.

3. Add the following line of code before the closing ?> PHP command at the end of the
file to register a function that will intercept user-submitted book reviews:
add_action('template_redirect',
 'ch6_brus_match_new_book_reviews');

4. Add the following block of code to implement the ch6_brus_match_new_book_
reviews function:
function ch6_brus_match_new_book_reviews($template) {
 if (!empty($_POST['ch6_brus_user_book_review'])) {
 ch6_brus_process_user_book_reviews();
 } else {
 return $template;
 }
}

5. Insert the following code to provide an implementation for the
ch6_brus_process_user_book_reviews:
function ch6_brus_process_user_book_reviews() {
 // Check that all required fields are present and non-empty
 if (wp_verify_nonce($_POST['br_user_form'],
 'add_review_form') &&
 !empty($_POST['book_title']) &&
 !empty($_POST['book_author']) &&
 !empty($_POST['book_review_text']) &&
 !empty($_POST['book_review_book_type']) &&
 !empty($_POST['book_review_rating'])) {
 // Create array with received data
 $new_book_review_data = array(
 'post_status' => 'publish',

Chapter 6

189

 'post_title' => $_POST['book_title'],
 'post_type' => 'book_reviews',
 'post_content' => $_POST['book_review_text']);

 // Insert new post in site database
 // Store new post ID from return value in variable
 $new_book_review_id =
 wp_insert_post($new_book_review_data);

 // Store book author and rating
 add_post_meta($new_book_review_id, 'book_author',
 wp_kses($_POST['book_author'], array()));
 add_post_meta($new_book_review_id, 'book_rating',
 (int) $_POST['book_review_rating']);

 // Set book type on post
 if (term_exists($_POST['book_review_book_type'],
 'book_reviews_book_type')) {
 wp_set_post_terms($new_book_review_id,
 $_POST['book_review_book_type'],
 'book_reviews_book_type');
 }
 // Redirect browser to book review submission page
 $redirectaddress =
 (empty($_POST['_wp_http_referer']) ? site_url() :
 $_POST['_wp_http_referer']);
 wp_redirect(add_query_arg('addreviewmessage', '1',
 $redirectaddress));
 exit;
 } else {
 // Display message if any required fields are missing
 $abortmessage = 'Some fields were left empty. Please ';
 $abortmessage .= 'go back and complete the form.';
 wp_die($abortmessage);
 exit;
 }
}

6. In the original ch6_brus_book_review_form function, add the following code
after the wp_nonce_field function call:
<?php if (isset($_GET['addreviewmessage'])
 && $_GET['addreviewmessage'] == 1) { ?>

 <div style="margin: 8px;border: 1px solid #ddd;
 background-color: #ff0;">

Accepting User Content Submissions

190

 Thank for your submission!
 </div>

<?php } ?>

<!-- Post variable to indicate user-submitted items -->
<input type="hidden" name="ch6_brus_user_book_review" value="1" />

7. Save and close the plugin file.

8. Go back to the book review submission form, and submit a review to send all fields
to the newly created processing function. After processing the new content, the script
will return to the form, which will display a confirmation message.

How it works...
After sending all post data to the page containing the book review submission form
in the previous recipe, the first few steps of this recipe assign a function to the
template_redirect action hook to allow us to capture new book review content.
This hook is executed early in the WordPress processing sequence. If found, we call
the processing function that is defined in the rest of the recipe.

The first thing that is done in our processing function is to check if the proper hidden data field
is found as part of the post data using the wp_verify_nonce function. If it is not present,
indicating that someone may be trying to use the script without having used the front-end
form, it will display an error message.

When we are sure that our data storage script is being legitimately called, we continue
processing the actual data by first checking to see if all fields are present and are not empty.
If that is not the case, we display an error message asking the user to go back and complete
the form using the wp_die function.

If all fields have been received correctly, the recipe continues to process the incoming data by
preparing an array of information that includes the newly submitted title and review text, along
with a post status and the book_reviews post type name. The resulting array is sent to the
wp_insert_post function to store the information. As we can see, wp_insert_post only
requires a single parameter that is fulfilled using the array that we just created. While we only
define four elements of that array, many more are available, which can be seen by consulting
the WordPress Codex.

Now, calling wp_insert_post only takes care of storing some key data elements that
belong in the post data. We must follow up this code with calls to update_post_meta
and wp_set_post_terms to store the remaining user information to the site database.

Once all information is stored, we use a combination of the wp_redirect and
add_query_arg functions to send the user back to the page where he submitted a book
review, while making sure that only one instance of the addreviewmessage variable is
in the target address.

Chapter 6

191

Last, but not least, this recipe makes a small modification to the code that rendered the
book review form to add a confirmation message that is shown to visitors when information
is accepted by the plugin.

There's more...
In a world of spam bots and real people who are set on creating bogus content on any site,
setting new book reviews to be immediately visible on the site might not be wise.

Moderating user-submitted content
Instead of setting a status of publish for new post entries, we can use a value of draft
to make the new entry visible only in the back-end administration area. To give plugin users
more flexibility, you could also give them a way to decide what method they prefer in a
configuration panel.

See also
 f Creating a client-side content submission form recipe
 f Processing and storing plugin configuration data recipe in Chapter 3, User Settings

and Administration Pages
 f Adding a new section to the custom post type editor recipe in Chapter 4, The Power

of Custom Post Types

Sending e-mail notifications upon new
submissions

Just like WordPress sends out e-mail notifications to the administrator when new comments
are posted, sending out e-mails when visitors post new book reviews allows site managers
to review new content as it comes in and decide if they approve it to be published online.

This recipe shows how to prepare e-mail data and send it using the wp_mail function.

Getting ready
You should be running the final version of the Book Reviews plugin created in Chapter 4, The
Power of Custom Post Types, and should have already followed the Saving user-submitted
data in custom post types recipe (including changing the post status to draft as indicated
in the There's more... section.) Alternatively, you can get the file from the code bundle and
rename ch6-book-review-user-submission-v2.php to ch6-book-review-user-
submission.php. Finally, you should have access to a WordPress installation on a hosted web
server as e-mails are usually not sent when running it on a local installation. Be sure to have
access to the e-mail account associated with the site administrator to see the resulting e-mail.

Accepting User Content Submissions

192

How to do it...
1. Navigate to the ch6-book-review-user-submission directory of the WordPress

plugin folder of your development installation.

2. Open the file ch6-book-review-user-submission.php in a text editor.

3. Insert the following line of code to register a function to be called back when new
posts are submitted:
add_action('wp_insert_post', 'ch6_brus_send_email', 10, 2);

4. Insert the following block of code to implement the ch6_brus_send_email
function:
function ch6_brus_send_email($post_id, $post) {

 // Only send e-mails for user-submitted book reviews
 if (isset($_POST['ch6_brus_user_book_review']) &&
 'book_reviews' == $post->post_type) {

 $admin_mail = get_option('admin_email');
 $headers = 'Content-type: text/html';
 $message = 'A user submitted a new book review to your ';
 $message .= 'Wordpress site database.

';
 $message .= 'Book Title: ' . $post->post_title ;
 $message .= '
';
 $message .= '<a href="';
 $message .= add_query_arg(array(
 'post_status' => 'draft',
 'post_type' => 'book_reviews'),
 admin_url('edit.php'));
 $message .= '">Moderate new book reviews';
 $email_title = htmlspecialchars_decode(get_bloginfo(),
 ENT_QUOTES) . " - New Book Review Added: " .
 htmlspecialchars($_POST['book_title']);
 // Send e-mail
 wp_mail($admin_mail, $email_title, $message, $headers);
 }
}

5. Save and close the plugin file.

Chapter 6

193

6. Go back to the book review submission form and submit a book review. An e-mail
will be sent to the address associated with the site administrator, containing some
information from the new review.

How it works...
The wp_mail function can be used by any plugin to send out e-mail messages. It takes five
arguments to define all elements of the outgoing message:

wp_mail($destination, $subject, $message, $headers,
 $attachments);

The first three arguments are required and respectively define the e-mail address of the
intended recipient, the title of the message, and its content. As we have seen in this recipe,
the content is mainly specified using standard HTML syntax, while the target e-mail address is
retrieved from the options table by using the get_option function. As for the title, it is built
from a number of textual elements such as the blog title and book review title to create the
final result.

The next parameter is optional and provides header information for the e-mail, with the most
important piece of information in that section being the character set. The last parameter can
optionally be used to specify the path of one or more files to be sent as e-mail attachments.

To make it easier for site administrators to manage new entries, part of the message body
contains a link to the custom post management page of the WordPress site administration
area to quickly display all unapproved entries (set as draft items).

See also
 f Creating a client-side content submission form recipe

Accepting User Content Submissions

194

Implementing a captcha on user forms
A common security measure on website forms is to use captcha codes, where distorted
letters and numbers are displayed with surrounding visual noise, to check that the person
submitting data is not a spam robot. The form that we have been building to accept
visitor-submitted book reviews could benefit from this type of technology.

This recipe shows how to download and incorporate a simple captcha library in the
submission form created earlier and how to check whether the submitted information
matches the content from the captcha image.

Getting ready
You should be running the final version of the Book Reviews plugin created in Chapter 4,
The Power of Custom Post Types, and should have already followed the Sending e-mail
notifications upon new submissions recipe. Alternatively, you can get the resulting file from
the code bundle and rename it from ch6-book-review-user-submission\ch6-book-
review-user-submission-v3.php to ch6-book-review-user-submission.php
before starting the recipe.

How to do it...
1. Download the EasyCaptcha PHP script from

http://kestas.kuliukas.com/EasyCaptcha/.

2. Navigate to the ch6-book-review-user-submission directory of the WordPress
plugin folder of your development installation.

3. Extract the contents of the downloaded archive to the plugin directory to create the
EasyCaptcha subdirectory.

4. Navigate to the EasyCaptcha directory and open the easycaptcha.php file in a
code editor.

5. Change the 17-character string on line 21 to a different random string:
setcookie('Captcha',
 md5("HDBHAYYEJKPWIKJHDD".$captchaText.
 $_SERVER['REMOTE_ADDR'].$time).'.'.$time, null, '/');

6. Open the file named ch6-book-review-user-submission.php in a code editor.

7. Insert a new row in the form table to display a captcha and ask visitors to re-type
the text shown in the image:
<tr>
 <td>Re-type the following text

 <img src="<?php echo plugins_url(
 'EasyCaptcha/easycaptcha.php', __FILE__); ?>" />

Chapter 6

195

 </td>
 <td><input type="text" name="book_review_captcha" /></td>
</tr>

8. Locate the ch6_brus_process_user_book_reviews function and add an extra
item, highlighted in the following code, to the list of fields getting checked to make
sure that they are not empty:
if (wp_verify_nonce($_POST['br_user_form'],
 'addreview_form') &&
 !empty($_POST['book_title']) &&
 !empty($_POST['book_author']) &&
 !empty($_POST['book_review_text']) &&
 !empty($_POST['book_review_book_type']) &&
 !empty($_POST['book_review_rating']) &&
 !empty($_POST['book_review_captcha'])) {

9. Insert the following code to check the captcha value, before the existing data
processing code, making sure that the 17-character text string in the call to
md5 matches the previously modified string:
// Variable used to determine if submission is valid
$valid = false;

// Check if captcha text was entered
if (empty($_POST['book_review_captcha'])) {
 $abortmessage = 'Captcha code is missing. Go back and ';
 $abortmessage .= 'provide the code.';
 wp_die($abortmessage);
 exit;
} else {
 // Check if captcha cookie is set
 if (isset($_COOKIE['Captcha'])) {
 list($hash, $time) =
 explode('.', $_COOKIE['Captcha']);

 // The code under the md5's first section needs to match
 // the code entered in easycaptcha.php

 if (md5('HDBHAYYEJKPWIKJHDD'.
 $_REQUEST['book_review_captcha'] .
 $_SERVER['REMOTE_ADDR'] . $time) != $hash) {
 $abortmessage = ' Captcha code is wrong. Go back ';
 $abortmessage .= 'and try to get it right or reload ';
 $abortmessage .= 'to get a new captcha code.';

Accepting User Content Submissions

196

 wp_die($abortmessage);
 exit;
 } elseif((time() - 5 * 60) > $time) {
 $abortmessage = 'Captcha timed out. Please go back, ';
 $abortmessage .= 'reload the page and submit again.';
 wp_die($abortmessage);
 exit;
 } else {
 // Set flag to accept and store user input
 $valid = true;
 }
 } else {
 $abortmessage = 'No captcha cookie given. Make sure ';
 $abortmessage .= 'cookies are enabled.';
 wp_die($abortmessage);
 exit;
 }
}

10. Add an if statement, highlighted in the following code, around the previous content
storage code to look at the value of the $valid variable:
if ($valid) {
 // Create array with received data
 $new_book_review_data = array(
 'post_status' => 'draft',
 'post_title' => $_POST['book_title'],
 'post_type' => 'book_reviews',
 'post_content' => $_POST['book_review_text']
);

 <!-- ... Data Processing code ... -->

 // Redirect browser to book review submission page
 $redirectaddress = (empty($_POST['_wp_http_referer']) ?
 site_url() : $_POST['_wp_http_referer']);

 wp_redirect($redirectaddress);
 exit;
}
} else {
// Display message if any required fields are missing

Chapter 6

197

11. Save and close the code file.

12. Go back to the book review submission form to see the new captcha field.

How it works...
The EasyCaptcha PHP script is a simple tool that can generate and display a captcha image
and store the string that it is generated in a cookie. The resulting cookie can be queried in
the data processing code to check if the value entered by the user matches the image that
was displayed.

Before using this script, it is important to change the 17-character string as instructed in the
recipe to make the resulting file difficult to find for anyone looking to trick the system.

The recipe's code gets the captcha image to be displayed by using a standard HTML img tag
and pointing to the EasyCaptcha main PHP file as the image path.

On the data processing side, our code checks to see if the user captcha text matches with
what was stored in the cookie and if it was generated less than five minutes ago. Based
on the result of these verifications, the valid variable is set to be true or one of the few
different error messages will be displayed to the user.

If the cookie validation result is positive, the previously created data processing and storage
code is executed as before.

For more advanced content filtering, look up the Akismet API
(http://akismet.com/development/api/).

7
Creating Custom
MySQL Database

Tables

In this chapter, we will cover the following topics around the creation of custom database tables:

 f Creating new database tables

 f Deleting custom tables on plugin removal

 f Updating custom table structure on plugin upgrade

 f Displaying custom table data in an admin page

 f Inserting and updating records in custom tables

 f Deleting records from custom tables

 f Displaying custom database table data in shortcodes

 f Implementing a search function to retrieve custom table data

 f Importing data from a user file into custom tables

Introduction
As seen in Chapter 4, The Power of Custom Post Types, custom post types provide a very
powerful and easy way to create and manage custom content in a WordPress installation. That
being said, if the new items that you wish to create do not benefit from having access to the
built-in text editor and have a large amount of data fields that need to be stored in the system,
storing them using custom post types can actually become cumbersome. More specifically, each
custom field requires a separate function call to be associated with a custom post. Also, custom
fields have limited functionality since they store all their information in simple text fields, making
it difficult to perform ordered queries based on special data types, such as dates.

Creating Custom MySQL Database Tables

200

An alternative solution to manage custom content is to create new tables in the site database
and offer a custom interface to manage these new items.

While working directly with the site database might sound like a tall order, and should really
only be done if custom post types don't work as desired, WordPress actually offers a utility
class that makes it very easy to create new database tables, store information in these new
structures, and perform data retrieval queries. Although having a basic level of Structured
Query Language (SQL) knowledge will help understand all of the recipes in this chapter as
we create a bug tracking system, each recipe thoroughly explains how each command works
to produce the end result.

Creating new database tables
The first step in the creation of custom data elements to be stored in a custom database table
is to create the table itself. This is done by preparing a standard SQL command that specifies
the name of the table and its desired content, then getting WordPress to execute it on the
site database.

This recipe shows how to prepare and execute a query that creates a table to hold bug reports.

Getting ready
You should have access to a WordPress development environment, either on your local
computer or on a remote server, where you will be able to load your new plugin files.

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Create a new directory called ch7-bug-tracker.

3. Navigate to the directory and create a text file called ch7-bug-tracker.php.

4. Open the new file in a code editor and add an appropriate header at the top of the
plugin file, naming the plugin Chapter 7 – Bug Tracker.

5. Add the following line of code before the closing ?> PHP command at the end of the
file to register a function to be called on plugin activation:
register_activation_hook(__FILE__, 'ch7bt_activation');

6. Add the following code segment to provide an implementation for the
ch7bt_activation function:
function ch7bt_activation() {
 // Get access to global database access class
 global $wpdb;

Chapter 7

201

 // Create table on main blog in network mode or single blog
 ch7bt_create_table($wpdb->get_blog_prefix());
}

7. Insert the following code to provide an implementation for the ch7bt_create_
table function, responsible for the actual table creation:
function ch7bt_create_table($prefix) {
 // Prepare SQL query to create database table
 // using function parameter

 $creation_query =
 'CREATE TABLE IF NOT EXISTS ' . $prefix . 'ch7_bug_data (
 `bug_id` int(20) NOT NULL AUTO_INCREMENT,
 `bug_description` text,
 `bug_version` varchar(10) DEFAULT NULL,
 `bug_report_date` date DEFAULT NULL,
 `bug_status` int(3) NOT NULL DEFAULT 0,
 PRIMARY KEY (`bug_id`)
);';

 global $wpdb;
 $wpdb->query($creation_query);
}

8. Save and close the plugin file.

9. Navigate to the Plugins management page and activate the Chapter 7 – Bug
Tracker plugin.

10. Using phpMyAdmin or the NetBeans IDE, connect to your MySQL database to see that
a new table was created when the plugin was activated.

Creating Custom MySQL Database Tables

202

How it works...
Similar to the creation of configuration options, custom database tables are typically
created when a plugin is activated in a WordPress installation. By using the activation hook,
we register code to be executed when the plugin is first activated and when upgrades are
performed. When the callback is executed, we have our first encounter with the global wpdb
class. This utility class is instantiated by WordPress and gives us access to a number of
methods that can be used to interact with the underlying MySQL site database as well as help
prevent data-related security risks. These methods vary in complexity, ranging from simple
calls that will quickly insert or update records to more complex member functions that require
knowledge of SQL commands to produce the expected results.

Before making the call to create the actual table, the activation function makes a call to the
get_blog_prefix method of the wpdb class to retrieve the table prefix associated with the
site (set to wp_ in a default installation). On retrieval, this prefix is immediately sent to the
ch7bt_create_table function to build an SQL command designed to create a new table.

While the SQL command has multiple lines, we can see that it is actually quite simple if we
break it down into small sections. The first line of the command specifies that a new table
named <prefix>ch7_bug_data should be created if it does not exist already on the server.
If the creation takes place, the following five lines specify the name and data type for each
field, along with information indicating if the field can contain a NULL value and what the
default value should be in some cases. There is also a special command associated with the
bug_id field, called the AUTO_INCREMENT command, that tells the system to automatically
populate this field with auto-incrementing values when new records are added to the table.
Last but not least, the last line of the code indicates that the primary key for the table is
the bug_id field.

Even if the table name contains upper-case characters, the
resulting table will only have lower-case characters in its name.

Once the query is ready, it is stored in a variable and executed by calling the query method of
the wpdb object. This method executes any SQL command on the site database and returns
a numeric value indicating how many rows were affected by the query.

There's more...
While the previous code is relatively manageable, things might get a bit more complicated
when dealing with larger number of fields or with network WordPress installation.

Chapter 7

203

Using phpMyAdmin to simplify code creation
Instead of writing the table creation code from scratch, the phpMyAdmin database
management tool can come in handy to prepare this code.

For example, to create the table that was used in this recipe, follow these steps:

1. Select the wordpressdev database in phpMyAdmin.

2. Under the Create new table on database wordpressdev section, enter
wpdev_ch7_bug_data in the Name field and the number 5 as the Number
of fields.

3. Click on the Go button.

4. In the table creation grid that is displayed, set the name of each Field based on the
Column names listed in the previous screenshot.

5. Set the Type of each Field based on the Type column in the previous screenshot.

6. For items that have a value in parentheses next to their Type, use the numeric value
to indicate the Length/Values of these items.

7. Set the Default value for each field based on the previous screenshot. You can select
NULL from the drop-down list for items that have a NULL default. For items that have
a specific value, select As defined: in the drop-down and indicate the value in the
adjacent field.

8. For items that are allowed to have a NULL value (shown with a Yes in the previous
screenshot), check the Null box.

9. Select PRIMARY under the Index drop-down list for the bug_id field to indicate that
it will be the primary key for the table.

10. Check the A_I box for the bug_id field to indicate that it should auto-increment when
new values are inserted in the table.

11. Click on the Go button to complete the table creation process.

Creating Custom MySQL Database Tables

204

At this time, phpMyAdmin will create the table on the server and display the SQL command
that it used to perform this task. You will see that this command is very similar to the one
used in the recipe's code.

To display this command at a later time, select the database and click on the Export tab.
In the Export dialog, uncheck the Data box and click on the Go button to see the related
SQL command.

Create tables in network installation
One of WordPress' many strengths is the ability to create and manage multiple sites from
a single installation. In these situations, each site has its own set of tables in the MySQL
database. Therefore, when preparing a plugin that creates custom tables and may be used
in network installations, extra code must be put in place to create the new tables under each
site's structure.

The first changes are done in the ch7bt_activation function where we check if we are
dealing with a multisite installation. If that is the case, we cycle through each existing site
and make a call to create the new table as we have seen in the main recipe code.

function ch7bt_activation() {
 // Get access to global database access class
 global $wpdb;

 // Check to see if WordPress installation is a network
 if (is_multisite()) {

 // If it is, cycle through all blogs, switch to them
 // and call function to create plugin table
 if (!empty($_GET['networkwide'])) {
 $start_blog = $wpdb->blogid;

 $blog_list =
 $wpdb->get_col('SELECT blog_id FROM ' .
 $wpdb->blogs);

 foreach ($blog_list as $blog) {
 switch_to_blog($blog);

 // Send blog table prefix to creation function
 ch7bt_create_table($wpdb->get_blog_prefix());
 }
 switch_to_blog($start_blog);
 return;
 }
 }

 // Create table on main blog in network mode or single blog
 ch7bt_create_table($wpdb->get_blog_prefix());
}

Chapter 7

205

While this will handle creating custom tables in all existing network sites when the plugin is
activated, additional code needs to be put in place to create the additional table when new
sites are created.

// Register function to be called when new blogs are added
// to a network site
add_action('wpmu_new_blog', 'ch7bt_new_network_site');

function ch7bt_new_network_site($blog_id) {
 global $wpdb;

 // Check if this plugin is active when new blog is created
 // Include plugin functions if it is
 if (!function_exists('is_plugin_active_for_network'))
 require_once(ABSPATH .
 '/wp-admin/includes/plugin.php');

 // Select current blog, create new table and switch back
 if (is_plugin_active_for_network(plugin_basename
 (__FILE__))) {
 $start_blog = $wpdb->blogid;
 switch_to_blog($blog_id);

 // Send blog table prefix to table creation function
 ch7bt_create_table($wpdb->get_blog_prefix());

 switch_to_blog($start_blog);
 }
}

The ch7bt_create_table function itself does not require any modifications since it was
already designed to receive a table prefix from other functions and use it to build a query.

Deleting custom tables on plugin removal
It is always a good practice for plugins to provide an uninstallation procedure to remove
content that they added to a site's database or filesystem. When dealing with custom
database tables, all records should be dropped along with the table itself when a site
administrator decides to delete a plugin.

This recipe shows how to implement a data removal script to delete the bug storage table that
was created in the previous recipe.

Getting ready
You should have already followed the Creating new database tables recipe to have an existing
table to remove. Alternatively, you can get the resulting code (ch7-bug-tracker\ch7-bug-
tracker-v1-1.php) from the code bundle and rename the file to ch7-bug-tracker.php.

Creating Custom MySQL Database Tables

206

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Create a text file called uninstall.php in the ch7-bug-tracker directory and
open it in a code editor.

3. Start the new script with the standard <?php opening tags.

4. Add the following code to perform the deletion of tables created to store bugs from
a single or network WordPress installation:
// Check that file was called from WordPress admin
if(!defined('WP_UNINSTALL_PLUGIN'))
 exit();

global $wpdb;

// Check if site is configured for network installation
if (is_multisite()) {
 if (!empty($_GET['networkwide'])) {
 // Get blog list and cycle through all blogs
 $start_blog = $wpdb->blogid;

 $blog_list =
 $wpdb->get_col('SELECT blog_id FROM ' .
 $wpdb->blogs);

 foreach ($blog_list as $blog) {
 switch_to_blog($blog);

 // Call function to delete bug table with prefix
 ch7bt_drop_table($wpdb->get_blog_prefix());
 }
 switch_to_blog($start_blog);
 return;
 }
}

ch7bt_drop_table($wpdb->prefix);

5. Implement the ch7bt_drop_table function that was referenced in the previous
block of code:
function ch7bt_drop_table($prefix) {
 global $wpdb;
 $wpdb->query($wpdb->prepare('DROP TABLE ' . $prefix .
 'ch7_bug_data'));
}

Chapter 7

207

6. Close the script with a closing ?> command.

7. Save and close the code file.

8. Navigate to the Plugins management page and deactivate the Chapter 7 – Bug
Tracker plugin.

9. Make a copy of the entire plugin directory before performing the next step to avoid
deleting all of your work.

10. Click on the plugin's Delete link, then click on Yes, Delete these files and data.

11. Using phpMyAdmin or the NetBeans IDE, connect to your MySQL database to verify
that the bug data table has been deleted.

How it works...
As we have seen in Chapter 2, Plugin Framework Basics, all of the code contained in a file
called uninstall.php gets executed when a plugin is deleted. In this case, our code's
main purpose is to run a query against the site database to remove the bug table.

Before doing so, the first few lines of the file check for the presence of a variable
(WP_UNINSTALL_PLUGIN) to confirm that the code has been called as part of the
plugin deletion process, and not by an external user.

Once the legitimacy of the execution has been confirmed, the code that runs is similar to
the table creation code, where we first get access to the WordPress database management
class, followed by a check to see if the WordPress installation is a single site or a network
installation. In the first case, we make a single call to the ch7bt_drop_table function
to drop the bug table, while we make multiple calls to that function for every existing site
under a network environment.

The query to remove the table is actually quite simple, making a call to the query method
of the wpdb class to execute a DROP TABLE SQL command.

See also
 f Creating new database tables recipe

Updating custom table structure on plugin
upgrade

Over the lifetime of a plugin, as it gets expanded to provide additional functionality, there
may be a need to store more data than was originally intended in custom database tables. As
you may know, WordPress itself makes regular changes to its own database structure during
the upgrade process to store new information. To do this, it uses a simple function called
dbDelta that we can also access from our plugin's code.

Creating Custom MySQL Database Tables

208

This recipe shows how to alter the previous table creation code to load the WordPress
upgrade API and use the database upgrade function to add an extra field to the existing
bug storage table.

Getting ready
You should have already followed the Creating new database tables recipe to have table
creation code to modify. Alternatively, you can get the resulting code (ch7-bug-tracker\
ch7-bug-tracker-v1-1.php) from the code bundle and rename the file to ch7-bug-
tracker.php.

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Navigate to the ch7-bug-tracker directory and edit ch7-bug-tracker.php.

3. Locate the ch7bt_create_table function.

4. Remove the IF NOT EXISTS text on the first line of the table creation query.

5. Add an extra line to the table creation code to add a field to hold the bug title:
$creation_query = 'CREATE TABLE ' . $prefix . 'ch7_bug_data (
 `bug_id` int(20) NOT NULL AUTO_INCREMENT,
 `bug_description` text,
 `bug_version` varchar(10) DEFAULT NULL,
 `bug_report_date` date DEFAULT NULL,
 `bug_status` int(3) NOT NULL DEFAULT 0,
 `bug_title` VARCHAR(128) NULL,
 PRIMARY KEY (`bug_id`)
);';

6. Replace the following lines of code:
global $wpdb;
$wpdb->query($creation_query);

With:

require_once(ABSPATH . 'wp-admin/includes/upgrade.php');
dbDelta($creation_query);

7. Save and close the plugin file.

8. Navigate to the Plugins management page.

9. Deactivate and reactivate the Chapter 7 – Bug Tracker plugin.

Chapter 7

209

10. Using phpMyAdmin or the NetBeans IDE, connect to your MySQL database to see that
the new bug_title field has been added to the bug storage table.

How it works...
The dbDelta function is part of the utility functions that WordPress calls when performing
version upgrades. When called, it parses the table creation SQL command that it receives
and figures out the difference between the table structure that it describes and the current
table, if the table exists. Once that difference has been established, it performs the necessary
changes to align the two structures.

If both structures are identical, it leaves the table as is. With this approach in place, any
changes to the structure can simply be implemented by altering the table creation query. As
such, the dbDelta function can actually be used from the first version of a plugin to ensure
an easy upgrade path.

See also
 f Creating new database tables recipe

Displaying custom table data in an admin
page

After creating one or more custom database tables to store data, the next step in the creation
of a custom item management system is to build an interface to populate them. While custom
post types have a very organized structure to edit entries, creating an interface for custom
tables is much more similar to creating plugin configuration panels as we have seen in
Chapter 3, User Settings and Administration Pages.

This recipe shows how to create an interface that will display a list of bugs stored in the
system, provide a link to create new entries, and offer a way to edit existing entries.

Creating Custom MySQL Database Tables

210

Getting ready
You should have already followed the Updating custom table structure on plugin upgrade
recipe to have a custom table in place with the full required structure. Alternatively, you can
get the resulting code (ch7-bug-tracker\ch7-bug-tracker-v2.php) from the code
bundle and rename the file to ch7-bug-tracker.php.

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Navigate to the ch7-bug-tracker directory and edit ch7-bug-tracker.php.

3. Insert the following line of code to register a function to be called when the
administration menu is being built:
add_action('admin_menu', 'ch7bt_settings_menu');

4. Add the following code to provide an implementation for the
ch7bt_settings_menu function:
function ch7bt_settings_menu() {
 add_options_page('Bug Tracker Data Management',
 'Bug Tracker', 'manage_options',
 'ch7bt-bug-tracker',
 'ch7bt_config_page');
}

5. Append the following block of code to provide an implementation for the
ch7bt_config_page function, responsible to render the configuration page:
function ch7bt_config_page() {
 global $wpdb;
 ?>

 <!-- Top-level menu -->
 <div id="ch7bt-general" class="wrap">
 <h2>Bug Tracker <a class="add-new-h2" href="<?php echo
 add_query_arg(array('page' => 'ch7bt-bug-tracker',
 'id' => 'new'),
 admin_url('options-general.php')); ?>">
 Add New Bug</h2>

 <!-- Display bug list if no parameter sent in URL -->
 <?php if (empty($_GET['id'])) {
 $bug_query = 'select * from ';
 $bug_query .= $wpdb->get_blog_prefix() . 'ch7_bug_data ';
 $bug_query .= 'ORDER by bug_report_date DESC';

Chapter 7

211

 $bug_items =
 $wpdb->get_results($wpdb->prepare($bug_query),
 ARRAY_A);
 ?>

 <h3>Manage Bug Entries</h3>

 <table class="wp-list-table widefat fixed" >

 <thead><tr><th style="width: 80px">ID</th>
 <th style="width: 300px">Title</th>
 <th>Version</th></tr></thead>

 <?php
 // Display bugs if query returned results
 if ($bug_items) {
 foreach ($bug_items as $bug_item) {
 echo '<tr style="background: #FFF">';
 echo '<td>' . $bug_item['bug_id'] . '</td>';
 echo '<td><a href="';
 echo add_query_arg(array(
 'page' => 'ch7bt-bug-tracker',
 'id' => $bug_item['bug_id']),
 admin_url('options-general.php'));
 echo '">' . $bug_item['bug_title'] . '</td>';
 echo '<td>' . $bug_item['bug_version'] .
 '</td></tr>';
 }
 } else {
 echo '<tr style="background: #FFF">';
 echo '<td colspan=3>No Bug Found</td></tr>';
 }
 ?>
 </table>

 <?php } ?>
 </div>
<?php }

6. Save and close the plugin file.

Creating Custom MySQL Database Tables

212

7. Navigate to the new Bug Tracker item under the administration page's Settings
menu to see the newly-created page, showing that there are currently no bugs
stored in the system.

How it works...
The first few steps of the recipe use functions that were previously covered in Chapter 3, User
Settings and Administration Pages to register a callback that will add a menu to the Settings
section of the admin menu. When the new menu page is visited, the ch7bt_config_page
function is called to render the page contents, using a mix of HTML and PHP code.

After rendering the page title, along with a link that will be used to create new bugs, the page
display code checks to see if the page address contains a variable called id. This ID will be
used in subsequent recipes to indicate whether the user wants to create or edit bugs. It will
not be set when a visitor clicks on the Bug Tracker menu item, resulting in the current recipe
code getting called.

The next section uses the get_results method of the wpdb database management class
to retrieve information from the database. In this call, the first parameter is an SQL query,
whereas the second argument indicates the desired format to be used to return data. While
we specified that we want an associative array in this case, other options are to return a
numerically indexed array (ARRAY_N), an object (OBJECT), or an array of objects (OBJECT_K).
The SELECT * command in the query indicates that we want all fields in the table to be
returned, while the ORDER command specifies the field that should be used to order results
and the order direction (ASC or DESC).

Once the get_results method has been executed, we check to see if any data was
retrieved from the database, and proceed to perform a foreach loop through all records
to display them in a standard HTML table if data is found. If no records were returned by
the query, we display a short message indicating that no bugs were found.

See also
 f Creating an administration page menu item in the Settings menu recipe in Chapter 3,

User Settings and Administration Pages

 f Rendering the admin page contents using HTML recipe in Chapter 3, User Settings
and Administration Pages

Chapter 7

213

Inserting and updating records in custom
tables

Now that we have a basic infrastructure in place to display existing bugs, the next logical step
is to create a form that will be used to insert and update records in a custom table.

This recipe shows how to add a form to manage bugs when users select an entry in the bug
tracking list or indicate that they want to create a new entry by using the appropriate link.

Getting ready
You should have already followed the Displaying custom table data in an admin page
recipe to have an existing framework in place. Alternatively, you can get the resulting code
(ch7-bug-tracker\ch7-bug-tracker-v3.php) from the code bundle and rename
the file to ch7-bug-tracker.php.

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Navigate to the ch7-bug-tracker directory and edit ch7-bug-tracker.php.

3. Find the ch7bt_config_page function and locate the bracket that closes out the
if statement (<?php } ?>) situated towards the end of its body.

4. Insert the following code block, right before the closing bracket from the if
statement identified in the previous step:
<?php } elseif (isset($_GET['id']) &&
 ($_GET['id'] == 'new' ||
 is_numeric($_GET['id']))) {

 $bug_id = $_GET['id'];
 $bug_data = array();
 $mode = 'new';

 // Query database if numeric id is present
 if (is_numeric($bug_id)) {
 $bug_query = 'select * from ' . $wpdb->get_blog_prefix();
 $bug_query .= 'ch7_bug_data where bug_id = ' . $bug_id;

 $bug_data =
 $wpdb->get_row($wpdb->prepare($bug_query),
 ARRAY_A);

 // Set variable to indicate page mode
 if ($bug_data) $mode = 'edit';

Creating Custom MySQL Database Tables

214

} else {
 $bug_data['bug_title'] = '';
 $bug_data['bug_description'] = '';
 $bug_data['bug_version'] = '';
 $bug_data['bug_status'] = '';
}

 // Display title based on current mode
 if ($mode == 'new') {
 echo '<h3>Add New Bug</h3>';
 } elseif ($mode == 'edit') {
 echo '<h3>Edit Bug #' . $bug_data['bug_id'] . ' - ';
 echo $bug_data['bug_title'] . '</h3>';
 }
 ?>

 <form method="post"
 action="<?php echo admin_url('admin-post.php'); ?>">
 <input type="hidden" name="action" value="save_ch7bt_bug" />
 <input type="hidden" name="bug_id"
 value="<?php echo esc_attr($bug_id); ?>" />

 <!-- Adding security through hidden referrer field -->
 <?php wp_nonce_field('ch7bt_add_edit'); ?>

 <!-- Display bug editing form -->
 <table>
 <tr>
 <td style="width: 150px">Title</td>
 <td><input type="text" name="bug_title" size="60"
 value="<?php echo esc_attr(
 $bug_data['bug_title']); ?>"/></td>
 </tr>
 <tr>
 <td>Description</td>
 <td><textarea name="bug_description" cols="60">
 <?php echo esc_textarea(
 $bug_data['bug_description']); ?></textarea></td>
 </tr>
 <tr>
 <td>Version</td>
 <td><input type="text" name="bug_version"
 value="<?php echo esc_attr(
 $bug_data['bug_version']); ?>" /></td>
 </tr>
 <tr>

Chapter 7

215

 <td>Status</td>
 <td>
 <select name="bug_status">
 <?php

 // Display drop-down list of bug statuses
 // from list in array

 $bug_statuses = array(0 => 'Open', 1 => 'Closed',
 2 => 'Not-a-Bug');

 foreach($bug_statuses as $status_id => $status) {
 // Add selected tag when entry matches
 // existing bug status
 echo '<option value="' . $status_id . '" ';
 selected($bug_data['bug_status'],
 $status_id);
 echo '>' . $status;
 }
 ?>
 </select>
 </td>
 </tr>
 </table>
 <input type="submit" value="Submit" class="button-primary"/>
 </form>

5. Add the following line of code to register a function that will be called on initialization
of the administration page:
add_action('admin_init', 'ch7bt_admin_init');

6. Add the following block of code at the end of the plugin file, to register a function to
be called when bugs are created or updated:
function ch7bt_admin_init() {
 add_action('admin_post_save_ch7bt_bug',
 'process_ch7bt_bug');
}

7. Append the following block of code to process user-submitted data and store it in the
site database:
function process_ch7bt_bug() {

 // Check if user has proper security level
 if (!current_user_can('manage_options'))
 wp_die('Not allowed');

Creating Custom MySQL Database Tables

216

 // Check if nonce field is present for security
 check_admin_referer('ch7bt_add_edit');

 global $wpdb;

 // Place all user submitted values in an array (or empty
 // strings if no value was sent)
 $bug_data = array();

 $bug_data['bug_title'] =
 (isset($_POST['bug_title']) ? $_POST['bug_title'] : '');

 $bug_data['bug_description'] =
 (isset($_POST['bug_description']) ?
 $_POST['bug_description'] : '');

 $bug_data['bug_version'] =
 (isset($_POST['bug_version']) ?
 $_POST['bug_version'] : '');

 // Set bug report date as current date
 $bug_data['bug_report_date'] = date('Y-m-d');

 // Set status of all new bugs to 0 (Open)
 $bug_data['bug_status'] =
 (isset($_POST['bug_status']) ?
 $_POST['bug_status'] : 0);

 // Call the wpdb insert or update method based on value
 // of hidden bug_id field
 if (isset($_POST['bug_id']) && $_POST['bug_id'] == 'new') {
 $wpdb->insert($wpdb->get_blog_prefix() .
 'ch7_bug_data', $bug_data);
 } elseif (isset($_POST['bug_id']) &&
 is_numeric($_POST['bug_id'])) {
 $wpdb->update($wpdb->get_blog_prefix() .
 'ch7_bug_data', $bug_data,
 array('bug_id' => $_POST['bug_id']));
 }

 // Redirect the page to the user submission form
 wp_redirect(add_query_arg('page', 'ch7bt-bug-tracker',
 admin_url('options-general.php')));
 exit;
}

8. Save and close the plugin file.

Chapter 7

217

9. Navigate to the new Bug Tracker item under the administration page's Settings
menu and click on the Add New Bug link to create an entry.

10. Click on Submit to store the new bug in the site database. The newly-created bug will
appear in the bug listing created in the previous recipe.

11. Click on the new entry's name to review its information and update it.

How it works...
If you tried clicking on the Add New Bug link created in the previous recipe, you were
presented with a page that only contained the panel's title. This is due to the fact that we
had not implemented code to display a bug creation and editing form when the id variable
is present in the site address.

The first few steps of this recipe aim to rectify this by checking for the presence of a variable
called id in the page URL with a value set to the text new or a numeric value.

While both of these situations will result in displaying a bug edition form, the second condition
first performs a database query using the wpdb object's get_row method to try to retrieve
a bug with the designated ID. The get_row method is similar to the get_results method
used in the previous recipe, but will only return a single row, even if more than one result
was found by the query. If the query is successful, the values that were retrieved are used
to customize the form title and set initial field values.

The form itself is a standard HTML form that includes many of the elements that we saw
in previous recipes, such as a call to wp_nonce_field to provide security from external
attacks. We have also added a hidden field containing the bug ID that was found in the
page URL to facilitate data processing when a bug is submitted.

Creating Custom MySQL Database Tables

218

Once the form is in place, we make a call to add_action to register a callback that will be
executed when the newly-created form is submitted.

The callback, named process_ch7bt_bug, starts off by doing a bit of validation. Namely, it
checks to see if the current user has administrative rights and if the nonce field that should
be part of the form data is present. If both of these conditions are met, a data array is created
from user post data, the current system date, and a hard-coded status value.

The resulting array is stored in the site database using one of two wpdb object methods,
insert or update, based on the value found in the hidden bug_id field. Both methods
expect to receive the name of the target table, along with an associative array containing the
names and values of each table field to be stored. Additionally, the update method requires
a third parameter that indicates the field name and value to be used to locate the field to be
updated. In both cases, you will notice that the bug_id field is not specified in the array of
new values since it gets automatically set to an incremental value by the database server.

The last step in this function is to build a clean URL to the plugin configuration page and use
the resulting address in a call to wp_redirect.

See also
 f Displaying custom table data in an admin page recipe

Deleting records from custom tables
After adding data to custom tables, site administrators are likely to delete some of these
entries down the road. Since we have been building an interface to view, create, and modify
database entries, the task of selecting items to be deleted also falls under our responsibility.
Thankfully, we can easily expand the existing bug display list to add checkboxes for selection
and a button to trigger the actual deletion.

This recipe shows how to add deletion capabilities to our bug tracking system.

Getting ready
You should have already followed the Inserting and updating records in custom tables
recipe to have an existing framework to augment. Alternatively, you can get the resulting code
(ch7-bug-tracker\ch7-bug-tracker-v4.php) from the code bundle and rename the
file to ch7-bug-tracker.php.

Chapter 7

219

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Navigate to the ch7-bug-tracker directory and edit ch7-bug-tracker.php.

3. Find the ch7bt_config_page function and locate the Manage Bug Entries h3
header in its content.

4. Insert the following highlighted lines of code right after the header to create a form:
<h3>Manage Bug Entries</h3>

<form method="post"
 action="<?php echo admin_url('admin-post.php'); ?>">
<input type="hidden" name="action" value="delete_ch7bt_bug" />

<!-- Adding security through hidden referrer field -->
<?php wp_nonce_field('ch7bt_deletion'); ?>

5. A few lines down, add an empty column in the table header, before the ID field, as
highlighted in the following line of code:
<thead><tr><th style="width: 50px"></th>
 <th style='width: 80px'>ID</th>

6. Within the main bug list display loop, insert the following highlighted code segments
to add a checkbox in front of each item:
echo '<tr style="background: #FFF">';
echo '<td><input type="checkbox" name="bugs[]" value="';
echo esc_attr($bug_item['bug_id']) . '" /></td>';

echo '<td>' . $bug_item['bug_id'] . '</td>';

7. A few lines down, change the value of the colspan table row parameter from 3 to 4:
echo '<td colspan=4>No Bug Found</td></tr>';

8. Append the following highlighted lines of code after the table close tag to display
a deletion button and terminate the form section:
</table>

<input type="submit" value="Delete Selected"
 class="button-primary"/>
</form>

9. Find the ch7bt_admin_init function and add the following function call at the end
of its body:
add_action('admin_post_delete_ch7bt_bug',
 'delete_ch7bt_bug');

Creating Custom MySQL Database Tables

220

10. Navigate to the bottom of the file and add the following code block to provide an
implementation for the delete_ch7bt_bug function, responsible for processing
deletion requests generated by the new form:
function delete_ch7bt_bug() {
 // Check that user has proper security level
 if (!current_user_can('manage_options'))
 wp_die('Not allowed');

 // Check if nonce field is present
 check_admin_referer('ch7bt_deletion');

 // If bugs are present, cycle through array and call SQL
 // command to delete entries one by one
 if (!empty($_POST['bugs'])) {
 // Retrieve array of bugs IDs to be deleted
 $bugs_to_delete = $_POST['bugs'];

 global $wpdb;

 foreach ($bugs_to_delete as $bug_to_delete) {
 $query = 'DELETE from ' . $wpdb->get_blog_prefix();
 $query .= 'ch7_bug_data ';
 $query .= 'WHERE bug_id = ' .
 intval($bug_to_delete);
 $wpdb->query($wpdb->prepare($query));
 }
 }

 // Redirect the page to the user submission form
 wp_redirect(add_query_arg('page', 'ch7bt-bug-tracker',
 admin_url('options-general.php')));
 exit;
}

11. Save and close the plugin file.

12. Navigate to the new Bug Tracker item under the administration page's Settings
menu to see the new interface elements that were added to the bug listing.

Chapter 7

221

How it works...
While the actual deletion of data from our custom table can be done with a single call to
run the DELETE SQL command, we first need the user to indicate which entries need to be
removed. This selection interface can be easily added to the existing bug listing created in an
earlier recipe.

This recipe starts in familiar territory with the creation of a standard HTML form to surround
the original bug listing. In addition to the bug list, the form also includes a hidden field to
indicate the name of the action to be called when the user submits the form along with a
nonce field to ensure that access to the deletion process is secure.

With this initial code in place, the next section of the recipe modifies the original table listing
to add a checkbox at the front of every row. As can be seen in the code, the name property of
the checkbox is a bit different than regular HTML syntax, ending with two square parentheses.
This syntax, used in conjunction with each item's bug_id, results in the creation of an array
of checked items, ID numbers that is sent to the form processing function on submission.

The last change that is done in the bug listing display code is to add a deletion button and to
close the form.

To associate a callback with the newly-created form, the next addition made by the recipe is
a call to add_action to associate the admin_post_<actionname> variable action name
with the delete_ch7bt_bug function.

When called, the bug deletion function, like most other submission processing code that
we have created before, first starts with a few verifications to make sure that the user has
appropriate permissions and that the hidden security fields that were placed in the form are
present. When both of these formalities are confirmed, the code goes on to check for the
presence of a bug array and proceeds to cycle through all entries if one was found. In that loop,
we get access to the global wpdb class and we can use it to build and execute SQL queries that
delete a single database row at a time using the bug_id numbers that were submitted.

As an added security measure, notice the use of the intval function in front of the
$bug_to_delete variable to make sure that no one is trying to get external commands
to be processed in an attempt to corrupt or hijack the database.

See also
 f Inserting and updating records in custom tables recipe

Creating Custom MySQL Database Tables

222

Displaying custom database table data in
shortcodes

The purpose of creating custom tables is often to store information to be shared with site
visitors. As such, it is important to give users the ability to easily display their new content
stored in custom tables on their site. The most straightforward method to achieve this goal
is to create one or more shortcodes that can be inserted on any post or page to render the
desired information.

This recipe shows how to implement a new shortcode that will be used to display a bug listing
on a page.

Getting ready
You should have already followed the Deleting records from custom tables recipe to
have an existing framework to augment. Alternatively, you can get the resulting code
(ch7-bug-tracker\ch7-bug-tracker-v5.php) from the code bundle and rename
the file to ch7-bug-tracker.php.

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Navigate to the ch7-bug-tracker directory and edit ch7-bug-tracker.php.

3. Add the following line of code at the bottom of the file to declare a new shortcode and
its associated display function:
add_shortcode('bug-tracker-list', 'ch7bt_shortcode_list');

4. Insert the following code block right after the section header to implement the
ch7bt_shortcode_list function that is responsible for displaying a bug listing:
function ch7bt_shortcode_list() {
 global $wpdb;

 // Prepare query to retrieve bugs from database
 $bug_query = 'select * from ' . $wpdb->get_blog_prefix();
 $bug_query .= 'ch7_bug_data ';
 $bug_query .= 'ORDER by bug_id DESC';

 $bug_items = $wpdb->get_results($wpdb->prepare($bug_query),
 ARRAY_A);

Chapter 7

223

 // Prepare output to be returned to replace shortcode
 $output = '';
 $output .= '<table>';

 // Check if any bugs were found
 if (!empty($bug_items)) {
 $output .= '<tr><th style="width: 80px">ID</th>';
 $output .= '<th style="width: 300px">Title / Desc</th>';
 $output .= '<th>Version</th></tr>';

 // Create row in table for each bug
 foreach ($bug_items as $bug_item) {
 $output .= '<tr style="background: #FFF">';
 $output .= '<td>' . $bug_item['bug_id'] . '</td>';
 $output .= '<td>' . $bug_item['bug_title'] . '</td>';
 $output .= '<td>' . $bug_item['bug_version'];
 $output .= '</td></tr>';
 $output .= '<tr><td></td><td colspan="2">';
 $output .= $bug_item['bug_description'];
 $output .= '</td></tr>';
 }
 } else {
 // Message displayed if no bugs are found
 $output .= '<tr style="background: #FFF">';
 $output .= '<td colspan=3>No Bugs to Display</td>';
 }

 $output .= '</table>
';

 // Return data prepared to replace shortcode on page/post
 return $output;
}

5. Save and close the plugin file.

6. Create a new page and insert the newly-created shortcode [bug-tracker-list]
in the page body.

Creating Custom MySQL Database Tables

224

7. View the page to see a list of bugs stored in the system.

How it works...
Creating a new shortcode to display custom table data is done in a very similar way to
previous recipes. First, we declare the new code, along with the name of the function that
will be called to generate text to replace it when found in posts or pages. Then, we create
a display function to prepare all output and return it to WordPress.

The only distinction here is in the way we query the information. The recipe uses the
get_results method of the wpdb class to query all bugs that exist in the custom database
table using the SELECT SQL command. After this call is executed, all items found are returned
in an associative array that can easily be displayed in a table form using a foreach loop.

If no entries were found, the recipe displays a simple message to inform the visitor.

Implementing a search function to retrieve
custom table data

While content created using custom post types can be automatically searched by the built-in
WordPress search engine, custom database tables don't benefit from the same treatment.
Instead, plugin developers choosing this mechanism to store information must build their
own search functionality.

This recipe shows how to add a search box to the bug listing created in the previous section
and how to use the resulting query data to narrow down the list of bugs that are displayed by
the shortcode.

Chapter 7

225

Getting ready
You should have already followed the recipe entitled Displaying custom database table data in
shortcodes to have an existing framework to augment. Alternatively, you can get the resulting
code (ch7-bug-tracker\ch7-bug-tracker-v6.php) from the code bundle and rename
the file to ch7-bug-tracker.php.

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Navigate to the ch7-bug-tracker directory and edit ch7-bug-tracker.php.

3. Find the ch7bt_shortcode_list function and add the following highlighted code
after the initial global $wpdb call to check if a search string was entered by a
visitor:
global $wpdb;

if (!empty($_GET['searchbt'])) {
 $search_string = $_GET['searchbt'];
 $search_mode = true;
} else {
 $search_string = "Search...";
 $search_mode = false;
}

4. Insert the following highlighted lines of code, in the middle of the existing query
string to add where parameters using the user search text, if present:
$bug_query = 'select * from ' . $wpdb->get_blog_prefix();
$bug_query .= 'ch7_bug_data ';

// Add search string in query if present
if ($search_mode) {
 $search_term = '%'. $search_string . '%';
 $bug_query .= "where bug_title like '%s' ";
 $bug_query .= "or bug_description like '%s' ";
} else {
 $search_term = '';
}

$bug_query .= 'ORDER by bug_id DESC';

Creating Custom MySQL Database Tables

226

5. Change the following line of code:
$bug_items =
 $wpdb->get_results($wpdb->prepare($bug_query),
 ARRAY_A);

To:
$bug_items =
 $wpdb->get_results($wpdb->prepare($bug_query,
 $search_term, $search_term),
 ARRAY_A);

6. Add the following code block, before the table starts rendering, to display a simple
search form:
$output = '';

$output .= '<form method="get" id="ch7_bt_search">';
$output .= '<div>Search bugs ';
$output .= '<input type="text" onfocus="this.value=\'\'" ';
$output .= 'value="' . esc_attr($search_string) . '" ';
$output .= 'name="searchbt" />';
$output .= '<input type="submit" value="Search" />';
$output .= '</div>';
$output .= '</form>
';

$output .= '<table>';

7. Save and close the plugin file.

8. Visit the bug display page that was previously created to see the new search form.
Enter a search string and click on the Search button to see a list of results.

Chapter 7

227

How it works...
This recipe implements a simple search engine by displaying a short form and capturing a
user search string using the standard HTML GET method. If a search string is found in the
page address, we modify the bug retrieval query that was in place by adding a where clause
that looks for the search string anywhere in the bug_title or bug_description fields.

While it might seem natural to insert the search string directly in the query and execute it,
we use the wpdb class' prepare method to assemble the query and validate the search
string to avoid malicious intent. This method works in a very similar way to the standard
PHP sprintf function, with placeholders to represent the places where variables should
be substituted.

The remainder of the shortcode display function remains identical, displaying a list of varying
length depending on the presence of a search string and the number of entries that match
the query.

See also
 f Displaying custom database table data in shortcodes recipe

Importing data from a user file into custom
tables

To avoid long data entry sessions, a nice addition to a system like the Bug Tracker that we
have been putting in place in this chapter is to provide users with the ability to import large
amounts of entries from an external file in a single operation. To accomplish this task, the
Comma-Separated Values (CSV) file format is very convenient since it can be edited by most
spreadsheet editors and can be read using standard PHP function calls.

This recipe implements a CSV-based import function in our bug tracking system.

Getting ready
You should have already followed the Implementing a search function to retrieve custom table
data recipe to have an existing framework to augment. Alternatively, you can get the resulting
code (ch7-bug-tracker\ch7-bug-tracker-v7.php) from the code bundle and rename
the file to ch7-bug-tracker.php.

Creating Custom MySQL Database Tables

228

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Navigate to the ch7-bug-tracker directory and edit ch7-bug-tracker.php.

3. Find the ch7bt_config_page function and add the following highlighted code
block at the end of the bug listings section, after the end of the existing deletion form:
<input type="submit" value="Delete Selected"
 class="button-primary"/>
</form>

<!-- Form to upload new bugs in csv format -->
<form method="post"
 action="<?php echo admin_url('admin-post.php'); ?>"
 enctype="multipart/form-data">

<input type="hidden" name="action" value="import_ch7bt_bug" />

<!-- Adding security through hidden referrer field -->
<?php wp_nonce_field('ch7bt_import'); ?>

<h3>Import Bugs</h3>
 Import Bugs from CSV File
 (<a href="<?php echo plugins_url('importtemplate.csv',
 __FILE__); ?>">Template)
 <input name="importbugsfile" type="file" />

<input type="submit" value="Import" class="button-primary"/>
</form>

4. Locate the ch7bt_admin_init function and add the following line of code at the
end of its body to register a function to process submissions of the bug import form:
add_action('admin_post_import_ch7bt_bug',
 'import_ch7bt_bug');

5. Insert the following block of code to provide an implementation for the
import_ch7bt_bug function:
function import_ch7bt_bug() {
 // Check that user has proper security level
 if (!current_user_can('manage_options'))
 wp_die('Not allowed');

Chapter 7

229

 // Check if nonce field is present
 check_admin_referer('ch7bt_import');

 // Check if file has been uploaded
 if(array_key_exists('importbugsfile', $_FILES)) {
 // If file exists, open it in read mode
 $handle = fopen($_FILES['importbugsfile']['tmp_name'],
 'r');

 // If file is successfully open, extract a row of data
 // based on comma separator, and store in $data array
 if ($handle) {
 while (($data = fgetcsv($handle, 5000, ',')) !==
 FALSE) {
 $row += 1;

 // If row count is ok and row is not header row
 // Create array and insert in database
 if (count($data) == 4 && $row != 1) {
 $new_bug = array(
 'bug_title' => $data[0],
 'bug_description' => $data[1],
 'bug_version' => $data[2],
 'bug_status' => $data[3],
 'bug_report_date' => date('Y-m-d'));

 global $wpdb;

 $wpdb->insert($wpdb->get_blog_prefix() .
 'ch7_bug_data', $new_bug);
 }
 }
 }
 }

 // Redirect the page to the user submission form
 wp_redirect(add_query_arg('page', 'ch7bt-bug-tracker',
 admin_url('options-general.php')));
 exit;
}

6. Save and close the plugin file.

7. Create a new text file in the plugin directory called importtemplate.csv and open
it in a text editor.

8. Insert the following text in the newly-created file to provide an example bug to import:
"Title","Description","Version","Status"
"Test Import Bug","This is a test import bug","1.0","0"

Creating Custom MySQL Database Tables

230

9. Save and close the CSV text file.

10. Navigate to the new Bug Tracker item under the administration page's Settings
menu to see the new Import Bugs section.

11. Use the file import dialog to locate the importtemplate.csv.

12. Import the list of bugs in the system to see its contents added to the database.

How it works...
This recipe creates a small form on the Bug Tracker management page that is solely
responsible for uploading one or more bugs to the database. By editing the content of the
importtemplate.csv file and selecting it in the import dialog, users can quickly populate
the system by loading data straight to the custom database table that was created by the
plugin when it was first installed.

In addition to the file upload field, the form contains the usual hidden nonce and action name
fields. It also features an enctype property to allow files to be uploaded.

When the user submits a file to be uploaded, the registered callback function first checks
to see whether the user who made the submission has appropriate rights and whether the
nonce security fields were present as part of the post data. If both of these conditions are
met, the recipe goes on to check to see if a file has been correctly uploaded to the web server
by using the array_key_exists function to search through the standard PHP $_FILES
global variable. As you can see, the text that it searches for is the name of the file upload
field from the form.

If a file has been uploaded, the fopen function opens it and stores a pointer to it in a local
variable. After a quick verification of the pointer's existence, the code moves to a while loop
to process each line of the incoming file with the fgetcsv function. This function reads one
line of the file at a time, analyzes its content to find all of the comma-separated fields that are
present, and stores the resulting data in a numeric array.

The rest of the import function creates an array with the imported data and stores it in the
database by using the wpdb class' insert method, as we have seen in a previous recipe.

See also
 f Inserting and updating records in custom tables recipe

8
Leveraging

JavaScript, jQuery,
and AJAX Scripts

This chapter focuses on incorporating JavaScript in plugins by exploring the following topics:

 f Safely loading jQuery onto WordPress web pages

 f Displaying a pop-up dialog using the built-in ThickBox plugin

 f Controlling pop-up dialog display using shortcodes

 f Displaying a calendar day selector using the Datepicker plugin

 f Adding tooltips to admin page form fields using the TipTip plugin

 f Using AJAX to dynamically update partial page contents

Introduction
JavaScript libraries, especially the very popular jQuery library and its numerous plugins, can
do wonders in bringing a website to life with slick animations, dynamic data queries, and
advanced visual features. Unfortunately, for all of their benefits, these scripts can also be
difficult to work with. For example, loading more than one copy of jQuery can destroy all the
setup that was done by the other instances. Also, a single error in any of the JavaScript code
found within a page, breaks all of them.

WordPress' answer to this convoluted architecture is two-fold. As a first step, it comes pre-
packaged with a copy of jQuery and many other popular JavaScript libraries that plugin
developers can use without having to load their own version. Then, to prevent multiple copies
from being loaded on a page, it offers easy-to-use functions that queue up scripts and styles
to identify duplicates before rendering pages.

Leveraging JavaScript, jQuery, and AJAX Scripts

232

This chapter shows how to safely load JavaScript and jQuery files that are provided with
WordPress or that come from external sources to add powerful new functionality to front-facing
pages and plugin configuration panels. It also explains how to securely run AJAX queries to
refresh partial page sections.

Safely loading jQuery onto WordPress
web pages

While it might be tempting to provide your own copy of jQuery as part of a new plugin that uses
the popular JavaScript library, or to access a copy from the Google API website, WordPress
actually provides a copy of jQuery in its installation and makes it very easy to load it.

By using the appropriate utility function to load jQuery, developers make a request to WordPress
to load this library instead of doing it themselves. Once all requests have been received, they are
analyzed for duplicates and a single instance of each script is loaded to reduce the chance of
conflicts between multiple copies of the same library.

This recipe shows how to load the jQuery script for use on front-facing site pages.

Getting ready
You should have access to a WordPress development environment.

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Create a new directory called ch8-load-jquery.

3. Navigate to the directory and create a text file called ch8-load-jquery.php.

4. Open the new file in a code editor and add an appropriate header at the top of the
plugin file, naming the plugin Chapter 8 – Load jQuery.

5. Add the following line of code before the closing ?> PHP command to register a
function to be called when script loading requests are processed:
add_action('wp_enqueue_scripts', 'ch8lj_front_facing_pages');

6. Add the following code segment to provide an implementation for the
ch8lj_front_facing_pages function:
function ch8lj_front_facing_pages() {
 wp_enqueue_script('jquery');
}

7. Save and close the plugin file.

Chapter 8

233

8. Navigate to the Plugins management page and activate the Chapter 8 – Load jQuery
plugin.

9. Visit any page on the site and launch your browser's source viewer function.

10. Search for the keyword jquery to see that a copy of the script is now loaded from
the WordPress wp-includes folder:

<script type='text/javascript' src='http://localhost/
 wp-includes/js/jquery/jquery.js?ver=1.7.1'></script>

How it works...
The key component of this recipe is the wp_enqueue_script function, which allows
developers to load their own JavaScript files or to ask WordPress to load one of the scripts
that it comes packaged with. While the function requires many arguments when loading your
own scripts, which we'll cover in a later recipe, it only needs a single argument to load built-in
scripts. In this example that argument is jquery. To get a full list of default scripts available
with WordPress, check out the Codex page for the function (http://codex.wordpress.
org/Function_Reference/wp_enqueue_script).

Once you know which script to load, the call to wp_enqueue_script should be made from
one of three action hooks, depending on the target page(s) where the script should be loaded.
These are: wp_enqueue_scripts for front-facing pages, admin_enqueue_scripts for
administration pages, and login_enqueue_scripts for the login page, with the first one
fulfilling our requirement for this recipe.

There's more...
Veteran jQuery developers should be aware that the copy delivered with WordPress has
a small caveat.

jQuery noconflict mode
To avoid internal conflicts with other JavaScript and jQuery libraries, the version of jQuery that
comes bundled with WordPress is configured in the noconflict mode. This means that
the $ shortcut that can normally be used to access jQuery will not be available. As such, all
examples found in this chapter spell out the jQuery keyword.

To regain access to this shortcut, you can use the following syntax in your code:

jQuery(document).ready(function($) {
 // $ shortcut is now available for this function
 }
);

Leveraging JavaScript, jQuery, and AJAX Scripts

234

Displaying a pop-up dialog using the built-in
ThickBox plugin

As annoying as they can be to visitors, pop-up dialogs are a feature that many website
administrators are using to help them advertise special offers or get readers to subscribe to
their content. Since it uses pop-up dialogs in its own administrative pages, WordPress comes
bundled with a jQuery script called ThickBox that can be used to display these type of dialogs.

This recipe shows how to load the ThickBox script and use it to render a pop-up dialog.

Getting ready
You should have access to a WordPress development environment.

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Create a new directory called ch8-pop-up-dialog.

3. Navigate to the directory and create a text file called ch8-pop-up-dialog.php.

4. Open the new file in a code editor and add an appropriate header at the top of the
plugin file, naming the plugin Chapter 8 – Pop-Up Dialog.

5. Add the following line of code before the closing ?> PHP command to register a
function to be called when script loading requests are made:
add_action('wp_enqueue_scripts', 'ch8pud_load_scripts');

6. Add the following code segment to provide an implementation for the
ch8pud_load_scripts function:
function ch8pud_load_scripts() {
 wp_enqueue_script('jquery');
 add_thickbox();
}

7. Insert the following line of code to register a function to display content in the
page footer:
add_action('wp_footer', 'ch8pud_footer_code');

8. Append the following block of code to provide an implementation for the
ch8pud_footer_code function:
function ch8pud_footer_code() { ?>
 <script type="text/javascript">
 jQuery(document).ready(function() {

Chapter 8

235

 setTimeout(function() {
 tb_show('Pop-Up Message', '<?php echo plugins_url(
 'content.html?width=420&height=220',
 __FILE__)?>', null);
 }, 2000);
 });

</script>
<?php
}

9. Save and close the plugin file.

10. Create a new HTML file named content.html and open it in a code editor.

11. Insert the following HTML code as the file's content:
<!DOCTYPE html>
<html>
 <body>
 <div>This is the pop-up content.</div>
 </body>
</html>

12. Save and close the HTML file.

13. Navigate to the Plugins management page and activate the Chapter 8 – Pop-Up
Dialog plugin.

14. Visit any page of the website to see the new pop-up dialog appear two seconds after
the whole page is displayed.

Leveraging JavaScript, jQuery, and AJAX Scripts

236

How it works...
Similar to the previous recipe, we start by assigning a function to the wp_enqueue_scripts
action hook. When executed, the callback makes a call to wp_enqueue_script to request for
jQuery to be loaded from the local copy of WordPress. The next line calls the add_thickbox
function, which is a utility function that makes multiple calls to wp_enqueue_script and
wp_enqueue_style to load the appropriate JavaScript and stylesheet in the page header.

Once all required elements are loaded, the next section of the recipe outputs a block of
JavaScript code to the page footer that uses jQuery to register a function that will be called
when the entire page is loaded. When this happens, the setTimeout JavaScript function is
used to register a function that will be called 2000 milliseconds later and take care of calling
tb_show to display the pop-up dialog. tb_show has three arguments, with the first one
indicating the dialog title, the second containing the address of the content to render within
the box, and the third expecting a path to a group of images to be displayed. In our case,
the last argument is left null. Notice that the width and height (in pixels) of the dialog are
indicated as part of the address of the content page to be displayed.

If you are using the default WordPress twenty-eleven theme, the pop-up
dialog will be obstructed by the theme header image, since it has been
set to have a high z-index value in the theme's stylesheet.

To resolve this issue, edit the wp-content/themes/twenty-
eleven/style.css file and remove line 508:

z-index: 9999;

There's more...
While the recipe displays a valid dialog, developers might want a bit more control over how it
can be closed and when it gets displayed.

Removing the dialog close button
By default, the ThickBox script offers a close button on the top-right corner of the pop-up
dialog that can be used to close it at any time. This may not be desirable if you expect visitors
to provide feedback or perform a specific action before dismissing the dialog. By adding the
modal keyword to the content URL—set to a value of true—ThickBox will remove the dialog
title bar, including the close button.

tb_show('Pop-Up Message', '<?php echo plugins_url(
 'content.html?width=420&height=220&modal=true', __FILE__)?>',
 null);

Chapter 8

237

Once the close button is gone, we can call the tb_remove JavaScript function to close the
dialog. The following is an example of a simple link that will close the dialog:

<div>Close Dialog</div>

Displaying pop-up dialogs on select pages
While the recipe's original code displays a pop-up dialog on every single page of a site, it may
be better to show it only on specific pages, such as the front page. To accomplish this, we can
place a condition around the two add_action calls to check if the visitor is making a request
to see the front page:

If (is_front_page()) {
 add_action('wp_enqueue_scripts', 'ch8pud_load_scripts');
 add_action('wp_footer', 'ch8pud_footer_code');
}

A similar technique can be used by substituting the is_front_page function by the
is_page('id_title_or_slug') function, which checks if the current page numeric ID,
title, or post slug matches the value that it receives as an argument. In that situation, a plugin
configuration page would allow users to easily select one or more pages on which the dialog
should appear.

Controlling pop-up dialog display using
shortcodes

As you may be aware, loading scripts and styles on a page where they won't be used
unnecessarily slows down that page's rendering time since the browser will still need to
download and validate the content of these external files. While the previous recipe offered one
way to select specific pages where scripts and styles should be loaded, a different approach is
to analyze the page contents for the presence of a special code to make that decision.

This recipe shows how to add a filter to the previous recipe to search for a shortcode in posts
and pages to decide when to display a pop-up dialog.

Getting ready
You should have already followed the Displaying a pop-up dialog using the built-in ThickBox
plugin recipe to have a starting point for this recipe. Alternatively, you can get the resulting
code (ch8-pop-up-dialog\ch8-pop-up-dialog-v1.php) from the code bundle and
rename the file to ch8-pop-up-dialog.php.

Leveraging JavaScript, jQuery, and AJAX Scripts

238

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Navigate to the ch8-pop-up-dialog directory and then to edit
ch8-pop-up-dialog.php.

3. Find the ch8pud_load_scripts function and add the following highlighted lines
of code:
function ch8pud_load_scripts() {
 // Only load scripts if variable is set to true
 global $load_scripts;

 if ($load_scripts) {
 wp_enqueue_script('jquery');
 add_thickbox();
 }
}

4. Locate the ch8pud_footer_code function and modify the code, adding the
following highlighted lines of code to the function body:
function ch8pud_footer_code() {
 // Only load scripts if keyword is found on page
 global $load_scripts;
 if ($load_scripts) { ?>

 <script type="text/javascript">
 jQuery(document).ready(function() {
 setTimeout(
 function(){
 tb_show('Pop-Up Message',
 '<?php echo plugins_url(
 'content.html?width=420&height=220',
 __FILE__)?>', null);
 }, 2000);
 });
 </script>

<?php }
}

5. Add the following line of code to register a function that will filter post and page
contents before any other parsing and formatting is performed:
add_filter('the_posts',
 'ch8pud_conditionally_add_scripts_and_styles');

Chapter 8

239

6. Append the following block of code to provide an implementation for the
ch8pud_conditionally_add_scripts_and_styles function:
function ch8pud_conditionally_add_scripts_and_styles($posts) {
 // Exit function immediately if no posts are present
 if (empty($posts)) return $posts;

 // Global variable to indicate if scripts should be loaded
 global $load_scripts;
 $load_scripts = false;

 // Cycle through posts and set flag true if
 // keyword is found
 foreach ($posts as $post) {
 $shortcode_pos = stripos
 ($post->post_content, '[popup]', 0);
 if ($shortcode_pos !== false) {
 $load_scripts = true;
 return $posts;
 }
 }

 // Return posts array unchanged
 return $posts;
}

7. Insert the following function call to declare a new shortcode, along with a function
responsible for replacing it with content:
add_shortcode('popup', 'ch8pud_popup_shortcode');

8. Add the following code block to provide a simple implementation for the
ch8pud_popup_shortcode function:
function ch8PUD_popup_shortcode() {
 return;
}

9. Save and close the plugin file.

10. Visit the site front page and you will notice that the pop-up dialog is no
longer displayed.

11. Create a new page and insert the [popup] shortcode in the page contents.

12. View the new page to see that the new pop-up dialog appears, while the [popup]
shortcode is not shown.

Leveraging JavaScript, jQuery, and AJAX Scripts

240

How it works...
Global PHP variables are powerful tools that can help us share data between functions in a
plugin. By using the keyword global in front of the name of a variable, a site's PHP interpreter
will know that it has to access a common memory space to store and access information.

While the existing action hooks were first modified to query a global variable to determine
whether or not they should load scripts and output code to the page footer, the bulk of the
work is actually done by the filter function that gets associated to the_posts hook. This
function receives an array of all posts and pages that are destined to be displayed and must
determine if a special keyword is present to set the load_scripts variable appropriately.

As you can see from the recipe's code, the text that we chose to look for, [popup], is a
shortcode. While we could have selected any text as the trigger to display a pop-up dialog, we
chose a shortcode since it would be easy to make it disappear by providing a simple rendering
function for it that returns an empty string.

See also
 f Displaying a pop-up dialog using the built-in ThickBox plugin recipe

Displaying a calendar day selector using the
Datepicker plugin

For all of its great administrative control panels and user interface elements, WordPress
still has a simplistic approach to date selection, making users interact with a drop-down
box and text fields to indicate the month, day, year, and time when a post or page is to be
published. A much more interesting way to enter this type of information is to use a pop-up
calendar that allows users to navigate through visual representations of each month and
pick the desired date.

This recipe shows how to use the jQuery Datepicker script that is provided by default with
WordPress to display a pop-up calendar to provide an easy way to select dates.

Getting ready
You should have access to a WordPress development environment.

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Create a new directory called ch8-calendar-picker.

Chapter 8

241

3. Visit www.jqueryui.com/download and download the latest version of the jQuery
UI package, with all components selected.

4. Open the resulting file with an archive management tool and only extract the css
folder to the newly-created plugin directory.

5. Create a text file called ch8-calendar-picker.php in the plugin directory.

6. Open the new file in a code editor and add an appropriate header at the top of the
plugin file, naming the plugin Chapter 8 – Calendar Picker.

7. Add the following line of code before the closing ?> PHP command at the end of the
file to register a function to be called when script loading requests are made:
add_action('admin_enqueue_scripts', 'ch8cp_admin_scripts');

8. Add the following code segment to provide an implementation for the
ch8cp_admin_scripts function:
function ch8cp_admin_scripts() {
 wp_enqueue_script('jquery');
 wp_enqueue_script('jquery-ui-core');
 wp_enqueue_script('jquery-ui-datepicker');
 wp_enqueue_style('datepickercss',
 plugins_url('css/ui-lightness/ jquery-ui-1.8.17.custom.css',
 __FILE__), array(), '1.8.17');
}

The name of the stylesheet CSS file should be updated to reflect
the name of the version of jQuery UI that was downloaded.

9. Insert the following line of code to register a function to be called when meta boxes
are created:
add_action('add_meta_boxes', 'ch8cp_register_meta_box');

10. Append the following block of code to provide an implementation for the
ch8cp_register_meta_box function:
function ch8cp_register_meta_box() {
 add_meta_box('ch8cp_datepicker_box', 'Assign Date',
 'ch8cp_date_meta_box', 'post', 'normal');
}

Leveraging JavaScript, jQuery, and AJAX Scripts

242

11. Insert the following code block to implement the ch8cp_date_meta_box function
that was declared in the call to add_meta_box:
function ch8cp_date_meta_box($post) { ?>
 <input type="text" id="ch8cp_date" name="ch8cp_date" />

 <!-- JavaScript function to display calendar button -->
 <!-- and associate date selection with field -->
 <script type='text/javascript'>
 jQuery(document).ready(function() {
 jQuery('#ch8cp_date').datepicker({ minDate: '+0',
 dateFormat: 'yy-mm-dd', showOn: 'both',
 constrainInput: true});
 });
 </script>
<?php }

12. Save and close the plugin file.

13. Navigate to the Plugins management page and activate the Chapter 8 – Calendar
Picker plugin.

14. Select any item in the Posts management section and edit it to see the new date
assignment meta box.

15. Click on the … button or click in the Assign Date textbox to display the pop-up
calendar and select a date.

Chapter 8

243

How it works...
Just like we saw with jQuery and ThickBox in the previous recipes, WordPress comes bundled
with many jQuery libraries. Two of these libraries, jQuery UI and jQuery UI Datepicker, can be
used to display a pop-up calendar and associate it with a text field on a form. That being said,
the distribution of these scripts is missing the associated stylesheet and images that are
required to display a fully rendered calendar.

This recipe starts by visiting the jQuery UI site and downloading a copy of the complete library,
which includes all the required layout files. Once the download is complete, we are only
interested in getting a copy of the style data since all other necessary scripts are provided
by WordPress. After registering a function with admin_enqueue_scripts, we make three
function calls to load the required JavaScript files in the admin page header. We also make a
call to load the stylesheet that we just downloaded. The wp_enqueue_style function has
many parameters. In this example, we are providing values for the first four of them to indicate
the name of the style, the path to the style file, an empty list of dependencies, and a version
number. This function also has a fifth parameter, which we are not using here, to indicate if
the script should be loaded in the header or footer, where the default is the header.

Once all of the required scripts are in place, the remainder of the code creates a meta box in
the post editor, displays a text field in that box, and outputs JavaScript code that will be called
when the page is completely rendered to associate the pop-up calendar with the text field. As
part of the calendar's options, we specify that the user will only be able to select future dates
with the minDate parameter along with the desired date format.

Adding tooltips to admin page form fields
using the TipTip plugin

Documentation is a very important step of plugin development as it will allow users to
understand how to configure the plugins you create. That being said, users will not typically
go very far to find the information they need, resulting in many unnecessary questions in
discussion forums or in e-mails.

As discussed in Chapter 3, User Settings and Administration Pages, one way to provide
documentation is to create a help tab that appears in the top-right corner of the plugin's
configuration panel. While that approach is much easier for users than to find a readme file or
go back to the official WordPress plugin repository, it still requires them to actively seek and
click a link to open that section.

That's where tooltips come into play. By using a jQuery plugin to render clean good-looking
tooltips, we can add documentation to a plugin that will be displayed contextually based on
the configuration fields that the user is currently interacting with.

This recipe shows how to download and integrate the TipTip jQuery library to display tooltips
when configuration fields are used.

Leveraging JavaScript, jQuery, and AJAX Scripts

244

Getting ready
You should have already followed the Displaying a calendar day selector using the Datepicker
plugin recipe to have a starting point for this recipe. Alternatively, you can get the resulting
code (ch8-calendar-picker\ch8-calendar-picker-v1.php) from the code bundle
and rename the file to ch8-calendar-picker.php.

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Navigate to the ch8-calendar-picker directory.

3. Create a new subdirectory called tiptip.

4. Visit the TipTip jQuery home page available at http://drew.tenderapp.com/kb/
tiptip-jquery-plugin/tiptip-downloads.

5. Download Version 1.3 of the plugin source code to your local computer.

6. Open the resulting file with an archive management tool and extract the
jquery.tipTip.js and tipTip.css files to the tiptip directory.

7. Open the main plugin file ch8-calendar-picker.php in a code editor.

8. Find the ch8cp_admin_scripts function and add the following lines of code at
the end:
wp_enqueue_script('tiptipjs',
 plugins_url('tiptip/jquery.tipTip.js',
 __FILE__),
 array(), '1.3');
wp_enqueue_style('tiptip',
 plugins_url('tiptip/tipTip.css', __FILE__),
 array(), '1.3');

9. Locate the ch8cp_date_meta_box function and modify the line that renders the
textbox as shown in the following highlighted code:
<input type="text" class="ch8cp_tooltip"
 title="Please enter a date" id="ch8cp_date"
 name="ch8cp_date" />

10. Again in the ch8cp_date_meta_box function, add the following highlighted block
of code to the existing block of JavaScript code:
<script type='text/javascript'>
 jQuery(document).ready(function() {
 jQuery('#ch8cp_date').datepicker({ minDate: '+0',
 dateFormat: 'yy-mm-dd', showOn: 'both',
 constrainInput: true });

Chapter 8

245

 jQuery('.ch8cp_tooltip').each(function() {
 jQuery(this).tipTip();
 }
);
 });
</script>

11. Save and close the plugin file.

12. Select any item in the Posts management section and edit it.

13. Move the mouse over the date field to see the new tooltip appear.

How it works...
The TipTip library turns regular HTML title tags into nice-looking tooltips that appear when
users position their mouse cursor over an item or select it.

This recipe starts by downloading the TipTip script from the plugin author's website. Once
downloaded, we only extract two of the three files that the archive contains. The third file,
containing the keyword minified in its name, is not needed as it is a second copy of the plugin
code with every space and line feed removed to make it as compact as possible.

Once we have the desired files in place, we load them in the admin page header by
adding calls to the wp_enqueue_script and wp_enqueue_style functions in the callback
that was already associated with the admin_enqueue_script action hook. Similar to
wp_enqueue_style, the wp_enqueue_script function has five parameters, which
indicate the name of the script, the location of the script file, a list of any dependencies for
the script, a version number, and an option to indicate if the script should be loaded in the
site header or footer.

Once the library is loaded, activating the tooltips is quite simple. First, we select a class name
for our items and add it to all items that are destined to have help text associated with them.
Then, we add the help text in a title tag on each item. Note that the item in question could
be anything from a div, to a form input component or a table row. Finally, we make a call to a
jQuery function to find all items that have the right class and execute the TipTip function on
them. After execution, all selected items will have their title text appear as tooltips.

Leveraging JavaScript, jQuery, and AJAX Scripts

246

See also
 f Displaying a calendar day selector using the Datepicker plugin recipe

Using AJAX to dynamically update partial
page contents

When users create complex websites with lots of dynamic content, such as Twitter widgets
or other components that fetch external data, refreshing the entire page every time a user
interacts with the site can quickly become a gruelling experience for visitors.

In such situations, using AJAX (Asynchronous JavaScript and XML) can greatly accelerate
user navigation by only displaying subsets of data on visitor-facing pages and dynamically
retrieving updates to isolated sections. More specifically, AJAX allows the browser to send
requests to a web server, including data parameters, and to insert the data that it receives
back in the web page, replacing or augmenting the original content.

This recipe shows how to add AJAX support to the bug tracking system created in Chapter 7,
Creating Custom MySQL Database Tables.

Getting ready
You should have already followed the Importing data from a user file into custom tables
recipe in Chapter 7, Creating Custom MySQL Database Tables to have a starting point for
this recipe. Alternatively, you can get the resulting code (ch7-bug-tracker\ch7-bug-
tracker-v8.php) from the code bundle and rename
the file to ch7-bug-tracker.php.

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Navigate to the ch7-bug-tracker directory and edit ch7-bug-tracker.php.

3. Locate the ch7bt_shortcode_list function and find the section where the SQL
query is being prepared.

4. Add an extra line to the query (the highlighted line of code in the following code block)
to show only open bugs (bugs with a bug_status field set to 0):
$bug_query = 'select * from ' . $wpdb->get_blog_prefix();

$bug_query .= 'ch7_bug_data ';
$bug_query .= 'where bug_status = 0 ';

Chapter 8

247

5. Make the changes highlighted in the following code, to the code building the
search query:
if ($search_mode) {
 $search_term = '%' . $search_string . '%';
 $bug_query .= "and (bug_title like '%s' ";
 $bug_query .= "or bug_description like '%s') ";
}

6. Find the code responsible for drawing the search form and add the following
highlighted block of code after it to display a link to be clicked to show closed bugs:
$output .= '</form>
';

$output .= '';
$output .= 'Show closed bugs';
$output .= '';

$output .= '<div class="bug_listing">';

7. Find the code that ends the bug table and add a closing div tag, as shown
highlighted in the following line of code:
$output .= '</table></div>
';

8. Insert this code segment after the bug display table to add the JavaScript responsible
for providing the AJAX-based data replacement functionality:
$output .= "<script type='text/javascript'>";

$nonce = wp_create_nonce('ch8bt_ajax');

$output .= "function replacecontent(bug_status)" .
 "{ jQuery.ajax({" .
 " type: 'POST'," .
 " url: ajax_url," .
 " data: { action: 'ch8bt_buglist_ajax'," .
 " _ajax_nonce: '" . $nonce . "'," .
 " bug_status: bug_status }," .
 " success: function(data) {" .
 " jQuery('.bug_listing').html(data);" .
 " }" .
 " });" .
 "};";

$output .= "jQuery(document).ready(function() {";
$output .= "jQuery('.show_closed_bugs').click(function()
 { replacecontent(1); } ";
$output .= ")});";
$output .= "</script>";

Leveraging JavaScript, jQuery, and AJAX Scripts

248

9. Add the following line of code at the end of the plugin file to register a function to add
content to the page header:
add_action('wp_head', 'ch8bt_declare_ajaxurl');

10. Append the following block of code to provide an implementation for the
ch8bt_declare_ajaxurl function:
function ch8bt_declare_ajaxurl() { ?>
<script type="text/javascript">
 var ajax_url = '<?php echo admin_url('admin-ajax.php'); ?>';
</script>
<?php }

11. Insert the following lines of code to register functions that will be called when AJAX
requests are received from public or logged in users with an action variable set to
ch8bt_buglist_ajax:
add_action('wp_ajax_ch8bt_buglist_ajax', 'ch8bt_buglist_ajax');
add_action('wp_ajax_nopriv_ch8bt_buglist_ajax',
 'ch8bt_buglist_ajax');

12. Add the following block of code to provide an implementation for the
ch8bt_buglist_ajax function:
function ch8bt_buglist_ajax() {
 check_ajax_referer('ch8bt_ajax');

 if (isset($_POST['bug_status']) &&
 is_numeric($_POST['bug_status'])) {
 global $wpdb;

 // Prepare query to retrieve bugs from database
 $bug_query = 'select * from ' .
 $wpdb->get_blog_prefix();
 $bug_query .= 'ch7_bug_data where bug_status = ';
 $bug_query .= intval($_POST['bug_status']);
 $bug_query .= ' ORDER by bug_id DESC';

 $bug_items = $wpdb->get_results(
 $wpdb->prepare($bug_query), ARRAY_A);

 // Prepare output to be returned to AJAX requestor
 $output = '<div class="bug_listing"><table>';

 // Check if any bugs were found
 if ($bug_items) {
 $output .= '<tr><th style="width: 80px">ID</th>';
 $output .= '<th style="width: 300px">';
 $output .= 'Title / Desc</th><th>Version</th></tr>';

Chapter 8

249

 // Create row in table for each bug
 foreach ($bug_items as $bug_item) {
 $output .= '<tr style="background: #FFF">';
 $output .= '<td>' . $bug_item['bug_id'] . '</td>';
 $output .= '<td>' . $bug_item['bug_title'] . '</td>';
 $output .= '<td>' . $bug_item['bug_version'];
 $output .= '</td></tr>';
 $output .= '<tr><td></td><td colspan="2">';
 $output .= $bug_item['bug_description'];
 $output .= '</td></tr>';
 }
 } else {
 // Message displayed if no bugs are found
 $output .= '<tr style="background: #FFF">';
 $output .= '<td colspan="3">No Bugs to
 Display</td>';
 }

 $output .= '</table></div>
';

 echo $output;
 }

 die();
}

13. Add the following line of code to register a function to be called when scripts are
being queued up:
add_action('wp_enqueue_scripts', 'ch8bt_load_jquery');

14. Insert the following code block to provide an implementation for the
ch8bt_load_query function:
function ch8bt_load_jquery() {
 wp_enqueue_script('jquery');
}

15. Save and close the plugin file.

16. Visit the bug listing page that was previously created to see that only opened bugs
are displayed.

Leveraging JavaScript, jQuery, and AJAX Scripts

250

17. Click on the link to display closed bugs to see how the list gets replaced with
closed issues.

How it works...
AJAX page interactions are powered by JavaScript code and allow users to create pages with
content that gets dynamically updated. To add this functionality to our bug tracking system,
we start this recipe by modifying the existing shortcode bug query to only retrieve entries that
have an open status (value of 0).

Once this is done, we move on to add two new elements to the initial shortcode output: a
link to display closed bugs and a block of JavaScript code. The link itself is quite simple,
containing a class name and a text label that visitors will be able to click. The JavaScript
code is a bit more complex. Essentially, the script makes a request for the replacecontent
function to be called when the show_closed_bugs link is clicked by visitors. In turn, the
replacecontent function contains a single call to the jQuery ajax function. This function
takes a number of arguments, starting with the type of operation, which is set to POST. This
indicates that all variables sent in the request URL will be stored in a standard $_POST
variable array.

The second parameter is the URL to which the request should be sent. The variable used
here is defined in the header code that is generated by the ch8bt_declare_ajaxurl
function and points to the WordPress admin-ajax.php script URL. While the name of
this script starts with the word admin, it can also be used to process AJAX requests from
visitor-facing pages.

After these first two arguments is a data array that contains a number of data elements, such
as the name of the action, a nonce field to secure the request, and the status of the bugs that
should be retrieved. Finally, the success parameter indicates that the data received back
from the AJAX request should be used to replace the HTML content of the .bug_listing div
section of the existing page.

Chapter 8

251

To process this request, our plugin goes on to register the function ch8bt_buglist_ajax
to be called when one of two variable name actions are matched: wp_ajax_<actionname>
or wp_ajax_nopriv_<actionname>. In both cases, <actionname> is the string that
was sent as part of the data parameters in the AJAX request. Upon receiving the request, the
callback generates an updated bug table, echoes the resulting HTML code, and makes a call
to the standard PHP die() function. While this last step might seem strange, it is needed
to avoid having a trailing 1 at the end of the new HTML, indicating that AJAX processing was
successfully performed by WordPress.

While the ch8bt_buglist_ajax function shares a lot of code with the existing
ch7bt_shortcode_list function, it is easier to create a separate code block that only
contains the necessary elements for this example. That being said, combining the two
functions would make future updates to the table layout easier to maintain.

See also
 f Importing data from a user file into custom tables recipe in Chapter 7, Creating

Custom MySQL Database Tables

9
Adding New Widgets

to the WordPress
Library

In this chapter, we will learn how to create our own widget through the following topics:

 f Creating a new widget in WordPress

 f Displaying configuration options

 f Validating configuration options

 f Implementing the widget display function

 f Adding a custom dashboard widget

Introduction
Widgets were introduced in WordPress Version 2.2. They allow users to easily populate
sidebars or other areas of their website theme with blocks of content that are provided by
WordPress itself (post or page data) or by any plugins that have been installed (for example,
bug tracking system information). Looking at a WordPress installation, the default set of
widgets include the Archives widget, which lists monthly post archives, and the Links widget,
providing an easy way to display the links stored in your WordPress site.

Following its open design, WordPress provides functions that allow plugin developers to create
new widgets that users will be able to add to their page design. This chapter shows how to
use the widget class to create a custom widget. It also covers a second type of widget, the
Dashboard widget, which can be used to display plugin-specific information on the front
page of the administrative area.

Adding New Widgets to the WordPress Library

254

Creating a new widget in WordPress
The first step in creating a custom widget is to define its name and indicate which class
contains all of its implementation functions. Once the new element has been registered
with the system, it will immediately appear in the widget list where users will be able to
drag-and-drop it to their sidebars.

This recipe defines a new widget that displays recent book reviews from the custom post type
category created in Chapter 4, The Power of Custom Post Types.

Getting ready
You should have already followed the Updating page title to include custom post data
using plugin filters recipe from Chapter 4, The Power of Custom Post Types to have a
starting point for this recipe. Alternatively, you can get the resulting code (ch4-book-
reviews\ch4-book-reviews-v8.php) from the code bundle and activate the
Chapter 4 – Book Reviews plugin.

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Create a new directory called ch9-book-review-widget.

3. Navigate to the directory and create a text file called
ch9-book-review-widget.php.

4. Open the new file in a code editor and add an appropriate header at the top of the
plugin file, naming the plugin Chapter 9 – Book Review Widget.

5. Add the following line of code before the closing ?> PHP command to register
a function to be called when widgets are initialized:
add_action('widgets_init', 'ch9brw_create_widgets');

6. Add the following code segment to provide an implementation for the
ch9brw_create_widgets function:
function ch9brw_create_widgets() {
 register_widget('Book_Reviews');
}

7. Insert the following block of code to declare the Book_Reviews class, along with its
constructor method:
class Book_Reviews extends WP_Widget {
 // Construction function
 function __construct () {

Chapter 9

255

 parent::__construct('book_reviews', 'Book Reviews',
 array('description' =>
 'Displays list of recent book
 reviews'));

 }
}

8. Save and close the plugin file.

9. Navigate to the Plugins management page and activate the Chapter 9 – Book
Review Widget plugin.

10. Visit the Widgets section of the Appearance administration page to see the
newly-created Book Reviews widget appear as part of the list of Available Widgets.

11. Drag-and-drop the new widget to one of the available sidebars, listed on the
right-hand side, to create a widget instance and see that the widget currently
has no available options to configure it.

How it works...
The widgets_init action hook is used to register a function to be executed when widgets
are being created by WordPress. When the callback occurs, we create a new widget by calling
the simple register_widget function. As can be seen in the recipe, this function requires
a single argument that indicates the name of the class that contains the widget definition.

The rest of the recipe declares the widget implementation class, which extends the WordPress
WP_Widget class. While the class has many potential member functions, this recipe only
defines the class constructor, which initializes the object instance by sending a unique
identifier, a title, and a o the parent class. As with any other functions declared in plugins, it
is important to give unique names to the widget class and widget identifier in order to avoid
conflict with other plugins.

Adding New Widgets to the WordPress Library

256

When the plugin is activated, users can see the new widget immediately and are able to
add one or more instance of the new element as part of a sidebar's content. However, the
new widget will not render anything other than an error message on website pages until its
widget method is implemented in a later recipe in this chapter.

There's more...
As you may have noticed, this recipe creates a separate plugin file and directory from the main
book review plugin created in Chapter 4, The Power of Custom Post Types.

Plugins extending other plugins
While we could have placed the widget creation code in the same file as the book review
plugin, placing it in a separate file is just as valid. Some plugins distributed on the official
wordpress.org repository actually use that technique to break up their functionality into
more manageable code segments. The only thing to be careful with this technique is to be
sure that all elements that a secondary plugin is dependent upon are loaded before referring
to them in callback functions.

In this case, since widgets are created late in the WordPress initialization process, the custom
post type that will be required by the widget will be available.

See also
 f Updating page title to include custom post data using plugin filters recipe in

Chapter 4, The Power of Custom Post Types

Displaying configuration options
Similar to the plugin configuration pages, widgets can have one or more options to allow users
to specify how some aspects of the component will behave. These options can be configured
individually for each instance of a widget that is added to a site layout. To handle all of the
logistics around multiple possible widget instances, WordPress actually takes care of most
of the data handling and storage tasks.

This recipe shows how to add a new method to the book review widget class to display
configuration options.

Getting ready
You should have already followed the Creating a new widget in WordPress recipe to
have a starting point for this recipe. Alternatively, you can get the resulting code (ch9-book-
review-widget\ch9-book-review-widget-v1.php) from the code bundle and rename
the file to ch9-book-review-widget.php.

Chapter 9

257

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Navigate to the ch9-book-review-widget directory and edit
ch9-book-review-widget.php.

3. Find the Book_Reviews class and add the following block of code within the class
to define the form method:
function form($instance) {
 // Retrieve previous values from instance
 // or set default values if not present
 $render_widget = (!empty($instance['render_widget']) ?
 $instance['render_widget'] : 'true');

 $nb_book_reviews = (!empty($instance['nb_book_reviews']) ?
 $instance['nb_book_reviews'] : 5);

 $widget_title = (!empty($instance['widget_title']) ?
 esc_attr($instance['widget_title']) :
 'Book Reviews');
 ?>

 <!-- Display fields to specify title and item count -->
 <p>
 <label for="<?php echo
 $this->get_field_id('render_widget'); ?>">
 <?php echo 'Display Widget'; ?>
 <select
 id="<?php echo $this->get_field_id
 ('render_widget'); ?>"
 name="<?php echo $this->get_field_name
 ('render_widget'); ?>">
 <option value="true"
 <?php selected($render_widget, 'true'); ?>>
 Yes</option>
 <option value="false"
 <?php selected($render_widget, 'false'); ?>>
 No</option>
 </select>
 </label>
 </p>
 <p>
 <label for="<?php echo

Adding New Widgets to the WordPress Library

258

 $this->get_field_id('widget_title'); ?>">
 <?php echo 'Widget Title:'; ?>
 <input type="text"
 id="<?php echo $this->get_field_id
 ('widget_title');?>"
 name="<?php echo $this->get_field_name
 ('widget_title'); ?>"
 value="<?php echo $widget_title; ?>" />
 </label>
 </p>
 <p>
 <label for="<?php echo
 $this->get_field_id('nb_book_reviews'); ?>">
 <?php echo 'Number of reviews to display:'; ?>
 <input type="text"
 id="<?php echo $this->get_field_id
 ('nb_book_reviews'); ?>"
 name="<?php echo $this->get_field_name
 ('nb_book_reviews'); ?>"
 value="<?php echo $nb_book_reviews; ?>" />
 </label>
 </p>

 <?php
}

4. Save and close the plugin file.

5. Refresh the Appearance | Widgets administration page and expand the Book
Reviews widget instance to see the newly-created options.

6. Change the widget options and click on Save to update its configuration.

Chapter 9

259

How it works...
When users create a new widget instance, WordPress automatically manages configuration
options for that element using an array variable. It also calls the widget class' form method,
if present, to render the widget instance's options in a configuration panel.

The first few lines of the form method check to see if the instance array contains options
to specify whether the widget should be displayed, the number of book reviews to be shown,
and the title that should be displayed at the beginning of the widget. If either of these options
are missing, we use the PHP ternary conditional operator (?:) to assign default values to the
render_widget, nb_book_reviews, and widget_title functions. This operator expects
three expressions, ordered as follows: (expr1) ? (expr2) : (expr3). It will then return
expr2 if expr1 is true and expr3 if it's false.

With these two variables in place, the rest of the form method's code uses a mix of HTML
and PHP code to render the configuration fields that are shown in the widget editor. The
get_field_id and get_field_name methods, seen throughout this code, are used
to generate unique identifiers that will help WordPress to store data separately for all
widget instances.

As can be seen in this recipe, the widget class is able to automatically process and save
widget configuration parameters. However, it should be noted that allowing WordPress to
handle this task by itself means that no validation will be performed on the data entered. This
could cause problems if a user enters text instead of the number of reviews to be displayed.
The next recipe shows how to handle data validation.

See also
 f Creating a new widget in WordPress recipe

Validating configuration options
The widget configuration panel that was put in place in the previous recipe was functional,
allowing users to change options and save updated values to the site database. That being
said, all WordPress does by default when the user saves a widget is to store values directly to
the site database. Since accepting user data blindly can lead to functionality problems and
security risks if wrong or malicious values are entered, it is preferable to add data validation
rules through the creation of an update method that will be able to verify configuration data
before it is saved. This recipe shows how to implement a widget's update method.

Adding New Widgets to the WordPress Library

260

Getting ready
You should have already followed the Displaying configuration options recipe to have a
starting point for this recipe. Alternatively, you can get the resulting code (ch9-book-
review-widget\ch9-book-review-widget-v2.php) from the code bundle and
rename the file to ch9-book-review-widget.php.

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Navigate to the ch9-book-review-widget directory and edit ch9-book-
review-widget.php.

3. Find the Book_Reviews class and add the following block of code within the class
to define the update method:
function update($new_instance, $old_instance) {
 $instance = $old_instance;

 // Only allow numeric values
 if (is_numeric ($new_instance['nb_book_reviews']))
 $instance['nb_book_reviews'] =
 intval($new_instance['nb_book_reviews']);
 else
 $instance['nb_book_reviews'] = $instance['nb_book_reviews'];

 $instance['widget_title'] =
 strip_tags($new_instance['widget_title']);

 $instance['render_widget'] =
 strip_tags($new_instance['render_widget']);

 return $instance;
}

4. Save and close the plugin file.

5. Visit the Widgets section of the Appearance administration page and expand the
Book Reviews widget instance.

6. Enter a textual value in the Number of reviews to display field and save the widget.
You will see that the field's value reverts to the last valid number saved for this field.

Chapter 9

261

How it works...
The update method receives two arrays of data and must return a single array to be saved to
the site database. The two incoming arrays contain the new option values entered by the user
and the values that were previously stored for the widget, respectively.

To start from known values, the method's implementation starts by making a copy of the old
values to a new variable called $instance. It follows this initialization by calling the standard
PHP strip_tags function on each user-entered value to remove potential HTML or PHP
tags, saving the return value in the $instance array. It also calls the PHP is_numeric and
intval function on the entry indicating the number of reviews to be displayed to make sure
that it's a numeric value. If anything other than a number was entered, the previous field value
will be saved and displayed back to the user.

See also
 f Displaying configuration options recipe

Implementing the widget display function
For all of the widget creation work that we have done so far, our new creation does not display
any content on the website yet. When displaying an area that contains widgets, WordPress
tries to call a method named widget for each user-selected widget to output the desired
content to the browser.

This recipe shows how to implement a widget method to display a list of recent book reviews
when the widget is instantiated in a sidebar.

Getting ready
You should have already followed the Validating configuration options recipe to have a starting
point for this recipe. Alternatively, you can get the resulting code (ch9-book-review-
widget\ch9-book-review-widget-v3.php) from the code bundle and rename the
file to ch9-book-review-widget.php.

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Navigate to the ch9-book-review-widget directory and edit
ch9-book-review-widget.php.

Adding New Widgets to the WordPress Library

262

3. Find the Book_Reviews class and add the following block of code within the class to
define the widget method:
function widget($args, $instance) {
 if ($instance['render_widget'] == 'true') {
 // Extract members of args array as individual variables
 extract($args);

 // Retrieve widget configuration options
 $nb_book_reviews =
 (!empty($instance['nb_book_reviews']) ?
 $instance['nb_book_reviews'] : 5);

 $widget_title = (!empty($instance['widget_title']) ?
 esc_attr($instance['widget_title']) :
 'Book Reviews');

 // Preparation of query string to retrieve book reviews
 $query_array = array('post_type' => 'book_reviews',
 'post_status' => 'publish',
 'posts_per_page' =>
 $nb_book_reviews);

 // Execution of post query
 $book_review_query = new WP_Query();
 $book_review_query->query($query_array);

 // Display widget title
 echo $before_widget;
 echo $before_title;
 echo apply_filters('widget_title', $widget_title);
 echo $after_title;

 // Check if any posts were returned by query
 if ($book_review_query->have_posts()) {
 // Display posts in unordered list layout
 echo '';

 // Cycle through all items retrieved
 while ($book_review_query->have_posts()) {
 $book_review_query->the_post();
 echo '';
 echo get_the_title(get_the_ID()) . '';
 }

 echo '';

 }

 wp_reset_query();
 echo $after_widget;
 }
}

Chapter 9

263

4. Save and close the plugin file.

5. Visit the website's front page to see the newly-added widget contents displayed in
the sidebar.

How it works...
Similar to action hooks that we have seen in the earlier chapters, the widget method is
meant to directly output HTML code to the browser that will be displayed when an instance
of the new widget has been created in a sidebar.

The widget method starts by checking whether or not the widget should be displayed. If it
should, it continues by calling the standard PHP extract function on the first parameter
received, an array named $args. Calling this function parses the array and creates variables
for each element found, making it easier for the following code to access the elements that
should be placed before and after the widget title and widget content.

After this initial statement, the recipe continues by retrieving the number of items to display
and the widget title from the $instance array, which has been received as the second
method parameter using the same technique that was shown when implementing the
form method.

The rest of the code is very similar to the book review shortcode created in Chapter 4, The
Power of Custom Post Types (displaying custom post type data in shortcodes), where we
assemble a query string that indicates the type and maximum quantity of data that we want
to retrieve from the database. The resulting query is executed by creating a new instance of
the WordPress WP_Query object. If results are found, the following recipe code cycles through
all entries and outputs code to render an unordered list of all items found. Last but not least,
the recipe formats the widget content by outputting the values of the $before_widget,
$after_widget, $before_title, $after_title variables, and user-specified widget
title in the right places.

Adding New Widgets to the WordPress Library

264

See also
 f Creating a new widget in WordPress recipe

Adding a custom dashboard widget
While widgets are primarily used by website administrators to easily add content to their
front-facing websites, WordPress contains another type of widget that plugin developers can
use to enhance user experience. Dashboard plugins are sections that appear on the front
page of a site's administration area. These sections can offer any kind of functionality, from
simple information displays indicating how much data is stored in a plugin to forms that allow
site administrators to quickly perform configuration tasks.

This recipe shows how to add a new Dashboard widget that indicates how many book reviews
are stored in the system, along with links to quickly access them.

Getting ready
You should have already followed the Updating page title to include custom post data
using plugin filters recipe from Chapter 4, The Power of Custom Post Types to have a
starting point for this recipe. Alternatively, you can get the resulting code (ch4-book-
reviews\ch4-book-reviews-v8.php) from the code bundle and activate the
Chapter 4 – Book Reviews plugin.

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Create a new directory called ch9-book-review-dashboard-widget.

3. Navigate to the directory and create a text file called ch9-book-review-
dashboard-widget.php.

4. Open the new file in a code editor and add an appropriate header at the top of the
plugin file, naming the plugin Chapter 9 – Book Review Dashboard Widget.

5. Add the following line of code before the closing ?> PHP command to register a
function to be called when the dashboard contents are being prepared:
add_action('wp_dashboard_setup',
 'ch9brdw_add_dashboard_widget');

Chapter 9

265

6. Add the following code segment to provide an implementation for the
ch9brdw_add_dashboard_widget function:
function ch9brdw_add_dashboard_widget() {
 wp_add_dashboard_widget('book_reviews_dashboard_widget',
 'Book Reviews',
 'ch9brdw_dashboard_widget');
}

7. Insert the following block of code to implement the ch9brdw_dashboard_widget
function declared in the previous step:
function ch9brdw_dashboard_widget() {
 $book_review_count = wp_count_posts('book_reviews');
 ?>
 <a href="<?php echo add_query_arg(array(
 'post_status' => 'publish',
 'post_type' => 'book_reviews'),
 admin_url('edit.php')); ?>">

 <?php echo $book_review_count->publish; ?>
 Published

 <a href="<?php echo add_query_arg(array(
 'post_status' => 'draft',
 'post_type' => 'book_reviews'),
 admin_url('edit.php')); ?>">

 <?php echo $book_review_count->draft; ?>
 Draft

<?php }

8. Save and close the plugin file.

9. Navigate to the Plugins management page and activate the Chapter 9 – Book
Review Dashboard Widget plugin.

Adding New Widgets to the WordPress Library

266

10. Navigate to the site's Dashboard to see the new Book Reviews widget at the bottom
of the page.

How it works...
Any plugin can register its own dashboard widget when WordPress is putting together
content for this administrative landing page. After registering a function to be called during
the Dashboard set up phase, our recipe makes a call to the wp_add_dashboard_widget
function to add our own element to the site when the callback is executed. The wp_add_
dashboard_widget function requires three parameters that need to provide a unique
identifier for the new item, a title to be displayed at the top of the widget, and a function that
will be responsible for generating the widget's contents. The wp_add_dashboard_widget
function also has an optional fourth parameter that can be used when the widget needs to
process form data as part of the Dashboard widget contents.

As can be seen in the previous screenshot, Dashboard widgets are displayed using WordPress
meta boxes, where any HTML code echoed by the content display function directly appears in
the box.

While the display function is mostly composed of HTML code, we also make a call to the
wp_count_posts utility function, which easily returns the number of posts for a given
post type.

The new widget can be hidden and moved to a new location on the Dashboard, like any other
built-in widget. Just like the front-facing widget plugin created earlier in this chapter, it should
be noted that all code in this plugin is in a separate file than the original book review plugin,
to organize its code separately from the original plugin file created in Chapter 4, The Power
of Custom Post Types.

See also
 f Updating page title to include custom post data using plugin filters recipe in

Chapter 4, The Power of Custom Post Types

10
Enabling Plugin

Internationalization

In this chapter, we will learn about plugin localization through the following topics:

 f Changing the WordPress language configuration
 f Adapting default user settings for translation
 f Making admin page code ready for translation
 f Modifying shortcode output for translation
 f Translating text strings using Poedit
 f Loading a language file in the plugin initialization

Introduction
WordPress is a worldwide phenomenon, with users embracing the platform all around the
globe. To create a more specific experience for users in different locales, WordPress offers the
ability to translate all of its user and visitor-facing content, resulting in numerous localizations
becoming available for download online. Like most other functionalities in the platform,
internationalization is also available to plugin developers through a set of easy-to-use
functions. The main difference being that plugin translations are typically included with
the extension, instead of being downloaded separately as is the case with WordPress.

To prepare their plugin to be localized, developers must use special internationalization
functions when dealing with text elements. Once this structure is in place, any user can
create localizations by themselves for languages that they know and submit them back
to the plugin author for inclusion in a future update to the extension.

This chapter explains how to prepare a plugin to be translated and shows how to use the
Poedit tool to create a new language file for a simple plugin.

Enabling Plugin Internationalization

268

Changing the WordPress language
configuration

The first step to translating a plugin is to configure WordPress to a different language setting
other than English. This will automatically trigger mechanisms in the platform to look for
alternate language content for any internationalized string.

In this recipe we will set the site to French.

Getting ready
You should have access to a WordPress development environment.

How to do it...
1. Navigate to the root of your WordPress installation.

2. Open the file called wp-config.php in a code editor.

3. Change the line that declares the site language from define('WPLANG', ''); to
define('WPLANG', 'fr_FR');.

4. Save and close the configuration file.

How it works...
Whenever WordPress renders a page for visitors or site administrators, it executes the
contents of the wp-config.php file, which declares a number of site-wide constants. One
of these constants is the site language. By default, this constant has no value, indicating
that WordPress should display all content in U.S. English. If defined, the system tries to
find a translation file under the wp-content/languages or wp-includes/languages
directories of the site to locate translation strings for the target language. In this case, it will
try to find a file called fr_FR.mo. While it will not actually find this file in a default installation,
setting this configuration option will facilitate the creation and testing of a plugin translation
file in later recipes.

To learn more about translation files and find out where to download them from, visit
the WordPress Codex available at http://codex.wordpress.org/WordPress_in_
Your_Language.

Chapter 10

269

Adapting default user settings for translation
As mentioned in the introduction, plugin code needs to be specifically written to allow text
items to be translated. This work starts in the plugin's activation routine, where default plugin
option values are set, to find alternate values when a language other than English is specified
in the site's configuration file.

This recipe shows how to assign a translated string to a plugin's default options array
on initialization.

Getting ready
You should have already followed the Changing the WordPress language configuration recipe
to have a specified translation language for the site.

How to do it...
1. Navigate to the WordPress plugin directory of your development installation.

2. Create a new directory called ch10-hello-world.

3. Navigate to the directory and create a text file called ch10-hello-world.php.

4. Open the new file in a code editor and add an appropriate header at the top of the
plugin file, naming the plugin Chapter 10 – Hello World.

5. Add the following line of code before the plugin's closing ?> PHP command to register
a function to be called when the plugin is activated:
register_activation_hook(__FILE__,
 'ch10hw_set_default_options_array');

6. Insert the following block of code to provide an implementation for the
ch10hw_set_default_options_array function:
function ch10hw_set_default_options_array() {
 if (false === get_option('ch10hw_options')) {
 $new_options = array();
 $new_options['default_text'] =
 __('Hello World', 'ch10hw_hello_world');

 add_option('ch10hw_options', $new_options);
 }
}

7. Save and close the plugin file.

Enabling Plugin Internationalization

270

8. Navigate to the Plugins management page and activate the Chapter 10 – Hello
World plugin.

9. Using phpMyAdmin or the NetBeans IDE, find the options table entry where the
option_name field has a value of ch10hw_options to see the newly-created option.

How it works...
The __ function (that's two underscores) is a WordPress utility function that tries to find a
translation for the text that it receives in its first argument, within the text domain specified in
the second argument. A text domain is essentially a subsection of the global translation table
that is managed by WordPress. In this example, the text to be translated is the string Hello
World, for which the system tries to find a translation in the ch10hw_hello_world domain.
Since this domain is not available at this time, the function returns the original string that it
received as its first parameter. The plugin code assigns the value it receives to the default
configuration array.

It should be noted that the __ function is actually an alias for the translate function. While
both functions have the same functionality, using __ makes the code shorter when it contains
a lot of text elements to be translated.

While it may be tempting for developers to use a variable or constant
in the first parameter of the __ function if they need to display the
same text multiple times, this should not be done as it will cause
problems with the translation lookup mechanism.

See also
 f Changing the WordPress language configuration recipe

Making admin page code ready for
translation

While the previous recipe showed how to look up the translation of a text item and return its
value for further processing in the plugin code, there are many instances where it is more
practical to display the translated content immediately.

This recipe shows how to translate the contents of a simple administration page for
immediate display.

Chapter 10

271

Getting ready
You should have already followed the Adapting default user settings for translation recipe to
have a starting point for this recipe. Alternatively, you can get the resulting code for that recipe
from the code bundle. You should rename the file ch10-hello-world\ch10-hello-
world-v1.php to ch10-hello-world.php before starting.

How to do it...
1. Navigate to the ch10-hello-world folder of the WordPress plugin directory of your

development installation.

2. Open the ch10-hello-world.php file in a text editor.

3. Add the following line of code at the end of the file to register a function to be called
when WordPress is building the administration pages menu:
add_action('admin_menu', 'ch10hw_settings_menu');

4. Add the following code section to provide an implementation for the
ch10hw_settings_menu function:
function ch10hw_settings_menu() {
 add_options_page(
 __('Hello World Configuration', 'ch10hw_hello_world'),
 __('Hello World', 'ch10hw_hello_world'),
 'manage_options',
 'ch10hw-hello-world', 'ch10hw_config_page');
}

5. Insert the following block of code to create the ch10hw_config_page function,
declared in the call to add_options_page:
function ch10hw_config_page() {
 $options = get_option('ch10hw_options');
 ?>

 <div id="ch10hw-general" class="wrap">
 <!-- Echo translation for "Hello World" to the browser -->
 <h2><?php _e('Hello World', 'ch10hw_hello_world'); ?></h2>

 <form method="post" action="admin-post.php">

 <input type="hidden" name="action"
 value="save_ch10hw_options" />

 <?php wp_nonce_field('ch10hw'); ?>

Enabling Plugin Internationalization

272

 <!-- Echo translation for "Hello World" to the browser -->
 <?php _e('Default Text', 'ch10hw_hello_world'); ?>:
 <input type="text" name="default_text"
 value="<?php echo esc_html($options['default_text']
); ?>"/>

 <input type="submit" value="<?php _e('Submit',
 'ch10hw_hello_world'); ?>" class="button-primary"/>
 </form>
 </div>
<?php }

6. Add the following line of code to register a function to be executed when the
administration panel is being prepared to be displayed:
add_action('admin_init', 'ch10hw_admin_init');

7. Append the following code segment to provide an implementation for the
ch10hw_admin_init function:
function ch10hw_admin_init() {
 add_action('admin_post_save_ch10hw_options',
 'process_ch10hw_options');
}

8. Provide code for the process_ch10hw_options function, declared in the previous
step, by inserting the following code:
function process_ch10hw_options() {
 if (!current_user_can('manage_options'))
 wp_die('Not allowed');

 check_admin_referer('ch10hw');

 $options = get_option('ch10hw_options');

 $options['default_text'] = $_POST['default_text'];

 update_option('ch10hw_options', $options);
 wp_redirect(add_query_arg('page', 'ch10hw-hello-world',
 admin_url('options-general.php')));
 exit;
}

9. Save and close the plugin file.

Chapter 10

273

10. Navigate to the administration page of your development WordPress installation.

11. Click on the Settings section in the left-hand navigation menu to expand it. You will
see a new menu item called Hello World in the tree. Selecting the new entry displays
the plugin's simple configuration form, as shown in the following screenshot:

How it works...
This recipe makes use of the __ function, covered in the previous recipe, along with the _e
function. This second function's purpose is similar to __, except that it immediately echoes
the outcome of the translation lookup to the browser. It should be used for all text elements
that would previously have just been simple text in HTML code. Of course, making a call to this
function requires the presence of standard opening and closing PHP tags (<? and ?>) to be
executed amongst the surrounding HTML.

The rest of this plugin's code takes care of storing user updates to the site database, as
covered previously in Chapter 3, User Settings and Administration Pages.

See also
 f Adapting default user settings for translation recipe

Modifying shortcode output for translation
As we have seen in numerous recipes, shortcodes are powerful tools that provide an easy
way for users to add content to their site posts and pages. Since this content is presented to
users, it can benefit from a translation just as much as the site's administration pages.

This recipe shows how to translate shortcode output before it is displayed. It also explains how
to deal with variable data elements that can be positioned differently between languages.

Getting ready
You should have already followed the Making admin page code ready for translation recipe
entitled to have a starting point for this recipe. Alternatively, you can get the resulting code for
that recipe from the code bundle. You should rename the file ch10-hello-world\ch10-
hello-world-v2.php to ch10-hello-world.php before starting.

Enabling Plugin Internationalization

274

How to do it...
1. Navigate to the ch10-hello-world folder of the WordPress plugin directory of your

development installation.

2. Open the ch10-hello-world.php file in a text editor.

3. Add the following line of code at the end of the file to declare a new shortcode that
will be available to content authors:
add_shortcode('hello-world', 'ch10hw_hello_world_shortcode');

4. Add the following code section to provide an implementation for the
ch10hw_hello_world_shortcode function:
function ch10hw_hello_world_shortcode() {
 $options = get_option('ch10hw_options');

 $output = sprintf(__('The current text string is: %s.',
 'ch10hw_hello_world'),
 $options['default_text']);
 return $output;
}

5. Save and close the plugin file.
6. Create a new page and insert the new shortcode [hello-world] in the content.
7. View the page to see the output of the shortcode.

How it works...
This recipe shows something that's a bit more complex than the previous two, as we want
the shortcode output to be a combination of static text with a dynamic element, and we want
that element to appear in different places based on the grammatical structure of the target
language. The way to achieve this functionality is to combine the __ internationalization
function with the sprintf standard PHP function.

The purpose of the sprintf function is to insert a variable in a string. It performs this task
by looking for a placeholder in the target string sent in the first argument, and replaces it with
the variable that it receives as its second argument. Some examples of placeholders are %s
for a string and %d for an integer. With this functionality in mind, we use a placeholder as part
of the string to be translated so that users who create localization files can choose where the
value will be placed as part of the sentence structure. Once the translation has been obtained
by the __ function, we can immediately send the alternate language string to sprintf to
create the final text.

Chapter 10

275

See also
 f Adapting default user settings for translation recipe

Translating text strings using Poedit
After inserting all the necessary code to look up translations for text elements, we need to
create the actual translation files. While there are multiple tools available to perform this task,
we will focus our efforts around the most popular one, the free multi-platform Poedit.

This recipe shows how to extract all strings to be translated from the plugin's code using
Poedit, translate them, and save the resulting language file under the plugin directory.

Getting ready
You should have already followed the Modifying shortcode output for translation recipe to
have a starting point for this recipe. Alternatively, you can get the resulting code for that recipe
from the code bundle. You should rename the file ch10-hello-world\ch10-hello-
world-v3.php to ch10-hello-world.php before starting.

How to do it...
1. Navigate to the ch10-hello-world folder of the WordPress plugin directory of your

development installation.

2. Create a new subdirectory named languages.

3. Navigate to the Poedit download page and download the appropriate version of the
tool for your computer (http://www.poedit.net/download.php).

4. Install and start the Poedit application.

5. Select the New Catalog... item under the application's File menu.

6. Set the Project name and version field to Hello World under the Project Info tab.

7. Switch to the Paths tab.

8. Create a new entry in the Paths list by pressing the New item button.

9. Set the value of the new path entry to .. (two period characters).

10. Switch to the Keywords tab.

11. Select and delete the gettext and gettext_noop entries in the Keywords list.

12. Select the remaining entry (_), click on the Edit item button, then change its value
to __ (two underscores instead of a single one).

13. Click on the Add Item button and create a second entry with a value of _e.

Enabling Plugin Internationalization

276

14. Click on the OK button to close the Settings dialog.

15. In the Save As... dialog that automatically comes up, navigate to the newly-created
languages folder under the plugin's directory and set the target filename
to ch10hw_hello_world-fr_FR.po.

16. Click on OK in the Update summary dialog to acknowledge that five new strings
were found in the plugin's source code.

17. Select the items one by one in order to display them in the lower section of
the window.

18. Enter a translation for each text element in the lower dialog box. The following
screenshot shows the translations of each item to French:

19. Save the translation file once completed.

How it works...
The Poedit tool searches through PHP files, looking for functions that have specific names, as
specified in the Keywords configuration section. It looks through all files located in the same
directory as the catalog itself and in any additional folders specified under the Paths section
of the catalog settings. By specifying .. as an additional path, we tell Poedit to look one
directory up from the languages folder, where the plugin files are located.

Based on the configuration that we specified, Poedit is able to find all instances of the __ and
_e functions in the plugin code and retrieve the text strings that are set as the first argument
to these functions. Once all strings have been found, Poedit provides a simple interface to
provide translations for each string and save the resulting translation file. Upon saving, Poedit
actually creates two files. The first, with a .po extension, is a simple text file that contains a
flat textual version of the original strings and the localized versions of each item. The second,
sporting a .mo extension, is a file that is optimized for quick access on the web server.

Chapter 10

277

The name of the language files is made from two parts: the name of the text domain,
ch10hw_hello_world, which was used in all of our calls to the __ and _e functions in the
previous recipes, and the target language code, fr_FR, to match the language configuration
that we set earlier in this chapter.

There's more...
If you are only comfortable with English, create a template file that users will be able to import
to start their translation.

Translation template file
When you are only familiar with English, you can create a translation template that only
contains the text to be translated by saving the catalog as a .pot file, instead of a .po/.mo
combination. In addition to the special extension, the filename should not contain a language
tag (for example, ch10hw_hello_world.pot).

See also
 f Adapting default user settings for translation recipe

Loading a language file in the plugin
initialization

The final step to plugin translation is to put the code in place to load a translation file.
This is done by registering an action hook callback and calling a single function when
it gets executed.

This recipe shows how to load the translation file created in the previous recipe.

Getting ready
You should have already followed the Making admin page code ready for translation and
Translating text strings using Poedit recipes to have the proper files required for this recipe.
Alternatively, you can get the resulting code for these recipes from the code bundle. You
should rename the file ch10-hello-world\ch10-hello-world-v3.php to ch10-
hello-world.php and copy the languages folder to the right location before starting.

Enabling Plugin Internationalization

278

How to do it...
1. Navigate to the ch10-hello-world folder of the WordPress plugin directory of your

development installation.

2. Open the ch10-hello-world.php file in a text editor.

3. Add the following line of code at the end of the file to register a function to be called
when the plugin is initialized:
add_action('init', 'ch10hw_plugin_init');

4. Add the following code section to provide an implementation for the
ch10hw_plugin_init function:
function ch10hw_plugin_init() {
 load_plugin_textdomain('ch10hw_hello_world',
 false,
 dirname(plugin_basename(__FILE__))
 . '/languages');
}

5. Save and close the plugin file.

6. Navigate to the Settings menu to see if the plugin's menu item has changed.

7. Select the Bonjour Monde item to see the translated configuration page.

How it works...
The load_plugin_textdomain function has three arguments. When called, it looks in
the folder specified in the last parameter for a .mo file with a name starting with the text
domain specified in the first parameter, followed by the current language set in the WordPress
configuration file. If found, the translation file is loaded in memory and is used to search for
translations every time the __ or _e functions are encountered during execution. The middle
argument, set to a false value, is obsolete but is still needed for backward compatibility.

Once all hooks are in place in the plugin code, and a first translation file (or template) is made
available with the plugin, users can easily modify text elements to other languages, which they
can use immediately. They can also provide these new translations back to the plugin author
for inclusion in future updates.

Chapter 10

279

There's more...
As a plugin evolves over time, new text items may need to be translated. There may also be a
need to use more advanced translation functions and translate JavaScript code.

Updating a translation file
When new calls to the __ or _e functions are made in a plugin, the translation file needs to
be updated to take new text elements into account. To do this, start the Poedit tool and open
the existing catalog. Then, select the Update from sources item under the Catalog menu.
This will extract all text items and identify new entries. Once this is done, new items can be
translated and saved back to the catalog file.

Advanced translation functions
While we used the most common internationalization functions in this chapter, there are
a few more advanced functions that may be useful in your efforts:

 f _n($singular, $plural, $number, $domain): This function will look up one
of the first two strings received, depending on whether the number is one or more.

 f _x($text, $context, $domain): Adds a parameter to the localization lookup to
add a context parameter. This is useful when dealing with words that have the same
spelling but different meanings.

 f _ex($text, $context, $domain): Same as _x but echoes the result of
the lookup.

 f _nx($singular, $plural, $number, $context, $domain): Same as _n
with the additional context parameter from _x.

There are also a number of functions that will perform a localization lookup immediately
followed by the escape of the resulting string. These functions include esc_attr__(),
esc_attr_e(), esc_html__(), esc_html_x(), and many more. For a full list of
internationalization functions, visit http://codex.wordpress.org/L10n.

Localizing JavaScript files
JavaScript files are a bit more tricky to translate as they are often read from an external
file that cannot contain any PHP code. The solution to this is the wp_localize_script
function. When called, this function declares new variables in scripts that have already been
queued up to be loaded and populates these variables with localized strings. Upon execution,
the code will be able to access and display the proper text on-screen. The following code
snippet is an example showing how to use the function:

wp_enqueue_script('script_handle');
$translation_vars = array('string_val' =>
 __('Text to be translated'));
wp_localize_script('script_handle', 'javascript_object',
 $translation_vars);

http://codex.wordpress.org/L10n

Enabling Plugin Internationalization

280

In the previous code example , a new object called javascript_object will be created
inside the script_handle script, with a data member called string_val that contains
a translation of the target text in the current WordPress language, if available.

See also
 f Translating text strings using Poedit recipe

11
Distributing Your

Plugin on
wordpress.org

In this chapter, we will discuss how to distribute your creations, covering the following topics:

 f Creating a readme file for your plugin

 f Applying for your plugin to be hosted on wordpress.org

 f Uploading your plugin using Subversion

 f Providing a plugin banner image

Introduction
Once you have a version of your new plugin that is ready to be distributed to the masses, you
need to decide if you will join the official WordPress repository or self-publish it.

In most cases, the preferred option is to add your new extension to the official WordPress
plugin repository, where you have many benefits, including free hosting, the ability for users
to be notified of new updates, and a powerful search engine that users can access on
wordpress.org or from the Plugins section of their site's administration pages. Other
benefits of hosting on the official repository include download statistics and the creation of a
free forum to facilitate user support. To qualify for this hosting, your work must be open source
and must comply with the GNU General Public License, Version 2 (also known as GPL v2), a
common open source software license that WordPress itself uses. To learn more about the
GPL v2 license, visit http://www.gnu.org/licenses/gpl-2.0.html.

Distributing Your Plugin on wordpress.org

282

In comparison, self-hosting gives you full control over pricing, distribution license, and general
presentation of your work, but it makes it harder for people to find your plugin and relies on
implementing a custom update notification mechanism yourself or using third-party libraries
or having users manually download updates when available.

Before making your plugin public, you should be sure that you are ready to deal with user
feedback and questions. Once your creation is available for download, WordPress site
administrators will quickly download it, install it, and may find that your work covers most, but
not all, of their needs. When this happens, you will start getting requests to add functionality.
This interaction with users is usually a great experience that can bring new ideas to the table
that will enhance your work, but you should also be ready to accept criticism and invest time
to fix issues and implement new features. You also need to think of the time that will be
involved in testing your extension against new versions of WordPress, which typically come
out two to three times a year.

This chapter explains how to prepare your work to be uploaded to the official plugin repository,
including the application for an account, the actual submission using Subversion, and how
to customize your plugin page to give it a very unique look.

Creating a readme file for your plugin
If you look at any plugins on the official WordPress repository, you will see that their page
contains a lot of information, including a description of the extension, a list of frequently
asked questions, and installation notes. As you may have noticed from the work that we
have done so far, this data does not reside in the main plugin's code file. Instead, the official
WordPress repository looks for this information in a specially formatted readme.txt file that
needs to be included with the plugin.

This recipe shows how to create a readme.txt file for the Book Reviews plugin that we
created in Chapter 4, The Power of Custom Post Types.

Getting ready
You should have already followed the Updating page title to include custom post data using
plugin filters recipe from Chapter 4, The Power of Custom Post Types to have a starting point
for this recipe. Alternatively, you can get the resulting code (ch4-book-reviews\ch4-
book-reviews-v8.php) for that recipe from the code bundle.

How to do it...
1. Navigate to the ch4-book-reviews folder of your WordPress plugins directory.

2. Create a new text file named readme.txt and open it in a code editor.

Chapter 11

283

3. Insert the following text in the file:
=== Book Reviews ===
Contributors: ylefebvre
Donate link: http://ylefebvre.ca/wordpress-plugins/book-reviews
Tags: book, reviews
Requires at least: 3.0
Tested up to: 3.4
Stable tag: trunk

Create your own book review web site!

== Description ==

This plugin lets you add a book review system to your WordPress
site. Using custom post types, administrators will be able to
create and edit book reviews to be published on your site.

== Installation ==

1. Download the plugin
1. Upload the book-reviews folder to your site's
wp-content/plugins directory
1. Activate the plugin in the WordPress Admin Panel
1. Start creating new book reviews!
1. View the resulting list of reviews by accessing /book-reviews
on your site.

== Changelog ==

= 1.0 =
* First version of the plugin.

== Frequently Asked Questions ==

There are currently no FAQs at this time.

== Screenshots ==

1. The review edition page

4. Save and close the text file.

5. Navigate to the Book Reviews edition page and take a screenshot using a third-party
screen capture tool or your operating system's built-in function.

6. Save the resulting image as screenshot-1.jpg in the plugin directory.

Distributing Your Plugin on wordpress.org

284

How it works...
The readme.txt file uses a wiki-like syntax, with the number of equal signs (=) indicating
the level of each section header. The first and most important section is the header, which
contains important information such as the plugin's name, the author's wordpress.org
username, donation link, search tags, supported versions, along with a one-line description
of its functionality. This last item will always be visible as users navigate through your
plugin's pages.

The initial header is followed by multiple sections, which correspond to the various tabs that
appear within a plugin's display pages. More specifically, these sections contain a complete
description of the extension's capability, a step-by-step guide to install and use your work,
a change log containing a list of all versions with a summary of changes for each of them,
frequently-asked questions, and screenshots. It is also possible for plugin authors to create
their own arbitrary section using the same syntax.

As with standard wiki syntax, the repeating 1. in front of each installation step will be
converted to incrementing values when the system displays these bullets using an
ordered list on the live site. Finally, if screenshots are listed in the readme.txt file, the
wordpress.org site will search for files whose name starts with the keyword screenshot-,
followed by a number corresponding to the values listed in the screenshot section, and display
them with the associated text as a legend. When taking screenshots of your plugin in action,
make sure that they are clear and meaningful as visitors will often decide if they will download
your creations based on these images.

There's more...
To keep plugin code files more organized and have complete control over releases, you should
consider using the Subversion tags.

Releasing specific plugin versions using tags
Tags are a Subversion concept that allow developers to identify a group of files at a specific
point in time and label them with a name. This name can be used to specify the version of
your plugin that wordpress.org visitors will be able to download. While this recipe specifies
a value of trunk as the Stable Tag, indicating that the latest version of the files uploaded
to the plugin's trunk folder will be released, it's possible to indicate any other tag name in
this field. In addition to keeping your work more organized, working with tags allows you to
commit partially implemented new plugin features to your repository without having them
automatically available for all to access.

Chapter 11

285

Applying for your plugin to be hosted on
wordpress.org

After creating proper documentation for your creation, the next step towards its publication
on the official plugin repository is to apply for hosting. This is simply done by submitting
a request form in the Developer Center section on wordpress.org.

This recipe shows how to apply for plugin hosting and offers tips to follow for quick acceptance.

How to do it...
1. Point your web browser to the plugin hosting request form page that is available at

http://wordpress.org/extend/plugins/add/.

2. Log in to the wordpress.org website using the form at the top of the plugin
submission page with your existing credentials or create a new account if you
don't currently have one.

3. Fill in the Plugin Name and Plugin Description fields.

4. Optionally, provide the address of a page on your own site where additional
information on the plugin can be found.

5. Submit the form using the Send Post button.

How it works...
Plugin submission is a fairly simple process, where any requests will usually be approved
within a few days, giving developers access to a Subversion repository that they can use
to upload their work and share it with the community.

Before submitting your request, you should search through existing plugins to be sure that
you have not selected a name that already exists on the repository, as that will likely result
in your request being turned down. You can do this by using the website's search engine,
as well as trying to access an address that was named based on your plugin name. For
example, following our Book Reviews plugin example, you could check to see if the address
http://wordpress.org/extend/plugins/book-reviews exists. Finally, you should
be sure to give a good description of your plugin's functionality.

Distributing Your Plugin on wordpress.org

286

It should be noted that your plugin does not need to be 100 percent complete or functional
when you apply to be listed on the repository. Applying for this access early during your
development process helps you secure the name to your idea before someone else takes it,
and also gives you access to a hosted Subversion version control repository to easily keep
backups of your work during development. If you work on a plugin with one or more people,
this last benefit will make it very easy to exchange code between all contributors. Using the
release tag mechanism described in the previous recipe, you can select the exact moment
when your work is ready to become public and ready for download.

See also
 f Creating a readme file for your plugin recipe

Uploading your plugin using Subversion
If you thought that using Subversion in the recipes of Chapter 1, Preparing a Local
Development Environment, was overkill when you're working on a plugin locally, you will
see that this knowledge comes in very handy once your hosting request has been approved
by the WordPress team, as the system's backend relies on that version control system.

This recipe shows how to submit your creation to the wordpress.org site once a repository
has been created for you.

Getting ready
You should have already followed the Applying for your plugin to be hosted on wordpress.org
recipe to have an approved repository on the official site. You should have also installed a
Subversion client as shown in the Creating a local Subversion repository recipe in Chapter 1,
Preparing a Local Development Environment. Finally, you should have plugin files ready
for upload.

How to do it...
1. Right-click in a file explorer and select the TortoiseSVN | Repo-browser menu.

2. Enter the address of your new repository, as indicated in your hosting approval
e-mail. For example, for a plugin named Book Reviews, the address would be
http://plugins.svn.wordpress.org/book-reviews.

Chapter 11

287

3. Right-click on the plugin's name in the left-hand side tree view, and select the
Checkout option.

4. Select a local folder on your computer as the Checkout directory.

5. Click on OK to create a local copy of the server structure with the accompanying
version control data.

6. Copy your plugin's files to the trunk folder of the resulting directory structure.

7. Select all files, right-click on them, and select the TortoiseSVN | Add... menu.

8. Right-click on the trunk folder and select the SVN Commit... menu option.

9. Enter a Message indicating that you are uploading the first version of this plugin.

10. Click on OK to upload your files to the official repository.

11. When prompted for authentication, use your wordpress.org Username and
Password. Click on the Save authentication checkbox to avoid providing these
credentials each time.

Distributing Your Plugin on wordpress.org

288

12. Approximately 10 to 15 minutes later, you will receive an e-mail confirming that new
files have been uploaded to the repository. You will then be able to visit your plugin's
page and download it. For our example Book Reviews plugin, the address of the page
would be http://wordpress.org/extend/plugins/book-reviews/.

How it works...
The official WordPress plugin repository uses Subversion to manage all code files, provide
version control services to developers, and find information to populate the extension's
page. When your new repository gets created, it contains three main directories: trunk,
tags, and branches.

The trunk directory is usually the main location where you place the latest version of your
plugin files. Following the steps in the recipe, we copy our files to this location and commit
them to the server. Once uploaded, the wordpress.org servers take care of creating a
zipped copy of your work.

The tags directory is designed to hold pointers to various versions of your creation over time,
as discussed in the Creating a readme file for your plugin recipe. This functionality used in
conjunction with the Stable tag field of your plugin's readme.txt file, allows you to redirect
users to a known working version of your work while you commit and test potentially unstable
work to the trunk. New tags are created using the Branch/Tag item of the TortoiseSVN
menu and associating a name to a specific revision. The branches directory has a similar
function to tags, but is more focused towards the creation of alternate versions of plugins,
or in-development revisions that include specific functionality.

Chapter 11

289

There's more...
If you want to execute your plugin's code in a local WordPress development installation as you
are writing it, the following section shows you how to manage your code.

Checking out plugins to your development installation
When checking out the complete plugin directory, you end up with a structure that cannot be
executed directly in a local development installation of WordPress for testing and development
purposes. Instead of checking out the entire directory structure, you can limit your selection to
the trunk directory. This will only copy the contents of that specific folder to your system and
you can set the target folder to be located directly under the plugins directory.

See also
 f Creating a readme file for your plugin recipe

 f Checking out files from a Subversion repository recipe in Chapter 1, Preparing a
Local Development Environment

 f Committing changes to a Subversion repository recipe in Chapter 1, Preparing a
Local Development Environment

Providing a plugin banner image
While the plugin listing that we put in place by creating a readme.txt file and uploading it to
the official plugin repository is perfectly functional, it does not really stand out amongst the sea
of extensions that are available on the site. Thankfully, wordpress.org recently introduced a
mechanism allowing plugin developers to add a banner image to their listing. This image can
be anything from a simple picture to a complex graphic to advertise your creation.

This recipe explains how to prepare an image for your plugin and how to upload it to
your repository.

Getting ready
You should have already followed the Applying for your plugin to be hosted on wordpress.org
and Uploading your plugin using Subversion recipes to have an approved repository on the
official repository and plugin files uploaded to the server.

How to do it...
1. Create a new image that is exactly 772 x 250 pixels.

2. Save the image as a PNG file with the name banner-772x250.png.

Distributing Your Plugin on wordpress.org

290

3. Right-click in a file explorer and select the TortoiseSVN | Repo-Browser menu.

4. Enter the address of your plugin repository. For example, for a plugin named
Book Reviews, the address would be http://plugins.svn.wordpress.org/
book-reviews.

5. Create a new top-level directory named assets, at the same level as trunk, tags,
and branches.

6. Select the assets directory, then drag-and-drop the new image file in the folder to
upload it to the server.

7. Specify a Log Message in the dialog that appears to explain why the file is
being uploaded.

8. Visit your plugin's page on wordpress.org to see the image in place.

How it works...
When files are uploaded to the plugin repositories, the wordpress.org site checks for
the presence of a specific image file with a specific name for the plugin banner. If this file
is present, it changes the layout of the plugin page to incorporate the image. It is important
to respect the image format and the specified dimensions when creating a plugin banner
to make sure that it is displayed properly on the site. You should also make sure that no
important content, text, or something similar is located in the bottom-left part of the image
as that is where the plugin's name will be displayed.

See also
 f Uploading your plugin using Subversion recipe

Index
Symbols
$query_params variable 149
$valid variable 196
?> character 75
_e function 273, 277
__ function 270

A
action hooks

user settings, accessing from 107, 108
Activate option 75
add_action call 137
add_action function 47
add_filter function 52, 56
add_help_tab function 100
add_menu_page function 87
add_meta_box function 113, 114, 137, 170
Add New button 132
add_option function 76
add_options_page function 84, 87
add_query_arg function 190
addreviewmessage variable 190
add_settings_field function 106
add_shortcode function 186
add_thickbox function 236
admin code

splitting, from main plugin file 115, 116
administration page menu item

creating, on settings menu 82-84
admin_menu hook 85, 156
admin page

code, preparing for translation 270-273
custom table data, displaying 209-212

admin page content
rendering, HTML used 89-91
rendering, settings API used 100-106

admin page form fields
tooltips adding, TipTip plugin used 243-245

admin sections pages
formatting, meta boxes used 109-115

admin_url() function 50
AJAX

used, to dynamically update partial page con-
tents 246-251

API 74
Application Programming Interface. See API
apply_filters function 53
archive page

creating, for custom post types 143-146
archives widget 253
arrays

used, for storing user settings 78, 79
AUTO_INCREMENT command 202

B
banner image, plugin

providing 289, 290
Bonjour Monde item 278
Book Review Dashboard Widget plugin 265
Book_Reviews class 257, 260, 262
Book Reviews menu item 132
Book Reviews plugin 194
book_reviews post type 135, 139
Book Review system 130
branches directory 288

292

C
calendar day selector

displaying, Datepicker plugin used 240-243
Calendar Picker plugin 242
captcha

implementing, on user forms 194-197
category editor

hiding, from custom post type 153-156
ch2lfa_footer_analytics_code function 57
ch2lfa_link_filter_analytics function 57
ch2tf_title_filter function 51
ch2ts_twitter_feed_shortcode function 64
ch2ye_youtube_embed_shortcode function

127
ch3mlm_admin_menu function 86
ch3sapi_config_page function 103
ch3sapi_display_check_box function 103
ch4_br_add_book_review_fields function 137
ch4_br_add_columns function 157
ch4_br_admin_init function 135
ch4_br_author_column_sortable function

159
ch4_br_book_review_list function 147, 149
ch4_br_book_type_filter_list function 162
ch4_br_column_ordering function 159
ch4_br_create_book_post_type function 131,

137, 151
ch4_br_display_review_details_meta_box

function 136
ch4_br_format_book_review_title function

164
ch4_br_template_include function 139
ch5_cfu_form_add_enctype function 177
ch5_cfu_register_meta_box function 178
ch5_hcf_remove_custom_fields_metabox

function 176
ch5_psl_register_meta_box function 168,

169, 171
ch5_psl_save_source_data function 169
ch6_brus_book_review_form function 184,

189
ch6_brus_match_new_book_reviews function

188
ch6_brus_process_user_book_reviews

function 195

ch7bt_create_table function 201
ch8bt_declare_ajaxurl function 248
ch8bt_load_query function 249
ch8cp_date_meta_box function 242, 244
ch8cp_register_meta_box function 241
ch8pud_footer_code function 234
ch8pud_load_scripts function 234, 238
ch9-book-review-widget directory 260
ch9brdw_add_dashboard_widget function

265
ch9brdw_dashboard_widget function 265
ch9brw_create_widgets function 254
ch10hw_plugin_init function 278
check_admin_referer 94
Checkout option 287
client-side content submission form

client-side user form access, controlling 187
creating 183-186

Codex
URL 268

coding errors
troubleshooting 59-62

columns
additional columns, displaying in custom post

list page 157-161
Commit button 35
Commit Message field 35
Compare with working copy menu item 27
computer

web server, installing 6
configuration options, widgets

displaying 256
displaying, steps for 257, 258
validating 259, 261
working 259

confirmation message
displaying, on saved options 95-97

content_url() function 50
Cornerstone

URL 17
Create a XAMPP Desktop icon option 7
custom categories

adding, for custom post type 150-153
custom dashboard widget

adding 264, 266
custom database table

data, displaying in shortcodes 222

293

custom field section
hiding, in post editor 175, 176

Custom Fields editor 137
custom help pages

adding 97-100
custom meta boxes

used, for adding extra fields to meta boxes
168-171

custom post data
displaying, in theme templates 172-174

custom post list page
additional columns, displaying 157-161
filters, adding for custom taxonomies

161-163
custom post type

about 129
archive page, creating for 143-146
category editor, hiding from 153-156
creating 130
creating, steps for 130-133
custom categories, adding 150-153
data, displaying in shortcodes 146-149
data, initializing 77
new section, adding 135-138
permalinks slug, changing 134
single custom post type items displaying,

custom templates used 138-142
using 130

custom table data
displaying, in admin page 209-212
retrieving, by implementing search function

224-227
custom tables

records, deleting 218, 221
records, inserting 213-217
records, updating 213-217
removing, on plugin removal 205-207
structure, updating on plugin upgrade 207,

209
custom taxonomies

filters for, adding to custom post list page
161-163

custom templates
used, for displaying single custom post type

items 138-142

D
dashboard widget 253
data

importing, from user file into custom tables
227, 230

database tables
creating 200-203

Datepicker plugin
used, for displaying calendar day selector

240-243
dbdelta function 209
deactivation function 77
dedicated code editor

installing 29-31
dedicated text editor

installing 29-31
default user settings

creating, on plugin initialization 74-76
dialog close button

removing 236
direct file upload permission

post editor, extending for 177-182
Directory option 9
DocumentRoot configuration option 9
do_meta_boxes function 114
do_settings_sections function 105
do_shortcode function 150
drop-down list settings field

rendering 106

E
EasyCaptcha PHP script 197
EasyPHP

URL 10
e-mail notifications

on new submissions, sending 191-193
external files

loading, WordPress path utility function used
48-50

external images
loading, WordPress path utility function used

48-50

294

F
favicon meta tag 48
Featured Image meta box 133
fields

extra fields, adding to meta boxes 168-171
file history

viewing 27
files

checking, from Subversion repository 19-21
initial files, importing to local Subversion

repository 17-19
filter hooks

user settings, accessing from 107, 108
filters

for custom taxonomies, adding to custom post
list page 161-163

foreach loop 171
form method 259, 263

G
get_blog_prefix method 202
get_field_id method 259
get_field_name method 259
get_option function 91, 95, 193
get_permalink function 56
get_post_meta function 138, 142, 146, 172
get_post_type function 53
get_query_var function 149
get_results method 212
get_template_directory_uri() function 50
get_the_ID() template function 142
get_theme_root() function 50
get_the_title function 56
Git

URL 17
global wp_query object 146
Google Images

URL 132
Go To dialog box 31
GPL v2 license

URL 281

H
header

creating 40-42
Hide Custom Fields plugin 176
home_url() function 50
hook function 44
hooks

searching, in WordPress source code 48
HTML

used, for rendering admin page contents
89-91

I
IconArchive

URL 132
IDE 31
includes_url() function 50
Install Apache as service option 7
Install button 8
Installed Plugins list 42
Install MySQL as service option 7
integrated development environment. See IDE
intval function 261
is_front_page function 53, 237
is_user_logged_in function 187
items

hiding, from default menu 87-89

J
JavaScript files

localizing 279
jQuery

loading, into WordPress web pages 232

L
labels 153
language configuration, WordPress

changing 268-270
language file

loading, in plugin initialization 277, 279
link statistics tracking code

inserting in page body, plugin filters used
56-58

295

links widget 253
load_plugin_textdomain function 278
local Subversion repository

about 15-17
initial files, importing 17-19

local WordPress installation 11
locate_template function 142

M
MAMP

URL 10
Mercurial

URL 17
meta boxes

about 167, 168
adding, to post types 171
extra fields, adding to post editor 168-171
used, for formatting admin sections pages

109-115
meta box mechanism 135
multi-level administration menu

creating 85-87
multiple sets

of user settings, managing from single admin
page 122-128

MySQL database server
managing, from NetBeans interface 36, 37

N
NetBeans

WordPress plugin creation module, installing
43, 44

NetBeans IDE
installing 31, 33

NetBeans interface
MySQL database server, managing 36, 37
Subversion repository, interacting with 34, 35

new submissions
e-mail notifications, sending on 191-193

noconflict mode 233
Notepad++

URL 29
not_found label 133

O
object-oriented PHP

used, to write plugins 70-72
option_id parameter 127
output content

adding to page headers, plugin actions used
44-47

P
Packt Publishing

URL 132
PagaVCS tool

URL 17
page body

link statistics tracking code inserting, plugin
filters used 56-58

page headers
output content adding, plugin actions used

44-47
page title

modifying, plugin filters used 50, 52
updating to include custom post data, plugin

filters used 164-166
parameters

used, for creating new shortcode 65, 66
partial page contents

updating partially, AJAX used 246-251
Permalinks 85
permalinks slug, custom post type

changing 134
phpMyAdmin

using, to simplify code creation 203, 204
plugin

applying, to host on wordpress.org 285, 286
banner image, providing 289, 290
data, removing on deletion 80-82
directory, checking 289
new options, adding 77
readme file, creating 282-284
uploading, subversion used 286-288
writing, object-oriented PHP used 70-72

plugin actions
used, for adding output content to page head-

ers 44-47

296

plugin configuration data
processing 92-94
storing 92-94

Plugin Description fields 285
plugin file

admin code, splitting from 115, 116
creating 40-42

plugin filters
used, for adding text after each items content

54, 55
used for inserting link statistics tracking code,

in page body 56-58
used, for modifying page title 50, 52
used, for updating page title 164-166

plugin initialization
default user settings, creating 74-76
language file, loading 277, 279

plugin output
formatting, by loading stylesheet 69, 70

plugin removal
custom tables, removing on 205-207

Plugins management page 132, 270
plugins_url function 50
plugins_url utility function 50
plugin upgrade

custom tables structure, updating on 207,
209

Poedit
used, for translating text strings 275-277

pop-up dialog
display controlling, shortcodes used 237-240
displaying, built-in ThickBox plugin used

234-236
displaying, on selected pages 237

post editor
custom field section, hiding 175, 176
extending, for direct file upload permission

177-182
extra fields adding, custom meta boxes used

168-171
Post/Page Source meta box 170
posts_per_page query argument 149
post type. See also custom post type
post type

custom post types, user-submitted content
saving in 187-190

meta box, adding 171

previous_post_links function 146
printing variable contents

troubleshooting 59-62
print_r function 61
process_ch10hw_options function 272
Programmer’s Notepad

URL 29

R
readme file

creating, for plugin 282, 284
recordOutboundLink Javascript function 58
records

from custom table, deleting 218, 221
in custom table, inserting 213-217
in custom table, updating 213-217

register_activation_hook function 76
register_post_type function 133, 153
register_taxonomy function 152
register_widget function 255
remote web development environment

creating 11
remove_meta_box function 176
render_widget, nb_book_reviews function

259
Revert to this revision menu item 27

S
Save all changes button 133
Save Changes button 134
saved options

confirmation message, displaying on 95-97
Save Menu button 61
save_post action 171
Screem

URL 29
search function

implementing, to retrieve custom table data
224-227

section
new section, adding to custom post type

editor 135-138
SELECT * command 212
Send Post button 285

297

Set featured image link 132
settings API

used, for rendering admin page content 100-
106

settings_fields function 105
settings menu

administration page menu item, creating
82-84

hook priority, settings 85
shortcode

creating, steps 63, 64
custom database table data, displaying 222
custom post type data, displaying 146-149
new enclosing shortcode, creating 67, 68
new shortcode, creating 63
new shortcode, creating with parameters 65,

66
output, modifying for translation 273, 274
used, for displaying pop-up dialog display

237-240
Show log menu item 35
show_tagcloud 153
show_ui option 153
single admin page

multiple sets of user settings, managing
122-128

single custom post type items
displaying, custom templates used 138-142

site_url() function 50
sprintf function 274
Stable tag field 288
strip_tags function 261
str_replace function 58
stylesheet

data, storing, in user settings 117-122
loading, to format plugin output 69, 70

Sublime Text 2
URL 29

Submit button 91
Subversion. See SVN
subversion file, statuses

added 21
conflicted 22
deleted 21
ignored 22
modified 21

non-versioned 21
normal 21

Subversion repository
changes, committing to 22-24
files, checking out from 19-21
files, updating to latest version 24
interacting, from NetBeans interface 34, 35
local Subversion repository, creating 15, 16
local Subversion repository, initial files import-

ing 17
subversion file, statuses 21

SVN
about 15
used, for uploading plugin 286-288

T
taxonomy 150
template_include filter hook 142
template_redirect action hook 190
text

adding after each items content, plugin filters
used 54, 55

text area settings field
rendering 106

TextMate
MateURL 29

text strings
translating, Poedit used 275-277

TextWrangler
URL 29

the_content() function 142
theme templates

custom post data, displaying 172-174
the_title() function 142
ThickBox plugin

built-in ThickBox plugin, used for displaying
pop-up dialog box 234-236

TipTip plugin
used, for adding tootltips to admin page form

fields 243-245
tool tips

adding to admin page form fields, TipTip
plugin used 243-245

TortoiseSVN
configuring, to use external diff viewer 26

298

TortoiseSVN menu 288
TortoiseSVN site

URL 15
translate function 270
translation

admin page code, preparing for 270-273
advanced functions 279
file, updating 279
shortcode output, modifying for 273, 274

troubleshooting
coding errors 59-62
printing variable contents 59-62

U
UAC 7
uncommitted file changes

reverting to 25, 26
update method 259
update_post_meta 171
User Access Control. See UAC
user capability 84
user files

into custom tables, data importing from 227,
230

user forms
captcha, implementing on 194, 195, 196,

197
user settings

accessing, from action hooks 107, 108
accessing, from filter hooks 107, 108
default user settings, applying for translation

269, 270
multiple sets, managing from user admin

page 122-128
storing, arrays used 78, 79
stylesheet data, storing in 117-122

user-submitted content
in custom post types, saving 187-191
moderating 191

V
Versions

URL 17
View Book Review button 133

W
WampServer

URL 10
web server

benefits 6
installing, on computer 6-10

web server packages
URL 11

widget display function
implementing 261
implementing, steps for 263

widget method 256, 263
widgets

about 253
archives widget 253
configuration options, displaying 256-258
configuration options, validating 259, 261
creating, steps for 254, 255
custom dashboard widget, adding 264, 266
dashboard widget 253
display function, implementing 261
links widget 253
working 255, 256

widgets_init action hook 255
widget_title function 259
WordPress

about 267
language configuration, changing 268
widget, creating 254-256

WordPress Codex
URL 47, 133

WordPress header
creating 40-42

wordpress.org
hosting on, by applying for plugin 285, 286

WordPress path utility function
using, to load external files 48-50
using, to load external images 48-50

WordPress plugin
creating 40-42

WordPress plugin creation module
installing, in NetBeans 43, 44

WordPress source code
hooks, searching for 48

299

WordPress Version 2.2
widgets 253

WordPress web pages
jQuery, loading 232, 233

wp_add_dashboard_widget function 266
wp_count_posts utility function 266
wpdb class 202
WP_DEBUG_DISPLAY 63
WP_DEBUG_LOG 63
wp_die function 190
wp_dropdown_categories function 163
wp_enqueue_script function 233
wp_insert_post function 190
wp_localize_script function 279
wp_mail function 191, 193

wp_nonce_field function 91, 186, 189
WP_Query class 149
WP_Query object 263
wp_redirect function 190
wp_redirect function 95
wp_title function 166
wp_upload_dir() function 50
wp_verify_nonce function 190
WP_Widget class 255

X
XAMPP website

URL 7

Thank you for buying
WordPress Plugin Development Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

WordPress 3 Site Blueprints
ISBN: 978-1-847199-36-2 Paperback: 300 pages

Ready-made plans for 9 different professional
WordPress sites

1. Everything you need to build a varied collection of
feature-rich customized WordPress websites for
yourself

2. Transform a static website into a dynamic
WordPress blog

3. In-depth coverage of several WordPress themes
and plugins

4. Packed with screenshots and step-by-step
instructions to help you complete each site

WordPress 3 Complete
ISBN: 978-1-84951-410-1 Paperback: 344 pages

Create your own complete website or blog from scratch
with WordPress

1. Learn everything you need for creating your own
feature-rich website or blog from scratch

2. Clear and practical explanations of all aspects of
WordPress

3. In-depth coverage of installation, themes, plugins,
and syndication

4. Explore WordPress as a fully functional content
management system

Please check www.PacktPub.com for information on our titles

WordPress for Education
ISBN: 978-1-84951-820-8 Paperback: 144 pages

Create interactive and engaging e-learning websites
with WordPress

1. Develop effective e-learning websites that will
engage your students

2. Extend the potential of a classroom website with
WordPress plugins

3. Create an interactive social network and course
management system to enhance student and
instructor communication

WordPress 3 Ultimate
Security
ISBN: 978-1-84951-210-7 Paperback: 408 pages

Protect your WordPress site and its network

1. Know the risks, think like a hacker, use their
toolkit, find problems first – and kick attacks into
touch

2. Lock down your entire network from the local PC
and web connection to the server and WordPress
itself

3. Find out how to back up and secure your content
and, when it's scraped, know what to do to
enforce your copyright

4. Understand disaster recovery and use the best-
of-breed tools, code, modules, techniques, and
plugins to insure against attacks

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Preparing a Local Development Environment
	Introduction
	Installing a web server on your computer
	Downloading and configuring a local WordPress installation
	Creating a local Subversion repository
	Importing initial files to a local Subversion repository
	Checking out files from a Subversion
repository
	Committing changes to a Subversion
repository
	Reverting uncommitted file changes
	Viewing file history and reverting content changes to older revisions
	Installing a dedicated code/text editor
	Installing and configuring the NetBeans Integrated Development Environment
	Interacting with a Subversion repository from the NetBeans interface
	Managing a MySQL database server from the NetBeans interface

	Chapter 2: Plugin Framework Basics
	Introduction
	Creating a plugin file and header
	Adding output content to page headers using plugin actions
	Using WordPress path utility functions to load external files and images
	Modifying the page title using plugin filters
	Adding text after each item's content using plugin filters
	Inserting link statistics tracking code in page body using plugin filters
	Troubleshooting coding errors and printing variable content
	Creating a new simple shortcode
	Creating a new shortcode with parameters
	Creating a new enclosing shortcode
	Loading a stylesheet to format plugin output
	Writing plugins using object-oriented PHP

	Chapter 3: User Settings and Administration Pages
	Introduction
	Creating default user settings on plugin
initialization
	Storing user settings using arrays
	Removing plugin data on deletion
	Creating an administration page menu item in the Settings menu
	Creating a multi-level administration menu
	Hiding items which users should not access from the default menu
	Rendering the admin page contents using HTML
	Processing and storing plugin configuration data
	Displaying a confirmation message when options are saved
	Adding custom help pages
	Rendering the admin page contents using the Settings API
	Accessing user settings from action and filter hooks
	Formatting admin pages using meta boxes
	Splitting admin code from the main plugin file to optimize site performance
	Storing stylesheet data in user settings
	Managing multiple sets of user settings from a single admin page

	Chapter 4: The Power of Custom Post Types
	Introduction
	Creating a custom post type
	Adding a new section to the custom post type editor
	Displaying single custom post type items
using custom templates
	Creating an archive page for custom post types
	Displaying custom post type data in
shortcodes
	Adding custom categories for custom
post types
	Hiding the category editor from the custom post type editor
	Displaying additional columns in the custom post list page
	Adding filters for custom categories to the custom post list page
	Updating page title to include custom post data using plugin filters

	Chapter 5: Customizing Post and Page Editors
	Introduction
	Adding extra fields to the post editor using custom meta boxes
	Displaying custom post data in theme
templates
	Hiding the Custom Field section in the
post editor
	Extending the post editor to allow users
to upload files directly

	Chapter 6: Accepting User Content Submissions
	Introduction
	Creating a client-side content submission form
	Saving user-submitted content in custom post types
	Sending e-mail notifications upon new
submissions
	Implementing a captcha on user forms

	Chapter 7: Creating Custom MySQL Database Tables
	Introduction
	Creating new database tables
	Deleting custom tables on plugin removal
	Updating custom table structure on plugin upgrade
	Displaying custom table data in an admin page
	Inserting and updating records in custom tables
	Deleting records from custom tables
	Displaying custom database table data in shortcodes
	Implementing a search function to retrieve custom table data
	Importing data from a user file into custom tables

	Chapter 8: Leveraging JavaScript, jQuery, and AJAX Scripts
	Introduction
	Safely loading jQuery onto WordPress
web pages
	Displaying a pop-up dialog using the built-in ThickBox plugin
	Controlling pop-up dialog display using shortcodes
	Displaying a calendar day selector using the Datepicker plugin
	Adding tooltips to admin page form fields
using the TipTip plugin
	Using AJAX to dynamically update partial page contents

	Chapter 9: Adding New Widgets to the WordPress Library
	Introduction
	Creating a new widget in WordPress
	Displaying configuration options
	Validating configuration options
	Implementing the widget display function
	Adding a custom dashboard widget

	Chapter 10: Enabling Plugin Internationalization
	Introduction
	Changing the WordPress language
configuration
	Adapting default user settings for translation
	Making admin page code ready for
translation
	Modifying shortcode output for translation
	Translating text strings using Poedit
	Loading a language file in the plugin
initialization

	Chapter 11: Distributing Your Plugin on wordpress.org
	Introduction
	Creating a readme file for your plugin
	Applying for your plugin to be hosted on wordpress.org
	Uploading your plugin using Subversion
	Providing a plugin banner image

	Index

